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Abstract. Special matrix functions have become a major area of study for math-
ematicians and physicists over the last two decades. The famous Humbert’s matrix
functions have received considerable attention by many authors from different points
of view [5, 16, 24]. Inspired by the recent work by Abd-Elmageed et.al. [1], who es-
tablished recursion formulas satisfied by the first Appell matrix function, namely F1.
In this paper, we find the recursion formulas for Humbert’s matrix functions. This
enriches the theory of special matrix functions. The obtained results are believed to be
newly presented.

Keywords: Matrix functional calculus, Recursion formula, Humbert’s matrix func-
tion.

1. Introduction

The theory of special functions and its generalisations appear frequently in
physics, probability theory, engineering, and Lie theory, amongst other fields.
Recursion formulas for the Appell functions have been studied in the literature,
see [17, 28]. Recursion formulas forl multivariable hypergeometric functions were
presented in [3, 19, 20, 21, 22]. Humbert’s functions constitute a set of seven hy-

*. Corresponding author
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pergeometric functions of two variables that are confluent cases of two variable
Appell hypergeometric functions and generalize the Kummer’s confluent hyper-
geometric function 1F1 of one variable. The class of classical Humbert functions
has been recently studied for reduction and summation formulas [4, 6, 25].

The matrix theory is used in orthogonal polynomials and special functions,
and it is widely used in mathematics in general. Due to their applications in
physics, engineering, probability theory, and Lie theory, special matrix functions
have received a lot of attention [7, 10]. Special matrix functions connected to
the matrix version of Laguerre, Hermite and Legendre differential equations and
the corresponding polynomial families in [11, 12, 13]. Recently, Abd-Elmageed
et. al. and Verma [1, 26] have obtained recursion formulas satisfied by the
first Appell matrix function, namely F1 and Srivastava’s triple hypergeometric
matrix functions. In [23, 27], recursion formulas for the Gauss hypergeometric
matrix function and Lauricella matrix functions are presented. Motivated by
this study, we obtain recursion formulas for Humbert’s matrix functions.

The paper is organized as follows. In Section 2, we give a review of basic
definitions that are needed in the sequel. In Section 3, we obtain the recursion
formulas for Humbert’s matrix function.

2. Preliminaries

Let Cr×r be the vector space of r-square matrices with complex entries. For
any matrix A ∈ Cr×r, its spectrum σ(A) is the set of eigenvalues of A. The
spectral abscissa of A is given by α(A)= max [ℜ(z)|z ∈ σ(A)], where ℜ(z)
denotes the real part of a complex number z. If β(A)= min [ℜ(z)|z ∈ σ(A)],
then β(A) = −α(−A). A square matrix A in Cr×r is said to be positive stable
if β(A) > 0. The 2-norm of A is denoted by ||A|| and defined by

||A|| = maxx̸=0
||Ax||2
||x||2

= max[
√

(λ)|λ ∈ (A⋆A)],(1)

where for any vector x in the r-dimensional complex space, ||x||2 = (x⋆x)
1
2 is the

Euclidean norm of x and A⋆ denotes the transposed conjugate of A. If f(z) and
g(z) are holomorphic functions of the complex variable z, which are defined in
an open set Ω of the complex plane, and A is a matrix in Cr×r with σ(A) ⊂ Ω,
then from the properties of the matrix functional calculus [8], it follows that

f(A)g(A) = g(A)f(A).(2)

Furthermore, if B ∈ Cr×r is a matrix for which σ(B) ⊂ Ω, and if AB = BA,
then

f(A)g(B) = g(B)f(A).(3)

If A is a positive stable matrix in Cr×r, then Γ(A) can be expressed as [15]

(4) Γ(A) =

∫ ∞

0
e−t tA−I dt,
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where, tA−I = exp((A− I) ln t) and ln is the principal branch of the logarithmic
function.

Furthermore, if A+kI is invertible for all integers k ≥ 0, then the reciprocal
gamma matrix function is defined as [15]

(5) Γ−1(A) = A(A+ I) . . . (A+ (n− 1)I)Γ−1(A+ nI), n ≥ 1.

By application of the matrix functional calculus, the Pochhammer symbol for
A ∈ Cr×r is given by [15]

(6) (A)n =

{
I, if n = 0,

A(A+ I) . . . (A+ (n− 1)I), if n ≥ 1.

This gives

(7) (A)n = Γ−1(A) Γ(A+ nI), n ≥ 1.

Humbert’s matrix functions are defined as follows [2, 5, 18]:

Φ1(A,B;C;x, y) =
∞∑

m,n=0

(A)m+n(B)n(C)
−1
m+n

xm yn

m!n!
,(8)

Φ2(A,A
′;C;x, y) =

∞∑
m,n=0

(A)m(A′)n(C)
−1
m+n

xm yn

m!n!
,(9)

Φ3(A;C;x, y) =

∞∑
m,n=0

(A)m(C)−1
m+n

xm yn

m!n!
,(10)

Ψ1(A,B;C,C ′;x, y) =

∞∑
m,n=0

(A)m+n(B)m(C)−1
m (C ′)−1

n

xm yn

m!n!
,(11)

Ψ2(A;C,C
′;x, y) =

∞∑
m,n=0

(A)m+n(C)
−1
m (C ′)−1

n

xm yn

m!n!
,(12)

Ξ1(A,A
′, B;C;x, y) =

∞∑
m,n=0

(A)m(A′)n(B)m(C)−1
m+n

xm yn

m!n!
,(13)

Ξ2(A,B;C;x, y) =
∞∑

m,n=0

(A)m(B)m(C)−1
m+n

xm yn

m!n!
,(14)

where A, A′, B, C and C ′ are matrices in Cr×r such that C + kI and C ′ + kI
are invertible for all integers k ≥ 0.

3. Recursion formulas for Humbert’s matrix functions

In this section, we obtain the recursion formulas for Humbert’s matrix functions.
Throughout the paper, I denotes the identity matrix and s denotes a non-
negative integer.
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Theorem 3.1. Let A + sI be an invertible matrix for all integers s ≥ 0 and
BC = CB. Then the following recursion formula holds true for Humbert’s
matrix function Φ1:

Φ1(A+ sI,B;C;x, y)

= Φ1(A,B;C;x, y) + x

[
s∑

k=1

Φ1(A+ kI,B;C + I;x, y)

]
C−1

+ y

[
s∑

k=1

Φ1(A+ kI,B + I;C + I;x, y)

]
BC−1,(15)

Φ1(A+ sI,B;C;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
xk1yk2

×
[
Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)

]
(B)k2(C)

−1
k1+k2

.(16)

Furthermore, if A− kI is invertible for integers k ≤ s, then

Φ1(A− sI,B;C;x, y)

= Φ1(A,B;C;x, y)− x

[
s−1∑
k=0

Φ1(A− kI,B;C + I;x, y)

]
C−1

− y

[
s−1∑
k=0

Φ1(A− kI,B + I;C + I;x, y)

]
BC−1,(17)

Φ1(A− sI,B;C;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
(−x)k1(−y)k2

×
[
Φ1(A,B + k2I;C + (k1 + k2)I;x, y)

]
(B)k2(C)

−1
k1+k2

,(18)

where
(

s
k1,k2

)
= s!

k1!k2!(s−k1−k2)!
.

Proof. From the definition of Humbert’s matrix function Φ1 and the transfor-
mation

(A+ I)m+n = A−1(A)m+n (A+mI + nI)

we get the following contiguous matrix relation:

Φ1(A+ I,B;C;x, y)

= Φ1(A,B;C;x, y) + x
[
Φ1(A+ I,B;C + I;x, y)

]
C−1

+ y
[
Φ1(A+ I,B + I;C + I;x, y)

]
BC−1.(19)



RECURSION FORMULAS FOR HUMBERT’S MATRIX FUNCTIONS 5

To calculate contiguous matrix relation for Φ1(A+2I,B,B′;C;x, y), we replace
A with A+ I in (19) and use in (19). This gives

Φ1(A+ 2I,B;C;x, y) = Φ1(A,B;C;x, y)

+ x
[
Φ1(A+ I,B;C + I;x, y) + Φ1(A+ 2I,B;C + I;x, y)

]
C−1

+ y
[
Φ1(A+I,B+I;C+I;x, y)+Φ1(A+2I,B+I;C+I;x, y)

]
BC−1.(20)

Iterating this process s times, we obtain (15). For the proof of (17), replace the
matrix A with A− I in (19). As A− I is invertible, this gives

Φ1(A− I,B;C;x, y) = Φ1(A,B;C;x, y)− x
[
Φ1(A,B;C + I;x, y)

]
C−1

− y
[
Φ1(A,B + I;C + I;x, y)

]
BC−1.(21)

Iteratively, we get (17).
The proof of (16) is based upon the principle of mathematical induction on

s ∈ N. For s = 1, the result (16) is true obviously. Suppose (16) is true for
s = t, that is,

Φ1(A+ tI, B;C;x, y) =
∑

k1+k2≤t

(
t

k1, k2

)
xk1yk2

× Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)(B)k2(C)
−1
k1+k2

,(22)

Replacing A with A + I in (22) and using the contiguous matrix relation (19),
we get

Φ1(A+ tI + I,B;C;x, y) =
∑

k1+k2≤t

(
t

k1, k2

)
xk1yk2

×
[
Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y) + x

× Φ1(A+(k1+k2)I+I,B+k2I;C+(k1+k2)I+I;x, y)(C+(k1+k2)I)
−1

×+yΦ1(A+ (k1 + k2)I + I,B + k2I + I;C + (k1 + k2)I + I;x, y)

× (B + k2I)(C + (k1 + k2)I)
−1
]
(B)k2(C)

−1
k1+k2

.(23)

Simplifying, (23) takes the form

Φ1(A+ tI + I,B;C;x, y)

=
∑

k1+k2≤t

(
t

k1, k2

)
xk1yk2

× Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)(B)k2(C)
−1
k1+k2

+
∑

k1+k2≤t+1

(
t

k1 − 1, k2

)
xk1yk2

× Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)(B)k2(C)
−1
k1+k2
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+
∑

k1+k2≤t+1

(
t

k1, k2 − 1

)
xk1yk2

× Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)(B)k2(C)
−1
k1+k2

.(24)

Using Pascal’s identity in (24), we have

Φ1(A+ (t+ 1)I,B;C;x, y) =
∑

k1+k2≤t+1

(
t+ 1

k1, k2

)
xk1yk2

× Φ1(A+ (k1 + k2)I,B + k2I;C + (k1 + k2)I;x, y)(B)k2(C)
−1
k1+k2

.(25)

This establishes (16) for s = t + 1. Hence by induction, result given in (16) is
true for all values of s. The second recursion formula (18) can be proved in a
similar manner.

Now, we present the recursion formulas for the matrix B of the Humbert’s
matrix function Φ1. We omit the proofs of the given below theorems.

Theorem 3.2. Let B + sI be invertible matrix for all integers s ≥ 0. Then the
following recursion formulas hold true for Humbert’s matrix function Φ1:

Φ1(A,B + sI;C;x, y)

= Φ1(A,B;C;x, y) + yA
[ s∑
k=1

Φ1(A+ I,B + kI;C + I;x, y)
]
C−1,(26)

Φ1(A,B − sI;C;x, y)

= Φ1(A,B;C;x, y)− yA
[ s−1∑
k=0

Φ1(A+ I,B − kI;C + I;x, y)
]
C−1.(27)

Theorem 3.3. Let B + sI be invertible matrix for all integers s ≥ 0 then the
following recursion formulas hold true for Humbert’s matrix function Φ1:

Φ1(A,B + sI;C;x, y)

=

s∑
k1=0

(
s

k1

)
(A)k1 y

k1
[
Φ1(A+ k1I,B + k1I;C + k1I;x, y)

]
(C)−1

k1
.(28)

Furthermore, if B − kI are invertible for k ≤ s, then

Φ1(A,B − sI;C;x, y)

=

s∑
k1=0

(
s

k1

)
(A)k1 (−y)k1

[
Φ1(A+ k1I,B;C + k1I;x, y)

]
(C)−1

k1
.(29)
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Theorem 3.4. Let C − sI be an invertible matrix for all integers s ≥ 0 and
let AB = BA, then the following recursion formula holds true for Humbert’s
matrix function Φ1:

Φ1(A,B;C − sI;x, y) = Φ1(A,B;C;x, y)

+ xA
s∑

k=1

[
Φ1(A+ I,B;C + (2− k)I;x, y)

]
× (C − kI)−1(C − (k − 1)I)−1

+ yAB
s∑

k=1

[
Φ1(A+ I,B + I;C + (2− k)I;x, y)

]
× (C − kI)−1(C − (k − 1)I)−1.(30)

Proof. Applying the definition of Humbert’s matrix function Φ1 and the re-
lation (C − I)−1

m+n = (C)−1
m+n

[
1 +m(C − I)−1 + n(C − I)−1

]
, we obtain the

following contiguous matrix relation:

Φ1(A,B,B
′;C − I;x, y)

= Φ1(A,B,B
′;C;x, y) + xA

[
Φ1(A+ I,B;C + I;x, y)

]
C−1(C − I)−1

+ yAB
[
Φ1(A+ I,B + I;C + I;x, y)

]
C−1(C − I)−1.(31)

We get (30) by using this contiguous matrix relation in Humbert’s matrix func-
tion Φ1 with the matrix C − sI for s times.

We state without proofs recursion formulas for remaining Humbert’s matrix
functions.

Theorem 3.5. Let A + sI and A′ + sI be an invertible matrix for all integers
s ≥ 0. Then the following recursion formula holds true for Humbert’s matrix
function Φ2:

Φ2(A+ sI,A′;C;x, y)

= Φ2(A,A
′;C;x, y) + x

[ s∑
k=1

Φ2(A+ kI,A′;C + I;x, y)
]
C−1,(32)

Φ2(A+ sI,A′;C;x, y)

=
∑
k1≤s

(
s

k1

)
xk1
[
Φ2(A+ k1I, A

′;C + k1I;x, y)
]
(C)−1

k1
,(33)

Φ2(A,A
′ + sI;C;x, y)

= Φ2(A,A
′;C;x, y) + y

[ s∑
k=1

Φ2(A,A
′ + kI;C + I;x, y)

]
C−1,(34)
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Φ2(A,A
′ + sI;C;x, y)

=
∑
k1≤s

(
s

k1

)
yk1
[
Φ2(A,A

′ + k1I;C + k1I;x, y)
]
(C)−1

k1
.(35)

If A− kI and A′ − kI are invertible for k ≤ s, then

Φ2(A− sI,A′;C;x, y)

= Φ2(A,A
′;C;x, y)− x

[ s−1∑
k=0

Φ2(A− kI,A′;C + I;x, y)
]
C−1,(36)

Φ2(A− sI,A′;C;x, y)

=
∑
k1≤s

(
s

k1

)
(−x)k1

[
Φ2(A,A

′;C + k1I;x, y)
]
(C)−1

k1
,(37)

Φ2(A,A
′ − sI;C;x, y)

= Φ2(A,A
′;C;x, y)− y

[ s−1∑
k=0

Φ2(A,A
′ − kI;C + I;x, y)

]
C−1,(38)

Φ2(A,A
′ − sI;C;x, y)

=
∑
k1≤s

(
s

k1

)
(−y)k1

[
Φ2(A,A

′;C + k1I;x, y)
]
(C)−1

k1
.(39)

Theorem 3.6. Let C − sI be invertible matrices for all integers s ≥ 0 and
AA′ = A′A. Then the following recursion formulas hold true for Humbert’s
matrix function Φ2:

Φ2(A,A
′;C − sI;x, y)

= Φ2(A,B,B
′;C,C ′;x, y) + xA

[ s∑
k=1

Φ2(A+ I, A′;C + (2− k)I;x, y)

× (C − kI)−1(C−(k−1)I)−1
]
+yA′

[ s∑
k=1

Φ2(A,A
′+I;C+(2−k)I;x, y)

× (C − kI)−1(C − (k − 1)I)−1
]
.(40)

Theorem 3.7. Let A + sI be invertible matrices for all integers s ≥ 0. Then
the following recursion formulas hold true for Humbert’s matrix function Φ3:

Φ3(A+ sI;C;x, y)

= Φ3(A;C;x, y) + x
[ s∑
k=1

Φ3(A+ kI;C + I;x, y)
]
C−1,(41)
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Φ3(A+ sI;C;x, y)

=
s∑

k1=0

(
s

k1

)
xk1
[
Φ3(A+ k1I;C + k1I;x, y)

]
(C)−1

k1
.(42)

Furthermore, if A− kI and A′ − kI are invertible for k ≤ s, then

Φ3(A− sI;C;x, y)

= Φ3(A;C;x, y)− x
[ s−1∑
k=0

Φ3(A− kI;C + I;x, y)
]
C−1;(43)

Φ3(A− sI;C;x, y)

=

s∑
k1=0

(
s

k1

)
(−x)k1

[
Φ3(A;C + k1I;x, y)

]
(C)−1

k1
.(44)

Theorem 3.8. Let C − sI be an invertible matrix for all integers s ≥ 0. Then
the following recursion formula holds true for Humbert’s matrix function Φ3:

Φ3(A;C − sI;x, y)

= Φ3(A;C;x, y) + xA
[ s∑
k=1

Φ3(A+ I;C + (2− k)I;x, y)
]

× (C − kI)−1(C − (k − 1)I)−1

+ y
[ s∑
k=1

Φ3(A;C + (2− k)I;x, y)(C − kI)−1(C − (k − 1)I)−1
]
.(45)

Theorem 3.9. Let A+ sI be an invertible matrix for all integers s ≥ 0 and let
AB = BA; CC ′ = C ′C. Then the following recursion formula holds true for
Humbert’s matrix function Ψ1:

Ψ1(A+ sI,B;C,C ′;x, y)

= Ψ1(A,B;C,C ′;x, y) + xB
[ s∑
k=1

Ψ1(A+ kI,B + I;C + I, C ′;x, y)
]
C−1

+ y
[ s∑
k=1

Ψ1(A+ kI,B;C,C ′ + I;x, y)
]
C ′−1

,(46)

Ψ1(A+ sI,B;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
(B)k1 x

k1yk2

×
[
Ψ1(A+ (k1 + k2)I,B + k1I;C + k1I, C

′ + k2I;x, y)
]
(C)−1

k1
(C ′)−1

k2
.(47)
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Furthermore, if A− kI is invertible for k ≤ s, then

Ψ1(A− sI,B;C,C ′;x, y)

= Ψ1(A,B;C,C ′;x, y)− xB
[ s−1∑
k=0

Ψ1(A− kI,B + I;C + I, C ′;x, y)
]
C−1

− y
[ s−1∑
k=0

Ψ1(A− kI,B;C,C ′ + I;x, y)
]
C ′−1

,(48)

Ψ1(A− sI,B;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
(B)k1 (−x)k1(−y)k2

×
[
Ψ1(A,B + k1I;C + k1I, C

′ + k2I;x, y)
]
(C)−1

k1
(C ′)−1

k2
.(49)

Theorem 3.10. Let B + sI be an invertible matrix for all integers s ≥ 0 and
let CC ′ = C ′C. Then the following recursion formula holds true for Humbert’s
matrix function Ψ1:

Ψ1(A,B + sI;C,C ′;x, y) = Ψ1(A,B;C,C ′;x, y)

+ xA
[ s∑
k=1

Ψ1(A+ I,B + kI;C + I, C ′;x, y)
]
C−1,(50)

Ψ1(A,B + sI;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1

)
(A)k1 x

k1

×
[
Ψ1(A+ k1I,B + k1I;C + k1I, C

′;x, y)
]
(C)−1

k1
.(51)

Furthermore, if B − kI is invertible for k ≤ s, then

Ψ1(A,B − sI;C,C ′;x, y) = Ψ1(A,B;C,C ′;x, y)

− xA
[ s−1∑
k=0

Ψ1(A+ I,B − kI;C + I, C ′;x, y)
]
C−1,(52)

Ψ1(A,B − sI;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1

)
(A)k1 (−x)k1

×
[
Ψ1(A+ k1I,B;C + k1I, C

′;x, y)
]
(C)−1

k1
.(53)

Theorem 3.11. Let C − sI and C ′ − sI be invertible matrices for all integers
s ≥ 0 and let AB = BA; CC ′ = C ′C. Then following recursion formulas hold
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true for Humbert’s matrix function Ψ1:

Ψ1(A,B;C − sI, C ′;x, y) = Ψ1(A,B;C,C ′;x, y)

+ xAB
[ s∑
k=1

Ψ1(A+ I,B + I;C

+ (2− k)I, C ′;x, y)(C − kI)−1(C − (k − 1)I)−1
]
,(54)

Ψ1(A,B;C,C ′ − sI;x, y) = Ψ1(A,B;C,C ′;x, y)

+ yA
[ s∑
k=1

Ψ1(A+ I,B; C,C ′

+ (2− k)I;x, y)(C ′ − kI)−1(C ′ − (k − 1)I)−1
]
.(55)

Theorem 3.12. Let A + sI be an invertible matrix for all integers s ≥ 0 and
let C ′C = CC ′. Then the following recursion formula holds true for Humbert’s
matrix function Ψ2:

Ψ2(A+ sI;C,C ′;x, y)

= Ψ2(A;C,C
′;x, y) + x

[ s∑
k=1

Ψ2(A+ kI;C + I, C ′;x, y)
]
C−1

+ y
[ s∑
k=1

Ψ2(A+ kI;C,C ′ + I;x, y)
]
C ′−1

,(56)

Ψ2(A+ sI;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
xk1yk2

×
[
Ψ2(A+ (k1 + k2)I;C + k1I, C

′ + k2I;x, y)
]
(C)−1

k1
(C ′)−1

k2
.(57)

Furthermore, if A− kI is invertible for k ≤ s, then

Ψ2(A− sI;C,C ′;x, y)

= Ψ2(A;C,C
′;x, y)− x

[ s−1∑
k=0

Ψ2(A− kI;C + I, C ′;x, y)
]
C−1

− y
[ s−1∑
k=0

Ψ2(A− kI;C,C ′ + I;x, y)
]
C ′−1

,(58)

Ψ2(A− sI;C,C ′;x, y)

=
∑

k1+k2≤s

(
s

k1, k2

)
(−x)k1(−y)k2

×
[
Ψ2(A;C + k1I, C

′ + k2I;x, y)
]
(C)−1

k1
(C ′)−1

k2
.(59)
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Theorem 3.13. Let C − sI and C ′ − sI be invertible matrices for all integers
s ≥ 0. Then the following recursion formulas hold true for Humbert’s matrix
function Ψ2:

Ψ2(A;C − sI, C ′;x, y) = Ψ2(A;C,C
′;x, y)

+ xA
[ s∑
k=1

Ψ2(A+ I;C

+ (2− k)I, C ′;x, y)(C − kI)−1(C − (k − 1)I)−1
]
, C ′C = CC ′,(60)

Ψ2(A;C,C
′ − sI;x, y) = Ψ2(A;C,C

′;x, y)

+ yA
[ s∑
k=1

Ψ2(A+ I; C,C ′

+ (2− k)I;x, y)(C ′ − kI)−1(C ′ − (k − 1)I)−1
]
.(61)

Theorem 3.14. Let A + sI be an invertible matrix for all integers s ≥ 0 and
let BC = CB. Then the following recursion formula holds true for Humbert’s
matrix function Ξ1:

Ξ1(A+ sI,A′, B;C;x, y)

= Ξ1(A,A
′, B;C;x, y) + x

[ s∑
k=1

Ξ1(A+ kI,A′, B + I;C + I;x, y)
]
BC−1,(62)

Ξ1(A+ sI,A′, B;C;x, y)

=
∑
k1≤s

(
s

k1

)
xk1
[
Ξ1(A+ k1I, A

′, B + k1I;C + k1I;x, y)
]
(B)k1(C)

−1
k1
.(63)

Furthermore, if A− kI is invertible for k ≤ s, then

Ξ1(A− sI,A′, B;C;x, y)

= Ξ1(A,A
′, B;C;x, y)− x

[ s−1∑
k=0

Ξ1(A− kI,A′, B + I;C + I;x, y)
]
BC−1,(64)

Ξ1(A− sI,A′, B;C;x, y)

=
∑
k1≤s

(
s

k1

)
(−x)k1

[
Ξ1(A,A

′, B + k1I;C + k1I;x, y)
]
(B)k1(C)

−1
k1
.(65)

Theorem 3.15. Let A′+sI be an invertible matrix for all integers s ≥ 0. Then
the following recursion formula holds true for Humbert’s matrix function Ξ1:

Ξ1(A,A
′ + sI,B;C;x, y)

= Ξ1(A,A
′, B;C;x, y) + y

[ s∑
k=1

Ξ1(A,A
′ + kI,B;C + I;x, y)

]
C−1,(66)
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Ξ1(A,A
′ + sI,B;C,C ′;x, y)

=
∑
k1≤s

(
s

k1

)
yk1
[
Ξ1(A,A

′ + k1I,B;C + k1I;x, y)
]
(C)−1

k1
.(67)

Furthermore, if A′ − kI is invertible for k ≤ s, then

Ξ1(A,A
′ − sI,B;C;x, y)

= Ξ1(A,A
′, B;C;x, y)− y

[ s−1∑
k=0

Ξ1(A,A
′ − kI,B;C + I;x, y)

]
C−1,(68)

Ξ1(A,A
′ − sI,B;C,C ′;x, y)

=
∑
k1≤s

(
s

k1

)
(−y)k1

[
Ξ1(A,A

′, B;C + k1I;x, y)
]
(C)−1

k1
.(69)

Theorem 3.16. Let B+ sI be an invertible matrix for all integers s ≥ 0. Then
the following recursion formula holds true for Humbert’s matrix function Ξ1:

Ξ1(A,A
′, B + sI;C;x, y)

= Ξ1(A,A
′, B;C;x, y) + xA

[ s∑
k=1

Ξ1(A+ I, A′, B + kI;C + I;x, y)
]
C−1,(70)

Ξ1(A,A
′, B + sI;C,C ′;x, y)

=
∑
k1≤s

(
s

k1

)
xk1(A)k1

[
Ξ1(A+ k1I, A

′, B + k1I;C + k1I;x, y)
]
(C)−1

k1
.(71)

Furthermore, if B − kI is invertible for k ≤ s, then

Ξ1(A,A
′, B − sI;C;x, y)

= Ξ1(A,A
′, B;C;x, y)− xA

[ s−1∑
k=0

Ξ1(A+ I, A′, B + kI;C + I;x, y)
]
C−1,(72)

Ξ1(A,A
′, B − sI;C,C ′;x, y)

=
∑
k1≤s

(
s

k1

)
(−x)k1 (A)k1

[
Ξ1(A+ k1I, A

′, B;C + k1I;x, y)
]
(C)−1

k1
.(73)

Theorem 3.17. Let C − sI be an invertible matrix for all integers s ≥ 0 and
let AA′ = A′A; BC = CB. Then the following recursion formula holds true for
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Humbert’s matrix function Ξ1:

Ξ1(A,A
′, B;C − sI;x, y)

= Ξ1(A,A
′, B;C;x, y)+xA

[ s∑
k=1

Ξ1(A+I, A
′, B+I;C+(2−k)I;x, y)

]
×B(C − kI)−1(C − (k − 1)I)−1

+ yA′
[ s∑
k=1

Ξ1(A,A
′+I,B;C+(2−k)I;x, y)(C−kI)−1(C−(k−1)I)−1

]
.(74)

Theorem 3.18. Let A+ sI and B + sI be an invertible matrix for all integers
s ≥ 0 and let AB = BA. Then the following recursion formula holds true for
Humbert’s matrix function Ξ2:

Ξ2(A+ sI,B;C;x, y)

= Ξ2(A,B;C;x, y) + xB
[ s∑
k=1

Ξ2(A+ kI,B + I;C + I;x, y)
]
C−1,(75)

Ξ2(A,B + sI;C;x, y)

= Ξ2(A,B;C;x, y) + xA
[ s∑
k=1

Ξ2(A+ I,B + kI;C + I;x, y)
]
C−1,(76)

Ξ2(A+ sI,B;C;x, y)

=
∑
k1≤s

(
s

k1

)
xk1(B)k1

[
Ξ2(A+ k1I,B + k1I;C + k1I;x, y)

]
(C)−1

k1
,(77)

Ξ2(A,B + sI;C,C ′;x, y)

=
∑
k1≤s

(
s

k1

)
xk1(A)k1

[
Ξ2(A+ k1I,B + k1I;C + k1I;x, y)

]
(C)−1

k1
.(78)

Furthermore, if A− kI and B − kI is invertible for k ≤ s, then

Ξ2(A− sI,B;C;x, y)

= Ξ2(A,B;C;x, y)− xB
[ s−1∑
k=0

Ξ2(A− kI,B + I;C + I;x, y)
]
C−1,(79)

Ξ2(A,B − sI;C;x, y)

= Ξ2(A,B;C;x, y)− xA
[ s−1∑
k=0

Ξ2(A+ I,B − kI;C + I;x, y)
]
C−1,(80)
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Ξ2(A− sI,B;C;x, y)

=
∑
k1≤s

(
s

k1

)
(−x)k1 (B)k1

[
Ξ2(A,B + k1I;C + k1I;x, y)

]
(C)−1

k1
,(81)

Ξ2(A,B − sI;C;x, y)

=
∑
k1≤s

(
s

k1

)
(−x)k1 (A)k1

[
Ξ2(A+ k1I,B;C + k1I;x, y)

]
(C)−1

k1
.(82)

Theorem 3.19. Let C − sI be an invertible matrix for all integers s ≥ 0 and
AB = BA. Then the following recursion formula holds true for Humbert’s
matrix function Ξ2:

Ξ2(A,B;C − sI;x, y)

= Ξ2(A,B;C;x, y) + xAB
[ s∑
k=1

Ξ2(A+ I,B + I;C + (2− k)I;x, y)

× (C − kI)−1(C − (k − 1)I)−1
]

+ y
[ s∑
k=1

Ξ2(A,B;C + (2− k)I;x, y)(C − kI)−1(C − (k − 1)I)−1
]
.(83)

4. Conclusion

We have studied the recursion formulas for Humbert’s matrix function. These
matrix formulas will contribute to the literature on special function theory and
have the potential to find new applications in mathematics and physics.
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Abstract. Let R be a ring and (S,≤) a strictly ordered monoid. This paper aims
to introduce and study generalized power series nil-reversible rings. The researchers
obtains various necessary or sufficient conditions for a generalized power series nil-
reversible rings are 2-primal, nil-semicommutative and nil-symmetric. Examples are
given to show that, a generalized power series nil-reversible which is neither general-
ized power series semicommutative nor generalized power series reversible. Also, we
proved that a multiplicatively closed subset of R consisting of central non-zero divisors
is generalized power series nil-reversible if and only if R is generalized power series
nil-reversible. Moreover, other standard ring-theoretic properties are given.

Keywords: Armendariz ring, generalized power series reversible, ordered monoid
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1. Introduction

Throughout this paper, any ring is associative and has an identity unless stated.
We write P (R), nil(R), Matn(R), Tn(R, ) Sn(R) and R[x] respectively for the
prime radical, the set of all nilpotent elements of R, the ring of all n×n matrices,
the ring of all n×n upper triangular matrices for a positive integer n with entries
in R, the subring consisting of all upper triangular matrices over a ring R and
the polynomial ring over a ring R.

*. Corresponding author
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In [1], Cohn introduced the notion of a reversible ring. A ring R is said to be
reversible, if whenever a, b ∈ R satisfy ab = 0, then ba = 0. Anderson-Camillo [2]
used the term ZC2 for what is called reversible. While Krempa-Niewieczerzal
[3] took the term C0 for it.

In [4], a ring R is called semicommutative if for all a, b ∈ R, ab = 0 implies
aRb = 0. This is equivalent to the definition that any left (right) annihilator of R
is an ideal ofR. According to [5], semicommutativity of rings is generalized to nil-
semicommutativity of rings. A ring R is called nil-semicommutative if a, b ∈ R
satisfy that ab is nilpotent, then ahb ∈ nil(R), for any h ∈ R. Clearly, every
semicommutative ring is nil-semicommutative. Reduced rings (i.e., rings with no
nonzero nilpotent elements in R) are symmetric by [6, P. 361], symmetric rings
are clearly reversible, and reversible rings are semicommutative by Proposition
1.3 [6], but the converses are not true. Kim and Lee showed that polynomial
rings over reversible rings need not be reversible Example 2.1 [7]. In [8], they
consider these reversible rings over which polynomial rings are reversible and
call them be strongly reversible, i.e., a ring R is called strongly reversible, if
whenever polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then g(x)f(x) =
0. Reversible Armendariz rings are such rings Proposition 2.4 [7], so reduced
rings are strongly reversible, but the converse is not true in general. A ring
R is said to be 2- primal if nil(R) coincides with P (R). A ring R is called
an NI-ring if the upper nilradical Nil∗(R) coincides with the set of nilpotent
elements nil(R). Note that R is an NI-ring if and only if nil(R) forms an ideal
and 2-primal rings are NI.

The notion of Armendariz ring is introduced by Rege and Chhawchharia in
[4]. A ring R to be an Armendariz if f(x)g(x) = 0 implies aibj = 0, for all
polynomials f(x) = a0+a1x+a2x

2+ . . .+amx
m, g(x) = b0+ b1x+ b2x

2+ . . .+
bnx

n ∈ R[x].

This paper introduce and study generalized power series nil-reversible rings.
Under some various necessary or sufficient conditions for a generalized power se-
ries nil-reversible rings to be nil-semicommutative and nil-symmetric. Also, we
proved that, a multiplicatively closed subset of R consisting of central non-zero
divisors is generalized power series nil-reversible if and only if R is generalized
power series nil-reversible. Moreover, some results of generalized power series
nil-reversible are given.

We will write monoids multiplicatively unless otherwise indicated. If R is a
ring and X is a nonempty subset of R, then the left (right) annihilator of X in
R is denoted by ℓR(X)(rR(X)).

We use the following terminology. If A and B are non-empty subsets of a
monoid S, then an element u0 ∈ AB = {ab : a ∈ A, b ∈ B} is said to be a unique
product element (u.p. element) in the product of AB if it is uniquely presented
in form u = ab where a ∈ A and b ∈ B. For a partially ordered set Y, we write
min(Y ) to denote the set of minimal elements of Y.
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Recall that a monoid S is called unique product monoid (u.p.- monoid) if
for any two non-empty finite subsets A,B ∈ S there exist a ∈ A and b ∈ B such
that ab is u.p. element in the product of AB.

We continue by recalling the structure of the generalized power series ring
construction, introduced in [9]. Suppose that (S,≤) is an ordered set, then
(S,≤) is artinian if every strictly decreasing sequence of elements of S is finite,
and (S,≤) is narrow if every subset of pairwise order-incomparable elements of
S is finite. Thus, (S,≤) is artinian and narrow if and only if every nonempty
subset of S has at least one but only a finite number of minimal elements. Let
S be a commutative monoid. Unless stated otherwise, the operation of S will
be denoted additively, and the neutral element by 0. Following definition is due
to Ribenboim and Elliott [14].

Let (S,≤) is a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, d ∈ S and s < s′, then s + d < s′ +
d), and R a ring. Let [[RS,≤]] be the set of all maps f : S → R such that
supp(f) = {s ∈ S|f(s) ̸= 0} is artinian and narrow. With pointwise addition,
[[RS,≤]] is an abelian additive group. For every s ∈ S and f, g ∈ [[RS,≤]], let
Xs(f, g) = {(u, v) ∈ S × S|u + v = s, f(u) ̸= 0, g(v) ̸= 0}. It follows from
Ribenboim [10, 4.1] that Xs(f, g) is finite. This fact allows one to define the
operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

Clearly, supp(fg) ⊆ supp(f) + supp(g), thus by Ribenboim [9, 3.4] supp(fg) is
artinian and narrow, hence fg ∈ [[RS,≤]]. With this operation, and pointwise
addition, [[RS,≤]] becomes an associative ring, with identity element e, namely
e(0) = 1, e(s) = 0 for every 0 ̸= s ∈ S. Which is called the ring of generalized
power series with coefficients in R and exponents in S. Many examples and
results of rings of generalized power series are given in ([11]−[13]), Elliott and
Ribenboim [14] and Varadarajan ([15], [16]). For example, if S = N ∪ {0} and
≤ is the usual order, then [[RN∪{0},≤]] ∼= R[[x]], the usual ring of power series.
If S is a commutative monoid and ≤ is the trivial order, then [[RS,≤]] ∼= R[S],
the monoid ring of S over R. Further examples are given in Ribenboim [9]. To
any r ∈ R and s ∈ S, we associate the maps cr, es ∈ [[RS,≤]] defined by

cr(x) =

{
r, x = 0,

0, otherwise,
es(x) =

{
1, x = s,

0, otherwise.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤]], s 7→ es, is a
monoid embedding of S into the multiplicative monoid of the ring [[RS,≤]], and
cres = escr. Recall that a monoid S is torsion-free if the following property
holds: If s, t ∈ S, k is an integer, k ≥ 1 and ks = kt, then s = t.
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2. Generalized power series nil-reversible rings

In this section, we first give the following concept, so called generalized power
series nil-reversible, that is a generalization of power series reversible rings and
generalized power series reversible, we use this concept by studying the relations
between nil generalized power series reversible and some certain classes of rings.

Definition 2.1. Let (S,≤) be a strictly ordered monoid. A ring R is called
generalized power series nil-reversible if whenever f, g ∈ [[RS,≤]] satisfy fg ∈
[[nil(R)S,≤]] implies gf ∈ [[nil(R)S,≤]].

Let S = (N ∪ {0},+), and ≤ is the usual order. Then, [[RS,≤]] ∼= R[[x]]. So,
the ring R is generalized power series nil-reversible if and only if R is power series
nil-reversible. Hence, a generalized power series nil-reversible is a generalization
of power series nil-reversible and power series reversible.

Remark 2.2. By definition, it is clear that generalized power series nil-reversible
rings are closed under subrings.

Now, we can give example of nil-reversible rings of generalized power series
which is neither generalized power series reversible nor generalized power series
semicommutative. As we know, generalized power series reversible rings are
both generalized power series semicommutative and generalized power series
nil-reversible by definition. So, we may conjecture that generalized power series
nil-reversible rings may be generalized power series semicommutative. But the
following examples eliminate the possibility. We need the following Propositions.

Proposition 2.3. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is a reduced ring with nil(R) an ideal of R, then R is generalized
power series nil-reversible ring.

Proof. Assume that f, g ∈ [[RS,≤]], satisfying that fg is nilpotent. So, there
exists a positive integer n such that (fg)n = 0, so (f(u)g(v))n = 0, for any
u, v ∈ S. Then, f(u)g(v) ∈ nil(R). Hence, g(v)f(u) is nilpotent by reducedness.
Thus, gf is nilpotent.

Proposition 2.4. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. A ring R is generalized power series nil-reversible ring if and only
if, for any n, the n-by-n upper triangular matrix ring Tn(R) is generalized power
series nil-reversible.

Proof. Assume that f, g ∈ [[Tn(R)
S,≤]], such that fg ∈ [[nil(Tn(R))

S,≤]]. So,

by [17], nil(Tn(R)) =


nil(R) R R . . . R

0 nil(R) R . . . R
0 0 nil(R) . . . R
...

...
...

. . .
...

0 0 0 . . . nil(R)

 .
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Let R be a reduced ring. Then, nil(R) = 0 and so nil(Tn(R)) is an ideal.
By Proposition 2.3, Tn(R) is generalized power series nil-reversible. The if part
follows Remark 2.2.

Example 2.5. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. Let R be generalized power series nil-reversible ring. Then

T =


 a11 a12 a13

0 a22 a23
0 0 a33

 | aij ∈ R

 .

is a generalized power series nil-reversible ring by Proposition 2.4. Note that
fg = 0, where f = cE23 + cE13es and g = cE12 + cE22es, But we have gf ̸= 0.
So, T is not generalized power series reversible. In fact, T is not generalized
power series semiccomutative by the same as argument from the last sentence
of Example 3.17 [18] (with n = 3).

Also let S be a generalized power series nil-reversible ring. Then, the ring

Rn =




a a12 a13 . . . a1n
0 a a23 . . . a2n
0 0 a . . . a3n
...

...
...

. . .
...

0 0 0 . . . a

 | a, aij ∈ S;n ≥ 3


.

is not generalized power series reversible by Example 1.5 [19]. But Rn is gener-
alized power series nil-reversible by Proposition 2.4, since any subring of gen-
eralized power series nil-reversible ring is generalized power series nil-reversible.
It is obvious that R4 is not generalized power series semicommutative and it can
be proved similarly that Rn is not generalized power series semicommutative for
n ≥ 5.

Proposition 2.6. Let S be a torsion-free and cancellative monoid, ≤ a strict or-
der on S, and R a generalized power series nil-reversible ring. If f1, f2, . . . , fn ∈
[[RS,≤]] such that f1f2 . . . fn ∈ [[nil(R)S,≤]], then f1(u1)f2(u2) . . . fn(un) ∈ nil(R),
for all u1, u2, . . . , un ∈ S.

Proof. Suppose f1f2 . . . fn ∈ [[nil(R)S,≤]]. Then, for f1(f2. . .fn)∈[[nil(R)S,≤]]
it follows that f1(u1)(f2. . .fn)(v)∈nil(R), for all u1, v ∈ S. Thus, Cf1(u1)(f2 . . . fn)

(v) ∈ nil(R), for any v ∈ S, and so Cf1(u1)f2 . . . fn ∈ [[nil(R)S,≤]]. Now, from

(Cf1(u1)f2)f3 . . . fn ∈ [[nil(R)S,≤]], it follows that (Cf1(u1)f2)(u2)(f3 . . . fn)(w) ∈
nil(R), since u2, w ∈ S. (Cf1(u1)f2)(u2) = f1(u1)(f2(u2)), for any u1, u2 ∈ S, we
have f1(u1)f2(u2)(f3 . . . fn)(w) ∈ nil(R), for all u1, u2, w ∈ S. Hence,

Cf1(u1)Cf2(u2)(f3 . . . fn) ∈ [[nil(R)S,≤]].

Continuing this manner, we see that f1(u1)f2(u2) . . . fn(un) ∈ nil(R), for any
u1, u2, . . . , un ∈ S. As we are desired f1(u1)f2(u2) . . . fn(un) ∈ nil(R), for any
u1, u2, . . . , un ∈ S.
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Corollary 2.7. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is generalized power series nil-reversible, then nil([[RS,≤]]) ⊆
[[nil(R)S,≤]].

Proposition 2.8. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is generalized power series nil-reversible rings, then:
(1) R is abelian.
(2) R is 2-primal.

Proof. Let R be a generalized power series nil-reversible ring.
(1) Let e be an idempotent element of R. For any f(u) ∈ R, u ∈ S, cef(u) −
cef(u)ce ∈ nil(R).Note that (cef(u)−cef(u)ce)ce = 0. By hypothesis, ce(cef(u)−
cef(u)ce) = 0, so cef(u) = cef(u)ce. Again, f(u)ce − cef(u)ce ∈ nil(R) and
ce(f(u)ce − cef(u)ce) = 0. So by generalized power series nil-reversibility of
R, we have (f(u)ce − cef(u)ce)ce = 0, that is, f(u)ce = cef(u)ce. Hence,
cef(u) = f(u)ce.
(2) Note that P (R) ⊆ nil(R). Suppose g(v) ∈ nil(R). Then, there is a positive
integer m ≥ 2 such that (g(v))m = 0. Thus, R(g(v))m−1g(v) = 0. This implies
that g(v)R(g(v))m−1 = 0 as R is generalized power series nil-reversible. This
yields (Rg(v))m = 0, so g(v) ∈ P (R).

Proposition 2.9. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. Every generalized power series nil-reversible rings are generalized
power series nil-Armendariz.

Proof. Let 0 ̸= f, g ∈ [[RS,≤]] be such that fg ∈ [[nil(R)S,≤]]. By Ribenboim
[9], there exists a compatible strict total order ≤′ on S, which is finer than ≤ .
We will use transfinite induction on the strictly totally ordered set (S,≤) to show
that f(u)g(v) ∈ nil(R), for any u ∈ supp(f) and v ∈ supp(g). Let s and d denote
the minimum elements of supp(f) and supp(g) in the ≤′ order, respectively. If
u ∈ supp(f) and v ∈ supp(g) are such that u+v = s+d, then s ≤′ u and d ≤′ v.
If s <′ u, then s + d <′ u + v = s + d, a contradiction. Thus u = s. Similarly,
v = d. Hence, 0 = (fg)(s+ d) =

∑
(u,v)∈Xs+d(f,g)

f(u)g(v) = f(s)g(d).

Now, suppose that w ∈ S such that for any u ∈ supp(f) and v ∈ supp(g)
with u + v <′ w, f(u)g(v) = 0. We will show that f(u)g(v) ∈ nil(R), for any
u ∈ supp(f) and v ∈ supp(g) with u + v = w. We write Xw(f, g) = {(u, v) |
u+ v = w, u ∈ supp(f), v ∈ supp(g)} as {(ui, vi) | i = 1, 2, . . . , n} such that

u1 <
′ u2 <

′ . . . <′ un.

Since S is cancellative, u1 = u2 and u1 + v1 = u2 + v2 = w imply v1 = v2. Since
≤′ is a strict order, u1 <

′ u2 and u1 + v1 = u2 + v2 = w imply v2 <
′ v1. Thus

we have

vn <
′ . . . <′ v2 <

′ v1.
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Now,

(2.1) 0 = (fg)(w) =
∑

(u,v)∈Xw(f,g)

f(u)g(v) =
n∑

i=1

f(ui)g(vi).

For any i ≥ 2, u1 + vi <
′ ui + vi = w, and thus, by induction hypothesis,

we have f(u1)g(vi) ∈ nil(R). R is 2- primal by Proposition 2.8 this implies
f(u1)g(vi) ∈ nil(R). Hence, multiplying Eq. (2.1) on the right by f(u1)g(v1),
we obtain ( n∑

i=1

f(ui)g(vi)
)
f(u1)g(v1) = f(u1)g(v1)f(u1)g(v1) = 0.

Then, (f(u1)rg(v1))
2 = 0 and so f(u1)g(v1) ∈ nil(R). Now, Eq. (2.1) becomes

(2.2)

n∑
i=2

f(ui)g(vi) = 0.

Multiplying f(u2)g(v2) on Eq. (2.2) from the right-hand side, we obtain
f(u2)g(v2) = 0 by the same way as the above. Continuing this process, we
can prove f(ui)g(vi) = 0 for i = 1, 2, . . . , n. Thus f(u)g(v) ∈ nil(R), for any
u ∈ supp(f) and v ∈ supp(g) with u+v = w. Therefore, by transfinite induction,
f(u)g(v) ∈ nil(R), for any u ∈ supp(f) and v ∈ supp(g).

Lemma 2.10. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. For a ring R, consider the following conditions.
(1) R is generalized power series nil-reversible.
(2) If AB is a nil set, then so is BA, for any subsets A,B of R.
(3) If IJ is nil, then JI is nil for all right (or left) ideals I, J of R.
Then, (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) Assume that R is nil generalized power series reversible. Let
A,B be two nonempty subsets of R with AB is a nil set. For any f ∈ A and
g ∈ B is nilpotent. Then, gf is nilpotent. This implies that BA is nil.
(2) ⇒ (3) Let I and J be any right ideals of R such that IJ is nil. Since
IR ⊆ I, IJ is nil. By (2), JI is nil. Since JI ⊆ JRI, we get JI is nil. Assume
that I and J be any left ideals of R such that IJ is nil. Since RJ ⊂ J and then
IRJ ⊆ IJ, IJ is nil. By (2), JRI is nil. Since JI ⊆ JRI, we get JI is nil.

Lemma 2.11. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. Then, every generalized power series nil-reversible rings are generalized
power series nil-semicommutative.

Proof. Let f, g ∈ [[RS,≤]] with fg ∈ [[nil(R)S,≤]]. Then, gf ∈ [[nil(R)S,≤]] and
g(v)h(w)f(u) ∈ nil(R), for any u, v, w ∈ S and h(w) ∈ R, so f(v)h(w)g(u) ∈
nil(R). Thus, fhg ∈ [[nil(R)S,≤]] by [7, Lemma 1.1]. Therefore, R is generalized
power series nil-semicommutative.
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Let I be an index set and Ri be a ring for each i ∈ I. Let (S,≤) be a
strictly ordered monoid, if there is an injective homomorphism f : R→

∏
i∈I Ri

such that, for each j ∈ I, πjf : R → Rj is a surjective homomorphism, where
πj :

∏
i∈I Ri → Rj is the jth projection. We have the following.

Proposition 2.12. Let Ri be a ring, (S,≤) a strictly totally ordered monoid,
for each i in a finite index set I. If Ri is generalized power series nil-reversible
ring. for each i, then R =

∏
i∈I Ri is generalized power series nil-reversible

ring.

Proof. Let R =
∏

i∈I Ri be the direct product of rings (Ri)i∈I and Ri is gener-
alized power series nil-reversible, for each i ∈ I. Denote the projection R→ Ri

as Πi. Suppose that f, g ∈ [[RS,≤]] such that fg ∈ [[nil(R)S,≤]]. Set fi =
∏

i f ,

gi =
∏

i g. Then, fi, gi ∈ [[RS,≤
i ]]. For any u, v ∈ S, assume f(u) = (aui )i∈I ,

g(v) = (bvi )i∈I . Now, for any s ∈ S,

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v) =
∑

(u,v)∈Xs(f,g)

(aui )i∈I(b
v
i )i∈I

=
∑

(u,v)∈Xs(f,g)

((aui )(b
v
i ))i∈I =

∑
(u,v)∈Xs(f,g)

(fi(u)gi(v))i∈I

=
( ∑

(u,v)∈Xs(fi,gi)

fi(u)gi(v)
)
i∈I

= ((figi)(s))i∈I .

Since (fg)(s) ∈ nil(R), we have (figi)(s) ∈ nil(Ri). Thus, figi ∈ [[nil(Ri)
S,≤]].

Now, it follows fi(u)gi(v) ∈ nil(Ri), for any u, v ∈ S and any i ∈ I, since Ri is
generalized power series nil-reversible. Hence, for any u, v ∈ S,

f(u)g(v) = (fi(u)gi(v))i∈I ∈ nil(R),

since I is finite. Thus, f(u)g(v) ∈ nil(R). Then, by reversible ring, we have

(gi(v)fi(u))i∈I = g(v)f(u) ∈ nil(R).

This means that gf ∈ [[nil(R)S,≤]]. The proof is done.

Proposition 2.13. Let (S,≤) be a strictly ordered monoid. If R is finite subdi-
rect product of generalized power series nil-reversible rings, then R is generalized
power series nil-reversible ring.

Proof. Let Ik(k = 1, . . . , l) be ideals of R such that R/Ik is generalized power
series nil-reversible and

⋂l
k=1 Ik = 0. Let f and g be in [[RS,≤]] with fg ∈

[[nil(R)S,≤]]. Clearly f̄ ḡ ∈ [[nil(R/Ik)
S,≤]]. Since R/Ik is generalized power se-

ries nil-reversible, we have (f(u)g(v))ru,v,k ∈ Ik, for each u, v ∈ S and k =
1, . . . , l. Assume that ru,v = max{ru,v,k|k = 1, . . . , l}. So, (f(u)g(v))ru,v ∈⋂l

k=1 Ik = 0. Hence, f(u)g(v) ∈ nil(R), for each u, v ∈ S, then g(v)f(u) ∈
nil(R). Thus, gf ∈ [[nil(R)S,≤]], and we are done.
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Proposition 2.14. Let (S,≤) a strictly ordered monoid. Let R be a ring and
e2 = e ∈ R. If R is generalized power series nil-reversible, then so is eRe.

Proof. Let cefce, cegce ∈ [[(eRe)S,≤]] with (cefce)(cegce) ∈ [[nil(eRe)S,≤]].
Let e be an idempotent of R. It is easy to see that ce is an idempotent ele-
ment of [[(eRe)S,≤]] and ceg = gce for every g ∈ [[(R)S,≤]]. Then, (cef)(ceg) ∈
[[nil(eR)S,≤]]. Since R is generalized power series nil-reversible, we have fg ∈
[[nil(R)S,≤]], and so gf ∈ [[nil(R)S,≤]]. Then, there exists m ∈ N such that
((cefce)(cegce))

m = 0. Hence, (cegce)(cefce) ∈ [[nil(eRe)S,≤]].

Corollary 2.15. Let R be a ring, (S,≤) a strictly ordered monoid. For a
central idempotent e of a ring R, eR and (1 − e)R are generalized power series
nil-reversible if and only if R is generalized power series nil-reversible.

Proof. Assume that eR and (1−e)R are generalized power series nil-reversible.
Since the nil generalized power series reversibility property is closed under finite
direct products, R ∼= eR × (1 − e)R is generalized power series nil-reversible.
The converse is trivial by Proposition 2.14.

In [20], A homomorphic image of a nil-reversible ring may not be nil-
reversible, so as generalized power series nil-reversible by the next example.

Example 2.16. Let R be a ring, (S,≤) a strictly ordered monoid. Assume
that R = D[[S,≤]], where D is a division ring and I =< xy >, where xy ̸= yx.
As R is a domain, R is generalized power series nil-reversible. Clearly yx ∈
nil(R/I)[[S,≤]] and x(yx) = xyx = 0. But, (yx)x = yx2 ̸= 0. This implies R/I
is not generalized power series nil-reversible.

Theorem 2.17. Let R be a ring and (S,≤) a strictly ordered monoid. If R is
a generalized power series nil-reversible and I an ideal consisting of nilpotent
elements of bounded index ≤ n in R, then R/I is generalized power series nil-
reversible.

Proof. Let f̄ , ḡ ∈ [[(R/I)S,≤]] with f̄ ḡ ∈ [[nil(R/I)S,≤]]. By hypothesis, the
order (S,≤) can be refined to a strict total order ≤ on S. We will use trans-
finite induction on the strictly totally ordered set (S,≤) to show that ḡf̄ ∈
[[nil(R/I)S,≤]]. Firstly, by transfinite induction to show g(t)f(s) ∈ nil(R), for
any s ∈ supp(f) and any t ∈ supp(g). Since supp(f) and supp(g) are nonempty
subsets of S, the set of minimal elements of supp(f) and supp(g), respectively,
are finite and non-empty. Let s0 and t0 denote the minimum elements of supp(f)
and supp(g) in the ≤ order, respectively. By analogy with the proof of Theorem
2.25 [21], we can show that f(s0)g(t0) = 0. Therefore, by transfinite induction,
we can proof that f(s)g(t) = 0. Since f̄ ḡ ∈ [[nil(R/I)S,≤]], then, there is a posi-
tive integer n ∈ N such that (f̄ ḡ)n = 0̄. So, (f(s)g(t))n ∈ I, for any s, t ∈ S. Since
I ⊆ nil(R), (f(s)g(t))n = 0. Hence, f(s)g(t) ∈ nil(R), so g(t)f(s) ∈ nil(R),
by R is generalized power series nil-reversible, gf ∈ [[nil(R)S,≤]]. Thus, ḡf̄ ∈
[[nil(R/I)S,≤]]. Therefore, R/I is generalized power series nil-reversible.
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Now, we give some characterizations of nil generalized power series reversibi-
lity by using the prime radical of a ring.

Corollary 2.18. Let R be a ring and (S,≤) a strictly ordered monoid. If a ring
R is generalized power series nil-reversible, then R/P (R) is generalized power
series nil-reversible.

Proof. Since every element of P (R) is nilpotent, the proof follows from Theo-
rem 2.17.

Proposition 2.19. Let R be a ring and (S,≤) a strictly ordered monoid. Let
J be a reduced ideal of a ring R such that R/J is generalized power series nil-
reversible. Then, R is generalized power series nil-reversible.

Proof. Let f, g ∈ [[RS,≤]] and suppose that fg ∈ [[nil(R)S,≤]]. Then, f̄ ḡ ∈
[[nil(R/J)S,≤]] and so ḡf̄ ∈ [[nil(R/J)S,≤]], since R/J is nil generalized power
series reversible. There exists m ∈ N such that (f̄ ḡ)m = 0̄. This shows that
(f(s)g(t))m ∈ J , for any s, t ∈ S. Since J is reduced, we have f(s)g(t) = 0
yields g(t)f(s) = 0. Thus, gf ∈ [[nil(R)S,≤]]. Therefore, R is generalized power
series nil-reversible.

A ring is called semiperfect if every finitely generated R-right-module has a
projective cover by [22]. For abelian semiperfect, here we have.

Theorem 2.20. Let R be a ring and (S,≤) a strictly ordered monoid. Consider
the following statements.
(1) R is a finite direct sum of local generalized power series nil-reversible rings.
(2) R is a semiperfect generalized power series nil-reversible ring.
Then, (1) ⇒ (2) and the converse is true when R is abelian.

Proof. (1) ⇒ (2) Assume that R is a finite direct sum of local generalized
power series nil-reversible rings. Then, R is semiperfect because local rings
are semiperfect and a finite direct sum of semiperfect rings is semiperfect, and
moreover R is generalized power series nil-reversible by Proposition 2.12.
(2) ⇒ (1) Suppose that R is an abelian semiperfect generalized power se-
ries nil-reversible ring. Since R is semiperfect, R has a finite orthogonal set
{e1, e2, . . . , en} of local idempotents whose sum is 1 by Theorem 27.6 [23], say
1 = e1 + e2 + . . . + en such that each eiRei is a local ring where 1 ≤ i ≤ n.
The ring R being abelian implies eiRei = eiR. Each eiR is a generalized power
series nil-reversible by Proposition 2.14. Hence, R is generalized power series
nil-reversible by Proposition 2.12.

3. Weak annihilator of generalized power series reversible and some
rings property

In [24], Ouyang introduced the notion of weak annihilators and investigated their
properties. For a subset X of a ring R put NrR(X) = {a ∈ R|Xa ∈ nil(R)}
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and NlR(X) = {b ∈ R|bX ∈ nil(R)}. By a simple computation, we can see
that NrR(X) = NlR(X). The set NrR(X) is called the weak annihilator of X.
It is also easy to see that, NrR(X) is an ideal of R in case R is a NI-ring.
Furthermore when R is reduced, then rR(X) = NrR(X) = lR(X) = NlR(X).
For more details and results on weak annihilators see [25].

Now, we investigate the relations between weak annihilators in a ring R and
weak annihilators in a generalized power series ring R[[S,≤]]. Given a ring R
and let γ = C(f) be the content of f, i.e., C(f) = {f(u)|u ∈ supp(f)} ⊆ R.
Since, R ≃ cR we can identify, the content of f with

cC(f) = {cf(ui)|ui ∈ supp(f)} ⊆ [[RS,≤]].

Then, we have two maps ϕ : NrAnnR(id(R)) → NrAnn[[RS,≤]](id([[R
S,≤]])) and

ψ : NlAnnR(id(R)) → NlAnn[[RS,≤]](id([[R
S,≤]])) defined by ϕ(I) = I[[RS,≤]]

and ψ(J) = [[RS,≤]]J for every I ∈ NrAnnR(id(R)) = {NrR(U)|U is an ideal
of R} and J ∈ NlAnnR(id(R)) = {NlR(U)|U is an ideal of R}, respectively.
Obviously, ϕ is injective. In the following theorem, we show that ϕ and ψ are
bijective maps if and only if R is generalized power series nil-reversible.

Theorem 3.1. Let R be a ring and (S,≤) a strictly ordered monoid. If R is
reduced and nil(R) is a nilpotent ideal of R, then the following are equivalent:
(1) R is generalized power series nil-reversible ring.
(2) The function ϕ : NrAnnR(id(R)) → NrAnn[[RS,≤]](id([[R

S,≤]])) is bijective,

where ϕ(I) = I[[RS,≤]] for every I ∈ NrAnnR(id(R)).
(3) The function ψ : NlAnnR(id(R)) → NlAnn[[RS,≤]](id([[R

S,≤]])) is bijective,

where ψ(J) = [[RS,≤]]J for every J ∈ NlAnnR(id(R)).

Proof. (1)⇒(2) Let Y ⊆ [[RS,≤]] and γ =
⋃

f∈Y C(f). From Proposition 2.6 it

is sufficient to show that Nr[[RS,≤]](f) = NrRC(f)[[R
S,≤]], for all f ∈ Y. In fact,

let g ∈ Nr[[RS,≤]](f). Then, fg ∈ [[nil(R)S,≤]] and by assumption f(ui)g(vj) ∈
nil(R) for each ui ∈ supp(f) and each vj ∈ supp(g). Then, for a fixed ui ∈
supp(f) and each vj ∈ supp(g), 0 = f(ui)g(vj) = (cf(ui)g)(vj), it follows that

g ∈ NrR
⋃

ui∈supp(f)

cf(ui)[[R
S,≤]] = NrRC(f)[[R

S,≤]].

So,

Nr[[RS,≤]](f) ⊆ NrRC(f)[[R
S,≤]].

Conversely, let g ∈ NrRC(f)[[R
S,≤]], then cf(ui)g ∈ [[nil(R)S,≤]] for each

ui ∈ supp(f). Hence, (cf(ui)g)(vj) = f(ui)g(vj) ∈ nil(R) and vj ∈ supp(g).
Thus,

(fg)(s) =
∑

(ui,vj)∈Xs(f,g)

f(ui)g(vj) = 0



EXTENDED OF GENERALIZED POWER SERIES REVERSIBLE RINGS 29

and it follows that g ∈ Nr[[RS,≤]](f). Hence, NrRC(f)[[R
S,≤]] ⊆ Nr[[RS,≤]](f)

and it follows that NrRC(f)[[R
S,≤]] = Nr[[RS,≤]](f). So,

Nr[[RS,≤]](Y ) =
⋂
f∈Y

Nr[[RS,≤]](f) =
⋂
f∈Y

C(f)[[RS,≤]] = NrR(γ)[[R
S,≤]].

(2)⇒(1) Suppose that f, g ∈ [[RS,≤]] be such that fg ∈ [[nil(R)S,≤]]. Then,
g ∈ Nr[[RS,≤]](f) and by assumption Nr[[RS,≤]](f) = γ[[RS,≤]] for some right
ideal γ of R. Consequently, 0 = fcg(vj) and for any ui ∈ supp(f), (fcg(vj))(ui) =
f(ui)g(vj) ∈ nil(R) for each ui ∈ supp(f) and vj ∈ supp(g). Thus by reduced
ring, g(vj)f(ui) ∈ nil(R), then gf ∈ [[nil(R)S,≤]]. Hence, R is generalized power
series nil-reversible. The proof of (1)⇔(3) is similar to the proof of (1)⇔(2).

According to Liu [26], the ring R is called S-Armendariz if whenever f, g ∈
[[RS,≤]] satisfy fg = 0, then f(u)g(v) = 0 for each u, v ∈ S. Now, we given a
strong condition under which [[RS,≤]] is nil-reversible.

Theorem 3.2. Let R be a ring and (S,≤) a strictly ordered monoid. Assume
that R is an S-Armendariz ring, then R is generalized power series nil-reversible
if and only if [[RS,≤]] is nil-reversible.

Proof. Suppose R is generalized power series nil-reversible. Let f, g ∈ [[RS,≤]]
be such that fg ∈ [[nil(R)S,≤]]. By [27, Proposition 2.17], [[nil(R)S,≤]] =
nil([[RS,≤]]). So, f(ui)g(vj) ∈ nil(R), for any u, v ∈ S and any i, j. Since R is S-
Armendariz, f(ui)g(vj) = 0, for all i, j. By nil-reversibility, g(vj)f(ui) ∈ nil(R),
for all i, j. So, gf = 0. Therefore, [[RS,≤]] is nil-reversible. The proof of the
converse is trivial.

Theorem 3.3. Let R be a ring and (S,≤) a strictly ordered monoid. Let ∆
denotes a multiplicatively closed subset of R consisting of central non-zero divi-
sors. Then, R is generalized power series nil-reversible if and only if ∆−1R is
generalized power series nil-reversible.

Proof. Suppose R is generalized power series nil-reversible and pi, dj , u, v ∈ R.
Let u−1Cpi , v

−1Cdj ∈ ∆−1R[[S,≤]], for all i, j satisfying that u−1Cpiv
−1Cdj ∈

nil(∆−1R[[S,≤]]). Then, (u−1Cpiv
−1Cdj )

n = 0 for some positive integer n. This
implies (CpiCdj )

n = 0, so pidj ∈ nil(R). For any u−1Cpi , v
−1Cdj ∈ ∆−1R[[S,≤

]] having the property that (u−1Cpi)(v
−1Cdj ) = 0, we have (uv)−1CpiCdj =

0, CpiCdj = 0, for all i, j. Since R is generalized power series nil-reversible,
djpi ∈ nil(R), so (v−1u−1)CdjCpi = 0 which further yields (v−1Cdj )(u

−1Cpi) ∈
nil(∆−1R[[S,≤]]). Hence, ∆−1R is generalized power series nil-reversible. The
converse part is trivial.

Following Lambek [28], a ring R is called symmetric if abc = 0 implies
acb = 0, for all a, b, c ∈ R. It is obvious that commutative rings are symmetric
and symmetric rings are reversible ring.
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Theorem 3.4. Let R be a reversible ring and (S,≤) a strictly ordered monoid
with nil(R) is a nilpotent ideal of R. Then, R is generalized power series nil-
symmetric if and only if R[[S,≤]] is nil-symmetric.

Proof. Assume that R is generalized power series nil-symmetric and f, g, h ∈
R[[S,≤]] are such that fgh ∈ nil(R[[S,≤]]). Hence, by Proposition 2.6,
f(u)g(v)h(t) ∈ nil(R), for all u, v, t ∈ S. Since R is nil-symmetric, we have
f(u)h(t)g(v) ∈ nil(R). Now, for all s ∈ S, we have

(fhg)(s) =
∑

(u,t,v)∈Xs(f,h,g)

f(u)h(t)g(v).

So, the reversibility of R imply that fhg ∈ nil(R[[S,≤]]), hence R[[S,≤]] is nil-
symmetric. Conversely, if R[[S,≤]] is nil-symmetric, then R is generalized power
series nil-symmetric, as subrings of generalized power series nil-symmetric rings
are also generalized power series nil-symmetric.

4. Conclusion

In this paper, we have introduced the notion of generalized power series nil-
reversible rings. The researchers obtains various necessary or sufficient condi-
tions for a generalized power series nil-reversible rings to be some rings related.
We use this concept by studying the relations between generalized power series
reversible and some certain classes of rings. One can extend this work to study
different rings on this structure. Further one can identify some real life appli-
cations in a monoid homomorphism and ideal rings. In our future work we will
introduce the concept of skew generalized power series nil-reversible, that is a
generalization of power series nil-reversible, when R is S-compatible, (S,≤) a
strictly ordered monoid and connected by annihilator rings.
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1. Introduction

Unless mentioned or otherwise, all graphs in this paper are simple, finite, con-
nected and undirected. For all other standard terminology and notations in
graph theory we follow Harary [7]. A (p, q)-graph G is a graph such that
| V (G) |= p and | E(G) |= q. A labeling (or valuation) of a graph is a function
that carries graphs elements to numbers usually to non negative integers or posi-
tive. If the domain is the vertex set or edge set the labeling called vertex labeling
or edge labeling respectively. If the domain is both vertices and edges then the
labeling is called total labeling. According to Beineke and Hegde [1] graph label-
ing serves as frontier between number theory and structure of graphs. Labeled
graph have variety of applications in coding theory, mathematical modeling, x-
ray, crystallography and to determine optimal circuit layouts. For a dynamic
survey of various graph labeling problems along with extensive bibliography we
refer to Gallian [6]. The concept of even-odd mean labeling of the graph was
introduced by Vasuki, Nagarajan and Arockiaraj [11]. They studied even-odd
mean labeling of some standard graphs. The subject of even-odd mean label-
ing has been further studied in [2], [3], [4], [8], [9], [12]. The concept of super
subdivision of graphs was introduced by Sethuraman and Selvaraju [10]. They
proved that the arbitrary super subdivision of graphs admit graceful labeling.
In [5] Basher et.al proved that the super subdivision of some families of graphs
admit an even-odd mean labeling. Motivated by the work in [5], in this paper,
we study the even-odd mean labeling of cycle, comb, crown, slanting ladder and
planar grid. We will give a brief summary of definitions and terminology which
are useful for our study.



34 M. BASHER

Definition 1.1 ([11]). A vertex labeling of G is an injective function f : V (G) →
{0, 2, 4, ..., 2q}. For a vertex labeling f , the induced edge labeling f∗ is defined

by f∗(uv) = f(u)+f(v)
2 for any edge uv in G, then the vertex labeling f is called

even-odd mean labeling of graph of G if its induced edge labeling f∗ : E(G) →
{1, 3, 5, ..., 2q − 1} is a bijection, that is f∗(E) = {1, 3, 5, ..., 2q − 1}.

If a graph G has even-odd mean labeling , then we say that G is an even-odd
mean graph.

Definition 1.2 ([10]). Let G be a graph with p vertices and q edges. A graph
G

′
is said to be an arbitrary super subdivision of G if G

′
is obtained from G by

replacing each edge ei by a complete bipartite graph (biclique) K2,ti where ti is
any positive integer and may vary for each edge arbitrary by identifying the ends
of each edge ei with the two vertices of 2-vertices part of K2,ti after removing
the edge from G.

In this work a cycle on n vertices denoted by Cn, a slanting ladder SLn, n ≥ 2
is a graph obtained from two parallel paths with vertices u1, u2, ..., un and
v1, v2, ..., vn respectively by joining each ui with vi+1, 1 ≤ i ≤ n − 1. The
corona G ⊙ K1 of a graph G on p vertices u1, u2, ..., up is the graph obtained
from G by adding p new vertices v1, v2, ..., vp and joining each vertex ui to a
vertex vi,1 ≤ i ≤ n. The graph Pn⊙K1 is called a comb and the graph Cn⊙K1

is called a crown. Let G1 and G2 be any two graphs with p1 and p2 vertices,
respectively. The Cartesian product G1 × G2 is the graph such that V = p1p2
with vertices set {(u, v) : u ∈ G1, v ∈ G2} and the two vertices (u1, v1) and
(u2, v2) are adjacent if either u1 = u2 and v1, v2 are adjacent in G2 or v1 = v2
and u1, u2 are adjacent in G1. The product Pm ×Pn is called a planar grid and
P2 × Pn is called ladder, denoted by Ln. Let a and b be two positive numbers,
we refer to [a, b] an interval of numbers s, where a ≤ s ≤ b.

Notation. We denote the arbitrary super subdivision of G by ASS(G).

2. Main results

Theorem 2.1. ASS(Cn) is an even-odd mean graph where the edges uiui+1(i ∈
[1, n − 1]), unu1 of the cycle Cn are replaced by K2,ti, K2,tn respectively, such

that n ≡ 0 (mod 4), tn
2
= tn and

∑n
2
i=1 ti =

∑n
i=n

2
+1 ti.

Proof. Let Cn be a cycle graph of length n, where n ≡ 0 (mod 4) whose vertex
set is V = {u1, u2, ..., un} and the edge set is E = {ei = uiui+1, en = unu1 : i ∈
[1, n− 1]}. Let ASS(Cn) be an arbitrary super subdivision of a cycle graph Cn.
That is, for i ∈ [1, n] each edge ei of the cycle Cn replaced by a biclique Kti ,

where ti is any positive integer, tn
2
= tn and

∑n
2
i=1 ti =

∑n
i=n

2
+1 ti. Let uij(i ∈

[1, n], j ∈ [1, ti]) be the vertices which are used for arbitrary super subdivision.
Therefore, the edge set is E(ASS(Cn)) = {uiuij , uijui+1, unju1 : i ∈ [1, n], j ∈
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[1, ti]}. Then, it is clear that ASS(Cn) has n +
∑n

i=1 ti vertices and 2
∑n

i=1 ti
edges. Define labeling f : V (ASS(Cn)) → {0, 2, 4, ..., 2q − 2, 2q = 4

∑n
s=1 ts} as

follows:

f(ui) =


0, i = 1

4
∑i−1

s=1 ts, i ∈ [2, n2 ]

4
∑i−1

s=1 ts + 4tn
2
, i ∈ [n2 + 1, n].

For j ∈ [1, ti].

f(uij) =

{
4j − 2, i = 1,

4
∑i−1

s=1 ts + 4j − 2, i ∈ [2, n].

Then, the induced edge labeling f∗ is obtained as follows:

f∗(uiuij) =


2j − 1, i = 1

4
∑i−1

s=1 ts + 2j − 1, i ∈ [2, n2 ]

4
∑i−1

s=1 ts + 2tn
2
+ 2j − 1, i ∈ [n2 + 1, n].

f∗(uiju(i+1)) =


2t1 + 2j − 1, i = 1

4
∑i−1

s=1 ts + 2ti + 2j − 1, i ∈ [2, n2 − 1]

4
∑n

2
s=1 ts + 2j − 1, i = n

2

4
∑i−1

s=1 ts + 2(tn
2
+ ti) + 2j − 1, i ∈ [n2 + 1, n− 1].

f∗(unju1) = 2

n−1∑
s=1

ts + 2j − 1.

Hence, f is an even-odd mean labeling of ASS(Cn). Thus, ASS(Cn) is an
even-odd mean graph.

Illustration 2.1. Consider ASS(C8) where the edges uiui+1, i ∈ [1, 7], u8u1
are replaced by K2,3,K2,2,K2,5,K2,4,K2,3,K2,4,K2,3 and K2,4 respectively. An
even-odd mean labeling of ASS(C8) is shown in Figure 1.

Theorem 2.2. ASS(Pn ⊙ K1) is an even-odd mean graph where the edges
uiui+1, uivi and unvn are replaced by K2,ti ,K2,t

′
i
and K2,t′n

respectively, such

that t
′
i = t

′
i+1 when i is even, i ∈ [1, n− 1].

Proof. Let Pn ⊙K1 be a comb graph. Let ui(i ∈ [1, n]) be the vertices of the
path Pn and vi be the pendant vertex adjacent to ui(i ∈ [1, n − 1]). Then,
the vertex set is V = {ui, vi : i ∈ [1, n]} and the edge set is E = {ei =
uiui+1, e

′
i = uivi, e

′
n = unvn : i ∈ [1, n − 1]}. Let ASS(Pn ⊙ K1) be an ar-

bitrary super subdivision of a comb graph Pn ⊙ K1. The edges ei, e
′
i and
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Figure 1: An even-odd mean graph of ASS(C8)

e
′
n(i ∈ [1, n − 1]) are replaced by bicliques Kti ,Kt

′
i
and Kt′n

(i ∈ [1, n − 1]) re-

spectively, where ti, t
′
i are positive integer numbers, t

′
i = t

′
i+1 when i is even.

Let uij(i ∈ [1, n − 1], j ∈ [1, ti]), wij(i ∈ [1, n], j ∈ [1, t
′
i]) be the vertices which

are used for arbitrary super subdivision of Pn ⊙ K1. Thus, the edge set is
E(ASS(Pn⊙K1)) = {{uiuij , uijui+1 : i ∈ [1, n−1], j ∈ [1, t

′
i]}∪{uiwij , wijvi : i ∈

[1, n], j ∈ [1, t
′
i]}}. Here, we note that ASS(Pn⊙K1) has 2n+

∑n−1
i=1 ti+

∑n
i=1 t

′
i

vertices and 2(
∑n−1

i=1 ti+
∑n

i=1 t
′
i) edges. Define labeling f : V (ASS(Pn⊙K1)) →

{0, 2, 4, ..., 2q − 2, 2q = 4(
∑n−1

i=1 ti +
∑n

i=1 t
′
i)} as follows:

f(ui) =


4t

′
1, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s), i ∈ [2, n], and i is odd

4
∑i−1

s=1(ts + t
′
s), i ∈ [2, n], and i is even.

f(vi) =


0, i = 1

4
∑i−1

s=1(ts + t
′
s), i ∈ [2, n], and i is odd

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s), i ∈ [2, n], and i is even.
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For i ∈ [1, ti].

f(uij) =


4t

′
1 + 4j − 2, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 4j − 2, i ∈ [2, n], and i is odd

4(
∑i−1

s=1 ts +
∑i+1

s=1 t
′
s) + 4j − 2, i ∈ [2, n], and i is even.

For i ∈ [1, t
′
i].

f(wij) =


4j − 2, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 4j − 2, i ∈ [2, n], and i is odd

4
∑i−1

s=1(ts + t
′
s) + 4j − 2, i ∈ [2, n], and i is even.

Thus, the induced edge labeling f∗ is obtained as follows:
For j ∈ [1, ti].

f∗(uiuij) =
4t

′
1 + 2j − 1, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2j − 1, i ∈ [2, n], and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2(t

′

(i+1) + t
′
i) + 2j − 1, i ∈ [2, n], and i is even.

f∗(uiju(i+1)) =
4t

′
1 + 2t1 + 2j − 1, i = 1

4(
∑i

s=1 ts +
∑i−1

s=1 t
′
s) + 2ti + 2j − 1, i ∈ [2, n], and i is odd

4(
∑i−1

s=1 ts +
∑i+1

s=1 t
′
s) + 2ti + 2j − 1, i ∈ [2, n], and i is even.

For i ∈ [1, t
′
i].

f∗(uiwij) =
2t

′
1 + 2j − 1, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2t(i−1) + 2j − 1, i ∈ [2, n], and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2j − 1, i ∈ [2, n], and i is even.

f∗(wijvi) =
2j − 1, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2(ti−1 + t

′
i) + 2j − 1, i ∈ [2, n], and i is odd

4(
∑i−1

s=1 ts + t
′
s) + 2t

′
i + 2j − 1, i ∈ [2, n], and i is even.

Hence, f is an even-odd mean labeling of ASS(Pn⊙K1). Then, ASS(Pn⊙K1)
is an even-odd mean graph.
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Illustration 2.2. Consider ASS(P7 ⊙ K1) where the edges uiui+1, i ∈ [1, 6]
are replaced by K2,3,K2,5,K2,4,K2,3,K2,4 and K2,2 respectively and the edges
uivi, i ∈ [1, 7] are replaced by K2,5,K2,4,K2,4,K2,2,K2,2,K2,3 and K2,3 respec-
tively . An even-odd mean labeling of ASS(P7 ⊙ K1) is shown in Figure 2.
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Figure 2: An even-odd mean graph of ASS(P7 ⊙K1)

Theorem 2.3. ASS(Cn ⊙ K1) is an even-odd mean graph where the edges
uiui+1, uivi,unu1 and unvn of Cn ⊙ K1 are replaced by K2,ti ,K2,t

′
i
,K2,tn and

K2,t′n
respectively, such that n ≡ 0 (mod 4),

∑n
2
i=1(ti + t

′
i) =

∑n
i=n

2
+1(ti + t

′
i),

tn = tn
2
, t

′
n = t

′
1 and t

′
i = t

′
i+1 when i is even, i ∈ [1, n− 1].

Proof. Let Cn ⊙K1 be a crown graph. Let ui(i ∈ [1, n]) be the vertices of the
cycle Cn, n ≡ 0 (mod 4). Let vi be the pendant vertices adjacent to ui(i ∈ [1, n]).
Then, the vertex set of the crown Cn⊙K1 is V = {ui, vi : i ∈ [1, n]} and the edge
set is E = {{ei = uiui+1, en = unu1 : i ∈ [1, n − 1]} ∪ {e′i = uivi : i ∈ [1, n]}}.
Let ASS(Cn⊙K1) be an arbitrary super subdivision of the crown Cn⊙K1. The
edges ei, e

′
i(i ∈ [1, n]) are replaced by the bicliquesK2,ti , K2,t

′
i
respectively where

ti, t
′
i are positive integer numbers,

∑n
2
i=1(ti + t

′
i) =

∑n
i=n

2
+1(ti + t

′
i), tn = tn

2
,

t
′
n = t

′
1 and t

′
i = t

′
i+1 when i is even. Let uij(i ∈ [1, n], j ∈ [1, ti]), wij(i ∈

[1, n], j ∈ [1, t
′
i]) be the vertices which are used for arbitrary super subdivision

of Cn ⊙K1. Therefore, the edge set of ASS(Cn ⊙K1) is E(ASS(Cn ⊙K1)) =
{{uiuij , uijui+1, untnu1 : i ∈ [1, n], j ∈ [1, ti]} ∪ {uiwij , wijvi : i ∈ [1, n], j ∈
[1, t

′
i]}} . We observe that ASS(Cn ⊙K1) has 2n +

∑n
i=1(ti + t

′
i) vertices and

2
∑n

i=1(ti + t
′
i) edges. Define labeling f : V (ASS(Cn ⊙K1)) → {0, 2, 4, ..., 2q −

2, 2q = 4
∑n

i=1(ti + t
′
i)} as follows:
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f(ui) =



4t
′
1, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s), i ∈ [2, n2 ], and i is odd

4
∑i−1

s=1(ts + t
′
s), i ∈ [2, n2 ], and i is even

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 4tn

2
, i ∈ [n2 + 1, n], and i is odd

4
∑i−1

s=1(ts + t
′
s) + 4tn

2
, i ∈ [n2 + 1, n], and i is even.

f(vi) =



0, i = 1

4
∑i−1

s=1(ts + t
′
s), i ∈ [2, n], and i is odd

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s), i ∈ [2, n], and i is even

4
∑i−1

s=1(ts + t
′
s) + 4tn

2
, i ∈ [n2 + 1, n], and i is odd

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 4tn

2
, i ∈ [n2 + 1, n], and i is even.

For i ∈ [1, ti].

f(uij) =


4t

′
1 + 4j − 2 i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 4j − 2, i ∈ [2, n− 1], and i is odd

4(
∑i−1

s=1 ts +
∑i+1

s=1 t
′
s) + 4j − 2, i ∈ [2, n− 1], and i is even

4
∑n−1

s=1 (ts + t
′
s) + 4j − 2, i = n.

For j ∈ [1, t
′
i].

f(wij) =


4j − 2, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 4j − 2, i ∈ [2, n], and i is odd

4
∑i−1

s=1(ts + t
′
s) + 4j − 2, i ∈ [2, n], and i is even

4(
∑n

s=1 ts +
∑n−1

s=1 t
′
s) + 4j − 2, i = n.

Then, the induced edge labeling f∗ is obtained as follows:
For j ∈ [1, ti].

f∗(uiuij) =

4t
′
1 + 2j − 1, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2j − 1, i ∈ [2, n2 ] and i is odd

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2j − 1, i ∈ [2, n2 ] and i is even

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2tn

2
+ 2j − 1, i ∈ [n2 + 1, n− 1] and i is odd

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2tn

2
+ 2j − 1, i ∈ [n2 + 1, n− 1] and i is even

4
∑n−1

s=1 (ts + t
′
s) + 2tn

2
+ 2j − 1, i = n.
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f∗(uiju(i+1)) =

4t
′
1 + 2t1 + 2j − 1, i = 1

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s)+

2ti + 2j − 1, i ∈ [2, n2 − 1] and i is odd

4(
∑i−1

s=1 ts +
∑i+1

s=1 t
′
s)+

2ti + 2j − 1, i ∈ [2, n2 − 1] and i is even

4(
∑n

2
s=1 ts +

∑n
2
+1

s=1 t
′
s)+

2j − 1, i = n
2

4(
∑i−1

s=1 ts +
∑i

s=1 t
′
s) + 2(tn

2
+ ti)+

2j − 1, i ∈ [n2 + 1, n− 1] and i is odd

4(
∑i−1

s=1 ts +
∑i+1

s=1 t
′
s) + 2(tn

2
+ ti)+

2j − 1, i ∈ [n2 + 1, n− 1] and i is even .

f∗(unju1) = 2
∑n−1

s=1 (ts + t
′
s) + 2t

′
1 + 2j − 1.

For j ∈ [1, t
′
i].

f∗(uiwij) =

2t
′
1 + 2j − 1, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2(t(i−1) + t

′
i)+

2j − 1, i ∈ [2, n2 ] and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2j − 1, i ∈ [2, n2 ] and i is even

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2(tn

2
+ t(i−1) + t

′
i)+

2j − 1, i ∈ [n2 + 1, n− 1] and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2tn

2
+ 2j − 1, i ∈ [n2 + 1, n− 1] and i is even

4(
∑n

s=1 ts +
∑n−1

s=1 t
′
s) + 2j − 1, i = n.

f∗(viwij) =

2j − 1, i = 1

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2t(i−1) + 2j − 1, i ∈ [2, n2 ] and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2t

′
i + 2j − 1, i ∈ [2, n2 ] and i is even

4(
∑i−2

s=1 ts +
∑i−1

s=1 t
′
s) + 2(t(i−1) + tn

2
) + 2j − 1, i ∈ [n2 + 1, n− 1] and i is odd

4
∑i−1

s=1(ts + t
′
s) + 2(t

′
i + tn

2
) + 2j − 1, i ∈ [n2 + 1, n− 1] and i is even.

4(
∑n

s=1 ts +
∑n−1

s=1 t
′
s) + 2t

′
n + 2j − 1, i = n

Thus, f is an even-odd mean labeling of ASS(Cn ⊙K1). Hence ASS(Cn ⊙K1)
is an even-odd mean graph.
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Illustration 2.3. Consider ASS(C8⊙K1) where the edges uiui+1, i ∈ [1, 7] and
u8u1 are replaced by K2,2,K2,3,K2,5,K2,4,K2,3,K2,6,K2,3 and K2,4 respectively
and the edges uivi, i ∈ [1, 8] are replaced byK2,2,K2,4,K2,4,K2,5,K2,5,K2,3,K2,3

and K2,2 respectively . An even-odd mean labeling of ASS(C8 ⊙K1) is shown
in Figure 3.
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Figure 3: An even-odd mean graph of ASS(C8 ⊙K1)

Theorem 2.4. ASS(SLn) is an even-odd mean graph where the edges uiui+1,
vivi+1 and uivi+1 of SLn are replaced by K2,ti ,K2,t

′
i
and K

2,t
′′
i
(i ∈ [1, n − 1])

respectively, such that t
′′
i = t for all (i ∈ [1, n − 1]), t

′
i+1 = ti, ti+1 ≥ ti for all

(i ∈ [1, n− 2]) and t
′
1 = t1 = t when n is odd.

Proof. Let (SLn) be a slanting ladder graph whose vertex set is V = {ui, vi : i ∈
[1, n]} and edge set is E = {ei = uiui+1, e

′
i = vivi+1, e

′′
= uivi+1 : i ∈ [1, n− 1]}.

Let ASS(SLn) be an arbitrary super subdivision of SLn. the edges ei, e
′
i and

e
′′
i (i ∈ [1, n− 1]) are replaced by the bicliques K2,ti , K2,t

′
i
and K

2,t
′′
i
respectively

where ti, t
′
i, and t

′′
i are positive integer numbers, t

′′
i = t for some fixed t ∈ N ,

t
′
i+1 = ti, ti+1 ≥ ti for all i ∈ [1, n − 2] and t

′
1 = t1 = t when n is odd. Let

uij(i ∈ [1, n − 1], i ∈ [1, ti]), vij(i ∈ [1, n − 1], j ∈ [1, t
′
i]), and wij(i ∈ [1, n], j ∈

[1, t]) be the vertices which are used for arbitrary super subdivision. Therefore,
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the edge set of ASS(SLn) is E(ASS(SLn) = {{uiuij , uijui+1 : i ∈ [1, n− 1], j ∈
[1, ti]}∪{vivij , vijvi+1 : i ∈ [1, n−1], j ∈ [1, t

′
i]}∪{uiwij , wijvi+1 : i ∈ [1, n−1], j ∈

[1, t]}}. Then, it obvious that ASS(SLn) has 2n+2
∑n−2

i=1 ti+t(n−1)+(n−1)t+t1

vertices and 4
∑n−2

i=1 ti + 2((n − 1)t + t(n−1) + t1) edges. Define labeling f :

V (SS(Cn⊙K1)) → {0, 2, 4, ..., 2q− 2, 2q = 8
∑n−2

i=1 ti+4((n− 1)t+ t(n−1)+ t1)}
as follows:
Case (i). n is odd.

f(ui) =


0, i = 1

8
∑i−1

s=1 ts + 4t(i+ 1), i ∈ [1, n− 1]

8
∑n−2

s=1 ts + 4(nt+ t(n−1)), i = n.

f(vi) =


4t, i = 1

8t, i = 2

8
∑i−2

s=1 ts + 4t(i− 1), i ∈ [3, n] and i is odd

8
∑i−2

s=1 ts + 4ti, i ∈ [3, n] and i is even.

For i ∈ [1, ti].

f(uij) =


4t+ 4j − 2, i = 1

8
∑i−1

s=1 ts + 4ti+ 4j − 2, i ∈ [2, n− 2] and i is odd

8
∑i−1

s=1 ts + 4(t(i+ 1) + ti) + 4j − 2, i ∈ [2, n− 2] and i is even

8
∑n−2

s=1 ts + 4nt+ 4j − 2, i = n− 1.

For i ∈ [1, t
′
i].

f(vij) =


8t+ 4j − 2, i = 1

12t+ 4j − 2, i = 2

8
∑i−2

s=1 ts + 4t(i− 1) + 4j − 2, i ∈ [3, n− 1] and i is odd

8
∑i−2

s=1 ts + 4(ti+ t(i−1)) + 4j − 2, i ∈ [3, n− 1] and i is even.

For i ∈ [1, t
′
i].

f(wij) =


4j − 2, i = 1

8
∑i−1

s=1 ts + 4(ti+ ti) + 4j − 2, i ∈ [2, n− 2]

8
∑n−2

s=1 ts + 4t(n− 1) + 4j − 2, i = n− 1.

Hence the induced edge labeling f∗ is obtained as follows:
For i ∈ [1, ti].

f∗(uiuij) =


2t+ 2j − 1, i = 1

8
∑i−1

s=1 ts + 4ti+ 2j − 1, i ∈ [2, n− 1] and i is odd

8
∑i−1

s=1 ts + 4t(i+ 1) + 2ti + 2j − 1, i ∈ [1, n− 2] and i is even

8
∑n−1

s=1 ts + 4nt+ 2j − 1, i = n− 1.
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f∗(uiju(i+1)) =


12t+ 2j − 1, i = 1

8
∑i−1

s=1 ts + 4t(i+ 1) + 4ti + 2j − 1, i ∈ [2, n− 1] and i is odd

8
∑i−1

s=1 ts + 4t(i+ 1) + 6ti + 2j − 1, i ∈ [1, n− 2] and i is even

8
∑n−2

s=1 ts + 4nt+ 2tn−1 + 2j − 1, i = n− 1.

For i ∈ [1, t
′
i].

f∗(vivij) =


6t+ 2j − 1, i = 1

10t+ 2j − 1, i = 2

8
∑i−2

s=1 ts + 4t(i− 1) + 2j − 1, i ∈ [3, n− 1] and i is odd

8
∑i−2

s=1 ts + 4ti+ 2t(i−1) + 2j − 1, i ∈ [3, n− 1] and i is even.

f∗(vijv(i+1)) =


8t+ 2j − 1, i = 1

14t+ 2j − 1, i = 2

8
∑i−2

s=1 ts + 4ti+ 4t(i−1) + 2j − 1, i ∈ [3, n− 1] and i is odd

8
∑i−2

s=1 ts + 4ti+ 6t(i−1) + 2j − 1, i ∈ [3, n− 1] and i is even.

For i ∈ [1, ti].

f∗(uiwij) =


2j − 1, i = 1

8
∑i−2

s=1 ts + 4ti+ 2ti + 2j − 1, i ∈ [2, n− 2]

8
∑n−2

s=1 ts + 4nt− 2t+ 2j − 1, i = n− 1.

f∗(wijv(i+1)) =


4t+ 2j − 1, i = 1

8
∑i−1

s=1 ts + 4ti+ 2(t+ ti) + 2j − 1, i ∈ [2, n− 2] and i is odd

8
∑i−1

s=1 ts + 4ti+ 2ti + 2j − 1, i ∈ [2, n− 2] and i is even

8
∑n−2

s=1 ts + 4(n− 1)t+ 2j − 1, i = n− 1.

Then, f is an even-odd mean labeling of ASS(SLn). Thus, ASS(SLn) is an
even-odd mean graph.
Case (ii). n is even.

f(ui) =


4(t

′
1 + t), i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + ti), i ∈ [2, n− 1] and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1)), i ∈ [2, n− 1] and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 1) + t(n−1)), i = n.
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f(vi) =


0, i = 1

4t
′
1, i = 2

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 1)), i ∈ [1, n] and i is odd

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 2)), i ∈ [1, n] and i is even.

For i ∈ [1, ti].

f(uij) =
4(t

′
1 + t1 + t) + 4j − 2, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + ti+ ti) + 4j − 2, i ∈ [2, n− 1] and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1)) + 4j − 2, i ∈ [2, n− 1] and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 1)) + 4j − 2, i = n− 1.

For i ∈ [1, t
′
i].

f(vij) =

4j − 2, i = 1

4t
′
1 + 4j − 2, i = 2

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 1)+

t(i−1)) + 4j − 2, i ∈ [2, n− 1] and i is odd

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 2))+

4j − 2, i ∈ [2, n− 1] and i is even.

For i ∈ [1, ti].

f(wij) =


4(t

′
1 + t1) + 4j − 2, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1) + ti) + 4j − 2, i ∈ [2, n− 2]

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 2)) + 4j − 2, i = n− 1.

Thus, the induced edge labeling f∗ is obtained as follows:
For i ∈ [1, ti].

f∗(uiuij) =
4(t

′
1 + t) + 2t1 + 2j − 1, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + ti) + 2ti + 2j − 1, i ∈ [2, n− 1], and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1)) + 2j − 1, i ∈ [2, n− 1], and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 1)) + 2j − 1, i = n− 1.
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f∗(uiju(i+1)) =

4(t
′
1 + t) + 6t1 + 2j − 1, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + ti) + 6ti + 2j − 1, i ∈ [2, n− 2] and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + ti+ ti) + 2j − 1, i ∈ [2, n− 2] and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 1))+

2t(n−1) + 2j − 1 i = n− 1.

For i ∈ [1, t
′
i].

f∗(vivij) =

2j − 1, i = 1

4t
′
1 + 2j − 1, i = 2

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 1))+

2t(i−1) + 2j − 1, i ∈ [2, n− 1], and i is odd

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 2)) + 2j − 1, i ∈ [2, n− 1], and i is even.

f∗(vijv(i+1)) =

2t
′
1 + 2j − 1, i = 1

4(t
′
1 + t+ t1) + 2j − 1, i = 2

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 1))+

6t(i−1) + 2j − 1, i ∈ [3, n− 1], and i is odd

8
∑i−2

s=1 ts + 4(t
′
1 + t(i− 1)+

t(i−1)) + 2j − 1, i ∈ [3, n− 1], and i is even.

For i ∈ [1, t].

f∗(uiwij) =
4t

′
1 + 2(t+ t1) + 2j − 1, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + ti) + 2(ti − t) + 2j − 1, i ∈ [2, n− 2] and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1)) + 2ti + 2j − 1, i ∈ [2, n− 2] and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + tn)− 6t+ 2j − 1, i = n− 1.

f∗(wijv(i+1)) =
4t

′
1 + 2t1 + 2j − 1, i = 1

8
∑i−1

s=1 ts + 4(t
′
1 + t(i− 1)) + 2ti + 2j − 1, i ∈ [2, n− 2] and i is odd

8
∑i−1

s=1 ts + 4(t
′
1 + ti) + 2(ti − t) + 2j − 1, i ∈ [2, n− 2] and i is even

8
∑n−2

s=1 ts + 4(t
′
1 + t(n− 2)) + 2j − 1, i = n− 1.

Then, f is an even-odd mean labeling of ASS(SLn). Thus, ASS(SLn) is an
even-odd mean graph.
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Illustration 2.4. Consider ASS(SL5) where the edges uiui+1, i ∈ [1, 4], are
replaced by K2,2,K2,3,K2,4 and K2,3 respectively and the edges vivi+1, i ∈ [1, 4]
are replaced by K2,2,K2,2,K2,3,K2,4 respectively and all the edges uivi+ 1, i ∈
[1, 4], are replaced K2,2 . An even-odd mean labeling of ASS(SL5) is shown in
Figure 4.
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Figure 4: An even-odd mean graph of ASS(SL5)

Illustration 2.5. Consider ASS(SL6) where the edges uiui+1, i ∈ [1, 5], are
replaced by K2,2,K2,3,K2,4,K2,5,K2,3 respectively and the edges vivi+1, i ∈
[1, 5] are replaced by K2,4,K2,2,K2,3,K2,4,K2,5 respectively and all the edges
uivi+ 1, i ∈ [1, 5], are replaced K2,3 . An even-odd mean labeling of ASS(SL6)
is shown in Figure 5.

Theorem 2.5. ASS(Pm × Pn) is an even-odd mean graph where the edges
uijui(j+1), (i ∈ [1,m], j ∈ [1, n − 1]), uiju(i+1)j(i ∈ [1,m − 1], j ∈ [1, n]) of
Pm ×Pn are replaced by K2,tij , K2,t

′
ij
respectively such that tij are equals for all

j and t
′
ij are equals for all i.

Proof. Let the vertex set of planar grid Pm × Pn be V = {uij : i ∈ [1,m], j ∈
[1, n]} and the edge set be E = {{eij = uijui(j+1) : i ∈ [1,m], j ∈ [1, n − 1]} ∪
{e′ij = uiju(i+1)j : i ∈ [1,m− 1], j ∈ [1, n]}. Let ASS(Pm × Pn) be an arbitrary
super subdivision of the planar grid Pm × Pn. The horizontal and vertical
edges eij , e

′
ij are replaced by the bicliques K2,tij ,K2,t

′
ij
respectively where tij , t

′
ij

are positive integer numbers, tij are equals for all j and t
′
ij are equal for all

i. Let vij,k(i ∈ [1,m], j ∈ [1, n − 1], k ∈ [1, tij ]) and wij,k(i ∈ [1,m − 1], j ∈
[1, n], k ∈ [1, t

′
ij ]) be the vertices which are used for arbitrary super subdivision

of the edges eij and e′ij respectively. Thus, the edge set of ASS(Pm × Pn)
is E(ASS(Pm × Pn)) = {{uijvij,k, vij,kui(j+1) : i ∈ [1,m], j ∈ [1, n − 1], k ∈
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Figure 5: An even-odd mean graph of ASS(SL6)

[1, tij ]} ∪ {uijwij,k, wij,ku(i+1)j : i ∈ [1,m− 1], j ∈ [1, n], k ∈ [1, t
′
ij ]}. Therefore,

it is clear that ASS(Pm × Pn) has mn+m
∑n−1

s=1 tis + n
∑m−1

s=1 t
′
sj vertices and

2(m
∑n−1

s=1 tis + n
∑m−1

s=1 t
′
sj) edges. Define labeling f : V (ASS(Pm × Pn)) →

{0, 2, 4, ..., 2q − 2, 2q = 4(m
∑n−1

s=1 tis + n
∑m−1

s=1 t
′
sj)} as follows:

f(u1j) =

{
0, j = 1

4
∑j−1

s=1 t1s, j ∈ [2, n].

f(uij) =
4(i− 1)

∑n−1
s=1 tis + 4n

∑i−1
s=1 t

′
s1, j = 1, i ∈ [2,m] and i is odd

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj + 4

∑j−1
s=1 tis, j ∈ [2, n], i ∈ [2,m] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1, j = 1, i ∈ [2,m] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj − 4

∑j−1
s=1 tis, j ∈ [2, n], i ∈ [2,m] and i is even.

For k ∈ [1, tij ].

f(v1j,k) =

{
4t

′
11 + 4k − 2, j = 1

4
∑j−1

s=1 t1s + 4jt
′
1j + 4k − 2, j ∈ [2, n− 1].

f(v2j,k) =

{
8
∑n−1

s=1 t2s + 4nt
′
11 − 4t21 + 4k − 2, j = 1

8
∑n−1

s=1 t2s + 4nt
′
1j − 4

∑j
s=1 t2s + 4k − 2, j ∈ [2, n− 1].
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f(vij,k) =

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
s1

+4t
′

(i−1)1 + 4k − 2, j = 1, i ∈ [3,m] and i is odd

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
sj

+4jt
′

(i−1)j + 4
∑j−1

s=1 tis + 4k − 2, j ∈ [2, n− 1], i ∈ [3,m] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1

−4t
′

(i−1)1 − 4ti1 + 4k − 2, j = 1, i ∈ [3,m] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj − 4

∑j
s=1 tis

−4jt
′

(i−1)j + 4k − 2, j ∈ [2, n− 1], i ∈ [3,m] and i is even.

For k ∈ [1, t
′
ij ].

f(w1j,k) =

{
4k − 2, j = 1

4
∑j−1

s=1 t1s + 4(j − 1)t
′
1j + 4k − 2, j ∈ [2, n− 1].

f(wij,k) =

4(i+ 1)
∑n−1

s=1 tis + 4n
∑i

s=1 t
′
s1

−4(t
′
i1) + 4k − 2, j = 1, i ∈ [2,m− 1] and i is odd

4(i+ 1)
∑n−1

s=1 tis + 4n
∑i

s=1 t
′
sj

−4
∑j−1

s=1 tis − 4j(t
′
ij) + 4k − 2, j ∈ [2, n− 1], i ∈ [2,m− 1] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1

+4k − 2, j = 1, i ∈ [2,m− 1] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj

+4(j − 1)t
′
ij + 4

∑j−1
s=1 tis + 4k − 2, j ∈ [2, n− 1], i ∈ [2,m− 1] and i is even.

Then, the induced edge labeling f∗ is obtained as follows:
For k ∈ [1, tij ].

f∗(u1j v1j,k) =

{
2t

′
11 + 2k − 1, j = 1

4
∑j−1

s=1 t1s + 2jt
′
1j + 2k − 1, j ∈ [2, n− 1].

f∗(u2j v2j,k) ={
8
∑n−1

s=1 t2s + 4nt
′
11 − 2t21 + 2k − 1, j = 1

8
∑n−1

s=1 t2s + 4nt
′
1j − 4

∑j−1
s=1 t2s − 2t2j + 2k − 1, j ∈ [2, n− 1].
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f∗(uij vij,k) =

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
s1

+2(n+ 1)t
′

(i−1)1 + 2k − 1, j = 1, i ∈ [3,m] and i is odd

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
sj

+2(n+ j)t
′

(i−1)j + 4
∑j−1

s=1 tis + 2k − 1, j ∈ [2, n− 1], i ∈ [3,m] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1 − 2t

′

(i−1)1

−2ti1 + 2k − 1, j = 1, j ∈ [3,m] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj − 4

∑j−1
s=1 tis

−2jt
′

(i−1)j − 2tij + 2k − 1, j ∈ [2, n− 1], j ∈ [3,m] and i is even.

f∗(v1j,k u1(j+1)) ={
2t11 + 2t

′
11 + 2k − 1, j = 1

4
∑j−1

s=1 t1s + 2tij + 2jt
′
1j + 2k − 1, j ∈ [2, n− 1].

f∗(v2j,k u2(j+1)) ={
8
∑n−1

s=1 t2s + 4nt
′
11 − 4t21 + 2k − 1, j = 1

8
∑n−1

s=1 t2s + 4nt
′
1j − 4

∑j
s=1 t2s + 2k − 1, j ∈ [2, n− 1].

f∗(vij,k ui(j+1)) =

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
s1

+2(n+ 1)t
′

(i−1)1 + 2ti1 + 2k − 1, j = 1, i ∈ [3,m] and i is odd

4(i− 1)
∑n−1

s=1 tis + 4n
∑i−2

s=1 t
′
sj

+4
∑j−1

s=1 tis + 2(n+ j)t
′

(i−1)j

+2tij + 2k − 1, j ∈ [2, n− 1], i ∈ [3,m] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1 − 2t

′

(i−1)1

−4ti1 + 2k − 1, j = 1, j ∈ [3,m] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj − 4

∑j
s=1 tis

−2jt
′

(i−1)j + 2k − 1, j ∈ [2, n− 1], i ∈ [3,m] and i is even.

For k ∈ [1, t
′
ij ].

f∗(u1j w1j,k) =

{
2k − 1, j = 1

4
∑j−1

s=1 t1s + 2(j − 1)t
′
1j + 2k − 1, j ∈ [2, n]
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f∗(uij wij,k) =

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1+

2(n− 1)t
′
i1 + 2k − 1, j = 1, i ∈ [2,m− 1] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj+

2nt
′
ij − 2t

′
ij + 2k − 1, j ∈ [2, n], i ∈ [2,m− 1] and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1+

2k − 1, j = 1, i ∈ [2,m− 1] and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj+

2(j − 1)t
′
ij + 2k − 1, i ∈ [2, n], i ∈ [2,m− 1] and i is even.

f∗(w1j,k u2j) ={
4
∑n−1

s=1 t1s + 2nt
′
11 + 2k − 1, j = 1

4
∑n−1

s=1 t1s + 2(n+ j − 1)t
′
1j + 2k − 1, j ∈ [2, n].

For i ∈ [2,m− 1].

f∗(wij,k u(i+1)j) =

4(i+ 1)
∑n−1

s=1 tis + 4n
∑i

s=1 t
′
s1

−2t
′
i1 + 2k − 1, j = 1, and i is odd

4(i+ 1)
∑n−1

s=1 tis + 4n
∑i

s=1 t
′
sj

−4
∑j−1

s=1 tis − 2jt
′
ij + 2k − 1, j ∈ [2, n], and i is odd

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
s1

+2nt
′
i1 + 2k − 1, j = 1, and i is even

4i
∑n−1

s=1 tis + 4n
∑i−1

s=1 t
′
sj + 4

∑j−1
s=1 tis

+2(n+ j − 1)t
′
ij + 2k − 1, j ∈ [2, n], and i is even.

Hence, f is an even-odd mean labeling of ASS(Pm×Pn). Thus, ASS(Pm×Pn)
is an even-odd mean graph.

Illustration 2.6. Consider ASS(P6 ×P5) where the edges ui1ui2, ui2ui3, ui3ui4
and ui4ui5 are replaced by K2,5,K2,2,K2,4 and K2,5 respectively for all i ∈ [1, 6]
and the edges u1ju2j , u2ju3j , u3ju4j , u4ju5j and u5ju6j are replaced byK2,2,K2,4,
K2,3,K2,5 and K2,2 respectively for all j ∈ [1, 5]. An even-odd mean labeling of
ASS(P6 × P5) is shown in Figure 6.

Corollary 2.1. ASS(Ln) is an even-odd mean graph for all n.

Proof. From the definition of Ladder Ln and by Theorem 2.5, the arbitrary
super subdivision of Ln is also an even-odd mean graph.
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Figure 6: An even-odd mean graph of ASS(P6 × P5)
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Abstract. This paper investigates the separator of Green’s classes of the full trans-
formation semigroup. The separator of a subset A of a semigroup S is the set of all
elements x ∈ S satisfying the following conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A
and (S\A)x ⊆ S\A. We establish the relationship between the separator of Green’s
classes and the permutations preserving partition and/or permuting image.
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1. Introduction

The separator of a subset A of a semigroup S is the set of all elements x ∈ S
satisfying the following conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A and
(S\A)x ⊆ S\A. Let π be an equivalence relation on a set X. We say that
α : X → X preserves π if, for all x, y ∈ X, (x, y) ∈ π implies (xα, yα) ∈ π.
Let Tn and Sn denote the full transformation semigroup and symmetric group,
respectively, on n = {1, . . . , n}. Denote by Sn(π) the set of all permutations on
n that preserve π. For a nonempty subset Y of n, denote by Sn(Y ) the set of all
permutations on n that permute Y . Moreover, let Sn(π, Y ) = Sn(π) ∩ Sn(Y ).
The Green’s relations on a semigroup were first studied by J.A. Green [7] in
1951. Let a and b be elements of a semigroup S. We define aL b (aRb) if a and
b generate the same principal left (right) ideal of S. The join of L and R is

*. Corresponding author
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denoted by D and their intersection by H (see [3]). In 2011, A. Nagy proved
that the separator of a proper ideal of Tn is the symmetric group Sn. Guided
by the result put forth by C.G. Doss [5], we will describe the separator of the
Green’s classes of Tn. Following the convention used in [3], by a partition π of
a set X we mean the partition X/π determined by an equivalence relation π on
X. First, we show that the separator of a D-class of Tn is the symmetric group
Sn. Then, we prove that Sn(Y ) is the separator of the L -class consisting of all
elements of Tn whose image is Y . Next, we show that Sn(π) is the separator of
the R-class consisting of all elements of Tn with partition π. Finally, we show
that Sn(π, Y ) is the separator of the H -class consisting of all elements of Tn
with partition π and image Y .

2. Preliminaries

The following definitions are found in [3]. A transformation of a set X is a
single-valued mapping of X into itself. The image of an element x of X under a
transformation or mapping α is denoted by xα (rather than αx or α(x)). The
product (or iterate or composition) of two transformations α and β of X is the
transformation αβ defined by x(αβ) = (xα)β, for all x ∈ X (that is, α followed
by β). The set TX of all transformations of X is a semigroup with respect to
iteration. We call TX the full transformation semigroup on X. A one-to-one
mapping of a set X onto itself will be called a permutation of X, even when
X is infinite. The symmetric group SX on X consists of all permutations of X
under the operation of iteration.

Definition 2.1 ([3]). With each element α of TX we associate two things: (1)
the image Xα of α, also denoted by Im(α), which is defined by Xα = {xα |x ∈
X} and (2) the partition πα = α ◦ α−1 of X corresponding to α, i.e., the equiv-

alence relation on X defined by (x, y) ∈ πα if xα = yα, where x, y ∈ X. Let π♮α
be the natural mapping of X upon the set X/πα of equivalence classes of X mod

πα. Then, xπ♮α 7→ xα is a one-to-one mapping of X/πα upon Xα. It follows
that |X/πα| = |Xα|, and this cardinal number is called the rank of α.

The following theorem characterizes Green’s classes in terms of rank, parti-
tion, and image.

Theorem 2.1 ([3]). Let TX be the full transformation semigroup on a set X.

i. In the semigroup TX , we have D = J .

ii. There is a one-to-one correspondence between the set of all principal ideals
of TX and the set of all cardinal numbers r ≤ |X| such that the principal
ideal corresponding to r consists of all elements of TX of rank ≤ r.

iii. There is a one-to-one correspondence between the set of all D-classes of
TX and the set of all cardinal numbers r ≤ |X| such that the D-class Dr

corresponding to r consists of all elements of TX of rank r.
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iv. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all L -classes in Dr and the set of all subsets Y of X of
cardinal r such that the L -class corresponding to Y consists of all elements
of TX having image Y .

v. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all R-classes contained in Dr and the set of all partitions
π of X for which |X/π| = r such that the R-class corresponding to π consists
of all elements of TX having partition π.

vi. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all H -classes in Dr and the set of all pairs (π, Y ) where
π is a partition of X and Y is a subset of X such that |X/π| = |Y | = r,
such that the H -class corresponding to (π, Y ) consists of all elements of
TX having partition π and image Y .

Throughout this paper, we will only consider the finite full transformation
semigroup. Let Tn and Sn denote the full transformation semigroup and sym-
metric group, respectively, on n = {1, . . . , n}.

Lemma 2.1 ([6]). Let α ∈ Tn. Then, the following conditions are equivalent:

i) α is surjective.

ii) α is injective.

iii) α is bijective.

Lemma 2.2 ([4]). Let α, β ∈ Tn. Then, rank(αβ) ≤ min{rank(α), rank(β)}.

Lemma 2.3 ([2]). If α ∈ Sn and β ∈ Tn, then rank(αβ) = rank(βα) =
rank(β).

Next, we introduce notations for the Green’s classes of Tn. Let k ≤ n. We
denote by Dk the set of all α ∈ Tn whose rank is k. For a partition π of n and
Y ⊆ n where |n/π| = |Y | = k, let Lk(Y ) be the set of all α ∈ Dk with image
Y . Moreover, let Rk(π) be the set of all α ∈ Dk with πα = π. Finally, we
denote by Hk(π, Y ) the set of all α ∈ Dk with πα = π and Imα = Y . Then,
Hk(π, Y ) = Rk(π) ∩ Lk(Y ). By Theorem 2.1, Dk, Lk(Y ), Rk(π), and Hk(π, Y )
are precisely the D-, L -, R-, and H -classes of Tn.

Definition 2.2 ([8]). Let S be a semigroup and let A ⊆ S. The separator of
A, denoted by Sep(A), is the set of all elements x ∈ S satisfying the following
conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A and (S\A)x ⊆ S\A.
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2.1 Transformations preserving a partition

Definition 2.3 ([1]). Let P be a partition of a set X. We say that α ∈ TX
preserves P if, for all P ∈ P, ∃Q ∈ P such that Pα ⊆ Q.

Let T (X,P) denote the semigroup of all full transformations of X that pre-
serve the partition P. We now define a transformation preserving an equivalence
relation π. It is straightforward to show that this definition is equivalent to the
definition of a transformation preserving X/π.

Definition 2.4. Let π be an equivalence relation on a set X. We say that
α ∈ TX preserves π if, for all x, y ∈ X, (x, y) ∈ π implies (xα, yα) ∈ π.

Definition 2.5 ([10]). Let E be an equivalence relation on a set X. A selfmap
α : X → X is said to be E∗-preserving if α satisfies the following: (x, y) ∈ E if
and only if (xα, yα) ∈ E.

Remark 2.1. In view of Definition 2.4, an E∗-preserving map preserves E and
satisfies the condition that (xα, yα) ∈ E implies (x, y) ∈ E.

Definition 2.6 ([10]). Let P = {Xi | i ∈ I} be a partition of an arbitrary set
X, and let α ∈ T (X,P). The character of α is a selfmap χ(α) : I → I defined
by iχ(α) = j whenever Xiα ⊆ Xj.

Denote by Σ(X,P) the set of all α ∈ T (X,P) whose image intersects every
block of P. Sarkar and Singh [10] gave a characterization of elements in Σ(X,P).
It is useful in proving our result on the separator of an R-class.

Corollary 2.1 ([10]). Let P = {X1, . . . , Xm} be an m-partition associated with
an equivalence relation E on an arbitary set X, and let α ∈ T (X,P). Then, the
following statements are equivalent:

(i) α ∈ Σ(X,P).

(ii) χ(α) is a bijective map on {1, . . . ,m}.

(iii) α is an E∗-preserving map.

3. Main Results

In view of the definition of the separator of a subset of a semigroup [8], we have
the following remark.

Remark 3.1. Let S be a semigroup. Let A ⊆ S and x ∈ S. Then, x ∈ Sep(A)
if and only if x satisfies the following four conditions:

i) xa ∈ A, for all a ∈ A.

ii) ax ∈ A, for all a ∈ A.
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iii) xb ∈ S\A, for all b ∈ S\A.

iv) bx ∈ S\A, for all b ∈ S\A.

Remark 3.2 ([8]). Let S be a semigroup. Then, Sep(∅) = Sep(S) = S.

Using Theorem 2.2 (ii), Nagy proved the following result.

Theorem 3.1 ([8]). If I is a proper ideal of Tn, then Sep(I) = Sn.

3.1 The separator of D-classes

Lemma 3.1. If k ≥ 2 and β ∈ Tn\Sn, then ∃α ∈ Dk such that rank(αβ) ≤
k − 1.

Proof. Suppose k ≥ 2 and β ∈ Tn\Sn. Then, ∃x ̸= y such that xβ = yβ.
Choose an element α ∈ Dk such that x, y ∈ Imα. Then, |n/πα| = |Imα| = k
so we may choose distinct elements p1, p2, . . . , pk ∈ n such that the equivalence
classes [ps]πα and [pt]πα are disjoint for s ̸= t. Let mi = piα for i = 1, 2, . . . , k.
Then, Imα = {m1,m2, . . . ,mk}. Since x, y ∈ Imα, we have x = mi1 and
y = mi2 , for some 1 ≤ i1, i2 ≤ k with i1 ̸= i2; hence, mi1β = xβ = yβ = mi2β.
Note that, (Imα)β = {miβ | i = i1, i2} ∪ {miβ | i ∈ {1, 2, . . . , k}\{i1, i2}}.
Therefore, |Im(αβ)| = |(Imα)β| ≤ 1 + (k − 2) = k − 1.

Applying Lemma 2.3, we have the following results.

Lemma 3.2. If α ∈ Sn, β ∈ Dk, and γ ∈ Tn\Dk, then αβ, βα ∈ Dk and
αγ, γα ∈ Tn\Dk.

Lemma 3.3. If α ∈ Sn and β ∈
⋃m

i=1Dki, then αβ, βα ∈
⋃m

i=1Dki.

Lemma 3.4. Let α, γ ∈ Tn. If α ∈ Sn and γ /∈
⋃m

i=1Dki, where m < n, then
αγ, γα /∈

⋃m
i=1Dki.

Theorem 3.2. Sep(Dk) = Sn

Proof. If n = 1, then D1 = S1 = T1. By Remark 3.2, Sep(D1) = Sep(T1) =
T1 = S1. Suppose n ≥ 2 and k = 1. Note that, D1 is a proper ideal of Tn. By
Theorem 3.1, Sep(D1) = Sn. Suppose k ≥ 2. By Lemma 3.2, Sn ⊆ Sep(Dk).
Suppose β /∈ Sn. By Lemma 3.1, ∃α ∈ Dk such that rank(αβ) ≤ k − 1. Hence,
αβ /∈ Dk. Therefore, β /∈ Sep(Dk).

Next, we investigate the separator of union of D-classes. The following result
is a generalization of Theorem 3.1.

Theorem 3.3. If 1 ≤ k1 < . . . < km ≤ n where m < n, then Sep(
⋃m

i=1Dki) =
Sn.



58 JANETH G. CANAMA and GAUDENCIO C. PETALCORIN, JR.

Proof. If m = 1, apply Theorem 3.2. Suppose m ≥ 2. By Lemmas 3.3 and 3.4,
Sn ⊆ Sep(

⋃m
i=1Dki). Suppose α /∈ Sn.

Case 1. k1 ≥ 2. By Lemma 3.1, ∃β ∈ Dk1 such that rank(βα) ≤ k1−1. Hence,
βα /∈

⋃m
i=1Dki . Therefore, α /∈ Sep(

⋃m
i=1Dki).

Case 2. k1 = 1. Suppose k1, k2, . . . , km are consecutive positive integers.
Then,

⋃m
i=1Dki is a proper ideal of Tn. Since α /∈ Sn, by Theorem 3.1, α /∈

Sep(
⋃m

i=1Dki). Suppose ki+1 − ki > 1, for some 1 ≤ i ≤ m − 1. By the
Well-ordering principle, b = min{i | ki+1 − ki > 1} exists. Then, k1, . . . , kb are
consecutive positive integers and kb < kb+1 < kb+1. But Lemma 3.1 tells us that
∃β with rank(β) = kb + 1 such that rank(βα) ≤ kb. Note that, β /∈

⋃m
i=1Dki

but βα ∈
⋃m

i=1Dki . Therefore, α /∈ Sep(
⋃m

i=1Dki).

3.2 The separator of L -classes

Given a subset Y of n with |Y | = k, let Sn(Y ) = {α ∈ Sn | Y α = Y } and
Lk(Y ) = {α ∈ Dk | Imα = Y }.

Remark 3.3. If n = k = 1, then |Y | = 1 so that L1(Y ) = T1 = S1 = S1(Y ).
Then, Sep(L1(Y )) = Sep(T1) = T1 = S1(Y ).

We will show that Sn(Y ) is the separator of the L -class consisting of all
elements of Tn whose image is Y . The next two lemmas follow immediately
from the properties of Sn and Lk(Y ).

Lemma 3.5. If α ∈ Sn(Y ) and β ∈ Lk(Y ), then αβ, βα ∈ Lk(Y ).

Lemma 3.6. If α ∈ Sn(Y ) and β ∈ Tn \ Lk(Y ), then αβ, βα ∈ Tn \ Lk(Y ).

For m = 1, . . . , n, let cm denote the constant transformation on n defined
by x 7→ m.

Theorem 3.4 ([2]). Let n ≥ 2. If A = {ck1 , . . . , ckr}, then Sep(A) = Sn(K),
where K = {k1, . . . , kr}.

Lemma 3.7. If k ≥ 2 and α ∈ Tn \ Sn with Y α = Y , then ∃γ ∈ Lk(Y ) such
that αγ /∈ Lk(Y ).

Proof. Suppose k ≥ 2 and α ∈ Tn \ Sn with Y α = Y . Since α /∈ Sn, it is not
surjective. Let s ∈ n \ Imα, Y = {y1, . . . , yk}, and Z = n \ (Y ∪ {s}). Then,
s /∈ Y since Y = Y α ⊆ Imα. For i = 1, 2, . . . , k, let

Pi =


{s}, if i = 1

{y1, y2} ∪ Z, if i = 2

{yi}, if i /∈ {1, 2}.

Consider γ : n→ n where n/πγ = {P1, . . . , Pk} and Piγ = {yi}, ∀i = 1, 2, . . . , k.
Then, γ ∈ Lk(Y ) since Imγ = Y . Note that, P1γ = {s}γ = {y1}.
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Claim. y1 /∈ Imαγ. Suppose y1 ∈ Imαγ. Then, ∃x ∈ Imα such that xγ =
y1 = sγ. Hence, (x, s) ∈ πγ which implies that x ∈ [s]πγ = P1. Then, x = s, a
contradiction, since s /∈ Imα. Hence, y1 /∈ Imαγ which implies that Y ̸= Imαγ.
Therefore, αγ /∈ Lk(Y ).

Theorem 3.5. Sep(Lk(Y )) = Sn(Y )

Proof. If n = k = 1, by Remark 3.3, Sep(L1(Y )) = S1(Y ). Suppose n ≥ 2
and k = 1. Then, |Y | = 1. Let Y = {m}. Then, L1(Y ) = {cm}. By Theorem
3.4, Sep(L1(Y )) = Sn(Y ). Now, suppose k ≥ 2. By Lemmas 3.5 and 3.6,
Sn(Y ) ⊆ Sep(Lk(Y )). Suppose α /∈ Sn(Y ).

Case 1. Y α ̸= Y . Let β ∈ Lk(Y ). Then, Imβα = (Imβ)α = Y α ̸= Y which
implies that βα /∈ Lk(Y ). Therefore, α /∈ Sep(Lk(Y )).

Case 2. α /∈ Sn with Y α = Y . By Lemma 3.7, α /∈ Sep(Lk(Y )).

3.3 The separator of R-classes

The next two lemmas are immediate from the definitions.

Lemma 3.8. Let α, β ∈ TX and x, y ∈ X. Then, (xα, yα) ∈ πβ if and only if
(x, y) ∈ παβ.

Lemma 3.9. If α, β ∈ TX , then πα ⊆ παβ.

Lemma 3.10. If α ∈ SX and β ∈ TX , then πβα = πβ.

Proof. Let x, y ∈ X. Since α is injective,

x(βα) = y(βα) ⇐⇒ (xβ)α = (yβ)α ⇐⇒ xβ = yβ.

Let π be an equivalence relation on n. Then, n/π is a partition of n. De-
note by Tn(π) the semigroup T (n, n/π). Moreover, let Σn(π) = Σ(n, n/π) and
Sn(π) = S(n, n/π). Since Sn(π) = Tn(π) ∩ Sn and Sn(π) ⊆ Σn(π) ⊆ Tn(π), we
have Sn(π) ⊆ Sn ∩ Σn(π) ⊆ Sn ∩ Tn(π) = Sn(π). Thus, we have the following
remark.

Remark 3.4. Sn(π) = Sn ∩ Σn(π) = Sn ∩ Tn(π).

Let Rk(π) denote the R-class consisting of all α ∈ Dk with partition π.

Lemma 3.11. If α ∈ Sn and β ∈ Rk(π), then βα ∈ Rk(π).

Proof. By Lemma 3.10, πβα = πβ = π. Therefore, βα ∈ Rk(π).

Lemma 3.12. If α ∈ Σn(π) and β ∈ Rk(π), then αβ ∈ Rk(π).

Proof. Let x, y ∈ n. By Corollary 2.1, α is π∗-preserving. Then, by Lemma
3.8, (x, y) ∈ παβ ⇐⇒ (xα, yα) ∈ πβ = π ⇐⇒ (x, y) ∈ π. Thus, παβ = π.
Therefore, αβ ∈ Rk(π).
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Lemma 3.13. If α ∈ Sn(π) and γ ∈ Tn\Rk(π), then αγ, γα ∈ Tn\Rk(π).

Proof. By Remark 3.4, Sn(π) = Sn ∩ Σn(π). Suppose α ∈ Sn(π) and γ ∈
Tn\Rk(π). Since Sn(π) is a group, α−1 ∈ Sn(π). Suppose γ /∈ Dk. By Lemma
3.2, αγ, γα /∈ Dk which implies that αγ, γα /∈ Rk(π). Suppose πγ ̸= π.

Case 1. π ̸⊆ πγ . Then, ∃(u, v) ∈ π such that (u, v) ̸∈ πγ . Then, uγ ̸= vγ. Since
α is injective, uγα ̸= vγα. Then, (u, v) /∈ πγα. Thus, π ̸= πγα. Let u′ = uα−1

and v′ = vα−1. Then, u′α = u and v′α = v. Since α−1 preserves π, we have
that

(u, v) ∈ π =⇒ (uα−1, vα−1) ∈ π =⇒ (u′, v′) ∈ π.

However, since u′αγ = uγ ̸= vγ = v′αγ, we have (u′, v′) /∈ παγ . Thus, π ̸= παγ .
Therefore, αγ, γα /∈ Rk(π).

Case 2. πγ ̸⊆ π. Then, ∃(x, y) ∈ πγ such that (x, y) /∈ π. Then, xγ = yγ and

xγ = yγ =⇒ xγα = yγα =⇒ (x, y) ∈ πγα.

Thus, πγα ̸= π. Let x′ = xα−1 and y′ = yα−1. Then, x′α = x and y′α = y. By
Corollary 2.1, α−1 is π∗-preserving. Then

(x, y) ̸∈ π =⇒ (xα−1, yα−1) ̸∈ π =⇒ (x′, y′) /∈ π.

However, since x′αγ = xγ = yγ = y′αγ, we have (x′, y′) ∈ παγ . Thus, παγ ̸= π.
Therefore, αγ, γα /∈ Rk(π).

Note that, |n/π| = 1 if and only if n/π = {n}. Clearly, R1(π) ⊆ D1. Let
α ∈ D1. Then, α has rank 1 which means that it only has one equivalence class.
Then, πα = π. Thus, we have the following remark

Remark 3.5. R1(π) = D1.

Theorem 3.6. Sep(Rk(π)) = Sn(π).

Proof. Suppose k = 1. By Theorem 3.2, Sep(R1(π)) = Sep(D1) = Sn = Sn(π).
Suppose k ≥ 2. Since Sn(π) = Sn ∩ Σn(π), by Lemmas 3.11, 3.12, and 3.13,
Sn(π) ⊆ Sep(Rk(π)). Now, suppose α /∈ Sn(π). Let β ∈ Rk(π).

Case 1. α /∈ Tn(π). Then, α does not preserve π; hence, ∃(x, y) ∈ π such that
(xα, yα) /∈ π = πβ. By Lemma 3.8, (x, y) /∈ παβ. Thus, π ̸= παβ which implies
that αβ /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).

Case 2. α /∈ Sn. Then, ∃x, y ∈ n with x ̸= y such that xα = yα. Suppose
(x, y) /∈ π. Since xαβ = yαβ, we have (x, y) ∈ παβ. Thus, παβ ̸= π which
implies that αβ /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).

Suppose (x, y) ∈ π. Since k ≥ 2, we can choose q ∈ n such that (x, q) /∈ π.
Consider an element γ ∈ Rk(π) such that xγ = x and qγ = y. Then, xγα =
xα = yα = qγα which implies that (x, q) ∈ πγα. Thus, πγα ̸= π. It follows that
γα /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).
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3.4 The separator of H -classes

For a partition π of n and Y ⊆ n with |n/π| = |Y |, let Hk(π, Y ) denote the H -
class consisting of all α ∈ Dk with partition π and image Y . Clearly, Hk(π, Y ) =
Rk(π) ∩ Lk(Y ). Moreover, denote by Sn(π, Y ) the intersection of Sn(π) and
Sn(Y ). We will show that Sn(π, Y ) is the separator of Hk(π, Y ).

Lemma 3.14. Sn(π, Y ) ⊆ Sep(Hk(π, Y )).

Proof. Suppose α ∈ Sn(π, Y ). Let β ∈ Hk(π, Y ). Applying Lemma 3.5, we
have αβ, βα ∈ Lk(Y ). Then, by Lemma 3.12, αβ ∈ Rk(π). Moreover, by Lemma
3.10, πβα = πβ = π, which implies that βα ∈ Rk(π). Therefore, αβ, βα ∈
Hk(π, Y ). Let γ ∈ Tn\Hk(π, Y ). Suppose γ /∈ Rk(π). By Lemma 3.13, αγ, γα /∈
Rk(π). Suppose γ /∈ Lk(Y ). By Lemma 3.6, αγ, γα /∈ Lk(Y ). Then, αγ, γα ∈
Tn\Hk(π, Y ). Therefore, α ∈ Sep(Hk(π, Y )).

Lemma 3.15. If α ∈ Tn\Sn with Y α = Y such that (n\Imα)α ∩ Y ̸= ∅, then
∃β ∈ Tn\Hk(π, Y ) such that βα ∈ Hk(π, Y ).

Proof. Let n/π = {P1, . . . , Pk} and Y = {y1, . . . , yk}. Suppose α ∈ Tn\Sn with
Y α = Y such that (n\Imα)α ∩ Y ̸= ∅. Let t ∈ (n\Imα)α ∩ Y . Then, t = sa,
for some s ∈ n\Imα. Since Y = Y α, ∃ym ∈ Y such that t = ymα. Note that,
s /∈ Y since Y = Y α ⊆ Imα. Let Y ′ = Y \{ym} ∪ {s} and consider β ∈ Tn with
πβ = π and Imβ = Y ′, where Pmβ = {s} and Piβ = {yi}, for all i ̸= m. Since
Imβ ̸= Y , we have β /∈ Hk(π, Y ). By Lemma 3.9, πβ ⊆ πβα.

Claim. πβα ⊆ πβ. Suppose (x, y) /∈ πβ. Then, xβ ̸= yβ. Then, at least
one of xβ or yβ must belong to Y ; otherwise, xβ = s = yβ, a contradiction.
Suppose both are elements of Y , that is, xβ, yβ ∈ Y . Since Y α = Y , the map
α|Y : Y → Y is surjective hence injective. Then, xβα ̸= yβα which implies that
(x, y) /∈ πβα. Suppose only one of them is an element of Y . Without loss of
generality, assume xβ ∈ Y and yβ /∈ Y . Then, xβ = yi, for some i ̸= m and
yβ = s. Since α|Y is injective, we have

xβα = yiα ̸= ymα = t = sα = yβα.

Hence, (x, y) /∈ πβα. This proves our claim. We have shown that πβα = πβ = π.
Moreover, Pmβα = {s}α = {t} = {ymα} and Piβα = {yi}α = {yiα}, for all
i ̸= m. Hence, Imβα = Y α = Y . Therefore, βα ∈ Hk(π, Y ).

Lemma 3.16. If α ∈ Σn(π)\Sn with Y α = Y , then α /∈ Sep(Hk(π, Y )).

Proof. Let n/π = {P1, . . . , Pk} and Y = {y1, . . . , yk}. Suppose α ∈ Σn(π)\Sn
with Y α = Y . Since α /∈ Sn, α is not surjective; hence, n\Imα ̸= ∅. If
(n\Imα)α ∩ Y ̸= ∅, by Lemma 3.15, α /∈ Sep(Hk(π, Y )). Suppose (n\Imα)α ∩
Y = ∅. Let s ∈ n\Imα. Then, sα /∈ Y . Since n/π is a partition of n, s ∈ Pj ,
for some j with 1 ≤ j ≤ k. Then, by Corollary 2.1, χ(α) is bijective; hence there
exists m with 1 ≤ m ≤ k such that mχ(α) = j, that is, Pmα ⊆ Pj . Let z ∈ Pm.
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Then, zα ∈ Pj and zα ̸= s, since s /∈ Imα. Thus, Pj\{s} ̸= ∅. Consider an
element β ∈ Dk+1 with n/πβ = {Q1, . . . , Qk+1}, where

Qi =


Pi, if i /∈ {j, k + 1}
Pj\{s}, if i = j

{s}, if i = k + 1,

with Qiβ = {yi}, for all i = 1, . . . , k and Qk+1β = {sα}.

Claim 1. πβ ⊆ π. Suppose (x, y) ∈ πβ. Then, x, y ∈ Qi, for some 1 ≤ i ≤ k+1.
If i /∈ {j, k + 1}, then x, y ∈ Pi. If i = j, then Qi = Pj\{s} so x, y ∈ Pj . If
i = k + 1, then x = y = s. Thus, (x, y) ∈ π. This proves Claim 1.

Claim 2. (xα, yα) ∈ π implies (xα, yα) ∈ πβ. Suppose (xα, yα) ∈ π. Then
xα, yα ∈ Pi, for some 1 ≤ i ≤ k. If i ̸= j, then xα, yα ∈ Qi. We now consider
the case where i = j. Then, xα, yα ∈ Pj . Note that, xα and yα are both not
equal to s, since s /∈ Imα. Then

xα, yα ∈ Pj =⇒ xα, yα ∈ Pj\{s} =⇒ xα, yα ∈ Qj .

Thus, (xα, yα) ∈ πβ. This proves Claim 2. Note that, the converse of Claim 2
is true by Claim 1. By Corollary 2.1, α is π∗-preserving. By Lemma 3.8,

(x, y) ∈ παβ ⇐⇒ (xα, yα) ∈ πβ ⇐⇒ (xα, yα) ∈ π ⇐⇒ (x, y) ∈ π.

Thus, παβ = π. Let Pi ∈ n/π. Then, by Corollary 2.1, χ(α) is bijective; hence
there exists i∗ with 1 ≤ i∗ ≤ k such that i∗χ(α) = i, that is, Pi∗α ⊆ Pi. For
i ̸= j, we have Pi = Qi. Then Pi∗αβ ⊆ Piβ = Qiβ = {yi}. Suppose i = j.
Then, Qj = Pj\{s}. Since s /∈ Imα, we have s /∈ Pj∗α which implies that
Pj∗α ⊆ Pj\{s}. Then Pj∗αβ ⊆ (Pj\{s})β = Qjβ = {yj}. Hence, Imαβ = Y .
Note that, β /∈ Hk(π, Y ) but αβ ∈ Hk(π, Y ). Therefore, α /∈ Sep(Hk(π, Y )).

Theorem 3.7. Sep(Hk(π, Y )) = Sn(π, Y ).

Proof. By Lemma 3.14, Sn(π, Y ) ⊆ Sep(Hk(π, Y )). Suppose α /∈ Sn(π, Y ).
Let Tn(Y ) = {α ∈ Tn | Y α = Y }. Note that,

Sn(π, Y ) = Sn(π) ∩ Sn(Y ) = Sn ∩ Σn(π) ∩ Sn ∩ Tn(Y ) = Σn(π) ∩ Sn ∩ Tn(Y ).

Let β ∈ Hk(π, Y ). Then, πβ = π and Imβ = Y .

Case 1. α /∈ Tn(Y ). Then, Y α ̸= Y which implies that Imβα = (Imβ)α =
Y α ̸= Y . Thus, βα /∈ Hk(π, Y ). Therefore, α /∈ Sep(Hk(π, Y )).

Case 2. α /∈ Σn(π). Suppose α ∈ Tn\Tn(π). Then, α does not preserve π so
∃(x, y) ∈ π such that (xα, yα) /∈ π = πβ. By Lemma 3.8, (x, y) /∈ παβ. Thus,
π ̸= παβ which implies that αβ /∈ Hk(π, Y ).

Suppose α ∈ Tn(π)\Σn(π). Then, α preserves π but is not π∗-preserving.
By Remark 2.1, ∃(uα, vα) ∈ π such that (u, v) /∈ π. Since π = πβ, by Lemma
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3.8, (u, v) ∈ παβ. Thus, παβ ̸= π which implies that αβ /∈ Hk(π, Y ). Therefore,
α /∈ Sep(Hk(π, Y )).

Case 3. α /∈ Sn but α ∈ Σn(π) with Y α = Y . Then, by Lemma 3.16,
α /∈ Sep(Hk(π, Y )).
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1. Introduction

In 1965, the theory of fuzzy sets was introduced by Zadeh [34] as a generalisation
of classical set theory. The theory only takes into consideration membership
degree of an element belonging to a particular set. Atanassov [1], extended the
work of Zadeh by introducing the theory of intuitionistic fuzzy sets which deals
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with both the membership and non-membership degrees of an element belonging
to a set.

Cuong and Kreinovich [8] generalised the works of Zadeh and Atanassov
into the theory of picture fuzzy sets (PFSs). This theory is a new concept
for computational intelligence which is a set of Nature-inspired computational
methodologies and approaches based on mathematics, computer science, arti-
ficial intelligence, to address applications of the real world complex problems
that can not be solved by traditional methodologies and approaches. Basically,
picture fuzzy sets based models may be appropriate in situations involving more
answers of type: yes, abstain, no, refusal. A good example of such a situation
is voting system in which human voters may decide to: vote for, vote against,
abstain and refusal to vote. Thus, according to Cuong and Kreinovich [8], a
given set is represented by three membership degrees i.e; positive membership
degree, neutral membership degree and negative membership degree.

Picture fuzzy set has been extensively studied such as; in 2014, Cuong [11]
investigated some characteristics of PFSs, introduced distance measure and de-
fined convex combination between two PFSs. Cuong and Hai [13] investigated
main fuzzy logic operators: negations, conjunctions, disjunctions and implica-
tions on picture fuzzy sets. Son [31], introduced a generalised picture distance
measure and applied it to establish an Hierarchical Picture Clustering.

The theory of picture fuzzy set has been widely applied in decision making
problems in the area of medical diagnosis, building material and minerals field
recognitions, Covid-19 medicine selection among others (see [19, 26, 27, 32] for
more details).

Yagar in 1986 [33], put forward the notion of fuzzy multiset (FM). In 2012,
Shinoj and John [29] initiated intuitionistic fuzzy multiset (IFMS) from the
combination of the concepts of fuzzy multisets and intuitionistic fuzzy sets and
this was applied in medicine to diagnosis diseases. In 2013, Shinoj and John [30]
defined some operations on intuitionistic fuzzy multisets and established some
of its properties. Some researchers have also studied this notion of intuitionistic
fuzzy multisets and applied it to medical diagnosis, binomial distribution (see
[16, 17, 21] for more details). Due to the fact that the idea of intuitionistic fuzzy
multisets also lacks accuracy in handling imprecision and uncertainties because
of not taking into account neutrality degree, it is important to study the concept
of picture fuzzy multiset as a generalisation of intuitionistic fuzzy multiset.

In this paper, we introduce the concept of picture fuzzy multisets (PFMSs),
standard operations such as intersection, union, complement are defined and
their properties are obtained. Cartesian product of picture fuzzy multiset are
also defined and the connections of Cartesian product with intersection and
union are established. The paper is organised as follows. Section 2 defines basic
terms. Section 3 introduces the notion of PFMS, and some of its properties are
obtained.
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2. Preliminaries

In this section, some basic definitions are stated. Throughout this paper, E
denotes a nonempty set.

Definition 2.1 ([21]). A fuzzy set (FS) P drawn from E is defined as

P = {⟨y, σP (y)⟩|y ∈ E},

where σP : E −→ [0, 1] is the membership function of the fuzzy set P.

Definition 2.2 ([20]). A fuzzy multiset (FMS) P drawn from E is characterised
by a count membership function CMP such that CMP : E → N , where N is
the set of all crisp multisets drawn from [0, 1]. Then, for any y ∈ E, the value
CMP (y) is a crisp multiset drawn from [0, 1]. For any y ∈ E, the membership
sequence is defined as the decreasingly ordered sequence of elements in CMP (y).
It is denoted by (σ1P (y), σ

2
P (y), · · · , σdP (y)) where σ1P (y) ≥ σ2P (y) ≥ · · · ≥ σdP (y).

Definition 2.3 ([1]). An intuitionistic fuzzy set (IFS) P of E is defined as

P = {⟨y, σP (y), τP (y)⟩|y ∈ E},

where the functions σP : E → [0, 1] and τP : E → [0, 1] are called the membership
and non-membership degrees of y ∈ P , respectively, and for every y ∈ E,

0 ≤ σP (y) + τP (y) ≤ 1.

Definition 2.4 ([18]). An intuitionistic fuzzy multiset (IFMS) P drawn from E
is characterised by count membership function CMP and count nonmembership
function CNP such that CMP : E → N and CNP : E → N , respectively, where
N is the set of all crisp multisets drawn from [0, 1], such that for any y ∈ E, the
membership sequence is defined as the decreasingly ordered sequence of elements
in CMP (y), denoted by (σ1P (y), σ

2
P (y), · · · , σdP (y)) where σ1P (y) ≥ σ2P (y) ≥ · · · ≥

σdP (y) and the nonmembership sequence is given as (τ1P (y), τ
2
P (y) · · · , τdP (y)) such

that 0 ≤ σiP (y) + τ iP (y) ≤ 1 for any y ∈ E, i = 1, 2, · · · , d.
Thus, an IFMS is given as

P = {⟨y, (σ1P (y), σ2P (y) · · · , σdP (y)), (τ1P (y), τ2P (y), · · · , τdP (y))⟩|y ∈ E}.

Definition 2.5 ([8]). A picture fuzzy set P of E is defined as

P = {⟨y, σP (y), τP (y), γP (y)⟩|y ∈ E},

where the functions

σP : E → [0, 1], τP : E → [0, 1] and γP : E → [0, 1]

are called the positive, neutral and negative membership degrees of y ∈ P , re-
spectively, and σP , τP , γP satisfy

0 ≤ σP (y) + τP (y) + γP (y) ≤ 1, ∀y ∈ E.

For each y ∈ E, SP (y) = 1 − (σP (y) + τP (y) + γP (y)) is called the refusal
membership degree of y ∈ P .
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Definition 2.6 ([16]). The Cut set of PFS P , denoted by Cr,s,t(P ) is defined
by

Cr,s,t(P ) = {y ∈ E|σP (y) ≥ r, τP (y) ≥ s, γP (y) ≤ t} ,
where r, s, t ∈ [0, 1] with the condition 0 ≤ r + s+ t ≤ 1.

Definition 2.7 ([8]). Let P and Q be two PFSs. Then, the inclusion, equality,
union, intersection and complement are defined as follow:

� P ⊆ Q if and only if for all y ∈ E, σP (y) ≤ σQ(y), τP (y) ≤ τQ(y) and
ηP (y) ≥ ηQ(y).

� P = Q if and only if P ⊆ Q and Q ⊆ P .

� P ∪Q = {(y, σp(y) ∨ σQ(y), τP (y) ∧ τQ(y)), ηP (y) ∧ ηQ(y))| y ∈ E}.

� P ∩Q = {(y, σP (y) ∧ σQ(y), τP (y) ∧ τQ(y)), ηP (y) ∨ ηQ(y))| y ∈ E}.

� P = {(y, ηP (y), τP (y), σP (y))| y ∈ E}.

3. Picture fuzzy multisets

Here, we define picture fuzzy multiset, some basic operations and investigate
some properties related to the operations.

Definition 3.1. A picture fuzzy multiset (PFMS) P drawn from E is char-
acterised by count positive membership function CpMP , count neutral member-
ship function CneMP and count negative membership function CnMP such that
CpMP : E → N , CneMP : E → N and CnMP : E → N , respectively, where
N is the set of all crisp multisets drawn from [0, 1], such that for any y ∈ E,
the positive membership sequence is defined as the decreasingly ordered sequence
of elements in CpMP (y), denoted by (σ1P (y), σ

2
P (y), · · · , σdP (y)) where σ1P (y) ≥

σ2P (y) ≥ · · · ≥ σdP (y), the neutral membership sequence and negative membership
sequence is (τ1P (y), τ

2
P (y), · · · , τdP (y)) and (η1P (y), η

2
P (y), · · · , ηdP (y)), respectively

such that 0 ≤ σiP (y) + τ iP (y) + ηiP (y) ≤ 1 for any y ∈ E, i = 1, 2, · · · , d.

So, a PFMS is denoted by

P = {⟨y, (σ1P (y), σ2P (y), · · · , σdP (y)), (τ1P (y), τ2P (y), · · · , τdP (y)),
(η1P (y), η

2
P (y), · · · , ηdP (y))⟩|y ∈ E}.

Remark 3.1. Notice that since the positive membership sequence is arranged
in decreasing order, neutral or negative membership sequence may not be de-
creasing or increasing order.

Definition 3.2. Let P = {⟨y, σiP (y), τ iP (y), ηiP (y)⟩| y ∈ E} be a PFMS. Then,
the (r, s, t)-cut of P denoted by [P ]r,s,t is defined by

[P ](r,s,t) = {a ∈ P | σiP (a) ≥ r, τ iP (a) ≤ s, ηiP (a) ≤ t}, i = 1, 2, · · · , d,

where r, s, t ∈ [0, 1] such that 0 ≤ r + s+ t ≤ 1.
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Definition 3.3. Let P = {⟨y, (σiP (y)), (τ iP (y)), (ηiP (y))⟩|y ∈ E}, i = 1, 2, · · · , d
be a PFMS and y ∈ P. Then, the size of y ∈ P , denoted by S(y;P ) is defined as
the cardinality of CpMP (y) or CneMP (y) or CnMP (y), for which 0 ≤ σ1P (y) +
τ1P (y) + η1P (y) ≤ 1. That is

S(y; P ) = |CpMP (y)| = |CneMP (y)| = |CnMP (y)|.

Definition 3.4. Given two PFMSs P and Q drawn from E. Then, the size of
P and Q is defined as

S(y; P, Q) = S(y; P ) ∨ S(y; Q).

Example 3.1. Let E = {a, b, c}

P = {⟨a; (0.5, 0.2), (0.3, 0.1), (0.2, 0.4)⟩,
⟨c; (0.0, 0.4, 0.1), (0.2, 0.1, 0.3), (0.5, 0.2, 0.6)⟩}

and

Q = {⟨a; (0.1, 0.5), (0.2, 0.4), (0.0, 0.0)⟩,
⟨b; (0.2, 0, 0.3), (0.1, 1.0, 0.2), (0.2, 0.0, 0.4)⟩,
⟨c; (0.8, 0.1), (0.1, 0.3), (0.1, 0.5)⟩}.

Then

S(a; P ) = 2, S(b; P ) = 0, S(c; P ) = 3,

S(a; Q) = 2, S(b; Q) = 3, S(c; Q) = 2,

S(a;P, Q) = 2, S(b; P, Q) = 3, S(c; P, Q) = 3.

3.1 Standard operations on picture fuzzy multisets

Definition 3.5. Let

P = {⟨y, σiP (y), τ iP (y), ηiP (y)⟩| y ∈ E}

and
Q = {⟨y, σiQ(y), τ iQ(y), ηiQ(y)⟩| y ∈ E},

where i = 1, 2, · · · , d, be two PFMSs drawn from E. Then, the inclusion, equa-
lity, union, intersection and complement are defined as follow:

� P ⊆ Q if and only if, σiP (y) ≤ σiQ(y), τ
i
P (y) ≤ τ iQ(y) and ηiP (y) ≥ ηiQ(y);

i = 1, 2, · · · , S(y; P, Q), y ∈ E.

� P = Q if and only if P ⊆ Q and Q ⊆ P.

� P∪Q = {(y,max(σiP (y), σ
i
Q(y)),min(τ iP (y), τ

i
Q(y)),min(ηiP (y), η

i
Q(y)))|y ∈

E}, where i = 1, 2, · · · , S(y;P,Q).
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� P∩Q = {(y,min(σiP (y), σ
i
Q(y)),min(τ iP (y), τ

i
Q(y)),max(ηiP (y), η

i
Q(y)))|y ∈

E}, where i = 1, 2, · · · , S(y; P, Q).

� P = {(y, ηiP (y), τ iP (y), σiP (y))| y ∈ E}, i = 1, 2, · · · , S(y; P, Q).

Example 3.2. Let E = {a, b, c}

P = {⟨a; (0.1, 0.5), (0.2, 0.4), (0.0, 0.0)⟩,
⟨b; (0.1, 0.4, 0.7), (0.1, 0.6, 0.0), (0.5, 0.0, 0.3)⟩,
⟨c; ⟨c; (0.4, 0.1), (0.1, 0.7), (0.0, 0.0)⟩}

and

Q = {⟨a; (0.5, 0.2), (0.3, 0.1), (0.2, 0.4)⟩,
⟨b; (0.2, 0.0, 0.3), (0.1, 0.6, 0.4), (0.2, 0.3, 0.1)⟩,
⟨c; ⟨c; (0.8, 0.1), (0.1, 0.3), (0.1, 0.5)⟩}.

Then

P ∪Q = {⟨a; (0.5, 0.5), (0.2, 0.1), (0.0, 0.0)⟩,
⟨b; (0.2, 0.4, 0.7), (0.1, 0.6, 0.0), (0.2, 0.0, 0.1)⟩,
⟨c; ⟨c; (0.8, 0.1), (0.1, 0.3), (0.0, 0.0)⟩},

P ∩Q = {⟨a; (0.1, 0.2), (0.2, 0.1), (0.2, 0.4)⟩,
⟨b; (0.1, 0.0, 0.3), (0.1, 0.6, 0.0), (0.5, 0.3, 0.3)⟩,
⟨c; ⟨c; (0.4, 0.1), (0.1, 0.3), (0.1, 0.5)⟩},

P = {⟨c; (0.4, 0.1), (0.1, 0.7), (0.0, 0.0)⟩,
⟨b; (0.1, 0.4, 0.7), (0.1, 0.6, 0.0), (0.5, 0.0, 0.3)⟩,
⟨c; ⟨a; (0.1, 0.5), (0.2, 0.4), (0.0, 0.0)⟩}.

3.2 Basic properties

Proposition 3.1. For every PFMS P,Q,R.

1. Involution

P = P.

2. Commutative rule

P ∩Q = Q ∩ P , P ∪Q = Q ∪ P.

3. Associative rule

P ∩ (Q ∩R) = (P ∩Q) ∩R, P ∪ (Q ∪R) = (P ∪Q) ∪R.
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4. Distributive rule

P ∩ (Q ∪R) = (P ∩Q) ∪ (P ∩R), P ∪ (Q ∩R) = (P ∪Q) ∩ (P ∪R).

5. Idempotent rule

P ∩ P = P , P ∪ P = P.

6. De Morgan’s rule

P ∩Q = P ∪Q, P ∪Q = P ∩Q.

Proof. Let

P = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1P (y), η

2
P (y), · · · , ηdP (y))⟩| y ∈ E},

Q = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1Q(y), η

2
Q(y), · · · , ηdQ(y))⟩| y ∈ E}

and

R = {⟨y, (σ1R(y), σ2R(y), · · · , σdR(y)), (τ1R(y), τ2r (y), · · · , τdR(y)),
(η1R(y), η

2
R(y), · · · , ηdR(y))⟩| y ∈ E}.

Then

1.

P = {⟨y, (η1Q(y), η2Q(y), · · · , ηdQ(y)), (τ1P (y), τ2P (y), · · · , τdP (y)),
(σ1P (y), σ

2
P (y), · · · , σdP (y))⟩| y ∈ E},

P = {⟨y, (σ1P (y), σ2P (y), · · · , σdP (y)), (τ1P (y), τ2P (y), · · · , τdP (y)),
(η1Q(y), η

2
Q(y), · · · , ηdQ(y))⟩| y ∈ E}

= P.

2.

P ∩Q
= {⟨y, (σ1P (y), σ2P (y), · · · , σdP (y)), (τ1P (y), τ2P (y), · · · , τdP (y)),
(η1P (y), η

2
P (y), · · · , ηdP (y))

∩ (σ1Q(y), σ
2
Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
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(η1Q(y), η
2
Q(y), · · · , ηdQ(y))⟩| y ∈ E⟩}

= {⟨y, (σ1P (y) ∧ σ1Q(y), σ2P (y) ∧ σ2Q(y)), · · · , (σdP (y) ∧ σdQ(y)),
(τ1P (y) ∧ τ1Q(y), τ2P (y) ∧ τ2Q(y)), · · · (τdP (y) ∧ τdQ(y)),
(η1P (y) ∨ η1Q(y), η2P (y) ∨ η2Q(y)), · · · , (ηdP (y) ∨ ηdQ(y))| y ∈ E⟩}
= {⟨y, (σ1Q(y) ∧ σ1P (y)), · · · , (σdQ(y) ∧ σdP (y)), (τ1Q(y) ∧ τ1P (y)),
· · · , (τdQ(y) ∧ τdP (y)), (η1Q(y) ∨ η1P (y)), · · · , (ηdQ(y) ∨ ηdP (y))| y ∈ E⟩}
= Q ∩ P.

Similarly, we can prove P ∪Q = Q ∪ P .
3.

P ∩ (Q ∩R)
= {⟨y, (σ1P (y), · · · , σdP (y)), (τ1P (y), · · · , τdP (y)), (η1P (y), · · · , ηdP (y))⟩| y ∈ E}
∩ {⟨y, ((σ1Q(y) ∧ σ1R(y)), · · · , (σdQ(y) ∧ σdR(y)), (τ1Q(y) ∧ τ1R(y)),
· · · , (τdQ(y) ∧ τdR(y)), (η1Q(y) ∧ η1R(y)), · · · , (ηdQ(y) ∧ ηdR(y)))⟩| y ∈ E}
= {⟨y, (σ1P (y) ∧ σ1Q(y)) ∧ σ1R(y), · · · , (σdP (y) ∧ σdQ(y)) ∧ σdR(y),
(τ1P (y)τ

1
Q(y)) ∧ τ1R(y), · · · , (τdP (y) ∧ τdQ(y)) ∧ τdR(y),

(η1P (y) ∨ η1Q(y)) ∨ η1R(y), · · · , (ηdP (y) ∨ ηdQ(y)) ∨ ηdR(y)⟩| y ∈ E}
= (P ∩Q) ∩R.

Similarly, we can prove P ∪ (Q ∪R) = (P ∪Q) ∪R.
4.

P ∩ (Q ∪R)
= {⟨y, (σ1P (y) ∧ (σ1Q(y)) ∨ σ1R(y)), · · · , σdP (y) ∧ (σdQ(y)) ∨ σdR(y)),
τ1P (y) ∧ (τ1Q(y)) ∨ τ1R(y)), · · · , τdP (y) ∧ (τdQ(y)) ∨ τdR(y)),
η1P (y) ∨ (η1Q(y)) ∧ η1R(y)), · · · , ηdP (y) ∨ (ηdQ(y)) ∧ ηdR(y)))⟩| y ∈ E}
= {⟨y, ((σ1P (y) ∧ σ1Q(y)) ∨ (σ1P (y) ∧ σ1R(y)), · · · , (σdP (y) ∧ σdQ(y))
∨ (σdP (y) ∧ σdR(y))), ((τ1P (y) ∧ τ1Q(y)) ∨ (τ1P (y) ∧ τ1R(y)),
· · · , (τdP (y) ∧ τdQ(y)) ∨ (τdP (y) ∧ τdR(y))), ((η1P (y) ∨ η1Q(y))
∧ (η1P (y) ∨ η1R(y)), · · · , (ηdP (y) ∨ ηdQ(y)) ∧ (ηdP (y) ∨ ηdR(y)))⟩| y ∈ E}
= (P ∩Q) ∪ (P ∩R).

Similarly, we can prove P ∪ (Q ∩R) = (P ∪Q) ∩ (P ∪R).
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5.

P ∩ P
= {⟨y, (σ1P (y) ∧ σ1P (y)), · · · , (σdP (y) ∧ σdP (y)), (τ1P (y) ∧ τ1P (y)),
· · · , (τdP (y) ∧ τdP (y)), (η1P (y) ∨ η1P (y)), (ηdP (y) ∨ ηdP (y))| y ∈ E⟩}
= {⟨y, (σ1P (y), · · · , σdP (y)), (τ1P (y), · · · , τdP (y)), (η1P (y), · · · , ηdP (y))| y ∈ E⟩}
= P.

Similarly, we can prove P ∪ P = P .
6.

P ∩Q
= {⟨y, ((η1P (y) ∨ η1Q(y)), · · · , (ηdP (y) ∨ ηdQ(y), ((τ1P (y) ∧ τ1Q(y)),
· · · , (τdP (y) ∧ τdQ(y)), ((σ1P (y) ∧ σ1Q(y)), · · · , (σdP (y) ∧ σdQ(y))⟩| y ∈ E}
= {⟨y, ((σ1P (y) ∨ σ1Q(y)), · · · , (σdP (y) ∨ σdQ(y)), ((τ1P (y) ∧ τ1Q(y)),
· · · , (τdP (y) ∧ τdQ(y)), ((η1P (y) ∧ η1Q(y)), · · · , (ηdP (y) ∧ ηdQ(y)⟩| y ∈ E}
= {⟨y, (η1P (y), · · · , ηdP (y)), (τ1P (y), · · · , τdP (y)), (σ1P (y), · · · , σdP (y))⟩| y ∈ E}
∪ {⟨y, (η1Q(y), · · · , ηdQ(y)), (τ1Q(y), · · · , τ iQ(y)), (σ1Q(y), · · · , σdQ(y))⟩| y ∈ E}
= P ∪Q.

Similarly, we can prove P ∪Q = P ∩Q.

Definition 3.6. Let

P = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1P (y), η

2
P (y), · · · , ηdP (y))⟩| y ∈ E}

and

Q = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1Q(y), η

2
Q(y), · · · , ηdQ(y))⟩| y ∈ E}

be two PFMSs on E.
Then, the Cartesian product of P and Q, P ×Q is defined as

P ×Q = {⟨(x, y), (σ1P×Q(x, y), σ
2
P×Q(x, y), · · · , σdP×Q(x, y)),

(τ1P×Q(x, y), τ
2
P×Q(x, y), · · · , τdP×Q(x, y)),

(η1P×Q(x, y), η
2
P×Q(x, y), · · · , ηdP×Q(x, y))⟩| x, y ∈ E}

where

σiP×Q(x, y) = σiP (x) ∧ σiQ(y),
τ iP×Q(x, y) = τ iP (x) ∧ τ iQ(y)
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and

ηiP×Q(x, y) = ηiP (x) ∨ ηiQ(y)

with i = 1, 2, · · · , d.

3.3 Basic properties

Proposition 3.2. Let P,Q,R be PFMSs. Then

1. P ×Q = Q× P .

2. (P ×Q)×R = P × (Q×R).

3. P × (Q ∪R) = (P ×Q) ∪ (P ×R).

4. P × (Q ∩R) = (P ×Q) ∩ (P ×R).

Proof. Let PFMSs P,Q,R be defined as

P = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1P (y), η

2
P (y), · · · , ηdP (y))⟩| y ∈ E},

Q = {⟨y, (σ1Q(y), σ2Q(y), · · · , σdQ(y)), (τ1Q(y), τ2Q(y), · · · , τdQ(y)),
(η1Q(y), η

2
Q(y), · · · , ηdQ(y))⟩| y ∈ E}

and

R = {⟨y, (σ1R(y), σ2R(y), · · · , σdR(y)), (τ1R(y), τ2r (y), · · · , τdR(y)),
(η1R(y), η

2
R(y), · · · , ηdR(y))⟩| y ∈ E}.

(1) and (2) are obvious from the definition

3. P × (Q ∪R)
= {⟨(x, y), (σ1P (y) ∧ (σ1Q(y) ∨ σ1R(y)), · · · , σdP (y) ∧ (σdQ(y) ∨ σdR(y))),

(τ1P (y) ∧ (τ1Q(y) ∧ τ1R(y)), · · · , τdP (y) ∧ (τdQ(y) ∧ τdR(y))),
(η1P (y) ∨ (η1Q(y) ∧ η1R(y)), · · · , ηdP (y) ∨ (ηdQ(y) ∧ ηdR(y)))⟩| x, y ∈ E}

= {⟨(x, y), (σ1P (y) ∧ σ1Q(y), · · · , σdP (y) ∧ σdQ(y)), (τ1P (y) ∧ τ1Q(y),
· · · , τdP (y) ∧ τdQ(y)), (η1P (y) ∨ η1Q(y), · · · , ηdP (y) ∨ ηdQ(y))⟩| x, y ∈ E}
∪{⟨(x, y), (σ1P (y) ∧ σ1R(y), · · · , σdP (y) ∧ σdR(y)), (τ1P (y) ∧ τ1R(y),
· · · , τdP (y) ∧ τdR(y)), (η1P (y) ∨ η1R(y), · · · , ηdP (y) ∨ ηdR(y))⟩| x, y ∈ E}

= (P ×Q) ∪ (P ×R).

Property 4 can also be proved in the same way as property 3.
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by using the part A1 in the EP-nilpotent decomposition of A and the Moore-Penrose
inverse of A. Let A = A1 + A2 be the EP-nilpotent decomposition of A, AE,‡ be
the MPEPN-inverse of A and A† be the Moore-Penrose inverse of A, one can show
that AE,‡AAE,‡ = AE,‡ does not hold in general, moreover, necessary and sufficient
conditions to make the MPEPN-inverse to be an outer inverse of A are given, that
is AE,‡AAE,‡ = AE,‡ hold if and only if one of the conditions (A1A

†)2 = A1A
† and

PR(A2)A
�O = 0 holds, where A �O is the Core-EP inverse of A and PR(A2) is the projection

on R(A2). If A1A
† is an idempotent, then the MPEPN-inverse of A coincides with the

(A†A1PR(A∗), PR(A)A1A
†)-inverse of A , i.e. coincides the inverse along A†A1PR(A∗)

and PR(A)A1A
†.

Keywords: MPEPN-inverse, EP-nilpotent decomposition, Moore-Penrose inverse,
index, outer inverse.

MSC 2020: 15A09

1. Introduction

Let C be the complex field. The set Cm×n denotes the set of all m× n complex
matrices over the complex field C. Let A ∈ Cm×n. The symbol A∗ denotes the
conjugate transpose of A. Notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn} and
N (A) = {x ∈ Cn : Ax = 0, x ∈ Cn} will be used in the sequel. An integer k
is called the index of A ∈ Cn×n if k is the smallest positive integer such that
rank (Ak) = rank(Ak+1) holds and is denoted by ind(A).

Let A ∈ Cm×n. A matrix X = A† ∈ Cn×m is called the Moore-Penrose
inverse of A [8, 12] if AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA
hold. Let A,X ∈ Cn×n with ind (A) = k. Then algebraic definition of the
Drazin inverse as follows: if

AXA = A, XAk+1 = Ak and AX = XA,

then X is called a Drazin inverse of A. If such X exists, then it is unique and
denoted by AD [4]. More generalized inverses can be seen as follows:core inverse
[2] by using Σ−K −L decomposition [7], core-EP inverse [9] and DMP inverse
[11].

Let A,B,C ∈ Cn×n. The (B,C)-inverse of A is unique (see [1, 5, 13]).
Several kinds of generalized inverses are all special cases of the (B,C)-inverse
of the matrix A: Moore-Penrose inverse [8, 12], Drazin inverse [4], core inverse
[2], DMP-inverse [11] and core-EP inverse [9].

For a complex matrix with a given index, there are three important matrix
decompositions: core-nilpotent decomposition [10], Core-EP decomposition [14]
and EP-nilpotent decomposition [15]. The CMP inverse can be introduced by
the core-nilpotent decomposition and the MPCEP-inverse can be introduced by
the Core-EP decomposition. Motivated by the idea of the CMP inverse and
the MPCEP-inverse of a complex matrix, in this paper, the MPEPN-inverse
was introduced. Specifically, the CMP inverse of A ∈ Cn×n was introduced by
Mehdipour and Salemi in [10], this inverse using the core part in core-nilpotent
decomposition of A and the Moore-Penrose inverse of A. The MPCEP-inverse
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can be described by using the core part in Core-EP decomposition of A and the
Moore-Penrose inverse of A [3]. Motivated by the above method, we have a natu-
ral question as follows: Using the core part A1 in EP-nilpotent decomposition of
A and the Moore-Penrose inverse of A to introduce a matrixX = A†A1A

†. Thus,
the MPEPN-inverse can be described by using the core part in EP-nilpotent de-
composition of A and the Moore-Penrose inverse of A [15].

2. Existence criteria and expressions of the MPEPN-inverse

The EP-nilpotent decomposition of A was introduced by Wang and Liu in [15].
That is A can be written as A = A1 + A2, where k is the index of A, A1 is an
EP matrix (i.e. A1A

†
1 = A†

1A1), A
k+1
2 = 0 and A2A1 = 0. The following lemma

holds by [15, Theorem 2.2].

Lemma 2.1 ([15, Theorem 2.1]). Let A ∈ Cn×n and A = A1 + A2 be the EP-
nilpotent decomposition of A. Then there exists a unitary matrix U ∈ Cn×n

such that

(1) A1 = U

[
T 0
0 0

]
U∗ and A2 = U

[
0 S
0 N

]
U∗,

where ind (A) = k, T is nonsingular, S and N are matrices with some suitable
sizes.

The Core-EP decomposition in the following lemma is useful in the study
of the Core-EP inverse. Ferreyra et al.[6] given the explicit expressions of the
Moore-Penrose inverse by using the Core-EP decomposition, which can be seen
in Lemma 2.3.

Lemma 2.2 ([14, Theorem 2.1]). Let A ∈ Cn×n and A = A′
1 +A′

2 be the Core-
EP decomposition of A. Then there exists a unitary matrix U ∈ Cn×n such
that

(2) A′
1 = U

[
T S
0 0

]
U∗ and A′

2 = U

[
0 0
0 N

]
U∗,

where ind (A) = k, T is nonsingular, S and N are matrices with some suitable
sizes.

Lemma 2.3 ([6, Theorem 3.9]). Let A ∈ Cn×n with ind(A) = k. If A has the
Core-EP decomposition of A as (2.2) in Lemma 2.2, then

A† = U

[
T ∗∆ −T ∗∆SN †

(En−t −N †N)S†∆ N † − (En−t −N †N)S∗∆SN †

]
U∗,

where t = rank(Ak), ∆ = [TT ∗+S(En−t−N †N)S∗]−1 and En−t is the identity
of size n− t.
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Lemma 2.4 ([8]). Let A ∈ Cn×n.Then

(1) A∗B = A∗C if and only if A†B = A†C for any B,C ∈ Cn×n;

(2) BA∗ = CA∗ if and only if BA† = CA† for any B,C ∈ Cn×n.

The core part of the EP-nilpotent decomposition can be expressed by the
Moore-Penrose inverse of Ak, where ind(A) = k. The core part of the EP-
nilpotent decomposition is useful in our paper.

Lemma 2.5 ([15, Theorem 2.2]). Let A ∈ Cn×n with the index of A is k and
A = A1 + A2 be the EP-nilpotent decomposition of A as (2.1). Then A1 =
AAk(Ak)†.

Lemma 2.6 ([5, Theorem 2.1 and Proposition 6.1]). Let A ∈ Cn×n. Then
Y ∈ Cn×n is a (B,C)-inverse of A if and only if Y AY = Y , R(Y ) = R(B) and
N (X) = N (C).

Motivated by the definition of the CMP inverse in [10], in the following
definition we will introduced the MPEPN-inverse of a complex matrix by using
the Moore-Penrose inverse of such matrix and the core part of the EP-nilpotent
decomposition of this matrix, then one can prove that this inverse is unique.

Definition 2.1. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then X = A†A1A

† is called the
MPEPN-inverse of A.

Example 2.1. The MPEPN-inverse A†A1A
† is different to A†ADA†. Since by

Lemma 2.5, we have A1 = AAk(Ak)† and by [5], we have AD = Ak(A2k+1)†Ak,
thus A†A1A

† = A†Ak+1(Ak)†A† and A†ADA† = A†Ak(A2k+1)†AkA†. Let

A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4, one check that A†A1A
† =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0



and A†ADA† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 0 0

.
Let A ∈ Cn×n with the index of A is k. The equality AAk(Ak)† = Ak(Ak)†A

does not hold in general, a counterexample will be given in the following exam-
ple.
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Example 2.2. Let A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4. Then it is easy to check

that the index of A is k = 2, but AAk(Ak)† = AA2(A2)† =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

,

Ak(Ak)†A = A2(A2)†A =


1 0 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

, that is, AAk(Ak)† ̸= Ak(Ak)†A.

Moreover, we have AD =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

, A† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 1 0

 and AE,‡ =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0

.
Let A ∈ Cn×n with the index of A is k. The following Example 2.3 shows

that the equality AAk(Ak)† = Ak(Ak)†A can hold for some matrices.

Example 2.3. Let A =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 ∈ C4×4. Then it is easy to check that

ind(A) = k = 1 and AAk(Ak)† = AAA† =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

, Ak(Ak)†A = AA†A =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

, that is, AAk(Ak)† = Ak(Ak)†A. Moreover, we have AE,‡ =

AD = A† =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

.
Example 2.2 and Example 2.3 show that the equality AAk(Ak)† = Ak(Ak)†A

does not hold in general. One sufficient condition such that the equality holds
can be seen in the following proposition.
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Theorem 2.1. Let A ∈ Cn×n with ind (A) = k. If PA∗Ak = 0, then AAk(Ak)† =
Ak(Ak)†A, where P = En −Ak(Ak)† and En is the identity of size n.

Proof. Since P = En − Ak(Ak)†, then PA∗A† = 0 is equivalent to [En −
Ak(Ak)†]A∗Ak = 0, which is equivalent to

A∗Ak = Ak(Ak)†A∗Ak.(3)

Taking ∗ on (3) gives (A∗Ak)∗ = [Ak(Ak)†A∗Ak]∗, then

(Ak)∗A = (Ak)∗A[Ak(Ak)†]∗ = (Ak)∗AAk(Ak)†.(4)

By (4) and Lemma 2.4, we have

(Ak)†A = (Ak)†AAk(Ak)†.(5)

Pre-multiplying by Ak on (5) gives

Ak(Ak)†A = Ak(Ak)†AAk(Ak)† = Ak(Ak)†AkA(Ak)† = AkA(Ak)† = AAk(Ak)†,

that is, AAk(Ak)† = Ak(Ak)†A.

By using the Moore-Penrose inverse of A and the core part in the EP-
nilpotent decomposition of A, the formula of the MPEPN-inverse of A was
given. Moreover, we can get the formula A†Ak+1(Ak)†A† is the MPEPN-inverse
of A.

Theorem 2.2. Let A ∈ Cn×n with the index of A is k and A1 be the core part
in the EP-nilpotent decomposition of A, then A†Ak+1(Ak)†A† is the MPEPN-
inverse of A.

Proof. Let X be the MPEPN-inverse of A, we have A1 = AAk(Ak)† by
Lemma 2.5. By Definition 2.1, we have X = A†A1A

†. Thus, the conditions
A1 = AAk(Ak)† and X = A†A1A

† give

X = A†A1A
† = A†AAk(Ak)†A† = A†Ak+1(Ak)†A†.

3. When the MPEPN-inverse of complex matrix is an outer inverse
of this matrix

Let A ∈ Cn×n with the index of A is k and X ∈ Cn×n be the MPEPN-inverse
of A. In general, the MPEPN-inverse is an outer inverse of A? The answer is
no, X = XAX does not hold, a counterexample will be given in the following
example.
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Example 3.1. Let A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4. Then ind(A) = 2, but

AE,‡ =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0

, AE,‡AAE,‡ =


14
27 −13

27
1
27 0

−13
27

14
27

1
27 0

1
27

1
27

2
27 0

0 0 0 0

, that is, AE,‡ ̸=

AE,‡AAE,‡. Moreover, A1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, A† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 1 0

, then

A1A
† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

0 0 0 0
0 0 0 0

 , (A1A
†)2 =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

0 0 0 0
0 0 0 0

 .
Obviously, A1A

† is not an idempotent.

The above counterexample shows that X ̸= XAX, where X is the MPEPN-
inverse of A. A natural question is: when AE,‡ is an outer inverse of A. One
can show that if the condition (A1A

†)2 = A1A
† holds, then the MPEPN-inverse

of A is an outer inverse of A.

Theorem 3.1. Let A ∈ Cn×n with the index of A is k and A1 be the core
part in the EP-nilpotent decomposition of A. Then XAX = X if and only if
(A1A

†)2 = A1A
†, where X is the MPEPN-inverse of A.

Proof. Let X be the MPEPN-inverse of A, then by Definition 2.1 we have
X = A†A1A

†. We have the following conditions of equation XAX = X.

XAX = X ⇐⇒ A†A1A
† = A†A1A

†AA†A1A
† = A†A1A

†A1A
†,

that is,

XAX = X ⇐⇒ A†A1A
† = A†A1A

†A1A
†.(6)

By Lemma 2.5, we know A1 = AAk(Ak)†, thus (6) gives

XAX = X ⇐⇒ A†AAk(Ak)†A† = A†AAk(Ak)†A†AAk(Ak)†A†.(7)

Pre-multiplying by A on the right of (7) implies

AA†AAk(Ak)†A† = AA†AAk(Ak)†A†AAk(Ak)†A†.

Then,

AAk(Ak)†A† = AAk(Ak)†A†AAk(Ak)†A†.(8)

Thus, we have the equality in (8) is equivalent to A1A
† = A1A

†A1A
† by A1 =

AAk(Ak)†, that is, (A1A
†)2 = A1A

†.
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In the following, we show that the MPEPN-inverse of A is an outer inverse
under the condition S(En−t − N †N)S∗ = 0, where En−t is the identity of size
n− t and reciprocally.

Theorem 3.2. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then XAX = X if and only if
S(En−t − N †N)S∗ = 0, where t = rank(Ak) and X is the MPEPN-inverse of
A.

Proof. By Lemma 1, we have A = A1 + A2, where A1 = U

[
T 0
0 0

]
U∗ and

A2 = U

[
0 S
0 N

]
U∗, where t is the rank of Ak, the size of T and N are t and

n− t, respectively. Then by Lemma 1 and Lemma 2.3, we have

A1A
† = U

[
T 0
0 0

] [
T ∗∆ −T ∗∆SN †

(En−t −N †N)S†∆ N † − (En−t −N †N)S∗∆SN †

]
U∗

= U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗.

By (A1A
†)2 = A1A

†, we have(
U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗

)2

= U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗,

which is equivalent to[
(TT ∗∆)2 −TT ∗ △ TT ∗∆SN †

0 0

]
=

[
TT ∗△ −TT ∗ △ SN †

0 0

]
(9)

since U is nonsingular because U is unitary. The equality in (9) gives

(10)

{
(TT ∗∆)2 = TT ∗∆

TT ∗∆TT ∗∆SN † = TT ∗∆SN †

By Lemma 2.4, we know that (10) is equivalent to

(11)

{
(TT ∗∆)2 = TT ∗∆

TT ∗∆TT ∗∆SN∗ = TT ∗∆SN∗

Since T is nonsingular, then TT ∗ is nonsingular, then (11) is equivalent to

(12)

{
TT ∗∆ = Et

TT ∗∆SN∗ = SN∗

which is equivalent to

TT ∗∆ = Et.(13)
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Since ∆ is invertible, (13) is equivalent to

TT ∗ = ∆−1.(14)

By Lemma 2.3,

∆−1 = TT ∗ + S(En−t −N †N)S∗.(15)

By (14) and (15), we have TT ∗ = TT ∗ + S(En−t −N †N)S∗, that is, S(En−t −
N †N)S∗ = 0.

Remark 3.1. By the proof of Theorem 3.2, we have X = XAX if and only if
TT ∗ = ∆−1, where X is the MPEPN-inverse of A and ∆ = [TT ∗ + S(En−t −
N †N)S∗]−1.

In the following, we show that the MPEPN-inverse of A is an outer inverse
of A if and only if A2A

†
2A

�O = 0.

Theorem 3.3. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1) and A = A′

1 + A′
2 be the Core-EP

decomposition of A as (2.2). Then XAX = X if and only if A �OA1A2A
∗
2A1A

�O =
A′

1(A
′
2)

†A′
2(A

′
1)

∗, where X is the MPEPN-inverse of A.

Proof. Let X be the MPEPN-inverse of A. By Theorem 3.2, we have XAX =
X if and only if S(En−t −N †N)S∗ = 0, that is,

SS∗ = SN †NS∗.(16)

We have

A2A
∗
2 = U

[
0 S
0 N

]
U∗U

[
0 0
S∗ N∗

]
U∗ = U

[
SS∗ SN∗

NS∗ NN∗

]
U∗(17)

by A2 = U

[
0 S
0 N

]
U∗ and A∗

2 = U∗
[
0 0
S∗ N∗

]
U . Moreover, by Lemma 1 we

have

A1 = U

[
T 0
0 0

]
U∗.(18)

By (17) and (18), we have

A2A
∗
2A1 = U

[
SS∗T 0
NS∗T 0

]
U∗.(19)

By (19), we have

A1A2A
∗
2A1 = U

[
T 0
0 0

]
U∗U

[
SS∗T 0
NS∗T 0

]
U∗ = U

[
TSS∗T 0

0 0

]
U∗.(20)
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By [14, Theorem 3.2], we have

A �O = U

[
T−1 0
0 0

]
U∗.(21)

By (20) and (21), we have

A �OA1A2A
∗
2A1A

�O = U

[
SS∗ 0
0 0

]
U∗.(22)

By Lemma 2.2, we have (A′
2)

† = U

[
0 0
0 N †

]
U∗, then

(A′
2)

†A′
2 = U

[
0 0
0 N †N

]
U∗.(23)

Since (A′
1)

∗ = U

[
T ∗ 0
S∗ 0

]
U∗. Thus by (23), we have

A′
1(A

′
2)

†A′
2(A

′
1)

∗ = U

[
T S
0 0

] [
0 0
0 N †N

] [
T ∗ 0
S∗ 0

]
U∗

= U

[
0 SN †N
0 0

] [
T ∗ 0
S∗ 0

]
U∗

= U

[
SN †NS∗ 0

0 0

]
U∗.

(24)

By (22) and (24), the equality in (16) can be written as

A �OA1A2A
∗
2A1A

�O = A′
1(A

′
2)

†A′
2(A

′
1)

∗.

Theorem 3.4. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then XAX = X if and only if

A2A
†
2A

�O = 0, where X is the MPEPN-inverse of A.

Proof. By Lemma 2.3, we have

(25) A†
2 = U

[
0 0

(En−t −N †N)S∗∆ N † − (En−t −N †N)S∗∆SN †

]
U∗,

where ∆ = [TT ∗ + S(En−t −N †N)S∗]−1. Then

A†
2A

�O = U

[
0 0

(En−t −N †N)S∗∆ N † − (En−t −N †N)S∗∆SN †

] [
T−1 0
0 0

]
U∗

= U

[
0 0

(En−t −N †N)S∗∆T−1 0

]
U∗.(26)
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By (26), we have

A2A
†
2A

�O = U

[
0 S
0 N

]
U∗U

[
0 0

(En−t −N †N)S∗∆T−1 0

]
U∗

= U

[
S(En−t −N †N)S∗∆T−1 0

N(En−t −N †N) 0

]
U∗.

Thus,

S(En−t−N †N)S∗ = 0 ⇐⇒ S(En−t−N †N)S∗∆T−1 = 0 ⇐⇒ A2A
†
2A

�O = 0.

Note that, the condition A2A
†
2A

�O = 0 in Theorem 3.4 can be written as
PR(A2)A

�O = 0, where PR(A2) is the orthogonal projectors onto R(A2).

4. The “distance” between the MPEPN-inverse and the inverse
along two matrices

In 2012, Drazin [5] introduced a new kind of generalized inverse based on two
elements. In 2017, Beńıtez et al. [1] investigated the (B,C)-inverse of a rectan-
gle complex matrix. The “distance” between the MPEPN-inverse and the in-
verse along two matrices can be stated by AE,‡ is the (A†A1PR(A∗), PR(A)A1A

†)-

inverse of A under the condition (A1A
†)2 = A1A

†.

Theorem 4.1. Let A ∈ Cn×n with the index of A is k and A1 be the core part
in the EP-nilpotent decomposition of A. If A1A

† is an idempotent, then X is the
(A†A1PR(A∗), PR(A)A1A

†)-inverse of A, where X is the MPEPN-inverse of A.

Proof. By Theorem 3.1, when A1A
† is an idempotent, we have XAX = X,

where X = A†A1A
† = A†Ak+1(Ak)†A†. Let B = A†A1PR(A∗) and C =

PR(A)A1A
†, then X = XAX = A†A1A

†AX = A†A1PR(A∗)X = BX, which
gives

R(X) ⊆ R(B).(27)

Moreover, the condition B = A†A1PR(A∗) = A†A1A
†A = XA implies

R(B) ⊆ R(X).(28)

By (27) and (28), we can get R(B) = R(X). For any u ∈ N (PR(A)A1A
†), that

is, PR(A)A1A
†u = 0, then Xu = XAXu = XAA†A1A

†u = XPR(A)A1A
†u = 0,

which gives

N (PR(A)A1A
†) ⊆ N (X).(29)

For any v ∈ N (X), that is, Xv = 0, then the condition PR(A)A1A
†v =

AA†A1A
†v = AXv = 0 implies

N (X) ⊆ N (PR(A)A1A
†).(30)

By (29) and (30), we have N (C) = N (X). Thus, by Lemma 2.6, we have X is
the (A†A1PR(A∗), PR(A)A1A

†)-inverse of A.
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The MPEPN-inverse of A is different from the Moore-Penrose inverse, the
DMP inverse AD,† of A ([11]), the Core-EP inverse A �O of A ([9]) and the
MPCEP-inverse A†, �O of A ([3]). The example can been seen in the following
example.

Example 4.1. Let A =


1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

 ∈ C4×4. Then it is easy to check that

AE,‡ =


1 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

 , A† =


1 0 1 −1
0 0 1 0
0 0 0 1
0 0 0 0

 , AD,† =


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

A �O =


1
2 0 1

2 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A†, �O =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Thus, the MPEPN-inverse is different from the above generalized inverses.

5. Conclusions

Let A be a given complex matrix with a given index, then one can get that
the computation of the MPEPN inverse of A by using the EP-nilpotent de-
composition of this matrix. There is a interesting fact about the EP-nilpotent
decomposition of A, that is one can using the Core-EP decomposition of A to get
the the EP-nilpotent decomposition of A. The future perspectives for research
are proposed:

Part 1. The MPEPN inverse is one of the useful tools to investigate the
matrix partial orders.

Part 2. The rank properties of a given matrix, such as rank (AAE,‡ −AE,‡A).

Part 3. The weighted generalized inverse of matrices related given range
space and null space.
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Abstract. In this paper, fantastic (weak) hyper filters in hyper BE-algebras are
introduced and investigated. The relationships between fantastic (weak) hyper filters
and (weak) hyper filters are discussed and the related examples are delivered. Then,
fantastic (weak) hyper filters are characterized respectively. Moreover, examples are
given in which fantastic weak hyper filters and fantastic hyper filters may not be deduced
from each other in hyper BE-algebras, meanwhile the conditions are found that fantastic
weak hyper filters become fantastic weak hyper filters in hyper BE-algebras.

Keywords: hyper BE-algebra, ◦-reflexive subset, (weak) hyper filter, fantastic (weak)
hyper filter.

1. Introduction

The hyper algebraic theory was introduced by Marty [15] at the 8th Congress of
Scandinavian Mathematicians. Since then, hyper algebraic structure has been
intensively researched such as hyper BCK-algebras [12, 13], hyper K-algebras
[11, 18], hyper residuated lattices [2, 17], hyper EQ-algebras [4, 8] and hyper
equality algebras [3, 7], etc. At present, hyper algebraic theory has been widely
applied to many disciplines [9, 10]. Borzooei et al. investigated the filter theory
of residuated lattices and hyper equality algebras in [2] and [3] respectively.

*. Corresponding author
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Then, Borzooei and Aaly in [1] systematically summarized various of hyper
algebraic structures and presented the relationships among these hyper algebraic
structures. Radfar et al. [16] in 2014 introduced the notion of hyper BE-algebras
as a generalization of BE-algebras [14]. Moreover, they proposed some special
types of hyper BE-algebras and (weak) hyper filters in hyper BE-algebras. In
fact, hyper BE-algebras are closely related to many hyper algebras and it is a
generalization of dual hyper BCK-algebras, dual hyper K-algebras and hyper
hoops [5]. Cheng and Xin in [6] focused on investigating (positive) implicative
hyper filters in hyper BE-algebras and induced quotient hyper BE-algebras by
use of implicative hyper filters. Based on the above, the present paper considers
fantastic (weak) hyper filters in hyper BE-algebras so as to further explore the
structure of hyper BE-algebras.

2. Preliminaries

In this section, we recollect some definitions and results about hyper BE-algebras
which will be used in the following.

Definition 2.1 ([16]). Let H be a nonempty set and ◦ : H ×H → P ∗(H) be a
hyperoperation. Then, (H, ◦, 1) is called a hyper BE-algebra provided it satisfies
the following axioms:

(HBE1) x≪ 1 and x≪ x;

(HBE2) x ◦ (y ◦ z) = y ◦ (x ◦ z);

(HBE3) x ∈ 1 ◦ x;

(HBE4) 1 ≪ x implies x = 1, for all x, y ∈ H, where the relation ≪ is defined
by x ≪ y ⇔ 1 ∈ x ◦ y. For any two nonempty subsets A and B of H,
A≪ B means that there exist a ∈ A, b ∈ B such that a≪ b.

Notice that, in any hyper BE-algebra, A ◦ B =
⋃

a∈A,b∈B a ◦ b and A ≤ B
means for any a ∈ A, there exists b ∈ B such that a≪ b.

In the following sequel, by H denote a hyper BE-algebra (H, ◦, 1), unless
otherwise specified.

Proposition 2.1 ([6, 16]). In any hyper BE-algebra H, the following hold:

(1) A ◦ (B ◦ C) = B ◦ (A ◦ C);

(2) A ⊆ 1 ◦A, 1 ∈ A ◦ 1, 1 ∈ A ◦A;

(3) x ≤ y ◦ x,A ≤ B ◦A;

(4) A≪ B iff 1 ∈ A ◦B;

(5) 1 ∈ A and A ≤ B imply 1 ∈ B;
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(6) 1 ≪ A implies 1 ∈ A, for all x, y ∈ H,A,B ⊆ H.

Definition 2.2 ([16]). We say that a hyper BE-algebra H is a

(1) C-hyper BE-algebra, if x ◦ 1 = {1} for all x ∈ H;

(2) R-hyper BE-algebra, if 1 ◦ x = {x} for all x ∈ H;

(3) D-hyper BE-algebra, if x ◦ x = {1} for all x ∈ H;

(4) RD-hyper BE-algebra, if H is both a R-hyper BE-algebra and a D-hyper
BE-algebra;

(5) RC-hyper BE-algebra, if H is both a R-hyper BE-algebra and a C-hyper
BE-algebra.

Definition 2.3 ([16]). A nonempty subset F containing 1 of H is said to be a

(1) hyper filter if x ◦ y ∩ F ̸= ∅ and x ∈ F imply y ∈ F , for any x, y ∈ H;

(2) weak hyper filter if x ◦ y ⊆ F and x ∈ F imply y ∈ F , for any x, y ∈ H.

It is well known that every hyper filter is a weak hyper filter in a hyper
BE-algebra, but the converse is not true. Moreover, every hyper filter satisfies
the condition (F):

(F ) x ∈ F and x≪ y imply y ∈ F for all x, y ∈ H.

3. Fantastic (weak) hyper filters

In this section, we introduce fantastic (weak) hyper filters in hyper BE-algebras
and deliver some related results of them.

Definition 3.1. A nonempty subset F containing 1 of H is said to be a

(1) fantastic hyper filter, if z◦(x◦y)∩F ̸= ∅ and z ∈ F imply ((y◦x)◦x)◦y∩F ̸=
∅, for any x, y, z ∈ H;

(2) fantastic weak hyper filter, if z◦(x◦y) ⊆ F and z ∈ F imply ((y◦x)◦x)◦y ⊆
F , for any x, y, z ∈ H.

Example 3.2. Let H = {a, b, 1}. Define the operation ◦ on H as follows:

◦ 1 a b

1 {1} {a, b} {b}
a {1, b} {1} {1}
b {1, b} {1} {1}

Then, (H, ◦, 1) is a hyper BE-algebras [16]. It is easy to verify that F = {1} is
a fantastic weak hyper filter and G = {1, a} is a fantastic hyper filter of H.



94 XIAOYUN CHENG, XIAOLONG XIN AND XIAOLI GAO

Proposition 3.1. Let H be a RC-hyper BE-algebra. If F is a fantastic (weak)
hyper filter of H, then F is a (weak) hyper filter of H.

Proof. (1) Let x ◦ y ∩ F ̸= ∅ and x ∈ F , for any x, y ∈ F . Then, by x ◦ y ⊆
x ◦ (1 ◦ y) we have x ◦ (1 ◦ y) ∩ F ̸= ∅. Again since x ∈ F and F is a fantastic
hyper filter of H, we can obtain that {y}∩F = 1◦y∩F = ((y◦1)◦1)◦y∩F ̸= ∅
and thus y ∈ F . Therefore, F is a hyper filter of H.

(2) Let x ◦ y ⊆ F and x ∈ F , for any x, y ∈ F . Since H is a R-hyper
BE-algebra, we have x ◦ (1 ◦ y) = x ◦ y ⊆ F . Again since x ∈ F and F is a
fantastic weak hyper filter of H, then {y} = 1 ◦ y = ((y ◦ 1) ◦ 1) ◦ y ⊆ F and
thus y ∈ F . Therefore, F is a weak hyper filter of H.

Example 3.3. Let H = {a, b, 1}. Define the operation ◦ on H as follows:

◦ 1 a b

1 {1} {a} {b}
a {1} {1, a, b} {b}
b {1} {a, b} {1, b}

Then, (H, ◦, 1) is a RC-hyper BE-algebras [16]. One can calculate that F =
{1, a} is both a (weak) hyper filter and a fantastic (weak) hyper filter of H.

Notice that the condition of the RC-hyper from Proposition 3.1 is not neces-
sary in general. In fact, in Example 3.2 H is not a RC-hyper BE-algebra, but it
is easy to see that F = {1} is both a (weak) hyper filter and a fantastic (weak)
hyper filter of H.

The converse of Proposition 3.1 may not be true and see the following ex-
ample.

Example 3.4. (1) Let H = {a, b, 1}. Define the operation ◦ on H as follows:

◦ 1 a b

1 {1} {a} {b}
a {1} {1} {1, a}
b {1} {1} {1, a}

Then, (H, ◦, 1) is a RC-hyper BE-algebras [16]. It is not difficult to check that
F = {1} is a weak hyper filter of H, but it is not a fantastic weak hyper filter
of H since 1 ∈ F and 1 ◦ (b ◦ a) ⊆ F while ((a ◦ b) ◦ b) ◦ a = {1, a} ⊈ F .
(2) Let H = {1, a, b, c}. Define the operation ◦ on H as follows:

◦ 1 a b c

1 {1} {a} {b} {c}
a {1} {1} {1} {1}
b {1} {a} {1, b} {c}
c {1} {a} {1, b} {1, b}
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Then, (H, ◦, 1) is a RC-hyper BE-algebra [11]. It is routine to verify that F =
{1, a} is a hyper filter of H, but it is not a fantastic hyper filter of H since 1 ∈ F
and 1 ◦ (a ◦ b) ∩ F ̸= ∅ while ((b ◦ a) ◦ a) ◦ b = {b} ∩ F = ∅.

In what follows we deliver a characterization of the fantastic (weak) hyper
filter of H, respectively.

Theorem 3.1. Let F be a hyper filter of H. Then, the following are equivalent:

(1) F is a fantastic hyper filter of H;

(2) x ◦ y ∩ F ̸= ∅ implies ((y ◦ x) ◦ x) ◦ y ∩ F ̸= ∅, for any x, y ∈ H.

Proof. (1) ⇒ (2) Assume that (1) holds and x ◦ y ∩ F ̸= ∅, for any x, y ∈ H.
Since x ◦ y ⊆ 1 ◦ (x ◦ y) then 1 ◦ (x ◦ y)∩F ̸= ∅. Since 1 ∈ F and F is a fantastic
hyper filter of H, we have ((y ◦ x) ◦ x) ◦ y ∩ F ̸= ∅.

(2) ⇒ (1) Assume that (2) holds. Let z ◦ (x ◦ y) ∩ F ̸= ∅ and z ∈ F , for
any x, y, z ∈ H. Since F is a hyper filter of H, then x ◦ y ∩ F ̸= ∅ and so by
hypothesis we can obtain ((y ◦ x) ◦ x) ◦ y ∩ F ̸= ∅. It concludes that F is a
fantastic hyper filter of H.

Theorem 3.2. Let F be a weak hyper filter of a R-hyper BE-algebra H. Then,
the following are equivalent:

(1) F is a fantastic weak hyper filter of H;

(2) x ◦ y ⊆ F implies ((y ◦ x) ◦ x) ◦ y ⊆ F , for any x, y ∈ H.

Proof. (1) ⇒ (2) Assume that (1) holds and x ◦ y ⊆ F , for any x, y ∈ H. Since
1 ∈ F, 1 ◦ (x ◦ y) = x ◦ y ⊆ F and F is a fantastic weak hyper filter of H, we
have ((y ◦ x) ◦ x) ◦ y ⊆ F .

(2) ⇒ (1) Assume that (2) holds. Let z ◦ (x ◦ y) ⊆ F and z ∈ F , for any
x, y, z ∈ H. Since F is a weak hyper filter of H, then x ◦ y ⊆ F and so by
hypothesis we can obtain ((y ◦x) ◦x) ◦ y ⊆ F . It concludes that F is a fantastic
weak hyper filter of H.

In general, a fantastic hyper filter of H may not be a fantastic weak hyper
filter and vice versa.

Example 3.5. (1) In Example 3.2 one can check that the set M = {1, b} is a
fantastic hyper filter of H, but it is not a fantastic weak hyper filter since b ∈M
and b ◦ (1 ◦ a) = {1} ⊆M while ((a ◦ 1) ◦ 1) ◦ a = {1, a, b} ⊈M .
(2) Let H = {a, b, 1}. Define the operation ◦ on H as follows:

◦ 1 a b

1 {1} {a, b} {b}
a {1} {1, a} {1, b}
b {1} {1, a, b} {1}
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Then, (H, ◦, 1) is a hyper BE-algebras [16]. It can be calculated that F = {1, a}
is a fantastic weak hyper filter of H, but it is not a fantastic hyper filter since
a ∈ F and a ◦ (1 ◦ b) = {1, b} ∩ F ̸= ∅ while ((b ◦ 1) ◦ 1) ◦ b = {b} ∩ F = ∅.

In what follows, we provide the conditions that fantastic weak hyper filters
become fantastic hyper filters in hyper BE-algebras.

Definition 3.6 ([6]). A nonempty subset S of H is said to be ◦-reflexive if
x ◦ y ∩ S ̸= ∅ implies x ◦ y ⊆ S for all x, y ∈ H.

Proposition 3.2. Let H be a RC-hyper BE-algebra. If F is a ◦-reflexive fan-
tastic weak hyper filters of H, then it is a fantastic hyper filter of H.

Proof. As F is a ◦-reflexive weak hyper filters of H, we have that F is a hyper
filter of H. Now, set x ◦ y ∩ F ̸= ∅, for any x, y ∈ H. It follows from the
◦-reflexivity of F that x ◦ y ⊆ F . Since F is a fantastic weak hyper filter of H,
then by Theorem 3.2 we obtain ((y◦x)◦x)◦y ⊆ F and so ((y◦x)◦x)◦y∩F ̸= ∅.
Therefore, by Theorem 3.1 F is a fantastic hyper filter of H.

Definition 3.7. A hyper BE-algebra H is called right-ordered, if x≪ y implies
y ◦ z ≪ x ◦ z for all x, y, z ∈ H.

Example 3.8. It is easy to verify that the hyper BE-algebra H from Example
3.5 (2) is right-ordered.

Theorem 3.3. Let H be a right-ordered RD-hyper BE-algebra, and F,G be ◦-
reflexive weak hyper filters of H. If F ⊆ G and F is a fantastic weak hyper filter
of H, then G is a fantastic hyper filter of H.

Proof. Let x ◦ y ∩ G ̸= ∅, for any x, y ∈ H. Denote m = x ◦ y, since G
is ◦-reflexive then m ⊆ G Again since H is a D-hyper BE-algebra, we have
x ◦ (m ◦ y) = m ◦ (x ◦ y) = {1} ⊆ F . Notice that H is a R-hyper BE-algebra and
F is a fantastic weak hyper filter, it follows from Theorem 3.2 that m ◦ ((((m ◦
y) ◦ x) ◦ x) ◦ y) = (((m ◦ y) ◦ x) ◦ x) ◦ (m ◦ y) ⊆ F and hence m ◦ ((((m ◦ y) ◦ x) ◦
x) ◦ y) ⊆ G. Combing that m ∈ G and G is a weak hyper filter, we can obtain
(((m ◦ y) ◦x) ◦x) ◦ y ⊆ G. Again since y ≪ m ◦ y and H is right-ordered, we get
that (((m◦y)◦x)◦x)◦y ≪ ((y ◦x)◦x)◦y. Considering (((m◦y)◦x)◦x)◦y ⊆ G
and the ◦-reflexivity of G, it can conclude that ((y◦x)◦x)◦y∩G ̸= ∅. Therefore,
using Theorem 3.1 G is a fantastic hyper filter of H.

4. Conclusions

Filters are an important tool in the research of algebraic structures. In this
paper, fantastic (weak) hyper filters are proposed in hyper BE-algebras and also
the relation between them is delivered. What is more, the characterizations of
fantastic (weak) hyper filters are showed. In the further work, we shall explore
some applications of fantastic (weak) hyper filters such as in quotient hyper
BE-algebras and in the state theory of hyper BE-algebras.
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Abstract. For a natural parametrization of a curve γ in an orientable two-dimensional
Riemannian manifold, we compare two differential equations associated to γ. The main
tool of our study is the geodesic curvature k of γ and when these equations coincide
we call γ as being flow-selfdual since the second equation corresponds to the flow-
curvature kf of γ in the same manner as the first equation involves k. We obtain that
these curves have a constant geodesic curvature and then we discuss four examples.
Also, we generalize this type of differential equations to vector fields on Riemannian
manifolds of arbitrary dimension.

Keywords: two-dimensional Riemannian manifold, geodesic curvature, flow-selfdual
curve.
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1. Flow-selfdual curves and tangential vector fields

The framework of this study is a geometric surface i.e. ([3]) a smooth, orientable
two-dimensional Riemannian manifold (M2, g). Being orientableM supports an
almost complex structure J ; in fact J is integrable and for an arbitrary point
p ∈ M we consider Jp : TpM → TpM as being the multiplication with the
complex unit i ∈ C. Let ∇ be the Levi-Civita connection of g.

Fix also a smooth curve γ : I ⊆ R → M which we suppose to be regular:
γ′(t) ∈ Tγ(t)M \ {0}. Let X(γ) be the C∞(I)-module of vector fields along γ i.e.
smooth maps X : I → TM with X(t) ∈ Tγ(t)M for all t ∈ I. It follows the unit
tangent vector field T ∈ X(γ) with:

(1.1) T (t) :=
γ′(t)

∥γ′(t)∥
,

where ∥ · ∥ denotes the norm induced by g on the tangent spaces. Therefore, the

Frenet frame of γ is F :=

(
T

N := J(T )

)
∈ X(γ)× X(γ).
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The Riemannian geometry of γ is described by its geodesic curvature k : I →
R provided by the Frenet equations:

(1.2) ∇T (t)F(t) =

(
0 k(t)

−k(t) 0

)
F(t) = k(t)

(
0 1
−1 0

)
F(t)

which means:

(1.3) k(t) :=
g(∇γ′(t)T (t), N(t))

∥γ′(t)∥
=
g(∇γ′(t)γ

′(t), J(γ′(t)))

∥γ′(t)∥3
.

Recall also the pair (g, J) yields the symplectic form Ω(·, ·) := g(·, J ·) and
whence:

(1.4) k(t) :=
Ω(∇γ′(t)γ

′(t), γ′(t))

∥γ′(t)∥3
.

The starting point of this short note is the remark that under the hypothesis
of γ being parametrized by arc-length the second covariant derivative applied
to the Frenet equations yields the following differential equation:

(1.5) E : (∇γ′∇γ′γ′)(t)− k′(t)

k(t)
(∇γ′γ′)(t) + k2(t)γ′(t) = 0.

The pair (g, J) being a Kähler structure (since dimM = 2) it follows that ∇
commutes withN and then N satisfies the same differential equation. For curves
parametrized by arc-length the vector field ∇γ′γ′ is called the curvature vector
field of γ.

In the very recent paper [3] we introduce a modification of the curvature
k called flow-curvature and denoted kf . For a general parametrization of γ it
holds:

(1.6) kf (t) := k(t)− 1

∥γ′(t)∥
< k(t).

Since kf is obtained exactly in the same manner as k i.e. through the Frenet
equation of the flow-frame:

(1.7) Ff (t) :=

(
Ef

1

Ef
2

)
(t) = Rotation(t)F(t) =

(
cos tT (t)− sin tN(t)
sin tT (t) + cos tN(t)

)
it follows a second differential equation of third order satisfied by non-flow-flat
curves:

(1.8) Ef : (∇γ′∇γ′Ef
1 )(t)−

(kf )′(t)

kf (t)
(∇γ′Ef

1 )(t) + (kf )2(t)Ef
1 (t) = 0.

It is natural to connect the differential equations E and Ef and this leads to our
new type of curves:
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Definition 1.1. The non-flow-flat curve γ, parametrized by arc-length, is called
flow-selfdual it it satisfies also the differential equation:

(1.9) Ef : (∇γ′∇γ′γ′)(t)− (kf )′(t)

kf (t)
(∇γ′γ′)(t) + (kf )2(t)γ′(t) = 0.

Our main theoretical result is the following:

Proposition 1.2. The non-flow-flat curve γ is a flow-selfdual one if and only
if k = 1

2 = −kf which means that all four unit vector fields γ′, N,Ef
1 , E

f
2 satisfy

the same differential equation of Schrödinger type:

(1.10) E = Ef = Ef : (∇γ′∇γ′U)(t) +
1

4
U(t) = 0, U ∈ X(γ).

Proof. By comparing E and Ef it follows:

(1.11)
k′(t)

k(t)(k(t)− 1)
(∇γ′γ′)(t) + (2k(t)− 1)γ′(t) = 0.

Due to the unit speed parametrization of γ the vector fields ∇γ′γ′ and γ′ are
orthogonal and then 2k − 1 = 0.

Remarks 1.3. 1) Let (Γk
ij) denote the Christoffel symbols of the metric g in

a local chart of M in which γ(t) = (xi(t)), 1 ≤ i ≤ 2. Then the differential
equation (1.10) becomes a scalar third-order one for a fixed k ∈ {1, 2}:

d

dt

[
ẍk(t) + Γk

ij(γ(t))ẋ
i(t)ẋj(t)

]
+ Γk

ij(γ(t))ẋ
i(t)

[
ẍj(t) + Γj

ab(γ(t))ẋ
a(t)ẋb(t)

]
+
ẋk(t)

4
= 0.(1.12)

2) In the same paper [3] the flow-frame is generalized with an arbitrary
(smooth) angle function Ω = Ω(t) obtaining the Ω-curvature:

(1.13) kΩ(t) := k(t)− Ω′(t)

∥γ′(t)∥
.

Hence, an arc-length parametrized curve with kΩ ̸= 0 will be called Ω-flow-
selfdual if the differential equation (1.9) holds with kf replaced by Ω. The
characterization of the proposition 1.2 reads now:

(1.14) k(t) =
Ω′(t)

2
= −kΩ(t).

A second suitable generalization of our notion works at the level of vector
fields ξ ∈ X(M)=the Lie algebra of vector fields onM . Fix a unit ξ; then we call
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ξ as being a tangential vector field if there exists a strictly positive k ∈ C∞(M)
(which we call the curvature of ξ) such that:

(1.15) ∇ξ∇ξξ − ξ(ln k)∇ξξ + k2ξ = 0.

Making the g-product of the left-hand-side term above with ξ gives, as is ex-
pected, that:

(1.16) ∥∇ξξ∥ = k > 0.

We remark that is not necessary to work in the initial dimension two. An
example of tangential vector field is provided within the theory of torse-forming
vector fields. Recall, after [2], that a fixed V ∈ X(M) is called torse-forming if
for all X ∈ X(M) we have:

(1.17) ∇XV = fX + ω(X)V,

for a smooth function f ∈ C∞(M) and a 1-form ω ∈ Ω1(M). Now, suppose
that ∇ξξ is a torse-forming vector field with the data:

(1.18) f = −k2, ω = d(ln k),

for a given strictly positive function k. It follows:

(1.19) ∇X∇ξξ −X(ln k)∇ξξ + k2X = 0

and then for X = ξ it results the definition (1.15).

Recall also that an important tool in dynamics on curves is the Fermi-Walker
derivative, which is the map ([4]) ∇FW

γ : X(γ) → X(γ):

∇FW
γ (X) :=

d

dt
X + ∥r′(·)∥k[⟨X,N⟩T

− ⟨X,T ⟩N ] → ∇FW
γ (T ) = ∇FW

γ (N) = 0.(1.20)

Hence, we generalize this derivative as follows: the Fermi-Walker derivative
generated by a tangential vector field ξ is the map ∇ξ : X(M) → X(M) given
by:

(1.21) ∇ξ(X) := ∇ξX + g(X,∇ξξ)ξ − g(X, ξ)∇ξξ.

From the equation (1.14) it results that ξ and ∇ξξ are eigenvector fields of ∇ξ:

(1.22) ∇ξ(ξ) = 0, ∇ξ(∇ξξ) = ξ(ln k)∇ξξ.
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2. Examples of flow-selfdual curves

Example 2.1. As is expected the plane Euclidean geometry E2 := (R2, ⟨·, ·⟩can)
is the simplest case. The circle C(O,R = 2) is the ”generic” Euclidean flow-
orthogonal curve; it has the arc-length parametrization and Frenet data:

γ(t) = 2

(
cos

t

2
, sin

t

2

)
, γ′(t) =

(
− sin

t

2
, cos

t

2

)
,

N(t) = − exp

(
i
t

2

)
= −1

2
γ(t)(2.1)

and then the flow-frame is:

(2.2) Ef
1 (t) =

(
sin

t

2
, cos

t

2

)
, Ef

2 (t) =

(
− cos

t

2
, sin

t

2

)
= N(t),

where we use the complex conjugate; the ordinary differential equation (1.10) is:
u′′ + 1

4u = 0. An associated interesting problem is if there exists a Riemannian
metric on (an open subset of) R2 having as geodesics the Euclidean circles; for
the case of Finslerian metric this problem is already solved in [1].

Example 2.2. Fix (M, g) a rotationally symmetric surface i.e., conform [6], M
is the product S1×I with S1 the Euclidean unit circle and I ⊆ R, endowed with
the warped product metric:

(2.3) g = dr2 + f(r)2dφ2, r ∈ I, φ ∈ S1.

This surface is oriented by the 2-form dr ∧ dφ and then:

(2.4) J

(
∂

∂r

)
=

1

f(r)

∂

∂φ
, J

(
∂

∂φ

)
= −f(r) ∂

∂r
.

Fix now the curve γ(t) := (r(t), φ(t)) parameterized by the arc-length t. Let
σ = σ(t) be the structural angle of γ i.e. the oriented angle between ∂

∂r and T .
It follows the Frenet frame:
(2.5)

T (t) = cosσ(t)
∂

∂r
|t +

sinσ(t)

f(r(t))

∂

∂φ
|t, N(t) = − sinσ(t)

∂

∂r
|t +

cosσ(t)

f(r(t))

∂

∂φ
|t.

The first derivative of T is then:

(2.6) (∇γ′γ′)(t) =

(
σ′(t) +

f ′(r)

f(r)
(t) sinσ(t)

)
N(t)

which provides the expression of the geodesic curvature for γ:

(2.7) k(t) = σ′(t) +
f ′(r)

f(r)
(t) sinσ(t).
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The Proposition 1.1 of the cited paper [6] (or [7, p. 89]) offers a conservation
law along γ, which for our constant k = 1

2 reads as follows:

Proposition 2.3. The smooth function:

(2.8) t ∈ [0, L(γ)) → F(t) := f(r(t)) sinσ(t)− 1

2

∫ r(t)

r(0)
f(ξ)dξ

is constant along a given flow-selfdual curve γ.

The Euclidean plane geometry means f(r) = r and the circle C(O,R > 0)
gives r = constant = R, φ(t) = t

R , t ∈ [0, 2πR] and σ = constant = π
2 .

Example 2.4. For the hyperbolic plane geometry we use the Poincaré model
of [5, p. 103]: H2 := (R2

y>0; g = 1
y2
(dx2 + dy2)). Fix a curve γ : t ∈ [0,+∞) →

(x(t), y(t)) ∈ H2 parametrized by arc-length. With the computation of the
geodesic curvature from the cited book it follows that γ is a flow-selfdual curve
if and only if the following differential system is satisfied:

(2.9) [x′(t)]2 + [y′(t)]2 = [y(t)]2, x′(t)

(
1

y(t)
+
y′′(t)

y(t)2

)
− x′′(t)

y′(t)

y(t)2
=

1

2
.

A straightforward computation gives a single second order differential equation,
which is written in a more simple form as:

(2.10) ÿ − 2

y
ẏ + y =

√
y2 − ẏ2

2

Unfortunately, being a nonlinear differential equation we cannot solve explicitly.
In fact, we know that the types of hyperbolic curves with constant geodesic
curvature k are as follows: a) circles, for k > 1; b) horocycles, with k = 1; c)
equidistant curves (i.e. curves of finite distance from a hyperbolic geodesic), for
k ∈ (0, 1). Hence, the hyperbolic flow-selfdual curves are a family of equidistant
curves.

Example 2.5. Let γ be a arc-length parametrized curve in the unit sphere
S2 := (S2 ⊂ R3, g = (⟨·, ·⟩can)|S2). Its usual Frenet curvature and torsion as
space curve are kF > 0 and τF . In fact, from the relationship:

(2.11) kF =
√
k2 + 1 ≥ 1

it follows that a flow-selfdual curve on S2 have a constant Frenet curvature
kF =

√
5
2 . As concrete example we have the horizontal circle:

(2.12) γ(t) =
2√
5

(
cos

(√
5

2
t

)
, sin

(√
5

2
t

)
,
1

2

)
, t ∈ R, τF ≡ 0.
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More generally, recall that for the given arc-length parametrized curve γ on the
regular surface S ⊂ R3 its geodesic curvature satisfies:

(2.13) k = kF sin θ

with θ the oriented angle between the normal Nγ of the curve and the normal
NS of S. For a flow-selfdual curve on S = S2 it results the angle θ provided by:

(2.14) sin θ =
1√
5
, cos θ = ± 2√

5
.

3. Conclusions

This note concerns with a particular class of curves in an orientable geometric
surface (M2, g). The curves in this class have a constant geodesic curvature,
and hence they are remarkable objects for the differential geometry of the given
pair (M2, g). Four examples illustrate the significance of these curves in some
important geometries. From a dynamical point of view we generalise the Fermi-
Walker derivative and we hope this operator to become more suitable in some
future works.
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Abstract. In this work, we investigate particular properties on the completion of
symmetric spaces. Symmetric spaces are metric spaces and, naturally, question arises
as to whether their completions are also symmetric. In this work, we provide an affir-
mative response to this question. More precisely, we prove that every metric space is
isometrically a subset of a symmetric space. In addition, we prove that the completion
of a symmetric metric space is likewise symmetric. Some additional functorial prop-
erties are established along with some other results. Additionally, generic examples of
symmetric spaces will be provided in this manuscript.
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1. Introduction

The purpose of this section is to recall some standard terminology and nomen-
clature related to metric spaces [1] and symmetric metric spaces [2]. To start
with, recall that a metric space is a pair of the form (X, dX), where X is
a nonempty set and dX : X × X → R is a function satisfying the following
properties:

*. Corresponding author
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(i) if x, y ∈ X, then dX(x, y) ≥ 0,

(ii) if x, y ∈ X, then dX(x, y) = 0 if and only if x = y,

(iii) dX(x, y) = dX(y, x), for any x, y ∈ X, and

(iv) dX(x, y) ≤ dX(x, z) + dX(z, y), for any x, y, z ∈ X.

If (X, dX) and (Y, dY ) are metric spaces, then a function f : X → Y is
an isometry if dY (f(x), f(y)) = dX(x, y), for all x, y ∈ X. Obviously, any
isometry is an injective and continuous function. If f is a surjective isometry,
then we say that (X, dX) and (Y, dY ) and isometric spaces. In such case, f−1 is
likewise an isometry. Evidently, the relation of being isometric is an equivalence
relation in the class of metric spaces.

Let (X, dX) be a metric space, x0 ∈ X and f : X → X a surjective isometry.
Then (X, dX) is x0-symmetric with respect to f if, for each x ∈ X,

dX(x, x0) = dX(f(x), x0) =
1

2
dX(x, f(x)).

If there is no ambiguity, then (X, dX) is simply called x0-symmetric. As an
example, if X = [−1, 1] with the metric d of R and f : X → X is given by
f(x) = −x, then (X, d) is 0-symmetric with respect to f . Also, if (X, ∥ · ∥) is
a real Banach space with the norm ∥ · ∥ : X → R, dX is the respective induced
norm and a ∈ X, then (X, dX) is a-symmetric with respect to f(x) = 2a− x.

The following are some properties satisfied by symmetric metric spaces.

Proposition 1. Let (X, dX) be a metric space, x0 ∈ X and f : X → X a
surjective isometry. If (X, dX) is x0-symmetric with respect to f , then it is also
x0-symmetric with respect to f−1.

Proof. Beforehand, notice that f−1 is also a surjective isometry. Let y ∈ X,
and take x ∈ X such that y = f(x). It follows that

dX(y, x0) = dX(f(x), x0) = dX(x, x0) = dX(f−1(y), x0)

=
1

2
dX(x, f(x)) =

1

2
dX(f−1(y), y).

We conclude that (X, dX) is x0-symmetric with respect to f−1.

Proposition 2. Let (X, dX) and (Y, dY ) be metric spaces, let x0 ∈ X and
suppose that f : X → X and ϕ : X → Y are surjective isometries. If (X, dX) is
a x0-symmetric metric space with respect to f , then (Y, dY ) is ϕ(x0)-symmetric
with respect to g = ϕ ◦ f ◦ ϕ−1.

Proof. Being the composition of surjective isometries, g itself is a surjective
isometry. On the other hand, if y ∈ Y , then the x0-symmetry of (X, dX) with
respect to f and isometry properties of f , ϕ and ϕ−1 assure that

dY (y, ϕ(x0)) = dX(ϕ−1(y), x0) = dX(f(ϕ−1(y)), x0) = dY (g(y), ϕ(x0))
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and
1

2
dY (y, g(y)) =

1

2
dX(ϕ−1(y), f(ϕ−1(y))) = dX(f(ϕ−1(y)), x0)

= dY (g(y), ϕ(x0)).

These facts establish that (Y, dY ) is ϕ(x0)-symmetric with respect to g.

Let (X, dX) be a metric space, x0 ∈ X and f, g : X → X to surjective
isometries. In general, it is not true that (X, dX) is a x0-symmetric metric
space with respect to g ◦ f when it is x0-symmetric with respect to f and g.
Indeed, let (X, dX) be the real numbers with its usual distance, and let us define
f(x) = g(x) = −x, for each x ∈ X. It is obvious that (X, dX) is 0-symmetric
with respect to f and g, but it is not 0-symmetric with respect to g ◦ f . In fact,
notice that dX(x, (g ◦ f)(x)) = 0, for each x ∈ X.

2. Main results

This section is devoted to providing additional properties and ways to construct
symmetric metric spaces. In the remainder and unless we mention something
different, we will assume that (X, dX) is a metric space, x0 ∈ X and f : X → X
will be a surjective isometry.

To start with, we recall some standard definitions. If (X, dX) is a metric
space, x ∈ X and A ⊆ X is nonempty, then we define

dX(x,A) = inf
y∈A

dX(x, y).

In addition, if B ⊆ X is also nonempty, then we define the number dX(A,B)
alternatively (and equivalently) in the following way:

dX(A,B) = inf
x∈A
y∈B

dX(x, y) = inf
x∈A

dX(x,B) = inf
y∈B

dX(y,A).

Proposition 3. Suppose that (X, dX) is an x0-symmetric metric space with
respect to f , and let A ⊆ X be nonempty. Then

dX(x0, A) = dX(x0, f(A)) ≥
1

2
dX(A, f(A)).

Proof. Observe that the following inequalities hold:

dX(x0, A) = inf
x∈A

dX(x0, x) = inf
x∈A

dX(x0, f(x)) = inf
y∈f(A)

dX(x0, y)

= dX(x0, f(A)) = inf
x∈A

dX(x0, f(x)) =
1

2
inf
x∈A

dX(x, f(X))

≥ 1

2
inf
x∈A

y∈f(A)

dX(x, y) =
1

2
dX(A, f(A)),

which yields the conclusion of this result.
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The following result is motivated by the reduced cone CX defined in [3].

Theorem 1. Every metric space is isometrically a subset of a symmetric space.

Proof. Let (X, dX) be any metric space, and fix x0 ∈ X arbitrarily. Through-
out, we will let Y = (X×{x0})∪({x0}×X). Obviously, Y is a subset of X×X.
Define the function dY : Y × Y → R as

dY ((x1, x2), (y1, y2)) = dX(x1, y1) + dX(x2, y2),

for each (x1, x2) and (y1, y2) in Y . It is easy to check then that (Y, dY ) is a
metric space. Let ϕ : X → Y be given by ϕ(x) = (x, x0), for each x ∈ X. Notice
firstly that ϕ is an isometry by virtue of the fact that

dY (ϕ(x), ϕ(y)) = dY ((x, x0), (y, x0)) = dX(x, y), ∀x, y ∈ X.

Let us define f : Y → Y by f(x, x0) = (x0, x) and f(x0, x) = (x, x0), for each
x ∈ X. Evidently, f is a surjective function. Moreover, f is also an isometry.
To check this fact, various cases need to be considered. Indeed, observe that

dY (f(x, x0), f(y, x0)) = dX(x, y) = dY ((x, x0), (y, x0)),

dY (f(x0, x), f(x0, y)) = dX(x, y) = dY ((x0, x), (x0, y)),

dY (f(x, x0), f(x0, y)) = dX(y, x0) + dX(x0, x) = dY ((x, x0), (y, x0)),

for each x, y ∈ X. We claim now that Y is x∗-symmetric with respect to f ,
where x∗ = (x0, x0) ∈ Y . To show that, notice firstly that, for each x ∈ X,

dY (f(x, x0), x
∗) = dY ((x, x0), x

∗) = dX(x, x0)

=
1

2
[dX(x, x0) + dX(x, x0)] =

1

2
dY ((x, x0), f(x, x0)).

In similar fashion, we can prove also that

dY (f(x0, x), x
∗) = dY ((x0, x), x

∗) =
1

2
dY ((x0, x), f(x0, x)), ∀x ∈ X.

We conclude that (Y, dY ) is x∗-symmetric with respect to f , and that (X, dX)
is isometric to a subset of (Y, dY ), as desired.

It is well known that every metric space (X, dX) can be extended to be
a complete metric space. Moreover, the metric space (X, dX) is dense in its
completion. Our last result establishes that the completion is symmetric if the
space (X, dX) is symmetric. Before proving the theorem, we recall some of the
details in the construction of the proof for the completion of a metric space. Let
S(X) be the set of all Cauchy sequences in (X, dX), and define a relation of X as
follows: if (xn) and (yn) are members of S(X), we say that they are equivalent if
limn→∞ dX(xn, yn) = 0. This is an equivalence relation on S(X), and the set of
equivalence classes is denoted by C(X, dX) or, simply, by C(X). For the sake of
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briefness, the equivalence class determined by the Cauchy sequence (xn) ∈ S(X)
will be denoted also by (xn).

Define next the function dC(X) : C(X)× C(X) → R by

dC(X)((xn), (yn)) = lim
n→∞

dX(xn, yn),

for any two equivalence classes (xn) and (yn) in C(X). This function is well
defined on C(X) and, moreover, it is a metric. The space (C(X), dC(X)) is a
complete metric space. In addition, if ιX : X → C(X) is the function that
assigns to each x ∈ X the constant sequence whose nth term is x, then ιX is an
isometry and ιX(X) is dense in C(X). The space (C(X), dC(X)) constructed in
this way is called the completion of the metric space (X, dX).

Interestingly, if (X, dX) is a metric space, (C(X), dC(X)) is its completion,
(Y, dY ) and complete metric space and f : X → Y an isometry, then there
exists a unique isometry f : C(X) → Y making the following diagram commute:

X C(X)

Y

ιX

f
f

The uniqueness of completions up to isometries is a consequence of this property.
Moreover, if (X, dX) and (Y, dY ) are metric spaces and f : X → Y is an isometry,
then there exists a unique isometry C(f) : C(X) → C(Y ) which makes the
following diagram commute:

X C(X)

Y C(Y )

ιX

f C(f)

ιY

In addition, recall that C preserves compositions of isometries and identity
mappings. This implies that C is a functor from the category of metric spaces
with isometries, into the category of complete metric spaces. With these conven-
tions, the following proposition shows that if (X, dX) is an x0-symmetric metric
space with respect to the isometry f : X → X, then (C(X), dC(X)) is ιX(x0)-
symmetric with respect to C(f). The statement is summarized as follows.

Theorem 2. The completion of a symmetric metric space is likewise symmetric.

Proof. We will use the notation preceding the theorem. Since f : X → X is a
surjective isometry, then C(f) : C(X) → C(X) is likewise a surjective isometry.
For the sake of convenience, let f̂ = C(f) and x∗0 = ιX(x0). To show that
(C(X), dC(X)) is x∗0-symmetric with respect to f̂ , it remains to check that, for
each x∗ ∈ C(X), the following identities are satisfied:

(1) dC(X)(x
∗, x∗0) = dC(X)(f̂(x

∗), x∗0) =
1

2
dC(X)(x

∗, f̂(x∗)).
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Let us assume firstly that x∗ ∈ ιX(X). So, there exists x ∈ X with the property
that x∗ = ιX(x). As a consequence of this, the fact that ιX is an isometry, the
functorial properties of the completion and the x0-symmetry of (X, dX) with
respect to f , we obtain

dC(X)(x
∗, x∗0) = dC(X)(ιX(x), ιX(x0)) = dX(x, x0) = dX(f(x), x0)

= dC(X)(ιX(f(x)), ιX(x0)) = dC(X)(f̂(ιX(x)), ιX(x0))

= dC(X)(f̂(x
∗), x∗0).

Similarly, notice that

dC(X)(x
∗, x∗0) = dX(x, x0) =

1

2
dX(x, f(x)) =

1

2
dC(X)(ιX(x), ιX(f(x)))

=
1

2
dC(X)(x

∗, f̂(ιX(x))) =
1

2
dC(X)(x

∗, f̂(x∗)).

As a consequence, we have proved that (1) holds for each x∗ ∈ ιX(X). To show
that the conclusion is also valid for all x∗ ∈ C(X), recall that the closure of
ιX(X) is equal to C(X), and let (x∗n) be any sequence in ιX(X) which converges
to x∗. Thus, if n ∈ N, then

dC(X)(x
∗
n, x

∗
0) = dC(X)(f̂(x

∗
n), x

∗
0) =

1

2
dC(X)(x

∗
n, f̂(x

∗
n))

Taking now the limit when n → ∞, using that the metric dC(X) and f̂ are
both continuous functions, we prove that (1) is satisfied for all x∗ ∈ C(X). We
conclude that (C(X), dC(X)) is x

∗
0-symmetric with respect to f̂ .

3. Examples

In this section, we provide some constructions of symmetric spaces. Various
examples will be provided at this stage of our work. In the first of them, we will
show that some products of symmetric spaces are likewise symmetric.

Example 1. Let (Xi, dXi) be metric spaces, x∗i ∈ Xi and fi : Xi → Xi surjective
isometries, and assume that (Xi, dXi) is x∗i -symmetric with respect to fi, for
each i = 1, 2. Let X = X1 ×X2, fix x

∗ = (x∗1, x
∗
2), and agree that x = (x1, x2)

and y = (y1, y2), for each x, y ∈ X. Let us define dX : X ×X → R by means of
the equation

dX(x, y) = dX1(x1, y1) + dX2(x2, y2),

for each x, y ∈ X. It is obvious that (X, dX) is a metric space. Let f : X → X
be defined as f(x) = (f1(x1), f2(x2)), for each x ∈ X. Then f is surjective and,
moreover, it is an isometry by virtue that

dX(f(x), f(y)) = dX((f1(x1), f2(x2)), (f1(y1), f2(y2)))

= dX1(f1(x1), f1(y1)) + dX2(f2(x2), f2(y2))

= dX1(x1, y1) + dX2(x2, y2) = dX(x, y).
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Additionally,

dX(x, x∗) = dX1(x1, x
∗
1) + dX2(x2, x

∗
2) = dX1(f1(x1), x

∗
1) + dX2(f2(x2), x

∗
2)

= dX(f(x), x∗) =
1

2
[dX1(x1, f1(x1)) + dX2(x2, f1(x2))]

=
1

2
dX(x, f(x)).

We conclude that (X, dX) is x∗-symmetric with respect to f .

It is worth pointing out that the last example can be generalized to the
product of a finite number of symmetric metric spaces. Moreover, the example
can be extended to account for different metrics, including the infinity metric
and the Euclidean metric induced in dX1 and dX2 .

To state our next result, recall that if (X, dX) is a metric space and E ⊆
X is nonempty, we say that E is bounded if there exists K ∈ R such that
dX(x, y) ≤ K, for each x, y ∈ E. If that is the case, then we let

diamE = sup{dX(x, y) : x, y ∈ E}.

Theorem 3. Let (X, dX) be x0-symmetric with respect to f , and let E ̸= ∅. Let
B = {g : E → X : diam g(E) <∞}, and dB : B ×B → R be given by

dB(g, h) = sup
e∈E

dX(g(e), h(e)), ∀g, h ∈ B.

Let Φ : B → B be given by Φ(g) = f ◦ g, for each g ∈ B. Then B is gx0-
symmetric with respect to Φ, where gx0 : E → X is the constant gx0 ≡ x0.

Proof. To start with, observe that (B, dB) is indeed a metric space. To show
that Φ is surjective, let h : E → X be such that diamh(E) < ∞, and let g =
f−1◦h. The fact that f is an isometry assures that diam g(E) = diamh(E) <∞,
which means that g ∈ B and, moreover, Φ(g) = h. The fact that Φ is an isometry
is a consequence of the fact that f is an isometry, so

dB(Φ(g),Φ(h)) = sup
e∈E

dX(f(g(e)), f(h(e))) = sup
e∈E

dX(g(e), h(e)) = dB(g, h),

for each g, h ∈ B. Finally, observe that

dB(g, gx0) = sup
e∈E

dX(g(e), x0) = sup
e∈E

dX(f(g(e)), x0)

= sup
e∈E

dX((Φ(g))(e), x0) = dB(Φ(g), gx0)

=
1

2
sup
e∈E

dX(f(g(e)), g(e)) =
1

2
dB(Φ(g), g),

for each g ∈ B. We conclude that B is gx0-symmetric with respect to Φ.
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Theorem 4. Let (X, dX) be a compact metric space, assume that (Y, dY ) is
y0-symmetric with respect to f , and let C = {g : X → Y : g is continuous}. Let
dC : C × C → R be defined by

dC(g, h) = sup
x∈X

dY (g(x), h(x)), ∀g, h ∈ C.

Then (C, dC) is gy0-symmetric with respect to Φ(g) = f ◦ g. Here, gy0 : X → Y
is the constant function gy0 ≡ y0.

Proof. The proof is similar to that of the previous theorem. We just need to
point out here that the function dC is well defined in this case, in view of the
compactness of the metric space (X, dX).

It is worth pointing out that the compactness assumption on the metric
space (X, dX) can be omitted in the last theorem. To that end, we require to
redefine the set C as

C = {g : X → Y : g is continuous and diam g(E) <∞} .

Using all the remaining assumptions in Theorem 4, we can readily reach the
same conclusion.
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Abstract. We develop a new strategy for proving optimal packing densities for N
congruent circles in a circle. Specifically, we introduce tight partitions, which generalize
filled rings of circles, and show that for the densest packing, the union of tight partitions
forms a connected graph containing the center of every circle, except for possibly rattlers
on the container boundary. We then apply this to the case of N = 14 to reduce the
list of potentially optimal solutions to one basic shape, which in turn admits a one-
parameter family of configurations with two local extrema, one of which is the global
optimal.

Keywords: circle packing, rings of circles, tight partitions.

1. Introduction

Circle packing problems with various containers and radii arise in applications
to factory layouts [2, 5], communications networks [1, 3, 8], circular cutting [16],
cylinder packing [6], container loading [13], and social distancing [24], but in
general are considered to be NP-hard [4, 7]. For packing N congruent circles
of unit radius in a circle, minimum container radii (or equivalently maximum
densities) have been proved only for N ≤ 14 and N = 19 [9, 10, 11, 12, 19, 21].
For general N , only heuristic methods have been proposed to find approximate
solutions [15, 17, 20]; the best known solutions up to N = 2647 can be found at
[23]. Our goal in the current paper is to provide a new strategy for proving opti-
mal density which we hypothesize can be systematically applied to increasing N .
We demonstrate the utility of this new approach by providing an independent
proof for the case of N = 14.

Specifically, we geometrically reduce the number of basic configurations for
circles using a new tool that we refer to as tight partitions, which generalize
filled rings of circles, and which characterize global ring structure that must ex-
ist for potentially optimal configurations. For the case of N = 14, we use tight

*. Corresponding author
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partitions to geometrically reduce the problem to one basic shape. This basic
shape admits a one-parameter family of geometric configurations that have as
endpoints a symmetric arrangement and an extreme one, where no further de-
formation of the basic shape is possible. We then show that the container radius
is monotone decreasing from the symmetric arrangement to the extreme one,
which therefore yields the optimal solution. With a similar analysis, we believe
it is possible to establish that for any N , and for any given feasible configuration,
the distinct local minima occur either in a symmetric or extreme arrangement. A
proof of such a conjecture, along with the identification of a finite configuration
list using tight partitions, will lead to a tractable combinatorial optimization
problem for increasing N .

The outline of the paper is as follows. In Section 2 we define tight parti-
tions, and prove Theorem 2.1 that the union of tight partitions forms a con-
nected graph containing the center of every circle, except for possibly outermost
rattlers. In Section 3 we apply this to N = 14, determining the basic shape
of the optimal solution in Theorem 3.1. In Section 4 we then state and prove
Theorem 4.1 which establishes the densest packing.

2. Partitions and tight partitions

Consider a packing of circles C1, . . . , CN of unit radius into a circular container
of radius r centered at O. As introduced in [8], there is a set of rings, R1, . . . , Rn,
that are concentric circles with center O and corresponding radii 0 ≤ r1 < . . . <
rn = r − 1, such that each circle Ci has its center on some ring Rj . A filled
ring is one for which consecutive circles along that ring are mutually tangent,
so there are no gaps. Since filled rings cannot be assumed to be present, our
goal in this section is to provide a more general notion of well-defined layers
without gaps. The observations in this section are basic, yet will lead to useful
conceptual organization of subsequent sections.

We will refer to the complex of rings as R; we will assume in this section
that ri > 0, but observe at the outset that all results hold for N > 13 even if
r1 = 0, since in that case there are still at least two rings with ri > 0, which
will suffice for all proofs. Given two circles Ci, Cj ∈ R, there is a central angle
θCiCj formed by line segments joining the centers of Ci, Cj with O.

Definition 2.1 (Partition). A partition P is a piecewise linear simple closed
loop whose segments connect centers of circles in R, such that if there are m
segments, then the corresponding central angles θi have measures 0 < θi < π,
i ∈ {1, . . . ,m}, with

∑m
i=1 θi = 2π.

A partition is thus an edge-path which connects centers of circles, and pro-
ceeds strictly monotonically once around the center O of the ring complex. We
use the word partition because the central angles partition 2π. We will as-
sume our packing is optimal at minimum radius r, so that we may assume the
following three conditions:
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A. rn is the minimum outer radius for ring complexes R with N circles.
B. Given Condition A, every other radius ri for 1 ≤ i < n is maximized.
C. Given Conditions A and B, the total number of rings n is maximized.

That Condition A holds is obvious. Conditions B and C then guarantee that
with Condition A in place, no circle may be moved further outward from O;
in particular rattlers, which have local freedom of movement, are pushed as far
outward from O as possible. We prove three initial lemmas that show partitions
exist through every circle.

Lemma 2.1. Let Ri, Ri+1 be successive rings with respective circles Ci, Ci+1.
Then the centers of Ci, Ci+1 are not on the same radial ray extending from O.

Proof. Suppose, for contradiction, that Ci and Ci+1 have centers on a common
radial ray extending from O. Then Ci and Ci+1 must be tangent, with ri +2 =
ri+1, and in fact any point where circles of Ri and Ri+1 intersect must also be
a point of tangency on some radial line. Thus, all Rj for i + 1 ≤ j ≤ n can be
rotated simultaneously such that all circles of Ri are disjoint from all circles of
Ri+1, and we can increase ri, contradicting Condition B.

Lemma 2.2. There exists a partition P for R.

Proof. Let U be the convex hull of all centers of circles in R, and note that U
is not a line segment due to Lemma 2.1 and the fact that N > 2. We observe
that if O ∈ Int U we are done, for then Bd U is our desired partition P . If O
is not initially contained in Int U we will show that the circles in R admit a
perturbation within their circular container so that either O ∈ Int U , or rn can
be reduced, contradicting Condition A.

To that end, if O /∈ Int U , since U is convex there is a diameter ℓ of the
circular container for R that is disjoint from Int U , so that Int U is entirely
contained on one side of ℓ, as shown in part (a) of Figure 1. We call H the side
disjoint from Int U . We need to consider the cases when O is on Bd U , or when
O is disjoint from U altogether.

If O is on Bd U , it is possible that O is a vertex of Bd U , meaning a center
of a circle is at O. If so, since U is convex we can translate that vertex and
corresponding circle slightly into H so as to obtain O ∈ Int U . The other
possibility is that O lies on an edge of Bd U . Then both endpoints of that edge
are centers of circles that lie on ℓ on opposite sides of O, and we can rotate one
of those circles slightly into H, so as to obtain O ∈ Int U .

Finally, we consider the case where O is disjoint from U , as depicted in part
(a) of Figure 1. Then all circles in R admit a translation within the circular
container perpendicular to ℓ, eliminating all points of tangency between circles
in R and the container as in part (b) of Figure 1. Thus, the container radius,
and hence rn, can be reduced, contradicting Condition A.
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(a) (b)

ℓ O

U

H

Figure 1: Figure for Lemma 2.2.

Lemma 2.3. If C ∈ R, there is a partition PC that contains the center of C.

Proof. Consider the radial ray extending from O through the center p of C.
Since we know there is at least one partition P , this ray must intersect P . If it
intersects a vertex of P at a center p1 of a circle C1, we can replace p1 with p
to obtain a new partition PC which has an edge-path now through p. If the ray
intersects an edge of P joining two centers p1 and p2 of circles C1 and C2, then
we can obtain a new partition PC which has an edge-path going from p1 to p
then to p2.

We now present our primary definition.

Definition 2.2 (Tight partition). A tight partition P for R is a partition where
all segments have length 2.

A tight partition is an edge-path which connects successive centers of tangent
circles strictly monotonically once around O, and generalizes filled rings. Note
that every packing R comes equipped with a tangency graph, where centers of
circles are vertices, and edges between two vertices indicate tangency between
those two circles. Therefore, a tight partition is a particular kind of loop in
the tangency graph which proceeds monotonically around O. We also note
that every optimal packing must have edges in its tangency graph, since if no
tangencies exist then all circles have freedom of movement, and we may reduce
rn.

Before proceeding to the existence of tight partitions, we need two defini-
tions. Consider two circles C,C ′ with radii rC , rC′ ; if C,C ′ are tangent, then
their central angle is θCC′ = cos−1

(
(r2C + r2C′ − 4)/(2rCrC′)

)
, which may be

acute, right or obtuse.

Definition 2.3 (Angular defect between C and C ′). The angular defect between
C and C ′ is defined as

δCC′ =

{
θCC′ − cos−1

(
(r2C + r2C′ − 4)/(2rCrC′)

)
, if |rC − rC′ | < 2,

θCC′ , otherwise.
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The angle δCC′ ≥ 0, since it is the angle needed to rotate C along its ring
until it is either tangent to C ′ (the first case) or along the same radial ray (the
second case).

Definition 2.4 (Angular defect for R). The angular defect for R is defined as

δ = min{ δCC′ | C,C ′ ∈ R and δCC′ > 0}.

We now can prove the existence of tight partitions.

Proposition 2.1. There exists a tight partition P for R.

Proof. Suppose for contradiction that there does not exist a tight partition. By
Lemma 2.2, let P be the non-empty set of all partitions for R. For each P ∈ P,
there is at least one edge e of length greater than 2, from circle C to C ′, with an
angular defect δe = δCC′ > 0. We know that δe ≥ δ > 0. Throughout the proof
we will be rotating circles along their rings, and we consider the counterclockwise
direction to be the forward direction of rotation around O.

We label the circles of R randomly as C1, . . . , CN . For any circle Ci, by
Lemma 2.1 any points of tangency with other circles will either occur before
Ci’s radial ray, or after. This will be seen in the tangency graph at the vertex
Ci as adjacent edges which extend backward in the counterclockwise direction
(which we term backward edges), or adjacent edges which extend forward (which
we term forward edges). Note that if Ci had a backward edge to Cj , that edge
acts as a forward edge for Cj .

With this in mind, we rotate circles forward along their rings in the following
manner: First, we rotate C1 by δ/2. If C1 has forward edges connecting it
to adjacent circles, its rotation will force those circles to rotate by δ/2, and
this rotation may propagate forward via connections in the tangency graph.
However, no new edges in the tangency graph, and hence no new tight partitions,
will be created in R, since δ/2 < δ. Moreover, any circles originally connected
by backward edges to C1 will stay fixed, since if they moved along with C1, this
would imply a monotonic loop around O in the tangency graph, and hence a
tight partition. Thus, all backward edges connected to C1 will be eliminated
from the tangency graph. The new angular defect is at least δ/2.

For i > 1 we then rotate each Ci forward, one at a time in orderly succes-
sion, by δ/2i, where prior to each rotation the angular defect is at least δ/2i−1.
As above, this may force other circles to rotate forward by connections in the
tangency graph, but no new edges in the tangency graph will be created since
δ/2i < δ/2i−1. Moreover, since no tight partitions exist, each Ci’s backward
edges will be eliminated. After the final rotation of CN , all edges in the tan-
gency graph are eliminated, and thus rn can be reduced, contradicting Condition
A. Therefore, tight partitions must exist.

We now show how tight partitions relate to the specific rings in R.
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Lemma 2.4. For each ring Ri, there exists at least one tight partition P which
contains centers of circles from Ri.

Proof. Suppose for contradiction that no tight partition contains circles from
Ri. We argue exactly as in Proposition 2.1, but now in the presence of existing
tight partitions. Specifically, when we rotate each Cj , if it is in an existing tight
partition, it will stay in that tight partition, since the whole partition will be
forced to move via forward edges in the tangency graph. However, no new tight
partitions will be created, and any backward edges not in a tight partition will
be eliminated. After the N rotations, all edges in the tangency graph that were
not originally in a tight partition will therefore be eliminated. As a result, since
no circle in Ri was in a tight partition, the circles in Ri will have no adjacent
edges in the tangency graph. If i = n, then rn can be reduced, contradicting
Condition A; if i < n then ri can be increased, contradicting Condition B.

Recalling that a tight partition is a particular loop in the tangency graph,
let T be the subgraph of the tangency graph obtained by letting T be the union
of all tight partitions.

Theorem 2.1. T forms a connected graph, and includes every circle in R except
possibly a proper subset of the circles in Rn, which are rattlers.

Proof. Suppose for contradiction that there are at least two distinct compo-
nents of T , which we call T1 and T2. We begin with some topological obser-
vations. First, because T1 and T2 are each connected unions of loops around
O, they are each contained in topological annuli which we call A1 and A2, re-
spectively, which are disjoint from O and which are separated by a topological
circle C in the plane. C also separates the plane into a topological disc and its
complement. Without loss of generality we may assume A1 is contained in the
disc, and A2 in its complement. Since A1 contains at least one tight partition
which is a closed loop around O, the center O must also be contained in the
disc. Therefore, C must be a topological circle containing O with T1 and its
annulus A1, with T2 and its annulus A2 enclosing all of these. A schematic
for this basic topological configuration is shown in Figure 2. Moreover, we can
assume that T2 is the outermost component of T from O, if there are more than
two components. Thus, of all the components of T , only T1 contains circles of
R1, and only T2 contains circles from Rn, for no other components of T can
intersect the annuli in Figure 2.

We now turn our attention to the entire tangency graph. T1 may be con-
nected by an edge in the tangency graph to another circle C /∈ T1, meaning
there is no tight partition in T1 that also contains C. The same holds true for
T2. As in Proposition 2.1 and Lemma 2.4 we use the angular defect to rotate all
circles in R, and observe that because T1 and T2 are connected unions of tight
partitions, they will remain connected after the rotation of all circles. However,
the edges in the tangency graph between each of them and other circles are
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Figure 2: Figure for Theorem 2.1.

eliminated. Therefore, T1 and T2 are now disjoint components of the overall
tangency graph, and any other circles are in components of the tangency graph
disjoint from the Ti. As a result, we can uniformly increase radii of all circles
in T1, including all circles of R1 and thus increasing r1, without moving any
circle in T2, and in particular not increasing rn. This increase in r1 contradicts
Condition B, so that T must be a connected graph.

Finally, to see that T contains every circle in R except perhaps isolated
rattlers in Rn, observe that the angular defect rotation ensures that any circles
not in T are disconnected vertices in the tangency graph. Any such circles that
are not in Rn can have their radii increased, contradicting either Conditions B
or C, depending on whether an entire ring can increase, or just a subset of a
ring. Thus, such disconnected circles must only be rattlers in Rn, and cannot
include all of Rn, for otherwise rn could be decreased.

We conclude with a useful corollary and definition.

Corollary 2.1. For the connected graph T there is an outermost tight partition
which contains every non-rattler circle in Rn, and an innermost tight partition
which contains every circle in R1.

Proof. Since T is the union of tight partitions, which are loops in the tangency
graph that proceed monotonically around O, there will be an innermost such
loop closest to O, which is the innermost tight partition. Observe that this
innermost tight partition bounds a disc containing O and no other vertex of
T . By Theorem 2.1, all circles in R1 are vertices of T , and hence must be in
this innermost tight partition. Likewise there will be an outermost loop farthest
from O, which is the outermost tight partition, and outside it can be no vertices
of T , so that by Theorem 2.1 it must contain every non-rattler circle of Rn. A
priori these two tight partitions may be identical if T consists of only one tight
partition, or they could possibly intersect along vertices or edges.



122 DINESH B. EKANAYAKE and DOUGLAS J. LAFOUNTAIN

Definition 2.5 (Pout, Pin, gap chains). Pout is the outermost tight partition
and Pin is the innermost tight partition. A gap chain C1, . . . , Ck is a maximal
sequence of consecutive circles in Pout from the inner rings R1, . . . , Rn−1.

3. The basic shape of the optimal packing for N = 14

Our new proof for N = 14 leverages the fact that all minimum container radii
for 1 ≤ N ≤ 13 are known. More specifically, the case of N = 13 is known
to have Rn a filled ring of 10 circles, yielding a radius of A = 3.23606798 [11],
and the best known packing for N = 14 has rn of B = 3.32842855, known since
1971 [14]. The inequality A ≤ rn ≤ B will be sufficient for us to hone in on the
basic shape for N = 14 in this section, via the subsections below. We denote
the number of circles in Rn by |Rn|.

3.1 7 ≤ |Rn| ≤ 10 and all circles in R1, . . . , Rn−1 touch Rn

We will assume that for minimum rn, the number |Rn| is maximized.

Lemma 3.1. If a gap occurs between two consecutive circles C1, C2 ∈ Rn, then
the central angle θC1C2 < 4π/10.

Proof. The radius A is for a filled ring of 10 circles, so that any one circle in
Rn has angular support at most 2π/10, for A ≤ rn ≤ B. If θC1C2 ≥ 4π/10,
there is enough angle in Rn for another circle; it remains to show that we can
move another circle into Rn, contradicting the maximized |Rn|. We first assume
both C1, C2 ∈ Pout; see part (a) of Figure 3, which shows C1, C2 connected by
a gap chain C3, . . . , Ck ∈ Pout, where it is possible k = 3. Let pi be the center
of Ci. The polygon formed by the line segment p1p2 and the portion of Pout

from p1 to p2 must be convex, for otherwise at least one of the circles C3, . . . , Ck

could move freely out to Rn. We thus can assume that p3 is closest to p1p2
compared to p4, . . . , pk, and as in part (a) of Figure 3 we can reflect C3 through
p1p4 without obstruction, and rotate the resulting circle along C1 to move it
out to Rn. We conclude the proof by observing that if C1 is a rattler, the only
change will be that the line segment p1p3 will have length greater than 2, but
this does not affect the ability to reflect and rotate C3 out to Rn.

…
.

(a) (b)

C1 p1 C2p2

C3

p3
C4

p4

O

O

C ′′

C

C ′

D
Z

Y

Figure 3: Figures for Lemmas 3.1, 3.4 and Proposition 3.1.
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This then allows us to begin to narrow down possibilities for |Rn|.

Lemma 3.2. 6 ≤ |Rn| ≤ 10, and the sum of |Rn| plus gaps in Rn is at least 11.

Proof. A filled ring of 11 circles easily fits 4 inside, and so |Rn| ≤ 10. If we
let j be the number of gaps in Rn then j ≤ |Rn|, and by Lemma 3.1 we require
that the angular support around Rn is

2π < j · 4π
10

+ (|Rn| − j) · 2π
10

= (|Rn|+ j) · 2π
10

yielding |Rn|+ j > 10. Since j ≤ |Rn| this forces |Rn| ≥ 6.

Denote by D the maximum value for rn−1, which occurs when a single circle
C3 between C1, C2 could be reflected out to rn = B as in Lemma 3.1. This is
when the angular gap is 2 sin−1(1/B) = cos−1

(
(B2 +D2 − 4)/(2BD)

)
which

yields D = 2.126660.
Let E be the distance from O for a circle that forms an equilateral triangle

with two tangent circles from Rn, when rn = B. Then E =
√
B2 − 1 −

√
3 =

1.442605, and we call any circle C with distance greater than E a gap circle,
since it forces a gap in Rn.

Lemma 3.3. |Rn| ≥ 7.

Proof. If |Rn| = 6, then the other 8 circles fit in a container of radius D+ 1 =
3.126660, but the minimum container radius for N = 8 is 3.304765 [21].

We now work toward showing that all circles in R1, . . . , Rn−1 touch Rn.

Lemma 3.4. There is at most one circle C ∈ R1, . . . , Rn−1 which does not
touch Rn, and the centers of all circles in R1, . . . , Rn−1 that touch Rn form a
convex partition P .

Proof. If C is disjoint from Rn, then C is prevented from moving out to Rn by
two circles C ′, C ′′ ∈ R1, . . . , Rn−1, so that the maximum distance for C from O
is if C ′′, C, C ′ have centers collinear with C ′, C ′′ at distance D from O; see part
(b) of Figure 3 setting Y = D. This yields a maximum distance of

√
D2 − 4 for

C which we call F = 0.722969. Since F < 1, there is at most one such C. It
also follows that the centers of all circles C ∈ R1, . . . , Rn−1 that touch Rn form
a convex partition, since if not, one of them would likewise be forced to include
O by a similar calculation.

We now conclude this subsection, but first observe that the central angle
between the centers of two circles in a ring Ri is at least 2 sin−1(1/ri), but
if they have a circle of at least radius Y between them, the angle is at least
2 cos−1

(
(r2i + Y 2 − 4)/(2riY )

)
. We denote the angular support of Pin as Θin,

and the angular support of Pout as Θout.

Proposition 3.1. All circles in R1, . . . , Rn−1 touch Rn.
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Proof. If a circle C does not touch Rn, we seek a contradiction through two
cases:

|Rn| = 7, 8: If |Rn| = 7, there are 7 circles not in Rn. Since the 6 that touch
Rn form a convex partiton, their total angular contribution is minimized when
their distances from O are maximized. Thus, the farthest C can be from O is
when these other 6 circles in R1, . . . , Rn−1 are at a maximal distance D from
O, and all 7 inner circles form Pin; this opens up the most room for C to
move a distance Z away from O. Then Θin must be 2π = 10 sin−1(1/D) +
2 cos−1

(
(D2 + Z2 − 4)/(2DZ)

)
which yields Z = .168539. Since this is the

maximum value for Z, the closest the remaining 6 circles in R1, . . . , Rn−1 can
be to O is Y = 2 − Z = 1.831461, which is greater than E, so they must be
gap circles. Since the minimum container radius for both N = 6, 7 is 3 [21], we
know two of these gap circles have distance from O of at least 2. Since Θout is
minimized when rn = B, it must be at least

2 sin−1(1/B) + 4 cos−1(B/4) + 8 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 7.312832 > 2π,

contradicting the fact that it must equal 2π. Thus, when |Rn| = 7, C must
touch Rn.

For |Rn| = 8, there are 6 circles not in Rn, so C can be further from O. Θin is
2π = 8 sin−1(1/D) + 2 cos−1

(
(D2 + Z2 − 4)/(2DZ)

)
which yields Z = .453080.

All 5 remaining circles in R1, . . . , Rn−1 have distance at least Y = 2 − Z =
1.546920 which is greater than E, so they are gap circles. Since the minimum
container radius for N = 5 is G = 1.701302 [21], Θout must be at least

6 sin−1(1/B) + 2 cos−1(B/4) + 2 cos−1

(
B2 +G2 − 4

2BG

)
+ 6 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.414042 > 2π,

contradicting the fact that it must equal 2π. This concludes the proof for |Rn| =
7, 8.

|Rn| = 9, 10: We use a different argument. In order for C not to touchRn, it must
be constrained by two circles C ′, C ′′ ∈ R1, . . . , Rn−1; we call Z, Y the distances
of C,C ′′ from O, respectively. For a given Z, Y is minimized when the centers
of C ′′, C, C ′ are collinear with C ′ at maximal distance D in part (b) of Figure 3.

For 0.130750 ≤ Z ≤ F , we have Y =

√
4 + Z2 − 4Z cos

(
π − cos−1(Z

2+4−D2

4Z )
)
,

which is minimized when Y = 1.873902 at the left endpoint of its domain. Thus,
Θout is at least

14 sin−1(1/B) + 4 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.499456 > 2π,
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for |Rn| = 9, contradicting the fact that it must equal 2π. Since the Θout

calculation for |Rn| = 10 adds a 2 sin−1(1/B), it too is greater than 2π and the
lemma is proved.

3.2 |Rn| = 10 and all circles in R1, . . . , Rn−1 form Pin

We now define P to be the convex partition of all circles in R1, . . . , Rn−1, which
follows from Lemma 3.4 and Proposition 3.1.

Lemma 3.5. If two circles C,C ′ ∈ P touch a circle C1 ∈ Rn, then |Rn| < 9.

Proof. Refer to part (a) of Figure 4, where we have C,C ′ ∈ P touching a
single circle C1 from Rn between them; the distances x, y from O are for C,C ′,
respectively. Observe that given x, then y is minimized when the centers of
the circles form an equilateral triangle. When rn = B, y is a function of x via
s = cos−1

(
(B2 + 4− x2)/(4B)

)
and y =

√
4 +B2 − 4B cos(π/3− s). Then for

|Rn| ≥ 9, we know Θout is at least

14 sin−1(1/B) + 2 cos−1

(
B2 + y2 − 4

2By

)
+ 2 cos−1

(
B2 + x2 − 4

2Bx

)
≥ 6.445686 > 2π

where the minimum is when x = D and y ≈ 1.665517 is minimized.

(a) (b)
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t

Y Z

C

Figure 4: Figures for Lemmas 3.5 and 3.6.

If a sequence of circles C1, C2, . . . , Ck ∈ Rn proceeds from one gap circle to
the next, we will call this sequence in Rn an overpass of length k. Note that we
may assume that none of the Ci in an overpass are rattlers, since in maximizing
the gaps for the two gap circles the C1, . . . , Ck will rotate to form a path in the
tangency graph.

Lemma 3.6. Let C ∈ P be a non-gap circle which touches an overpass of Rn.
Then if |Rn| ≥ 9, the overpass is at least length 4.

Proof. If C touches an overpass of length 3, there are 3 circles C1, C2, C3 ∈ Rn

between two gap circles C ′, C ′′ ∈ P with distances Y,Z as in part (b) of Figure
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4. The angle t can vary between 0 ≤ t ≤ cos−1(1/B)−π/3, and given t then Y, Z
are minimized when there are no gaps between C ′, C, C ′′. Then when rn = B,

Y =
√
B2 + 4− 4B cos(π + t− 2 cos−1(1/B)),

Z =
√
B2 + 4− 4B cos(π − t− 2 cos−1(1/B)),

and we have that Θout is at least

14 sin−1(1/B) + 2 cos−1

(
B2 + Y 2 − 4

2BY

)
+ 2 cos−1

(
B2 + Z2 − 4

2BZ

)
≥ 6.650365 > 2π,

where the minimum value is achieved at t = .04502 when Y = D. We then
observe that for gaps between C ′, C, C ′′, or shorter overpasses, Θout will be even
greater, thus proving the lemma.

We can now prove the main results of this subsection.

Proposition 3.2. |Rn| = 10.

Proof. If |Rn| = 7, the inner convex partition P has 7 circles, whose minimum
container is a filled ring with radius 1 + 1/ sin(π/7) ≈ 3.304765 > D + 1.

If |Rn| = 8, suppose first that there is a non-gap circle C ∈ P . Then
its maximum distance is E. Let C ′ ∈ P with distance Y , where C ′ ̸= C.
Then Y is minimized when the other four circles in P are at maximal distance
D, and the angular support of P is 2π = 2 cos−1

(
(D2 + E2 − 4)/(2DE)

)
+

2 cos−1
(
(D2 + Y 2 − 4)/(2DY )

)
+ 4 sin−1(1/D) yielding Y ≈ 1.917185. Thus,

all circles in P besides C are gap circles, and as in Proposition 3.1 we have
Θout > 2π, since Y > 1.546920, the value used in that proposition. Thus, there
are six gap circles when |Rn| = 8 and by counting gaps, at most one of these gap
circles avoids the situation of Lemma 3.5, where consecutive gap circles touched
a common circle from Rn. Therefore, |Rn| > 8 since Θout is at least

6 sin−1(1/B) + 2 cos−1(B/4) + 2 cos−1

(
B2 +G2 − 4

2BG

)
+ 6 cos−1

(
B2 + y2 − 4

2By

)
≈ 6.852784 > 2π,

where y ≈ 1.665517 is minimized from Lemma 3.5.

For |Rn| = 9, we have at most 3 gap circles, since with 5 gap circles we
could not avoid the situation in Lemma 3.5, and with 4 gap circles we could
not avoid an overpass of length 3, contradicting Lemma 3.6. We then note that
the equation 2π = (18 − 2k) sin−1(1/B) + 2k cos−1

(
(B2 + y2 − 4)/(2By)

)
has

solutions W = 1.721602 for k = 2, and V = 1.595722 for k = 3, meaning there
cannot be 2 gap circles of distance greater than W , nor 3 gap circles of distance
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greater than V , for otherwise Θout > 2π. Then with 3 gap circles at distances
V,W,D, we would have Θin is at least

2 cos−1

(
E2 +D2 − 4

2ED

)
+ cos−1

(
V 2 +W 2 − 4

2VW

)
+cos−1

(
E2 + V 2 − 4

2EV

)
+ cos−1

(
E2 +W 2 − 4

2EW

)
≈ 6.350338 > 2π,

where no distances of circles can be increased in order to decrease Θin. This
proves the proposition.

Proposition 3.3. All circles in R1, . . . , Rn−1 form Pin.

Proof. We first show that P is tight. Suppose for contradiction that P has
a gap, so that there are two circles C ∈ P on either side of that gap. C is
prevented from moving inward by a circle C ′ ∈ P and a circle C1 ∈ Rn. For
a given rn, the closest distance Y for C is when the centers of C1, C, C

′ are
collinear and C ′ is at minimal distance rn − 2. Thus, Y =

√
r2n − 2rn − 2 using

Laws of Cosines, and graphing Y (rn) yields Y >
√
r2n − 1−

√
3 for A ≤ rn ≤ B,

so that the C’s are gap circles. Then Θout is at least

16 sin−1(1/rn) + 4 cos−1

(
r2n + Y 2 − 4

2rnY

)
≥ 6.522939 > 2π,

where the angular support is minimized at rn = B. Thus, P is tight.

Finally, if a subset of P formed a tight partition, then since all circles in P
are at least distance A− 2 from O, at least one circle in P would be at distance
at least

√
(A− 2)2 − 1 +

√
3 = 2.458593 > D, which cannot happen.

3.3 The basic optimal shape for N = 14

We begin with a definition and two lemmas.

Definition 3.1. A minimal polygon is formed by joining centers of circles, so
that all sides are length 2, and no subset of the sides forms a polygon.

Lemma 3.7. The only minimal rhombus is Pin.

Proof. By Proposition 3.1 any minimal rhombus different from Pin must have
two circles C1, C2 ∈ Rn and two circles C,C ′ ∈ Pin; see part (a) of Figure 5. At
rn = B, for varying angle θ where π/2 ≤ θ ≤ 2π/3, the distances x, y of C,C ′

are

x =
√
4 +B2 − 4B cos(π − (θ + cos−1(1/B))),

y =
√

4 +B2 − 4B cos(θ − cos−1(1/B)).
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Figure 5: Figures for Lemmas 3.7 and 3.8.

Solving for x = E yields two solutions θ = 1.657510, 2π/3 with y(1.657510) =
Y ≈ 1.665517. Graphing Θout as a function of θ shows it is minimized at Y ,
namely

16 sin−1(1/B) + 2 cos−1

(
B2 + E2 − 4

2BE

)
+ 2 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.445686 > 2π.

This proves the lemma.

Lemma 3.8. Any minimal pentagon has two circles from Pin, at most one of
which is a gap circle.

Proof. Since the distance between the centers of 4 consecutive circles on Rn

is at least 5.236068 > 4, we cannot have just one circle from Pin in a mini-
mal pentagon. Thus, we have two circles C,C ′ ∈ Pin and C1, C2, C3 ∈ Rn,
where the symmetric configuration is shown in part (b) of Figure 5. Now
for general rn, |C1C3| =

√
2r2n − 2r2n cos(4 sin

−1(1/rn)) using ∆OC1C3. Thus,

S =
√

4− (|C1C3|/2)2 and U =
√

4− ((|C1C3| − 2)/2)2, with T = rn− (S+U)

and Y =
√
1 + T 2. Graphing Y for A ≤ rn ≤ B yields Y (rn) <

√
r2n − 1 −

√
3

and thus neither of C,C ′ are gap circles in the symmetric configuration. Now
in order for C to be pushed out to be a gap circle, C ′ would be pushed inward,
so at most one of them is a gap circle.

We have two lemmas whose proofs we defer until after our main theorem for
this section.

Lemma 3.9. If there are no rattlers on Rn, then a minimal polygon has at most
5 sides.

Lemma 3.10. No rattlers exist on Rn.

We can now prove our theorem, which refers ahead to Figure 9.
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Figure 6: Hexagon and pentagon for Lemmas 3.9 and 3.10.

Theorem 3.1. The basic shape of the optimal packing of 14 equal circles in a
circle is in Figure 9, with the following features not mentioned previously:

1. Only the two circles in Pin with centers on ℓ touch two circles in Rn;

2. The packing has reflective symmetry across the vertical line ℓ;

3. The top or bottom triangles may be minimal.

Proof. Since only minimal triangles or pentagons are possible along Rn, two
circles in Pin are forced to touch Rn twice, and these cannot be consecutive on
Pin; the scheme in part (a) of Figure 7, where points are circles and arcs are
tangencies, is useful to verify this. The remainder of the packing must be 4
minimal pentagons. By symmetry of the rhombus and the 5 circles in Rn on
either side of the rhombus, the theorem follows.

For the two remaining proofs we set notation that C,C ′, C ′′, C ′′′ ∈ Pin with
respective distances Z,Z ′, Z ′′, Z ′′′ from O.

Proof of Lemma 3.9. Since the distance between 5 consecutive circles on Rn is
at least 6.155367 > 6, we cannot have minimal polygons with more than 6
sides. Thus, we consider a hexagon with C1, C2, C3, C4 ∈ Rn and C,C ′ ∈ Pin;
see part (a) of Figure 6, where we indicate C ′′, C ′′′ ∈ Pin for context. We first
describe dependencies for the next lemma. For a given value of rn, the angle t
is our variable, which may be positive or negative depending on whether it is to
the right or left of the radial line through the center of C4. Everything else is
determined by t as follows in part (a) of Figure 6:

M =
√

2r2n − 2r2n cos(6 sin
−1(1/rn)), Z =

√
r2n + 4− 4rn cos t,

α = cos−1(1/rn) + t− cos−1((M − 2)/4), L =
√
M2 + 4− 4M cosα,

β = cos−1((M2 + L2 − 4)/(2LM)), γ = cos−1(L/4),

s = cos−1(1/rn)− cos−1((M − 2)/4)− β − γ, Z ′ =
√
r2n + 4− 4rn cos s.
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We observe for the next lemma that similar equations hold for the pentagon
in part (b) of Figure 6 provided 6 sin−1(1/rn) is replaced by 4 sin−1(1/rn) in the
formula for M , and where M − 2 is used in α and s, then M is used instead.

Referring back to part (a) of Figure 6, a priori C,C ′ could be gap circles,
forcing gaps to the right of C4 and left of C1, respectively. To see that in fact
neither of C,C ′ are gap circles, first observe that the farthest C ′ can be rolled
along C1 to the right is when Z ′ =

√
r2n − 1 −

√
3 and the hexagon becomes

a pentagon. For A ≤ rn ≤ B we thus fix this Z ′, and graphing Z shows
Z <

√
r2n − 1 −

√
3; thus C,C ′ are not gap circles. But since we are assuming

no rattlers on Rn, we must have at least one gap circle by Lemma 3.2, which
without loss of generality is C ′′′. We consider part (a) of Figure 7, where points
of tangency between circles in our hexagon are indicated by black line segments,
with the curvature of the segments giving the direction of tangency. In order
to avoid rhombuses the three solid gray lines must be positioned exactly where
they are. But then since all three of the pentagons are minimal, the positions
of all circles are determined, meaning the dashed gray line from C ′ to C2 must
be present as well and C ′ must be a gap circle. Thus, in fact this is our optimal
shape shown in Figure 9 and we conclude that no hexagons exist, provided there
are no rattlers.

(a) (b)

C ′

CC ′′

C ′′′

C1 C2

C3

C4

C5

C6C7

C8

C9

C10

C ′

CC ′′

C ′′′

C1 C2

C3

C4

C5

C6C7

C8

C9

C10

Figure 7: Tangencies for Lemmas 3.9 and 3.10.

Proof of Lemma 3.10. We now show there are no rattlers. Any consecutive
rattlers C2, . . . , Ck−1 must occur between two circles C1, Ck ∈ Rn with a gap
chain of exactly two circles C,C ′ ∈ Pin, where the centers of C1, C

′, C, Ck are in
clockwise order. The first sentence in the proof of Lemma 3.9 shows that k =
3, 4, meaning we have a non-minimal pentagon or hexagon. The maximum total
angular gap on Rn is 2π − 20 sin−1(1/B) ≈ .180063 ≡ Φ. If we had a pentagon
with a rattler, the minimum angle between C1, C3 is when the centers of C ′, C1

and C,C3 share radial rays, yielding an angle of 2 sin−1(1/(B − 2)) ≈ 1.704517.
But subtracting 4 sin−1(1/B) from this for C1, C2, C3 yields .483893 > Φ. Thus,
we may assume only hexagons have rattlers.
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If we have one hexagon with rattlers, we have two cases. First, if we have
no minimal hexagons, then as in part (a) of Figure 7, to avoid rhombuses we
may assume that C ′′′ must be a gap circle. The pentagons are minimal, and the
exact same argument holds as in Lemma 3.9, showing that we have the basic
optimal shape with no rattlers. Second, if we have a minimal hexagon then we
also have two minimal pentagons. These are all adjacent in some order and via
parts (a) and (b) of Figure 6 with possible relabeling, all of Z,Z ′, Z ′′, Z ′′′ are
functions of one variable t for the minimal hexagon in part (a). For rn = B
we have −0.21844 ≤ t ≤ 0.05348, where the left endpoint is when Z = E and
the right is when Z ′ = E. If the minimal hexagon has a pentagon on either
side, graphing Θin in part (a) of Figure 8 shows it attains a minimum of 2π at
either endpoint where the hexagon becomes a pentagon. But this is the optimal
shape as in Lemma 3.9. Likewise, if the two pentagons are to the left of the
minimal hexagon, graphing Z ′′, Z ′′′ shows that one of C ′′, C ′′′ is always a gap
circle, and graphing Θout in part (b) of Figure 8 shows it has a minimum of
2π where Z ′ = E, again realizing the optimal shape. If the two pentagons are
to the right, the minimum is 2π when Z = E. This eliminates the case of one
hexagon with rattlers.

t t

t

(a) (b)

(c)

Θin Θout

2π 2π

max(Θin,Θout)
for ϕ = .054

2π

Z ′ + 4.9

1.489124 + 4.9

Figure 8: Graphs for Lemma 3.10 generated in Desmos.

If there are two hexagons with rattlers, then the tangencies are in part (b)
of Figure 7, since a minimal pentagon must prevent C1, C4, C6, C9 from moving
outward. Thus, each circle C,C ′, C ′′, C ′′′ is in a minimal pentagon, and the
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direction of the tangencies require that s ≤ 0 and t ≥ 0 in part (b) of Figure 6.
In particular the maximum value for Z (and so also Z ′, Z ′′, Z ′′′) must be when
s = 0, which yields 1.489124. Since the total angular gap Φ is shared by the
two non-minimal hexagons, the hexagon with gap chain C,C ′ has total angular
gap ϕ of at most Φ/2 ≈ .0900315. As ϕ increases, M in part (a) of Figure 6 can
increase for this hexagon, but the dependent quantities change accordingly, so
that we can still calculate max(Θin,Θout) as a function of t ≤ 0 for the hexagon,
but now with graphs parametrized by 0 ≤ ϕ ≤ Φ/2. Graphing these show that
they attain a minimum near 2π at t = −.05375 when ϕ = .054; this is shown
in part (c) of Figure 8 where the red curve is tangential to the blue line at 2π.
But at t = −.05375, we clearly have Z ′ > 1.489124, as indicated by the orange
curve (Z ′ + 4.9) being above the green line (1.489124 + 4.9); this is true for a
neighborhood of (t, ϕ) values and violates the constraint Z ′ ≤ 1.489124. This
proves the lemma.

4. The optimal solution

We can now determine the optimal packing. We refer the reader to Figure 9
which shows the basic shape of the optimal packing, with the center O placed
at the origin, and having reflective symmetry across the y-axis.

We may assume that β2 ≤ β1, with Figure 9 showing the case β2 = β1 which
has reflective symmetry over the x-axis. For convenience of notation we have
used r to denote the radius of Rn. The tight partition Pout applied to the left
side of the packing yields the equation

(1) γ1 + γ2 + 8 sin−1(1/r) = π

The quantities L1 and L2 denote the distance from O to the centers of C ′

and C ′′, respectively.

With this notation, we can now prove our main theorem.

Theorem 4.1. The optimal packing for 14 circles occurs when β2 = π/6 in
Figure 9, meaning there is no gap between C5 and C6 in Pout.

Proof. We show that if β2 > π/6, then r can be reduced and is not optimal.
The conclusion is then that the optimal solution occurs when β2 = π/6 and
there is no gap between C5 and C6 in Pout.

We therefore consider a value of β2 satisfying π/6 < β2 ≤ β1 < π/2, and for
the moment fix the outer radius r associated with that packing. We will also for
the moment assume that the rhombus formed by Pin is rigid, meaning that the
quantity L1+L2 is fixed. We will, however, be examining vertical translations of
this rigid Pin, with the result that if L2 is decreased, then L1 must be increased
by the same amount.

Since β2 > π/6, we can rotate C1 through C5 counterclockwise along the
container boundary by some positive angle ϵ > 0, and likewise C10 through C6



TIGHT PARTITIONS FOR PACKING CIRCLES IN A CIRCLE 133

x

y

r

C ′

C

C ′′

C ′′′
O

γ1

γ2

β1

β2

L1

L2

C1

C2

C3

C4

C5 C6

C7

C8

C9

C10

Figure 9: Quantities needed for the proof of Theorem 4.1.

clockwise by the same positive angle ϵ > 0, to decrease β2. This will force the
rhombus Pin upward. Since β2 ≤ β1, the points of tangency between C and
C3, and C ′′′ and C8, have nonnegative y-coordinate, so that these present no
obstruction to the upward translation of the rhombus Pin.

It therefore only remains to show that the decreasing of the gap between
C5 and C6 results in an increasing of the gap between C1 and C10 that is large
enough to accommodate the upward translation of C ′. This can be formalized
by considering γ2 and γ1, and first observing that by differentiating Equation 1,
the rotation of circles in Pout results in

(2)
dγ1
dγ2

= −1.

Now we need to compare this with the effect the upward translation of Pin

has on γ1. The Law of Cosines for the triangle having vertices O and the centers
of C1 and C ′ is

L2
1 + r2 − 2rL1 cos γ1 = 4,
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and implicitly differentiating this yields the positive derivative

dγ1
dL1

=
2r cos γ1 − 2L1

2rL1 sin γ1
.

Applying a similar Law of Cosines calculation for the triangle having vertices O
and the centers of C5 and C ′′, we obtain the positive derivative

dL2

dγ2
=

2rL2 sin γ2
2r cos γ2 − 2L2

.

Since L1 + L2 is constant we know dL1
dL2

= −1 so that by the chain rule

dγ1
dγ2

=
dγ1
dL1

· dL1

dL2
· dL2

dγ2

=
2r cos γ1 − 2L1

2rL1 sin γ1
· −1 · 2rL2 sin γ2

2r cos γ2 − 2L2

=
2r cos γ1 − 2L1

2r cos γ2 − 2L2
· −1 · 2rL2 sin γ2

2rL1 sin γ1
.

Since β2 ≤ β1 we also have γ2 ≤ γ1, and since L2 ≤ L1 as well, we know
that the first and third factors in the last expression are both positive values at
most one. The result is that the upward translation of the rhombus Pin yields

(3)
dγ1
dγ2

≤ −1.

Comparing Equation 2 with Inequality 3 shows that the rotation of circles
in Pout will open up γ1 enough to translate Pin upward. The result is that both
C and C ′′′ will no longer touch the outer ring, and thus have just two points of
tangency with the circles in Pin. Both C and C ′′′ can therefore be perturbed to
be rattlers, and r can then be decreased. This establishes the theorem.

We conclude the paper by observing that the optimal configuration estab-
lished in Theorem 4.1 is indeed that conjectured by Pirl [21]. This is shown in
Figure 10, where the global optimal, rotated clockwise by π/2, is obtained with
container radius 4.328 (accurate up to four decimal places) using the trust-region
Dogleg algorithm with the Matlab fsolve function.
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1. Introduction

Regular Ring Lattices (RRLs) are often exploited in a wide range of research
fields and they are also known in literature as k-cycles or “pristine worlds”[1,
2, 3, 4]. A RRL can be considered a peculiar undirected circulant network
[5] constructed from a cycle graph, wherein each node is connected to pairs of
neighbors spaced progressively in terms of vertex degree. Remarkably, RRLs are
employed in many graph-based distributed scalable algorithms (see, e.g., [6, 7, 8,
9, 10, 11, 12]), as their symmetry can be exploited for design purposes. Possible
applications for this class of networks may encompass intelligent surveillance of
public spaces [13], tracking-by-detection [14], identification of sparse reciprocal
graphical models [15], definition of shift in graph signal processing [16], modeling
of quantum walks [17], video circulant sampling schemes [18], compressive three-
dimensional sensing techniques [19] and sensor network monitoring algorithms
[20]. The latter examples, in fact, represent only few state-of-the-art topics
that motivate this study. Also, although being of straightforward derivation, a
rigorous characterization for the basic and spectral properties of RRLs is lacking
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or, in some dissertations, incorrect information about their features is provided
(see, e.g., the computation of the largest Laplacian eigenvalue λM associated to
a RRL in the recently published [21]).

In light of this premise, RRLs are here examined in detail. In particular, the
main contributions of this note consist in:

• the investigation of some of their basic properties;
• the spectral analysis of the associated Laplacian and Randić matrices.

Furthermore, an exact relationship for the spectra of these matrices is yielded
through the Dirichlet kernel. A special effort is then directed towards the ana-
lytical computation of the Fiedler value [22, 23, 24], representing the algebraic
connectivity of such graphs. With regard to RRLs, properties on the bounds for
the spectral radius of the Laplacian matrix [25, 26] and the essential spectral
radius of the Randić matrix [27, 28] are also provided. Lastly, conjectures on
the latter quantities are also proposed.

The remainder of the note is organized as follows. The mathematical pre-
liminaries in Sec. 2 offer an overview on RRLs. The main results of this work
are then presented in Sec. 3, where basic and spectral properties of RRLs are
widely explored. The study continues with the discussion in Sec. 4, in which
two conjectures related to the spectral radius (for the Laplacian matrix) and the
essential spectral radius (for the Randić matrix) of a RRL are given. To con-
clude, Sec. 5 summarizes all the reported findings and examines future research
directions.

Notation The sets of integer, natural, real, complex numbers are indicated
by N, Z, R, C, respectively; whereas, the empty set and the imaginary unit
are denoted by ∅ and i, respectively. The cosine and sine functions of α ∈ R
are respectively denoted with cos(α) and sin(α), or abbreviated as cα and sα.
The inverse sine and cosine function of α ∈ [−1, 1] are denoted by arcsin(α) and
arccos(α); while, the inverse tangent function of α ∈ R is denoted by arctan(α).
The complex exponential, floor and ceiling functions are defined respectively as
e : z ∈ C 7→ ez ∈ C \ {0}, ⌊⌋ : x ∈ R 7→ ⌊x⌋ ∈ Z and ⌈⌉ : x ∈ R 7→ ⌈x⌉ ∈ Z.
Given N ∈ N \ {0}, the quantity θ = π/N is assigned and used throughout
the note to shortly address the N -th part of a straight angle π; moreover, n =
⌊N/2⌋ is set. The modulo and transpose operations are denoted by mod and ⊤,
respectively. Given an n-dimensional real-valued vector w = (wk) ∈ Rn, the j-

th cyclic permutation over w =
[
w1 w2 · · · wN

]⊤
, with j ∈ Z, is defined as

wj =
[
w1+(j mod N) w1+(j−1 mod N) · · · w1+(j−1+N mod N)

]⊤
and it holds

wj = w for all j ∈ Z such that j mod N = 0. Also, ∥w∥1 denotes the 1-norm of
w. Given an N×N -dimensional squared real-valued matrix T = (th,k) ∈ RN×N

its h-th row is denoted by rowh(T); furthermore, its j-th eigenvalue of is denoted
by λTj , with j ∈ {0, . . . , N − 1}. The spectrum of T is defined as the set

Λ(T) = {λT0 , . . . , λTN−1}. Notably, it is assumed that eigenvalues λTj are not
necessarily ordered according to their index j. To conclude, IN denotes the
identity matrix of dimension N and the matrix diag(δ1, . . . , δN ) ∈ RN×N is
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equivalent to a squared diagonal matrix ∆ = (δh,k) ∈ RN×N such that δk,k = δk,
for k ∈ {1, . . . , N}; δh,k = 0, if h ̸= k.

2. Preliminaries

This research begins by briefly illustrating some bases of graph theory and a
few well-known mathematical preliminaries about circulant matrices, showing
familiar algebraic relations. Also, the definition and a few properties of the
Dirichlet kernel are reported.

2.1 Basic notions of graph theory

An undirected graph G = (V, E) is a networked structure formed by a vertex set
V = {v1, . . . , vN} and an edge set E ⊆ V×V, in which each edge eh,k = (vh, vk) =
(vk, vh), with h ̸= k, belongs to E if and only if there exists a connection between
vertices vh and vk. The cardinality of the edge set is denoted respectively by
M(G) = |E|. Equivalently, the whole structure of G can be described by the
so-called adjacency matrix A = (ah,k) ∈ {0, 1}N×N , where ah,k = 1 if eh,k ∈
E ; ah,k = 0, otherwise. The k-th neighborhood of vertex vk is then defined
as Nk = {vk ∈ V | eh,k ∈ E} and its cardinality dk = |Nk| is called vertex
degree. The latter quantity also contributes to the definition of the degree matrix
D = diag(d1, . . . , dN ). Graph G is said to be regular if all the vertex degrees
are equal to some common degree d(G) ∈ N. The volume of G is defined as
vol(G) =

∑
vk∈V dk. Vertex vk is said to be isolated if dk = 0. From the above

entities, three very relevant matrices associated to G can be finally defined: the
Laplacian matrix L = D − A and, assuming that none of the vertices in V
is isolated, the normalized Laplacian matrix L = D− 1

2LD− 1
2 and the Randić

matrix R = D− 1
2AD− 1

2 [29, 30, 31, 32, 33, 34]. Assuming that regularity
holds for G, the adjacency, Randić, normalized Laplacian and Laplacian matrices
associated to G can be mutually computed through

(1) L = d(G)IN −A = d(G)(IN −R) = d(G)L.

In addition, a sequence of edges without repetition πh,k ⊆ E that links ver-
tices vh and vk, in which all traversed vertices are distinct, is called path. A
cycle πk passing through vertex vk can be identified as a particular nondegen-
erate path for which vh = vk, i.e. πk = πk,k, with πk,k ̸= ∅. If it holds πh,k ̸= ∅
for all the couples of vertices vh and vk such that vh ̸= vk then G is said to be
connected. The length of a path πh,k is identified with its cardinality |πh,k|, the
distance between vh and vk is yielded by dist(vh, vk) = min{|πh,k| | πh,k ⊆ E}
(note that dist(vk, vk) = 0) and the eccentricity of vertex vk is computed as
ϵ(vk) = max{dist(vh, vk) | vh ∈ V}. The diameter ϕ(G) and radius r(G) of G
are defined as ϕ(G) = max{ϵ(vk) | vk ∈ V} and r(G) = min{ϵ(vk) | vk ∈ V}.
Also, the periphery P(G) and center C(G) of G are defined as the sets P(G) =
{vk ∈ V | ϵ(vk) = ϕ(G)} and C(G) = {vk ∈ V | ϵ(vk) = r(G)}. Quantities
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g(G) = min{|πk| | vk ∈ V} and c(G) = max{|πk| | vk ∈ V} are said respectively
girth and circumference of G.

Lastly, a cycle graph CN is an undirected connected regular graph with N
vertices such that d(CN ) = 2; a complete graph KN is an undirected connected
regular graph with N vertices such that d(KN ) = N − 1; an edgeless graph KN

is a nonconnected regular graph with N isolated vertices (d(KN ) = 0). An
undirected connected graph is Eulerian if and only if every vertex in it has even
degree [35]. An undirected graph is said Hamiltonian if it has a cycle passing
through each vertex in it. The smallest number of colors needed to color1 a
graph G is denoted by the chromatic number χ(G). A graph G with χ(G) = 2 is
said bipartite. The following lemma concludes this paragraph.

Lemma 2.1 (Handshaking lemma [35]). For an undirected graph G, the sum of
all its degrees equals twice the number of its edges, i.e. vol(G) = 2M(G).

2.2 Circulant matrices

In this paragraph, a few fundamental facts about circulant matrices are pro-
vided2. A circulant matrix is a matrix where each row in it is shifted one entry
to the right relative to the previous row vector. The following lines provide its
formal definition.

Definition 2.1 (Circulant matrix [5]). Given an arbitrary vector w = (wk) ∈
RN , the matrix T ∈ RN×N is circulant if its h-th rows satisfies rowh(T) =
(wh−1)⊤, for all h ∈ {1, . . . , N}. The vector w is called generator of T.

A circulant topology is thus a structure such that each element in it shares
the same “local panorama” w.r.t. the other elements. Remarkably, a general
expression for the spectrum of circulant matrices can be found. The latter is
given in the next theorem.

Theorem 2.1 (Spectrum of circulant matrices [5]). Let T ∈ RN×N be a cir-
culant matrix according to Def. 2.1. The spectrum Λ(T) is composed by the
eigenvalues λTj such that

(2) λTj =

N−1∑
k=0

wk+1e
−ijk 2π

N , ∀j ∈ {0, . . . , N − 1}.

2.3 Definition and properties of the Dirichlet kernel

According to [36], the definition and few fundamental properties of the Dirichlet
kernel are provided in the sequel.

1. Coloring is intended as labeling each vertex with a nonnegative integer such that no two
vertices sharing the same edge have the same label.

2. Only squared real-valued matrices are considered, as this investigation focuses on undi-
rected (unweighted) RRLs.
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Definition 2.2 (Dirichlet kernel [36]). The Dirichlet kernel of order m ∈ N is
defined as the function Dm : x ∈ R 7→ Dm(x) = 1

2

∑m
k=−m e

ikx.

Theorem 2.2 (Well-known properties of the Dirichlet kernel [36, 37, 38]). The
following properties for the Dirichlet kernel in Def. 2.2 hold.

1. Each Dm(x) is a real-valued, continuous, 2π-periodic, even function and
(for m > 0) assumes both positive and negative values.

2. For each m ∈ N, the Dirichlet kernel can be rewritten as

(3) Dm(x) =


sin
((
m+ 1

2

)
x
)

2sin
(
x
2

) , if x ̸= 2πℓ, with ℓ ∈ Z,

m+ 1
2 , otherwise

or as

(4) Dm(x) =
1

2
+

m∑
k=1

cos(kx).

3. For each m ∈ N it holds that |Dm(x)| ≤ m+ 1/2, ∀x ∈ R.

4. For each m ∈ N \ {0} the Dirichlet kernel restricted to [0, 2π) has 2m
zeros at x⋆k = 2kπ/(2m + 1), ∀k ∈ {1, . . . , 2m}. In particular, between
each pair of consecutive zeros (x⋆k, x

⋆
k+1), Dm(x) has one local extremum:

a minimum, if k is odd, or a maximum, if k is even.

5. For each m ∈ N \ {0} the Dirichlet kernel restricted to [0, 2π) has one
global maximum at x0 = 0, for which Dm(x0) = m + 1/2, and two global
minima at x1 ∈ (x⋆1, x

⋆
2) and xm = 2π − x1 ∈ (x⋆2m−1, x

⋆
2m). The value of

x1 is approximately given by x1 ≈ υx⋆1/π, with υ = 4.493409457909064.

3. Main results related to RRLs

In this section, the main results on the spectral properties of RRLs are given.
In detail, the RRLs are firstly defined and some basic properties are presented.
Then, a spectral analysis of the graph Laplacian matrix L via the Dirichlet kernel
is carried out. This discussion will yield a characterization of its spectrum Λ(L),
with particular attention directed towards the Fiedler value (i.e. the smallest
nonzero eigenvalue of L) and its spectral radius (i.e. the largest eigenvalue of
L). Then, the investigation continues with a study on the so-called essential
spectral radius of the Randić matrix R associated to a RRL.

3.1 Definition and basic properties

Hereafter, a particular kind of circulant graphs is addressed. The elements
belonging to the class in question are referred to as RRLs and described in the
following definition.
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Definition 3.1 (RRL Cm
N ). Let N and m be two natural numbers such that N ≥

4 and 1 ≤ m < n = ⌊N/2⌋. A RRL Cm
N = Cm

N (V, E) of order m is an undirected
graph with N vertices having a circulant adjacency matrix A generated by a
vector w ∈ {0, 1}N whose components are such that

(5) wk =

{
1, if k ∈ {2, . . . ,m+ 1} ∪ {N −m+ 1, . . . , N},
0, otherwise.

Remark 3.1. The order m of a RRL Cm
N can be interpreted as the identical

local field-of-view width of each vertex. In other words, a RRL Cm
N can ba also

said to be a k-cycle with N vertices, wherein k = 2m neighbors are adjacent to
each vertex as depicted in Fig. 1.

It is worth to notice that a RRL Cm
N is uniquely determined by its number of

vertices N and order m only. The following propositions yield all the remaining
derived quantities and properties introduced in Ssec. 2.1.

Proposition 3.1 (Regularity and common degree of RRLs). Any RRL Cm
N (V, E)

is regular, with common degree

(6) d(Cm
N ) = 2m.

Consequently, any Cm
N is Eulerian.

Proof of Proposition 3.1. The adjacency matrix A of Cm
N is circulant and

generated by vector w, thus the regularity is shown by observing that for all
vk ∈ V it holds that dk = |Nk| = ∥rowk(A)∥1 = ∥w∥1 = d(Cm

N ). From (5), the
common degree d(Cm

N ) is given by the cardinality of {2, . . . ,m+1} ∪ {N −m+
1, . . . , N}. Therefore, one has d(Cm

N ) = (m+1−2+1)+(N−N+m−1+1) = 2m.

1
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(a) C1
9
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(b) C2
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7 8

9

(c) C3
9

Figure 1: All the three RRLs with N = 9 vertices. A layer of edges is added
for each increasing value of m ∈ {1, 2, 3}: (a) first layer in black, (b)
second layer in green, (c) third layer in red.
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Proposition 3.2 (Connectivity of RRLs). Any RRL Cm
N (V, E) is connected.

Proof of Proposition 3.2. By definition, the adjacency matrix A = (ah,k)
of Cm

N satisfies ah,h+1 = 1 for all h ∈ {1, . . . , N − 1}. Hence, the path π1,N =
{e1,2, e2,3, . . . , eN−1,N} exists in Cm

N , implying its connectivity.

Remark 3.2. From Prop. 3.1 and Prop. 3.2 it follows that C1
N = CN , since

RRLs are connected and d(Cm
N ) = 2 if m = 1. This implies that cycle graphs are

a subclass of RRLs and represent a proper basic case in this setting. Moreover,
one can also observe that limm→nC

m
N = KN follows directly from (5). Therefore,

complete graphs represent a degenerate upper limit case for RRLs. One the
other hand, one has that limm→0C

m
N = KN follows directly from (5). Hence,

edgeless graphs represent a degenerate lower limit case for RRLs.

Corollary 3.1 (Volume and number of edges of a RRL). The volume vol(Cm
N )

and number of edges M(Cm
N ) of a RRL Cm

N (V, E) are yielded by

vol(Cm
N ) = 2mN,(7)

M(Cm
N ) = mN.(8)

Proof of Corollary 3.1. By leveraging the definition of volume of a graph and
the regularity of RRLs shown in (6), relation (7) is verified. Whereas, exploiting
Lem. 2.1 on Cm

N , the result in (8) follows.

Proposition 3.3 (Chromatic number of RRLs). A RRL Cm
N (V, E) has chro-

matic number

(9) χ(Cm
N ) = m+ 1 + (N mod (m+ 1)).

Proof of Proposition 3.3. A RRL Cm
N can be minimally colored exploiting

its circulant symmetry. Starting e.g. from vertex v1, one can use a group of
m+ 1 distinct colors to label subsequent subsets of m+ 1 vertices. In this way,
vertices vk share the same color (k mod (m + 1)) ∈ {0, . . . ,m} for all k such
that 1 ≤ k ≤ N − (N mod (m+ 1)). Finally, the remaining (N mod (m+ 1))
vertices need to be labeled with (N mod (m+ 1)) additional distinct colors.

Corollary 3.2 (Bipartiteness of RRLs). A RRL Cm
N (V, E) is bipartite if and

only if m = 1 and N is even.

Proof of Corollary 3.2. From Prop. 3.3, expression (9) yields χ(Cm
N ) = 2 if

and only if m = 1 and N mod 2 = 0.

Proposition 3.4 (Diameter and radius of a RRL). The diameter ϕ(Cm
N ) and

radius r(Cm
N ) of a RRL Cm

N (V, E) are yielded by

(10) ϕ(Cm
N ) = r(Cm

N ) = ⌈⌊N/2⌋/m⌉.
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No. Vertices No. Edges Common degree
N : N ≥ 4 M(Cm

N ) = mN d(Cm
N ) = 2m

Order Volume Chromatic number
m : 1 ≤ m < ⌊N/2⌋ vol(Cm

N ) = 2mN χ(Cm
N ) = m+ 1 + (N mod (m+ 1))

Diameter Periphery Circumference
ϕ(Cm

N ) = ⌈⌊N/2⌋/m⌉ P(Cm
N ) = V c(Cm

N ) = N

Radius Center Girth
r(Cm

N ) = ⌈⌊N/2⌋/m⌉ C(Cm
N ) = V g(Cm

N ) = ⌈N/m⌉

Table 1: Basic topological quantities of a RRL Cm
N (V, E).

Proof of Proposition 3.4. As each vertex in Cm
N shares the same local per-

spective and any Cm
N is connected (see Prop. 3.2), the eccentricity of each vk ∈ V

is given by ϵ(vk) = ϵ0(C
m
N ), with constant ϵ0(C

m
N ) = ⌈n/m⌉.

Corollary 3.3 (Periphery and center of a RRL). The periphery P(Cm
N ) and

center C(Cm
N ) of a RRL Cm

N (V, E) are yielded by

(11) P(Cm
N ) = C(Cm

N ) = V.

Proof of Corollary 3.3. Relation (11) derives from (10) in Prop. 3.4.

Proposition 3.5 (Circumference and girth of a RRL). The circumference c(Cm
N )

and the girth g(Cm
N ) of a RRL Cm

N (V, E) are yielded by

c(Cm
N ) = N,(12)

g(Cm
N ) = ⌈N/m⌉.(13)

Consequently, any Cm
N is Hamiltonian.

Proof of Proposition 3.5. Relation (12) holds trivially, since Cm
N always en-

compasses the cycle graph CN (see Rmk. 3.2). This implies that any Cm
N is

Hamiltonian. Whereas, (13) is retrieved similarly to what done with eccentric-
ity in Prop. 3.4.

In Tab. 1, all the discussed properties of RRLs are summarized.

3.2 Spectral analysis

The analysis starts by showing the key insight to examine the spectral properties
of RRLs via the theoretical support provided by the properties of the Dirichlet
kernel Dm. A characterization for the eigenvalues of the Laplacian matrix L
associated to the RRLs in terms of Dm is given by the following theorem, ex-
plaining the reason why m is considered the order for this class of graphs. To
avoid heavy notation, d = d(Cm

N ) = 2m is adopted henceforward.
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Theorem 3.1 (Spectral characterization of RRLs). Let L be the graph Laplacian
matrix associated to a RRL Cm

N . Setting θ = π/N , the spectrum Λ(L) can be
expressed in function of the Dirichlet kernel Dm as

λLj = 1 + 2 (m−Dm(2θj)) , ∀N ≥ 4,∀m ∈ {1, . . . , n− 1},(14)

with λLN−j = λLj , ∀j ∈ {1, . . . , n}. Furthermore, the following properties hold
for all N ≥ 4 and m ∈ {1, . . . , n− 1}.

1. Each eigenvalue λLj belongs to [0, 4m] for all j ∈ {0, . . . , N − 1}.

2. Eigenvalue λL0 = 0 is simple, i.e. it has algebraic multiplicity 1.

3. If ∃λLj⋆ = 4m for some j⋆ ∈ {1, . . . , n} then eigenvalue λLj⋆ is simple.

Proof of Theorem 3.1. Let A be the adjacency matrix of Cm
N generated by

the vector w, according to Def. 3.1. Recalling that given α ∈ R and a matrix
T ∈ RN×N it holds that λIN+αT

j = 1+αλTj for all j ∈ {0, . . . , N − 1} (see [39]),
the relations between the j-th eigenvalue of matrices in (1) are the following:

(15) λLj = d− λAj = d(1− λRj ) = dλLj .

Now, the j-th eigenvalue of the adjacency matrix A can be computed resorting
to (2) in Thm. 2.1 and Def. 2.2 as follows:

λAj =
N−1∑
k=0

wk+1e
−2ijkθ =

m∑
k=1

e−2ijkθ +
N−1∑

k=N−m

e−2ijkθ

=
m∑
k=1

e−2ijkθ +
m∑
k=1

e2ijkθ =

(
m∑

k=−m

eik(2θj)

)
− 1

= 2(Dm(2θj)− 1/2), ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.(16)

Therefore, substituting (16) in (15) and leveraging Prop. 3.1 and Thm. 2.2,
relation (14) can be found. In particular, λLN−j = λLj holds ∀j ∈ {1, . . . , n} since
Dm(x) is 2π-periodic and even (see Thm. 2.2).

Lastly, regarding the rest of the statement, authors in [40] have already
shown that matrix R has eigenvalues belonging to the interval [−1, 1], where
λR0 = 1 and, possibly, λRj⋆ = −1 for some j⋆ ∈ {1, . . . , n} are both associated
to a single eigenvector. Also, leveraging the connectivity of Cm

N shown in Prop.
3.2, it holds that λL0 = 0 and 0 < λLj ≤ 2 for all j ∈ {1, . . . , N − 1} (see [29]).
Resorting to (15), one has

λLj = 1−m−1(Dm(2θj)− 1/2), ∀N ≥ 4,∀m ∈ {1, . . . , n− 1}

and the thesis easily follows.
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The result provided by Theorem 3.1 contributes with equalities (14), yielding
an interesting interconnection between the Dirichlet kernel and the eigenvalues
of the graph Laplacian matrix L corresponding to a RRL. The analysis proceeds
by focusing on the extremal (maximum and minimum) eigenvalues belonging to
the restricted spectrum Λ0(L) = Λ(L) \ {λL0 } ⊆ (0, 4m]. In the following lines,
some properties related to the Fiedler value ν(L) = minλ∈Λ0(L){λ} and the
spectral radius ρ(L) = maxλ∈Λ(L){λ} of a RRL Laplacian matrix are provided.

Theorem 3.2 (Algebraic connectivity of the RRLs). Let Cm
N be a RRL and L

be the corresponding Laplacian matrix with eigenvalues λLj given by (14). Then
the algebraic connectivity of a RRL Cm

N is yielded by the Fiedler value ν(L) of
L, whose expression is

(17) ν(L) = λL1 = λLN−1, ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.

Moreover, one has ν(L) ∈ (0, 2m] and ν(L) = 2m if and only if 2m = N − 2.

Proof of Theorem 3.2. Exploiting the symmetry of Λ(L) discussed in Thm.
3.1, let us restrict w.l.o.g. this analysis to eigenvalues in Λ0(L) indexed by
j ∈ {1, . . . , n}. It can be noticed that relations (3) and (15) lead to

(18) λRj = m−1(Dm(2θj)− 1/2), ∀N ≥ 4,∀m ∈ {1, . . . , n− 1},

which can be leveraged to prove that λL1 < λLj holds for all j ∈ {2, . . . , n} by
verifying the following chain of inequalities:

(19) λR1 > λRj ⇐⇒ Dm(2θ) > Dm(2θj) ⇐⇒
s(2m+1)θ

sθ
>

s(2m+1)θj

sθj
.

Considering that sz = z
∏+∞

k=1(1−
z2

k2π2 ), ∀z ∈ C (see formula 4.3.89 in [41]), the
following inequality can be derived from the rightmost expression in (19):

(20)

+∞∏
k=1

k2N2 − (2m + 1)2

k2N2 − 1
>

+∞∏
k=1

k2N2 − (2m + 1)2j2

k2N2 − j2
.

For relation (20) to be satisfied, it is sufficient to prove that:
(i) the k-th factor on the l.h.s. is strictly positive for all k ∈ N \ {0},
(ii) the k-th factor on the l.h.s. is strictly greater than the k-th factor on the
r.h.s. for all k ∈ N \ {0}.
Property (i) is verified, since this requirement boils down to the identity 2m <
N − 1 ≤ kN − 1 for all k ∈ N \ {0}; while, property (ii) is also satisfied, as this
leads to the identities m > 0 and j > 1 for all k ∈ N \ {0}. Hence, relation (17)
is now proven.

To conclude, it is worth to show that λR1 is nonnegative for any given Cm
N .

By (3) and (18) one has the relation

(21) λR1 = m−1(Dm(2θ)− 1/2) ≥ 0 ⇐⇒ s(2m+1)θ ≥ sθ.
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Since θ ∈ (0, π/4] and m ≥ 1, the last inequality in (21) holds true for any
admissible (N,m). Also, strict equality in (21) is satisfied for m = n − 1 and
even N . Therefore, λR1 belongs to the interval [0, 1) and, by (15), one has
λL1 ∈ (0, 2m] and λL1 = 2m if and only if 2m = N − 2.

Theorem 3.3 (Spectral radius properties of RRLs). Let Cm
N be a RRL and

L be the corresponding Laplacian matrix with eigenvalues λLj given by (14).
Also, let j⋆ be an index for which the spectral radius of L can be expressed as
ρ(L) = λLj⋆ = λLN−j⋆. Then the following properties are satisfied for all N ≥ 4.

1. For all m ∈ {1, . . . , n− 1} index j⋆ is yielded by3

(22) j⋆ = argmin
j∈{2,...,n}

{Dm(2θj)} ∈ {2, . . . , n}.

In particular, the below partial characterization for j⋆ can be given.

(a) If m = 1 then j⋆ = n.

(b) Let b2 = arccos(−1/4)/(2θ). If m = 2 then j⋆ ∈ {⌊b2⌋, ⌈b2⌉}.
(c) Let b3 = arccos

(
(
√
7− 1)/6

)
/(2θ).

If m = 3 then j⋆ ∈ {⌊b3⌋, ⌈b3⌉}.
(d) Let b−4 = arccos

(
(6cos((4 arctan(1/

√
5)− π)/3)− 1)/8

)
/(2θ) and b+4 =

arccos
(
(−6cos(4 arctan(1/

√
5)/3)− 1)/8

)
/(2θ), where b−4 < b+4 . If

m = 4 then j⋆ ∈ {⌊b−4 ⌋, ⌈b
−
4 ⌉, ⌊b

+
4 ⌋, ⌈b

+
4 ⌉}.

(e) Let us assign

b5,1 =
√√

11− 5 cos((arctan(
√
55/11) + π)/3),

b5,2 =
√√

11− 5 cos((arctan(
√
55/11)− π)/3),

b5,3 =
√√

11 + 5 cos(arctan(
√
55/11)/3),

b−5 = arccos((
4
√
11(b5,1 + b5,2 + b5,3)− 1)/10)/(2θ) and

b+5 = arccos((
4
√
11(b5,1 − b5,2 − b5,3)− 1)/10)/(2θ), where b−5 < b+5 . If

m = 5 then j⋆ ∈ {⌊b−5 ⌋, ⌈b
−
5 ⌉, ⌊b

+
5 ⌋, ⌈b

+
5 ⌉}.

(f) If m = n− 1 then j⋆ = 2.

2. For allm ∈ {1, . . . , n−1} it holds that ρ(L) ∈ (2m+1, 4m], with ρ(L) = 4m
if and only if N is even and m = 1.

3. For all m ∈ {1, . . . , n− 1} there exists j ∈ {2, . . . , n} such that j ≤ j⋆ ≤ n
is satisfied. Moreover, the expression of j is given by

(23) j = 1 + ⌊N/(2m+ 1)⌋.

3. If there exist multiple distinct values j1, j2, . . . of j minimizing (22) then j⋆ =
min{j1, j2, . . .} is assumed to be the principal minimizer.
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Proof of Theorem 3.3. Let us restrict w.l.o.g. the analysis to j ∈ {1, . . . , n}
by exploiting the symmetry shown in Thm. 3.1. Each property of the statement
is proven in the sequel.

1 Expression (22) holds as it is equivalent to

(24) j⋆ = argmax
j∈{2,...,n}

{λLj } = argmax
j∈{2,...,n}

{1 + 2 (m−Dm(2θj))},

as it directly descends from (14). Remarkably, in (24), j = 0 and j = 1 are
excluded, as λL0 = 0 and λL1 = ν(L) are proven to be the smallest eigenvalues of
L (see Thm. 3.1 and Thm. 3.2).

1a. Setting m = 1, equality λLj = 4s2θj follows by resorting to the triple angle

identity s3z = 3sz − 4s3z, ∀z ∈ C. Hence, for m = 1, the j-th eigenvalue λLj is
trivially maximized by selecting j⋆ = ⌊N/2⌋ = n. Also, note that if N is even
then ρ(L) = 4s2θn = 4 holds in accordance to property 2.

1b. Form = 2, the global minimum of the Dirichlet kernelDm(x) is obtained
for x = x1 = arccos(−1/4) by solving the trigonometric first-degree equation
descending from D′

m(x) = 0, where D′
m(x) = −

∑m
k=1 k sin(kx) is the derivative

w.r.t. x of Dm(x) (see (4)), and verifying that 2π/5 = x⋆1 < x1 < x⋆2 = 4π/5.
Imposing 2θj ≈ x1 leads to the thesis.

1c. Form = 3, the global minimum of the Dirichlet kernel Dm(x) is obtained
for x = x1 = arccos

(
(
√
7− 1)/6

)
by solving the trigonometric second-degree

equation descending from D′
m(x) = 0 and verifying that 2π/7 = x⋆1 < x1 <

x⋆2 = 4π/7. Imposing 2θj ≈ x1 leads to the thesis. However, differently from
the previous point, an additional check is here needed. In particular, because of
the presence of a second local minimum4 x2 = π with ordinate Dm(x2) = −1/2,
it is sufficient to show that j⋆3 ∈ {⌊b3⌋, ⌈b3⌉} satisfies Dm(2θj⋆3) ≤ −1/2 in
order. In this direction, one can find all the values of x ∈ (0, π] such that
Dm(x) = −1/2. These solutions are yielded by x̃1 = π/3, x̃2 = π/2 and,
obviously, x̃3 = x2 = π. To conclude the proof, it is sufficient to demonstrate
that x̃2 − x̃1 ≥ 2θ. This inequality is however verified only if N ≥ 12. Checking
all the instances characterized by 4 ≤ N ≤ 11 and m = 3, one has j⋆ ̸= n for
N ̸= 8 and j⋆ = j⋆2 = 2 or j⋆ = 4, for N = 8. Thus, the thesis follows.

1d. This statement is obtained by solving the trigonometric third-degree
equation descending from D′

m(x) = 0, similarly to what shown in point 1b.
1e. This statement is obtained by solving the trigonometric fourth-degree

equation descending from D′
m(x) = 0, similarly to what shown in point 1c.

1f. It can be easily shown that, for all j ∈ {1, . . . , n}, one has Dn−1(2θj) =
(−1)j+1/2, if N is even Dn−1(2θj) = (−1)j+1cθj , if N is odd. Therefore, j = 2
minimizes Dn−1(2θj).

2. By (22), the maximum value for λLj is attained when Dm(2θj) is min-
imized in j. So, let us consider Dm(2θy), with y ∈ R. According to Thm.
2.2, the zeros of Dm(2θy) can be expressed as y⋆k = kN/(2m + 1) for all

4. This is actually attained for j = n when N is even, as 2θj = x2 holds for j = N/2.
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k ∈ {1, . . . , 2m}. Remarkably, each consecutive interval (y⋆k, y
⋆
k+1) has uniform

length N/(2m + 1) > 1. Since the Dirichlet kernel is negative over intervals
(y⋆k, y

⋆
k+1) with odd k and y⋆k+1 − y⋆k > 1, there exists an integer j⋆ for which

Dm(2θj⋆) is negative. As a consequence, it holds that (1 + 2m − λLj⋆)/2 =

Dm(2θj⋆) < 0, implying that λLj > 2m+ 1. Moreover, ρ(L) = 2d = 4m holds if
and only if Cm

N is bipartite [42], namely when N is even and m = 1, as shown
in Cor. 3.2.

3. Since ρ(L) > 2m+ 1 follows from Dm(2j⋆θ) < 0, a lower bound j for j⋆

can be computed by solving Dm(2θj) < 0 for j ∈ {2, . . . , n}. Via (3), this leads
to the following system of inequalities

(25)

{
j < 2ℓN/(2m+ 1),

j > (2ℓ− 1)N/(2m+ 1),

where ℓ ∈ Z. Clearly, the first inequality in (25) requires that ℓ ≥ 1, as j is a
positive index. Therefore, to find j, it is imposed ℓ = 1. Consequently, since
1 < N/(2m+ 1) < n holds true for any admissible values of (N,m), the second
inequality in (25) evaluated at ℓ = 1 provides the lower bound (23).

Remark 3.3. It is worth to note that index j⋆ can be easily computed in closed-
form solutions through D′

m(x) = −
∑m

k=1 k sin(kx) = 0 for m ∈ {1, 2, 3, 4, 5, n−
1}. However, for m such that 6 ≤ m ≤ n − 2 this kind of expressions cannot
be obtained in such a way, since D′

m(x) = 0 leads to trigonometric equations
having degree five or higher.

3.2.1 Essential spectral radius analysis

According to [43], the essential spectral radius of a row-stochastic5 Randić ma-
trix R can be defined as

(26) σ(R) = max
λ∈Λ0(R)

{|λ|},

where λR0 = 1 holds and Λ0(R) = Λ(R) \ {λR0 } is assigned. Remarkably, the
essential spectral radius of a Randić matrix R associated to a RRL Cm

N complies
with definition in (26) for all admissible (N,m), since R = d−1A is a row-
stochastic matrix with eigenvalues |λRj | ≤ 1, ∀j ∈ {0, . . . , N − 1}, and λR0 = 1.
A study on σ(R) for each Cm

N is thus reported by starting from the next lemma.

Lemma 3.1. Let R be the Randić matrix of a RRL Cm
N and θ = π/N ∈ (0, π/4].

There exists a real number m⋆ ∈ (0, n) such that if m ≥ m⋆ then λR1 + λR2 ≤ 0,
with the equality holding if and only if m = m⋆. Moreover, the value of m⋆ is
yielded by

(27) m⋆ = θ−1 arcsin
(√

x⋆
)
,

5. The matrix T = (th,k) ∈ RN×N is said row-stochastic if all its entries th,k belong to interval
[0, 1] for all h, k = 1, . . . , N and ∥rowh(T)∥1 = 1 for all h = 1, . . . , N .
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where x⋆ is the unique solution belonging to (0, 1) of the cubic equation

(28) pθ(x) = x3 + a2x
2 + a1x+ a0 = 0,

in which a2 = −(c2θ + 5)/2, a1 = (4c22θ + 7c2θ + 13)/8, a0 = −(3c2θ + 1)2/16.

Proof of Lemma 3.1. From (18), the eigenvalues of the Randić matrix R can
be rewritten using the prosthaphaeresis formula for the difference of two sines
as

(29) λRj =


sin(mθj)cos((m+ 1)θj)

msin(θj)
, if j ∈ {1, . . . , N − 1},

1, if j = 0.

Thus, inequality λR1 + λR2 ≤ 0 can be written as follows by means of the triple
angle identities c3z = 4c3z − 3cz, s3z = 3sz − 4s3z, ∀z ∈ C, the Werner’s formula
for the product of two cosines and the basic trigonometric rules:

(30) (1− c22θ)(5− 4s2mθ)
2s2mθ ≥ (1− s2mθ)(4c2θ(1− s2mθ) + 1− c2θ)

2.

Now, assigning x = s2mθ ∈ (0, 1), inequality (30) can be solved in m by
resorting to equation (28) and determining the solutions of pθ(x) ≥ 0. The
application of the Routh-Hurwitz criterion to pθ(x), as illustrated in Table 2,
ensures that there exists a solution x⋆ of pθ(x) having a strictly positive real
part for any value of θ, since each pair of subsequent terms in the second column
exhibits an alternating sign.

x3 1 (4c22θ + 7c2θ + 13)/8
x2 −(c2θ + 5)/2 −(3c2θ + 1)2/16

x1 (2c32θ + 9c22θ + 21c2θ + 32)/(4(c2θ + 5)) 0

x0 −(3c2θ + 1)2/16 0

Table 2: Routh array for polynomial pθ(x).

Analogously, in order to show that x⋆ has real part smaller than 1 for all
θ, the Routh-Hurwitz criterion can be also applied to −pθ(y), setting y = 1 −
x. This leads to the analysis reported in Table 3: the fact that each pair
of subsequent terms in the second column exhibits an alternating sign finally
ensures that x⋆ ∈ (0, 1), provided that x⋆ ∈ R.

y3 1 (4c22θ − c2θ − 3)/8
y2 −(1− c2θ)/2 −(1− c22θ)/16

y1 (2c22θ − c2θ − 2)/4 0

y0 −(1− c22θ)/16 0

Table 3: Routh array for polynomial −pθ(y).
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According to method 3.8.2 in [41], equation (28) can be solved by setting

(31) qθ = a1/3− a22/9, rθ = (a1a2 − 3a0)/6− a32/27,

through the computation and observation of the discriminant

(32) ∆θ = q3θ + r2θ =
7 (1− c2θ)

(
1− c22θ

)
(c2θ + 13/14)

1728

(
c2θ −

1

2

)2

≥ 0.

Expression in (32) is strictly positive if and only if factor (c2θ − 1/2)2 is grater
than zero: this occurs for values of c2θ ̸= 1/2, i.e. for N ̸= 6. In this case, the
presence of only one real solution is guaranteed and it is yielded via (31), (32)
by

(33) x⋆ = −a2
3

+
3

√
rθ +

√
∆θ +

3

√
rθ −

√
∆θ.

Otherwise, for N = 6, the discriminant ∆θ vanishes and the solutions for (28)
are given by {1/4, 5/4, 5/4}. In fact, for N = 6, expression (33) boils down to
x⋆ = 1/4 ∈ (0, 1).

Finally, the thesis in (27) is proven by inverting relation x⋆ = s2m⋆θ.

In conclusion, some theoretical results on the essential spectral radius of R
for RRLs are stated in the next theorem.

Theorem 3.4 (Essential spectral radius properties of RRLs). Let Cm
N be a RRL

and R the corresponding Randić matrix with eigenvalues λRj given by (18). Also,
according to Thm. 3.3, let j⋆ ∈ {2, . . . , n} be computed as in (22). Then, for
the essential spectral radius σ(R), the following properties are satisfied for all
N ≥ 4.

1. For all m ∈ {1, . . . , n − 1}, it holds that σ(R) = max{λR1 ,−λRj⋆} or,

equivalently, σ(R) = max{λRN−1,−λRN−j⋆}, with σ(R) ∈ ((2m)−1, 1] ⊆
(1/2, 1]. In particular, it holds σ(R) = |λRγ | = |λRN−γ |, with γ such that

(34) γ = argmin
j∈{1,...,n}

{∣∣∣∣Dm(2θj)− 1

2

∣∣∣∣} ∈ {1, j⋆}.

2. If m = 1 then σ(R) = −λRn = −λRN−n.

3. It holds that σ(R) = 1 if and only if N is even and m = 1.

4. If m ≥ m⋆, with m⋆ defined as in Lem. 3.1, then it holds that σ(R) =
−λRj⋆ = −λRN−j⋆ ≤ −λR2 = −λRN−2.

5. If m = n− 1 then σ(R) = −λR2 = −λRN−2.
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Proof of Theorem 3.4. By the symmetry of the Dirichlet kernel, eigenvalues
of R in (18) also exhibit the property λRj = λRN−j , for all j ∈ {1, . . . , n}. At
the light of this observation, the following analysis is restricted to indexes j ∈
{1, . . . , n}.

1. Exploiting relation (15) and the fact that λL1 ≤ 2m (see Thm. 3.2) and
λLj⋆ > 2m+1 (see Thm. 3.3), it follows that λR1 ≥ 0 and λRj⋆ < −(2m)−1 ≤ −1/2
are the largest eigenvalues of R in absolute value. In particular, (34) is directly
derived from (18) applied to (26).

2. Applying (29) withm = 1, it holds that λRj = c2θj . IfN is even then j = n

is trivially selected to provide the essential spectral radius σ(R) = −λRn = 1.
Otherwise, for odd N , j = 1 or j = n can be both selected, since σ(R) = λR1 =
c2θ or, equivalently, σ(R) = −λRn = −c2θn = c2θ.

3. In the previous point it is already shown that σ(R) = 1 if m = 1 and N is
even. To prove that σ(R) = 1 also implies that m = 1 and N is even, property
2 of Thm. 3.3 is invoked. Indeed, recall that ρ(L) = 4m holds if and only if
Cm
N is bipartite, namely it has even N and m = 1. Relation (15) is then used

to conclude.
4. Lem. 3.1 shows that if m ≥ m⋆ then λR1 + λR2 ≤ 0. Since, in general, it

holds that λR1 ≥ 0, then, if m ≥ m⋆, one has λR2 ≤ −λR1 ≤ 0. In particular, if
m > m⋆ then |λR2 | > λR1 holds. Therefore, j = 1 cannot be a valid index for
an eigenvalue λRj selected to compute σ(R) in this case. As a consequence, if

m ≥ m⋆ then σ(R) = −λRj⋆ ≤ −λR2 .
5. Again, for all j ∈ {1, . . . , n}, one has Dn−1(2θj) = (−1)j+1/2, if N is

even; Dn−1(2θj) = (−1)j+1cθj , if N is odd. Thus, to prove this statement, it is
just required to check that −λR2 > λR1 holds true for all odd N ≥ 5. The latter
inequality leads to an identity. Hence, λR2 is the eigenvalue that satisfies (26) if
m = n− 1.

4. Further discussions and numerical examples

This section reports a discussion on a couple of conjectures about the spec-
tral radius ρ(L) of the Laplacian matrix L and on the essential spectral radius
σ(R) of the Randić matrix R associated to a RRL Cm

N . Meaningful numerical
examples are also brought as evidence for these ideas.

4.1 Conjecture on a potential upper bound for j⋆

Let us consider the statement of Thm. 3.3. Finding analytically an upper
bound j for j⋆, similarly to what done in (23), may not be trivial. Nonetheless,
an interesting conjecture on this particular bound is here given.

Conjecture 1 (An upper bound for j⋆). Under the same assumptions of Thm.
3.3, there exists j ∈ {2, . . . , n} such that j⋆ ≤ j and its expression is yielded by

(35) j = ⌈3N/(4m+ 2)− 1/2⌉, ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.
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Remark 4.1. Considering j and j computed respectively as in (23) and (35),
the following properties holding for N ≥ 4 can be easily proven to support the
fact that j may represent a good candidate upper bound for j⋆.

1. If m ≥ m̃, where

(36) m̃ = 3N/10− 1/2,

then one has j = 2.

2. One has j = n if and only if m = 1. This also implies that for m = 1
expression in (35) is, in fact, a valid upper bound for j⋆. Moreover, if
m ≥ 2 then j < 2N/(2m+ 1) = x⋆2/(2θ) < n (see Thm. 2.2)

3. If m = 2 (and N ≥ 6) then j is, in fact, a valid upper bound for j⋆, since
j = ⌈(3N − 5)/2⌉ ≤ 2N/5 = x⋆m/(2θ) (see Thm. 2.2).

4. One has 2 ≤ j ≤ j ≤ n, in which j = j holds if and only if at least one of
the following three cases is verified: (i) 3N/14 − 1/2 ≤ m ≤ N/4 − 1/2;
(ii) m ≥ m̃; (iii) N mod (2m+ 1) = 0 and m ≥ N/6− 1/2.

The upper bound in (35) is figured out after the attempt to minimize
Dm(2θj) w.r.t. j. Observing that sθj is strictly increasing for j ∈ {1, . . . , n},
relation (35) is derived by choosing the smallest j ∈ {2, . . . , n} such that |(2m+
1)θj − (3π/2 + 2ℓπ)|, ℓ ∈ Z, be minimum and, to make treatable the latter
expression, ℓ = 0 is forced. The aim of this careful selection is twofold: on one
hand, we want to obtain a small positive value for the denominator of Dm(2θj)
and, on the other hand, a large (in modulus) negative value for the numerator
of Dm(2θj), see (3). However, in general, there may exist values of j > j that
render the numerator of Dm(2θj) even more negative! This consideration is
crucial. Indeed, the reasoning shown for the derivation of formula (36) in [21]
can be trivially disproved taking for instance (N,m) = (67, 2), for which it holds
that j⋆ = 19 (there, j⋆ = 20 is wrongly claimed).
Nevertheless, one has j ≥ ⌈υN/(π(2m + 1))⌉ ≈ ⌈x1/(2θ)⌉, as 3/2 > υ/π (see
Thm. 2.2). Also, expression (35) has been tested in simulation for all N such
that 4 ≤ N ≤ 10000 and any relative admissible value of m. Remarkably, no
counterexample has been found in any of the tested instances. Hence, this fact
suggests that j in (35) might represent a suitable upper bound for j⋆.

The following remark illustrates the potential implications of Conj. 1.

Remark 4.2. Let m⋆ and m̃ be defined as in (27) and (36), respectively. If
Conj. (1) verifies then one would have these further implications.

1. ρ(L) = λLn = λLN−n holds for all N ≥ 4 if and only if m = 1. Thus,
property 1a in Thm. 3.3 would be reinforced.

2. With reference to the essential spectral radius σ(R), one has, ∀N ≥ 4,
σ(R) = −λRn = −λRN−n if and only if m = 1. Thus, property 2 in Thm.
3.4 would be reinforced.
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3. If m ≥ m̃ then ρ(L) = λL2 = λLN−2 holds for all N ≥ 4.

4. Considering again σ(R), if m ≥ max{m⋆, m̃} then it holds that σ(R) =
−λR2 = −λRN−2 for all N ≥ 4. Thus, property 4 in Thm. 3.4 would be
reinforced.

5. The search space of minimization in 1c and 1d of Thm. 3.3 would be
reduced into j ∈ {⌊b−4 ⌋, ⌈b

−
4 ⌉} and j ∈ {⌊b−5 ⌋, ⌈b

−
5 ⌉}, respectively.

6. The spectral radius ρ(L) could be computed efficiently through binary
search algorithm, as it can be shown that Dm(2θy) restricted to y ∈
[j, j] has one global minimum given by y = x1/(2θ) ≈ υN/(π(2m + 1))
(see Thm. 2.2). Consequently, the computation of σ(R) = max{1 −
ν(L)/(2m),−1 + ρ(L)/(2m)} would also result more efficient.

7. A direct estimate ĵ⋆ ∈ [j, j] for j⋆ could be provided by averaging j and

j through convex combinations. For instance, given α ∈ [0, 1], one can
choose6

(37) ĵ⋆ =



n, if m = 1,

⌈b−2 − 1/2⌉, if m = 2,

⌈b−3 − 1/2⌉, if m = 3,

⌈b−4 − 1/2⌉, if m = 4,

⌈b−5 − 1/2⌉, if m = 5,

2, if m = n− 1,

⌊αj + (1− α)j + 1/2⌋, otherwise.

4.2 Numerical examples for 4 ≤ N ≤ 11

A few observations made on the pattern of values taken by σ(R) are here pro-
vided. In this direction, examples in Fig. 2 grant to cover some of the most
important aspects of this research, depicting a graphical representation of the
spectrum Λ(R). Specifically, each diagram in Fig. 2 shows how the eigenvalues
λRj spread over the interval [−1, 1], as the order m changes for a fixed size N ,
with 4 ≤ N ≤ 11. Plots 2(a)-2(h) also illustrate in blue all indexes j = 0, . . . , n
for relation (18), thresholds m⋆ and m̃ (see point 4 in Rmk. 4.2) with a yellow
and a green line respectively, and the eigenvalue λRγ with a red dot (where γ is
defined as in (34)).

With regard to Fig. 2, it is possible to observe the following facts descending
from all the previous statements presented in Sec. 3.

6. For all N and m such that 4 ≤ N ≤ 2000 and 1 ≤ m < n, coefficient α = 0.1313 seems a
good value to reduce the estimation error |j⋆ − ĵ⋆|, with ĵ⋆ computed as in (37).
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(a) N = 4 (b) N = 5

(c) N = 6 (d) N = 7

(e) N = 8 (f) N = 9

(g) N = 10 (h) N = 11

Figure 2: General eigenvalue distribution of the Randić matrix spectrum Λ(R)
for the RRLs Cm

N withN = 4, . . . , 11 andm = 1, . . . , n−1 = ⌊N/2⌋−1.
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� λRj ∈ [−1, 1] holds ∀j ∈ {0, . . . , n}, with −1 and 1 simple eigenvalues.

� λR1 = λRN−1 > λRj holds for all j ∈ {2, . . . , n}.

� For m = 1, one has λRγ with γ = n and if N is even then λRγ = −1.

� If m ≥ m⋆ then λRj⋆ = λR2 = λRN−2 and if m ≥ max{m⋆, m̃} then λRγ =

λR2 = λRN−2, thus supporting property 4 in Rmk. 4.2.

To provide further evidences to the speculations made in Rmk. 4.2, some
peculiarities and patterns can be also found for the following values of N .

� For N = 5 one has m̃ = 1 and, consequently, property 3 in Rmk. 4.2 holds
tightly.

� For N = 6 one has m⋆ = 1. Hence, if m = 2 > m⋆, the information about
m̃ becomes necessary in order to satisfy property 4 in Rmk. 4.2.

� For N = 10 and m = 2 one has σ(R) =
√
5/4 = λR1 = λR9 = −λR3 = −λR7 ,

i.e. γ takes both the values in {1, n}. Moreover, in this case, it holds that
m⋆ ≈ 2.5330 > 2.5 = m̃, conversely to the previous cases with N = 5 and
N = 6.

To sum up, each debated example in Fig. 2 gravitates, to some extent,
around the key relation in (18), describing the spectrum Λ(R) of the Randić
matrix. It is important to recall that this investigation completely leverages the
fundamental idea of studying the spectral properties of RRLs via the Dirichlet
kernel redefined as in (3). Further clues are also given to support claims in Ssec.
4.1.

4.3 Conjecture on the values taken by σ(R)

All the previous discussions suggest few clues about the possibility of computing
exactly σ(R) by understanding the behavior of index γ defined in (34). The
exact knowledge of the essential spectral radius of R is also motivated by various
research areas, such as the convergence analysis of Page Rank and random walk
processes [44].

Remarkably, from the numerical examples given in Ssec. 4.2, it is possible
to observe the following facts. Graph C2

9 in Fig. 2(f) is the unique example
leading to γ = 3 only (if m ≥ 2), as σ(R) = −λR3 = −1/2 > λR1 ≈ 0.4698.
Graph C2

10 in Fig. 2(g) is the unique example leading to both γ = 1 and γ = 3,
as σ(R) = λR1 = −λR3 =

√
5/4. In each diagram of Fig. 2 it holds that γ = n, if

and only if m = 1, or γ = 2, if and only if m ≥ max{m⋆, m̃}. In the remaining
cases, it holds that γ = 1. Therefore, the following conjecture is drawn after
having run some numerical tests7.

7. These are performed for all N and m such that 4 ≤ N ≤ 10000 and 1 ≤ m < n.
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Conjecture 2 (Characterization of the essential spectral radius index γ). Let
m⋆ and m̃ be defined as in (27) and (36), respectively. For all N ≥ 4, the
essential spectral radius σ(R) = |λRγ | = |λRN−γ | associated to the Randić matrix
R of a RRL Cm

N can be computed through index

(38) γ =


n, if N ≥ 8 and m = 1,

3, if N = 6, 7 and m = 1 or if N = 9, 10 and m = 2,

2, if N ≥ 4 and m ≥ min{n− 1,max{m⋆, m̃}},
1, otherwise.

Furthermore, a complete characterization of γ is given by taking into account
(38) along with the fact that γ = 1 also holds in the following four cases: (i) for
all odd N ≥ 5 and m = 1; (ii) for all N ≥ 4 and m = max{m⋆, m̃}; (iii) for
N = 10 and m = 2; (iv) for all even N ≥ 4 and m = n− 1.

5. Conclusions and future directions

In this work, a peculiar class of circulant graphs, referred to as regular ring
lattices, is described highlighting the relationship between the spectrum of their
characteristic matrices and the well-known Dirichlet kernel. Several properties
related to the eigenvalues are described extensively, with a particular focus on
the Fiedler value, the spectral radius of the Laplacian and the essential spectral
radius of the Randić matrix associated to these graphs. Part of the proven
results is also discussed in details with auxiliary diagrams depicting the related
spectral distributions. Finally, the debated conjectures on the computation of
the aforementioned spectral quantities represent an open problem to be solved in
order to improve the latest analysis techniques for networked dynamic systems.
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matrices and its application to Randić matrices, Linear Algebra Appl., 505
(2016), 85-96.



160 M. FABRIS

[33] O. Rojo, A nontrivial upper bound on the largest Laplacian eigenvalue of
weighted graphs, Linear Algebra Appl., 420 (2007), 625-633.

[34] S. Sorgun, Bounds for the largest Laplacian eigenvalue of weighted graphs,
International Journal of Combinatorics, 2013 (2013), 1–8.

[35] L. Euler, Solutio problematis ad geometriam situs pertinentis, Commentarii
Academiae Scientiarum Petropolitanae, (1741), 128–140.

[36] A. M. Brunckner, J. B. Brunckner, B. S. Thomson, Real analysis, Pearson
Prentice Hall, Upper Saddle River, NJ, US, 1997.

[37] A. Wiggins, The minimum of the Dirichlet kernel, notes. Web-
page: www-personal.umd.umich.edu/ adwiggin/TeachingFiles/ Fouri-
erSeries/Resources/DirichletKernel.pdf (2007).

[38] J. Kirkwood, Mathematical physics with partial differential equations, 2nd
Edition, Academic Press, 125 London Wall, London EC2Y 5AS, United
Kingdom, 2018.

[39] K. B. Petersen, M. S. Pedersen, et al., The matrix cookbook, Technical
University of Denmark, 7 (2008), 510.

[40] H. Landau, A. Odlyzko, Bounds for eigenvalues of certain stochastic ma-
trices, Linear Algebra Appl., 38 (1981), 5–15.

[41] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables, no. 55, National Bureau of Stan-
dards Applied Mathematics Series, Washington D.C., US, 1972, pag 17,75.

[42] H. Liu, M. Lu, Bounds for the Laplacian spectral radius of graphs, Linear
Multilinear Algebra, 58 (2010), 113–119.

[43] F. Garin, L. Schenato, A Survey on distributed estimation and control appli-
cations using linear consensus algorithms, Springer London, London, 2010,
75–107.

[44] F. Chung, W. Zhao, Page Rank and random walks on graphs, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, 43–62.

Accepted: November 25, 2023



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 51–2024 (161–176) 161

On pseudo picture fuzzy cosets

Yuming Feng
School of Computer Science and Engineering
Chongqing Three Gorges University
Wanzhou, Chongqing, 404100
China
yumingfeng25928@163.com
ymfeng@sanxiau.edu.cn

Taiwo O. Sangodapo∗

Department of Mathematics, Faculty of Science,

University of Ibadan, Ibadan

Nigeria

toewuola77@gmail.com

to.ewuola@ui.edu.ng

Abstract. In this paper, the concepts of pseudo picture fuzzy cosets, pseudo picture
fuzzy double cosets and pseudo picture fuzzy middle cosets were introduced and some
of their characteristics were established. In addition, we investigated the connections
between pseudo picture fuzzy double cosets and picture fuzzy normal subgroup, also
between pseudo picture fuzzy middle cosets and picture fuzzy normal subgroup.

Keywords: Picture fuzzy set, Picture fuzzy subgroup, Pseudo picture fuzzy cosets,
Pseudo picture fuzzy double cosets, Pseudo picture fuzzy middle cosets.

MSC 2020: 03E72, 08A72, 20N25

1. Introduction

The generalisation of theory of crisp sets into the theory of fuzzy sets was in-
troduced by Zadeh [27]. This theory has become a vast and sprawling area of
research in topology, algebra, engineering, convexity etc. The fuzzy sets only
deal with the membership degree of an element in belonging to a set. In [1],
Atanassov extended the theory of fuzzy sets into intuitionistic fuzzy sets which
took care of both the membership and non-membership degrees of an element
belonging to a set. Cuong and Kreinovich [14] generalised the notions of both
fuzzy sets and intuitionistic fuzzy sets into picture fuzzy sets. In their work, one
of the items needed to still determine the membership of an element in a set
was added, and it is called the neutral membership degree. Thus, picture fuzzy
sets theory comprises of positive membership, neutral membership and negative
membership degrees.

*. Corresponding author
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Rosenfeld [23] put forward the notion of fuzzy group. As an extension of
fuzzy group, Biswas [6] initiated the idea of intuitionistic fuzzy subgroup of a
group. Zhan and Tan [28] also studied intuitionistic fuzzy subgroup. Sharma [24]
established some properties of intuitionistic fuzzy subgroup of a group through
cut set of intuitionistic fuzzy sets. In [25], Sharma introduced t-intuitionistic
fuzzy sets and obtained some properties. Dogra and Pal [15] initiated the con-
cept of picture fuzzy subring of a crisp ring and studied some related basic
results. They also investigated some properties of picture fuzzy subring under
classical ring homomorphism. Dogra and Pal [16] put forward the notion of
picture fuzzy subspace of a crisp vector space and obtained some basic results
related to it on the basis of some basic operations on picture fuzzy sets. Fur-
thermore, direct sum of two picture fuzzy subspaces, isomorphism between two
picture fuzzy subspaces, picture fuzzy linear transformation and picture fuzzy
linearly independent set of vectors and some properties connected to these were
established.

In [21], Mukherjee and Bhattacharya initiated fuzzy cosets. The extension
to pseudo fuzzy cosets was studied by Nagarajan and Solaraiju [20] and some
properties were established. This concept was later studied by Onasanya and
Ilori [20] to obtain some independent proofs of the properties established in [20].
Sharma [25] introduced t-intuitionistic fuzzy left (right) cosets and investigated
some of its properties. Dogra and Pal [17] introduced picture fuzzy subgroup of
a crisp group, picture fuzzy left (right, middle) cosets, and some of their prop-
erties were obtained. In [26], Sharma and Sandhu initiated pseudo intuitionistic
fuzzy cosets, pseudo intuitionistic fuzzy double cosets and pseudo intuitionistic
fuzzy middle cosets of a group and established some of their properties. Since
the notion of picture fuzzy set was a generalisation of both fuzzy sets and intu-
itionistic fuzzy sets [14], the idea of fuzzy cosets was extended to intuitionistic
fuzzy cosets [25] and the pseudo fuzzy cosets was also extended to pseudo in-
tuitionistic fuzzy cosets [26]. Thus, the concept of pseudo picture fuzzy cosets
which is a generalisation of pseudo intuitionistic fuzzy cosets can be a research
focus.

In this paper, the concepts of pseudo intuitionistic fuzzy cosets was gener-
alised to pseudo picture fuzzy cosets. We have put forward the pseudo picture
fuzzy cosets (PPFCs), pseudo picture fuzzy double cosets (PPFDs) and pseudo
picture fuzzy middle cosets (PPFMs), and some of their characterisations were
established. It was established that, this concept is a generalisation of the notion
introduced by Sharma and Sandhu in [26]. The paper is organised as follows.
In Section 2, we give some definitions, basic operations and preliminary results.
In Section 3, we introduce PPFCs, PPFDs and PPFMs and establish some of
their characterisations.
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2. Preliminaries

In this section, some basic definitions, operations and preliminary results are
stated.

Definition 2.1 ([27]). Let Y be a nonempty set. A fuzzy set (FS) Q of Y is
defined as

Q = {⟨y, σQ(y)⟩|y ∈ Y }

with a membership function

σQ : Y −→ [0, 1],

where the function σQ(y) denotes the degree of membership of y ∈ Q.

Definition 2.2 ([1]). Let a nonempty set Y be fixed. An intuitionistic fuzzy set
(IFS) Q of Y is defined as

Q = {⟨y, σQ(y), τQ(y)⟩|y ∈ Y },

where the functions

σQ : Y → [0, 1] and τQ : Y → [0, 1]

are called the membership and non-membership degrees, respectively, and for
every y ∈ Y ,

0 ≤ σQ(y) + τQ(y) ≤ 1.

Definition 2.3 ([14]). A picture fuzzy set Q of Y is defined as

Q = {(y, σQ(y), τQ(y), γQ(y))|y ∈ Y },

where the functions

σQ : Y → [0, 1], τQ : Y → [0, 1] and γQ : Y → [0, 1]

are called the positive, neutral and negative membership degrees, respectively,
and σQ, τQ, γQ satisfy for any y ∈ Y,

0 ≤ σQ(y) + τQ(y) + γQ(y) ≤ 1.

Then, SQ(y) = 1 − (σQ(y) + τQ(y) + γQ(y)) is called the refusal membership
degree of y ∈ Q.

Definition 2.4 ([14]). Let Q and R be two PFSs. Then, the inclusion, equality,
union, intersection and complement are defined as follow:

� Q ⊆ R if and only if for all y ∈ Y , σQ(y) ≤ σR(y), τQ(y) ≤ τR(y) and
γQ(y) ≥ γR(y).
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� Q = R if and only if Q ⊆ R and R ⊆ Q.

� Q ∪R = {(y, σQ(y) ∨ σR(y), τQ(y) ∧ τR(y)), γQ(y) ∧ γR(y))|y ∈ Y }.

� Q ∩R = {(y, σQ(y) ∧ σR(y), τQ(y) ∧ τR(y)), γQ(y) ∨ γR(y))|y ∈ Y }.

� coQ = Q = {(y, γQ(y), τQ(y), σQ(y))|y ∈ Y }.

Definition 2.5 ([23]). Let (G, ∗) be a group and Q = {(y, σQ(y)) | y ∈ G} be
an FS in G. Then, Q is called a fuzzy subgroup (FSG) of G if σQ(a ∗ b) ≥
σQ(a) ∧ σQ(b) and σQ(a

−1) ≥ σQ(a) for all a, b ∈ G, where a−1 is the inverse
of a ∈ G.

Definition 2.6 ([6, 24, 28]). Let (G, ∗) be a crisp group and

Q = {(y, σQ(y), τQ(y)) | y ∈ G}

be an IFS in G. Then, Q is called intuitionistic fuzzy subgroup (IFSG) of G if

(i) σQ(a ∗ b) ≥ σQ(a) ∧ σQ(b), τQ(a ∗ b) ≤ τQ(a) ∨ τQ(b),
(ii) σQ(a

−1) ≥ σQ(a), τQ(a
−1) ≤ τQ(a),

for all a, b ∈ G, where a−1 is the inverse of a ∈ G.

Definition 2.7 ([17]). Let (G, ∗) be a crisp group and

Q = {(y, σQ(y), τQ(y), ηQ(y)) | y ∈ G}

be a PFS in G. Then, Q is called picture fuzzy subgroup (PFSG) of G if

(i) σQ(a ∗ b) ≥ σQ(a) ∧ σQ(b), τQ(a ∗ b) ≥ τQ(a) ∧ τQ(b), ηQ(a ∗ b) ≤
ηQ(a) ∨ ηQ(b),

(ii) σQ(a
−1) ≥ σQ(a), τQ(a

−1) ≥ τQ(a), ηQ(a
−1) ≤ ηQ(a),

for all a, b ∈ G, where a−1 is the inverse of a ∈ G.

Definition 2.8 ([17]). Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be a
PFSG of G. Then, for a ∈ G, the picture fuzzy left cosets (PFLCs) of Q ∈ G is
the PFS aQ = (σaQ, τaQ, ηaQ) defined by

σaQ(y) = σQ(a
−1 ∗ y), τaQ(y) = τQ(a

−1 ∗ y) and ηaQ(y) = ηQ(a
−1 ∗ y),

for all y ∈ G.

Definition 2.9 ([17]). Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be a
PFSG of G. Then, Q is called a picture fuzzy normal subgroup (PFNSG) of G
if

σQa(y) = σaQ(y), τQa(y) = τaQ(y) and ηQa(y) = ηaQ(y),

for all a, y ∈ G.
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Definition 2.10 ([17]). Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be a
PFSG of G. Then, for a ∈ G, the �picture fuzzy right cosets (PFRCs) of Q ∈ G
is the PFS Qa = (σQa, τQa, ηQa) defined by

σQa(y) = σQ(y ∗ a−1), τQa(y) = τQ(y ∗ a−1) and ηQa(y) = ηQ(y ∗ a−1),

for all y ∈ G.

Definition 2.11 ([17]). Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be
a PFSG of G. Then, for a ∈ G, the picture fuzzy middle cosets (PFMCs) of
Q ∈ G is the PFS aQa−1 = (σaQa−1 , τaQa−1 , ηaQa−1) defined by

σaQa−1(y) = σQ(a
−1 ∗ y ∗ a), τaQa−1(y) = τQ(a

−1 ∗ y ∗ a)

and

ηaQa−1(y) = ηQ(ya
−1 ∗ y ∗ a),

for all y ∈ G.

3. Pseudo picture fuzzy sets

This section defines pseudo picture fuzzy cosets, pseudo picture fuzzy double
cosets and pseudo picture fuzzy middle cosets were introduced and some of
their charactristics are established.

Definition 3.1. Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be a PFSG
of G. Then, for any a ∈ G the pseudo picture fuzzy left cosets (PPFLCs) of Q
with respect to some fixed PFS y of G is a PFS

(aQ)y = (σ(aQ)y(x), τ(aQ)y(x), η(aQ)y(x))

defined by

σ(aQ)y(x) = σy(a)σQ(x),

τ(aQ)y(x) = τy(a)τQ(x)

and

η(aQ)y(x) = ηy(a)ηQ(x),

for all x ∈ G.

Definition 3.2. Let (G, ∗) be a crisp group and Q = (σQ, τQ, ηQ) be a PFSG
of G. Then, for any a ∈ G the pseudo picture fuzzy right cosets (PPFRCs) of
Q with respect to some fixed PFS y of G is a PFS

(Qa)y = (σ(Qa)y(x), τ(Qa)y(x), η(Qa)y(x))
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defined by

σ(Qa)y(x) = σQ(x)σy(a),

τ(Qa)y(x) = τQ(x)τy(a)

and
η(Qa)y(x) = ηQ(x)ηy(a),

for all x ∈ G.

Example 3.1. Let G = {1, w, w2} be a group. Let

Q = {(1, 0.1, 0.15, 0.7), (w, 0.2, 0.3, 0.4), (w2, 0.3, 0.4, 0.1)}

be a PFSG of G. Let y be a PFS of G defined as

σy(x) =


1, if x = 1

0.4, if x = w

0.2, if x = w2

τy(x) =


0, if x = 1

0.3, if x = w

0.35, if x = w2

and

ηy(x) =


0, if x = 1

0.2, if x = w

0.4, if x = w2

Thus, PPFLC of Q determined by an element w is (wQ)y = (σ(wQ)y , τ(wQ)y ,
η(wQ)y). Now,

σ(wQ)y(x) = σy(w)σQ(x),

τ(wQ)y(x) = τy(w)τQ(x)

and
η(wQ)y(x) = ηy(w)ηQ(x).

Hence,

σ(wQ)y(x) =


0.04, if x = 1

0.08, if x = w

0.12, if x = w2

τ(wQ)y(x) =


0.045, if x = 1

0.09, if x = w

0.12, if x = w2



ON PSEUDO PICTURE FUZZY COSETS 167

and

η(wQ)y(x) =


0.14, if x = 1

0.08, if x = w

0.02, if x = w2

.

Proposition 3.1. Let Q = (σQ, τQ, ηQ) be a PFSG of G. Then, PPFLC (aQ)y

is a PFSG of crisp group G for any a ∈ G.

Proof. Let

Q = (σQ, τQ, ηQ)

be a PFSG of G and

(aQ)y = (σ(aQ)y(x), τ(aQ)y(x), η(aQ)y(x))

be a PPFLC of Q ∈ G for a, x ∈ G.

Now, for every g, h ∈ G, we have

σ(aQ)y(g ∗ h) = σy(a)σQ(g ∗ h)
≥ σy(a) (σQ(g) ∧ σQ(h))
= (σy(a)σQ(g)) ∧ (σy(a)σQ(h))

= σ(aQ)y(g) ∧ σ(aQ)y(h),

τ(aQ)y(g ∗ h) = τy(a)τQ(g ∗ h)
≥ τy(a) (τQ(g) ∧ τQ(h))
= (τy(a)τQ(g)) ∧ (τy(a)τQ(h))

= τ(aQ)y(g) ∧ τ(aQ)y(h)

and

η(aQ)y(g ∗ h) = ηy(a)ηQ(g ∗ h)
≤ ηy(a) (ηQ(g) ∨ ηQ(h))
= (ηy(a)ηQ(g)) ∨ (ηy(a)ηQ(h))

= η(aQ)y(g) ∨ η(aQ)y(h).

Therefore, the PPFLC (aQ)y is a PFSG of G.

Proposition 3.2. Let Q = (σQ, τQ, ηQ) be a PFSG of G. Then, PPFRC (aQ)y

is a PFSG of crisp group G for any a ∈ G.

Proof. This is similar to the proof of Proposition 3.1.

Proposition 3.3. Any two pseudo picture fuzzy cosets of PFSG are either dis-
joint or identical.



168 YUMING FENG and TAIWO O. SANGODAPO

Proof. Let Q = (σQ, τQ, ηQ) be a PFSG of G. Let

(aQ)y = (σ(aQ)y(x), τ(aQ)y(x), η(aQ)y(x))

and

(bQ)y = (σ(bQ)y(x), τ(bQ)y(x), η(bQ)y(x))

be any two identical PPFCs for a, b ∈ G, then for all g ∈ G,

σ(aQ)y(g) = σ(bQ)y(g), τ(aQ)y(g) = τ(bQ)y(g) and η(aQ)y(g) = η(bQ)y(g).

Suppose on the contrary that the PPFCs (aQ)y and (bQ)y are disjoint. Then,
there is no such y ∈ G such that

σ(aQ)y(h) ̸= σ(bQ)y(h), τ(aQ)y(h) ̸= τ(bQ)y(h) and η(aQ)y(h) ̸= η(bQ)y(h),

which means that σy(a)σQ(h) ̸= σy(b)σQ(h), τy(a)τQ(h) ̸= τy(b)τQ(h) and
ηy(a)ηQ(h) ̸= ηy(b)ηQ(h) and we get

σy(a) ̸= σy(b), τy(a) ̸= τy(b) and ηy(a) ̸= ηy(b).

So, the assumption that

σ(aQ)y(g) = σ(bQ)y(g), τ(aQ)y(g) = τ(bQ)y(g), η(aQ)y(g) = η(bQ)y(g), ∀g ∈ G

is not true.

Conversely, let

(aQ)y = (σ(aQ)y , τ(aQ)y , η(aQ)y)

and

(bQ)y = (σ(bQ)y , τ(bQ)y , η(bQ)y)

be two disjoint PPFCs for every a, b, g ∈ G. Then,

σ(aQ)y(g) ̸= σ(bQ)y(g),

τ(aQ)y(g) ̸= τ(bQ)y(g)

and

η(aQ)y(g) ̸= η(bQ)y(g),

which implies that

σy(a)σQ(g) ̸= σy(b)σQ(g),

τy(a)τQ(g) ̸= τy(b)τQ(g)

and

ηy(a)ηQ(g) ̸= ηy(b)ηQ(g),
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but if they are assumed to be identical, then

σy(a)σQ(g) = σy(b)σQ(g),

τy(a)τQ(g) = τy(b)τQ(g)

and
ηy(a)ηQ(g) = ηy(b)ηQ(g).

So,

σy(a) = σy(b),

τy(a) = τy(b)

and
ηy(a) = ηy(b).

Thus, this makes the assumption that

σy(a)σQ(g) ̸= σy(b)σQ(g),

τy(a)τQ(g) ̸= τy(b)τQ(g)

and
ηy(a)ηQ(g) ̸= ηy(b)ηQ(g),

i.e., σ(aQ)y(g) ̸= σ(bQ)y(g), τ(aQ)y(g) ̸= τ(bQ)y(g) and η(aQ)y(g) ̸= η(bQ)y(g) are
false.

Proposition 3.4. Let Q = (σQ, τQ, ηQ) and R = (σR, τR, ηR) be two PFSGs of
G. Then (aQ)y ⊆ (aR)y if and only if Q ⊆ R, for all a ∈ G and y ∈ Y .

Proof. Suppose that (aQ)y ⊆ (aR)y and we get

σ(aQ)y(g) ≤ σ(aR)y(g),

τ(aQ)y(g) ≤ τ(aR)y(g)

and
η(aQ)y(g) ≥ η(aR)y(g),

for all g ∈ G, which implies that

σy(a)σQ(g) ≤ σy(a)σR(g),

τy(a)τQ(g) ≤ τy(a)τR(g)

and
ηy(a)ηQ(g) ≥ ηy(a)ηR(g),

for all g ∈ G. And we obtain

σQ(g) ≤ σR(g), τQ(g) ≤ τR(g) and ηQ(g) ≥ ηR(g), ∀ g ∈ G.
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Thus, Q ⊆ R.

Conversely, suppose that Q ⊆ R, and we get σQ(g) ≤ σR(g), τQ(g) ≤ τR(g)
and ηQ(g) ≥ ηR(g), ∀ g ∈ G. So,

σy(a)σQ(g) ≤ σy(a)σR(g),

τy(a)τQ(g) ≤ τy(a)τR(g)

and

ηy(a)ηQ(g) ≥ ηy(a)ηR(g),

for all g∈ G. And we obtain

σ(aQ)y(g) ≤ σ(aR)y(g), τ(aQ)y(g) ≤ τ(aR)y(g) and η(aQ)y(g) ≥ η(aR)y(g),

for all g ∈ G.

Definition 3.3. Let Q = (σQ, τQ, ηQ) and R = (σR, τR, ηR) be two PFSG. Then,
for any a ∈ G the pseudo picture fuzzy double cosets (PPFDCs) of Q and R
with respect to some fixed PFS y of G is the PFS

(QaR)y = (σ(QaR)y , τ(QaR)y , η(QaR)y)

of G, which is defined as

σ(QaR)y(g) = σ(Qa)y(g) ∧ σ(aR)y(g),

τ(QaR)y(g) = τ(Qa)y(g) ∧ τ(aR)y(g)

and

η(QaR)y(g) = η(Qa)y(g) ∨ η(aR)y(g)G,

for every g ∈ G.

Proposition 3.5. Every PPFDC is a PFSG of G.

Proof. Let Q = (σQ, τQ, ηQ) and R = (σR, τR, ηR) be two PFSGs of G. Let

(QaR)y = (σ(QaR)y , τ(QaR)y , η(QaR)y)

where

σ(QaR)y(g) = σ(Qa)y(g) ∧ σ(aR)y(g),

τ(QaR)y(g) = τ(Qa)y(g) ∧ τ(aR)y(g)

and

η(QaR)y(g) = η(Qa)y(g) ∧ η(aR)y(g)
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g ∈ G be PPFDC. Let g, h ∈ G be any elements, then

σ(QaR)y(g ∗ h)
= σ(Qa)y(g ∗ h) ∧ σ(aR)y(g ∗ h)
= σy(a)σ(Q)(g ∗ h) ∧ σy(a)σ(R)(g ∗ h)
≥ σy(a)(σQ(g) ∧ σQ(h)) ∧ σy(a)(σR(g) ∧ σR(h))
= [(σy(a)σQ(g)) ∧ (σy(a)σQ(h))] ∧ [(σy(a)σR(g)) ∧ (σy(a)σR(h))]

= [(σy(a)σQ(g)) ∧ (σy(a)σR(g))] ∧ [(σy(a)σQ(h)) ∧ (σy(a)σR(h))]

=
[
σ(Qa)y(g) ∧ σ(aR)y(g)

]
∧
[
σ(Qa)y(h) ∧ σ(aR)y(h)

]
= σ(QaR)y(g) ∧ σ(QaR)y(h),

τ(QaR)y(g ∗ h)
= τ(Qa)y(g ∗ h) ∧ τ(aR)y(g ∗ h)
= τy(a)τ(Q)(g ∗ h) ∧ τy(a)τ(R)(g ∗ h)
≥ τy(a)(τQ(g) ∧ τQ(h)) ∧ τy(a)(τR(g) ∧ τR(h))
= [(τy(a)τQ(g)) ∧ (τy(a)τQ(h))] ∧ [(τy(a)τR(g)) ∧ (τy(a)τR(h))]

= [(τy(a)τQ(g)) ∧ (τy(a)τR(g))] ∧ [(τy(a)τQ(h)) ∧ (τy(a)τR(h))]

=
[
τ(Qa)y(g) ∧ τ(aR)y(g)

]
∧
[
τ(Qa)y(h) ∧ τ(aR)y(h)

]
= τ(QaR)y(g) ∧ τ(QaR)y(h)

and

η(QaR)y(g ∗ h)
= η(Qa)y(g ∗ h) ∨ η(aR)y(g ∗ h)
= ηy(a)η(Q)(g ∗ h) ∨ ηy(a)η(R)(g ∗ h)
≤ ηy(a)(ηQ(g) ∨ ηQ(h)) ∨ ηy(a)(ηR(g) ∨ ηR(h))
= [(ηy(a)ηQ(g)) ∨ (ηy(a)ηQ(h))] ∨ [(ηy(a)ηR(g)) ∨ (ηy(a)ηR(h))]

= [(ηy(a)ηQ(g)) ∨ (ηy(a)ηR(g))] ∨ [(ηy(a)ηQ(h)) ∨ (ηy(a)ηR(h))]

=
[
η(Qa)y(g) ∨ η(aR)y(g)

]
∨
[
η(Qa)y(h) ∨ η(aR)y(h)

]
= η(QaR)y(g) ∨ η(QaR)y(h).

Therefore, (QaR)y is a PFSG of G.

Proposition 3.6. Let Q and R be two PFSGs. If Q and R are PFNSGs, then
the PPFDC (QaR)y is a PFNSG.

Proof. Let (QaR)y = (σ(QaR)y , τ(QaR)y , η(QaR)y), where

σ(QaR)y(g) = σ(Qa)y(g) ∧ σ(aR)y(g),

τ(QaR)y(g) = τ(Qa)y(g) ∧ τ(aR)y(g)

and
η(QaR)y(g) = η(Qa)y(g) ∧ η(aR)y(g),
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g ∈ G be PPFDC where Q and R are PFNSGs of G. By Proposition 3.5, (QaR)y

is PFSG of G. Let g, h ∈ G, then

σ(QaR)y(g ∗ h ∗ g−1) =
[
σ(Qa)y(g ∗ h ∗ g−1)

]
∧
[
σ(aR)y(g ∗ h ∗ g−1)

]
=

[
σy(a)σQ(g ∗ h ∗ g−1)

]
∧
[
σy(a)σR(g ∗ h ∗ g−1)

]
=

[
σy(a)σQ((g ∗ h) ∗ g−1)

]
∧
[
σy(a)σR((g ∗ h) ∗ g−1)

]
=

[
σy(a)σQ((g ∗ h) ∗ g−1)

]
∧
[
σy(a)σR((g ∗ h) ∗ g−1)

]
=

[
σy(a)σQ(g

−1 ∗ (g ∗ h))
]
∧
[
σy(a)σR(g

−1 ∗ (g ∗ h))
]

=
[
σy(a)σQ(g

−1 ∗ g) ∗ h)
]
∧
[
σy(a)σR(g

−1 ∗ g) ∗ h)
]

= [σy(a)σQ(h))] ∧ [σy(a)σR(h)]

= (σ(Qa)y(h)) ∧ (σ(aR)y(h))

= σ(QaR)y(h),

τ(QaR)y(g ∗ h ∗ g−1) =
[
τ(Qa)y(g ∗ h ∗ g−1)

]
∧
[
τ(aR)y(g ∗ h ∗ g−1)

]
=

[
τy(a)τQ(g ∗ h ∗ g−1)

]
∧
[
τy(a)τR(g ∗ h ∗ g−1)

]
=

[
τy(a)τQ((g ∗ h) ∗ g−1)

]
∧
[
τy(a)τR((g ∗ h) ∗ g−1)

]
=

[
τy(a)τQ((g ∗ h) ∗ g−1)

]
∧
[
τy(a)τR((g ∗ h) ∗ g−1)

]
=

[
τy(a)τQ(g

−1 ∗ (g ∗ h))
]
∧
[
τy(a)τR(g

−1 ∗ (g ∗ h))
]

=
[
τy(a)τQ(g

−1 ∗ g) ∗ h)
]
∧
[
τy(a)τR(g

−1 ∗ g) ∗ h)
]

= [τy(a)τQ(h))] ∧ [τy(a)τR(h)]

= (τ(Qa)y(h)) ∧ (τ(aR)y(h))

= τ(QaR)y(h)

and

η(QaR)y(g ∗ h ∗ g−1) =
[
η(Qa)y(g ∗ h ∗ g−1)

]
∧
[
η(aR)y(g ∗ h ∗ g−1)

]
=

[
ηy(a)ηQ(g ∗ h ∗ g−1)

]
∧
[
ηy(a)ηR(g ∗ h ∗ g−1)

]
=

[
ηy(a)ηQ((g ∗ h) ∗ g−1)

]
∧
[
ηy(a)ηR((g ∗ h) ∗ g−1)

]
=

[
ηy(a)ηQ((g ∗ h) ∗ g−1)

]
∧
[
ηy(a)ηR((g ∗ h) ∗ g−1)

]
=

[
ηy(a)ηQ(g

−1 ∗ (g ∗ h))
]
∧
[
ηy(a)ηR(g

−1 ∗ (g ∗ h))
]

=
[
ηy(a)ηQ(g

−1 ∗ g) ∗ h)
]
∧
[
ηy(a)ηR(g

−1 ∗ g) ∗ h)
]

= [ηy(a)ηQ(h))] ∧ [ηy(a)ηR(h)]

= (η(Qa)y(h)) ∧ (η(aR)y(h))

= η(QaR)y(h).

Hence, (QaR)y is a PFNSG of G.

Definition 3.4. Let Q = (σQ, τQ, ηQ) be PFSG of G. Then, for any a ∈
G, pseudo picture fuzzy middle cosets (PPFMC) of Q is a PFS (aQa−1)y =
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(σ(aQa−1)y , τ(aQa−1)y , η(aQa−1)y) of G defined by

σ(aQa−1)y(g) = σy(a)σQ(a
−1 ∗ g ∗ a) σy(a−1),

τ(aQa−1)y(g) = τy(a)τQ(a
−1 ∗ g ∗ a) τy(a−1)

and
η(aQa−1)y(g) = ηy(a)ηQ(a

−1 ∗ g ∗ a) ηy(a−1),

for all g ∈ G.

Proposition 3.7. Let Q = (σQ, τQ, ηQ) be a PFNSG of G. Then for every
a ∈ G, PPFMC (aQa−1)y is a PFNSG of G.

Proof. Let Q = (σQ, τQ, ηQ) be a PFNSG of G and a ∈ G, let

(aQa−1)y = (σ(aQa−1)y , τ(aQa−1)y , η(aQa−1)y),

where σ(aQa−1)y(g), τ(aQa−1)y(g), and η(aQa−1)y(g) are as defined in Defini-
tion 3.4 for all g ∈ G. Let g, h ∈ G, then

σ(aQa−1)y(g ∗ h) = σy(a)σQ(a
−1 ∗ (g ∗ h) ∗ a) σy(a−1)

= σy(a)σQ(a
−1 ∗ (g ∗ h ∗ a)) σy(a−1)

= σy(a)σQ((g ∗ h ∗ a) ∗ a−1) σy(a
−1)

= σy(a)σQ((g ∗ h) ∗ (a ∗ a−1)) σy(a
−1)

= σy(a)σQ(g ∗ h) σy(a−1)

= σy(a)σQ(h ∗ g) σy(a−1)

= σ(aQa−1)y(h ∗ g),

τ(aQa−1)y(g ∗ h) = τy(a)τQ(a
−1 ∗ (g ∗ h) ∗ a) τy(a−1)

= τy(a)τQ(a
−1 ∗ (g ∗ h ∗ a)) τy(a−1)

= τy(a)τQ((g ∗ h ∗ a) ∗ a−1) τy(a
−1)

= τy(a)τQ((g ∗ h) ∗ (a ∗ a−1)) τy(a
−1)

= τy(a)τQ(g ∗ h) τy(a−1)

= τy(a)τQ(h ∗ g) τy(a−1)

= τ(aQa−1)y(h ∗ g)

and

η(aQa−1)y(g ∗ h) = ηy(a)ηQ(a
−1 ∗ (g ∗ h) ∗ a) ηy(a−1)

= ηy(a)ηQ(a
−1 ∗ (g ∗ h ∗ a)) ηy(a−1)

= ηy(a)ηQ((g ∗ h ∗ a) ∗ a−1) ηy(a
−1)

= ηy(a)ηQ((g ∗ h) ∗ (a ∗ a−1)) ηy(a
−1)

= ηy(a)ηQ(g ∗ h) ηy(a−1)

= ηy(a)ηQ(h ∗ g) ηy(a−1)

= η(aQa−1)y(h ∗ g).
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Hence, (aQa−1)y is a PFNSG of G.

Conclusion and future scopes

In this paper, we have extended the concepts of pseudo fuzzy cosets and pseudo
intuitionistc fuzzy cosets to pseudo picture fuzzy cosets (PPFCs), and estab-
lished some of the properties related to pseudo picture fuzzy cosets, pseudo
picture fuzzy double cosets (PPFDCs) and pseudo picture fuzzy middle cosets
(PPFMCs). Furthermore, the connections between PPFDCs and PFNSG, and
PPFMCs and PFNSG were obtained, respectively. In further research, it will
be of interest to study the pseudo picture fuzzy cosets in more complicated
uncertain environments like spherical fuzzy environment and establish the gen-
eralisation of these results.
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Abstract. Let Φ be a growth function. In this paper, we define a harmonic Bergman-
Orlicz space BΦ

α and characterize it in terms of area integral functions. Furthermore,
we define Φ-Carleson measures and then discuss Φ-Carleson measures for harmonic
Bergman-Orlicz spaces.
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1. Introduction

Let x = (x1, ..., xn), y = (y1, ..., yn) be two vectors in the n-dimensional real
vector space Rn. We write

⟨x, y⟩ = x1y1 + ...+ xnyn and |x| =
√

⟨x, x⟩ =
√
x21 + ...+ x2n.

For a ∈ Rn, let B(a, r) = {x : |x − a| < r}, S(a, r) = ∂B(a, r) and B(a, r) =
B(a, r) ∪ S(a, r). In particular, let B = B(0, 1), S = ∂B(0, 1) and B = B ∪ S
the closure of B. We denote by dv the normalized volume measure on B and
h(B) the class of all harmonic functions on B. For each α > −1, the weighted
normalized volume measure dvα(x) = cα(1 − |x|2)αdv(x) and cα is a positive
constant so that vα(B) = 1.

*. Corresponding author
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A function Φ : [0,∞) → [0,∞) with Φ(0) = 0 is called a growth function
if it is continuous and non-decreasing. The growth function Φ satisfies the ∆2-
condition if there exists a constant K > 1 such that

Φ(2t) ≤ KΦ(t), t ∈ [0,∞).

For α > −1 and a growth function Φ satisfying ∆2-condition, the Orlicz
space LΦ(B, dvα) is the set of all measurable functions f such that

∥f∥α,Φ =

∫
B
Φ(|f(x)|)dvα(x) <∞.

The harmonic Bergman-Orlicz space BΦ
α is the subspace of LΦ(B, dvα) consisting

of all f ∈ h(B). The Luxembourg gauge on BΦ
α is defined by

∥f∥luxα,Φ = inf{λ > 0 :

∫
B
Φ
( |f(x)|

λ

)
dvα(x) ≤ 1}.

We observe that Φ(t) = tp, the associated harmonic Bergman-Orlicz space is
the classical weighted harmonic Bergman space Bp

α (cf. [1, 9]).
For f ∈ h(B), recall that the radial derivative R of f is given by

Rf(x) = x · ∇f(x) = ∂

∂t
(f(tx))t=1 =

∞∑
m=1

mfm(x),

where ∇ is the usual gradient and the last form is the homogeneous expansion
of f . The fundamental theorem of calculus shows that

f(x)− f(0) =

∫ 1

0
(Rf)(tx)dt

t
.

For a ∈ B, we denote by φa the Möbius transformation in B. It’s an involu-
tion of B such that φa(0) = a and φa(a) = 0, which is of the form

φa(x) =
|x− a|2a− (1− |a|2)(x− a)

[x, a]2
, x ∈ B,

where [x, a] =
√
1− 2⟨x, a⟩+ |x|2|a|2.

Let a ∈ B and r ∈ (0, 1), the pseudo-hyperbolic ball with center a and radius
r is denoted by

E(a, r) = {x ∈ B : |φa(x)| < r}.

Indeed, E(a, r) is a Euclidean ball with center ca and radius ra given by

ca =
(1− r2)a

1− |a|2r2
and ra =

r(1− |a|2)
1− |a|2r2

,(1)

respectively (cf. [16]). It is well known that for α > −1 and any x ∈ E(a, r),

1− |a|2 ≈ 1− |x|2 ≈ [a, x] and vα(E(a, r)) ≈ (1− |a|2)n+α.(2)
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For fixed 0 < s < ∞ and 0 < r < 1
2 , we consider the following area integral

functions which were introduced by Chen and Ouyang (see [3, 4])

• As
R(f)(x) =

(∫
E(x,r)

|(1− |y|2)Rf(y)|sdτ(y)
)1/s

,

• As
∇(f)(x) =

(∫
E(x,r)

|(1− |y|2)∇f(y)|sdτ(y)
)1/s

,

• As(f)(x) =
(∫

E(x,r)
|f(y)|sdτ(y)

)1/s
,

where dτ(x) = (1− |x|2)−ndv(x) is the invariant measure on B.
Let Bn be the unit ball of the n-dimensional complex vector space Cn. For

0 < p <∞ and α > −1, the standard weighted Bergman space Ap
α(Bn) consists

of all holomorphic functions g on Bn such that∫
Bn

|g(z)|pdvα(z) <∞.

It is well known that a holomorphic function g ∈ Ap
α(Bn) if and only if

(1− |z|2)∇g(z) ∈ Lp(Bn, dvα). In [18], B. Sehba extended this characterization
to the holomorphic Bergman-Orlicz space. By adding the restriction s > 1, Chen
and Ouyang [3, 4] proved that g ∈ Ap

α(Bn) is equivalent to one (and hence
all) of the conditions As

R(g) ∈ Lp(Bn, dvα), A
s
∇(g) ∈ Lp(Bn, dvα), A

s(g) ∈
Lp(Bn, dvα). As a consequence, they obtained some new maximal and area
integral characterizations for Besov spaces. For the further discussions on this
topic, we refer to [12].

Motivated by [3, 4, 18], our first aim in this paper is to extend Chen and
Ouyang’s result to the setting of harmonic Bergman-Orlicz space BΦ

α . In order
to state our results, we need some more definitions on the growth function Φ.

We say that a growth function Φ is of upper type q ≥ 1 if there exists C > 0
such that, for s > 0 and t ≥ 1,

Φ(st) ≤ CtqΦ(s).(3)

Denote by Uq the set of growth functions Φ of upper type q, (for some q ≥ 1),

such that the function t→ Φ(t)
t is non-decreasing.

We say that Φ is of lower type p > 0 if there exists C > 0 such that, for
s > 0 and 0 < t ≤ 1,

Φ(st) ≤ CtpΦ(s).(4)

Denote by Lp the set of growth functions Φ of lower type p, (for some p ≤ 1),

such that the function t→ Φ(t)
t is non-increasing.
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Let

U =
⋃
q≥1

Uq and L =
⋃

0<p≤1

Lp.

From the above definitions on Φ, we may always suppose that any Φ ∈ U
(resp. L), is convex (resp. concave) and that Φ is a C1 function with derivative

Φ′(t) ≈ Φ(t)
t (cf. [17, 18]).

Recall that the complementary function Ψ of a convex growth function Φ,
is the function defined from R+ onto itself by

Ψ(s) = sup
t∈R+

{ts− Φ(t)}.

A growth function Φ is said to satisfy the ∇2-condition whenever both Φ and
its complementary function Ψ satisfy the ∆2-condition. See [15, 18] for more
details on the complementary function Ψ.

Theorem 1.1. Let α > −1, f ∈ h(B). Assume that Φ is a growth function
satisfying one of the following conditions:

(i) Φ ∈ Uq and satisfies the ∇2-condition;

(ii) Φ ∈ Lp and the function Φp(t) = Φ(t
1
p ) satisfies the ∇2-condition.

Then the following statements are equivalent.

(a) f ∈ BΦ
α ;

(b) As
R(f) ∈ LΦ(B, dvα);

(c) As
∇(f) ∈ LΦ(B, dvα);

(d) As(f) ∈ LΦ(B, dvα).

For a ∈ B \ {0} and δ > 0, the Carleson cone is defined as

Cδ(a) =
{
x ∈ B :

∣∣∣x− a

|a|

∣∣∣ < δ
}
.

Let µ be a positive Borel measure on B and s > 0. We say that µ is an s-
Carleson measure on B if there exists a constant C such that for any a ∈ B\{0}
and any 0 < δ < 2 such that

µ(Cδ(a)) ≤ Cδ(n−1)s.

When s = 1, the above measure is called a Carleson measure. Carleson measures
were first introduced in the unit disk D of the complex plane C by Carleson
[2]. These measures are pretty adapted to the studies of various questions on
function spaces.
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Given 0 < p, q < ∞, the question of the characterization of the positive
measures µ on Bn such that the embedding Iµ : Ap

α(Bn) → Lq(Bn, dµ) is
continuous has attracted much attention. In the setting of Bergman spaces
of the unit disk D, this question was answered due to Hastings and Luecking
[10, 13] by using Carleson measures. For the extensions of these results to the
unit ball Bn, see [5, 13, 14]. In [19], Ueki established the boundedness and
compactness of composition operators between weighted Bergman spaces in Bn

in terms of s-Carleson measures.
Our second aim of this paper is to investigate the Φ-Carleson measure in the

real unit ball B whose definition is given as follows.

Definition 1.1. Let Φ be a growth function. A positive Borel measure µ on B
is called a Φ-Carleson measure if there exists a constant C > 0 such that for
any a ∈ B \ {0} and any 0 < δ < 2,

µ(Cδ(a)) ≤
C

Φ( 1
δn−1 )

.

Obviously, when Φ(t) = ts, the Φ-Carleson measure is the usual s-Carleson
measure on B.

The following result provides an equivalent definition of the Φ-Carleson mea-
sure.

Theorem 1.2. Let τ > 0, Φ ∈ U ∪ L and µ be a positive measure on B. Then
µ is a Φ-Carleson measure if and only if

sup
a∈B

∫
B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x) <∞.(5)

Let Φ1,Φ2 be two growth functions. A positive measure µ on B is called a
Φ2-Carleson measure for BΦ1

α if there is a constant C such that∫
B
Φ2

( |f(x)|
C∥f∥luxα,Φ1

)
dµ(x) ≤ 1,

for all f ∈ BΦ1
α with ∥f∥luxα,Φ1

̸= 0.
In our final result, we discuss the Φ-Carleson measure for harmonic Bergman-

Orlicz spaces.

Theorem 1.3. Let α > −1, Φ1,Φ2 ∈ U ∪ L( 1
2
) (L( 1

2
) = ∪ 1

2
<p≤1Lp) and µ be a

positive measure on B. If Φ2/Φ1 is non-decreasing, then the following statements
are equivalent.

(a) There exists a constant C1 > 0 such that for any a ∈ B \ {0} and any
0 < δ < 1,

µ(Cδ(a)) ≤
C1

Φ2 ◦ Φ−1
1 ( 1

δn+α )
;(6)
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(b) µ is a Φ2-Carleson measure for BΦ1
α ;

(c) There exists a constant C3 > 0 such that

sup
a∈B

∫
B
Φ2

(
Φ−1
1

( 1

(1− |a|2)n+α

)(1− |a|2)2(n+α)

[a, x]2(n+α)

)
dµ(x) ≤ C3.(7)

The organization of this paper is as follows. In Section 2, some necessary
terminologies are introduced and several known results are recalled. Sections 3
and 4 are devoted to the proofs of Theorems 1.1 ∼ 1.3. Throughout this paper,
we always assume without loss of generality that our growth functions Φ are
satisfying Φ(1) = 1. The constants are denoted by C, they are positive and
may differ from one occurrence to the other. For nonnegative quantities X and
Y , X ≲ Y means that X is dominated by Y times some inessential positive
constant. We write X ≈ Y if Y ≲ X ≲ Y .

2. Preliminaries

In this section, we introduce notations and collect some preliminary results that
we will need later.

2.1 Operators on Orlicz spaces

Let Φ be a C1 growth function. Recall that the lower and the upper indices of
Φ are respectively defined by

aΦ = inf
t>0

tΦ′(t)

Φ(t)
and bΦ = sup

t>0

tΦ′(t)

Φ(t)
.

It is known that when Φ is convex, then 1 ≤ aΦ ≤ bΦ <∞ and, if Φ is concave,
then 0 ≤ aΦ ≤ bΦ ≤ 1. Note that a convex growth function satisfies the ∇2-
condition if and only if 1 < aΦ ≤ bΦ <∞ (cf. [6], Lemma 2.1).

Definition 2.1. Let Φ be a growth function. A linear operator T defined on
LΦ(B, dvα) is said to be of mean strong type (Φ,Φ)α if∫

B
Φ(|Tf |)dvα(x) ≤ C

∫
B
Φ(|f |)dvα(x),

for any f ∈ LΦ(B, dvα), and T is said to be mean weak type (Φ,Φ)α if

sup
t>0

Φ(t)vα({x ∈ B : |Tf(x)| > t}) ≤ C

∫
B
Φ(|f |)dvα(x),

for any f ∈ LΦ(B, dvα), where C is independent of f .

We remark that if Φ(t) = tp, then the mean strong type (tp, tp)α is the usual
strong type (p, p). The following interpolation result comes from [7, Theorem
4.3].
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Lemma 2.1. Let Φ0,Φ1 and Φ2 be three convex growth functions. Sup- pose
that their upper and lower indices satisfy the following condition

1 ≤ aΦ0 ≤ bΦ0 < aΦ2 ≤ bΦ2 < aΦ1 ≤ bΦ1 <∞.

If T is of mean weak types (Φ0,Φ0)α and (Φ1,Φ1)α, then it is of mean strong
type (Φ2,Φ2)α.

Let β ∈ R and consider the operator Eβ defined for functions f on B by

Eβf(x) =

∫
B
f(y)

(1− |y|2)β

[x, y]n+β
dv(y).

For a proof of the following lemma, see [9, Theorem 1.6].

Lemma 2.2. Let 1 ≤ p < ∞ and α, β > −1. The operator Eβ : Lp(B, dvα) →
Lp(B, dvα) is bounded if and only if α+ 1 < p(β + 1).

Combining Lemmas 2.1 and 2.2, the following result can be easily derived,
see [18, Theorem 2.5].

Lemma 2.3. Let α, β > −1 and Φ be a C1 convex growth function with its lower
indice aΦ. If 1 < p < aΦ and α+ 1 < p(β + 1), then Eβ is of mean strong type
(Φ,Φ)α.

2.2 Harmonic functions

It is well-known that the weighted harmonic Bergman spaces B2
α for α > −1 is

a reproducing kernel Hilbert space with reproducing kernel Rα(x, y):

(8) f(x) =

∫
B
f(y)Rα(x, y)dvα(y), f ∈ B2

α.

From [7], we know that (8) is also true for all f ∈ B1
α.

The reproducing kernels Rα(x, y) can be expressed in terms of zonal har-
monics as

Rα(x, y) =
∞∑
k=0

(1 + n
2 + α)k

(n2 )k
Zk(x, y) =

∞∑
k=0

γk(α)Zk(x, y),

where the series absolutely and uniformly converges on K × B for any compact
subset K of B and (a)b =

Γ(a+b)
Γ(a) . A straightforward computation gives that

|Rα(x, y)| ≲
1

[x, y]n+α
.(9)

Note that Rα(x, y) is real-valued, symmetric in the variables x and y and har-
monic with respect to each variable since the same is true for all Zk(x, y). For
the extension of reproducing kernels Rα(x, y) to all α ∈ R, see [7, 9].

We recall some useful inequalities concerning harmonic functions which are
useful for our investigations.
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Lemma 2.4 ([7, 16]). Let 0 < p < ∞, 0 < r < 1 and f, g ∈ h(B). Then there
exists some positive constant C such that

(1) |f(x)|p ≤ C
∫
E(x,r) |f(y)|

pdτ(y);

(2) |∇f(x)|p ≤ C
(1−|x|2)p

∫
E(x,r) |f(y)|

pdτ(y).

Moreover, if 0 < p ≤ 1 and α > −1, then there exists a positive constant C such
that

(3) ∫
B
|f(x)g(x)|(1− |x|2)(n+α)/p−ndv(x) ≤ C

(∫
B
|f(x)g(x)|pdvα(x)

)1/p
.

The following standard estimate will be needed in the sequel.

Lemma 2.5 ([16]). Let α > −1 and β ∈ R. Then for any x ∈ B,

∫
B

(1− |y|2)α

[x, y]n+α+β
dv(y) ≈


(1− |x|2)−β, β > 0,

log
1

1− |x|2
, β = 0,

1, β < 0.

3. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Before the proof, we need
some preparation.

Lemma 3.1 ([8]). Let Φ ∈ Lp. Then the growth function Φp, defined by Φp(t) =

Φ(t
1
p ) is in Uq for some q ≥ 1. Moreover, for s > 0 and t ≥ 1,

Φp(ts) ≤ t
1
pΦp(s).

By Lemmas 2.4 and Lemma 3.1, we can obtain the following useful integral
estimates.

Lemma 3.2. Let f ∈ h(B) and Φ ∈ Uq ∪ Lp. Then for 0 < r < 1 and x ∈ B,

(1) Φ
(
(1− |x|2)|∇f(x)|

)
≲

∫
E(x,r)Φ(|f(y))|dτ(y);

(2) Φ(|f(x)|) ≲
∫
E(x,r)Φ(|f(y)|)dτ(y).

Proof. Let

pΦ =

{
1, if Φ ∈ Uq,

p, if Φ ∈ Lp.
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By Lemma 2.4, for each x ∈ B,(
(1− |x|2)|∇f(x)|

)pΦ ≲
∫
E(x,r)

|f(y)|pΦdτ(y).

Set

Φp(t) =

{
Φ(t), if Φ ∈ Uq,

Φ(t
1
p ), if Φ ∈ Lp.

It follows from Lemma 3.1 and the convexity of Φp(t) that

Φ((1− |x|2)|∇f(x)|) ≲
∫
E(x,r)

Φ(|f(y)|)dτ(y).

This proves (1).
By Lemma 2.4 and an argument similar to the above, the assertion of (2)

follows.

Lemma 3.3. Assume that Φ is a growth function satisfying one of the following
conditions:

(i) Φ ∈ Uq and satisfies the ∇2-condition;

(ii) Φ ∈ Lp and the function Φp(t) = Φ(t
1
p ) satisfies the ∇2-condition.

If α > −1 and f ∈ h(B), then∫
B
Φ(|f(x)− f(0)|)dvα(x) ≲

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x);(10)

and ∫
B
Φ((1− |x|2)|∇f(x)|)dvα(x) ≲

∫
B
Φ(|f(x)|)dvα(x).(11)

Proof. We first prove (10). Let f ∈ h(B). Then for s > −1,

Rf(x) =
∫
B
Rf(y)Rs(x, y)dvs(y).

Since
∫
BRf(y)dvs(y) = 0, subtracting this from the previous equation yields

Rf(x) =
∫
B
Rf(y)(Rs(x, y)− 1)dvs(y).

Consequently,

|f(x)− f(0)| =
∣∣∣ ∫ 1

0

∫
B
Rf(y)(Rs(tx, y)− 1)dvs(y)

dt

t

∣∣∣
=

∣∣∣ ∫
B
Rf(y)

∫ 1

0

Rs(tx, y)− 1

t
dtdvs(y)

∣∣∣.
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Set

G(x, y) =

∫ 1

0

Rs(tx, y)− 1

t
dt.

From the proof of [9, Lemma12.1], it deduces that

|G(x, y)| ≤
∫ 1

0

∣∣∣Rs(tx, y)− 1

t

∣∣∣dt ≲ ∫ 1

0

dt

[tx, y]n+s
≲

1

[x, y]n+s−1
.

Therefore,

|f(x)− f(0)| ≲
∫
B
(1− |y|2)|Rf(y)| 1

[x, y]n+s−1
dvs−1(y).

We first consider the case Φ satisfies the condition (i) of the lemma. Fix p so
that 1 < p < aΦ. By taking s large enough so that α + 1 < ps, we conclude
from Lemma 2.3 that∫

B
Φ(|f(x)− f(0)|)dvα(x) ≲

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x).

We next consider the case of Φ ∈ Lp and Φp(t) = Φ(t
1
p ) satisfies the ∇2-

condition. Set s = (n + α′)/p − n and α′ > α + p. By Lemma 2.4, it deduces
that

|f(x)− f(0)|p ≲
∫
B
|Rf(y)|p|G(x, y)|pdvα′(y)

≲
∫
B

|Rf(y)|p

[x, y]p(n+s−1)
dvα′(y)

≲
∫
B

|(1− |y|2)Rf(y)|p

[x, y]n+α′−p
dvα′−p(y).

As the growth function t→ Φp(t) = Φ(t
1
p ) is in Uq and satisfies the∇2-condition,

proceeding as in the first part of this proof yields that∫
B
Φ(|f(x)− f(0)|)dvα(x) =

∫
B
Φp(|f(x)− f(0)|p)dvα(x)

≲
∫
B
Φp((1− |x|2)|Rf(x)|)p)dvα(x)

=

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x).

We now come to prove (11). By Lemma 3.2, we have

Φ((1− |x|2)|∇f(x)|) ≲
∫
E(x,r)

Φ(|f(y)|)dτ(y), x ∈ B.



AREA INTEGRAL CHARACTERIZATIONS AND Φ-CARLESON MEASURES ... 187

Integrating both sides of the above inequality over B with respect to dvα(x) and
applying Fubini’s theorem, we get∫

B
Φ((1− |x|2)|∇f(x)|)dvα(x) ≲

∫
B
Φ(|f(x)|)dvα(x).

This completes the proof.

Proof of Theorem 1.1. We only prove (a) ⇔ (b). Similar discussions can be
applied to prove (a) ⇔ (c) and (a) ⇔ (d).

We first assume that As
R(f) ∈ LΦ(B, dvα). By Lemma 2.4, for each x ∈ B,

we have

|(1− |x|2)Rf(x)| ≲ As
R(f)(x).

Then (b) ⇒ (a) follows from Lemma 3.3.

For the converse, we assume that f ∈ BΦ
α . For each fixed x ∈ B, let

h(x) = sup{(1− |ζ|2)|Rf(ζ)| : ζ ∈ E(x,
1

2
)}.

From (1), we can find r′ such that 0 < 1
2 < r′ < 1 and E(ξ, 12) ⊂ E(x, r′) for

every ξ ∈ E(x, 12). It follows from Lemma 3.2 that

Φ
(
|As

R(f)(x)
)
| ≲ Φ(h(x)) ≲

∫
E(x,r′)

Φ(|f(y)|)dτ(y)

Hence by Fubini’s theorem and (2),∫
B
Φ
(
|As

R(f)(x)
)
|dvα(x) ≲

∫
B
(1− |x|2)α

∫
E(x,r′)

Φ(|f(y)|)dτ(y)dv(x)

≲
∫
B
Φ(|f(y)|)dτ(y)

∫
E(y,r′)

(1− |x|2)αdv(x)

≲
∫
B
Φ(|f(y)|)dvα(y).

This completes the proof. □

4. Proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Assume first that (5) holds. For each a ∈ B \ {0}, set
δ = 1− |a|. A simple computation gives that

[a, x] ≤ 1− |a|2 ≤ 2δ,
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for x ∈ Cδ(a). Therefore

µ(Cδ(a))Φ(
1

δn−1
) =

∫
Cδ(a)

Φ(
1

δn−1
)dµ(x)

≲
∫
Cδ(a)

Φ
( 2n−1

[a, x]n−1

)
dµ(x)

≲
∫
Cδ(a)

Φ
(2n−1(1− |a|2)τ

[a, x]n−1+τ

)
dµ(x)

≲
∫
B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x),

where the last inequality follows from the monotonicity of Φ or Φ(t)
t .

Conversely, assume that µ is a Φ-Carleson measure. The proof is based on
a standard slicing trick, see [11, Lemma 2.2]. Without loss of generality, let
1
2 < |a| < 1. Denote Q0(a) = ∅ and

Qk(a) =
{
x ∈ B :

∣∣∣x− a

|a|

∣∣∣ < 2k−1(1− |a|)
}
, k = 1, 2, ..., N,

where N is the smallest integer such that 2N−1(1− |a|) ≥ 2.
Since for each x ∈ Qk(a)\Qk−1(a), [a, x] ≥ |a|2(k−2)(1− |a|), we have∫

B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x)

≲
N∑
k=1

∫
Qk(a)\Qk−1(a)

Φ
( (1− |a|2)τ

2(k−2)(n−1+τ)(1− |a|)(n−1)+τ

)
dµ(x)

≲
N∑
k=1

Φ
(

1
2(k−2)(n−1+τ)(1−|a|)n−1

)
Φ
(

1
2(k−1)(n−1)(1−|a|)n−1

)
≲

N∑
k=1

1

2kτς
<∞,

where ς = 1 if Φ ∈ U and ς = p if Φ ∈ L is of lower type 0 < p ≤ 1. The proof
is complete.

In order to prove Theorem 1.3, we need the following two lemmas.

Lemma 4.1. Let α > −1, Φ ∈ U ∪ L and f ∈ BΦ
α . Then there exists a positive

constant C such that for each a ∈ B,

|f(a)| ≤ CΦ−1
( 1

(1− |a|2)n+α

)
∥f∥luxα,Φ.(12)

Proof. If ∥f∥luxα,Φ = 0, then f = 0 a.e. on B so that (12) obviously holds.

Suppose that ∥f∥luxα,Φ ̸= 0. In view of (2) and Lemma 2.4, we see that for a ∈ B
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and 0 < p <∞,

|f(a)|p ≲
∫
E(a,r)

|f(x)|p
((1− |a|2)

[x, a]2

)n+α
dvα(x).

It follows a similar discussion in the proof of Lemma 3.2,

Φ
( |f(a)|
∥f∥luxα,Φ

)
≲

∫
E(a,r)

Φ
( |f(x)|
∥f∥luxα,Φ

)((1− |a|2)
[x, a]2

)n+α
dvα(x)

≲
1

(1− |a|2)n+α
,

which gives (12).

Lemma 4.2. Let α > −1, 1
2 < p ≤ 1 and Φ ∈ U ∪ Lp. Then each a ∈ B, the

following function

fa(x) = Φ−1
( 1

(1− |a|2)n+α

)
Rn+2α(x, a)(1− |a|2)2(n+α)

belongs to BΦ
α .

Proof. Let

ha(x) =
(1− |a|2)2(n+α)

[x, a]2(n+α)
.

Since α > −1, from (8),∫
B
Φ(|fa(x)|)dvα(x)

=

∫
B
Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
|Rn+2α(x, a)|(1− |a|2)2(n+α)

)
dvα(x)

≲
∫
B
Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

= I1 + I2,

where

I1 =

∫
{x∈B:ha(x)≤1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

and

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x).

We now divide the remainder of the proof into the following two cases.

Case I. Φ ∈ U . By the monotonicity of Φ(t)
t and Lemma 2.5,
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I1 ≲
∫
{x∈B:ha(x)≤1}

ha(x)Φ
(
Φ−1

( 1

(1− |a|2)n+α

))
dvα(x)

≲
∫
B

(1− |a|2)(n+α)

[x, a]2(n+α)
dvα(x) ≲ 1.

Using (3), there exists some q ≥ 1 such that

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x).

≲
∫
B

(1− |a|2)(2q−1)(n+α)

[x, a]2q(n+α)
dvα(x) ≲ 1.

Case II. Φ ∈ Lp with p > 1
2 . Using (4) and Lemma 2.5, we have

I1 ≲
∫
{x∈B:ha(x)≤1}

ha(x)
pΦ

(
Φ−1

( 1

(1− |a|2)n+α

))
dvα(x)

≲
∫
B

(1− |a|2)(2p−1)(n+α)

[x, a]2p(n+α)
dvα(x) ≲ 1.

By the monotonicity of Φ(t)
t and Lemma 2.5 again,

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

≲
∫
B

(1− |a|2)(n+α)

[x, a]2(n+α)
dvα(x) ≲ 1.

Combining the above two cases, the assertion of this lemma follows.

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof will follow by the routes (a) ⇒ (b) ⇒ (c) ⇒
(a).

We first prove (a) ⇒ (b). For y ∈ B \ {0} and 1
4 < r < 1. By (1) and (2), we see

that for large enough k, E(y, r) ⊂ Qk(y) and

µ(E(y, r)) ≤ µ(Qk(y)) ≲
1

Φ2 ◦ Φ−1
1 ( 1

2(k−1)(n+α)(1−|y|)n+α )
.(13)

Let f ∈ BΦ1
α with ∥f∥luxα,Φ1

̸= 0. Note that Φ2 ∈ U ∪ L( 1
2
), then

Φ2(
|f(x)|
∥f∥luxα,Φ1

) ≲
∫
E(x, 1

4
)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−(n+α)dvα(y)
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by Lemma 3.2. Thus

L =

∫
B
Φ2(

|f(x)|
∥f∥luxα,Φ1

)dµ(x)

≲
∫
B
dµ(x)

∫
E(x, 1

4
)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−(n+α)dvα(y)

≲
∫
B

(∫
B
χE(y, 1

4
)(x)dµ(x)

)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−ndv(y).

From (1), we can find an integer k such that and E(x, 14) ⊂ Qk(y) for every
x ∈ E(y, 14). It follows from Lemma 3.2 and (13) that

L ≲
∫
B
Φ2(

|f(y)|
∥f∥luxα,Φ1

)µ(Qk(y))(1− |y|2)−ndv(y).

By the assumption Φ2/Φ1 is non-decreasing and (12),

L ≲
∫
B
Φ1(

|f(y)|
∥f∥luxα,Φ1

)
Φ2 ◦ Φ−1

1 ( 1
(1−|y|2)n+α )

Φ1 ◦ Φ−1
1 ( 1

(1−|y|2)n+α )
(1− |y|2)−nµ(Qk(y))dv(y)

≲
∫
B
Φ1(

|f(y)|
∥f∥luxα,Φ1

)dvα(y) ≤ 1.

This implies that we can find a constant C2 > 0 such that∫
B
Φ2

( |f(x)|
C2∥f∥luxα,Φ1

)
dµ(x) ≤ 1.

(b) ⇒ (c). For a ∈ B, recall that

fa(x) = Φ−1
1

( 1

(1− |a|2)n+α

)
Rn+2α(x, a)(1− |a|2)2(n+α) ∈ BΦ1

α

from Lemma 4.2. Thus, the implication easily follows by testing fa and using
the monotonicity of Φ2 or the monotonicity of the function Φ2(t)

t .

(c) ⇒ (a). The implication (c) ⇒ (a) follows the same way as in the proof of
Theorem 1.2. We omit the details here. □
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ness and compactness of Cesàro-type operator, Bull. Sci. Math., 180 (2022),
103193.

[19] S. Ueki, Weighted composition operators between weighted Bergman spaces
in the unit ball of Cn, Nihonkai Math. J., 16 (2005), 31-48.

Accepted: November 22, 2023



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 51–2024 (194–206) 194

Mycielskian of signed graphs

Albin Mathew
Department of Mathematics
Central University of Kerala
Kasaragod-671316, Kerala
India
albinmathewamp@gmail.com

Germina K.A.∗

Department of Mathematics

Central University of Kerala

Kasaragod-671316, Kerala

India

srgerminaka@gmail.com
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1. Introduction

A signed graph Σ = (G, σ) consists of an underlying graph G = (V,E), together
with a function σ : E → {−1, 1}, called the signature or sign function. The sign
of a cycle C in Σ, denoted by σ(C), is defined as the product of the signs of its
edges, and the cycle C is said to be positive if σ(C) = +1. A signed graph Σ is
said to be balanced if every cycle in it is positive, otherwise, Σ is unbalanced.
A signed graph is called all-positive (all-negative) if all the edges are positive
(negative).

A switching function for Σ is a function ζ : V (Σ) → {−1, 1}. For an edge
e = uv in Σ, the switched signature σζ is defined as σζ(e) = ζ(u)σ(e)ζ(v), and
the switched signed graph is Σζ = (G, σζ). The signs of cycles are unchanged
by switching, and any balanced signed graph can be switched to an all-positive
signed graph. If one signed graph can be switched from the other, they are said
to be switching equivalent (see, [8, Section 3]).

*. Corresponding author
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The net-degree of a vertex v in a signed graph Σ, denoted by d±Σ(v) is defined
as d±Σ(v) = d+Σ(v) − d−Σ(v), where d+Σ(v) and d−Σ(v) respectively denotes the
number of positive and negative edges incident with v in Σ. The total number
of edges incident with v in Σ is denoted by dΣ(v) and dΣ(v) = d+Σ(v) + d−Σ(v).

Throughout this paper, we consider only finite, simple, connected, and undi-
rected graphs and signed graphs. For the standard notation and terminology in
graphs and signed graphs not given here, the reader may refer to [3, 9, 12].

The Mycielski construction of a simple graph was introduced by J. Mycielski
[7] in his search for triangle-free graphs with arbitrarily large chromatic number.
The Mycielskian for a finite, simple, connected graph G = (V,E) is defined as
follows.

Definition 1.1 ([1]). The Mycielskian M(G) of G is a graph whose vertex set
is the disjoint union V ∪V ′ ∪{w}, where V ′ = {v′ : v ∈ V }, and whose edge set
is E ∪{u′v : uv ∈ E}∪ {v′w : v′ ∈ V ′}. The vertex w is called the root of M(G)
and v′ ∈ V ′ is called the twin of v in M(G).

The Mycielski construction is useful in various applications, including the
study of planar graphs and coloring problems, as triangle-free graphs have
unique properties and often behave differently from graphs with triangles. When
it comes to signed graphs, triangle-free signed graphs are even more important,
as recent studies indicate that the negative triangles affects the balance of a
signed graph more than other negative cycles.

1.1 Mycielskian of signed graphs

Motivated from the Definition 1.1, we define the MycielskianM(Σ) of the signed
graph Σ as follows.

Definition 1.2 (Mycielskian). The Mycielskian of Σ is the signed graphM(Σ) =
(M(G), σM ), where M(G) is the Mycielskian of the underlying graph G of Σ,
and the signature function σM is defined as σM (uv) = σM (u′v) = σ(uv) and
σM (v′w) = 1

The following are some immediate observations.

Observation 1.1. Let Σ be a signed graph with p vertices and q edges and let
M(Σ) be its Mycielskian. Then, we have the following.

(i) M(Σ) has 2p+ 1 vertices and 3q + p edges.

(ii) If Σ contains r positive edges and q−r negative edges, thenM(Σ) contains
3r + p positive edges and 3(q − r) negative edges.

(iii) If Σ is triangle-free, then M(Σ) is also triangle-free.

(iv) For each vertex v ∈ V , d±M(Σ)(v) = 2d±Σ(v) and dM(Σ)(v) = 2dΣ(v).
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(v) For each vertex v′ ∈ V ′, d±M(Σ)(v
′) = d±Σ(v)+1 and dM(Σ)(v

′) = dΣ(v)+1.

(vi) d±M(Σ)(w) = dM(Σ)(w) = p.

Note that, one can define the signature function for the Mycielskian of a
signed graph in other ways. In this paper, we initiate a study on Mycielskian of
a signed graph using this particular definition.

This particular construction of Mycielskian of a signed graph is illustrated
in Example 1.1.

Example 1.1. Let Σ be the negative cycle C−
4 . The Mycielskian of C−

4 is
constructed in Figure 1b.

v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) M(Σ)

Figure 1: A signed graph and its Mycielskian.

2. Balance and switching in Mycielskian of signed graphs

Balance and switching are two important concepts in signed graph theory.

In this section, we establish how the signed graph and its Mycielskian are
related with respect to balance and switching. One may note that if Σ is unba-
lanced, then M(Σ) is unbalanced. Also, in general, for a balanced signed graph
Σ, the Mycielskian M(Σ) need not be balanced.

The following is a characterization for M(Σ) to be balanced.

Proposition 2.1. The Mycielskian M(Σ) is balanced if and only if Σ is all-
positive.

Proof. If Σ is all-positive, then so is M(Σ), and hence is balanced. Conversely,
If Σ has at least one negative edge, say vivj , then vivjv

′
iwv

′
jvi forms a negative

5 - cycle in M(Σ), making it unbalanced.

Consider any balanced signed graph Σ which is not all-positive. Then, Σ can
be switched to an all-positive signed graph, say Σ′. By Proposition 2.1, M(Σ) is
not balanced, but M(Σ′) is balanced. Hence, the Mycielskians of two switching
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equivalent signed graphs need not to be switching equivalent.

The Mycielskian of an unbalanced signed graph is always unbalanced. How-
ever, for a balanced signed graph Σ, the Mycielskian M(Σ) = (M(G), σM ) can
be made balanced by modifying the signature function σM . Though there are
several ways to do so, to remain consistent with our original definition, we only
look for changes that can be made in the signature of the edges incident to the
root vertex w which makes the Mycielskian balanced, and leave the signatures
of the other edges unchanged.

We need the following theorem [4].

Theorem 2.1 (Harary’s bipartition theorem [4]). A signed graph Σ is balanced
if and only if there is a bipartition of its vertex set, V = V1∪V2, such that every
positive edge is induced by V1 or V2 while every negative edge has one endpoint
in V1 and one in V2. The bipartition V = V1 ∪ V2 is called a Harary bipartition
for Σ.

Note that, if V = V1∪V2 is a Harary bipartition for Σ, then every path in Σ
joining vertices in V1 (similarly V2) is positive, and every path between V1 and
V2 is negative.

Theorem 2.2 provides a method to construct a balanced Mycielskian signed
graph from a balanced signed graph.

Theorem 2.2. Let Σ be a balanced signed graph andM(Σ) = (M(G), σM ) be its
Mycielskian. If σ′M is a signature function satisfying σ′M = σM on M(G)\{w}
and satisfies the relation σ′M (v′iw)σ

′
M (v′jw) = σ(vivj) for every edge vivj in Σ,

then the signed graph M ′(Σ) = (M(G), σ′M ) is balanced.

Proof. Since Σ is balanced, by Harary bipartition theorem, there exists a bi-
partition V = V1 ∪ V2 of V such that every negative edge in Σ has its one end
vertex in V1 and the other in V2. We construct a Harary bipartition for M ′(Σ)
as follows.

Let V ′
1 = {v′i : vi ∈ V1} and V ′

2 = {v′i : vi ∈ V2} be the subsets of V ′

corresponding to the subsets V1 and V2 of V . Since V = V1 ∪ V2, we have
V ′ = V ′

1 ∪ V ′
2 . Now, every edge with both its end vertices in V1 is positive and

no vertices in V ′
1 are adjacent. Also, for edges of the form viv

′
j , where vi ∈ V1

and v′j ∈ V ′
1 , we have, σ′M (viv

′
j) = σM (viv

′
j) = σ(vivj) = +1. Thus, every

edge with both its end vertices in V1 ∪ V ′
1 is positive. Similarly, every edge

with both its end vertices in V2 ∪ V ′
2 is positive. Finally, consider any edge e

having one end vertex in V1 ∪ V ′
1 and the other in V2 ∪ V ′

2 . Without loss of
generality, we can assume that e = vivj , where vi ∈ V1 and vj ∈ V2. Then,
σ′M (e) = σM (e) = σM (vivj) = σ(vivj) = −1. Hence, every edge joining V1 ∪ V ′

1

and V2 ∪ V ′
2 is negative.

We now claim that if σ′M (v′kw) is positive for some vk ∈ V1, then σ′M (v′iw)
is positive for all vi ∈ V1 and σ′M (v′jw) is negative for all vj ∈ V2. To prove the
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claim, we first observe that if the relation σ′M (v′iw)σ
′
M (v′jw) = σ(vivj) holds for

every edge vivj in Σ, then for any path Pvivj joining the vertices vi and vj in Σ,
the sign σ(Pvivj ) satisfies the relation σ′M (v′iw)σ

′
M (v′jw) = σ(Pvivj ). To prove

this, consider a vi − vj path, say Pvivj = vivi+1vi+2 · · · vj−1vj , in Σ. Then, we
have

σ(Pvivj ) = σ(vivi+1vi+2 · · · vj−1vj)

= σ(vivi+1)σ(vi+1vi+2) · · ·σ(vj−1vj)

= (σ′M (v′iw)σ
′
M (v′i+1w))(σ

′
M (v′i+1w)σ

′
M (v′i+2w)) · · · (σ′M (v′j−1w)σ

′
M (v′jw))

= σ′M (v′iw)(σ
′
M (v′i+1w)σ

′
M (v′i+2w) · · ·σ′M (v′j−1w))

2σ′M (v′jw))

= σ′M (v′iw)σ
′
M (v′jw).

Now, consider vk ∈ V1 and let vi ∈ V1 and vj ∈ V2 be arbitrary. Then, every
vi − vk path is positive (i.e., σ(Pvivk) = +1) and every vj − vk path is negative
(i.e., σ(Pvjvk) = −1). The connectedness of Σ guarantees the existence of such
paths. Now, σ′M (v′iw)σ

′
M (v′kw) = σ(Pvivk) = +1. Thus, σ′M (v′iw) and σ

′
M (v′kw)

must have the same sign. Similarly, since σ′M (v′jw)σ
′
M (v′kw) = σ(Pvjvk) = −1,

σ′M (v′jw) and σ
′
M (v′kw) are of the opposite sign. Thus, if σ

′
M (v′kw) is positive for

some vk ∈ V1, then σ
′
M (v′iw) is positive for all vi ∈ V1 and σ′M (v′jw) is negative

for all vj ∈ V2. Hence, the claim is proved.

Now, consider the edges v′iw, where v
′
i ∈ V ′

1 ∪ V ′
2 . Because of the claim, if

σ′M (v′kw) is positive for some vk ∈ V1, then σ
′
M (v′iw) is positive for all vi ∈ V1

and σ′M (v′jw) is negative for all vj ∈ V2. In this case, let (VM )1 = V1 ∪ V ′
1 ∪ {w}

and (VM )2 = V2 ∪ V ′
2 . Similarly, if σ′M (v′kw) is negative for some vk ∈ V1, then

σ′M (v′iw) is negative for all vi ∈ V1 and σ′M (v′jw) is positive for all vj ∈ V2. In
this case, let (VM )1 = V1 ∪ V ′

1 and (VM )2 = V2 ∪ V ′
2 ∪ {w}.

Thus, in either case, VM = (VM )1 ∪ (VM )2 forms a Harary bipartition for
M ′(Σ), and hence M ′(Σ) is balanced.

Remark 2.1. One may note that σ′M is a different signature on M(G) that
coincides with σM on M(G)\{w}. The signature function σ′M for the remaining
edges v′iw of M(G) has to be defined using the relation stated in Theorem 2.2.
One such construction is discussed in Section 2.1.

It is also worth noting that if σ′M = σM onM(G), then Theorem 2.2 reduces
to Proposition 2.1.

2.1 A balance-preserving construction

Given any balanced signed graph Σ = (G, σ), there exist a switching function
ζ : V (Σ) → {−1,+1} that switches Σ to all-positive. Define MB(Σ) as the
signed graph with underlying graph M(G) and having the signature function
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σB defined as

σB(vivj) = σ(vivj),

σB(v
′
ivj) = σB(viv

′
j) = σ(vivj),

σB(v
′
iw) = ζ(vi).

Define a switching function ζB : V (MB(Σ)) → {−1,+1} by

ζB(vi) = ζ(vi),

ζB(v
′
i) = ζ(vi),

ζB(w) = 1.

Since ζ switches Σ to all-positive, for edges vivj ,

σζBB (vivj) = ζB(vi)σB(vivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Similarly, for edges v′ivj ,

σζBB (v′ivj) = ζB(v
′
i)σB(v

′
ivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Also, for edges v′iw,

σζBB (v′iw) = ζB(v
′
i)σB(v

′
iw)ζB(w)

= ζ(vi)ζ(vi)(+1)

= (ζ(vi))
2

= +1.

Hence, ζB switches MB(Σ) to all-positive. Thus, MB(Σ) = (M(G), σB) is ba-
lanced, and we call it as the balanced Mycielskian of Σ.

Definition 2.1 (Balanced Mycielskian). Let Σ = (G, σ) be a balanced signed
graph, where the underlying graph G = (V,E), is a finite simple connected graph.
The signed graph MB(Σ) = (M(G), σB) is called the balanced Mycielskian of Σ.

One can observe that under this construction, if two balanced signed graphs
Σ1 and Σ2 are switching equivalent, then their corresponding balanced Myciel-
skians MB(Σ1) and MB(Σ2) are also switching equivalent.
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v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) MB(Σ)

Figure 2: A balanced signed graph Σ and its balanced Mycielskian MB(Σ).

Example 2.1. Let Σ be the balanced 4-cycle shown in Figure 2a. The switching
function ζ : V (Σ) → {−1, 1} defined by ζ(v1) = ζ(v3) = ζ(v4) = −1 and
ζ(v2) = 1 switches Σ to all-positive. The corresponding balanced Mycielskian is
constructed in Figure 2b.

Remark 2.2. Note that, since σζ(vivj) = +1, for every edge vivj in Σ, we have
ζ(vi)ζ(vj) = σ(vivj). Thus,

σB(v
′
iw)σB(v

′
iw) = ζ(vi)ζ(vj) = σ(vivj).

Hence, the signature function defined for the balanced Mycielskian satisfies the
condition given in Theorem 2.2.

3. The chromatic number of Mycielskian of signed graphs

In 1981, Zaslavsky [10] introduced the concept of coloring a signed graph. For a
signed graph Σ, he defined the signed coloring of Σ in µ colors, or in 2µ+1 signed
colors as a mapping c : V (Σ) → {−µ,−µ+ 1, . . . , 0, . . . , µ− 1, µ}. Whenever a
coloring never assumes the value 0, it is referred to as a zero-free coloring. A
coloring c is said to be proper if c(u) ̸= σ(e)c(v) for every edge e = uv of Σ (see,
[10, Section 1]).

Máčajová et al. in [5] defined the chromatic number of a signed graph as
follows.

Definition 3.1 ([5]). An n - coloring of a signed graph Σ is a proper coloring
that uses colors from the set Mn, which is defined for each n ≥ 1 as

Mn =

{
{±1,±2, . . . ± k}, if n = 2k

{0,±1,±2, . . . ± k}, if n = 2k + 1.

The smallest n such that Σ admits an n - coloring is called the chromatic number
of Σ and is denoted by χ(Σ).

The chromatic number of a balanced signed graph coincides with the chro-
matic number of its underlying unsigned graph.
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Proposition 3.1. Let M(Σ)\{w} be the signed graph obtained by removing the
root vertex w (and the corresponding edges) fromM(Σ). Then, χ(M(Σ)\{w}) =
χ(Σ).

Proof. Let χ(Σ) = n and let c : V (Σ) → Mn be an n - coloring for Σ. Define
c′ : V ((M(Σ)\{w}) → Mn by c′(v′i) = c′(vi) = c(vi) for all i. Since c(vi) ̸=
σ(vivj)c(vj), it follows that c

′(vi) ̸= σM (vivj)c
′(vj) and c

′(v′i) ̸= σM (v′ivj)c
′(vj).

Hence, c′ is an n - coloring for M(Σ)\{w}.

For any given signed graph Σ, there exist a signed graph −Σ obtained by
reversing the signs of all edges of Σ. We say Σ is antibalanced when −Σ is
balanced. Note that, Σ is antibalanced if and only if it can be switched to all-
negative.

We restate the Lemma 2.4 from [11] as follows.

Lemma 3.1 ([11]). A signed graph Σ is antibalanced if and only if χ(Σ) ≤ 2.

Theorem 3.1. Let Σ be a signed graph and M(Σ) be its Mycielskian. Then,
χ(M(Σ)) ≤ 2 if and only if Σ is all-negative.

Proof. If Σ is an all-negative signed graph with vertex set {v1, v2, . . . vp}, then
the only positive edges ofM(Σ) are v′iw, 1 ≤ i ≤ p. Now, the switching function
ζ ′M : V (M(Σ)) → {−1, 1} defined by ζ ′M (vi) = ζ ′M (v′i) = 1 for all 1 ≤ i ≤ p and
ζ ′M (w) = −1 switches M(Σ) to all-negative. Therefore, M(Σ) is antibalanced
and hence χ(M(Σ)) ≤ 2, by Lemma 3.1. Conversely, if Σ is not all-negative, it
contains at least one positive edge, say vivj . Then, vivjv

′
iwv

′
jvi forms a negative

5 - cycle in −M(Σ), making it unbalanced. Thus,M(Σ) is not antibalanced and
therefore, by Lemma 3.1, χ(M(Σ)) > 2.

We have the following theorem in [1].

Theorem 3.2 ([7]). Let χ(G) and χ(M(G)) be the chromatic numbers of a
graph G and its Mycielskian M(G) respectively. Then χ(M(G)) = χ(G) + 1.

Theorem 3.3. Let M(Σ) be the Mycielskian of a signed graph (Σ). Then,
χ(Σ) ≤ χ(M(Σ)) ≤ χ(Σ) + 1. Furthermore, χ(M(Σ)) = χ(Σ) if Σ is all-
negative and χ(M(Σ)) = χ(Σ) + 1 if Σ is all-positive.

Proof. Let χ(Σ) = n and let c : V →Mn be an n - coloring for Σ. We extend c
to an (n+1) - coloring of M(Σ). If n = 2k, we extend c to an (n+1) - coloring
of M(Σ) by setting c(v′i) = c(vi) for all i and c(w) = 0. If n = 2k+1, we extend
c to an (n + 1) - coloring of M(Σ) as follows. Let vt be any vertex in V with
c(vt) = 0. Then, for all vi ̸= vt, set c(v

′
i) = c(vi) , c(v′t) = c(vt) = k + 1 and

c(w) = −(k + 1). Hence, χ(M(Σ)) ≤ χ(Σ) + 1.
Now, if Σ is all-negative, it can be colored using just one color, namely

−1. Let c : V (Σ) → {±1} be the proper 2 - coloring for Σ. This can be
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extended to a proper 2 - coloring for M(Σ) by setting c(v′i) = c(vi) = −1 for
all i and c(w) = +1. If Σ is all-positive, then M(Σ) is all-positive. Thus,
χ(M(Σ)) = χ(M(G)) = χ(G) + 1 = χ(Σ) + 1.

Remark 3.1. Let Σ be a signed graph with χ(Σ) = n and let c : V (Σ) → Mn

be an n - coloring of Σ. The deficiency of the coloring c is the number of unused
colors from Mn (see, [6]). The existence of signed graphs satisfying χ(M(Σ)) =
χ(Σ) is a consequence of the deficiency of the coloring of Σ. Specifically, if the
coloring of Σ has a deficiency of at least 1, then an unused color can be assigned
to w, making the chromatic number of M(Σ) and Σ equal. As an example,
consider Σ as the balanced 3 - cycle shown in Figure 3a. Note that, χ(Σ) = 3
and the color −1 in the color set {0,±1} is unused.

1 1

0

(a) Σ

1
1

0

1 1 0

−1

(b) M(Σ)

Figure 3: A signed graph Σ satisfying χ(M(Σ)) = χ(Σ)

We now establish some results on the balanced Mycielskian of signed graphs.

Proposition 3.2. Let Σ = (G, σ) be a balanced signed graph and MB(Σ) =
(M(G), σB) be its balanced Mycielskian. Then, χ(MB(Σ)) = χ(Σ) + 1.

Proof. Since Σ and MB(Σ) are both balanced, χ(MB(Σ)) = χ(M(G)) and
χ(Σ) = χ(G). The result then follows from Theorem 3.2.

The following theorem was put forward by Mycielski in [7]

Theorem 3.4 ([7]). For any positive integer n, there exists a triangle-free graph
with chromatic number n.

The next theorem is an analogous result for balanced signed graphs.

Theorem 3.5. For any positive integer n, there exists a balanced triangle-free
signed graph that is not all-positive, and having chromatic number n.
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Proof. The proof is based on mathematical induction. For n = 1 and n =
2, the signed graphs Σ1 = K1 and Σ2 = K−

2 , where K−
2 is the all-negative

signed complete graph on two vertices have the required property. Suppose that
for k > 2, such a signed graph Σk satisfying the induction hypothesis exists.
Then, MB(Σk) is a balanced signed graph that is not all-positive. Also, by
Proposition 3.2, we have, χ(Σk+1) = χ(Σk) + 1 = k + 1.

4. Matrices of the Mycielskian of signed graphs

Given a signed graph Σ = (V,E, σ) where V = {v1, v2, . . . , vp} is the vertex set,
E = {e1, e2, . . . , eq} is the edge set and σ : E → {−1, 1} is the sign function.
Let M(Σ) be the Mycielskian of Σ. In this section, we introduce the adjacency
matrix, the incidence matrix and the Laplacian matrix of the MycielskianM(Σ)
of Σ.

4.1 The adjacency matrix

The adjacency matrix of Σ, denoted by A = A(Σ), is a p × p matrix (aij) in
which aij = σ(vivj) if vi and vj are adjacent and 0 otherwise (see, [9, Section 3]).

Since vi is adjacent to v
′
j and v′i is adjacent to vj in M(Σ) whenever vi and

vj are adjacent in Σ, the adjacency matrix AM of the Mycielskian M(Σ)
takes the block form

AM = A(M(Σ)) =

A(Σ) A(Σ) 0p×1

A(Σ) 0p×p jp×1

0t1×p jt1×p 0

 ,
where 0 is a matrix of zeros and j is a matrix of ones of the specified order.
AM is a symmetric matrix of order 2p+ 1.

Given a graph G with adjacency matrix A(G), the connection between the
ranks of A(G) and A(M(G)), the connection between the number of positive,
negative and zero eigenvalues A(G) and A(M(G)) were studied by Fisher et al.
in [2]. We initiate a similar study in the case of signed graphs.

Let Σ = (V,E, σ) be a given signed graph and let t /∈ V . We denote the
signed graph obtained by joining all the vertices of Σ to t with negative edges
by Σt− . That is, Σt− is the negative join Σ ∨−K1. The adjacency matrix of Σt

takes the block form

At− = A(Σt−) =

[
A -j
-jt 0

]
.

We now have the following theorem.

Theorem 4.1. Let Σ be a signed graph and A(Σ) be the adjacency matrix of
Σ. Let r(A) denote the rank and n+(A), n−(A) and n0(A) respectively denote
the number of positive, negative and zero eigenvalues of a symmetric matrix A,
then we have the following.
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(i) r(AM) = r(A) + r(At−)

(ii) n+(AM) = n+(A) + n+(At−)

(iii) n−(AM) = n−(A) + n−(At−)

(iv) n0(AM) = n0(A) + n0(At−)

Proof. The adjacency matrix AM can be factorized as

AM =

A A 0
A 0 j
0t jt 0

 =

I 0 0
I -I 0
0 0t 1

A 0 0
0 -A -j
0t -jt 0

 I I 0
0 -I 0
0t 0t 1

 = PBPt

where P =

I 0 0
I -I 0
0 0t 1

 is an invertible matrix and B =

[
A 0
0 At−

]
.

Thus, the matrices AM and B are congruent, and hence by Sylvester’s law
of inertia, they have the same rank and the same number of positive, negative
and zero eigenvalues.

4.2 The incidence matrix

The incidence matrix of Σ, denoted by H = H(Σ), is the p× q matrix

H(Σ) =
[
x(e1) x(e2) · · · x(eq)

]
,

where for each edge ek = vivj , 1 ≤ k ≤ q, the vector x(ek) =

x1k...
xpk

 ∈ Rp×1

has its ith and jth entries as xik = ±1 and xjk = ∓σ(ek) respectively and all
other entries as 0 (see, [9, Section 3]).

Let us denote the vertex set VM and the edge set EM of M(Σ) as

VM = {v1, v2, . . . , vp, v′1, v′2, . . . , v′p, w},
EM = {e1, e2, . . . , eq, e′1, e′′1, e′2, e′′2, . . . , e′q, e′′q , f1, f2, · · · , fp}

respectively, where, for each 1 ≤ k ≤ q, the edges e′k and e′′k of M(Σ) are
defined by e′k = viv

′
j and e′′k = v′ivj whenever ek = vivj is an edge of Σ with

1 ≤ i < j ≤ q and fi is defined by fi = v′iw for 1 ≤ i ≤ p. Then, the incidence
matrix HM = H(M(Σ)) takes the block form

HM = H(M(Σ)) =

 H(Σ)p×q x1 y1 x2 y2 · · · xp yp 0p×p

0p×q y1 x1 y2 x2 · · · yp xp Ip×p

01×3q -j1×p

 .
Here, H(Σ) is the incidence matrix of Σ, I is the identity matrix, 0 is the

zero matrix and -j is the matrix with all entries −1 of the specified order. xi’s
and yi’s are matrices of order p × 1 and satisfies the condition xi + yi = x(ei)
for all 1 ≤ i ≤ q.
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4.3 The Laplacian matrix

The Laplacian matrix of Σ, denoted by L = L(Σ) is the p× p matrix

L(Σ) = D(|Σ|)−A(Σ),

where A(Σ) is the adjacency matrix of Σ and D(|Σ|) is the degree matrix of the
underlying graph |Σ| (see, [9, Section 3]).

Accordingly, we define the Laplacian matrix for the Mycielskian of Σ
as

LM = L(M(Σ)) = D(|M(Σ)|)−A(M(Σ)) = DM −AM,

where AM is the adjacency matrix and DM is the diagonal degree matrix of the
Mycielskian of Σ. Now, DM takes the block form

DM =

2D(|Σ|)p×p 0p×p 0p×1

0p×p (D(|Σ|) + I)p×p 0p×1

0t1×p 0t1×p p

 ,
where p = |V |, D(Σ) is the diagonal degree matrix of Σ, I is the identity matrix
and 0 is the zero matrix of the specified order.

Consequently, the Laplacian matrix LM = L(M(Σ)) takes the block form

LM =

(2D(|Σ|)−A(Σ))p×p -A(Σ)p×p 0p×1

-A(Σ)p×p (D(|Σ|) + I)p×p -jp×1

0t1×p -jt1×p p

 .
5. Conclusion and scope

In this paper, we have defined the Mycielskian of a signed graph and discussed
some of its properties. We have seen that the Mycielskian of a balanced signed
graph need not be balanced and hence we provide an alternate construction
in which the Mycielskian of Σ is balanced whenever Σ is balanced, This paper
also discusses the chromatic number of the Mycielskian of a signed graph and
established that the chromatic number of a signed graph and its Mycielskian
are related. We also established the block forms of various matrices of the My-
cielskian of a signed graph such as the adjacency matrix, the incidence matrix,
and the Laplacian matrix.

This work finds its application in many areas, especially in sociology, where
social systems can be represented by signed graphs. Triangle-free signed graphs
are important for balanced social systems, and our construction creates larger
triangle-free signed graphs from a given triangle-free signed graph. The balanced
Mycielskian construction provides a method to extend a balanced system to a
much larger system without affecting balance. Developing another balance pre-
serving, switching preserving constructions for the Mycielskian of signed graphs,
and computing the spectra of various matrices of the Mycielskian of signed
graphs are some exciting areas for further investigation.



206 ALBIN MATHEW and GERMINA K.A.

Acknowledgments

The first author would like to acknowledge his gratitude to the University Grants
Commission (UGC), India, for providing financial support in the form of Ju-
nior Research fellowship (NTA Ref. No.: 191620039346). The authors express
their sincere gratitude to Professor Thomas Zaslavsky, Binghamton University
(SUNY), Binghamton, for valuable discussions and guidance throughout the
process.

References

[1] R. Balakrishnan, K. Ranganathan, A textbook of graph theory, Springer-
Verlag, New York, 2000.

[2] D.C. Fisher, P.A. McKenna, E.D. Boyer, Hamiltonicity, diameter, domina-
tion, packing, and biclique partitions of Mycielski’s graphs, Discrete Appl.
Math., 84 (1998), 93-105.

[3] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-
Menlo Park, Calif.-London, 1969.

[4] F. Harary, On the notion of balance of a signed graph, Michigan Math. J.,
2 (1953), 143-146.
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1. Introduction

In 1965, the concept of fuzzy set theory has been introduced by Zadeh [18]. The
application of fuzzy sets can be found in many branches of mathematics and
engineering sciences. Molodtsov in [11] introduced the soft set as a generalization
of the fuzzy set to deal with uncertainty. A soft set (fuzzy soft sets, see[4]) is
a set-valued function from a set of parameters to the power set( all fuzzy sets)
of a universe set. The concept of soft groups (semigroups) is defined in [1, 2]
as a collection of subgroups (subsemigroups) of a group (semigroup). In this
direction, new types of soft ideals over semigroups are presented in recent works
[6, 12, 13]. Cagman et al. [3], based on intersection and inclusion relation of
sets, defined the soft int-group which are unlike that in [1, 14]. Some properties
of soft int-groups and normal soft int-groups are introduced in [8, 9, 15]. Ideal
theory in semigroups and ordered semigroups based on soft int- (uni-)semigroup
is investigated in [5, 7, 17]. In this paper, we introduce a method to construct

*. Corresponding author
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factor groups related to normal soft int-groups. We apply this construction
to establish soft Isomorphism Theorems which generalize the classical group
Isomorphism Theorems. Topological structures on G and the factor group G/α
are introduced.

2. Preliminaries

In this Section, we recall some definitions and results of soft set. Throughout
our discussion, U refers to a universal set, P(U) the power set of U and E the
set of parameters where A,B,C, ... ⊆ E .

Definition 2.1 ([3]). A soft set (α,A) over U is a set of ordered pairs

(α,A) := {(x, α(x)) : x ∈ E , α(x) ∈ P(U)},

where α : E −→ P(U) such that α(x) = ϕ if x /∈ A.

From now on, we write αA instead of (α,A).

Definition 2.2 ([3]). Let αA and αB be soft sets over U . Then, union αA ⊔αB

and intersection αA ⊓ αB of αA and αB are defined by

(αA ⊔ αB)(x) = αA(x) ∪ αB(x), (αA ⊓ αB)(x) = αA(x) ∩ αB(x)

respectively, for all x ∈ E.

Definition 2.3 ([3]). Let G be a group and αG be a soft set over U . Then, αG
is called a soft intersection group (soft int-group) over U if

1. αG(xy) ⊇ αG(x) ∩ αG(y) for all x, y ∈ G, and

2. αG(x
−1) = αG(x) for all x ∈ G.

Or, equivalenty, if αG(xy
−1) ⊇ αG(x) ∩ αG(y) for all x, y ∈ G.

Theorem 2.1 ([8]). Let αG be a soft int-group and x, y ∈ G. Then

1. αG(e) ⊇ αG(x),

2. αG(xy
−1) = αG(e) ⇒ αG(x) = αG(y).

Definition 2.4 ([3]). A soft int-group αG over U is called normal, if for all
x, y ∈ G, it satisfies one of the following equivalent conditions:

1. αG(xyx
−1) ⊇ αG(y),

2. αG(xyx
−1) ⊆ αG(y),

3. αG(xy) = αG(yx).
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Definition 2.5 ([9]). Let αA be a soft set over U and V ∈ P(U)). Then,
V -inclusion of the soft set αA, denoted by αV is defined as

αV = {x ∈ A : α(x) ⊇ V }.

It is proved in [9] that “A soft set αG is a (normal) soft int-group over U iff
for all V ∈ P(U), αV is either empty or a (normal) subgroup of G”.

Definition 2.6 ([15]). Let f : G → H be a function between groups. Then, the
soft image f(αG) of a soft set αG and the soft preimage f−1(βH) of a soft set
βH under f are defined as

f(αG)(y) =

{⋃
{αG(x) : x ∈ G, f(x) = y}, for y ∈ f(G),

ϕ, otherwise,

and
f−1(βH)(x) = βH(f(x)), ∀x ∈ G.

Theorem 2.2 ([15]). If f : G → H is an epimorphism of groups, and αG is a
normal soft int-group, then f(αG) is a normal soft int-group.

3. Construction of the factor group

In this Section, we represent our main findings. Given a group G we denote the
identity element of G by eG , and the set of all soft int-groups over U with G as
a set of parameters by S(G,U).

Recall that an equivalence relation δ on G is called a congruence relation
if

xδy ⇒ xzδyz, zxδzy

for all x, y, z ∈ G.
Let αG ∈ S(G,U) be a normal soft int- group. For any x, y ∈ G, we define

the relation R on G by

xRy ⇔ αG(xy
−1) = αG(eG).

Lemma 3.1. R is a congruence relation on G.

Proof. Clearly, R is reflexive and symmetric. Also, R is transitive. Indeed,
let xRy and yRz, then αG(xy

−1) = αG(yz
−1) = αG(eG). Then, αG(xz

−1) =
αG(xy

−1yz−1) ⊇ αG(xy
−1) ∩ αG(yz

−1) = αG(eG). Hence, αG(xz
−1) = αG(eG),

which proves that xRz and so R is an equivalence relation. If xRy, then
αG(xy

−1) = αG(eG). Thus, for all z ∈ G we have

αG((xz)(yz)
−1) = αG(xzz

−1y−1) = αG(xy
−1) = αG(eG).

Hence, xzRyz. Since αG is normal, we get αG((zx)(zy)
−1) = αG(zxy

−1z−1) =
αG(xy

−1) = αG(eG). This gives zxRzy, and we conclude that R is a congruence
relation on G.
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By [x]α, we denote the equivalence class containing x ∈ G and by G/α the
corresponding factor set relative to αG .

Theorem 3.1. G/α is a group with the operation [x]α[y]α = [xy]α.

Proof. Straightforward.

Example 3.1. Assume that U = S3 is the set of permutations on {1, 2, 3}. Let
G = Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} be the set of parameters. We define a soft set αG over
U by

αG(0̄) = U,

αG(1̄) = {(12), (13), (132)},
αG(2̄) = {(12), (13), (23), (123), (132)},
αG(3̄) = {(1), (12), (13), (132)},
αG(4̄) = {(12), (13), (23), (123), (132)},
αG(5̄) = {(12), (13), (132)}.

Clearly, αG is a normal soft int-group over U and

G/α = {[0̄]α, [1̄]α, [2̄]α, [3̄]α, [4̄]α, [5̄]α}.

By Definition 2.5, the set KαG = {x ∈ G : αG(x) = αG(eG)} is a (normal)
subgroup of G iff αG is a (normal)soft int-group over U .

Proposition 3.1. Let f : G −→ H be a homomorphism of groups and αG ∈
S(G,U), then

(i) f(KαG ) ⊆ Kf(αG),

(ii) If αG is constant on Kerf , then f(αG)(f(x)) = αG(x) for all x ∈ G.

Proof. (i) Let y ∈ f(KαG ), then y = f(x) for some x ∈ KαG . Since αG(x) =
αG(eG), then

f(αG)(y) =
⋃

x∈f−1(y)

{αG(x)} = αG(eG) = f(αG)(eH).

Therefore, y ∈ Kf(αG).

(ii) Let y = f(x), then f(αG)(y) =
⋃

z∈f−1(y){αG(z)}. But f(zx−1) = eH
for all z ∈ f−1(y). Hence, αG(zx

−1) = αG(eG) because αG is constant on
Kerf . By Theorem 2.1, we have αG(z) = αG(x) for all z ∈ f−1(y). Therefore,
f(αG)(f(x)) = αG(x).

Theorem 3.2. Let f : G −→ H be an epimorphism of groups and αG ∈ S(G,U)
be normal with kerf ⊆ KαG , then G/α ∼= H/f(αG).
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Proof. From Theorem 2.2, f(αG) is a normal soft int-group and hence H/f(αG)
is a group. We define θ : G/α −→ H/f(αG), such that θ([x]α) = [f(x)]f(αG).
Firstly, θ is well defined since [x]α = [y]α implies αG(xy

−1) = αG(eG). Since
kerf ⊆ KαG , then αG is constant on kerf, and by Proposition 3.1, we have

f(αG)(f(xy
−1)) = f(αG)(f(eG)).

Then, f(αG)(f(x)f(y)
−1) = f(αG)(eH), and so [f(x)]f(αG) = [f(y)]f(αG). There-

fore, θ is well defined.

Secondly, θ is a homomorphism because:

θ([x]α[y]α) = θ([xy]α) = [f(xy)]f(αG) = [f(x)f(y)]f(αG)

= [f(x)]f(αG)[f(y)]f(αG) = θ([x]α)θ([y]α).

Now, we show that θ is an epimorphism. For any [y]f(αG) ∈ H/f(αG), there
exists x ∈ G such that f(x) = y (since f is onto). So θ([x]α) = [f(x)]f(αG) =
[y]f(αG), which means that θ is an epimorphism. Finally, θ is a 1-1 homomor-
phism since

[f(x)]f(αG) = [f(y)]f(αG)

=⇒ f(αG)(f(x)f(y)
−1) = f(αG)(eH)

=⇒ f(αG)(f(xy
−1)) = f(αG)(f(eG))

=⇒ αG(xy
−1) = αG(eG)

=⇒ [x]α = [y]α,

which proves that θ is injective. We conclude that θ is an isomorphism.

Corollary 3.1. Let f : G −→ H be an onto homomorphism of groups and
βH ∈ S(H,U) be normal , then G/f−1(βH) ∼= H/β.

Proof. It is known that f−1(βH) is a normal soft int-group over U (see, [15]).
Consequently, G/f−1(βH) and H/β are groups. Since f is onto, then βH =
f(f−1(βH)) [9]. Let x be an element in kerf , then f(x) = f(eG), and so
βH(f(x)) = βH(f(eG)), that is f

−1(βH)(x) = f−1(βH)(eG). Hence, x ∈ Kf−1(βH),
which means that kerf ⊆ Kf−1(βH). By applying Theorem 3.2, we get the de-
sired result.

For a nonempty subset A of G, define a map χA : G −→ P(U) as follows:

χA(x) =

{
U , if x ∈ A,

ϕ, otherwise.

Then, χA is a soft set over U , which is called the characteristic soft set (see,
[17]).
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Theorem 3.3. A is a (normal) subgroup of G if and only if χA is a (normal)
soft int-group over U .

Proof. Assume that χA is a normal soft int-group over U . For any x, y ∈ A
we have χA(xy

−1) ⊇ χA(x) ∩ χA(y) = U . Thus, χA(xy
−1) = U and xy−1 ∈ A.

Therefore A is a subgroup of G. Similarly, for any y ∈ A, x ∈ G we have
χA(xyx

−1) ⊇ χA(y) = U . Hence, χA(xyx
−1) = U and xyx−1 ∈ A. This proves

that A is a normal subgroup of G. Conversely, suppose that A is a normal
subgroup of G. If x, y ∈ A, then χA(xy

−1) = χA(x) = χA(y) = U . Hence,
χA(xy

−1) = χA(x) ∩ χA(y). If at least one of x and y is not in A, then at least
one of χA(x) and χA(y) is ϕ. Therefore χA(xy

−1) ⊇ χA(x)∩χA(y). Hence, χA
is a soft int-group over U . Moreover, for any x, y ∈ G, if y ∈ A, then xyx−1 ∈ A
and χA(xyx

−1) = U = χA(y). If y /∈ A, then χA(xyx
−1) ⊇ χA(y) = ϕ. Hence,

χA is normal.

Corollary 3.2. Let f : G −→ H be an onto homomorphism. Then, G/χkerf
∼=

H.

Proof. By Theorem 3.3, the characteristic soft set χ{eH} ∈ S(H,U) is normal.
It is easy to see that the soft preimage f−1(χ{eH}) is the soft set χkerf . Hence,
the factor group H/χ{eH} is isomorphic to H. By applying Corollary 3.1, we
get G/χkerf

∼= H/χ{eH} ∼= H.

In group theory, on the factor group G/kerf we can define an equivalence
relation by x ∼ y ⇔ xy−1 ∈ kerf. Easily, one shows that x ∼ y iff xRy relative
to the normal soft int-group χkerf . Therefore, we have G/χkerf

∼= G/kerf and
Corollary 3.2 becomes the First Group Isomorphism Theorem.

Lemma 3.2. Let A be a normal subgroup of G and αG a normal soft int-group
over U . Then, the restriction αG | A is a normal soft int-group over U and A/α
is a normal subgroup of G/α.

Proof. It is obvious from [9, Theorem 2.13] that αG | A is a soft int-group.
Since A is normal, (αG | A)(xy) = (αG | A)(yx) for any x, y ∈ A. Hence,
αG | A is a normal soft int-group. If [a]α, [b]α ∈ A/α, where a, b ∈ A, then
([a]α)([b]α)

−1 = ([a]α)([b
−1]α) = [ab−1]α ∈ A/α. Hence, A/α is a subgroup of

G/α. If [a]α ∈ A/α, [x]α ∈ G/α, where a ∈ A and x ∈ G, then xax−1 ∈ A and

([x]α)([a]α)([x]α)
−1 = ([x]α)([a]α)([x

−1]α) = [xax−1]α ∈ A/α.

Thus, A/α is a normal subgroup of G/α.

Notation. For A,B ⊆ G, we set A · B = {ab : a ∈ A, b ∈ B}.

Theorem 3.4. If αG and βG are normal soft int-groups over U such that
αG(eG) = βG(eG), then (KαG ·KβG )/βG

∼= KαG/(αG ⊓ βG).
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Proof. Before we proceed and for simplicity, put γG = αG ⊓ βG . Since γG is
a normal soft int-group over U (see, [9]) and by Lemma 3.2, the restrictions
βG | (KαG · KβG ) and γG | KαG are a normal soft int-groups over U . Then,
the factor sets (KαG · Kβ)/β and KαG/γ are groups by Lemma 3.1. For any
x ∈ KαG · KβG , x = ab, where a ∈ KαG and b ∈ KβG , we define Ω : (KαG ·
KβG )/β −→ KαG/γ such that f([x]β) = [a]γ . The mapping Ω is well-defined.
Indeed, if [x]β = [y]β, where y = wz ∈ KαG ·KβG , then

βG(xy
−1) = βG(ab(wz)

−1) = βG(abz
−1w−1) = βG(w

−1abz−1)

= βG(w
−1a(zb−1)−1) = βG(eG).

Hence, βG(w
−1a) = βG(zb

−1) = βG(eG). Thus,

γG(aw
−1) = αG(aw

−1) ∩ βG(aw−1) = αG(eG) ∩ βG(w−1a)

= αG(eG) ∩ βG(eG) = γG(eG),

that is [a]γ = [w]γ .
Now, we prove that Ω is a homomorphism. Let [x]β, [y]β ∈ (KαG ·KβG )/β,

where x = ab, y = wz, a, w ∈ KαG and b, z ∈ KβG , then xy = abwz. Since KαG

is normal, bwz ∈ KαG . Hence,

Ω([x]β[y]β) = Ω([xy]β) = [a(bwz)]γ = [a]γ [bwz]γ

and

γG((bwz)w
−1) = αG((bwz)w

−1) ∩ βG((b(wzw−1))

= αG(eG) ∩ βG(eG) = γG(eG).

Hence, [w]γ = [bwz]γ , i.e.

Ω([x]β[y]β) = [a]γ)[w]γ = Ω([x]β)Ω([y]β),

which implies that Ω is a homomorphism. It is also onto, since for any [a]γ ∈
KαG/γ and b ∈ KβG , we have x = ab ∈ KαG ·KβG and Ω([x]β) = [a]γ). Finally,
we show that Ω is injective. Let x, y ∈ KαG ·KβG , where x = ab, y = wz. Assume
that [a]γ = [w]γ , then γG(aw

−1) = γG(eG), that is

αG(aw
−1) ∩ βG(aw−1) = αG(eG) ∩ βG(eG).

But αG(eG) = βG(eG) and αG(aw
−1) = αG(eG) imply that βG(aw

−1) = βG(eG).
Therefore,

βG(xy
−1) = βG(ab(wz)

−1) = βG(abz
−1w−1) = βG(w

−1abz−1)

⊇ βG(w
−1a) ∩ βG(bz−1) = βG(aw

−1) ∩ βG(bz−1) = βG(eG).

Hence, [x]β = [y]β. Therefore, Ω is an isomorphism.
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In case A,B ⊆ G are normal subgroups, the result (A · B)/χB ∼= B/χA∩B
comes as a corollary of Theorem 3.4. and then we get the Second Group Isomor-
phism Theorem. Finally, the Third Group Isomorphism Theorem is outcome of
the following result.

Theorem 3.5. Let αG , βG ∈ S(G,U) be normal such that βG ⊑ αG and αG(eG) =
βG(eG). Then, (G/β)/(KαG/β)

∼= G/α

Proof. For all x ∈ G, we define θ : G/β −→ G/α by θ([x]β) = [x]α. The
mapping is well defined since [x]β = [y]β implies βG(xy

−1) = βG(eG) = αG(eG).
By assumption, we get αG(xy

−1) ⊇ βG(xy
−1) = αG(eG) and hence αG(xy

−1) =
αG(eG), that is [x]α) = [y]α. By definition, θ is an onto homomorphism. We
have kαG/β = {[z]β : z ∈ kαG} = {[z]β : αG(z) = αG(eG)} = {[z]β : [z]α =
[eG ]α} = {[z]β ∈ G/β : θ([z]α) = [eG ]α} = kerθ. Therefore, it follows that
(G/β)/(KαG/β)

∼= G/α.

4. Topological structures on G/α

Group G with the congruence relation R construct an approximation space
([16]). The lower and upper approximations of H ⊆ G are defined respectively
as

R⋆(H) = {x ∈ G : [x]α ⊆ H},
R⋆(H) = {x ∈ G : [x]α ∩H ≠ ϕ}.

The lower approximation induces a topology on G.

Proposition 4.1 ([10]). TR = {H ⊆ G : R⋆(H) = H} is a topology on G.

Furthermore, we have the following result.

Theorem 4.1. (G, TR) is a topological group.

Proof. Let x and y be elements in G. Every open set U ∈ TR containing the
element xy satisfies the condition R⋆(U) = U. This implies [xy]α ⊆ U. Since R
is a congruence relation on G, we have [x]α[y]α ⊆ [xy]α ⊆ U. Notice that, [x]α
and [y]α are open sets containing x, y respectively such that [x][y] ⊆ U. Hence,
the group operation : G × G → G is a continuous mapping. To complete the
proof, we have to verify continuity of the inversion mapping x → x−1. Let x
be an element in G and V ∈ TR an open set containing the element x−1, then
[x−1]α ⊆ V. Let y−1 ∈ [x]−1 = {y−1 : y ∈ [x]} then

αG(x
−1(y−1)−1) = αG(x

−1y) = αG(yx
−1) = αG(e).

That is, y−1 ∈ [x−1]. Since [x] is an open set containing x such that [x]−1 ⊆
[x−1] ⊆ V, then the inverse operation on G is continuous. Therefore, (G, TR) is
a topological group.
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Example 4.1. Assume that G = S3 is the set of permutations on {1, 2, 3} and
U = Z is the set of parameters. We define a soft set αG over U by

αG(e) = Z,
αG((12)) = αG((13)) = αG((23)) = {−2,−1, 0, 1, 2},

αG((123)) = αG((132)) = {−3,−2,−1, 0, 1, 2, 3}.

αG is a soft int-group ([3]). Easily, one can verify that αG is a normal soft
int-group over U .

Obviously, the equivalence class [p]α contains only the element p, for every
p ∈ G. This implies that the topology TR is the discrete topology, that is
TR = P(G). Then, group G endowed with the topology TR is a topological
group.

Consider the quotient map π : G −→ G/α defined by x→ [x]α, for all x ∈ G.
We equip the factor group G/α with the quotient topology τ = {K ⊆ G/α :
π−1(K) ∈ TR}. In general topology, not every quotient map is open.

Proposition 4.2. The quotient map π : (G, TR) −→ (G/α, τ) is open.

Proof. For any open set V ∈ TR, we show that π(V ) ∈ τ,

π−1(π(V )) = π−1(
⋃
x∈V

[x]α) =
⋃
x∈V

π−1([x]α) = V.

So π−1(π(V )) is open set and hence, by definition of quotient topology, π(V ) is
open

Theorem 4.2. (G/α, τ) is a topological group.

Proof. For x, y ∈ G, let [x]α, [y]α be elements in G/α such that [x]α[y]α =
[xy]α ∈ W ∈ τ. Since π(xy) = π(x)π(y) = [xy]α then xy ∈ π−1(W ). Be-
ing (G, TR) a topological group and xy ∈ π−1(W ), there exists Vx, Vy ∈ TR
containing x, y respectively and VxVy ⊆ π−1(W ). Notice that π(Vx)π(Vy) =
π(VxVy) ∈ π(π−1(W )) = W. Since π(x) = [x]α ∈ π(Vx), π(y) = [y]α ∈ π(Vy)
and by Proposition 4.2, we verified that the product operation on G/α is con-
tinuous. Now, we have to show that the inverse operation is also continuous.
Let [x]α be an element in G/α and V ∈ τ an open set containing the element
[x]−1

α = [x−1]α, then π(x
−1) = [x−1]α ∈ V which implies x−1 ∈ π−1(V ). Since

(G, TR) is a topological group, there exists U ∈ TR containing x−1 ∈ G such
that U−1 = {z−1 ∈ G : z ∈ U} ⊆ π−1(V ). Since π(x) = [x]α ∈ π(U) ∈ τ and
π(U−1) = π(U)−1 then we have π(U)−1 ⊆ π(π−1(V )) = V. Therefore the map-
ping [x]α → [x−1]α is continuous and hence (G/α, τ) is a topological group.
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5. Conclusion

In this paper, we constructed factor groups caused by normal soft int-groups.
With the help of this construction, we established the group Isomorphism the-
orems. Further research can examine the factor groups caused by normal soft
uni-groups.
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1. Introduction

Kuratowski [17] and Vaidyanathaswamy [22] introduced the ideal topological
space. Jankovic and Hamlett [4] presented the J -open set in 1990. Dontchev
[15] introduced pre-J -open set in 1996. The concept of α-J -open (resp., semi-
J -open, β-J -open) set introduced by Hatir and Noiri [5]. (X , T ) will be used to
denote topological space in this paper, without losing any of separation qualities.
The set of all real (resp., rational, irrational, and natural) numbers is denoted
by R (resp., Q, Irr, N ). Also, P (X ) mean the collection of all subsets of X .
We will denote the closure of any H ⊆ X (resp., ω-closure, interior, ω-interior,
θ-interior and δ-interior) of H by clH (resp., clωH, intH,

*. Corresponding author
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intωH, intθH and intδH). An ideal J on (X , T ) is a nonempty collection
of subsets of X which satisfies the following conditions:

1. If H ∈ J , L ⊆ H implies L ∈ J .

2. If H ∈ J , L ∈ J implies H ∪ L ∈ J .

If J is an ideal on X , then (X , T ,J ) is called an ideal topological space or
ideal space. A set operator (.)∗ : P (X ) → P (X ) , called a local function of H
with respect to T and J is defined as follows for: H ⊆ X , H∗ = {x ∈ X :
L ∩ H /∈ J for each x ∈ L ⊆ T } [22]. Furthermore, in [17], [4] Kuratowski
introduced cl∗ (.) defined by cl∗ (H) = H ∪H∗ which construct a new topology
on X finer than T , it denoted by T ∗ called ∗-topology on X , the members
of T ∗ are called T ∗-open (∗-open) sets. We will write the interior of H by
int∗ (H) in (X , T ∗) for every subset H of an ideal space(X , T ,J ). The notion
of ω-open set defined by Hdeib [13] several types of ω-open sets are introduced
such as (ωo-open, ωθ-open, ωδ-open, ωp-open and ω∗-open) by (Al-Hamary et.
al. [24], Ekici et. al. [8], Darwesh [11], Darwesh [10] and Darwesh and Shareef
[12]). (T ω, Tθ, Tω∗) denote the families of (ω-open, θ-open, ω∗-open) which they
are forms a topology on X . Besides, O. Ravi, P. Sekar and K. Vidhyalakshmi [21]
defined the notion of α-Jω-open (resp., pre-Jω-open, b-Jω-open, β-Jω-open) set
in ideal space, which is weaker than the ω-open set.

In this study, by using a new notion J -ω∗-open sets we construct a new
topology TJω∗ on (X , T ). Then, we show that TJω∗ is strictly stronger than Tω∗

(ω∗-topology) and weaker than Tω (ω-topology). Finally, we discussed several
basic properties

2. Preliminaries

Definition 2.1. A subset H of a space (X , T ) is said to be θ-open [20] (resp.,
θω-open [23]), if for any x ∈ H, there is an open set F containing x such that
x ∈ F ⊆ clF ⊆ H (resp., x ∈ F ⊆ clωF ⊆ H).

Definition 2.2. A subset H of a space (X , T ) is said to be ω-open [13] (resp.,
ω∗-open [12], ωo-open [24], ωθ-open [8], ωδ-open [11]), if for each x ∈ H, there
is an open F set containing x such that F\H (resp., clF\H, F\intH, F\intθH,
F\intδH) is a countable subset of X .

Definition 2.3. A subset H of a space (X , T ) is said to be ωp-open [10], if
H ⊆ intclω(H).

Definition 2.4. A subset H of an ideal space (X , T ,J ) is said to be α-J -
open [5] (resp., semi-J -open [5], pre-J -open [15], b-J -open [3], strongly-β-
J -open[6])set, if H ⊆ int (cl∗ (intH)) (resp., H ⊆ cl∗ (intH) ,H ⊆ int (cl∗H) ,
H ⊆ int (cl∗H) ∪ cl∗ (intH) , H ⊆ cl∗ (int(cl∗H)) ).

The next definitions and result from [21]:
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Definition 2.5. A subset H of an ideal space (X , T ,J ) is said to be α-Jω-open
(resp., pre-Jω-open, b-Jω-open, β-Jω-open), if H ⊆ intω (cl∗ (intωH)) (resp.,
H ⊆ intω (cl∗H), H ⊆ intω (cl∗H) ∪ cl∗ (intωH), H ⊆ cl∗ (intω(cl

∗H)).

Theorem 2.1. For a subset of an ideal space (X , T ,J ), the following properties
hold:

1. Every ω-open set is α-Jω -open.

2. Every α-Jω- open set is pre-Jω -open.

3. Every pre-Jω- open set is b-Jω -open.

4. Every b-Jω- open set is β-Jω -open.

Proposition 2.1 ([1]). Let H be a subset of (X , T ,J ). If J = {∅} (resp.,
J = P (X )), then H∗ = clH (resp., H∗ = ∅) and cl∗H = clH ( resp., cl∗H = H).

The next definition and result from [25]:

Definition 2.6. Let H ⊆ X , is said to be α-ω-open (resp., pre-ω-open, b-
ω-open, β-ω-open), if H ⊆ intω (cl (intωH)) (resp., H ⊆ intω (clH), H ⊆
intω (clH) ∪ cl (intωH), H ⊆ cl (intω(clH)).

Lemma 2.1. For a subset of a topological space (X , T ), the following properties
hold:

1. Every ω-open set is α-ω-open.

2. Every α-ω-open set is pre-ω-open.

3. Every pre-ω-open set is b-ω-open.

4. Every b-ω-open set is β-ω-open.

Definition 2.7. A space (X , T ) is defined as:

1. Locally countable [18] if every point of X has a countable open neighbour-
hood.

2. Hyperconnected [14] if each nonempty open subsets of X is dense in X .

Definition 2.8. A subset H of an ideal space (X , T ,J ) is called:

1. ∗-dense in itself [16] if and only if H ⊆ H∗.

2. ∗-dense [7] if cl∗ (H) = X .

3. J -open set [19] if H ⊆ intH∗.

Definition 2.9 ([7]). An ideal space (X , T ,J ) is said to be ∗-hyperconnected.
If H is ∗-dense, for any nonempty open subset H of X .
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Lemma 2.2 ([27]). If H is ∗- dense in itself, then H∗ = cl (H) = cl∗(H).

Definition 2.10 ([2]). An ideal space (X , T ,J ) is a RJ -space if for each x ∈ X
and every open set F containing x, there exists an open set L such that x
∈ L ⊆ cl∗L ⊆ F .

Lemma 2.3 ([9]). Let N ⊆ M ⊆ X . Then, cl∗MN = cl∗(N ) ∩M.

3. J -ω∗-open sets with their relations with some other types of sets

This section establishes a new topology in the ideal space and introduces a new
set called J -ω∗- open sets. We also investigated their connections to other types
of sets.

Definition 3.1. A subset H of an ideal topological space (X , T ,J ) is said to be
an J -ω∗- open set, if for each x ∈ H, there is an open set F containing x such
that cl∗F\H is a countable set. Also, H is said to be J -ω∗-closed, if X\H is
J -ω∗-open.

Remark 3.1. In any ideal space (X, τ,J ), it is clear that X and ∅ are always
J -ω∗-open sets.

Theorem 3.1. A subset M of an ideal space (X , T ,J ) is J -ω∗-open if and
only if for every x ∈ M, there is an open set Fx containing x and a countable
set Cx which does not containing x such that cl∗Fx\Cx ⊆ M.

Proof. Let M be an J -ω∗-open subset of X and x ∈ M, there exists Fx ∈ T
such that x ∈ Fx and cl∗Fx\M is a countable set. Then, Cx=cl

∗Fx\M is a
countable set and x /∈ Cx . It remains to show that cl∗Fx\Cx ⊆ M. Then,
cl∗Fx\Cx = cl∗Fx\ (cl∗Fx\M) = cl∗Fx\ (cl∗Fx ∩ X\M) = (cl∗Fx\cl∗Fx) ∪
(cl∗Fx ∩M) . Hence, cl∗Fx\Cx ⊆ M.

Conversely, let x ∈ M, consequently by our hypothesis, there are open set
Fx containing x and countable set Cx such that x /∈ Cx and cl∗Fx\Cx ⊆ M .
This implies, cl∗Fx\M ⊆ Cx. Therefore, M is an J -ω∗-open subset of X .

Theorem 3.2. If M is an J -ω∗-closed subset of an ideal space (X , T ,J ), then
M ⊆ int∗H ∪ C for a countable set C and a closed set H.

Proof. If M is equal to X . Putting H = M and C = ∅, we get M ⊆ int∗H∪C.
Otherwise, let x be an arbitrary point in X such that x /∈ M. Since X\M is J
-ω∗-open, consequently by Theorem 3.1, there exists F ∈ T containing x and a
countable set Cx which does not contains x such that cl∗Fx\Cx ⊆ X\M. Then,
H = X\F and C are the requisite closed set and a countable set.

Theorem 3.3. A subset M of an ideal space (X , T ,J ) is J -ω∗-closed if and
only if M = X or for any x not belong to M, there is a closed set H and a
countable set C such that M ⊆ int∗H ∪ C .
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Proof. Let M be an J -ω∗-closed subset of X . Then, either M = X or M ⊂ X .
If M = X , then there is nothing to prove, otherwise M is a proper J -ω∗-closed
subset of X , then by Theorem 3.2, a closed set H and a countable set C exist
such that M ⊆ int∗H ∪ C.

Conversely, if M = X , then it is J -ω∗-closed. Otherwise, let for each
x ∈ X\M, there is a closed set H and a countable set C such that M ⊆
int∗H ∪ C. Then, F = X\H is an open subset of X which contains x and
cl∗F\C = cl∗ (X\H) \C. But, cl∗ (X\H) = (X\ int∗H) [26] thus, cl∗F\C =
cl∗ (X\H) \C = (X\int∗H) \C = (X\int∗H)∩ (X\C) = X\(int∗H∪C) ⊆ X\M.
This by Theorem 3.1 implies, X\M is J -ω∗-open. Thus, M is J -ω∗-closed.

Theorem 3.4. The intersection of two J -ω∗-open sets is J -ω∗-open.

Proof. Let M and P be two J -ω∗- open sets. If M ∩ P = ∅, then there
is nothing to prove. Otherwise, for x ∈ M ∩ P, there are two open sets
G and L containing x such that cl∗G\M and cl∗L\P are countable sets.
Since cl∗ (G ∩ L) \ (M∩P) ⊆ (cl∗G ∩ cl∗L) ∩ (X\ (M∩P) = (cl∗G ∩ cl∗L) ∩
((X\M) ∪ (X\P)) ⊆ (cl∗G∩ (X\M))∪ (cl∗L∩ (X\P)) = (cl∗G\M)∪ (cl∗L\P).
Which means that, cl∗ (G ∩ L) \ (M∩P) is countable. Hence, M∩P is J -ω∗-
open.

Corollary 3.1. The union of two J -ω∗-closed sets is J -ω∗-closed.

Proof. It follows Theorem 3.4.

Theorem 3.5. The union (resp., intersection) of each family of J -ω∗-open
(resp., J -ω∗- closed) sets in any ideal topological space is J -ω∗-open (resp.,J
-ω∗-closed).

Proof. Let {Mγ : γ ∈ ∆} be any each family of J -ω∗-open sets and x ∈⋃
γ∈∆Mγ . Then, there is γ◦ ∈ ∆ and an open set F such that x ∈ F ∩Mγ◦

and cl∗F\Mγ◦ is a countable set. Since, cl∗F\(
⋃

γ∈∆Mγ) ⊆ cl∗F\Mγ◦ . Thus,⋃
γ∈∆Mγ J -ω∗-open.

We denote TJω∗ to the family of all J -ω∗-open.

Corollary 3.2. Let (X , T ,J ) be an ideal space. Then, TJω∗ form topology on
X . Hence, (X, TJω∗ ,J ) is an ideal topological space.

Proof. It follows from Remark 3.1, Theorem 3.4 and Theorem 3.5.

The new topology of the Corollary 3.2, known as J -ω∗-topology.

Proposition 3.1. Every ω∗-open set in any ideal space (X , T , J) is J -ω∗-open.

Proof. Let M be an ω∗-open subset of X and x belong to M. Consequently,
there is an open set F containing x such that clF\M is a countable set. Since
cl∗F ⊆ clF , then cl∗F\M ⊆ clF\M and hence cl∗F\M is a countable set.
Therefore, M is an J -ω∗-open set.
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The converse of Proposition 3.1, on the other hand does not have to be
correct as demonstrated by the following example:

Example 3.1. In (R, T ) with T = {∅, Q,R} and J = P (R). Then, the set
M = Q is not ω∗-open but it is J -ω∗-open. Since, for each x ∈ Q there is Q
∈ T with cl∗Q = Q but clQ = R.

Proposition 3.2. In any ideal space (X , T ,J ), Tθ ⊆ Tω∗ ⊆ TJω∗ ⊆ Tω.

Proof. From [[12], Theorem 3.2] we have Tθ ⊆ Tω∗ and by Proposition 3.1,
Tω∗ ⊆ TJω∗ it remains to show that TJω∗ ⊆ Tω. Let M be an J -ω∗-open
set. If M is empty, then M ∈ Tω. Otherwise, for any arbitrary point x in
M; there exists F ∈ T containing x such that cl∗F\M is a countable set.
Since F\M ⊆ cl∗F\M. Therefore, F\M is countable, implying that M ∈ Tω .
Hence, TJω∗ ⊆ Tω.

In general, the converse of Proposition 3.2, is not true. As illustrated in the
following examples:

Example 3.2. Let X = {a, b, c, d} with T = {∅,X , {a} , {b} , {a, b}} and J =
{∅, {a} , {b} , {a, b}}. The set M = {a, d} is an J -ω∗-open set, but it is not
θ-open.

Example 3.3. In the space R with topology T = {∅, R,Q} and J = {∅}, the
set M = Q ∈ T ω. But, clQ = cl∗Q = R then cl∗Q\M = Irr is uncountable.
Hence, M is not J -ω∗-open.

Proposition 3.3. If (X , T ,J ) is any ideal space such that X is a locally count-
able space, then TJω∗ = P (X ).

Proof. Let M be any subset of X . If M = ∅, then M ∈ TJω∗ . Otherwise, for
any x ∈ M, the set X is open which contain x, and cl∗X = X is countable, so
cl∗X\M is also countable, therefore, M ∈ TJω∗ . Hence, TJω∗ = P (X ).

Corollary 3.3. Every J -ω∗-open set is α-Jω-open (resp. pre-Jω-open, b-Jω-
open and β-Jω-open).

Proof. Proposition 3.2 and Theorem 2.1 provide the proof.

The following example shows that the converse of Corollary 3.3, is not true:

Example 3.4. From [[21], Example 3.1], consider R be a space with T =
{∅, R,Q} and J = {∅}. Then, N = Q ∪ {

√
2} is an α-Jω –open set, since

intωN = Q, cl∗ (intωN ) = cl (Q) = R. Therefore, N ⊆ intω(cl
∗ (intωN ).

Thus, N is pre-Jω-open (resp. b-Jω -open and β-Jω -open). But, N /∈ TJω∗ .

Corollary 3.4. Every J -ω∗-open set is α-ω-open (resp., pre-ω-open, b-ω-open
and β-ω–open).
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Proof. It follows from Proposition 3.2 and Lemma 2.1.

However, as shown in the following example, the converse of Corollary 3.4 is
incorrect:

Example 3.5. In the space R with T = {∅, R,Q} and ideal J = {∅}. If the set
P = Q, then P is α-ω-open (resp. pre-ω-open, b-ω-open and β-ω-open). Since
intωP = Q, clintωP = R, intω (clintωP) = R. Thus, P ⊆ intω (clintωP). This
implies that P is α-ω–open and from Lemma 2.1, P is pre-ω-open, b-ω-open
and β-ω-open. But, P /∈ TJω∗ .

The examples below show that the concept of J -ω∗-open is independent
of the classes open (preopen, J -open, α-J -open, pre-J -open, semi-J -open,
b-J -open and strongly β-J -open) sets.

Example 3.6. 1. In the space R with T = {∅, R,Q} and ideal J = {∅}. If
the set P = Q, then P is open (peropen, α-J -open, pre-J -open, semi-J -
open, b-J -open and strongly β-J -open). But, P /∈ TJω∗ . Since for each
x ∈ Q, there is Q ∈ T and cl (Q) = cl∗ (Q) = R.

2. Let X = {a, b, c} , T = {∅, {a} ,X} and J = {∅, {a}}. Then, the set
M = {a, c} is J -ω∗-open but not open, J -open, semi-J -open and α-J -
open.

3. Let X = {a, b}, T = {∅, {a} ,X} and J = {∅}. Then, the set M = {b} is
J -ω∗-open but not pre-J -open, b-J -open and stronglyβ-J -open.

4. In R with usual topology Tu and J = F (all finite subsets of R’s ideal).
Then, P = Q is J -open since P∗ = Q∗ = R. Implies that, P ⊆ int(P∗)
but P is not J -ω∗-open since cl∗ (Q) = R and cl∗ (Q) \Q is not countable.

We have examples that demonstrate the independence of the notion of J -
ω∗-open set with each of the classes ωp-open, ωθ-open, ωδ-open, ω

o -open and
θω-open is independent.

Example 3.7. 1. In the space(R, T ) with T = {∅, Q,R} and J = {∅}.
Then, the set P = Q is ωp-open (resp. ωθ-open, ωδ-open, ω

o -open and
θω-open). But, P /∈ TJω∗ .

2. In the indiscrete space (R, Tind) and J = {∅}. Let P = R\{0} is J
-ω∗-open but it is not ωθ-open, ωδ-open, ω

o -open and θω-open.

3. In Example 3.6.(3), assume M = {b} is J -ω∗-open but not ωp-open since
{b} /∈ T . Since clω (M) = {b}, then intclω (M) = ∅. This implies that,
M ̸⊆ intclω (M).

Thus, from Proposition 3.1, Proposition 3.2, Corollary 3.3, Corollary 3.4,
Example 3.6 and Example 3.7 we have the following diagram:
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4. Some other properties of J -ω∗-open sets

This section investigates further aspects of J−ω∗-open sets and the topology
TJω∗ , beginning with the following definition.

Definition 4.1. A point x of a subset M of an ideal space (X , T ,J ) is said
to be an J -∗-condensation point, if cl∗F ∩M is an uncountable set for each
open set F containing x. The set of all J -∗-condensation points of a set M is
denoted by J -cond∗(M).

Theorem 4.1. A subset M of an ideal space (X , T ,J ) is J -ω∗-closed if and
only if J -cond∗(M) ⊆ M.

Proof. Let M be an J -ω∗-closed subset of X and x ∈ J -cond∗(M). On
contrary we suppose that x /∈ M, there exists an open set F containing x such
that cl∗F\(X\M) is countable. This means that, cl∗F∩M is countable. Hence,
x /∈ J -cond∗(M) which is a contradiction. Then, J -cond∗(M) ⊆ M.

Conversely, suppose that J -cond∗(M) ⊆ M and x /∈ M, then there is an
open set F containing x such that cl∗F ∩M is countable. This indicates that,
cl∗F\(X\M) is countable. So, X\M is J -ω∗-open. Therefore, M is J -ω∗-
closed.

Corollary 4.1. Each countable subset of any ideal space is J -ω∗-closed.

Proof. If M is countable, then J -cond∗ (M) = ∅. So, by Theorem 4.1, M is
J -ω∗-closed.

Proposition 4.1. If (X , T ,J ) is any ideal space, then Tcoc ⊆ TJω∗.

Proof. If M ∈ Tcoc , then X\M is countable subset of X , subsequently by
Corollary 4.1, X\M is J -ω∗-closed. Therefore, M is J -ω∗-open subset of
X .

Theorem 4.2. If (X , T ,J ) is a ∗- hyperconnected space, then TJω∗ is the
co-countable topology on X .

Proof. Let M ∈ TJω∗ . If M is an empty set, then M ∈ Tcoc. Otherwise,
we choose any arbitrary point x in M, and an open set F containing x such
that cl∗F\M = C where C is a countable set. Since X is ∗-hyperconnected,
so cl∗F = R and M = R\C. Thus, M ∈ Tcoc. Hence, TJω∗ ⊆ Tcoc. By
Proposition 4.1, we have Tcoc ⊆ TJω∗ . Therefore, TJω∗ = Tcoc.

The opposite of Theorem 4.2 is generally incorrect, as illustrated in the next
example:

Example 4.1. Let X = {a, b, c, d}, T = {∅,X , {a}, {c}, {a, b}, {a, c}, {a, b, c},
{a, c, d}} and J = {∅, {b}}. Then, by Proposition 3.3, TJω∗ = P (X ) = Tcoc.
Clearly (X , T ) is not a hyperconnected space and from [[7], Remark 3], (X , T ,J )
is not ∗-hyperconnected space.
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The following example shows that the requirement ∗- hyperconnected in
Theorem 4.2, cannot be replaced by hyperconnected:

Example 4.2. Let X = R, T = {∅, R,Q} and J = P (R). Then, the space
(X , T ) is hyperconnected since Q ∈ T and clQ = R. As a result, Q ∈ TJω∗ but
X\Q = Irr which is not countable. Thus, Q /∈ Tcoc. Hence, TJω∗ ̸= T coc.

In the Example 4.2, we can see that even if the space X is hyperconneceted
TJω∗ ̸= T coc, if J = {∅}. Consequently, TJω∗ = Tcoc is yields the following
result:

Corollary 4.2. If (X , T ,J ) is a hyperconnected space and J = {∅}, then
TJω∗ is the co-countable topology on X .

Proof. Let M ∈ TJω∗ .If M is empty, then M ∈ Tcoc. Otherwise, if M ≠ ∅,
let x ∈ M there is an open set G containing x such that cl∗F\M = C where C
is a countable set. Since X is hyperconnected, so clF = R. Since cl∗F = clF
then cl∗F = R and M = R\C. Thus, M ∈ τcoc. Hence, TJω∗ ⊆ Tcoc. However,
according to Proposition 4.1, we have Tcoc ⊆ TJω∗ . As a result, TJω∗ = Tcoc.

Theorem 4.3. If T and P are two topologies on X and J is any ideal on
X such that T ⊆ P, then TJω∗ ⊆ PJω∗ .

Proof. Let M ∈ TJω∗ . If M = ∅, then M ∈ PJω∗ . Otherwise, if M ̸= ∅.
Then, for each x ∈ M, there is F ∈ T containing x such that cl∗T F\M is a
countable subset of X . Since T ⊆ P so F ∈ P then cl∗PF\M ⊆ cl∗T F\M.
Hence, cl∗PF\M is also a countable subset of X . Thus, M ∈ PJω∗ . Therefore,
TJω∗ ⊆ PJω∗ .

Corollary 4.3. If (X , T ,J ) be an ideal space, then TJω∗ ⊆ (T ∗)Jω∗.

Proof. Since T ⊆ T ∗, so by Theorem 4.3, TJω∗ ⊆ (T ∗)Jω∗ .

However, as the examples below show, the converse of Theorem 4.3 and
Corollary 4.3, are not true:

Example 4.3. 1. Let X = N , J = {∅} , T = {∅, {0} , N} and σ =
{∅, {1} , N}. Then, by Proposition 3.3, TIω∗ = P (X ) = σIω∗ , but nei-
ther T ⊆ σ nor σ ⊆ T .

2. In the space R with topology T = {∅, R, Irr} and J = P (R). Then, the
set P = Q ∈ (T ∗)Jω∗ . But, P /∈ TJω∗ . Since R ∈ T , so cl∗ (R) = R.
Implies that, cl∗ (R) \P = Irr which is uncountable.

Proposition 4.2. Let (X , T ) be a topological space and J ,K be two ideals on
X in which J ⊆ K Then, TJω∗ ⊆ TKω∗.
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Proof. Let M ∈ TJω∗ . If M = ∅, then there is nothing to prove. Otherwise,
for each x ∈ M there exists an open set F containing x such that cl∗JF\M is
countable. Since cl∗KF ⊆ cl∗JF . As a result, cl∗KF\M is also countable. Hence,
TJω∗ ⊆ TKω∗ .

The following example demonstrates that the converse of Proposition 4.2 is
incorrect:

Example 4.4. Consider (X , T ) where X = N and T is the indiscrete topology
on X . Let J = {∅, {1}} and K = {∅, {2}}. Then, every K- ω∗-open set is J
-ω∗-open when either K is not subfamily of J .

Corollary 4.4. Let (X , T ,J ) be an ideal space in which each open subset of it
is ∗-dense in itself . Then, Tω∗ = TJω∗.

Proof. From Proposition 3.1, we have Tω∗ ⊆ TJω∗ . It remains only to show
that TJω∗ ⊆ Tω∗ . Let M ∈ TJω∗ . Then, for each x ∈ M, there exists an
open set F containing x such that cl∗F\M is a countable set. Since F ⊆ F∗,
then according to Lemma 2.2, cl∗F = clF . As a result, clF\M is countable.
Consequently, M ∈ Tω∗ . So, we get Tω∗ = TJω∗ .

Proposition 4.3. Let (X , T ,J ) be an ideal space if J = {∅}. Then, Tω∗ =
TJω∗.

Proof. Since J = {∅}, then T = T ∗ and cl∗G = clG. So, Tω∗ = TJω∗ .

Theorem 4.4. Let (X , T ,J ) be a RJ -space. Then, τω = τIω∗.

Proof. From Proposition 3.2, it follows we have TJω∗ ⊆ Tω. So, it remains only
to show that Tω ⊆ TJω∗ . Let M ∈ Tω. Then, for each point x belonging to M,
there exists an open set F containing x such that F\M is a countable set. Since
X is RJ -space and x ∈ F , there is an open set L such that x ∈ L ⊆ cl∗L ⊆ F .
Implying that, cl∗L\M ⊆ F\M. So, cl∗L\M is a countable set. Hence, M ∈
TJω∗ . Therefore, Tω = TJω∗ .

Theorem 4.5. Let (X , T ,J ) be an ideal space. Then, (TJω∗ )Jω∗ ⊆ TJω∗ .

Proof. Let x ∈ M ∈ (TJω∗ )Jω∗ . Then, by Theorem 3.1, there is Ux ∈ TJω∗

and a countable set Hx such that x ∈ Ux, x /∈ Hx and cl∗TJω∗ Ux\Hx ⊆ M.
According to Theorem 3.1, there exists Gx ∈ T and a countable set Kx such that
cl∗T Gx\Kx ⊆ Ux. Since, Hx ∪ Kx is countable. Also, cl∗T Gx\Hx ∪ Kx ⊆ Ux\Hx ⊆
cl∗TJω∗ Ux\Hx ⊆ M. Therefore, by Theorem 3.1, M ∈ TJω∗ .

Theorem 4.6. Let Y be a subset of a space (X , T ,J ). Then, (TJω∗ )Y ⊆
(TY)Jω∗.
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Proof. If M ∈ (TJω∗ )Y . Then, there is an J -ω∗-open set F in X such that
M = F ∩ Y. For each point x in M, there exists an open set V containing x
such that cl∗V\F is countable. Since U = V ∩ Y ∈ TY , so x ∈ U and according
to Lemma 2.3, cl∗Y U ⊆ cl∗V. Thus, cl∗Y U\M = cl∗Y U\ (F ∩ Y) = cl∗Y U\F ⊆
cl∗V\F . This implies that, cl∗Y U\M is countable. Therefore, M ∈ (TY)Jω∗ .
Hence, (TJω∗ )Y ⊆ (TY)Jω∗ .

5. Conclusion

The ideal topological space was first introduced by Kuratowski and
Vaidyanathaswamy. In ideal space, a variety of open sets were introduced,
including the α-J -open (resp., semi-J -open, β-J -open) set. In this study, we
introduce J -ω∗-open sets as a new set in ideal space that constructs a new
topology on (X , T ) known as TJω∗ that is stronger than Tω∗ (ω∗-topology) and
weaker than Tω (ω-topology). Additionally, we investigate the relationships of
J -ω∗-open sets with some other classes of sets. Finally, we discussed several
basic properties. In the future, researchers will be able to define topological
structures including separation axioms, compactness, and connectedness for the
practical application via J -ω∗-open sets.
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Abstract. Let R be a ring and I⋆(R) be the set of all nontrivial left ideals of R. The
Co-intersection graph of ideals of R, denoted by Ω(R), is an undirected simple graph
with the vertex set I⋆(R), and two distinct vertices I and J are adjacent if and only if
I + J ̸= R.

This paper derives a sufficient and necessary condition for Ω(R) to be a connected
graph. We characterize the values of n for which the graph Ω(Zn) is Eulerian and
Hamiltonian. Furthermore, the bad (and nice) decision number of Ω(Zn) are studied in
the paper.
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1. Introduction

The idea to associate a graph to a ring first appeared in [5]. He let all elements
of the ring be vertices of the graph and was interested mainly in coloring. In [4],
Anderson and Livingston introduced and studied the zero-divisor graph whose
vertices are the nonzero zero-divisors. There are many papers on assigning a
graph to a ring R, for instance, see [4, 3, 12, 11, 2, 1]. Also, the intersection
graphs and co-intersection graphs of some algebraic structures such as groups,
rings, and modules have been studied by several authors, see [2, 9, 7, 10]. The
co-intersection graph of submodules is introduced in [9].

The paper is organized as follows. Some definitions and preliminaries are
introduced in Section 2. We devote Section 3 to study for connectivity of the
co-intersection graph. Also, we characterize all the values of n for which Ω(Zn)

*. Corresponding author
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is Eulerian and characterize some values of n for which Ω(Zn) is Hamiltonian in
this section. Finally, the bad decision number, and the nice decision number of
Ω(Zn) are studied in Section 4.

2. Preliminaries

This section gives some definitions of ring theory and graph theory. Also, we
introduce the Co-intersection graph of a ring R and give some basic concepts
about rings and maximal left ideals.

We mean from a nontrivial ideal of R is a nonzero proper left ideal of R.
The set I⋆(R) is a set of all nontrivial left ideals of R. A nonzero ring R is
called simple if it has no nontrivial two-sided ideal. The term null ring is used
to refer a ring R, in which x× y = 0, for all x, y ∈ R.

By Max(R) and Min(R), we denote the set of all nonzero maximal left ideals
of R and all nonzero minimal left ideals of R respectively.

A graph G is an ordered pair G = (V,E), consisting of a nonempty set V
of vertices, and a set E ⊆ [V ]2 of edges, where [V ]2 is the set of all 2-element
subsets of V . Two vertices u, v ∈ V are adjacent if uv ∈ E (for simplicity
we use uv instead of subset {u, v}). The neighbourhood of a vertex u ∈ V is
N(u) = {v ∈ V |uv ∈ E}, and the closed neighbourhood of u isN [u] = N(u)∪{u}.
The degree of a vertex u in a graph G is the size of set N(u), which is denoted
by deg(u). We denote by δ(G) the minimum degree of the vertices of G. The
complete graph with n vertices is denoted by Kn, which is a graph with n
vertices in which any two distinct vertices are adjacent. A null graph is a graph
containing no edges. Let G be a graph, suppose that x, y ∈ V (G), a walk
between u and v is a sequence u = v0 − v1 − · · · − vk = v of vertices of G
such that for every i with 1 ≤ i ≤ k, the vertices vi−1 and vi are adjacent. A
(u, v)-path between u and v is a walk between u and v without repeated vertices.
Two vertices u and v of G are said to be connected if there is a (u, v)-path in
G. A graph G is called connected if every pair of its vertices are connected. If
vertices u and v are connected in G, the distance between u and v in G, denoted
by d(u, v), is the length of a shortest (u, v)-path in G. In graph G, a tour is a
closed walk that traverses each edge of G at least once. A graph is Eulerian if
it contains a tour which traverses each edge exactly once [6].

A cycle in a graph is a path of length at least 3 through distinct vertices
which begins and ends at the same vertex. A Hamilton cycle is a spanning cycle,
and a graph which contains such a cycle is said to be Hamiltonian.

If G = (V,E) is a finite graph, define f(U) =
∑

u∈U f(u), for a function
f : V → {−1, 1} and U ⊆ V . A function f : V → {−1, 1} is called a bad
function of G, if f(N(v)) ≤ 1 for each v ∈ V [13]. The maximum value of f(V ),
taken over all bad functions f , is called the bad decision number of G, which
is denoted by βD(G). The function f is called a nice function, if f(N [v])) ≤ 1
for each v ∈ V . The maximum value of f(V ), taken over all nice functions f is
called the nice decision number of G, and denoted by βD(G).
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Definition 2.1. Let R be a ring. The Co-intersection graph Ω(R) of R, is an
undirected simple graph whose the vertex set V (Ω(R)) = I⋆(R) is a set of all
nontrivial ideals of R and two distinct vertices I, J are adjacent if and only if
I + J ̸= R.

Remark 2.1. Let Zn be the ring of integers modulo n. Suppose that m1,m2

are two factor of n. Then, ⟨m1⟩ + ⟨m2⟩ = ⟨(m1,m2)⟩, where (m1,m2) is the
greatest common divisor of m1,m2.

Example 2.1. Suppose that R = Z50. Then, I⋆(R) = {⟨2⟩, ⟨5⟩, ⟨10⟩, ⟨25⟩} and
the co-intersection graph Ω(R) is as follow:

Figure 1: The Co-intersection Graph Ω(Z50).

3. Connectivity, eulerianity and hamiltonicity

This section derives a sufficient and necessary condition for Ω(R) to be a con-
nected graph. Also, we determine the values of n for which Ω(Zn) is a connected
graph. Further, we characterize the values of n for which the graph Ω(Zn) is
Eulerian and Hamiltonian. Before presenting and proving results, we give the
following lemma.

Lemma 3.1. Let R be a ring and I, J be two distinct maximal left ideals of R.
Then, I and J are not adjacent.

Proof. Since I and J are two distinct maximal left ideals of R, therefore I+J =
R. So I and J are not adjacent.

Lemma 3.2. Let R be a ring with co-intersection Ω(R) and J be a nontrivial
left ideal of R. If deg(J) is finite, then R is a left Artinian ring.

Proof. Since deg(J) <∞, so J is a left Artinian R-modules. Otherwise, there
exists a descending chain J ⊃ I1 ⊃ · · · ⊃ In ⊃ · · · of left ideals of R belong to
J . Thus, J + Ii = J ̸= R for each i and this is a contradiction. Also, R/J is
a left Artinian R-modules. Otherwise, there exists a descending chain R/J ⊃
I1/J ⊃ · · · ⊃ In/J ⊃ · · · of left submodules of R/J . Thus, J + Ii = Ii ̸= R for
each i and this is a contradiction. Hence, according to [8, Proposition 4.5], R is
a left Artinian R-module and the proof is complete.
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The following proposition can be obtained in a similar way in [9, Theo-
rem 2.1] about the connectivity.

Proposition 3.1. Let R be a ring and I⋆(R) ̸= ∅. Then, Ω(R) is disconnected
if and only if R has at least two maximal left ideals, and every nontrivial left
ideal is a maximal left ideal.

Corollary 3.1. The graph Ω(Zn) is disconnected if and only if n = pq, where
p and q are distinct primes.

Let n = pα1
1 pα2

2 · · · pαk
k for some k ∈ N. According to Remark 2.1, Zn has

at least two maximal ideals and every nontrivial ideal is a maximal ideal if and
only if k = 2 and αi = 1. Then, by Proposition 3.1, Ω(Zn) is disconnected if
and only if Zn has at least two maximal ideals and every nontrivial ideal is a
maximal ideal if and only if k = 2 and αi = 1.

Corollary 3.2. Let R be a ring and I⋆(R) ̸= ∅. If Ω(R) is disconnected then
Max(R) = Min(R).

Proof. By Proposition 3.1, as Ω(R) is disconnected thus I⋆(R) = Max(R). If
I ∈ Max(R) = I⋆(R), there is no nontrivial left ideal J ⊊ I, then I ∈ Min(R).
Also, Min(R) ⊆ I⋆(R) = Max(R).

Corollary 3.3. Let R be a ring. If Ω(R) is disconnected then, Ω(R) is a null
graph.

Proof. By Lemma 3.1 and Proposition 3.1, the proof is complete.

Lemma 3.3. Let R be a ring. If Max(R)∩Min(R) ̸= ∅, then I⋆(R) = Max(R) =
Min(R) and thus Ω(R) is a null graph.

Proof. Suppose thatm ∈ Max(R)∩Min(R), then for each I ∈ I⋆(R), I+m = R.
So, Ω(R) is disconnected and according to Corollary 3.2, Max(R) = Min(R).
Also, by Corollary 3.3 Ω(R) is a null graph.

Proposition 3.2. Let R be a commutative ring. Then, the graph Ω(R) is
disconnected if and only if R = R1 ×R2 where each Ri(i = 1, 2) is either a field
or a null ring with prime number of elements.

Proof. For the proof of the necessity part, suppose that, the graph Ω(R) is
disconnected. Then, according to Proposition 3.1 and its proof, there are two
maximal ideals I and J of R such that I + J = R and I ∩ J =< 0 >, as they
are minimal ideal too, from Corollary 3.2. Then, R = I ⊕ J ∼= R

J × R
I where R

J
and R

I are simple commutative rings, as I and J are maximal ideal.

Conversely, let R = R1 × R2 where R1, R2 are simple commutative rings.
If both R1 and R2 are two fields, then R has only two nontrivial ideals, I =
R1 × {0R2} and {0R1} × R2 and they are maximal ideals and hence according
to Lemma 3.1, Ω(R) is disconnected. If both R1 and R2 are two null rings with
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prime number of elements, let (R1,+) ∼= (Zp,+) and (R2,+) ∼= (Zq,+), where
p , q are prime numbers. If p ̸= q, then (R,+) ∼= (Zp × Zq,+) ∼= (Zpq,+),
which has only two nontrivial subgroups (p̄), (q̄). These two subsets are also
only nontrivial ideals of the null ring R, and then Ω(R) is disconnected.

If R1 is a field and R2 is a null rings with prime number of elements, such
that (R2,+) ∼= (Zp,+). In this case {(0R1) × R2, R1 × (0̄)} = I⋆(R). As
1 ∈ (0R1)×R2 +R1 × (0̄), then Ω(R) is disconnected.

In the following, we characterize all the values of n for which the graph
Ω(Zn) is Eulerian; further, some values of n for which Ω(Zn) is Hamiltonian are
characterized.

At the first, we give a lemma about the number of vertices of Ω(Zn), and
characterize deg(I) for each I ∈ I⋆(Zn) and also minimum degree δ(Ω(Zn)).

Lemma 3.4. Let n = pα1
1 pα2

2 · · · pαk
k , a = pβ1

1 p
β2
2 · · · pβk

k , where pi’s are all dis-
tinct prime numbers, and also 0 ≤ βi ≤ αi. If I =< a > is a nontrivial ideal
of Zn, and suppose that Ba = {tj |1 ≤ tj ≤ k, βtj ̸= 0} is the ordered set of all
indices tj, such that βtj ̸= 0, then

(1) deg(I) =

|Ba|∑
j=1

αtj

k∏
i=1

i/∈{t1,··· ,tj}

(αi + 1)

− 2.

Also, the number of vertices of G = Ω(Zn) is |I⋆(Zn)| =
∏k

i=1(αi + 1)− 2 and

δ(G) = αt0

k∏
i=1
i ̸=t0

(αi + 1)− 2

wherein αt0 = min{αi|1 ≤ i ≤ k}.

Proof. Assume that b|n and b ̸= n. Then, J =< b > ̸= I and I are adjacent if
there exist some tj ∈ Ba such that ptj |b. But there are

αt1

k∏
i=1
i ̸=t1

(αi + 1)

factors of n in the form b = pt1b
′ (two of them are n and a), and there are

αt2

k∏
i=1

i/∈{t1,t2}

(αi + 1)

factors of n in the form b = pt2b
′ such that pt1 ∤ b′ and so on. It is obvious that

these factors of n are distinct. As < n >,< a > are not adjacent to I =< a >,
thus 2 units are deducted from the total. The proof of other statements are
obvious.
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Example 3.1. Let n = 210×35×52×7, a = 25×32×5 and G = Ω(Zn). Thus,
I =< a > is a nontrivial ideal of Zn. Then, according to the Lemma 3.4,
deg(< a >) = (10× 6× 3× 2) + (5× 3× 2) + (2× 2)− 2 = 392.
Also, δ(G) = (1× 11× 6× 3)− 2 = 196.

Proposition 3.3 ([6, Theorem 3.7]). A connected graph is Eulerian if and only
if all of its vertices have even degree.

In the next proposition, we characterize all the values of n for which graphs
of Zn are Eulerian.

Proposition 3.4. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime num-

bers. Then, Ω(Zn) is Eulerian if and only if αi = 1 for each 1 ≤ i ≤ k, or each
αi is even (1 ≤ i ≤ k).

Proof. According to Proposition 3.3, it is enough to show that all vertices of
Ω(Zn) have even degree if and only if αi = 1 for each 1 ≤ i ≤ k, or each αi is
even (1 ≤ i ≤ k).

With the same notation in Lemma 3.4, if αi = 1 for each 1 ≤ i ≤ k, then for
each factor a ̸= n of n, there is some i0 ∈ {1, 2, · · · , k} \Ba. Thus

2 = (αi0 + 1)|
k∏

i=1
i/∈{t1,··· ,tj}

(αi + 1)

for each 1 ≤ j ≤ |Ba|, and hence deg(I) is even. Also, it is obvious that deg(I)
is even if αi is even for each 1 ≤ i ≤ k. Conversely, if there exist an αi greater
than 1 and also {s1, · · · , sm|αsi is odd} is the nonempty set of all si such that
αsi is odd, then the ideal I =< a >=< ps1 · · · psm > is a nontrivial ideal of Zn.
We show that deg(I) is odd. In this case, it is obvious that the summand

αsj

k∏
i=1

i/∈{s1,··· ,sj}

(αi + 1)

in Equation 1 is even for each 1 ≤ j ≤ m − 1 and is odd for j = m and thus
deg(I) is odd. The proof is complete.

Proposition 3.5 ([6], Theorem 18.4). Let G be a simple graph of minimum
degree δ, where δ ≥ n

2 and n ≥ 3. Then, G is Hamiltonian.

Proposition 3.6. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime num-

bers. If k = 1, α1 ≥ 4 or k ≥ 2, αi ≥ 3 for each 1 ≤ i ≤ k, then Ω(Zn) is
Hamiltonian.

Proof. If k = 1, α1 ≥ 4, then Ω(Zn) is a complete graph with at least 3 vertices
([9, Example 2.14]) and thus is Hamiltonian.



238 S. JABER HOSEINI and YAHYA TALEBI

Now, assume that k ≥ 2, αi ≥ 3 for each 1 ≤ i ≤ k. Let αt0 = min{αi|1 ≤
i ≤ k}. Therefore, Ω(Zn) has n ≥ 3 vertices and also

(2αt0 − (αt0 + 1))

k∏
i=1
i ̸=t0

(αi + 1) ≥ 2.

Hence,

δ(Zn) = αt0

k∏
i=1
i ̸=t0

(αi + 1)− 2 ≥
∏k

i=1(αi + 1)

2
− 1 =

n

2
.

Therefore, by Proposition 3.5, Ω(Zn) is Hamiltonian.

4. The decision number of Ω(Zn)

In this section, the bad decision number and the nice decision number of G =
Ω(Zn) are investigated for each n. Some lemma’s are presented in the following,
and the results are combined to a single theorem at the end of the section.

Lemma 4.1. Let n = pα, α ≥ 3, and also G = Ω(Zn). Thus,

βD(G) =


0, for odd α ≥ 5 ,

2, for α = 3 ,

−1, for even α.

βD(G) =

{
0, for odd α ,

1, for even α.

Proof. We know G = Ω(Zn) is the complete graph Kα−1 for n = pα. Thus,
at least ⌈α−1

2 ⌉ of the vertices must be signed by −1, for any bad function f
and α > 3. In the other side, there is a bad function f over G, such that
exactly ⌈α−1

2 ⌉ of the vertices are signed by −1. Further, it is obvious that
βD(Ω(Z3)) = βD(K2) = 2. Similarly, at least ⌊α−1

2 ⌋ of the vertices must be
signed by −1, for any nice function f .

Lemma 4.2. Let k ≥ 2, αk be an odd number, n = pα1
1 pα2

2 · · · pαk
k , where pi’s

are all distinct prime numbers, and also G = Ω(Zn). The bad decision number
and the nice decision number of G are lower than or equal to 2.

Proof. If αi = 1, for all 1 ≤ i ≤ k, then let v0 = p2 · · · pk. Note that, | V (G) |=∏k
i=1(αi+1)−2 is an even number, and N(< v0 >) = V (G)\{< v0 >,< p1 >}.

If f is a bad function, then f(N(< v0 >)) is at most equal to 0, because of
| N(< v0 >) | is even. Also, f(N [< v0 >]) is at most equal to 1 for a nice
function f . Thus, f(V (G)) is at most equal to 2 for any bad or nice function f .

If there is an αi ≥ 2, then let v0 = p1p2 · · · pk. If f is a bad function then
f(N(< v0 >)) is at most equal to 1. If f is a nice function then, f(N [< v0 >
]) ≤ 0 because of N [< v0 >] = V (G) and | V (G) | is even. Hence, for any bad
or nice function f , f(V (G)) ≤ 2.
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The upper bound presented in Lemma 4.2 is sharp. As βD(Ω(Zpq)) =
βD(Ω(Zpq)) = 2.

Lemma 4.3. Let k ≥ 2, αk be an odd number, n = pα1
1 pα2

2 · · · pαk
k , where pi’s

are all distinct prime numbers, and G = Ω(Zn). The bad decision number and
the nice decision number of G are greater than or equal to 0.

Proof. Let m = αk−1
2 . Define the function f : V → {−1, 1} as:

f(< a >) =

{
−1, if pm+1

k |a ,
1, otherwise.

Suppose that < a > is a nontrivial ideal of Zn, and a = pa11 p
a2
2 · · · pakk . We

show that f(N(< a >)) ≤ 1 and then the function f is a bad function. Let
A = {i|ai ̸= 0}.

� If ak = 0:
There are X =

(∏
i∈A(αi + 1)− 1

)∏
i/∈A,i ̸=k(αi + 1)(m+ 1)− 1 elements

in N(< a >), such that have value 1 under the function f . Also, There
are X elements in N(< a >), such that have value −1 under the function
f . Hence, f(N(< a >)) = 0.

� If m ̸= 0 and ak ̸= 0:

In this case, Y =
(∏

i∈A,i ̸=k(αi + 1)(m+ 1)− 1
)∏

i/∈A(αi+1) elements of

N(< a >) have value 1 under the function f , and Y elements of N(< a >)
have value −1 under the function f . Therefore, f(N(< a >)) = 0.

� If m = 0 and ak ̸= 0: In this case, there are
∏

i ̸=k(αi + 1) − 2 ele-
ments of N(< a >) with value −1 and

∏
i∈A,i ̸=k(αi + 1) − 1 elements of

N(< a >) with value 1 under f . Thus, f(N(< a >)) =
∏

i∈A,i ̸=k(αi +

1)
(
1−

∏
i/∈A(αi + 1)

)
+ 1 ≤ 1. Also, f(N [a]) ≤ 0, as f(< a >) = −1.

On the other side, f(V ) = 0, as exactly the half of the vertices of G have value
1 under the f . Hence, βD(G) ≥ 0. Furthermore, it is obvious that f(N [a]) ≤ 1
in all 3 cases, hence f is a nice function and βD(G) ≥ 0.

The following Lemma, present an upper bound for decision numbers in the
case of all of the prime factors of n have even exponent in the prime decompo-
sition of n.

Lemma 4.4. Let k ≥ 2, n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime

numbers, αi’s are all even numbers, and also G = Ω(Zn). The bad decision
number and the nice decision number of G are lower than or equal to 1.

Proof. Let v = p1p2 · · · pk, and f be a bad function. Note that, | V (G) |=∏k
i=1(αi +1)− 2 is an odd number. We have, N(< v >) = V (G) \ {< v >} and

| N(< v >) | is even, thus f(N(< v >)) ≤ 0 and f(V (G)) ≤ 1. Further, If f is
a nice function then, f(V (G)) = f(N [< v >]) ≤ 1. Hence, f(V (G)) is at most
equal to 1.
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In the next example we show that the upper bound presented in Lemma 4.4
is sharp.

Example 4.1. Let n = p21p
2
2p

2
3, and G = Ω(Zn). Define the function f over

V (G) as: f(paii ) = f(pa11 p
a2
2 p

a3
3 ) = 1, where 1 ≤ i ≤ 3 and a1a2a3 ̸= 0. Other-

wise, f(v) = −1.
It is easy to check that the function f is a bad (and nice) function, and

f(V (G)) = +13− 12 = 1. Hence, βD(G), βD(G) = 1.

Lemma 4.5. Let k ≥ 2, n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime

numbers, αi’s are all even numbers, and also G = Ω(Zn). The bad decision
number and the nice decision number of G are greater than or equal to −1.

Proof. Let mi =
αi
2 for each 1 ≤ i ≤ k. Define the function f : V → {−1, 1}

as:

f(< a >) =

{
1, if pα1

1 · · · pαi
i |a and p

mi+1

i+1 ∤ a for some 0 ≤ i ≤ k − 1 ,

−1, otherwise.

Suppose that < a > is a nontrivial ideal of Zn, and a = pa11 p
a2
2 · · · pakk . We

show that f(N(< a >)) ≤ 1 and then the function f is a bad function. Let
A = {i|ai ̸= 0}, and t = min{i|ai ̸= 0}.

According to the definition of f ,

X =

k∑
i=t

mi

k∏
j=i+1

(αj + 1) +

t−1∑
i=1

mi

 ∏
j∈A,j>i

(αj + 1)− 1

 ∏
j /∈A,j>i

(αj + 1)

elements of N [< a >] have value −1 under the function f , and

Y =

k∑
i=t

mi

k∏
j=i+1

(αj + 1)−
∏

j /∈A,j>t

(αj + 1)

+
t−1∑
i=1

mi

 ∏
j∈A,j>i

(αj + 1)− 1

 ∏
j /∈A,j>i

(αj + 1)

elements of N [a] have value 1 under the function f . Therefore, if f(< a >) = 1,
then X elements of N(< a >) have value −1, and Y − 1 elements of N(< a >)
have value +1. If f(< a >) = −1, then X − 1 elements of N(< a >) have value
−1, and Y elements of N(< a >) have value +1. Thus,

f(N(< a >)) =


Y − 1−X = −

k∑
i=t

∏
j /∈A,j>t

(αj + 1)− 1, if f(< a >) = 1 ,

Y −X + 1 = −
k∑
i=t

∏
j /∈A,j>t

(αj + 1) + 1, if f(< a >) = −1.
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Consequently, f(N(< a >)) ≤ 0 and f(N [< a >]) ≤ −1. Hence, f is both bad
function and nice function.

By the definition of the function f ,

Z =

k∑
i=1

mi

k∏
j=i+1

(αj + 1)

vertices of G have value −1, and Z − 1 elements of N(< a >) have value +1.
Hence, βD(G), βD(G) ≥ −1.

Finally, the following theorem can immediately be concluded from the above
discussions.

Theorem 4.1. Let n = pα1
1 pα2

2 · · · pαk
k , where pi’s are all distinct prime numbers,

and also G = Ω(Zn). We have

βD(G) =


−1, if k = 1, α1 is an even number,

−1 or 1, if αi is an even number, for all 1 ≤ i ≤ k ,

0 or 2, otherwise.

βD(G) =


1, if k = 1, α1 is an even number,

−1 or 1, if αi is an even number, for all 1 ≤ i ≤ k ,

0 or 2, otherwise.

5. Conclusion

In this paper, we have obtained a sufficient and necessary condition for Ω(R) to
be a connected graph. Likewise, we characterized the values of n for which the
graph Ω(Zn) is Eulerian and Hamiltonian. Finally, the bad (and nice) decision
number of Ω(Zn) has been presented. In our future work, we will introduce
new results of connected graphs that are very useful in networks and computer
sciences.
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Abstract. In this paper, we first establish an arithmetic-geometric mean inequality
of unitary invariant norm for matrices, which is an improvement of the result proposed
by Zou and He [Linear Algebra Appl., 436(2012), 3354-3361]. Then, we use it to refine
the existing inequality. Moreover, we derive two unitarily invariant norm inequalities
for matrices, which refine the result of Cao and Wu.
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1. Introduction

Let Mn be the space of n×n complex matrices. A norm || · || is called unitarily
invariant norm, if ||UAV || = ||A|| for all A ∈ Mn and for all unitary matrices
U, V ∈ Mn. The singular values sj(A)(j = 1, 2, · · · , n) of A are the eigenvalues

of |A| = (A∗A)
1
2 , arranged in a decreasing order. The Ky Fan k-norm || · ||(k) is

defined as ∥A∥(k) =
∑k

j=1 sj(A), k = 1, · · · , n and the Schatten p-norm || · ||p is

defined as ∥A∥p =
(∑n

j=1 s
p
j (A)

) 1
p
= (tr|A|p)

1
p , 1 ≤ p <∞.

*. Corresponding author



244 XINGKAI HU, YUAN YI and WUSHUANG LIU

In what follows, || · || always denotes unitarily invariant norms including
Schatten p-norm || · ||p and Ky Fan k-norm || · ||(k).

For A,B,X ∈ Mn and A,B are positive semidefinite, Bhatia and Davis [1]
presented

(1.1) ||A
1
2XB

1
2 || ≤

∣∣∣∣∣∣∣∣AvXB1−v +A1−vXBv

2

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣AX +XB

2

∣∣∣∣∣∣∣∣,
where 0 ≤ v ≤ 1. Letting

φ(v) = ||AvXB1−v +A1−vXBv||,

inequality (1.1) can be rewritten as

φ

(
1

2

)
≤ φ(v) ≤ φ(0).

For A,B,X ∈ Mn and A,B are positive semidefinite, the function φ(v) is a
continuous convex function on [0,1], attains its minimum at v = 1

2 and maximum
at v = 0 and v = 1. Consequently, it is decreasing on [0, 12 ] and increasing on
[12 , 1], moreover, φ(v) = φ(1 − v) for v ∈ [0, 1] (see[2]). Using the convexity of
the function φ(v), Zou and He [3] obtained a strengthening of the arithmetic-
geometric mean inequality φ

(
1
2

)
≤ φ(0) as follows:

(1.2) φ

(
1

2

)
+ 2

(∫ 1

0
φ(v)dv − φ

(
1

2

))
≤ φ(0), 0 ≤ v ≤ 1.

Bhatia and Kittaneh [4] derived if A,B ∈Mn are positive semidefinite, then

(1.3) ||AB|| ≤ 1

4
||(A+B)2||.

Zou and He [3] gave a stronger version of inequality (1.3) as follows:

(1.4) ||AB||+
(∫ 1

0
g(v)dv − 2||AB||

)
≤ 1

4
||(A+B)2||,

where g(v) = ||A
1
2
+vB

3
2
−v +A

3
2
−vB

1
2
+v||.

Kaur and Singh [5] proved that for A,B,X ∈ Mn, if A and B are positive
definite, then for any unitarily invariant norm

(1.5)
1

2
||AνXB1−ν +A1−νXBν || ≤

∣∣∣∣∣∣∣∣(1− α)A
1
2XB

1
2 + α

(
AX +XB

2

)∣∣∣∣∣∣∣∣,
where 1

4 ≤ ν ≤ 3
4 and α ∈ [12 ,∞).

Replacing A,B by A2, B2 in (1.5) and taking u = 2ν, we can obtain

(1.6)
1

2
||AuXB2−u +A2−uXBu|| ≤

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣,
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where 1
2 ≤ u ≤ 3

2 and α ∈ [12 ,∞).

Let A,B,X ∈ Mn such that A and B are positive semidefinite. Then, for
every unitarily invariant norm, the function

ψ(u) = ||AuXB2−u +A2−uXBu||

is convex on [12 ,
3
2 ] and attains its minimum at u = 1. So, it is decreasing on

[12 , 1] and increasing on [1, 32 ]( see[2]). Using the convexity of the function ψ(u),
Cao and Wu [6] obtained a refinement of inequality (1.6)

||AuXB2−u +A2−uXBu|| ≤ 2(4r0 − 1)||AXB|

+ 2(1− 2r0)||A
1
2XB

3
2 +A

3
2XB

1
2 ||

≤ 2(4r0 − 1)||AXB||(1.7)

+ 4(1− 2r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣,
where 1

2 ≤ u ≤ 3
2 , α ∈ [12 ,∞) and r0 = min{u

2 , 1−
u
2}.

For more information on this topic, the reader is referred to [7-9] and the
references therein. In this paper, we first improve the inequality (1.2). As an
application of our result, we refine the inequality (1.4). Finally, we establish
improved versions of inequality (1.7) by using the convexity of function ψ(u).

2. Main results

In this section, we show four lemmas which will turn out to be useful in the
proof of our results.

Lemma 2.1 ([10]). Let A,B,X ∈Mn such that A and B are positive semidef-
inite, then for every unitarily invariant norm

φ(v) ≤ 2r0

(
φ

(
1

2

)
− φ(0)

)
+ φ(0),

where 0 ≤ v ≤ 1 and r0 = min{v, 1− v}.

Lemma 2.2 ([10]). Let f be a real valued convex function on the interval [a, b],
then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2
.

Lemma 2.3 ([4]). Let A,B ∈Mn be positive semidefinite, then

||A
1
2 (A+B)B

1
2 || ≤ 1

2
||(A+B)2||.
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Lemma 2.4 ([10]). Let f be a real valued convex function on an interval [a, b]
which contains (x1, x2), then

f(x) ≤ f(x2)− f(x1)

x2 − x1
x− x1f(x2)− x2f(x1)

x2 − x1
, x ∈ (x1, x2).

Theorem 2.1. Let A,B,X ∈ Mn such that A and B are positive semidefine,
then for any unitarily invariant norm

(2.1) φ

(
1

2

)
+ 2

(∫ 1

0
φ(v)dv − φ

(
1

2

))
+ 2

(∫ 1

0
φ(v)dv − φ

(
1

4

))
≤ φ(0),

where φ(v) = ||AvXB1−v +A1−vXBv|| and 0 ≤ v ≤ 1.

Proof. For 0 ≤ v ≤ 1
4 , by Lemma 2.1, we have

φ(v) ≤ 4

(
φ

(
1

4

)
− φ(0)

)
v + φ(0).

Thus, ∫ 1
4

0
φ(v)dv ≤ 4

(
φ

(
1

4

)
− φ(0)

)∫ 1
4

0
vdv +

∫ 1
4

0
φ(0)dv.

By a small calculation, we have

(2.2)

∫ 1
4

0
φ(v)dv ≤ 1

8

(
φ

(
1

4

)
+ φ(0)

)
.

For 1
4 ≤ v ≤ 1

2 , by Lemma 2.1, we obtain

φ(v) ≤ 4

(
φ

(
1

2

)
− φ

(
1

4

))(
v − 1

4

)
+ φ

(
1

4

)
.

Consequently∫ 1
2

1
4

φ(v)dv ≤ 4

(
φ

(
1

2

)
− φ

(
1

4

))∫ 1
2

1
4

(
v − 1

4

)
dv +

∫ 1
2

1
4

φ

(
1

4

)
dv,

which implies

(2.3)

∫ 1
2

1
4

φ(v)dv ≤ 1

8

(
φ

(
1

4

)
+ φ

(
1

2

))
.

For 1
2 ≤ v ≤ 3

4 , by Lemma 2.1, we obtain

φ(v) ≤ 4

(
φ

(
3

4

)
− φ

(
1

2

))(
v − 1

2

)
+ φ

(
1

2

)
.
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Thus,∫ 3
4

1
2

φ(v)dv ≤ 4

(
φ

(
3

4

)
− φ

(
1

2

))∫ 3
4

1
2

(
v − 1

2

)
dv +

∫ 3
4

1
2

φ

(
1

2

)
dv,

by a small calculation, we have

(2.4)

∫ 3
4

1
2

φ(v)dv ≤ 1

8

(
φ

(
3

4

)
+ φ

(
1

2

))
.

For 3
4 ≤ v ≤ 1, by Lemma 2.1, we obtain

φ(v) ≤ 4

(
φ(1)− φ

(
3

4

))(
v − 3

4

)
+ φ

(
3

4

)
.

Thus, ∫ 1

3
4

φ(v)dv ≤ 4

(
φ(1)− φ

(
3

4

))∫ 1

3
4

(
v − 3

4

)
dv +

∫ 1

3
4

φ

(
3

4

)
dv,

which implies

(2.5)

∫ 1

3
4

φ(v)dv ≤ 1

8

(
φ(1) + φ

(
3

4

))
.

It follows from (2.2)-(2.5) and φ(0) = φ(1), φ
(
1
4

)
= φ

(
3
4

)
that∫ 1

0
φ(v)dv =

∫ 1
4

0
φ(v)dv +

∫ 1
2

1
4

φ(v)dv +

∫ 3
4

1
2

φ(v)dv +

∫ 1

3
4

φ(v)dv

≤ 1

4

(
φ(0) + φ

(
1

2

)
+ 2φ

(
1

4

))
,

and so

4

∫ 1

0
φ(v)dv ≤ φ(0) + φ

(
1

2

)
+ 2φ

(
1

4

)
,

which is equivalent to

φ

(
1

2

)
+ 2

(∫ 1

0
φ(v)dv − φ

(
1

2

))
+ 2

(∫ 1

0
φ(v)dv − φ

(
1

4

))
≤ φ(0).

This completes the proof.

Remark 2.1. Theorem 2.1 is sharper than inequality (1.2).
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By Lemma 2.2, we have

(2.6) φ

(
1

4

)
≤ 2

∫ 1
2

0
φ(v)dv

and

(2.7) φ

(
3

4

)
≤ 2

∫ 1

1
2

φ(v)dv.

It follows from (2.6), (2.7) and φ
(
1
4

)
= φ

(
3
4

)
that

2φ

(
1

4

)
≤ 2

∫ 1

0
φ(v)dv,

that is ∫ 1

0
φ(v)dv ≥ φ

(
1

4

)
.

Thus, ∫ 1

0
φ(v)dv − φ

(
1

4

)
≥ 0.

Obviously, Theorem 2.1 is also an improvement of arithmetic-geometric
mean inequality φ

(
1
2

)
≤ φ(0).

Theorem 2.2. Let A,B ∈Mn be positive semidefinite, then for any unitarily
invariant norm

||AB||+
(∫ 1

0
g(v)dv − 2||AB||

)
+

(∫ 1

0
g(v)dv − ||A

3
4B

5
4 +A

5
4B

3
4 ||
)

≤ 1

4
||(A+B)2||,

where g(v) = ||A
1
2
+vB

3
2
−v +A

3
2
−vB

1
2
+v||.

Proof. By (2.1), taking X = A
1
2B

1
2 , we have

2||AB||+2

(∫ 1

0
g(v)dv−2||AB||

)
+2

(∫ 1

0
g(v)dv−||A

3
4B

5
4+A

5
4B

3
4 ||
)

≤ ||A
1
2 (A+B)B

1
2 ||.(2.8)

By Lemma 2.3, it easily follows from (2.8) that

2||AB||+ 2

(∫ 1

0
g(v)dv − 2||AB||

)
+ 2

(∫ 1

0
g(v)dv − ||A

3
4B

5
4 +A

5
4B

3
4 ||
)

≤ 1

2
||(A+B)2||.

This completes the proof.
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Remark 2.2. Obviously, Theorem 2.2 is a refinement of inequality (1.4).

In the following, we utilize the convexity of the function ψ(u) = ||AuXB2−u+
A2−uXBu|| to present two matrix inequalities for unitarily invariant norms that
lead to improved versions of inequality (1.7).

Theorem 2.3. Let A,X,B ∈Mn such that A and B are positive semidefinite,
then for any unitarily invariant norm

||AuXB2−u +A2−uXBu|| ≤ 2(4r0 − 1)||A
3
4XB

5
4 +A

5
4XB

3
4 ||

+ 2(3− 8r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣,
u ∈ [

1

2
,
3

4
] ∪ [

5

4
,
3

2
]

and

||AuXB2−u +A2−uXBu|| ≤ 8(1− 2r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣
+ 2(8r0 − 3)||AXB||, u ∈ (

3

4
,
5

4
),

where 1
2 ≤ u ≤ 3

2 , α ∈ [12 ,∞) and r0 = min{u
2 , 1−

u
2}.

Proof. For 1
2 ≤ u ≤ 3

4 , by the convexity of the function ψ(u) = ||AuXB2−u +
A2−uXBu|| and Lemma 2.4, we obtain

ψ(u) ≤
ψ(34)− ψ(12)

1
4

u−
1
2ψ(

3
4)−

3
4ψ(

1
2)

1
4

,

which is equivalent to

(2.9) ψ(u) ≤ (4u− 2)ψ

(
3

4

)
+ (3− 4u)ψ

(
1

2

)
.

Combining (1.6) with (2.9), we get

||AuXB2−u +A2−uXBu|| ≤ (4u− 2)||A
3
4XB

5
4 +A

5
4XB

3
4 ||

+ 2(3− 4u)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣.
Hence

||AuXB2−u +A2−uXBu|| ≤ 2(4r0 − 1)||A
3
4XB

5
4 +A

5
4XB

3
4 ||

+ 2(3− 8r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣.(2.10)
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For 3
4 < u ≤ 1, by the convexity of the function ψ(u) and Lemma 2.4, we have

ψ(u) ≤
ψ(1)− ψ(34)

1− 3
4

u−
3
4ψ(1)− 1ψ(34)

1− 3
4

,

which is equivalent to

(2.11) ψ(u) ≤ (4u− 3)ψ(1) + (4− 4u)ψ

(
3

4

)
.

Combining (1.6) with (2.11), we get

||AuXB2−u +A2−uXBu||

≤ 8(1− u)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣+ 2(4u− 3)||AXB||.

Hence

||AuXB2−u +A2−uXBu||

≤ 8(1−2r0)

∣∣∣∣∣∣∣∣(1−α)AXB+α

(
A2X+XB2

2

)∣∣∣∣∣∣∣∣+ 2(8r0 − 3)||AXB||.(2.12)

For 1 < u < 5
4 , similarly, we have

ψ(u) ≤ (4u− 4)ψ

(
5

4

)
+ (5− 4u)ψ (1) ,

that is

||AuXB2−u +A2−uXBu||

≤ 2(4u− 4)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣+ 2(5− 4u)||AXB||.

Consequently

||AuXB2−u +A2−uXBu||

≤ 8(1−2r0)

∣∣∣∣∣∣∣∣(1−α)AXB+α

(
A2X+XB2

2

)∣∣∣∣∣∣∣∣+ 2(8r0 − 3)||AXB||.(2.13)

For 5
4 ≤ u ≤ 3

2 , we have

ψ(u) ≤ (4u− 5)ψ

(
3

2

)
+ (6− 4u)ψ

(
5

4

)
,

that is

||AuXB2−u +A2−uXBu|| ≤ 2(4u− 5)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣
+ (6− 4u)||A

5
4XB

3
4 +A

3
4XB

5
4 ||.
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Consequently

||AuXB2−u +A2−uXBu|| ≤ 2(4r0 − 1)||A
3
4XB

5
4 +A

5
4XB

3
4 ||

+ 2(3− 8r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣.(2.14)

It follows from (2.10),(2.12),(2.13),(2.14) and 1
2 ≤ u ≤ 3

2 , α ∈ [12 ,∞), r0 =
min{u

2 , 1−
u
2} that

||AuXB2−u +A2−uXBu|| ≤ 2(4r0 − 1)||A
3
4XB

5
4 +A

5
4XB

3
4 ||

+ 2(3− 8r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣,
u ∈ [

1

2
,
3

4
] ∪ [

5

4
,
3

2
]

and

||AuXB2−u +A2−uXBu|| ≤ 8(1− 2r0)

∣∣∣∣∣∣∣∣(1− α)AXB + α

(
A2X +XB2

2

)∣∣∣∣∣∣∣∣
+ 2(8r0 − 3)||AXB||, u ∈ (

3

4
,
5

4
).

This completes the proof.

Remark 2.3. Theorem 2.3 is sharper than inequality (1.7).
Note that, inequality (1.7) is equivalent to

(2.15) ψ(u) ≤ 2(1− u)ψ

(
1

2

)
+ (2u− 1)ψ(1),

1

2
≤ u ≤ 1

and

(2.16) ψ(u) ≤ (3− 2u)ψ(1) + 2(u− 1)ψ

(
3

2

)
, 1 ≤ u ≤ 3

2
.

For 1
2 ≤ u ≤ 3

4 , compared with inequality (2.15), then

2(1− u)ψ

(
1

2

)
+ (2u− 1)ψ(1)−

(
(4u− 2)ψ

(
3

4

)
+ (3− 4u)ψ

(
1

2

))
= (2u− 1)

(
ψ

(
1

2

)
− 2ψ

(
3

4

)
+ ψ(1)

)
.

Since ψ(u) = ||AuXB2−u +A2−uXBu|| is convex on [12 ,
3
2 ], it follows by a slope

argument that
ψ(1)− ψ 3

4)

1− 3
4

≥
ψ(34)− ψ(12)

3
4 − 1

2

,
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that is

ψ

(
1

2

)
− 2ψ

(
3

4

)
+ ψ(1) ≥ 0.

So,

(2.17) 2(1− u)ψ

(
1

2

)
+ (2u− 1)ψ(1) ≥ (4u− 2)ψ

(
3

4

)
+ (3− 4u)ψ

(
1

2

)
.

For 3
4 < u ≤ 1,

2(1− u)ψ

(
1

2

)
+ (2u− 1)ψ(1)−

(
(4u− 3)ψ(1) + (4− 4u)ψ

(
3

4

))
= (2− 2u)

(
ψ

(
1

2

)
− 2ψ

(
3

4

)
+ ψ(1)

)
≥ 0.

So,

(2.18) 2(1− u)ψ

(
1

2

)
+ (2u− 1)ψ(1) ≥ (4u− 3)ψ(1) + (4− 4u)ψ

(
3

4

)
.

For 1 < u < 5
4 , compared with inequality (2.16), then we have

(3− 2u)ψ(1) + 2(u− 1)ψ

(
3

2

)
−
(
(4u− 4)ψ

(
5

4

)
+ (5− 4u)ψ(1)

)
= 2(u− 1)

(
ψ

(
3

2

)
− 2ψ

(
5

4

)
+ ψ(1)

)
.

Since ψ(u) = ||AuXB2−u +A2−uXBu|| is convex on [12 ,
3
2 ], it follows by a slope

argument that
ψ(32)− ψ(54)

3
2 − 5

4

≥
ψ(54)− ψ(1)

5
4 − 1

,

that is

ψ

(
3

2

)
− 2ψ

(
5

4

)
+ ψ(1) ≥ 0.

So,

(2.19) (3− 2u)ψ(1) + 2(u− 1)ψ

(
3

2

)
≥ (4u− 4)ψ

(
5

4

)
+ (5− 4u)ψ(1).

For 5
4 ≤ u ≤ 3

2 , we have

(3− 2u)ψ(1) + 2(u− 1)ψ

(
3

2

)
−
(
(4u− 5)ψ

(
3

2

)
+ (6− 4u)ψ

(
5

4

))
= (3− 2u)

(
ψ

(
3

2

)
− 2ψ

(
5

4

)
+ ψ(1)

)
≥ 0.
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So,

(2.20) (3− 2u)ψ(1) + 2(u− 1)ψ

(
3

2

)
≥ (4u− 5)ψ

(
3

2

)
+ (6− 4u)ψ

(
5

4

)
.

By (2.17)-(2.20), we can conclude that Theorem 2.3 is better than inequality
(1.7).
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Abstract. In a layered thermal conductor, the inaccessible interface could be dam-
aged by mechanical solicitation, chemical infiltration, aging. In this case, the original
thermal properties of the specimen are modified. The defect occurs typically in form of
delamination. The present paper deals with nondestructive evaluation of interface ther-
mal conductance h from the knowledge of the surface temperature when the specimen
is heated in some controlled way. The goal is achieved by expanding h in powers of the
thickness of the upper layer. The mathematical analysis of the model produces exact
formulas for the first coefficients of h which are tested on simulated and real data. The
evaluation of interface flaws comes from reliable approximation of h.

Keywords: imperfect interface, thermal contact conductance, heat equation, inverse
problem.

MSC 2020: 35F51 41A99 80A23

1. Introduction

In a layered conductor, the inaccessible interface Σ̃ could be damaged by me-
chanical solicitation, chemical infiltration, aging. In this case, the original ther-
mal properties of the specimen are modified. The present paper deals with
nondestructive evaluation of defects in Σ̃ from the knowledge of the surface
temperature when the specimen is heated by applying a voltage or by means
of a lamp system or a laser. Temperature is measured with an infrared cam-
era in the typical framework of Active Thermography [19]. The mathematical
model consists of a system of two Boundary Value Problems (BVPs) for the
Laplace-transformed heat equation. The evaluation of defects affecting the inter-
face requires the approximate solution of a non linear Inverse Heat Conduction
Problem.

*. Corresponding author
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1.1 Layered domains

Consider a composite body made up of two thermally conducting layers B̃+

and B̃−divided by a very thin and irregular interspace S̃ filled up with air or
other poorly conductive materials (see Figure 1 (a)). As long as B̃− is heated
by an external source, heat flows through S̃ mainly in correspondence to pos-
sible contact spots between the conducting layers. As strong as the layers are
pressed together, their contact area depends on nonflatness and roughness of
the contacting surfaces. Assume that the effect of S̃ on heat transfer between
the two layers B̃− and B̃+ is equivalent to the effect of a smooth thin interspace
S of constant thickness dS and virtual thermal conductivity κS . In this case
a model with three layers is obtained (B+ ∪ S ∪ B− see Figure 1 (b)) where
the opposite sides of S have different temperature but there is no thermal gap
between adjacent layers B+, S and S,B−. It is shown in [10] that heat conduc-
tion in B+ ∪ S ∪ B− is correctly modeled in terms of transmission conditions
on a two-dimensional interface Σ̃ that separates the conducting layers. Indeed,
the thin domain S shrinks to the surface Σ̃ (a rigorous analysis of limits of the
form limdS→0

kS
dS

in a similar geometry is in [8], Sect 7) so that the specimen is,

finally, Ω̃ = Ω̃+ ∪ Σ̃ ∪ Ω̃− (see, Figure 1 (c)).

Figure 1: layered domain: from the interspace S̃ to the interface Σ̃
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1.2 Types of interfaces and thermal parameters

Interfaces can be classified as perfect or imperfect according to their thermal
properties [16]. In case of perfect interfaces, temperature and normal heat
flux are continuous in Σ̃ while the model of Low Conductivity Imperfect (LCI)
interface allows for a temperature jump with continuous heat flux.

The Thermal Contact Resistance (TCR) r̄ (see for example [12] Ch 3) is a
non negative parameter proportional to the temperature gap between the two
sides of Σ̃. Its inverse h̄ = 1

r̄ is referred to as Thermal Contact Conductance
(TCC).

In perfect interfaces the parameter r̄ is zero (very small in practice) and h̄
is infinite (actually large).

In LCIs, the resistance is r̄ >> 0. In the limit case of infinite r̄ the interface
is perfectly insulating and h̄ = 0.

A defect affecting Σ̃ gives rise to anomalies in the thermal behavior of the
interface. We focus on the case in which the undamaged interface is perfect (r̄
is very small) and the defect is an inclusion between the layers (see for example
[23]). The occurrence of a similar defect produces locally a larger TCR r =
r̄ + δr (δr > 0 non constant on Σ̃). The extension of TCR and TCC to the
perturbed non constant case is not rigorously founded but it is in agreement
with experimental data and widely used among practitioners (see for example
[1, 26, 2]). Hence, h = 1

r̄+δr = h̄ + δh (δh < 0 non constant on Σ̃) plays
the role of exchange coefficient in Robin transmission conditions (5) and (6)
in section 2. In this case, there is no appreciable temperature gap between
the opposite sides of Σ̃ except on the damaged area where we expect that the
numerical value of κa

h (κa is the thermal conductivity of the inclusion) gives a
good approximation of the thickness of the defect [7]. We can reasonably simplify
the problem by assuming that the defect is actually a delamination described
by the graph of a function of two variables whose level sets are convex. More
precisely, in applicative literature, ”the delamination zone is often taken as a
square, circular or elliptical domain so as to confirm a satisfactory compromise
between the realistic representation of the geometry of the real delamination
and the simple insertion of the artificial damage” [9]. We apply this concept in
section 7.2. A detailed analysis of nondestructive inspection of impact-damaged
composite structures is in [25]. The interface is usually filled with air. Treating
the interface in terms of thermal conductance only is anyhow justified because
its size is small enough to prevent the occurrence of convective motions which
would require a mixed thermal/fluid model.

1.3 The direct model and the inverse problem

In this section, we describe briefly the specific model and the approach used
here to solve the inverse problem. The lower layer Ω̃− is heated by means of
thermal flux coming from below, e.g. by a lamp, kept on for a time interval
of τmax seconds. Heat passes through the interface Σ̃ so that the temperature
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of Ω̃+ changes during heating. Heat transfer through the interface is modeled
by means of Robin transmission boundary conditions (see for example [21, 6]).
A sequence ψ̃ of temperature maps is taken, in the meanwhile, on the external
surface of Ω̃+. This setting is usually referred to as transmission mode [5] in
Long Pulse Thermography. Details of this mathematical model, based on the
heat equation in normalized dimensionless variables, are in section 3. In the new
variables, layers are named Ω+ and Ω− while the interface is Σ and the whole
specimen is Ω = Ω+ ∪ Σ ∪ Ω−.

It is remarkable that h is independent of time (at least in the time scale
of tmax) so that it is convenient to apply Laplace’s transform to equations and
boundary conditions (see section 4). In this way we obtain a system of two
BVPs for elliptic equations in Ω+ and Ω− (connected by Robin transmission
conditions) whose solutions U+ and U− are the Laplace transform of the tem-
peratures of the two layers. At this point, since our specimen is composed by
thin layers, we introduce the formal expansion of h, U+ and U− in even powers
of the normalized thickness γ of Ω̃+. Our goal is to write the coefficients hk
(of the expansion in γ2k) in terms of the available data (incomplete thermal
boundary data). We accomplish this task by means of a generalization of Thin
Plate Approximation (TPA). In particular, we show that the coefficients of the
expansion of the trace of U− on Σ fulfills a family of Neumann problems for
elliptic PDEs at least for k = 0, 1 (see (30) and (53) ). In this way, transmis-
sion conditions for k = 0, 1 on the positive side of Σ become ordinary Robin
conditions for BVPs in Ω+ so that we are in a position to derive the explicit
expressions of h0 and h1 in terms of ψ̃. A similar model has been studied in [3]
where a flaw (of unknown depth) is evaluated from the knowledge of a complete
set of thermal data at the boundary. A stationary two-dimensional case is stud-
ied in [1] using reciprocity functional approach. A problem of reflection mode
[5] in Long Pulse Thermography of a single layer specimen is solved in [14].

We recall that TPA is a perturbative technique for the computational solu-
tion of some inverse problems on thin domains, borrowed from [18]. In [13], TPA
is compared with pre-existing methods based on reciprocity functional approach,
optimization and regularization [4].

1.4 Simulations and experiments

We apply the method described in section 6 to the nondestructive evaluation
of defects affecting the interface of a coated iron slab. We test the first order
approximation (i.e. h ≈ h0 + γ2h1) both in 2D simulations and in case of real
data in a full 3D model. The approximation of h (real data are processed) shown
in figure 6 improves the reconstruction obtained in [24] where the trace of U−

on Σ is heuristically overwritten by its background temperature.
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2. Geometry, notation, direct model and inverse problem

Let Ω̃ be the parallelepiped (0, D)× (0, D)× (−a−, a+) in the 3D space (ξ, η, ζ).
Let Ω̃+ be (0, D)× (0, D)× (0, a+) and Ω̃− be (0, D)× (0, D)× (−a−, 0).
Let Σ̃ = {(ξ, η) ∈ (0, D)× (0, D) , ζ = 0}. Clearly Ω̃ = Ω̃+ ∪ Σ̃ ∪ Ω̃−.

To fix ideas, assume that a++a−

D << 1. The geometry of the problem is

summarized in Figure 2. The thermal behavior of each layer Ω̃± is determined
by its conductivity κ̃±, density ρ± and specific heat c±. Heat transfer through
the interface Σ̃ depends on its thermal contact conductance h̃(ξ, η).

Let v±(ξ, η, ζ, τ) with (ξ, η, ζ) ∈ Ω̃± and τ > 0 the temperature increase
(with respect to an initial and surrounding temperature V0) in Ω̃± obtained
by applying, for a time interval (0, τmax), a heat flux ϕ̃(ξ, η, τ) to Ω̃− (more
precisely, ϕ̃(ξ, η, τ) = 0 for τ > τmax) . Clearly, v(ξ, η, ζ, 0) = 0. Assume that
the vertical sides of the composite domain are insulated while the horizontal
sides exchange heat with the environment. The thermal contact conductances
of top (ζ = a+) and bottom side (ζ = −a−) are the positive constants h̃+ and
h̃− respectively.

2.1 The direct model

Given the constant parameters a±, D, κ̃±, ρ± , c± and h̃± and given interface
thermal conductance h̃(ξ, η), the functions v± fulfill an Initial Boundary Value
Problem (IBVP) for the heat equation in the composite domain Ω̃ (we write
down this IBVP later in dimensionless variables).

ρ−c−v−τ = κ̃−(v−ξξ + v−ηη + v−ζζ) , (ξ, η, ζ) ∈ Ω̃−, τ > 0,(1)

− κ̃−v−ζ (ξ, η,−a
−) + h̃−v−(ξ, η,−a−) = ϕ̃(ξ, η, τ),(2)

ρ+c+v+τ = κ̃+(v+ξξ + v+ηη + v+ζζ) , (ξ, η, ζ) ∈ Ω̃+, τ > 0,(3)

κ̃+v+ζ (ξ, η, a
+, τ) + h̃+v+(ξ, η, a+, τ) = 0(4)

and v±ν = 0 on the vertical sides of Ω̃±, with transmission conditions

κ̃−v−ζ (ξ, η, 0, τ) + h̃(ξ, η)(v−(ξ, η, 0, τ)− v+(ξ, η, 0, τ)) = 0,(5)

κ̃−v−ζ (ξ, η, 0, τ) = κ̃+v+ζ (ξ, η, 0, τ)(6)

Initial data are

v−(ξ, η, ζ, 0) = 0 , (ξ, η, ζ) ∈ Ω̃−,(7)

v+(ξ, η, ζ, 0) = 0 , (ξ, η, ζ) ∈ Ω̃+.(8)

2.2 The interface inverse problem

Assumed that h̃(ξ, η) is unknown, the goal is to approximate h̃ by using the
knowledge of ϕ̃ and the available additional (boundary) dataset ψ̃(ξ, η, τ) =
v+(ξ, η, a+, τ) for τ ∈ (0, τmax).
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3. Dimensionless variables

We introduce the standard set of dimensionless variables z = ζ
a+

, x = ξ
D , y = η

D

and t = τ
T where T = ρ+c+D2

κ̃+ . We set also κ± = κ̃±

D2 and β = α−

α+ where the
numbers α± = κ±

ρ±c±
are the diffusivities of upper and lower slabs respectively.

Rewrite the geometry of the problem in the new variables. Here b = a−

a+
.

Let Ω be the parallelepiped (0, 1)× (0, 1)× (−b, 1) in the 3D space (x, y, z).

Let Ω+ be (0, 1)× (0, 1)× (0, 1) and Ω− be (0, 1)× (0, 1)× (−b, 0).
Let Σ = {(x, y) ∈ (0, 1)× (0, 1) , z = 0}. Clearly Ω = Ω+ ∪ Σ ∪ Ω−.

Define

u±(x, y, z, t) ≡ v±(Dx,Dy, a+z, T t),

ψ(x, y, t) = ψ̃(Dx,Dy, T t),

γϕ(x, y, t) = ϕ̃(Dx,Dy, T t),

γh(x, y) = h̃(Dx,Dy).

(9)

As for the (known a priori) constant thermal conductances of top and bottom
sides of Ω, we set h̃+ = γh+ and h̃− = γh− respectively. The scaling factor γ
(defined at the end of section 2.1) is functional to the power expansions of u±

and h in what follows.

In dimensionless variables and taking into account (9), system (1)-(8) be-
comes

IBV P−

γ2u−t = βγ2(u−xx + u−yy) + βu−zz , (x, y, z) ∈ Ω−, t > 0,(10)

−Dκ−u−z (x, y,−b, t) + γ2h−u−(x, y,−b, t) = γ2ϕ(x, y, t)(11)

(uν = 0 on the vertical sides of Ω−)

IBV P+

γ2u+t = γ2(u+xx + u+yy) + u+zz , (x, y, z) ∈ Ω+, t > 0,(12)

Dκ+u+z (x, y, 1) + γ2h+u+(x, y, 1) = 0(13)

(uν = 0 on the vertical sides of Ω+)

with transmission conditions

Dκ−u−z (x, y, 0) + γ2h(x, y)(u−(x, y, 0)− u+(x, y, 0)) = 0(14)

κ−u−z (x, y, 0) = κ+u+z (x, y, 0).(15)
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Initial data are

u−(x, y, z, 0) = 0 , (x, y, z) ∈ Ω−,(16)

u+(x, y, z, 0) = 0 , (x, y, z) ∈ Ω+.(17)

Remark. If ϕ and h are continuous functions and H1(Ω) is a product Hilbert
space equipped with a suitable norm, the system (10)-(16) admits a unique
solution (u+, u−) ∈ L2(0, T ;H1(Ω)), stable with respect to error on h (see [15]).

4. Laplace transform of the direct problem

First, define (for all real positive numbers s) the Laplace transform of u±(x, y, z, t)
as

(18) U s±(x, y, z) =

∫ ∞

0
u±(x, y, z, t)e−stdt

while

Φs(x, y) =

∫ ∞

0
ϕ(x, y, t)e−stdt.

We know that the bounded function u(x, y, 0, t) is decreasing for t > tmax +
δt where δt > 0 depends on thickness and diffusivity of the specimen. The
temperature data ψ(x, y, t) can be extended formally for t > tmax to a bounded
function ψ∞ decreasing to zero without any sensitive effect in the calculation of
the Laplace transform of ψ∞ (in a suitable range of s). Hence, in what follows
it is

Ψs(x, y) =

∫ ∞

0
ψ∞(x, y, t)e−stdt.

Standard calculations change (10)-(16) into the following system of elliptic BVPs

BV P−

γ2sU s− = βγ2(U s−
xx + U−

yy) + βU s−
zz , (x, y, z) ∈ Ω−,(19)

−Dκ−U s−
z (x, y,−b) + γ2h−U s−(x, y,−b) = γ2Φs(x, y)(20)

and U s−
ν = 0 on the vertical sides of Ω−

BV P+

γ2sU s+ = γ2(U s+
xx + U s+

yy) + U s+
zz , (x, y, z) ∈ Ω+,(21)

Dκ+U s+
z (x, y, 1) + γ2h+U s+(x, y, 1) = 0(22)

and U s+
ν = 0 on the vertical sides of Ω+ with transmission conditions

Dκ−U s−
z (x, y, 0) + γ2h(x, y)(U s−(x, y, 0)− U s+(x, y, 0)) = 0,(23)

κ−U s−
z (x, y, 0) = κ+U s+

z (x, y, 0).(24)

In what follows U s±, Ψs and Φs are written simply U±, Ψ and Φ. The
dependence on the parameter s is implicit. The actual choice of values of s is
discussed in section 7.1.
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5. The inverse problem

After introducing dimensionless variables and applying Laplace’s transform, the
inverse problem defined in the end of section 2 is formulated the following way:

Interface Inverse Problem Assumed that the coefficient h(x, y) in (23) is
unknown, it must be recovered from the knowledge of Φ and the available ad-
ditional (boundary) data Ψ(x, y) = U+(x, y, 1)).

Mathematical remark It is immediate to realize that the external flux U±
ν is

known on the whole boundary of Ω while U± is given only on the top boundary
of Ω+ (incomplete Neumann to Dirichlet (NTD) map). A wide mathematical
literature about uniqueness and stability of solutions of inverse problems for
parabolic and elliptic PDEs is available, but we did not find any theorem fitting
our Interface Inverse Problem in presence of incomplete NTD map. A rigorous
solution of this aspect of the problem is out of the goal of the present research.
Actually, this is a work in progress starting from the useful suggestions in [22]
(a single domain instead of a layered one) and [11] (full NTD map, continuous
temperature and discontinuous flux at the interface).

6. Thin plate approximation

First, we stress that, when h is given, the solutions U+ and U− of (19)-(23)
depend on γ2. If also h is unknown, any approximation based on the direct
model (19)-(23) also depends on γ2. Since the parameter γ is assumed small,
we introduce the following formal expansions:

U−(x, y, z) = U−
0 (x, y, z) + γ2U−

1 (x, y, z) + ...,

U+(x, y, z) = U+
0 (x, y, z) + γ2u+1 (x, y, z) + ...,

h(x, y) = h0(x, y) + γ2h1(x, y) + ....

(25)

6.1 Order zero of the expansion of h

Consider the terms of order zero:

U−
0zz = 0,

for all (x,y,z), and

U−
0z(x, y,−b) = U−

0z(x, y, 0) = U+
0z(x, y, 0) = U+

0z(x, y, 1) = 0.

It means that U−
0 and U+

0 do not depend on z.
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First order terms are:

U−
1z(x, y, 0) = −h0(x, y)

Dκ−
(U−

0 (x, y)− U+
0 (x, y)),

U+
1z(x, y, 0) =

κ−

κ+
U−
1z(x, y, 0),

U−
1z(x, y,−b) =

h−

Dκ−
U−
0 (x, y)− Φ

Dκ−
,

U+
1z(x, y, 1) = − h+

Dκ+
U+
0 (x, y),

U−
1zz =

s

β
U−
0 − (U−

0xx + U−
0yy),

U+
1zz = sU+

0 − (U+
0xx + U+

0yy).

(26)

Since fz(a2) = fz(a1) +
∫ a2
a1
fzz(s)ds, we have

(27) −h0(U−
0 − U+

0 ) + h+U+
0 +Dκ+sU+

0 −Dκ+∆U+
0 = 0

and

(28) h0(U
−
0 − U+

0 ) + h−U−
0 − Φ+Dκ−

bs

β
U−
0 − bDκ−∆U−

0 = 0.

The sum of the last two equation does not depend on the unknown h0(x, y) .
Hence, if we assume

(29) U+
0 (x, y) = Ψ(x, y)

(i.e. U+
k (x, y, 1) = 0 for k > 0) we have the following elliptic PDE in U−

0 (x, y, t)

(30) (
h−

Dκ−
+
bs

β
)U−

0 − b∆U−
0 = F0

where

(31) F0(x, y) =
Φ(x, y)

Dκ−
− (

h+

Dκ−
+
κ+

κ−
s)Ψ(x, y) +

κ+

κ−
∆Ψ

with Neumann boundary conditions

(32) U−
0x(0, y) = U−

0x(1, y) = U−
0y(x, 0) = U−

0y(x, 1) = 0.

Hence, solving (27), we obtain

(33) h0(x, y) =
(h+ +Dκ+s)Ψ(x, y)−Dκ+∆Ψ(x, y)

U−
0 −Ψ

.
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6.2 First order of the expansion of h

In what follows, Lf = fxx + fyy. We derive the following first order relation in
Ω+:

(34) U+
1zz = A+

0 (x, y),

where

(35) A+
0 (x, y) = sΨ(x, y)− LΨ(x, y)

so, that

U+
1z(x, z) = A+

0 (x, y)z +B+
0 (x, y),

U+
1 (x, z) = A+

0 (x, y)
z2

2
+B+

0 (x, y)z + C+
0 (x, y),

(36)

where

(37) B+
0 (x, y) = −h0(x, y)

Dκ+
(U−

0 (x, y)−Ψ(x, y)).

Since we assumed U+
0 (x, y) = U+(x, y, 1) = Ψ(x, y) (see (29), it is U+

1 (x, y, 1) ≡
0 so that

(38) C+
0 (x, y) = −A+

0 (x, y)
1

2
−B+

0 (x, y)

and

(39) U+
1 (x, y, z) = A+

0 (x, y)
z2 − 1

2
+B+

0 (x, y)(z − 1).

Analogously, in Ω− we have

(40) U−
1zz = A−

0 (x, y)

with

(41) A−
0 (x, y) =

s

β
U−
0 (x, y)− LU−

0 (x, y).

so, that

U−
1z = A−

0 (x, y)z +B−
0 (x, y),

U−
1 (x, y, z) = A−

0 (x, y)
z2

2
+B−

0 (x, y)z + C−
0 (x, y),

(42)

where

(43) B−
0 (x, y) = −h0(x, y)

Dκ−
(U−

0 (x, y)−Ψ(x, y)).

Observe that the term U−
1 (x, y, 0) = C−

0 (x, y) is still undetermined and it will
be obtained by solving an equation having the same form of (30).
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6.3 An equation for C−
0

Second order terms in equations (19) and (21) are

(44) U+
2zz = A+

1 (x, y, z)

and

(45) U−
2zz = A−

1 (x, y, z),

where

(46) A+
1 (x, y, z) = sU+

1 (x, y, z)− LU+
1 (x, y, z)

and

(47) A−
1 (x, y, z) =

s

β
U−
1 (x, y, z)− LU−

1 (x, y, z).

As for boundary conditions, we have

U+
2,z(x, y, 1) = − h+

Dκ+
U+
1 (x, y, 1) ≡ 0 from (29),

U−
2,z(x, y,−b) =

h−

Dκ−
U−
1 (x, y,−b),

U−
2,z(x, y, 0) = −h1(x, y)

Dκ−
(U−

0 (x, y)−Ψ(x, y))

− h0(x, y)

Dκ−
(U−

1 (x, y, 0)− U+
1 (x, y, 0)),

U+
2,z(x, y, 0) = −h1(x, y)

Dκ+
(U−

0 (x, y)−Ψ(x, y))

− h0(x, y)

Dκ+
(U−

1 (x, y, 0)− U+
1 (x, y, 0)).

(48)

In order to lighten the notation, in what follows we stress the dependance on
the variable z only. Since

U+
2z(1) = U+

2z(0) +

∫ 1

0
U+
2zz(z)dz

and

U−
2z(0) = U−

2z(−b) +
∫ 0

−b
U−
2zz(z)dz,

we have (recall that we assumed U+
1 (x, y, 1) = 0)

(49) −h1(U−
0 −Ψ)−h0(C−

0 +A+
0

1

2
+B+

0 )+Dκ
+

∫ 1

0
(sU+

1 (z)−LU+
1 (z))dz = 0
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and

− h1(U
−
0 −Ψ)− h0(C

−
0 +

A+
0

2
+B+

0 )

= h−U−
1 (−b) +Dκ−

∫ 0

−b
(
s

β
U−
1 (z)− LU−

1 (z))dz.(50)

A substitution gives

h−U−
1 (−b) +Dκ−

∫ 0

−b
(
s

β
U−
1 (z)− LU−

1 (z))dz

+Dκ+
∫ 1

0
(sU+

1 (z)− LU+
1 (z))dz = 0.(51)

We plug in (51) the expressions (derived in previous section)

U+
1 (x, y, z) = A+

0 (x, y)
z2 − 1

2
+B+

0 (x, y)(z − 1),

U−
1 (x, y, z) = A−

0 (x, y)
z2

2
+B−

0 (x, y)z + C−
0 (x, y),

(52)

where A±
0 and B±

0 are known . We get the following equation in C−
0 :

(53) (
h−

Dκ−
+
bs

β
)C−

0 − bLC−
0 = F1

where

(54) F1(x, y) =
κ+

κ−
N3 +N2 +

h−

Dκ−
N1

where

N1 = −A+
0 (x, y)

b2

2
+B+

0 (x, y)b,

N2 = − s

β
(
−b3

6
A−

0 (x, y)−
b2

2
B−

0 (x, y)) + (
b3

6
LA−

0 (x, y)−
b2

2
LB−

0 (x, y)),

N3 = +
s

3
A+

0 +
s

2
B+

0 − LA+
0

3
− LB+

0

2

with Neumann boundary conditions

(55) C−
0x(0, y) = C−

0x(1, y) = C−
0y(x, 0) = C−

0y(x, 1) = 0.

Finally, we get

(56) h1 =
−h0(C−

0 +
A+

0
2 +B+

0 )−Dκ+s(
A+

0
3 +

B+
0
2 )−Dκ+(

LA+
0

3 +
LB+

0
2 )

U−
0 −Ψ

and, consequently, we have the first order thin plate approximation of h

(57) h(x, y) ≈ h0(x, y) + γ2h1(x, y).
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7. Simulations and inversion of real data

Figure 2 shows the geometry of the two-dimensional model used for testing the
TPA solution (57), i.e. equations (33) and (56).

Figure 2: 2D model

A slab of (non-expanded) polystyrene, having thermal conductivity κ̃+ =
0.12Wm−1K−1, density ρ+ = 1050 kg m3 and specific heat c+ = 1100 J kg−1K−1,
is superimposed to an iron slab (κ̃− = 80 Wm−1K−1, ρ− = 7800 kg m3,
c− = 500 J kg−1K−1). The imperfect contact in the central region is simulated
by a thermal resistance among the slabs, i.e. by an heat exchange coefficient
h(x) whose value is high (1000 W m2 K−1) where the resistance is negligible and
low (10 W m2 K−1) where the contact is bad. This kind of representation has
been demonstrated to approximate reasonably well, for example, a detachment
creating an air gap between the two slabs. The assumed shape of h̃(ξ) is:

h̃(ξ) = Ha −Hbe
−θ(ξ−D/2)4

with Ha = 1000, Hb = 990, θ = 107, this last to obtain an extension of the
detachment region of the order of 2 cm.

The 2D model is used to simulate the production of “experimental” data
on the upper surface ζ = a+, when the bottom surface ζ = −a− is uniformly
heated by a constant flux ϕ̃. On that surface is also h− = 0, because ϕ̃ is the
net flux across it. The direct problem is solved by the finite element method
(FEM).
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7.1 Reconstruction procedure

After the transformation into dimensionless variables, we fix a real value of the
frequency parameter s and compute the Laplace transform of the data. The
choice of s does not appear to be critical at all. In fact, a reasonable approach is
to choose s high enough to make the product ψ(x, t) exp (−st) close to zero for
any value of the coordinate x, but not too high to lose the information in the
data. If, in the transformed t variable, s is such that the exponential becomes,
say, 5 × 10−6 for t = tmax, this means that: s = 6 log 10−log 5

tmax
or, in terms of

the actual time τ , s = D2(6 log 10−log 5)
a+τmax

. If τmax = 300 s, as in the simulation,
s ≈ 4000. With such an s value, for instance, the product Ψ(x, t) exp (−st) far
from the damage (i.e. in values of x corresponding to higher temperatures) is
like in Figure 3.

Figure 3: Test of Laplace transform

The numerical procedure involves the following steps.

1. Laplace transformation of the time-dependent data. ψ̃(ξ, τ), defined on
the line ξ ∈ [0, D] for τ > 0 is transformed into ψ(x, t) in the dimension-
less variables introduced in section 3. Furthermore, Ψ(x) is the Laplace
transformation of ψ at the chosen s value. In this phase, the derivative Ψxx

is also computed, by performing a smoothing on the first-order derivative
Ψx.
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2. Ψ and Ψxx are used to compute the function F (x), allowing the computa-
tional solution of the differential equation for U−

0 : bs
β U

−
0 − bU−

0xx = F (x),

where h− has been taken 0 as in the direct problem. The result, U−
0 , is

stored and used to compute the zero-order heat exchange by (33).

3. The third steps computes the coefficients A±
0 , B

±
0 , C

+
0 , A±

0xx and B±
0xx,

necessary to obtain the function F1(x) needed to solve the unidimensional
equation in C−

0 .

4. The last step numerically solves bs
β C

−
0 − bC−

0xx = F1(x) and allows to
compute the first-order heat exchange coefficient.

At the end of the procedure, we are able to compute h(x) by means of (57) and,
eventually, h̃(x) = γh(x). The result is shown in Figure 4.

Figure 4: Reconstructed thermal resistance: zero-order h̃−1
0 (dashed line) and

first-order (h̃0 + γ2h̃1)
−1 (solid line)

Figure 4 superimposes the true, unknown thermal resistance at the interface
ζ = 0 (dotted line) with those computed at zero and first order (dashed and
solid line, respectively).
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7.2 Experimental data

The inversion procedure outlined in the previous sections has been applied to
real experimental data taken from [24] where zero order TPA had been com-
puted starting from a rough heuristic evaluation of the temperature of the lower
face of the interface. A composite solid consisting in the superposition of two
parallelepipeds of square section are heated from below while a thermographic
camera acquires thermal shots from above, at a rate of two photograms per
second. The lower plate is made of iron (κ− = 80 W

m ◦K , c− = 500 J
Kg ◦K ,

ρ− = 7800 Kg
m3 ) while the upper one is realized in non expanded polystyrene

(κ+ = 0.12 W
m ◦K , c+ = 1100 J

Kg ◦K , ρ+ = 1050 Kg
m3 ). The side of the squares

is D = 10 cm. The thicknesses of the lower and upper plates are a+ = 0.4 cm
and a− = 1.0 cm, respectively.

A square dig of side 2.0 cm and thickness δ = 0.2 cm was made in the center
of the iron plate to simulate the imperfect contact at the metal/plastic interface.
Heating was provided by fixing a thermal wire electrical resistance on the iron
bottom surface by means of aluminium tape. The resistance is connected to a
DC power supply that provided 18 W (3.6 V × 5.0 A). Such a condition can
be simply simulated by a constant flux ϕ̃ at z = −a−, i.e. mathematically by a
Neumann condition there. Such a simplification does not affect the temperature
behavior with the exception of very early times.

The procedure for computing ϕ̃ is the following.

1. Record the temperature values versus time on a number of positions “far”
from the damaged region (easily visible, although qualitatively, from ther-
mal images at a suitable time). Those temperatures should, in principle,
be very close to one another. Compute the average value as a function of
time.

2. Obtain ϕ̃ in the unidimensional problem to obtain a good agreement
among ũ(a+, t) and the experimental values of the previous item.

The other parameters involved in the TPA formula are known, or readily
available, being the measured temperature, the thermo-physical characteristics
of the materials involved and the geometric quantities. The heat exchange h+ at
the surface z = a+ can be guessed or obtained experimentally [20] but, anyway,
it is not a critical one.

Figure 5 compares, on a section η = 0, the actual thickness of the rectangular
defect (dotted line) with those obtained by the TPA procedure at order zero
(dashed line) and one (solid line). The curves actually represent a smooth
fitting of the quantity obtained by the inversion. It clearly appears that two
terms of the expansion are sufficient to have a good quantitative estimate of the
damage depth. The width of the square dig is also reasonably obtained, with
soft sides (instead of sharp ones) as commonly happens in problems involving
heat diffusion.
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Figure 6 shows a 3D reconstruction of the defect.

Figure 5: Reconstructed thickness: actual value (dotted line), zero-order
(dashed line) and first-order (solid line)

Figure 6: 3D reconstruction of the defect thickness
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Remark. The dimensionless parameter γ = a+

D gives a measure of how much

Ω̃+ is “geometrically thin”. The slabs Ω̃+ and Ω̃− can be considered “thermally

thin” when their Biot numbers Bi± = a±(h̃±)
κ̃± are much smaller than one. A

value Bi ≈ 0.1 is often assumed as a limit value for thermal thinness [12], in
the context of the applicability of the well known lumped capacitance method
used to approximated the temperature behavior in a solid where the spatial
uniformity of the temperature is not violated at any time instant. Here, the
meaning of the Biot number is somewhat different: it can be easily demonstrated
by a Taylor expansion of the temperature on the domain Ω̃+ that if Bi << 1
the zero-order term of the TPA is sufficient to obtain an approximation for the
exchange coefficient h at the interface. In the case at hand is Bi+ ≈ 0.17, so at
least one more term of the TPA is needed.

7.3 A remark on Laplace transformation

The recourse to Laplace transformation of the data and, consequently, of the
equations involved in the inversion has several practical advantages. As the
investigated quantity (damage thickness, thermal resistance, or equivalent heat
exchange at the interface) is inherently not time dependent, a time-domain
approach should require to identify a characteristic time, or a time range, where
such quantity appears to be nearly time-independent. This means that we are
forced to solve the problem for all experimental times with a view to discard the
most of them. In other words, we do not exploit all the information available in
the data.

Laplace transformation, on the other hand, uses the whole available data, by
performing a sort of weighted average with exponential weights. Indeed, once
the Laplace parameter s has been chosen as discussed in section 7.1, data can be
truncated at a previous time, say 200 seconds instead of 300, with a negligible
effect on the final result. That is perfectly consistent with the weighted-average
interpretation just introduced.

8. Conclusions

This paper deals with nondestructive evaluation of detachment-like defects af-
fecting highly conductive inaccessible interface in the layered specimen Ω. Such
defects give rise locally to a thermal resistance r whose imaging gives the re-
quired evaluation of the flaw.

The method proposed is based on the expansion

h =
1

r
= h0 + γ2h1 +O(γ4),

where γ is the normalized thickness of the upper layer of the specimen Ω. The co-
efficients h0 and h1 are explicitly calculated by means of a perturbative method
extending to layered objects a technique, known as Thin Plate Approximation,
widely used to solve inverse problems in slabs.
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The mathematical novelty consists in the setting of the elliptic BVPs (30)
and (53) on the interface whose solutions are the coefficients of the expansion

(58) U−(x, y, 0) = U−
0 (x, y) + γ2U−

1 (x, y) +O(γ4).

Once we know U−(x, y, 0), the problem should be reduced to the determination
of the Robin coefficient in the inaccessible side of a slab. As for computation,
a quite challenging step is the numerical evaluation of the derivatives of data
function Ψ required to get h0 and h1.

Future work is mainly in the following two directions:

(i) to obtain a better theoretical foundation of the inverse problem (stability
estimates, existence and uniqueness);

(ii) to fit the method to different real objects (curved geometries, failures of
insulating interfaces)
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Introduction

The taxi industry provides urban transportation services. But, due to the in-
formation lag, there is an imbalance in the supply and demand of taxis in some
areas. For example, there are many taxi queues waiting for passengers in areas
such as airports, train station, etc., while in some places there are few taxis
waiting for service. Therefore, analyze taxi passenger data is of great impor-
tance.

Conducting real-time and detailed statistical analysis of the taxi carrying
data by the use of big data, cloud computing and artificial intelligence among
others, to predict taxi demand will greatly help improve the efficiency of taxi
operation [1, 2], which is of great significance for alleviating urban traffic pres-
sure.

Traffic data is essentially a type of time series data, and traffic prediction
problems actually belong to a type of time series prediction problem. Therefore,
some researchers use basic time series prediction methods, such as exponential
smoothing [3], Kalman filter algorithm [4], spectral analysis [5], differential in-
tegrated moving average auto regressive model [6], as the basis for traffic pre-
diction.

With the continuous deepening of research on traffic prediction problems, re-
searchers have begun the use of machine learning methods for traffic prediction.
The main methods include: support vector regression (SVR) [7], genetic algo-
rithm support vector machine model (GASVM) [8], k-nearest neighbor (KNN)
[9]. With the continuous breakthroughs in deep learning technology in tasks
such as speech recognition and image recognition, researchers have begun to
attempt to use deep learning methods [10, 11, 12] to solve traffic prediction
problems. The main methods include: multi-layer perceptron (MLP) [12], deep
belief network (DBN) [13], convolution neural network (CNN) [14], recurrent
neural network (RNN) [15], long short term memory network (LSTM) [16], etc.

The popular demand forecast these days for taxis is mainly the short-term
forecasting, which predicts the demand for taxis at such a time as 5 minutes,
10 minutes, or 30 minutes. While this article will continue to study the short-
term forecasting, to predict the demand for taxis for the whole next day in the
sequence of 1 hour, 2 hours, 3 hours, · · · , 24 hours, due to the strong daily
periodicity of taxi demand, we will first extract the cycle characteristics of taxi
demand based on Fourier series [17], principal component analysis (PCA) trend
[18] and average trend methods [19]. Finally, based on weighted combinations,
a prediction model is established. Based on the cycle characteristics of the past
5 days as input, and the data of the last day as model output, the weighted
parameters of the model can be calculated. Finally, this model can be used to
predict the demand data for taxis for the next day.
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1. Method

1.1 General idea

In the transportation industry, through the observation of the taxi demand
curve, we can find that the taxi demand curve of different working days has
certain similarity and periodic regularity. This paper will propose three different
taxi demand cycle trend calculation methods to predict taxi demand for the
next day. These three trends are based on Fourier series, principal component
analysis and average trend method. This article will propose a multi-step taxi
demand prediction model based on periodic trend weighted combination.

The specific definition of the taxi demand prediction model is as follows

(1) d(t) = θ1 × fourier(t%T ) + θ2 × pca(t%T ) + θ3 × at(t%T ) + e(t),

where T is the interval numbers of one day, fourier(t%T ) is periodic term
of Fourier series, pca(t%T ) is periodic term based on PCA trend, at(t%T ) is
average trend period term, θ1, θ2, θ3 are weight coefficients of three periodic
terms, d(t) is taxi demand value at time t, e(t) is error term. The meaning of
this model is to first extract daily cycle trends based on three methods, and
then find the weighted sum of the demand values at the same time point of the
three daily trends to predict the demand value at a certain time in the future
day.

In time series prediction problems, Fourier series method, average trend
method, and principal component analysis method have achieved good results
in periodic trend modeling. Therefore, this article combines these three methods
and integrates them based on ridge regression to predict taxi demand.

1.2 Periodic trend based on Fourier series

In this paper, we will use Fourier transform, a mathematical tool widely used
in the field of signal processing, to build a periodic term with time t as the
variable, which is used to describe the periodic law of the taxi demand curve
[20]. The construction of this cycle item can help us describe the changes in the
daily taxi demand curve more accurately and predict the number of taxis that
citizens may need in a specific working day. Its specific definition is as follows

(2) fourier(t) = a0 +
M∑

m=1

am cos(m× ω × t) + bm sin(m× ω × t),

where am and bm are parameters to be solved. T is the number of time intervals
included in a day, or the number of time intervals included in a cycle, M is the
order term of the Fourier series, and we usually take this value as 10. ω = 2π/T
is the fundamental frequency component of the Fourier series.

The am and bm can be found as follows

(3) a0 =
1

T

T∑
t=1

f(t),
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(4) am =
1

T

T∑
t=1

f(t) cos(m× ω × t),

(5) bm =
1

T

T∑
t=1

f(t) sin(m× ω × t).

1.3 Periodic trends based on principal component analysis

In this article, we will explore how to use principal component analysis [21] to
extract periodic patterns in demand time series, with the aim of discovering
patterns from data and transforming them into actionable information. In this
article, we will focus on the application of principal component analysis methods
and how to select appropriate periodic parameters to analyze time series data.
Firstly, construct a data matrix D so that di,j represents the taxi demand for
the i-th time period on the j-th day. So,

(6) D =

 d1,1 · · · d1,N
· · · · · · · · ·
dT,1 · · · dT,N

 .
Due to the wide use of PCA algorithm, we can easily find relevant informa-

tion in the literature. Here, we will not elaborate on the principles and steps
of the PCA algorithm. Based on the data matrix D obtained, we can call the
PCA algorithm module to reduce its dimensionality. Firstly, normalize the data

(7) di,j =
di,j − µj

σj
,

where µj is the average value of the data on day j-th, and σj is the standard
deviation of the data on day j-th. Then calculate the covariance matrix of the
data matrix as follows

(8) Cov =
1

N
DTD.

Find all the eigenvalues of the covariance matrix Cov and arrange them
from maximum to minimum. Select the eigenvectors corresponding to the first
K features and arrange them in rows to form a transformation matrix W . Use
the transformation matrix W to reduce the dimensionality of the data. In the
process of using PCA algorithm, we can obtain the fractional matrix S ∈ RT×N

and coefficient matrix C ∈ RN×N . To obtain the final trend, we can take the first
K columns of the matrix S and then the first K rows of the coefficient matrix
C. Then, we perform matrix multiplication on these two matrices to obtain the
results of the PCA periodic law. The calculation formula is as follows

(9) pca = mean(SK × CK).
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1.4 Periodic trend based on average method

We will propose a modeling method for taxi demand cycle patterns based on
the average trend method [22]. The core idea of the average trend method is to
calculate the average of demand time series from different days, and ultimately
obtain the periodic trend of the time series. Firstly, we construct a data matrix
so that di,j represents the taxi demand for the i-th period on the j-th day. So
there is a data matrix

(10) D =

 d1,1 · · · d1,N
· · · · · · · · ·
dT,1 · · · dT,N

 .
The formula for calculating the periodic pattern using the average trend

method is as follows

(11) at = [
1

N

N∑
n=1

d1,n,
1

N

N∑
n=1

d2,n, · · · ,
1

N

N∑
n=1

dT,n].

1.5 Working days and holidays

Through long-term data analysis and statistics of the transportation industry,
we find that there are obvious differences between the taxi demand curve on
weekdays and weekends, which is due to the different travel needs of people
on weekdays and weekends. On the other hand, we also find that there are
similarities between taxi demand curve in different working days or weekends,
because people travel regularly in different working days or weekends.

Therefore, in the calculation process, we divide the data into two parts:
one is for weekdays, and the other is for holidays. When calculating the cycle
pattern of working days, we only consider the data of working days, and when
calculating the cycle pattern of weekends and holidays, we only consider the
data of holidays.

1.6 Periodic model integration

We propose a periodic model integration method based on ridge regression [23].
The method of integrating three periodic terms is usually through weighted
summation. Therefore, linear regression is used as the ensemble model. Due
to the problem of singular matrix values, this paper adopts ridge regression to
solve this problem. Therefore, the final integrated model is ridge regression.
After calculating the three periodic trends, we need to determine the weights of
the three periodic trends. The following data matrix is defined, and the matrix
A of the three periodic trend calculation results is defined as follows

(12) A =


fourier(1) pca(1) at(1) 1
fourier(2) pca(2) at(2) 1

· · · · · · · · · · · ·
fourier(T ) pca(T ) at(T ) 1

 .
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Define the vector d containing demand values as follows

(13) d = [d(τ + 1), d(τ + 2), · · · , d(τ + T )]T ,

where τ is the starting date of the training set to predict the demand. The goal
is to minimize the error between the weighted curve of three trends and the
actual curve as much as possible [23]. The minimization problem is as follows

(14) min
θ

(||d−Aθ||2 + λ||θ||2).

This paper employed the least squares method, obtain the coefficients and
optimize the above objective function. The analytical solution for calculating
the coefficients is as follows

(15) θ̂ = (ATA+ λI)−1ATd.

1.7 Evaluation index

The evaluation index used in this paper is the mean absolute error (MAE). The
MAE value of area is calculated as follows

(16) MAE =
1

T

T∑
t=1

|di,t − dri,t|,

where dri,t is the observed demand for taxis in the i-th area on day t, and di,t is
the predicted demand for taxis in the i-th area on day t. In order to measure the
relative value of error relative to the time series, we also defined the following
indicators to measure the size of demand

(17) MAXi = max{dri,t|t = 1, 2, · · · , T},

where dri,t is the observed demand for taxis in the i-th area on time t, and
MAXi is the maximum value of the demand time series.

2. Numerical experiment

2.1 Dataset

The dataset for this article is New York green taxi travel data [24], which covers
the period from June 1st, 2017 to June 30th, 2017. There are 265 areas in the
data. Table 1 shows the main fields of this data.

Group the above table according to the departure time (time interval of 1
hour) and boarding location ID, and aggregate the number of passengers to
obtain our final demand matrix. The Figure 1 shows the transformation rule of
the demand curve of 166th area from June 5th, 2017 to June 9th, 2017. It can
be seen from the figure that this demand curve has a very strong daily cycle
law. There is strong similarity in time series of different days.
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Table 1: Field description of the New York green taxi dataset
Field name Field Meaning

VendorID
A code indicating the LPEP

provider that provided the record.

lpep pickup datetime
The date and time when the

meter was engaged

lpep dropoff datetime
The date and time when the

meter was disengaged.

Passenger count
The number of passengers in

the vehicle. This is a driver-entered value

Trip distance
The elapsed trip distance in

miles reported by the taximeter

PULocationID
TLC Taxi Zone in which the

taximeter was engaged

DOLocationID
TLC Taxi Zone in which the
taximeter was disengaged

Figure 1: Taxi demand for 166th area from June 5th, 2017 to June 9th, 2017
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2.2 Fourier period term

The nonlinear least square method is used to solve the parameters of Fourier
series. The input variable is time, and the output variable is demand value.
Taking the 166th area as an example, the fitting effect is shown in the figure 2,
where the red day curve is the result of Fourier period calculation, and the blue
data points are the actual value of taxi demand.

Figure 2: Fitting diagram of Fourier series period component. Taxi demand
data is from 166th area, from June 5th, 2017 to June 9th, 2017. The
red curve is the fitting result of Fourier series, and the blue data point
is the actual taxi demand value

The residual plot of the original time series after removing the fourier period
trend is shown as Figure 3, from which it can be seen that the Fourier series
method can effectively extract the periodic trend of taxi demand.

Figure 3: Residual curve after removing the Fourier period term. The taxi de-
mand data comes from the 166th area, from June 5th, 2017 to June
9th, 2017.

2.3 PCA cycle term

The PCA method is used to extract the cycle trend of taxi demand on work-
days, and the calculation results are shown in Figure 4. The green curve is the
calculation results of cycle items, and the blue data points are the actual data
of taxi demand:
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Figure 4: PCA cycle term of taxi demand curve. Taxi demand data comes from
166th area, from June 5th, 2017 to June 9th, 2017. The green curve
is the fitting result of Fourier series, and the blue data points are the
actual taxi demand values.

The residual plot of the original time series after excluding the PCA cycle
trend is in Figure 5. From the graph, it can be seen that the principal component
analysis method can effectively extract the periodic trend of taxi demand.

Figure 5: Taxi demand curve residual items after removing PCA cycle items.
Taxi demand data comes from 166th area, from June 5th, 2017 to
June 9th, 2017

2.4 Average trend method

The average trend method is used to extract the cycle trend of taxi demand on
workdays. The calculation results are shown in the Figure 6. The green curve
is the calculation results of cycle items, and the blue data points are the actual
data of taxi demand.

The residual plot of the original time series after removing the average trend
period term is as in Figure 7. From the graph, it can be seen that the average
trend method can effectively extract the periodic trend of taxi demand.
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Figure 6: Simple average cycle term of the taxi demand curve. Taxi demand
data comes from 166th area, from June 5th, 2017 to June 9th, 2017.
The green curve is the fitting result of Fourier series, and the blue
data points are the actual taxi demand values.

Figure 7: Residual sequence after removing the simple average period compo-
nent. The taxi demand data comes from 166th area, from June 5th,
2017 to June 9th, 2017.
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2.5 Prediction accuracy

We used three methods to calculate the periodic trend term, and then used the
least squares method to obtain the weights of each periodic term. Finally, after
calculation, we obtained the predicted and observed values on the test set, as
shown in Figure 8.

Figure 8: Predicted and true values on the test set. Taxi demand data comes
from 166th area.

This paper uses data from June 5th, 2017 to June 9th, 2017 as the training
set for trend extraction, uses data from June 12th, 2017 as the weight solution
dataset, and uses data from June 13th, 2017 as the test set, periodic trend
extraction is performed, and the weight obtained by the least squares method
is used to calculate the predicted value of taxi demand. Figure 9 shows the
prediction results of our method on the test set. The red curve represents the
predicted results, and the blue dots represent the observed values.

In order to provide a more detailed analysis of the accuracy of the prediction
algorithm in this article, we conducted experiments in most areas. This paper
uses data from June 5th, 2017 to June 9th, 2017 as the trend extraction dataset,
and uses data from June 12th, 2017 as the weight solution dataset. This paper
uses data from June 13th, 2017 as the test set. Table 2 shows the prediction
accuracy of some areas. It can be seen that the method proposed in this article
can predict the time series of taxi demand for the next day. It can also be seen
that the method proposed in this article achieved an average MAE prediction
accuracy of 1.91, with an average of 14.93 for the maximum observed value.

To verify the predictive effect of our method on non-working days, this paper
uses data from June 3th, 2017, and June 4th, 2017 as trend extraction datasets,
and uses data from June 10th, 2017 as weight solving datasets. This paper uses
data from June 11th, 2017 (non-working days) as the test set. Table 3 shows
the prediction accuracy of some areas. It can be seen that the method proposed
in this article can predict the time series of weekend taxi demand. It can also
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Table 2: Prediction accuracy of the first 80 areas for the next day. The data
from June 5th, 2017 to June 9th, 2017 was used as the trend extraction
dataset, the data from June 12th, 2017 was used as the weight solution
dataset, and the data from June 13th, 2017 (working days) was used
as the test dataset.

Area id MAE Max value Area id MAE Max value
(frequency) (frequency) (frequency) (frequency)

1 0.03 0 41 11.52 169
2 0.00 0 42 9.24 101
3 0.67 5 43 5.88 65
4 0.00 0 44 0.00 0
5 0.00 0 45 0.00 0
6 0.06 0 46 0.07 0
7 17.06 154 47 1.39 7
8 0.29 2 48 0.00 0
9 0.12 1 49 5.43 39
10 0.48 2 50 0.00 0
11 0.10 1 51 0.73 4
12 0.00 0 52 5.21 33
13 0.00 0 53 0.62 3
14 1.13 6 54 0.94 7
15 0.08 0 55 3.37 8
16 0.48 2 56 1.80 8
17 5.02 24 57 0.57 3
18 1.56 6 58 0.08 0
19 0.16 1 59 0.02 0
20 1.41 4 60 0.47 2
21 0.25 1 61 5.40 32
22 0.41 5 62 1.47 11
23 0.13 0 63 0.30 2
24 2.63 23 64 0.06 0
25 10.97 82 65 8.36 74
26 0.95 6 66 9.57 93
27 0.00 0 67 0.57 5
28 0.88 4 68 0.00 0
29 0.60 4 69 3.02 13
30 0.00 0 70 1.74 7
31 0.80 4 71 0.88 5
32 0.81 2 72 0.74 5
33 11.11 97 73 0.60 6
34 1.14 5 74 10.84 206
35 0.94 4 75 16.70 213
36 1.73 17 76 1.24 7
37 2.15 18 77 1.01 8
38 0.00 0 78 1.61 5
39 0.75 2 79 0.00 0
40 5.64 25 80 5.60 33



TREND MODELING AND MULTI-STEP TAXI DEMAND PREDICTION 287

Table 3: Prediction accuracy of non-working days in the first 80 areas. The data
from June 3rd, 2017 to June 4th, 2017 was used as the trend extraction
dataset, the data from June 10th, 2017 was used as the weight solution
dataset, and the data from June 11th, 2017 (non-working days) was
used as the test dataset.

Area id MAE Max value Area id MAE Max value
(frequency) (frequency) (frequency) (frequency)

1 0.09 1 41 30.50 176
2 0.00 0 42 12.10 118
3 0.67 5 43 3.71 30
4 0.00 0 44 0.00 0
5 0.00 0 45 0.07 1
6 0.07 0 46 0.09 0
7 25.70 249 47 1.54 7
8 0.58 7 48 0.00 0
9 0.29 1 49 8.28 63
10 0.13 1 50 0.00 0
11 0.15 1 51 0.84 5
12 0.00 0 52 6.15 45
13 0.00 0 53 0.43 2
14 1.37 7 54 0.79 6
15 0.17 1 55 2.17 12
16 0.42 1 56 1.53 12
17 6.62 57 57 0.70 4
18 2.11 8 58 0.00 0
19 0.19 1 59 0.09 0
20 1.30 7 60 0.58 3
21 0.85 8 61 4.79 50
22 0.51 3 62 2.53 19
23 0.46 6 63 0.42 1
24 3.39 19 64 0.08 1
25 15.57 98 65 8.41 64
26 1.33 6 66 11.17 83
27 0.00 0 67 0.14 1
28 1.54 13 68 0.00 0
29 0.78 6 69 3.41 12
30 0.00 0 70 2.67 11
31 1.83 17 71 0.72 3
32 0.83 3 72 1.04 3
33 11.99 115 73 0.39 2
34 0.67 5 74 20.27 221
35 1.22 11 75 20.65 119
36 4.37 70 76 1.46 8
37 5.49 36 77 0.42 2
38 0.14 1 78 1.34 5
39 1.18 6 79 0.00 0
40 7.42 38 80 6.50 97
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Figure 9: Predicted and actual values for 166th area on the test set as of June
13th, 2017.

be seen that the method proposed in this article achieved an average MAE
prediction accuracy of 2.52, with an average of 19.53 for the maximum observed
value. For the current taxi demand prediction, the MAE value is around 10%
of the maximum value, which is considered a relatively good result [25, 26, 27].
Therefore, it can be seen that the method proposed in this article can effectively
predict multi-step demand on both working and non-working days.

2.6 Comparison with other models

In the field of taxi demand prediction, many scholars have conducted research
using CNN and RNN [25, 26, 27]. The long-term taxi demand prediction model
in this article can also be predicted using CNN and RNN. Due to the differences
between the issues in these literature and those in this article, there are cer-
tain differences between the comparative model and these methods used in this
article. This article compares the proposed method with multi-step prediction
models based on CNN [28] and RNN [29]. Figure 10 is the structural diagram
of CNN and RNN models.

The CNN network consists of a convolutional layer, a fully connected layer,
and a reshape layer. The RNN network consists of a recurrent layer, a fully
connected layer, and a reshape layer. The input and output are shown in Figure
11. The input of the CNN network consists of the requirements of all areas in the
past 72 steps (each representing one hour), and the output is the requirements
of each area in the next 24 steps. The input and output of RNN also take the
same form.

At the same time, we will also compare the method proposed in this article
with the multi-step prediction model in Facebook’s Prophet method [30, 31].
The Prophet model is a universal method for modeling periodic time series. In
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this article, the prophet model consists of three components. The first item is
the growth trend item, the second item is the daily cycle item, and the third
item is the weekly cycle item. The definition form of its model composition is
as follows

(18) y(t) = g(t) + day(t) + week(t) + ϵt,

where y(t) is the value of the time series, g(t) is the trend term, day(t) is the
daily periodic term, week(t) is the weekly periodic term, and the last term is
the error term. These three items are combined through addition. These three
parameters are fitted based on historical data and Bayesian methods. After
obtaining the parameters, the model can make long-term predictions. Figure 12
shows the fitting results of the prophet model on 166th area. From the graph,
it can be seen that the model can extract daily trends and distinguish between
working and non-working days. In Figure 12, the minimum value is 60 and the
maximum value is 68. That is to say, the demand for taxis remains basically
unchanged within a month, and its slope is a random number close to zero. The
first term of the Prophet model is a linear term, the second term is a weekly
cycle term, and the third term is a daily cycle term. The first item is its mean,
the third item has a negative value, and the third item reflects the fluctuation
of the demand curve near the mean.

Figure 10: Structure diagram of CNN and RNN models
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Figure 11: Input and output structure diagram of CNN and RNN models

Figure 12: The fitting results of the prophet model on 166th area
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This article uses data from June 1st to 29th, 2017 as the training set, and
data from June 30th, 2017 as the testing set. We conducted tests on all areas
and obtained the average MAE values of different methods across all areas.
For convolutional neural networks, the convolutional layer adopts 1-dimensional
convolution. The convolutional kernel width is set to 3, and the output size of
the convolutional layer is set to 500. The activation function is set to Relu, and
the output size of the fully connected layer is set to 24× 265. The final output
size is set to (24, 265). Set the batch size to 32 and the number of iterations to
300. For recurrent neural networks, the size of the hidden layer is set to 500,
and the activation function is Relu. The output size of the fully connected layer
is set to 24× 265. The final output size of the model is set to (24, 265). Set the
batch size to 32 and the number of iterations to 300. For the Prophet model,
we set the cycle to daily and weekly, with a time interval of 1 hour, to predict
data for the next 24 hours. The growth trend method adopts a linear trend, and
the periodic model adopts a trigonometric function. The comparison results are
shown in Table 4. The average MAE value of this method in all areas is 2.22,
which is relatively smaller than other methods. It can be seen that the method
proposed in this article is relatively superior in predicting taxi demand.

Table 4: Average MAE of different methods across all 265 areas.
Method MAE

The method of this article 2.22
CNN 2.54
RNN 2.31

Prophet 2.56

3. Conclusion

The three taxi demand trend modeling methods proposed in this article can
effectively extract the periodic trends of taxi demand time series. These three
methods are: Fourier series based method, principal component analysis based
method, and average trend based method. This article integrates three trend
features for multi-step prediction of taxi demand. The average absolute error
of this method reached a prediction accuracy of 1.91 on weekdays and 2.52
on weekends. The method proposed in this article can effectively predict the
demand for taxis in the future. Besides, the method proposed in this article
outperforms several currently popular methods in predicting taxi demand.
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Abstract. A strong edge-coloring of a graph G is that two edges e1 and e2 that are
adjacent to each other or adjacent to the same edge must be colored with distinct colors.
In this paper we prove that every planar graph G with girth g ≥ 7 and maximum degree
∆ ≥ 5 has a strong edge-coloring using at most 3∆−1 colors. In addition, we prove that
every planar graph G without adjacent 7− cycles, with girth g ≥ 7 and the maximum
degree ∆ ≥ 4 has a strong edge-coloring using at most 3∆− 1 colors.

Keywords: strong edge-coloring, planar graph, discharging method.
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1. Introduction

All graphs considered in this paper are finite, loopless and undirected. Let G
be a simple undirected graph. A vertex of degree k, at least k or at most k
is denoted by a k − vertex, a k+ − vertex or a k− − vertex respectively. A
neighbor of v of degree k, at most k or at least k is denoted by a k − neighbor,
a k− − neighbor or a k+ − neighbor, respectively.

A strong edge-coloring of a graph G is that two edges e1 and e2 that are
adjacent to each other or adjacent to the same edge must be colored with distinct
colors. The strong chromatic index of G is denoted by χ′

s(G), which is the
minimum number of colors for a strong edge-coloring of G.

We denote the minimum and maximum degree of vertices in G by δ(G)
and ∆(G) (δ and ∆ for short), respectively. The degree of vertex v in G is
denoted by dG(v). The girth of a graph G, denoted by g(G) (g for short),

*. Corresponding author
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is the length of its shortest cycle. Define that the maximum average degree
of a graph G is the largest average degree of its subgraphs and is denoted by
mad(G) = maxH⊆G{2|E(H)|

|V (H)| }. The distance of two edges e1 and e2 refers to the
length of the shortest path from u to v, where u is an arbitrary endvertice of e1
and v is an arbitrary endvertice of e2. So, equivalently, a strong edge-coloring
is an assignment of colors to all edges such that every two edges with distance
at most 1 receive distinct colors.

Using greedy algorithm, we may easily see that χ′
s(G) ≤ 2∆2 − 2∆ + 1 for

every graph G. In 1989, Erdős and Nešetřil [3] conjectured the following upper
bounds.

Conjecture 1.1 ([2],[3]). For every graph G with maximum degree ∆,

χ′
s(G) ≤

{
5
4∆

2, if ∆ is even,
5
4∆

2 − 1
2∆+ 1

4 , if ∆ is odd.

These bounds would be tight, as Erdős and Nešetřil [3] gave examples of
graphs that get these bounds. For the case when ∆ = 2, this conjecture is
clearly true. For the case of ∆ = 3, Andersen [1] and Horák et al.[5] proved this
conjecture to be correct, independently. Moreover, for subcubic graph G, that
is, maximum degree is at most 3, Faudree et al.[4] proposed some conjectures.
Steger and Yu [10]showed that χ′

s(G) ≤ 9 for every subcubic bipartite graph
G. For subcubic planar graph G with girth at least 6, Hudák et al.[8] proved
the same result above. This conjecture is still open for ∆ ≥ 4. For ∆ = 4,
the best bound is 21, which was recently established by Huang, Santana, and
Yu [9]. The bound of 21 is still one larger than the conjectured bound of 20.
For every planar graph G with ∆ = 4, Wang et al.[11] proved that χ′

s(G) ≤ 19
and Jian-Bo Lv et al.[13] proved that if mad(G) < 61

18 (resp. 7
2 ,

18
5 ,

15
4 ,

51
13), then

χ′
s(G) ≤ 16 (resp. 17, 18, 19, 20).
Recently, a great deal of research has been done on planar graphs with

different values of girth. In 2014, Hudák et al.[8] proved that χ′
s(G) ≤ 3∆ for

every planar graph G with g ≥ 7. For every planar graph G with g ≥ 10∆− 4,
Wang et al.[12] further reduced this bound and proved that χ′

s(G) ≤ 2∆−1. By
maximum degree restriction, Choi et al.[6] showed two results, namely, χ′

s(G) ≤
3∆ for every planar graph G with g ≥ 6 and ∆ ≥ 7, and χ′

s(G) ≤ 3∆ − 3 for
every graph G with g ≥ 8 and ∆ ≥ 9. Guo et al.[7] also came to two conclusions
that χ′

s(G) ≤ 3∆ − 2 for every planar graph G with g ≥ 8 and ∆ ≥ 4, and
χ′
s(G) ≤ 3∆− 3 for every planar graph G with g ≥ 10 and ∆ ≥ 5.
In this paper, we take into account the girth and the maximum degree of

planar graphs and prove the following results.

Theorem 1.2. If G is a planar graph with g ≥ 7 and ∆ ≥ 5, then χ′
s(G) ≤

3∆− 1.

Theorem 1.3. If G is a planar graph without adjacent 7 − cycles, with g ≥ 7
and ∆ ≥ 4, then χ′

s(G) ≤ 3∆− 1.
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Note that mad(G) < 2g
g−2 for every planar graph. Thus, when g ≥ 7, we

have that mad(G) < 14
5 . Therefore, there is the following corollary.

Corollary 1.4. If G is a planar graph with mad(G) < 14
5 and ∆ ≥ 5, then

χ′
s(G) ≤ 3∆− 1.

By adding the condition that ∆ ≥ 5, our results improve the bound of Hudák
et al.[8] and are reduce by one color.

Let G∗ be obtained by removing all vertices of degree one in graph G. The
paper is organized as follows. In Section 2, we assume that G is a minimal
counterexample with the fewest edges to Theorem 1.2. We first prove some
structural properties of the minimal counterexample G and its subgraph G∗.
Next, we use the discharging method to show that G∗ cannot exist. In Section 3,
with a weaker maximum degree restriction and a stronger cycle constraint, we
still obtain the same bound.

2. Proof of Theorem 1.2

In this section, G is a counterexample to Theorem 1.2 with the |V (G)| mini-
mized, subject to that, assume that |E(G)| is as small as possible. It is obvious
that G and G∗ are connected. A strong partial edge-coloring of a graph G is
a proper edge-coloring of a proper subgraph G′ such that every two edges of
G′ with distance at most 1 in G receive different colors. Suppose that G has a
strong partial edge-coloring. For every uncolored edge e of G, we use A(e) to
denote the set of colors that are available at the edge e. The 2− neighborhood
of an edge e refers to the set of edges whose distance at most 2 from e.

We first state some structural properties regarding G and G∗ as follows.

Lemma 2.1. δ(G∗) ≥ 2. Moreover, dG∗(v) = 2 if and only if dG(v) = 2.

Proof. Suppose to the contrary that δ(G∗) ≤ 1. If δ(G∗) = 0, then G is a star
since G and G∗ are connected. Clearly, G has a strong edge-coloring with ∆
colors, a contradiction. If δ(G∗) = 1, then there must be dG∗(v) = 1. Then,
there must be dG(v) > dG∗(v) = 1, otherwise v will not appear in G∗. Therefore,
v must have at least one 1−neighbor in G, denoted by v1, as shown in Fig.1(1).
By the minimality of G, G−v1 has a strong edge-coloring ϕ with (3∆−1) colors.
Note that there are at most 2∆− 2 colored edges in the 2−neighborhood of the
edge vv1. Therefore, |A(vv1)| ≥ ∆ + 1 ≥ 6. Thus, we can extend ϕ to G, a
contradiction. So, δ(G∗) ≥ 2.

If dG(v) = 2, then dG∗(v) = 2 since dG(v) ≥ dG∗(v). Suppose that dG∗(v) =
2. We assume that dG(v) > 2. Then, v has at least one 1−neighbor v1 in G, as
shown in Fig.1(2). By the minimality of G, G − v1 has a strong edge-coloring
ϕ using (3∆ − 1) colors. Clearly, there are at most 3∆ − 3 colored edges in
the 2−neighborhood of the edge vv1. Hence, |A(vv1)| ≥ 2, which means that
we can extend ϕ to G, a contradiction. So dG(v) ≤ 2. Since dG(v) ≥ dG∗(v),
dG(v) = 2.
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Fig.1
(The solid lines represent the edges that exist in G.

The dashed lines represent the edges that might exist in G.)

Lemma 2.2. Let v be a 2− vertex in G∗. Then, both of neighbors of v in G∗

are 3+ − neighbor.

Proof. Suppose otherwise that v has a 2−neighbor, say u, inG∗. Since dG∗(v) =
dG∗(u) = 2, by Lemma 2.1, dG(v) = dG(u) = 2, as shown in Fig.1(3). By
the minimality of G, G − uv has a strong (3∆ − 1)-edge-coloring ϕ. Since
there are at most 2∆ colored edges in the 2−neighborhood of the edge uv,
|A(uv)| ≥ ∆− 1 ≥ 4. Then, we can color uv with one of the available colors, a
contradiction.

Lemma 2.3. Let v be a 3−vertex in G∗. Then, v has at least two 3+−neighbors
in G∗.

Proof. Suppose otherwise that v has at most a 3+−neighbor in G∗. Let u1, u2
be two 2−neighbors of v in G∗. By Lemma 2.1, dG(u1) = dG(u2) = 2. Assume
that dG(v) > dG∗(v). Then, v has at least one 1−neighbor v1 in G, as shown in
Fig.2(1). By the minimality of G, G − v1 has a strong (3∆ − 1)-edge-coloring
ϕ. It is easy to see that vv1 has at most 2∆ colored edges within distance one.
Thus, |A(vv1)| ≥ ∆ − 1 ≥ 4. Then, we can color vv1 with one of the available
colors, a contradiction. Therefore, dG(v) = dG∗(v) = 3, as shown in Fig.2(2).
Let ϕ be a strong (3∆− 1)-edge-coloring of G− vu1. Note that vu1 in G has at
most 2∆+2 colored edges in its 2−neighborhood. Hence, |A(vu1)| ≥ ∆−3 ≥ 2,
which implies that vu1 has at least one available color, a contradiction.

By Lemma 2.3, a 3− vertex v in G∗ is adjacent to at most one 2−neighbor
in G∗. We call a 3 − vertex v weak if it is adjacent to a 2 − vertex, otherwise
we call it strong.

Lemma 2.4. Let v be a weak 3− vertex in G∗. Then, dG(v) = dG∗(v) = 3.
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Proof. Suppose to the contrary that dG(v) > dG∗(v). Then, v has at least one
1−neighbor in G, denoted by v1. Let u be a 2−neighbor of v in G∗. By Lemma
2.1, dG(u) = 2, as shown in Fig.2(3). By the minimality of G, G − v1 has a
strong (3∆− 1)-edge-coloring ϕ. Note that vv1 in G has at most 3∆− 2 colored
edges in its 2−neighborhood. So |A(vv1)| ≥ 3∆ − 1 − (3∆ − 2) = 1, which
implies that vv1 has at least one available color, a contradiction.

Lemma 2.5. Assume that v is a weak 3−vertex in G∗. Then, v is not adjacent
to a weak 3− vertex.

Proof. Suppose otherwise that v has a weak 3−neighbor, say v1, in G∗. By
Lemma 2.4, dG(v) = dG∗(v) = 3 and dG(v1) = dG∗(v1) = 3. Let u be the
2−neighbor of v in G∗, as shown in Fig.2(4). By the minimality of G, G − uv
has a strong (3∆−1)-edge-coloring ϕ. Then, uv in G has at most 2∆+3 colored
edges in its 2−neighborhood. So, |A(uv)| ≥ 3∆−1−(2∆+3) = ∆−4 ≥ 1. Thus,
we can extend ϕ to a strong (3∆− 1)-edge-coloring of G, a contradiction.

Fig.2

Lemma 2.6. Let v be a strong 3−vertex in G∗. Then, v has at most two weak
3− neighbors in G∗.

Proof. Suppose otherwise that the three neighbors of v are all weak 3−neighbors
in G∗. Let u1, u2, u3 be three weak 3−neighbors of v in G∗. By Lemma 2.4,
dG(u1) = dG(u2) = dG(u3) = 3. Assume that dG(v) > dG∗(v). Then, v has at
least one 1−neighbor v1 in G, as shown in Fig.2(5). By the minimality of G,
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G−v1 has a strong (3∆−1)-edge-coloring ϕ. It is easy to see that vv1 has at most
∆+5 colored edges in its 2−neighborhood. Thus, |A(vv1)| ≥ 2∆−6 ≥ 4. Then,
we can color vv1 with one of the available colors, a contradiction. Therefore,
dG(v) = dG∗(v) = 3, as shown in Fig.2(6). Let ϕ be a strong (3∆ − 1)-edge-
coloring of G− vu1. Note that vu1 in G has at most ∆ + 8 colored edges in its
2−neighborhood. Hence, |A(vu1)| ≥ 2∆− 9 ≥ 1, which implies that vu1 has at
least one available color, a contradiction.

Lemma 2.7. Every 4− vertex v in G∗ has at most three 2− neighbors.

Proof. Suppose otherwise that the four neighbors of v are all 2−vertices. Let
u be one of neighbors of v in G∗, as shown in Fig.3(1). By the minimality of G,
G − uv has a strong (3∆ − 1)-edge-coloring ϕ. Note that uv in G has at most
2∆+2 colored edges in its 2−neighborhood. Thus, |A(uv)| ≥ 3∆−1−(2∆+2) =
∆ − 3 ≥ 2. So, ϕ can be extended to a strong (3∆ − 1)-edge-coloring of G, a
contradiction.

If a 4−vertex has just three 2−neighbors, we call it a 43−vertex. Otherwise,
if a 4− vertex has at most two 2− neighbors, we call it a 42 − vertex.

Lemma 2.8. If v is a 43 − vertex in G∗, then dG(v) = dG∗(v) = 4.

Proof. Suppose otherwise that that dG(v) > 4. Then, v has at least one
1−neighbor in G, denoted by v1. Let u be a 2−neighbor of v in G∗. By
Lemma 2.1, all three 2−neighbors of v have degree 2 in G, as shown in Fig.3(2).
By the minimality of G, G − v1 has a strong (3∆ − 1)-edge-coloring ϕ. Note
that vv1 in G has at most 2∆ + 1 colored edges in its 2−neighborhood. So
|A(vv1)| ≥ ∆− 2 ≥ 3, which implies that vv1 has at least one available color, a
contradiction.

Fig.3
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Lemma 2.9. Assume that v is a 43 − vertex in G∗. Then, v is not adjacent to
a weak 3− vertex.

Proof. Suppose otherwise that v has a weak 3−neighbor, say v1, in G∗. By
Lemma 2.7, dG(v) = dG∗(v) = 4. Let u be one of 2−neighbors of v in G∗, as
shown in Fig.3(3). By the minimality of G, G− uv has a strong (3∆− 1)-edge-
coloring ϕ. Then, uv inG has at most ∆+7 colored edges in its 2−neighborhood.
So, |A(uv)| ≥ 3∆ − 1 − (∆ + 7) = 2∆ − 8 ≥ 2. Thus, we can extend ϕ to a
strong (3∆− 1)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between
vertices and faces. Now we will use discharging method and Euler’s formula to
get a contradiction and complete the proof of Theorem 1.2. We assign the initial
charge ρ(v) = 1

2dG∗(v)− 3 for each vertex v ∈ V (G∗) and ρ(f) = dG∗(f)− 3 for
each face f ∈ F (G∗).

By Euler’s formula, we have the following equality.∑
v∈V (G∗)

ρ(v) +
∑

f∈F (G∗)

ρ(f) =
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

We will design appropriate discharging rules and redistribute charges among
vertices and faces so that the final charges of every vertex and every face are
non-negative. The discharging rules are shown as follows.

(R1) Every vertex receives 4
7 from the incident face.

(R2) Every weak 3− vertex sends 3
7 to the adjacent 2− vertex.

(R3) Every 4+ − vertex sends 3
7 to the adjacent 2− vertex.

(R4) Every 4+ − vertex sends 3
28 to the adjacent weak 3− vertex.

(R5) Every strong 3− vertex sends 3
28 to the adjacent weak 3− vertex.

Let ρ′(x) denote the finial charge of each element x in V (G∗)∪ F (G∗) after the
discharging process. We first consider the final charge of each face. By (R1),
ρ′(f) = dG∗(f) − 3 − 4

7 × dG∗(f) = 3
7 × dG∗(f) − 3 ≥ 0. So, the final charge of

each face is at least 0.

Next, we consider the final charge of each vertex v. Let dG∗(v) = k. By
(R1), it can get 4

7 × dG∗(v) = 4
7 × k from faces incident to v.

Assume that dG∗(v) = 2. By Lemma 2.2, (R2) and (R3), we have that
ρ′(v) = 1

2 × 2− 3 + 4
7 × 2 + 3

7 × 2 = 0.

Assume that dG∗(v) = 3. If v is a weak 3− vertex, by Lemma 2.5, (R4) and
(R5), we have that ρ′(v) = 1

2 × 3− 3 + 4
7 × 3 + 3

28 × 2− 3
7 = 0. If v is a strong

3− vertex, then ρ′(v) ≥ 1
2 × 3− 3+ 4

7 × 3− 3
28 × 2 = 0 by Lemma 2.6 and (R5).
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Assume that dG∗(v) = 4. If v is a 42 − vertex, then by (R3) and (R4), we
have that ρ′(v) ≥ 1

2 ×4−3+ 4
7 ×4− 3

7 ×2− 3
28 ×2 = 3

14 > 0. If v is a 43−vertex,
then ρ′(v) = 1

2 × 4− 3 + 4
7 × 4− 3

7 × 3 = 0 by Lemma 2.8 and (R3).

Assume that dG∗(v) = k ≥ 5. By (R3) and (R4), we have ρ′(v) ≥ 1
2 × k −

3 + 4
7 × k − 3

7 × k = 9
14 × k − 3 ≥ 9

14 × 5− 3 = 3
14 > 0.

Hence, the final charge of each vertex is at least 0.

By Euler’s formula, we can obtain the following contradiction:

0 ≤
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

Therefore, such a minimal counterexample to Theorem 1.2 does not exist.

3. Proof of Theorem 1.3

In this section, we still assume that G is a counterexample to Theorem 1.3
with the |V (G)| minimized, subject to that, assume that |E(G)| is as small as
possible. We use the same method as Theorem 1.2 to prove Theorem 1.3. It is
obvious that G satisfies the following structures.

Lemma 3.1. (1) δ(G∗) ≥ 2. Moreover, dG∗(v) = 2 if and only if dG(v) = 2.

(2) Let v be a 2 − vertex in G∗. Then, both of neighbors of v in G∗ are 3+ −
neighbor.

(3) Let v be a 3−vertex in G∗. Then, v has at least two 3+−neighbors in G∗.

(4) Let v be a weak 3− vertex in G∗. Then, dG(v) = dG∗(v) = 3.

(5) Every 4− vertex v in G∗ has at most three 2− neighbors.

Lemma 3.2. Assume that v is a weak 3 − vertex in G∗. Then, v has at least
one 4+ − neighbor or one strong 3− neighbor in G∗.

Proof. Suppose otherwise that the other two neighbors of v in G∗ are weak
3−vertices, denoted by v1, v2. By Lemma 3.1(4), dG(v) = dG(v1) = dG(v2) = 3.
Let u be the 2−neighbor of v in G∗. By the minimality of G, G − uv has a
strong (3∆−1)-edge-coloring ϕ. Then, uv in G has at most ∆+6 colored edges
in its 2−neighborhood. So, |A(uv)| ≥ 3∆ − 1 − (∆ + 6) = 2∆ − 7 ≥ 1. Thus,
we can extend ϕ to a strong (3∆− 1)-edge-coloring of G, a contradiction.

The total charge remains unchanged when we transfer the charge between
vertices and faces. Now we assign the initial charge ρ(v) = 1

2dG∗(v) − 3 for
each vertex v ∈ V (G∗) and ρ(f) = dG∗(f) − 3 for each face f ∈ F (G∗). The
discharging rules are shown as follows.

(R1) Every vertex receives 4
7 from the incident 7− face.
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(R2) Every vertex receives 5
8 from the incident 8+ − face.

(R3) Every 4+ − vertex sends 3
7 to the adjacent 2− vertex.

(R4) Every 4+ − vertex sends 3
28 to the adjacent weak 3− vertex.

(R5) Every strong 3− vertex sends 3
28 to the adjacent weak 3− vertex.

(R6) Every weak 3− vertex sends 3
7 to the adjacent 2− vertex.

Let ρ′(x) denote the finial charge of each element x in V (G∗)∪ F (G∗) after the
discharging process. We first consider the final charge of each face.

If dG∗(f) = 7, then by (R1), we have that ρ′(f) ≥ dG∗(f)− 3− 4
7 × 7 = 0. If

dG∗(f) ≥ 8, then we have that ρ′(f) ≥ dG∗(f)−3− 5
8×dG∗(f) = 3

8×dG∗(f)−3 ≥
0 by (R2). Obviously, the final charge of each face is at least 0.

Next, we consider the final charge of each vertex. Let dG∗(v) = k. Since
there is no adjacent 7 − faces in G, by (R1) and (R2), it can at least get
4
7 × ⌊k2⌋+

5
8 × ⌈k2⌉ from 7+−faces incident to v.

Assume that dG∗(v) = 2. By Lemma 3.1, (R3) and (R6), ρ′(v) ≥ 1
2 × 2 −

3 + 5
8 + 4

7 + 3
7 × 2 = 3

56 > 0.

Assume dG∗(v) = 3. If v is a weak 3− vertex, then by Lemma 3.2, (R4) and
(R6), we have that ρ′(v) ≥ 1

2 × 3− 3 + 5
8 × 2 + 4

7 − 3
7 + 3

28 = 0. If v is a strong
3− vertex, then ρ′(v) ≥ 1

2 × 3− 3 + 5
8 × 2 + 4

7 − 3
28 × 3 = 0 by (R5).

Assume that dG∗(v) = 4. By Lemma 3.1, (R3) and (R4), ρ′(v) ≥ 1
2 × 4 −

3 + 5
8 × 2 + 4

7 × 2− 3
7 × 3− 3

28 = 0.

Assume that dG∗(v) = k ≥ 5. By (R3) and (R4), ρ′(v) ≥ 1
2 × k − 3 + 5

8 ×
⌈k2⌉+

4
7 × ⌊k2⌋ −

3
7 × k ≥ 75

112 × k − 3 ≥ 39
112 > 0.

Hence, the final charge of each vertex is at least 0.

By Euler’s formula, we can obtain the following contradiction:

0 ≤
∑

v∈V (G∗)

(
1

2
d(v)− 3) +

∑
f∈F (G∗)

(d(f)− 3) = −6

Therefore, such a minimal counterexample to Theorem 1.3 does not exist.
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Abstract. In mathematical ecology, the study of interactions that are reactive-
diffusive in nature between different species and their relevant systems has been re-
searched extensively. However, there is still room for contribution on this rich topic.
Therefore, we study a spatial-temporal prey-predator model which includes kinesis
terms representing plankton dynamics under info-chemical mediated trophic interac-
tions. The Beddington-DeAngelis functional response is coupled with a simplified two
species approach within the model to describe the grazing pressure of zooplankton (M)
on phytoplankton (P).This pressure is controlled through an external info-chemical (C).
The mutual interference by predators within the ecosystem is implemented through the
Beddington-DeAngelis functional response, a distinctive feature of this response type.
This feature is utilized in this study to indicate the effect of changes in prey density
in relation to predator density. In our model, a stability analysis is performed between
the two aforementioned species to provide a system dynamics comparison. The critical
conditions for kinesis are derived on the basis that increases in the reproduction coeffi-
cient decrease the diffusion. This means that species prefer to stay in good conditions
to facilitate the reproduction process, but are likely to escape in bad conditions. The
kinesis terms within our Phytoplankton-Zooplankton model impact factors such as sur-
vival and traveling wave behavior. Numerical experiments are performed in this work
to examine the traveling waves and the monotonic dependence of the reproduction co-
efficient in the species population. Moreover, the possible benefits of purposeful kinesis
are demonstrated.

Keywords: bifurcation analysis, stability analysis, predator-prey dynamics, plankton
model, reaction-diffusion with kinesis model, travelling waves.
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1. Introduction

Phytoplankton are the primary source of carbon dioxide transfer to the ocean
and capture carbon dioxide through the process of photosynthesis. Carbon
capture, and modelling processes involved, has recently become a topic of in-
creasing interest, given its potential role in countering global warming, although
little novel mathematical research into this aspect has been published in recent
years. We wanted to improve the modelling of the interactions between a partic-
ular group of phytoplankton and its main predator. Phytoplankton need light
for photosynthesis. This limits their viable depth to less than 200m [27]. The
vertical distribution of phytoplankton is highly heterogeneous, but empirical re-
search has shown that profiles of certain chemicals (info-chemicals), for instance
dimethyl sulfide (DMS), closely resemble chlorophyll maxima (i.e. clusters of
phytoplankton) as seen in [28]. Predators of plankton (e.g. Copepods) are
known to travel vertically to follow prey distribution. This suggests that Cope-
pods may use vertical gradients of info-chemicals to locate prey and remain
within their profitable foraging zones. Lewis [52] developed a non-spatial model
involving Copepods. Further investigation showed that small increases in the
ability of Copepods to sense info-chemicals could increase their longevity in the
system, and hence increased sensitivity to info-chemicals can be an evolutionar-
ily advantageous a strategy for these predators. The phenomenon of vertically
migrating zooplankton has been studied by many (e.g., [29], [30], [31], [65]),
including a spatial heterogeneity which lead to the development of reaction-
advection-diffusion models. The Beddington DeAngelis functional response is
an essential tool in the field of plankton modelling. Although it is similar to
responses such as the Holling type II functional response, it includes a term that
accounts for mutual interference by predators. This allows for the prediction
of predators per capita feeding rates on the prey, as well as providing better
descriptions of predator-prey abundances and their relation to predator feeding
activity within their respective predator-prey systems. In plankton models, the
Beddington DeAngelis functional response can be used to perform a detailed
mathematical analysis of the intra-species competition among predators [21].
Many ecologists have proposed the prey dependent predator-prey model, based
on the assumption that the predators rate of prey capture is independent of
prey density. However, some biologists disagree with that in many instances,
particularly when predators must search for food and thus must share or start
competing for food, the predator prey models deliver results should really be
predator dependent. The Beddington DeAngelis type functional response out-
performed the others in several circumstances. The functional response of a
predator is the rate at which it consumes prey as a function of food density.
Understanding the underlying dynamic relationships between prey and preda-
tor in the Beddington DeAngelis model is crucial for the description of ecosys-
tem dynamics. [21, 26] implemented the effect of this functional response to
describe mutual interference by predators within their predatorprey ecosystem
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model. Later this approach was used to highlight the effect of changes in prey
density on the predator density attached per unit time in Sarwardi [25]. [58]
and [48] introduced the classical PDE model which defines population disper-
sal, and is used to model kinesis, as can be observed in [42]. For those kinesis
models, the diffusion is dependent on only localized information rather than
including non-localized information. The local information, which is to be con-
sidered in cases such as taxis movement. A connection between the reproduction
rate and diffusion coefficient has been established in which the reproduction co-
efficient can be presented as Darwinian Fitness; increase in migration should
increase Darwinian Fitness [47], [54], and [41]. In this work, we aim to explore a
predator-prey diffusion model of plankton with kinesis using partial differential
equations (PDEs). [64] analytically explained the random population disper-
sal mechanics for living organisms by introducing the diffusion law, enabling
an understanding of the spatial distribution of population density in linear and
two-dimensional forms. Over the years, many scientists have studied diffusion to
model biological, chemical, and physical processes. In particular, Alan Turing
determined the causes of d-patterns in a variety of non-equilibrium situations
when dealing with reaction-diffusion [4]. The classical predator-prey model was
defined by Lotka and Volterra in 1920. In n our study, we investigate five key
aspects related to the kinesis-diffusion terms, which provide a parameterisation
of small-scale distribution. These terms account for horizontal movement in two
dimensions, primarily influenced by the circular distribution and flows observed
in plankton. Here’s an overview of the sections covered in our study:

� General Description and Mathematical Model: The first section provides
an introduction and outlines the mathematical model used in our research.

� Equilibrium Location and Analysis: The second section focuses on the
location and analysis of equilibrium points within the model.

� Time-Series Behavior: Section three delves into the time-series behavior
of the system, examining its dynamic evolution over time.

� Bifurcation Behavior at Different Carrying Capacity Levels: In the fourth
section, we explore how the system’s behavior changes at various carrying
capacity levels, particularly focusing on bifurcation phenomena.

� Hydra Effect of Both Predator and Prey: Section five discusses the ”hydra
effect” observed in both predator and prey populations and its implications
for the ecosystem.

� Analysis of Kinesis in the Reaction-Diffusion System: The sixth section
provides an in-depth analysis of kinesis within the reaction-diffusion sys-
tem and its impact on the overall equilibrium.

� Discussion of Findings and Conclusion: The final section offers a compre-
hensive discussion of our research findings. We conclude by discussing how
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a small growth rate can lead to reduced phytoplankton density and po-
tentially destabilize the model. Additionally, we explore the role of rapid
responses to increases in fast-growing prey, which can contribute to the
emergence of limit cycles in the dynamical system.

2. Mathematical model

The core goal of our work is to analyze the qualitative behavior of two micro-
organism species (phytoplankton, grazing zooplankton) interacting on two tro-
phic levels exposed to a predator (meso-zooplankton copepod) and to examine
the interaction between this trophic. The analysis will focus on a comparison be-
tween the latest obtained results and the current available results in an attempt
to understand the main difference among two different functional response types
in the predator-prey model and to illustrate how grazing induced by Dimethyl
sulphide has a stabilizing effect on the modelled system.

2.1 General model and description

The model used is described using PDEs which include a horizontal diffusion
term as shown below:

∂P

∂t
= F∆(P,M) := DP

∂2P

∂x2
+ rP

(
1− P

K

)
− aPM

EM + P + b
,(1)

∂M

∂t
= G∆(P,M) := DM

∂2M

∂x2
+

γaPM

EM + P + b
−mM − ν

aPM2

EM + P + b
,(2)

In the given model (Eq. 2), P and M represent the densities of phytoplankton
and zooplankton within a closed homogeneous system. Similar to the approach
taken by [52], the model assumes logistic growth for phytoplankton, character-
ized by an intrinsic growth rate denoted as r and a carrying capacity represented
by K. This carrying capacity reflects the limits imposed by nutrient avail-
ability and self-shading effects on phytoplankton growth. Zooplankton in this
model feed on phytoplankton based on the Beddington DeAngelis functional
response, a mathematical framework used to describe predator-prey interac-
tions. This functional response is employed to provide more detailed insights
into predator-prey dynamics and how they influence predator feeding behavior.
The Beddington DeAngelis functional response has been used in various eco-
logical studies to elucidate the impact of changes in prey density on predator
density over time. For instance, [26] applied this concept to illustrate mutual
interference among predators in an ecosystem, while [25] examined how alter-
ations in prey density affect the per capita feeding rates of predators. Haque [21]
demonstrated that the Beddington DeAngelis functional response is suitable for
conducting a comprehensive mathematical analysis of intra-specific competition
among predators. This response model reflects the saturation of grazing rates
at higher phytoplankton densities, with phytoplankton biomass converted into
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zooplankton biomass with an efficiency factor denoted as γ. Additionally, the
parameter E accounts for predator interference within the system. The param-
eter m represents zooplankton mortality, primarily caused by copepods, but it
also considers mortality due to processes such as sinking and additional pre-
dation by other zooplankton or higher trophic levels. The parameter ν has a
slightly different interpretation compared to its usage in [1] and [52]. It reflects
an increase in copepod predation on zooplankton in response to the immediate
release of info-chemicals when phytoplankton are grazed. Thus, ν can repre-
sent both heightened copepod sensitivity and response to chemical cues and
improved copepod search efficiency at higher chemical concentrations. Impor-
tantly, copepods and info-chemicals are not explicitly modeled as variables but
are incorporated into the system through the interaction term involving ν. The
parameters a and b respectively represent the clearance rate of zooplankton at
low food densities and its half-saturation density. Typical parameter values are
summarized in Table(2.1). Notably, this model differs from the one presented
by [1] and [52] primarily in the choice of functional response type. Additionally,
Laplacian terms, represented by DP and DM , are included in the model, reflect-
ing the diffusion of phytoplankton and zooplankton, respectively, with strengths
defined as DP and DM . These terms account for the spatial movement of these
populations, and this aspect of the model is consistent with the previous work
in [1].

Table 1: Model Parameter Values
Parameter Value Unit Source

r 0− 5 day−1 [8]

K 0− 1000 µg C
I−1

[9, 10]

a 0.3 µg
CI−1

day−1

[11, 12]

b 0.05 µg C
I−1

[11, 12]

γ 0.3 day−1 [13]

m 0.3 day−1

ν 0.01− 0.2 day−1

E 0.2 day−1

2.2 Location of equilibria

The equilibrium points P (t) = Pe and M(t) =Me ofEq.(1-2), corresponding to
dP/dt = dM/dt = 0, can be shown to include the trivial state (Pe,0,Me,0) =
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(0, 0), the zooplankton-free equilibrium (Pe,mf ,Me,mf ) = (K, 0), and the co-
existence state that satisfies the polynomial.

(3) rνP 3
e +(−Eγr−Kνr+νbr)P 2

e +(EγKr−Kν180br−γKa+K∗m)Pe−mkb

and

(4) Me = γr

νrP 3
e + (−Eγr −Kνr
+ νbr)P 2

e + (Eγ187Kr −Kνbr − γKa+Km)

ak

In general, Eq.(3) will have three roots. Following [6], they are given by

Pe,j+1 =
Kb− 1

3b

+
2

3b

√
(KEGb− 1)2 − 3EGK

rν
(γa−mb− νr) cos

(
θ + 2jπ

3

)
, j = 0, 1, 2,(5)

where θ = cos−1
(yN

h

)
,

yN = −rν (Kb− 1)3

9b2
+
rν(Kb− 1)2

27b2
+
K(γa−mEGK − νr)(Kb− 1)

3b
−mK,

and

h =
2νrb

27

(
(−EGr −Kνr + νbr)2 − 3νr(EGKr −Kνbr −GKs+Km)

ν2r2

) 3
2

.

The phenomenon of two roots merging into one occurs when the condition y2N =
h2 is satisfied, leading to the emergence of a complex-valued root. This cubic
nature of the solution, as described byEq.(5), is clearly depicted in Fig. 2 for the
case where K = 120, r = 1.5, and other parameters maintain values as specified
in Table. 2.1. The presence and number of coexistence equilibria in the system
are notably influenced by the parameter values of K and ν. For instance, when
K = 70, as illustrated in Fig. (2) (c), there exists only a single real root of Eq.
(5) for all values of ν. However, when K ≈ 70.78, a significant event known as
a saddle-saddle bifurcation occurs. This corresponds to the moment when the
two saddle node bifurcation points converge or collide.

3. Analysis of equilibrium points in the non-spatial model

In this section, we delve into the dynamics of plankton populations and engage
in a discussion centered on our comprehension of the non-spatial interactions,
often referred to as local interactions, within the marine ecosystem. Our fo-
cus revolves around examining the complex interactions among multiple trophic
levels that take place in aquatic environments. To accomplish this, we employ
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a reaction-diffusion model as a tool for our investigation.

(
P (t)
M(t)

)
=

(
Pe

Me

)
+

(
ϵ1
ϵ2

)
eλt.(6)

FromEq.(6), a uniform solution is said to be linearly stable when λ ≤ 0 and
unstable otherwise. Substituting (6) into (2) and linearising about ϵ1 = ϵ2 = 0,
we obtain the linear eigenvalue problem

λ

(
ϵ1
ϵ2

)
=

(
a11 a12
a21 a22

)(
ϵ1
ϵ2

)
,(7)

where

a11 = r(1− 2rPe

K
)− abMe + EaM2

e

(b+ Pe + EM)
,

a12 = −aPe
2EMe + Pe + b

(EMe + Pe + b)
,

a21 = 2
(EMe + b)

(EMe + Pe + b)2
,

a22 = −m− (Pe+b)γaPe

(EMe+Pe+b)
−EM

2
e νaPe−2MeνaP

2
e−2MebνaPe

(EMe + Pe + b)
.

(8)

The eigenvalues can then be readily obtained

(9) λ± =
1

2

[
a11 + a22 ±

√
(a11 − a22)

2 + 4a12a21

]
.

The model in Eq.(2) posses three different equilibria; Table. (2) provides a
description of the stability of each equilibria. The mathematical model presented
in Eq.(2) in the absence of diffusion is firstly considered by us, i.e. DP = DM =
0, which is similar to the first approach by [1]. The summary of the equilibrium
stability is given in Table. (2): Note that Eq.(3) is a cubic polynomial, and all its

Table 2: Biologically Relevant Possible Equilibria of the System given by Eq.
(2)

Equilibrium Definition Value in
parametrized
system

Description Hyperbolic
Eigenvalues

E0 (Pe,Me) (0, 0) Trivial (extinct) stable node point
E1 (Pe,Me) (K, 0) The carrying capacity of phytoplankton stable node
E3 (Pe,Me) Eq.3 and 4 equilibrium Coexistence point different stability

behaviours

roots can be found by using Cardan’s method [6]. Consequently, the obtained
roots are utilized to determine the roots of the second species in Eq.(4). The
stability of the coexistence point determines the behavior of the system given
in Eq.(2).
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4. Numerical exploration of the model

his section of the study will delve into the impact of varying parameters such as
K, ν, and r on the stability of the system. In the subsequent subsection, we will
introduce and define these parameters more explicitly, elucidating the specific
ranges and values that could result in distinct system behaviors. This will be
detailed further in the bifurcation and stability analysis section. Moreover, we
will present the system’s phase portrait and the equilibrium values associated
with each intersection of the nullclines. The plane is inherently divided by
several nullclines into distinct regions, each of which provides information about
how the system behaves at different points within the plane [32]. These regions
and their descriptions collectively offer a comprehensive understanding of how
the system changes across various points in the plane.

(a) (b)

Figure 1: The time series behavior and phase portrait of the system are repre-
sentative of the parameter setting where ν = 0.145.

4.1 Bifurcation analysis of the phytoplankton-zooplankton model
across various carrying capacity (K) and info-chemical (ν) levels

It is evident that the carrying capacity plays a crucial role in determining the
maximum population density for plankton in each model [1]. In this work, an
interesting finding relates the carrying capacity to the info-chemical parame-
ter DMS, effectively introducing two control parameters instead of one. Fig.
(2) illustrates four cases for different values of the carrying capacity (K), while
keeping all other parameters fixed at the values provided in Table. (2.1). In Fig.
(2(a)), (2(b)), and (2(c)), the system exhibits hysteresis behavior. Specifically,
when K = 1000, there is an overlapping Hopf bifurcation at ν = 0.036. Initially,
as the info-chemical interaction parameter ν decreases from 1000 to 70, a super-
critical Hopf bifurcation (Hp) occurs. During this phase, the system transitions
from a stable limit cycle around the unstable coexistence state to a single stable
coexistence state. Subsequently, a saddle-node bifurcation results in a region
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with bi-stability, where two stable coexistence states coexist alongside one un-
stable (saddle) coexistence state. The local stability of the stable equilibria shifts
from a focus to a node, and the eigenvalues change from complex to real val-
ues. At this point, the system acquires the monotonicity property, meaning that
the solution approaches a stable equilibrium in a monotonous manner, referred
to as over-damped oscillations [14]. Finally, a second saddle-node bifurcation
takes place, leaving only the larger stable coexistence state in the system. This
outcome aligns with the findings of [1] and has been interpreted by [52] as the
threshold at which persistent phytoplankton bloom formation becomes possible.
In this context, persistent bloom formation implies that Pe (the phytoplankton
equilibrium point) remains stable and approaches K. In Fig. (2(d)), the system
exhibits less hysteresis behavior, with only one stable focus root type across all
ν values. This variation is attributed to the influence of DMS on the predation
of grazers. The bifurcation analysis for the behavior of zooplankton was con-

(a) (b)

(c) (d)

Figure 2: Bifurcation diagram correspond to different values of K in prey (phy-
toplankton) analysed system

ducted while keeping all other parameters fixed at the values specified in Table
21.1. In Fig. (3(a)), there is an overlap in the bifurcation behavior, specifically,
a Hopf bifurcation occurs within the same range, with a value of approximately
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0.036. Additionally, the two limit points correspond to a saddle-node bifurca-
tion. In the case of Fig. (3(b)), both Hopf and saddle-node bifurcations can be
observed. Fig. (3(c)) demonstrates that the system undergoes a Hopf bifurca-
tion at ν = 0.01934, after which the system’s roots indicate a stable sink/node
behavior. Lastly, in Fig. (3(d)), which examines the influence of DMS on grazer
predation, the equilibrium type remains a ’stable focus’ for all values of ν. The
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Figure 3: Bifurcation Diagram corresponding to Different Values of K in Preda-
tor (zooplankton).

model described inEq. (2) demonstrates the presence of a limit cycle for vari-
ous values of K, as depicted in Figures 2 and 3. These findings align with the
expected essential characteristics of the system.

4.2 Phytoplankton and zooplankton heat-maps

A phytoplankton bloom is characterized by a significant increase in the concen-
tration of phytoplankton in a specific area. This phenomenon typically occurs
when environmental conditions are favorable for enhanced reproduction, such as
a continuous nutrient supply and suitable survival conditions. The formation of
a phytoplankton bloom can occur within a specific range of parameter combina-
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tions involving K and ν. When copepod predation on zooplankton intensifies,
it reduces the grazing pressure on phytoplankton, creating conditions conducive
to bloom formation. The solution to Eq. (3) provides the roots for the saddle-
node bifurcation and identifies the bifurcation position. It’s essential to note
that the region between the area with one real root and the area with three
real and distinct roots is defined by satisfying Cardan’s third condition, namely
y2N = h2, effectively separating these regions as outlined in Eq. (3). Phyto-
plankton blooms can have a lasting impact on ecosystems [22, 23], and such
occurrences have been referred to as the ”hydra effect.” The outcomes displayed
in Fig. (4) depict the maximum population density of phytoplankton concerning
variations in the carrying capacity. Generally, a phytoplankton bloom is char-
acterized by a rapid proliferation of phytoplankton populations. These blooms
tend to occur when there’s an abundance of sunlight and nutrients available, cre-
ating favorable conditions for plant growth and reproduction. In such scenarios,
the plants proliferate to the point where they become widespread, altering the
water’s color in which they reside [24]. Fig. (4) investigates two independent
parameters: the carrying capacity and the infochemical concentration, deter-
mined using the polynomial in Eq. (3). This analysis suggests the potential
occurrence of a phytoplankton bloom. A small, dark region on the left side of
the saddle-node curves depicted in Fig. (2) (a) corresponds to a low phyto-
plankton population. Fig. (4) (a) readily illustrates the low values of Pe (the
phytoplankton equilibrium point) for various combinations of K and ν, while
the area to the right of the curve indicates higher phytoplankton populations,
signifying the potential for a phytoplankton bloom.
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Figure 4: The heatmap in panel (a) pertains to the population of phytoplankton
when subjected to the grazing pressure exerted by zooplankton. Panel
(b) illustrates the population of zooplankton.
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5. Analysis of predator-prey diffusion model with kinesis

In this section, we analyse the predator-prey diffusion model with kinesis that
was first defined by [42] as follows:

(10) ∂tui = D0i∇ ·
(
e−αiri(u1,...,uk,s)∇ui

)
+ ri(u1, . . . , uk, s)ui,

where:

ui is the ith species-population density,

s is the abiotic characteristics of the living conditions,

ri is the reproduction coefficient,

D0i > 0 is the equilibrium diffusion coefficient which is defined when the
reproduction coefficient is 0,

αi > 0 defines the relation between the diffusion coefficient on the repro-
duction coefficient.

We can define Di = D0ie
−αri as the diffusion depending on reproduction coeffi-

cient. It has been shown in [42] that, the diffusion depends on well-being and it
can be measured by the reproduction coefficient. In this section, we will present
the new predator-prey plankton model with kinesis and compare the results
with basic Kinesis model. The PDE model for population with constant diffu-
sion coefficient without kinesis has been presented by (Kolmogorov, Petrovsky
and Piskunov, 1937) (KPP) [50] as follows:

(11) ∂tu(t, x) = D∇2u(t, x) + (1− u(t, x))u(t, x).

We will consider the predator-prey model presented Eq.(2) to define plankton-
kinesis model as in Eq. (??).

∂P

∂t
= F∆(P,M) := DP∇ ·

(
e−α(r(1− P

K )− aM
EM+P+b

)∇P
)

+ rP

(
1− P

K

)
− aPM

EM + P + b
,

∂M

∂t
= G∆(P,M) := DM∇ ·

(
e−α( γaP

EM+P+b
−m−ν aPM

EM+P+b
)∇M

)
(12)

+
γaPM

EM + P + b
−mM − ν

aPM2

EM + P + b
,

Figure 5 indicates that kinesis movement has no effect on the predator model.
On the contrary, kinesis does affect prey population. Kinesis movement prevents
extinction of prey population for a time. The MATLAB [59] function was used
in this study to solve the one-dimensional system of PDE. The space interval
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(a) a (b) b

Figure 5: Predator-prey mobility under the effect of kinesis model.

was selected to be [−50, 50] with zero-flux boundary conditions and with the
initial conditions given below:

(13) P (x, 0) = Pe + σ cos(wP ),M(x, 0) =Me + σ sin(wM)

The values of the constants are: D = 1, α = 1.

In Fig.6 gives an account of the population size differences between the pop-
ulation with and without kinesis over time. Due to predatory causes, the prey
population faces extinction within a small amount of time. The prey population
without kinesis survives better than the one with kinesisin time 10, after in a
while (time20), the population tends to survive better with kinesis movement
over time. There is no time difference in the time profile of predator popula-
tion with and without kinesis.Thus, there will be no difference in population
size if we were to compare P with kinesis and without kinesis. Alternatively,
kinesis decreases the size of prey population P with kinesis. This suggests that,
initially, kinesis is not beneficial for the prey population in space. However, it
starts to become beneficial and the population survives when the prey popula-
tion without kinesis is dying (see Fig.6). In Fig.7, the travelling wave behaviour
can be seen in the predator population in space. Initially, the predator popu-
lation decreases in time and then it starts to increase and stabilizes over time.
The kinesis movement affects prey population in a negative manner; it leades to
population death in both conditions exponentially, and to an accelerated death
in kinesis condition.

At the time 20, it can be clearly seen in space that both predator and prey
population exhibit travelling wave behaviour (Fig.8). Figure 9 illustrates how
the predator population dies over time in the spatial distribution, yet predators
survive for a long time. M with kinesis decreases a faster, but survives better
over time.
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(a) (b)

(c) (d)

Figure 6: Prey mobility without and with kinesis.
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(a) (b)

(c) (d)

Figure 7: Predator mobility without and with kinesis.
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(a) (b)

(c) (d)

Figure 8: Predator and prey population without and with kinesis movement

(a) (b)

Figure 9: Predator prey population without and with kinesis movement
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6. Conclusion

We gained insight into the behavior of the system described by equations Eqs.
(2) by conducting a mathematical analysis involving phase plane investigations,
stability assessments, and bifurcation examinations. Since we assume a uni-
form environment, we opted to employ the Beddington-DeAngelis functional
response. This choice was motivated by the fact that it exhibits a broader spec-
trum of dynamic behaviors, as documented in previous studies [21]. This aligns
with existing literature, which generally favors the utilization of the Beddington-
DeAngelis functional response, particularly when examining interactions be-
tween two species, such as microzooplankton grazers like Oxyrrhis marina [17],
[18]. In our numerical approach, we investigated the impact of the control pa-
rameter ν on the system’s qualitative behavior. This investigation was made
possible through the use of the phase plane tool, as demonstrated in Figs. 1(a)
and 1(b). To illustrate, when setting ν to zero, we effectively transform the
system into the Rosenzweig-MacArthur model [2]. In this scenario, the system
becomes unstable, and we observe periodic cycles in the microzooplankton and
phytoplankton population densities. This phenomenon is akin to the predator-
prey interactions explored by [19] and [20], where the system exhibits a stable
equilibrium, but the solution trajectories undergo substantial oscillations be-
fore returning to that equilibrium. As the control parameter increases, it leads
to various stability scenarios, as depicted in the bifurcation diagram (Fig. 2)
and its specific instances illustrated in Figs. 2(a), 2(b), and 2(c). This varia-
tion elucidates how infochemical signaling serves as a mechanism for enhancing
copepod predation on microzooplankton. This article provides a comprehen-
sive analysis of the system’s behavior, including an examination of the location,
number, and type of roots, determined using Cardan’s method. Notably, this
analysis helps identify crucial system parameters, particularly when K = 70.34,
marking the point of a cusp bifurcation, where two equilibrium points merge
and vanish in a saddle-node bifurcation [16]. The investigation extends to the
(ν,K) plane, uncovering the phenomenon of a microzooplankton ”hydra effect”
on copepod predation. Additionally, the model allows for predictions regarding
the occurrence and locations of phytoplankton blooms, as depicted in Fig. 3.
An examination of Fig. 2 reveals that the system exhibits five distinct stability
states, all of which are elaborated upon in Section 4. The text also discusses the
implications of altering the growth rate and phytoplankton carrying capacity
on phytoplankton behaviors, as illustrated in Figs. 4(a) and 4(b). It empha-
sizes how lower growth rates can shift the model’s stability towards its current
configuration. Furthermore, a relationship between both K and ν is identified,
suggesting that both species can thrive in environments abundant with nutri-
ents, as shown in Fig. 2. This outcome exemplifies the ”hydra effect” within
the predator-prey model, as mentioned in [15]. However, the primary objective
of this article is to establish coherence between the model presented in Eq. 2
and the one examined in [1], both analytically and numerically.
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The concept of population dispersion within a partial differential equation
(PDE) model was initially introduced by [58] and further developed by [48]. The
diffusion model, incorporating kinesis, has been the subject of prior research by
[42]. In this context, kinesis movement influences the reproduction rate, and
an interesting relationship emerges between the diffusion coefficient and the re-
production coefficient. Specifically, when reproduction rates increase over time,
the diffusion coefficient decreases in contrast. This phenomenon aligns with the
overarching principle that populations inherently strive for prolonged existence.
Conversely, when population reproduction declines, indicating a population de-
cline, individuals seek to disperse through kinesis movement. This behavior
is driven by the imperative to escape unfavorable conditions and pursue more
favorable ones. This notion of population dynamics can be likened to the con-
cept of Darwinian fitness, as proposed by [47], [54], and [41]. According to this
perspective, migration is a strategy employed to enhance Darwinian fitness, ul-
timately ensuring the population’s survival. Consequently, populations tend to
remain within beneficial areas while actively avoiding perilous conditions. To
encapsulate our model’s discoveries, we can outline them as follows:

� The eigenvalue problem of the predator-prey model, utilizing the Bedding-
ton DeAngelis functional response and incorporating the second condition
of Cardan’s method, played a crucial role in establishing a comprehensive
stability analysis. This analysis is depicted in Figs. 2 and 3. The construc-
tion of these diagrams enabled us to conduct stability assessments for each
value of K, corresponding to various ν values. Through this analysis, we
arrived at the same conclusion as [1] concerning the case when K = 120.
However, our study encompassed multiple scenarios for bifurcation within
the system, contingent on different values of K. In all instances, it was
evident that the presence of infochemicals had a stabilizing effect on what
would otherwise be an unstable food web.

� By examining the behavior of the predator, denoted as M , and system-
atically varying the value of K as a secondary control parameter while
keeping infochemicals as the primary parameter, we demonstrated the in-
fluence of DMS (dimethyl sulfide) on the predation of grazers. This anal-
ysis revealed that the populations of both species, namely phytoplankton
and microzooplankton, can experience substantial simultaneous increases.
This phenomenon is visually represented in Figs. 3(a), 3(b), 3(c), and
3(d).

� By investigating the growth rate of phytoplankton, we uncovered the fol-
lowing insights: A low growth rate results in diminished phytoplankton
density, ultimately destabilizing the model, as depicted in Fig. 2(d). Con-
versely, a high potential growth rate enables heterotrophic protists to per-
sist even during phases of elevated predation. However, this system is
highly responsive to increases in fast-growing prey, and this heightened
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responsiveness may explain the existence of a limit cycle within the dy-
namical system.

� We examined how the inclusion of a kinesis model within a predator-prey
model utilizing the Beddington DeAngelis functional response influenced
the system. Fig. (5) illustrates that the predator model remained largely
unaffected by kinesis movement. In contrast, kinesis had a noticeable
impact on the prey population. Specifically, kinesis movement played a
role in preventing the extinction of the prey population over time.

� The prey population faces a rapid risk of extinction due to predation.
Initially, without the kinesis model, the prey population exhibits better
survival up to time 10. However, an opposite trend emerges over time,
such as at time 20, where the prey population with the kinesis model
displays improved survival compared to the scenario without it.

� The size of predator populations, whether with or without kinesis, remains
essentially unchanged. In contrast, the prey population with kinesis expe-
riences an initial decrease in population size. This indicates that initially,
having kinesis is not advantageous for the prey population in that partic-
ular space. However, it becomes beneficial, and the population manages
to survive when the prey population without kinesis starts to decline, as
illustrated in Fig. 6.

� In the model we have constructed and analyzed in this study, the predator
population exhibits spatial behavior characterized by traveling waves.
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1. Introduction

In recent years, abundant semigroups have attracted more and more attention
from semigroup scholars (see, [4-5, 7-8, 16]). As an important subclass of abun-
dant semigroups, type B semigroups (see, [12-15, 17-19]) are called generalized
inverse semigroups together with ample semigroups (see, [2-3, 6]) because of
their similar properties to inverse semigroups (see, [1, 11, 23]). The localiza-
tion (see, [9, 20-22]) is a good method to construct a new algebraic structure,
and it plays an important role in commutative algebra. Localizations of inverse
semigroups and ample semigroups have been studied by many authors (see, [9,
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21-22]). As an application of the localization, this paper will give some new
characterizations of localizations of a type B semigroup.

2. Preliminaries

Firstly, some definitions, notations and known results used in this paper are
provided.

In 1951, the concept of Green’s relations were introduced by Green in [10].
Let a, b ∈ S, we have

aLb⇐⇒ S1a = S1b; aRb⇐⇒ aS1 = bS1.

In the 1970s, Fountain extended Green’s relations to Green’s * relations.
Let S be a semigroup. Recall, from [5] that two elements a and b in S are
L∗-[R∗-] related if and only if they are L-[R-]related in some oversemigroup of
S. The equivalent definitions of L∗-relation and R∗-relation are given as follows:

Lemma 2.1 ([5]). Let S be a semigroup and a, b ∈ S. Then, the following
statements hold:

(1) aL∗b if and only if, for all x, y ∈ S1, ax = ay ⇔ bx = by;

(2) aR∗b if and only if, for all x, y ∈ S1, xa = ya⇔ xb = yb.

Corollary 2.2 ([5]). Let S be a semigroup and a, e = e2 ∈ S. Then, the
following statements are equivalent:

(1) aL∗e [aR∗ e];

(2) ae = a [a = ea] and for all x, y ∈ S1, ax = ay [xa = ya]implies ex = ey
[xe = ye].

Obviously, let S be a semigroup. The relation L∗ is a right congruence and
R∗ is a left congruence on S. Usually, L ⊆ L∗ and R ⊆ R∗ on S. But, if a and
b are regular elements of a semigroup S, then we obtain that aL∗b if and only
if aLb, and that aR∗b if and only if aRb. That is, L∗ ∩ (RegS × RegS) = L,
R∗∩ (RegS×RegS) = R, where RegS denotes the set of all regular elements of
S. For convenience, L∗

a and R∗
a denote the L∗−class and R∗−class containing

a, respectively; E(S) denotes the set of idempotents of S; a+ and a∗ denote the
idempotent of the L∗−class and R∗−class containing a, respectively.

As in [4], a semigroup S is said to be right (left) abundant if each L∗ −
(R∗)−class of S contains an idempotent. A semigroup S is abundant if it is
both right and left abundant. A right (left) abundant semigroup S is right (left)
adequate if E(S) is a semilattice ([5]). A semigroup S is said to be adequate if
it is both left and right adequate.

Definition 2.1 ([4]). Let S be a right adequate semigroup. Then, S is said to
be right type B, if it satisfies the following conditions:
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(B1) for all e, f ∈ E(S1), a ∈ S, (efa)∗ = (ea)∗(fa)∗;

(B2) for all a ∈ S, e ∈ E(S), if e ≤ a∗, then there is f ∈ E(S1) such that
e = (fa)∗, where ≤ is a natural partial order on E(S).

Definition 2.2 ([4]). Let S be a left adequate semigroup. Then, S is left type
B, if it satisfies the following conditions:

(B1′) for all e, f ∈ E(S1), a ∈ S, (aef)+ = (ae)+(af)+;

(B2′) for all a ∈ S, e ∈ E(S), if e ≤ a+, then there is f ∈ E(S1) such that
e = (af)+, where ≤ is a natural partial order on E(S).

A semigroup is said to be type B if it is both left and right type B.

Lemma 2.3 ([12]). Let S be a type B semigroup. The relation σ is defined as
follows:

(a, b) ∈ σ ⇐⇒ (∃e ∈ E(S)) eae = ebe.

Then, σ is the least cancellative congruence on S.

Definition 2.3 ([21]). Let T be a monoid, S be a semigroup and H be a sub-
semigroup of S. Then, T is said to be a localization of S on H, if it satisfies
the following conditions:

(1) There is a surjective homomorphism ϕ : S → T such that ϕ(a) is inverse
on T , for all a ∈ H.

(2) If there are a monoid S′ and a homomorphism α : S → S′ such that α(a)
is inverse on S′, for all a ∈ H, then there is a unique homomorphism
ψ : T → S′ such that ψϕ = α.

Lemma 2.4 ([9]). Let S be a semigroup and H be a subsemigroup of S. If there
exists a localization of S on H, then the localization is unique in the sense of
isomorphism. For convenience, we denote the unique localization by S[H−1].

3. The localization of a type B semigroup on its idempotent
semilattice

In this section, we shall characterize the localization of a type B semigroup
on its idempotents. For convenience, we denote the idempotent set E(S) of a
semigroup S by E.

Proposition 3.1. Let S be a type B semigroup and E be its idempotent semi-
lattice. Define a relation on set S × E as follows:

(∀(x, e) ∈ S × E)(x, e) ∼ (y, f) ⇐⇒ (∃h ∈ E)hfxfh = heyeh,

then the following statements hold:
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(1) The relation ∼ is an equivalence relation on S.

(2) For all x ∈ S, e, f ∈ E, (x, e) ∼ (x, f).

(3) For all (x, e) ∈ S × E, we denote the equivalence class containing (x, e)
by x/e. Then, for all e1, e2, e3, e4 ∈ E, e1/e2 ∼ e3/e4. In particular, for
e ∈ E, we denote ∼ −class containing all (e1, e2) by e/e, where e1, e2 ∈ E.

(4) Put T = (S × E)/ ∼= {x/e | x ∈ S}. Define a multiplication “ · ” on T
as follows:

(∀x/e, y/e ∈ T ) x/e · y/e = (xy)/e.

Then, T is a monoid whose identity element is e/e under the multiplication
“ · ”.

Proof. (1) Obviously, “ ∼ ” is reflexive and symmetric. Now, we prove that
“ ∼ ” is transitive. To see it, let (x, e), (y, f), (z, g) ∈ S × E such that (x, e) ∼
(y, f), (y, f) ∼ (z, g). Then, there exist e1, e2 ∈ E such that e1fxfe1 = e1eyee1
and e2gyge2 = e2fzfe2. Hence,

e1e2fgxge1e2f = e2ge1fxfe1e2g = e2ge1eyee1e2g = e1ee2gyge2e1e

= e1ee2fzfe2e1e = e1e2fezee1e2f.

Let h = e1e2f ∈ E. Then, hgxgh = hezeh. This shows that (x, e) ∼ (z, g).
Therefore, “ ∼ ” is an equivalence relation on S.

(2) For all x ∈ S, e, f ∈ E, we have that effxfef = efxef = eefxeef =
efexeef . Let h = ef ∈ E. Then, hfxfh = hexeh. Therefore, (x, e) ∼ (x, f).

(3) Since E is the idempotent semilattice of S, we have that h = e1e2e3e4 ∈
E, for all e1, e2, e3, e4 ∈ E. Again, since he4e1e4h = he2e3e2h, we have (e1, e2) ∼
(e3, e4). That is, e1/e2 ∼ e3/e4. In particular, we choose one element e ∈ E, it
is easy to see that (e1, e2) ∈ e/e, for all e1, e2 ∈ E.

(4) Firstly, we prove that the multiplication operation “ · ” on T is well-
defined. Let x1/e, x2/e, y1/e, y2/e ∈ T with x1/e = x2/e, y1/e = y2/e. Then,
there exist f, g ∈ E such that fex1ef = fex2ef and gey1eg = gey2eg. Notice
that x∗1ef ≤ x∗1, x

∗
2ef ≤ x∗2. We have that there exist e1, e2 ∈ E(S1) such that

x∗1ef = (e1x1)
∗ and x∗2ef = (e2x2)

∗ from Condition (B2). Hence,

e1e2fex1ef = e1e2fex1x
∗
1ef = e1e2fex1(e1x1)

∗

= e1e2fee1x1(e1x1)
∗ = e1e2fee1x1.

Similarly, e1e2fex2ef = e1e2fee2x2. Again, fex1ef = fex2ef . Multiply-
ing it on the left by e1e2, we obtain that e1e2fex1ef = e1e2fex2ef . Thus,
e1e2fee1x1 = e1e2fee2x2. On the other hand, it is clear that gey+1 ≤ y+1 and
gey+2 ≤ y+2 . Therefore, there exist e3, e4 ∈ E(S1) such that gey+1 = (y1e3)

+ and
gey+2 = (y2e4)

+ from Condition (B2’), and so

gey1ege3e4 = gey+1 y1ege3e4 = (y1e3)
+y1ege3e4

= (y1e3)
+y1e3ege3e4 = y1e3ege3e4.
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Similarly, gey2ege3e4 = y2e4ege3e4. Again, gey1eg = gey2eg. Multiplying it on
the right by e3e4, we obtain that gey1ege3e4 = gey2ege3e4. Thus, y1e3ege3e4 =
y2e4ege3e4. For some h = e1e2e3e4fg ∈ E, we have

hex1y1eh = e1e2e3e4fgex1y1ee1e2e3e4fg = e3e4ge1e2fee1x1y1e3ege3e4e1e2f

= e3e4ge1e2fee2x2y2e4ege3e4e1e2f = e1e2e3e4fgex2y2ee1e2e3e4fg

= hex2y2eh.

Hence, (x1y1)/e = (x2y2)/e. This means that the multiplication operation “ · ”
on T is good.

Next, we show that T is a monoid whose identity element is e/e under the
multiplication “ · ”. Let x/e, y/e, z/e ∈ T . We have

(x/e · y/e) · z/e = (xy)/e · z/e = (xyz)/e

= x/e · (yz)/e = x/e · (y/e · z/e).

This shows that T is associative under the multiplication operation “ · ”. It is
clear that T is closed. Thus, T is a semigroup with respect to the multiplication
“ · ”. Obviously, we have ee(xe)ee = eexee, for all e ∈ E, x/e ∈ T . Hence,
(xe, e) ∼ (x, e). That is, (xe)/e = x/e · e/e = x/e. On the other hand, for all
e ∈ E, x/e ∈ T , we have ee(ex)ee = eexee. Thus, (ex, e) ∼ (x, e). That is,
(ex)/e = e/e · x/e = x/e. Therefore, T is a monoid whose identity element is
e/e under the multiplication “ · ”.

The following theorem shows that the existence of localization of a type B
semigroup on its idempotent semilattice.

Theorem 3.2. Let S be a type B semigroup and E be its idempotent semilattice.
Then, there is a localization of S on E.

Proof. Define a mapping as follows:

ϕ : S −→ T = (S × E)/ ∼, x 7→ x/e,

where T is a monoid which is constructed in Proposition 3.1(4). It is clear that
ϕ is a surjection from S into T . For all x, y ∈ S, we have

ϕ(xy) = (xy)/e = x/e · y/e = ϕ(x) · ϕ(y).

Hence, ϕ is a surjective homomorphism from S into T . By Proposition 3.1, we
have ϕ(f) = f/e = e/e, for all f ∈ E. Thus, ϕ(f) is an identity element of T .
This means that ϕ(f) is inverse on T .

Suppose that there are a monoid S′ and a homomorphism α : S → S′ such
that α(f) is inverse on S′, for all f ∈ E. Define a mapping as follows:

ψ : T = (S × E)/ ∼−→ S′, x/e 7→ α(x).
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Let x/e, y/e ∈ T with x/e = y/e. Then, there exists h ∈ E such that hexeh =
heyeh. Let f = eh = he ∈ E. It follows that fxf = fyf . Hence,

α(f)α(x)α(f) = α(f)α(y)α(f).

Multiplying it on the left and right by α(f)−1, we have α(x) = α(y) since α(f)
is inverse on S′. Thus, ψ is a well defined. Let x/e, y/e ∈ T . Then,

ψ(x/e · y/e) = ψ((xy)/e) = α(xy) = α(x)α(y) = ψ(x/e)ψ(y/e).

Hence, ψ is a homomorphism. It is easy to see that ψϕ(x) = ψ(x/e) = α(x),
for all x ∈ S. That is, ψϕ = α. Finally, we prove that ψ is unique. Suppose
that there exists a homomorphism ψ′ : T → S′ such that ψ′ϕ = α. Then, for
all x/e ∈ T , we have ψ′(x/e) = ψ′(ϕ(x)) = (ψ′ϕ)(x) = α(x) = ψ(x/e). Thus,
ψ′ = ψ. To sum up, T is a localization of S on E. This completes the proof.

4. The cancellative monoid homomorphic image of a type B
semigroup

In this section, we shall characterize the relations between localizations and the
minimum cancellative congruence of a type B semigroup.

By Lemma 2.4, we have the localization T of S on E is unique. we denote
the localization T by S[E−1].

Proposition 4.1. Let S be a type B semigroup and E be its idempotent semi-
lattice. Then, the localization S[E−1] of S on E is cancellative.

Proof. Let x/e, y/e, z/e ∈ S[E−1] with x/e · y/e = x/e · z/e. Then, (xy)/e =
(xz)/e. Hence, there exists h ∈ E such that hexyeh = hexzeh, and so

hexyeh = hexzeh⇒ (hex)yeh = (hex)zeh

⇒ (hex)∗yeh = (hex)∗zeh

⇒ (hex)∗heye(hex)∗h = (hex)∗heze(hex)∗h.

Thus, y/e = z/e since (hex)∗h ∈ E. This shows that S[E−1] is left cancellative.
Dually, S[E−1] is right cancellative. That is, S[E−1] is cancellative.

Proposition 4.2. Let S be a type B semigroup and E be its idempotent semi-
lattice. Then, the localization S[E−1] of S on E is the maximum cancellative
monoid homomorphic image of S.

Proof. Let ϕ be a surjective homomorphism from S onto S[E−1] such that ϕ(f)
is inverse on S[E−1], for all f ∈ E. If S′ is the cancellative monoid homomorphic
image of S, then there exists a homomorphism α : S → S′. By the definition
of localization, there is a unique homomorphism ψ : S[E−1] → S such that
ψϕ = α. Thus, S[E−1] is the maximum cancellative monoid homomorphic
image of S.
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Proposition 4.3. Let S be a type B semigroup and E be its idempotent semilat-
tice, H be a subsemigroup of S. If E ⊆ H ⊆ RegS, then there is the localization
S[H−1] of S on H with S[H−1] = S[E−1]. In particular, S[(RegS)−1] = S[E−1].

Proof. Since S is a type B semigroup, H is a subsemigroup of S and E ⊆
H ⊆ RegS, we have that x∗LxRx+, for all x ∈ H. Again, since S[E−1] is the
localization of S on E, there exists a surjective homomorphism ϕ : S → S[E−1].
Hence,

ϕ(x)H(S[E−1])ϕ(x∗) = ϕ(x+) = e/e.

This means that ϕ(x) is inverse on S[E−1]. On the other hand, if there are
a monoid S′ and a homomorphism α : S → S′ such that α(x) is inverse on
S′, for all x ∈ H, then α(f) is inverse on S′, for all f ∈ E ⊆ H. By the
definition of localization, there is a unique homomorphism ψ : S[E−1] → S′

such that ψϕ = α. Therefore, S[E−1] is the localization of S on H. That is,
S[H−1] = S[E−1].

Note that, E is an idempotent semilattice of S. we have that RegS is a
subsemigroup of S. Again, E ⊆ RegS. Therefore, S[(RegS)−1] = S[E−1].

Theorem 4.4. Let S be a type B semigroup and E be its idempotent semilattice.
Then, S[E−1] = S/σ, where σ is the least cancellative congruence on S.

Proof. Define a mapping as follows:

φ : S[E−1] −→ S/σ, x/e 7→ xσ.

Now, we prove that φ is an isomorphism. Let x/e, y/e ∈ S[E−1] with x/e = y/e.
Then, there exists h ∈ E such that hexeh = heyeh. Hence, fxf = fyf for some
f = eh = he ∈ E, and so (x, y) ∈ σ. That is, xσ = yσ. This means that φ is
well defined. Let xσ, yσ ∈ S/σ with xσ = yσ. Then, there is g ∈ E such that
gxg = gyg, and gexeg = geyeg. Thus, x/e = y/e. Obviously, φ is a surjection.
Hence, φ is a bijection from S[E−1] onto S/σ. Finally, we show that φ is a
homomorphism. Obviously, for all x/e, y/e ∈ S[E−1], we have

φ(x/e · y/e) = φ((xy)/e) = (xy)σ = xσ · yσ = φ(x/e) · φ(y/e).

This completes the proof.
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Abstract. Recently, p-convergence in fuzzy metric spaces, in George and Veeramani’s
sense, has been explored by Gregori et al. [6]. In this paper, we study consistency
of Cauchyness (completeness, respectively) and p-Cauchyness (p-completeness, respec-
tively) in fuzzy metric spaces.
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1. Introduction

Many authors have defined several concepts of fuzzy metric space in different
ways [3, 4, 11, 12]. In particular, to make the topology induced by a fuzzy metric
to be Hausdorff, George and Veeramani [4] gave the concept of fuzzy metric space
with the help of continuous t-norms. Later, Gregori and Romaguera [10] proved
that the topological space induced by a fuzzy metric is metrizable. In [13], Mihet
introduced the concept of p-convergence in fuzzy metric spaces. Whereafter,
some authors studied some aspects relative to p-convergence, p-Cauchy sequence
and p-completeness in fuzzy metric spaces in [1, 6, 7, 8]. Specifically, Gregori
et al. [6] posed an open problem of characterizing consistency of Cauchyness
(completeness, respectively) and p-Cauchyness (p-completeness, respectively) in
fuzzy metric spaces. Here, we will study those fuzzy metric spaces, that we call
k-unequal, in which the family of p-Cauchy sequences and Cauchy sequences
agree, moreover, completeness and p-completeness coincide.

*. Corresponding author
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2. Preliminaries

From now on, N shall denote the set of positive integer numbers . Our basic
reference for general topology is [2].

Definition 2.1 ([4]). A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a, for all a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Observe that a ∗ b = min{a, b} and a ∗ b = a · b are two common examples of
continuous t-norms.

Definition 2.2 ([4]). An ordered triple (X,M, ∗) is said to be a fuzzy metric
space if X is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set
on X ×X × (0,+∞) satisfying the following conditions, for all x, y, z ∈ X and
s, t ∈ (0,+∞):

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) =M(y, x, t);

(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(v) the function M(x, y, ·) : (0,+∞) → (0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, then we will call (M, ∗), or simply M , a
fuzzy metric on X.

Definition 2.3 ([4]). Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t >
0 and x ∈ X. The set

BM (x, r, t) = {y ∈ X|M(x, y, t) > 1− r}

is called the open ball with center x and radius r with respect to t.

George and Veeramani [4] proved that {BM (x, r, t)|x ∈ X, t > 0, r ∈ (0, 1)}
forms a base of a topology τM in X.

Proposition 2.1 ([4]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X converges to x0 ∈ X if and only if limnM(xn, x0, t) = 1, for all t > 0.
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Definition 2.4 ([4]). Let (X, d) be a metric space. Define a ∗ b = a · b, for all
a, b ∈ [0, 1], and let Md be the real value mapping on X ×X × (0,+∞) defined
by

Md(x, y, t) =
t

t+ d(x, y)
.

Then, (X,Md, ·) is a fuzzy metric space and (Md, ·) is called the standard fuzzy
metric induced by d.

Definition 2.5 ([5]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X is called Cauchy if for each r ∈ (0, 1) and each t > 0, there exists n0 ∈ N
such that M(xn, xm, t) > 1− r, for all n,m ≥ n0. X is called complete if every
Cauchy sequence in X is convergent with respect to τM . In such a case M is
called complete.

Definition 2.6 ([9]). A fuzzy metric M on X is said to be stationary, if M
does not depend on t, i.e. if, for all x, y ∈ X and t, M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t).

Definition 2.7 ([6]). We say that the fuzzy metric space (X,M, ∗) is principal
(or simply, M is principal) if {BM (x, r, t)|r ∈ (0, 1)} is local base at x ∈ X, for
each x ∈ X and each t > 0.

Definition 2.8 ([6, 13]). Let (X,M, ∗) be a fuzzy metric space. A sequence
{xn} in X is said to be point convergent to x0 ∈ X if limnM(xn, x0, t0) = 1 for
some t0 > 0. In such a case we say that {xn} is p-convergent to x0 for t0 > 0,
or, simply, {xn} is p-convergent.

Remark 2.1 ([6, 13]). Clearly, {xn} is convergent to x0 ∈ X if and only if {xn}
is p-convergent to x0, for all t > 0.

Definition 2.9 ([6]). Let (X,M, ∗) be a fuzzy metric space. A sequence {xn}
in X is said to be p-Cauchy if for each r ∈ (0, 1), there are n0 ∈ N and t0 > 0
such that M(xn, xm, t0) > 1− r, for all n,m ≥ n0, i.e. limm,nM(xn, x0, t0) = 1
for some t0 > 0. In such a case we say that {xn} is p-Cauchy for t0 > 0, or,
simply, {xn} is p-Cauchy.

Remark 2.2 ([6]). It is not hard to see that {xn} is a Cauchy sequence if and
only if {xn} is p-Cauchy, for all t > 0 and, obviously, p-convergent sequences
are p-Cauchy.

Definition 2.10 ([6]). A fuzzy metric space (X,M, ∗) is called p-complete if
every p-Cauchy sequence in X is p-convergent to some point of X. In such a
case M is called p-complete.
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3. Main results

We start this section with the following definition.

Definition 3.1. A fuzzy metric space (X,M, ∗) is said to be k-unequal if k(1−
M(x, y, kt)) ≥ 1−M(x, y, t) whenever x, y ∈ X, t > 0 and k > 1. In such a case
M is called k-unequal.

Now, we recall several examples, which were given in [6].

Example 3.1. (a) A stationary fuzzy metric M1 is principal.
(b) The well-known standard fuzzy metric M2 is principal.

(c) M3(x, y, t) = e−
d(x,y)

t , where d is a metric on X, is principal.

(d) M4(x, y, t) =
min{x,y}+t
max{x,y}+t is a fuzzy metric on (0,+∞), which is principal.

Example 3.2. Consider the above examples. It is an easy exercise to verify
that M1,M2 and M4 are all k-unequal. Now, we only prove that M3 is also
k-unequal. If x = y, then it is clear that k(1 −M3(x, y, kt)) = 1 −M3(x, y, t).
Let x ̸= y and k > 1. Suppose that k(1−M3(x, y, kt)) < 1−M3(x, y, t), namely

k(1− e−
d(x,y)

kt ) < 1− e−
d(x,y)

t . Then, k · e
d(x,y)

kt −1

e
d(x,y)

kt

< e
d(x,y)

t −1

e
d(x,y)

t

, which means that

ke
d(x,y)

t (e
d(x,y)

kt −1) < e
d(x,y)

kt (e
d(x,y)

t −1). Notice that e
d(x,y)

kt > e0 = 1. We deduce

that ke
d(x,y)

t − ke
(k−1)d(x,y)

kt < e
d(x,y)

t − 1, that is (k− 1)zk − kzk−1+1 < 0, where

z = e
d(x,y)

kt . Set f(z) = (k − 1)zk − kzk−1 + 1, z ∈ (1,+∞). Then, f(z) < 0, for
all z > 1. Since f ′(z) = (k− 1)kzk−1 − k(k− 1)zk−2 = (k− 1)kzk−2(z− 1) > 0,
for all z > 1, we conclude that f is a strictly increasing function on (1,+∞).
Note that, f is a continuous function on [1,+∞). We get that f(z) > f(1) = 0,
for all z > 1, which is a contradiction. So, M3 is k-unequal.

Theorem 3.1. Let (X,M, ∗) be a fuzzy metric space. If M is k-unequal, then
M is principal.

Proof. Let BM (x, ε, s) be an open ball with center x and radius ε with respect
to s, where x ∈ X, ε ∈ (0, 1) and s > 0. Put t > 0. In case 0 < t < s. Take
r = ε. Then, x ∈ BM (x, r, t) ⊆ BM (x, ε, s). In case t ≥ s. Then, t

s ≥ 1.
Hence, there exists r = εs

2t such that x ∈ BM (x, r, t) ⊆ BM (x, ε, s). In fact, let
y ∈ BM (x, r, t). Since M is k-unequal, we have that

s

t
(M(x, y, s)− 1) + 1 ≥M(x, y,

t

s
· s) =M(x, y, t) > 1− r.

Thus

M(x, y, s) > 1− rt

s
= 1− ε

2
> 1− ε,

which follows that y ∈ BM (x, ε, s). Consequently, M is principal.

The converse of the preceding theorem is not true, in general. We illustrate
this fact with the next example.
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Example 3.3. Let X = (0, 1). Denote a ∗ b = a · b, for all a, b ∈ [0, 1]. Define
the function M on X ×X × (0,+∞) by

M(x, y, t) =


1, x = y,

xyt, x ̸= y, t ≤ 1,

xy, x ̸= y, t > 1.

Then, (X,M, ∗) is a principal fuzzy metric space (see [6]). Choose x0 = 0.95, y0 =
0.96, t0 = 0.875 and k0 = 2. Then

k0(1−M(x0, y0, k0t0)) = 2(1−M(0.95, 0.96, 2·0.875)) = 2(1−0.95·0.96) = 0.176,

and

1−M(x0, y0, t0) = 1−M(0.95, 0.96, 0.875) = 1− 0.95 · 0.96 · 0.875 = 0.202.

So, k0(1 − M(x0, y0, k0t0)) < 1 − M(x0, y0, t0), which means that M is not
k-unequal.

Due to Example 3.2 and Theorem 3.1, the following chain of implications is
fulfilled obviously.

stationary ⇒ k-unequal ⇒ principal

At the end of paper [6], Gregori et al. posed an open problem of charac-
terizing those fuzzy metric spaces where the family of p-Cauchy sequences and
Cauchy sequences agree, or further, when it is satisfied that completeness is
equivalent to p-completeness.

Next, we will solve the above open problem by the following results.

Theorem 3.2. Let {xn} be a sequence in a k-unequal fuzzy metric space
(X,M, ∗). Then, {xn} is Cauchy if and only if {xn} is p-Cauchy.

Proof. Suppose that {xn} is Cauchy. Then, by Remark 2.2 we deduce that
{xn} is p-Cauchy.

Conversely, suppose that {xn} is p-Cauchy for t0 > 0. Let ε ∈ (0, 1) and t >
0. Pick ε1 = min{ tε

t0
, ε}. Then, there exists n0 ∈ N such that M(xn, xm, t0) >

1− ε1, for all n,m ≥ n0. If t > t0, then

M(xn, xm, t) ≥M(xn, xm, t0) > 1− ε1 ≥ 1− ε.

If 0 < t ≤ t0, then
t0
t ≥ 1. Since M is k-unequal, we obtain that

t

t0
(M(xn, xm, t)− 1) + 1 ≥M(xn, xm,

t0
t
· t) =M(xn, xm, t0) > 1− ε1.

It follows that

M(xn, xm, t) > 1− t0
t
· ε1 ≥ 1− t0

t
· tε
t0

= 1− ε.

So, {xn} is Cauchy. The proof is finished.
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Proposition 3.1 ([6]). Let (X,M, ∗) be a principal fuzzy metric space. If X is
p-complete, then X is complete.

It was shown in [6] that the converse of the above proposition is false, in
general. Nevertheless, the next proposition can be obtained.

Proposition 3.2. Let (X,M, ∗) be a k-unequal fuzzy metric space. If X is
complete, then X is p-complete.

Proof. Let {xn} be a p-Cauchy sequence. According to Theorem 3.2, we have
that {xn} is Cauchy. Hence, {xn} converges to some point x0 ∈ X. Due to
Remark 2.1, we obtain that {xn} is p-convergent to x0. We are done.

With Theorem 3.1, Proposition 3.1 and Proposition 3.2, we get the next
corollary.

Corollary 3.1. Let (X,M, ∗) be a k-unequal fuzzy metric space. Then, X is
complete if and only if X is p-complete.

Since stationary fuzzy metric does not depend on t, obviously “p-Cauchy
sequences and Cauchy sequences” and also “p-completeness and completeness”
are equivalent concepts in stationary fuzzy metrics.
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1. Introduction and definitions

About the features of convex functions, we code some lines from [18] “Convex
functions appear in many problems in pure and applied mathematics. They
play an extremely important role in the study of both linear and non-linear
programming problems. The theory of convex functions is part of the general
subject of convexity, since a convex function is one whose epigraph is a convex
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set. Nonetheless it is an important theory which touches almost all branches
of mathematics. Graphical analysis is one of the first topics in mathematics
which requires the concept of convexity. Calculus gives us a powerful tool in
recognizing convexity, the second-derivative test”.

The theory of convex functions is a crucial area of mathematics that has
applications in a wide range of fields, including optimization theory, control the-
ory, operations research, geometry, functional analysis, and information theory.
This theory is also highly relevant in other areas of science, such as economics,
finance, engineering, and management sciences.

The importance of convex functions for the generalization of integral in-
equalities due to the variety of their nature the notion have been established.
Integral inequalities are satisfied by many convex functions. Among these, the
well known is Ostrowski inequality. To generalize the Ostrowski’s inequality, we
need to generalize the concept of convex functions, in this way we can easily see
the generalizations and its particular cases. From the literature, we remind few
definitions for various convex(concave) functions [2].

Definition 1.1. Any function g : K ⊆ R → R is known as convex(concave), if

g(ty + (1− t)z) ≤ (≥)tg(y) + (1− t)g(z),(1.1)

∀ y, z ∈ K, t ∈ [0, 1].

Here we remind definition of P -convex(concave) function see [5].

Definition 1.2. Any function g : K ⊆ R → R is known as P -convex(concave),
if function g is a non-negative, then we have

g(ty + (1− t)z) ≤ (≥)g(y) + g(z),(1.2)

∀ y, z ∈ K, t ∈ [0, 1].

The definition of quasi-convex function is extracted from [9].

Definition 1.3. Any function g : K ⊆ R → R is called a quasi-convex(concave),
if

g(ty + (1− t)z) ≤ (≥)max{g(y), g(z)}(1.3)

∀ y, z ∈ K, t ∈ [0, 1].

We present definition of s-convex(concave) functions in the 1st kind as fol-
lows (see [16]).

Definition 1.4. Suppose s ∈ (0, 1]. Any function g : K ⊆ [0,∞) → [0,∞) is
known as s-convex(concave) in the 1st kind, if

g(ty + (1− t)z) ≤ (≥)tsg(y) + (1− ts)g(z),(1.4)

∀ y, z ∈ K, t ∈ [0, 1].
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Remark 1.5. Note that in this definition we also included s = 0. Further if we
put s = 0, we get quasi-convexity (see Definition 1.3).

We also present definition of s-convex(concave) functions in the second kind
from [16].

Definition 1.6. Suppose s ∈ (0, 1]. Any function g : K ⊆ [0,∞) → [0,∞) is
known as s-convex(concave) in the 2nd kind, if

g(ty + (1− t)z) ≤ (≥)tsg(y) + (1− t)sg(z),(1.5)

∀ y, z ∈ K, t ∈ [0, 1].

Remark 1.7. In the similar manner, we have slightly improved definition of
2nd kind convexity by including s = 0. Further if we put s = 0, we easily get
P -convexity (see Definition 1.2).

The following definition ofm-convex(concave) function is extracted from [10]

Definition 1.8. Suppose m ∈ [0, 1]. Any function g : [0,∞) → R is known as
m-convex (concave), if

g(ty +m(1− t)z) ≤ (≥)tg(y) +m(1− t)g(z)(1.6)

∀ y, z ∈ [0,∞), t ∈ [0, 1].

Remark 1.9. Form = 1 the above definition recaptures the concept of standard
convex(concave) functions in the interval K and for m = 0 the concept star-
shaped functions.

Following definition is extracted from [10]

Definition 1.10. Let (m1,m2) ∈ (0, 1]2. Any function g : [0,∞) → R is known
as (m1,m2)-convex(concave), if

g(m1ty +m2(1− t)z) ≤ (≥)m1tg(y) +m2(1− t)g(z),(1.7)

∀ y, z ∈ K, t ∈ [0, 1].

In [15], Mihesan stated (α,m)-convexity as in the following:

Definition 1.11. Suppose (α,m) ∈ [0, 1]2. A function g : [0,∞) → R is known
as (α,m)-convex(concave), if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− tα)g(z)(1.8)

∀ y, z ∈ [0,∞), t ∈ [0, 1]. Above function can also be written as (m, s)-
convex(concave) function in the 1st kind.

Firstly, we introduce a new class of (m, s)-convex(concave) function in the
2nd kind that is given below:
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Definition 1.12. Let (m, s) ∈ (0, 1]2. Any function g : K ⊆ [0,∞) → [0,∞) is
known as (m, s)-convex(concave) in the 2nd kind, if

g(ty +m(1− t)z) ≤ (≥)tsg(y) +m(1− t)sg(z)(1.9)

∀ y, z ∈ K, t ∈ [0, 1].

A new class of (s, r)-convex(concave) functions in the mixed kind is extracted
from [7].

Definition 1.13. Suppose (s, r) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) → [0,∞)
is known as (s, r)-convex(concave) in the mixed kind, if

g(ty + (1− t)z) ≤ (≥)trsg(y) + (1− tr)sg(z),(1.10)

∀ y, z ∈ K, t ∈ [0, 1].

Definition 1.14 ([6]). Suppose (α, β) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) →
[0,∞) is known as (α, β)-convex(concave) in the 1st kind, if

g(ty + (1− t)z) ≤ (≥)tαg(y) + (1− tβ)g(z),(1.11)

∀ y, z ∈ K, t ∈ [0, 1].

Definition 1.15 ([6]). Suppose (α, β) ∈ [0, 1]2. Any function g : K ⊆ [0,∞) →
[0,∞) is known as (α, β)-convex(concave) in the 2nd kind, if

g(ty + (1− t)z) ≤ (≥)tαg(y) + (1− t)βg(z),(1.12)

∀ y, z ∈ K, t ∈ [0, 1].

Secondly, we introduce a new class of (m, s, r)-convex(concave) functions in
mixed kind which is given below:

Definition 1.16. Let (m, s, r) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m, s, r)-convex(concave) in the mixed kind, if

g(ty +m(1− t)z) ≤ (≥)trsg(y) +m(1− tr)sg(z),(1.13)

∀ y, z ∈ K, t ∈ [0, 1].

Thirdly, we introduce a new class of (m,α, β)-convex(concave) functions in
the 1st kind which is given below:

Definition 1.17. Let (m,α, β) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m,α, β)-convex(concave) in the 1st kind, if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− tβ)g(z),(1.14)

∀ y, z ∈ K, t ∈ [0, 1].
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Fourthly, we introduce a new class of (m,α, β)-convex(concave) functions in
the 2nd kind which is given below:

Definition 1.18. Let (m,α, β) ∈ [0, 1]3. A function g : K ⊆ [0,∞) → [0,∞) is
known as (m,α, β)-convex(concave) in the 2nd kind, if

g(ty +m(1− t)z) ≤ (≥)tαg(y) +m(1− t)βg(z),(1.15)

∀ y, z ∈ K, t ∈ [0, 1].

Following definition is extracted from [10]

Definition 1.19. Let (α,m1,m2) ∈ (0, 1]3. Any function g : [0,∞) → R is
known as (α,m1,m2)-convex(concave), if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− tα)g(z),(1.16)

∀ y, z ∈ K, t ∈ [0, 1]. Above function can also be written as (m1,m2, s)-
convex(concave) function in the 1st kind.

Fifthly, we introduce a new class of (m1,m2, s)-convex(concave) functions in
the 2nd kind which is given below:

Definition 1.20. Let (m1,m2, s) ∈ (0, 1]3. Any function g : [0,∞) → R is
known as (m1,m2, s)-convex(concave) in the 2nd kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
sg(y) +m2(1− t)sg(z),(1.17)

∀ y, z ∈ K, t ∈ [0, 1].

Sixthly, we introduce a new class of (m1,m2, s, r)-convex(concave) functions
in mixed kind which is given below:

Definition 1.21. Let (m1,m2, s, r) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, s, r)-convex(concave) in the mixed kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
rsg(y) +m2(1− tr)sg(z),(1.18)

∀ y, z ∈ K, t ∈ [0, 1].

Seventhly, we introduce a new class of (m1,m2, α, β)-convex(concave) func-
tions in the 1st kind which is given below:

Definition 1.22. Let (m1,m2, α, β) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β)-convex(concave) in the 1st kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− tβ)g(z),(1.19)

∀ y, z ∈ K, t ∈ [0, 1].
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Eighthly, we introduce a new class of (m1,m2, α, β)-convex(concave) func-
tions in the 2nd kind which is given below:

Definition 1.23. Suppose (m1,m2, α, β) ∈ (0, 1]4. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β)-convex(concave) in the 2nd kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αg(y) +m2(1− t)βg(z),(1.20)

∀ y, z ∈ K, t ∈ [0, 1].

Upcoming definition is (α, β, γ, µ)-convex(concave) function which is ex-
tracted from [7].

Definition 1.24. Let (α, β, γ, µ) ∈ [0, 1]4. A function g : K ⊆ [0,∞) → [0,∞)
is known as (α, β, γ, µ)-convex(concave) in the mixed kind, if

g(ty + (1− t)z) ≤ (≥)tαγg(y) + (1− tβ)µg(z),(1.21)

∀ y, z ∈ K, t ∈ [0, 1].

Ninthly, we introduce a new class of (m,α, β, γ, µ)-convex(concave) functions
in mixed kind that is given below:

Definition 1.25. Let (m,α, β, γ, µ) ∈ [0, 1]5. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m,α, β, γ, µ)-convex(concave) in the mixed kind, if

g(ty +m(1− t)z) ≤ (≥)tαγg(y) +m(1− tβ)µg(z),(1.22)

∀ y, z ∈ K, t ∈ [0, 1].

Tenthly and Finally we introduce a new class of function which would be
called class of (m1,m2, α, β, γ, µ)-convex(concave) function in mixed kind and
containing all above classes of functions. This definition is used sequentially in
this paper.

Definition 1.26. Let (m1,m2, α, β, γ, µ) ∈ (0, 1]6. A function g : K ⊆ [0,∞) →
[0,∞) is known as (m1,m2, α, β, γ, µ)-convex(concave) in the mixed kind, if

g(m1ty +m2(1− t)z) ≤ (≥)m1t
αγg(y) +m2(1− tβ)µg(z),(1.23)

∀ y, z ∈ K, t ∈ [0, 1].

Remark 1.27. In Definition 1.26, we have the following cases.

(i) If we choosem1 = 1,m2 = m in (1.23), we get (m,α, β, γ, µ)-convex(concave)
function in the mixed kind.

(ii) If we choose m1 = m2 = 1 in (1.23), we get (α, β, γ, µ)-convex(concave)
function in the mixed kind.
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(iii) If we choose β = γ = 1 and µ = β in (1.23), we get (m1,m2, α, β)-
convex(concave) function in the 2nd kind.

(iv) If we choose γ = µ = 1 in (1.23), we get (m1,m2, α, β)-convex(concave)
function in the 1st kind.

(v) If we choose γ = r, α = µ = s and β = 1 in (1.23), we get (m1,m2, s, r)-
convex(concave) function in mixed kind.

(vi) If we choose α = µ = s and β = γ = 1 in (1.23), we get (m1,m2, s)-
convex(concave) function in the 2nd kind.

(vii) If we choose γ = s and α = β = µ = 1 in (1.23), we get (m1,m2, s)-
convex(concave) function in the 1st kind.

(viii) If we choose m1 = 1, m2 = m, β = γ = 1 and µ = β in (1.23), we get
(m,α, β)-convex(concave) function in the 2nd kind.

(ix) If we choose m1 = 1, m2 = m and γ = µ = 1 in (1.23), we get (m,α, β)-
convex(concave) function in the 1st kind.

(x) If we choose m1 = 1, m2 = m, γ = r, α = µ = s and β = 1 in (1.23), we
get (m, s, r)-convex(concave) function in the mixed kind.

(xi) If we choose m1 = m2 = 1, β = γ = 1 and µ = β in (1.23), we get
(α, β)-convex(concave) function in the 2nd kind.

(xii) If we choose m1 = m2 = 1 and γ = µ = 1 in (1.23), we get (α, β)-
convex(concave) function in the 1st kind.

(xiii) If we choose m1 = m2 = 1, γ = r, α = µ = s and β = 1 in (1.23), we get
(s, r)-convex(concave) function in the mixed kind.

(xiv) If we choose m1 = 1, m2 = m, α = µ = s and β = γ = 1 in (1.23), we get
(m, s)-convex(concave) function in the 2nd kind.

(xv) If we choose m1 = 1, m2 = m, γ = s and α = β = µ = 1 in (1.23), we get
(m, s)-convex(concave) function in the 1st kind.

(xvi) If we choose α = β = γ = µ = 1 in (1.23), we get (m1,m2)-convex(concave)
function.

(xvii) If we choose m1 = 1, m2 = m and α = β = γ = µ = 1 in (1.23), we get
m-convex(concave) function.

(xviii) If we choose m1 = m2 = 1, α = µ = s and β = γ = 1 in (1.23), we get
s-convex(concave) function in the 2nd kind.

(xix) If we choose m1 = m2 = 1, α = β = s and γ = µ = 1 in (1.23), we get
s-convex(concave) function in the 1st kind.
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(xx) If we choose m1 = m2 = 1, γ = s and α = β = µ = 1 in (1.23), we get
s-convex(concave) function in the 1st kind.

(xxi) If we choose m1 = m2 = 1, α = β = 0, and γ = µ = 1 in (1.23), we get
quasi-convex(concave) function.

(xxii) If we choose m1 = m2 = 1, α = µ = 0 and β = γ = 1 in (1.23), we get
P -convex(concave) function.

(xxiii) If we choose m1 = m2 = α = β = γ = µ = 1 in (1.23), gives us ordinary
convex(concave) function.

In almost each field of science, inequalities act an important role. Although
it is very vast discipline but our focus is mainly on Ostrowski’s like inequalities.

In 1938, [17] Ostrowski proved the below interesting inequality for differen-
tiable mappings with bounded derivatives. It is well known in the literature as
Ostrowski inequality.

Proposition 1.28. Suppose g : K → R is a differentiable mapping in the
interior Ko of K, where j, k ∈ Ko with j < k. If |g′(y)| ≤ M ∀ y ∈ [j, k] where
M > 0 is constant. Then

∣∣∣∣g(y)− 1

k − j

∫ k

j
g(τ)dτ

∣∣∣∣ ≤ M(k − j)

[
1

4
+

(
y − j+k

2

)2
(k − j)2

]
.(1.24)

The value 1
4 is the best possible constant that this can not be replaced by the

smallest one.

Since fuzziness is a natural reality different than randomness and determin-
ism, Anastassiou extends Ostrowski like inequalities into the fuzzy setting in
2003 [1]. Congxin and Ming [3] introduced the concepts of fuzzy Riemann in-
tegrals. Fuzzy Riemann integral is a closed interval whose end points are the
classical Riemann integrals.

2. Preliminaries with notations

Under this heading, we remind few basic definitions and notations that would
help us in the sequel manner.

Definition 2.1 ([3]). ρ : R → [0, 1] is called a fuzzy number if satisfies the below
properties

1. ρ is normal (i.e, there exists an y0 ∈ R such that ρ(y0) = 1).

2. ρ is a convex fuzzy set, i.e., yt + (1 − t)z) ≥ min{ρ(y), ρ(z)}, ∀ y, z ∈ R,
t ∈ [0, 1] (ρ is called a convex fuzzy subset).
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3. ρ is upper semi continuous on R, i.e., ∀ y0 ∈ R and ∀ ϵ > 0, ∃ neighborhood
V (y0) : ρ(y) ≤ ρ(y0) + ϵ, ∀ y ∈ V (y0).

4. The set [ρ]0 = {y ∈ R : ρ(y) > 0} is compact where A denotes the closure
of A.

RF denotes the set of all fuzzy numbers. For α ∈ (0, 1] and ρ ∈ RF , [ρ]α =
{y ∈ R : ρ(y) ≥ α}. Then, from (1) to (4) it follows that the α-level set [ρ]α

is a closed interval ∀ α ∈ [0, 1]. Moreover, [ρ]α = [ρ
(α)
− , ρ

(α)
+ ] ∀ α ∈ [0, 1], where

ρ
(α)
− ≤ ρ

(α)
+ and ρ

(α)
− , ρ

(α)
+ ∈ R, i.e., ρ(α)− and ρ

(α)
+ are the endpoints of [ρ]α.

Definition 2.2 ([4]). Let ρ, ϱ ∈ RF and a ∈ R. Then, the addition and scalar
multiplication are defined by the equations, respectively.

1. [ρ⊕ ϱ]α = [ρ]α + [ϱ]α;

2. [a⊙ ρ]α = a[ρ]α;

∀ α ∈ [0, 1] where [ρ]α+[ϱ]α means the usual addition of two intervals (as subsets
of R) and a[ρ]α means the usual product between a scalar and a subset of R.

Proposition 2.1 ([11]). Let ρ, ϱ ∈ RF and a ∈ R. Then, the given properties
holds:

1. 1⊙ ρ = ρ.

2. ρ⊕ ϱ = ϱ⊕ ρ.

3. a⊙ ρ = ρ⊙ a.

4. [ρ]α1 ⊆ [ρ]α2 whenever 0 ≤ α2 ≤ α1 ≤ 1.

5. For any αn converging increasingly to α ∈ (0, 1],
⋂∞

n=1[ρ]
αn = [ρ]α.

Definition 2.3 ([3]). Let D : RF × RF → R+ ∪ {0} be a function, defined as

D(ρ, ϱ) = sup
α∈[0,1]

max
{∣∣∣ρ(α)− , ϱ

(α)
−

∣∣∣ , ∣∣∣ρ(α)+ , ϱ
(α)
+

∣∣∣}
∀ ρ, ϱ ∈ RF , Then, D is metric on RF .

Proposition 2.2 ([3]). Let ρ, ϱ, σ, e ∈ RF and a ∈ R, we have

1. (RF , D) is a complete metric space.

2. D(ρ⊕ σ, ϱ⊕ σ) = D(ρ, ϱ).

3. D(a⊙ ρ, a⊙ ϱ) = |a|D(ρ, ϱ).

4. D(ρ⊕ ϱ, σ ⊕ e) = D(ρ, σ) +D(ϱ, e).
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5. D(ρ⊕ ϱ, 0̃) ≤ D(ρ, 0̃) +D(ϱ, 0̃).

6. D(ρ⊕ ϱ, σ) ≤ D(ρ, σ) +D(ϱ, 0̃),

where 0̃ ∈ RF is stated as 0̃(y) = 0 ∀ y ∈ R.

Definition 2.4 ([4]). Let y, z ∈ RF if ∃ θ ∈ RF such that y = z ⊕ θ, then θ is
H-difference of y and z denoted by θ = y ⊖ z.

Definition 2.5 ([4]). Let T := [y0, y0 + γ] ⊆ R, with γ > 0. A function
g : T → RF is H-differentiable at y ∈ T if ∃ g′(y) ∈ RF i.e., both limits (with
respect to the metric D)

lim
h→0+

g(y + h)⊖ g(y)

h
, lim

h→0+

g(y)⊖ g(y − h)

h

exists and are equal to g′(y). We call g′ the derivative or H-derivative of g at y.
If g is H-differentiable at any y ∈ T , we call g differentiable or H-differentiable
and it has H-derivative over T the function g′.

Definition 2.6 ([8]). Let g : [j, k] → RF if ∀ ζ > 0, ∃ η > 0, for any partition
P = {[ρ, ϱ]; δ} of [j, k] with norm ∆(P ) < η, we have

D

( ∗∑
P

(ϱ− ρ)⊙ g(δ,K)

)
< ζ,

then we say that g is Fuzzy-Riemann integrable to the interval K ∈ RF , we write
it as

K := (FR)

∫ k

j
g(y)dy.

For some recent results connected with Fuzzy-Riemann integrals (see [12,
13]).

The main purpose of this paper is to establish generalized fuzzy Ostrowski
like inequalities for (m1,m2, α, β, γ, µ)-convex function in mixed kind and we
obtain various results with respect to the convexity of function as special cases
and also recapture several previous established results of different authors of
different papers [19] and [14].

3. Generalized fuzzy Ostrowski like inequalities for
(m1,m2, α, β, γ, µ)-convex functions

Regarding to prove our main results, we require the below Lemma.
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Lemma 3.1. Let g : K ⊂ R → RF be differentiable mapping on Ko where
m1,m2j,m2k ∈ K with m2j < m2k. If g′ ∈ CF [m2j,m2k]∩LF [m2j,m2k], then

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

⊕ (m1y −m2j)
2

k − j
⊙ (FR)

∫ 1

0
t⊙ g′(m1ty +m2(1− t)j)dt

= m2⊙g(m1y)⊕
(m2k −m1y)

2

k − j
⊙(FR)

∫ 1

0
t⊙g′(m1ty +m2(1− t)k)dt,(3.1)

∀ y ∈ (m2j,m2k).

Proof. We obtain the required result by using similar techniques of proof of
Lemma 3.1 of [19].

Remark 3.1. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α, we
recapture Lemma 3.1 of [19].

Remark 3.2. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.1, we
recapture Lemma 3.1 of [14].

Theorem 3.1. Let all the suppositions of Lemma 3.1 be true and assuming that
D(g′(y), 0̃) is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k] and D(g′(y), 0̃) ≤
M . Then

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤M

(
m1

αγ + 2
+
m2

β
B

(
2

β
, µ+ 1

))
I(y),(3.2)

∀ y ∈ (m2j,m2k) and β > 0, where I(y) = (m1y−m2j)2+(m2k−m1y)2

k−j .

Proof. From the Lemma 3.1 and using Proposition 2.2, then we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ D

(
(m1y −m2j)

2

k − j
⊙ (FR)

∫ 1

0
tg′(m1ty +m2(1− t)j)dt, 0̃

)

+D

(
(m2k −m1y)

2

k − j
⊙ (FR)

∫ 1

0
tg′(m1ty +m2(1− t)k)dt, 0̃

)

=
(m1y −m2j)

2

k − j
D

(
(FR)

∫ 1

0
tg′(m1ty +m2(1− t)j)dt, 0̃

)
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+
(m2k −m1y)

2

k − j
D

(
(FR)

∫ 1

0
tg′(m1ty +m2(1− t)k)dt, 0̃

)

≤ (m1y −m2j)
2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt.(3.3)

Since D(g′(y), 0̃) be (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M, we
have

D
(
g′(m1ty +m2(1− t)j), 0̃

)
≤ m1t

αγD
(
g′(y), 0̃

)
+m2

(
1− tβ

)µ
D
(
g′(j), 0̃

)
≤M

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.4)

D
(
g′(m1ty +m2(1− t)k), 0̃

)
≤ m1t

αγD
(
g′(y), 0̃

)
+m2

(
1− tβ

)µ
D
(
g′(k), 0̃

)
≤M

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.5)

Now, using (3.4) and (3.5) in (3.3) we get (3.2).

Note. Where B is Beta function and it is stated as B(l,m) =
∫ 1
0 t

l−1(1 −

t)m−1dt =
Γ(l)Γ(m)

Γ(l +m)
. Since Γ(l) =

∫∞
0 e−uul−1du.

Remark 3.3. Some remarks about Theorem 3.1 are following as special cases:

(i) If we choose m1 = 1, m2 = m in Theorem 3.1, we can get inequality for
(m,α, β, γ, µ)-convex function in the mixed kind.

(ii) If we choose β = γ = 1 and µ = β in Theorem 3.1, we can get inequality
for (m1,m2, α, β)-convex function in the 2nd kind.

(iii) If we choose γ = µ = 1 in Theorem 3.1, we can get inequality for (m1,m2,
α, β)- convex function in the 1st kind.

(iv) If we choose γ = r, α = µ = s and β = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s, r)-convex function in mixed kind.

(v) If we choose α = µ = s and β = γ = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s)-convex function in the 2nd kind.

(vi) If we choose γ = s and α = β = µ = 1 in Theorem 3.1, we can get
inequality for (m1,m2, s)-convex function in the 1st kind.

(vii) If we choose m1 = 1, m2 = m, β = γ = 1 and µ = β in Theorem 3.1, we
can get inequality for (m,α, β)-convex function in the 2nd kind.



358 FARAZ MEHMOOD and AKHMADJON SOLEEV

(viii) If we choose m1 = 1, m2 = m and γ = µ = 1 in Theorem 3.1, we can get
inequality for (m,α, β)-convex function in the 1st kind.

(ix) If we choose m1 = 1, m2 = m, γ = r, α = µ = s and β = 1 in Theorem
3.1, we can get inequality for (m, s, r)-convex function in the mixed kind.

(x) If we choose m1 = m2 = 1, β = γ = 1 and µ = β in Theorem 3.1, we can
get inequality for (α, β)-convex function in the 2nd kind.

(xi) If we choose m1 = m2 = 1 and γ = µ = 1 in Theorem 3.1, we can get
inequality for (α, β)-convex function in the 1st kind.

(xii) If we choose m1 = m2 = 1, γ = r, α = µ = s and β = 1 in Theorem 3.1,
we can get inequality for (s, r)-convex function in the mixed kind.

(xiii) If we choose m1 = 1, m2 = m, α = µ = s and β = γ = 1 in Theorem 3.1,
we can get inequality for (m, s)-convex function in the 2nd kind.

(xiv) If we choose α = β = γ = µ = 1 in Theorem 3.1, we can get inequality for
(m1,m2)-convex function.

(xv) If we choose m1 = 1, m2 = m and α = β = γ = µ = 1 in Theorem 3.1, we
can get inequality for m-convex function.

(xvi) If we choose m1 = m2 = 1, α = µ = s and β = γ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 2nd kind.

(xvii) If we choose m1 = m2 = 1, α = β = s and γ = µ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 1st kind.

(xviii) If we choose m1 = m2 = 1, γ = s and α = β = µ = 1 in Theorem 3.1, we
can get inequality for s-convex function in the 1st kind.

(xix) If we choose m1 = m2 = 1, α = β = 0, and γ = µ = 1 in Theorem 3.1,we
can get inequality for quasi-convex function.

(xx) If we choose m1 = m2 = 1, α = µ = 0 and β = γ = 1 in Theorem 3.1, we
can get inequality for P -convex function.

(xxi) If we choose m1 = m2 = α = β = γ = µ = 1 in Theorem 3.1, we can get
inequality for ordinary convex function.

Remark 3.4. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.1, we recapture the main Theorem 3.2 of [19].

Remark 3.5. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.1, we
recapture the main Theorem 3.1 of [14].

Remark 3.6. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.1,
we recapture all results of Corollary 3.1 of [14].
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Theorem 3.2. Let all the suppositions of Lemma 3.1 be true and assuming
that [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k], q ≥ 1 &
D(g′(y), 0̃) ≤M . Then,

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)

≤ M

(2)
1− 1

q

(
m1

αγ + 2
+
m2

β
B

(
2

β
, µ+ 1

)) 1
q

I(y).(3.6)

∀ y ∈ (m2j,m2k) and β > 0.

Proof. From the inequality (3.3) & appling power mean inequality, we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ (m1y −m2j)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt

≤ (m1y−m2j)
2

k−j

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t

[
D

(
g′(m1ty+m2(1−t)j), 0̃

)]q
dt

) 1
q

+
(m2k−m1y)

2

k−j

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t

[
D

(
g′(m1ty+m2(1−t)k), 0̃

)]q
dt

) 1
q

.(3.7)

Since [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M ,
we have [

D

(
g′(m1ty +m2(1− t)j), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(j), 0̃

)]q
≤M q

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.8)

[
D

(
g′(m1ty +m2(1− t)k), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(k), 0̃

)]q
≤M q

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.9)

Now, using (3.8) and (3.9) in (3.7) we get (3.6).
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Remark 3.7. All remarks hold for Theorem 3.2 as we have given remarks (i)
to (xxi) for Theorem 3.1.

Remark 3.8. If we choose q = 1 in Theorem 3.2, we obtain the our main
Theorem 3.1.

Remark 3.9. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.2, we recapture the Theorem 3.4 of [19].

Remark 3.10. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.2, we
recapture the Theorem 3.2 of [14].

Remark 3.11. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.2,
we recapture all results of Corollary 3.2 and Remarks 3.1 of [14].

Theorem 3.3. Let all the suppositions of Lemma 3.1 be true and assuming
that [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function on [m2j,m2k], p, q > 1
& D(g′(y), 0̃) ≤M . Then,

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ M

(p+ 1)
1
p

(
m1

αγ + 1
+
m2

β
B

(
1

β
, µ+ 1

)) 1
q

I(y),(3.10)

∀ y ∈ (m2j,m2k) and β > 0. Where p−1 + q−1 = 1.

Proof. From inequality (3.3) & by Hölder’s inequality, we have

D

(
m2 ⊙ g(m1y),

1

k − j
⊙ (FR)

∫ m2k

m2j
g(u)du

)
≤ (m1y −m2j)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)j), 0̃

)
dt

+
(m2k −m1y)

2

k − j

∫ 1

0
tD

(
g′(m1ty +m2(1− t)k), 0̃

)
dt

≤ (m1y−m2j)
2

k−j

(∫ 1

0
tpdt

) 1
p
(∫ 1

0

[
D

(
g′(m1ty+m2(1−t)j), 0̃

)]q
dt

) 1
q

+
(m2k−m1y)

2

k−j

(∫ 1

0
tpdt

) 1
p
(∫ 1

0

[
D

(
g′(m1ty+m2(1−t)k), 0̃

)]q
dt

) 1
q

.(3.11)

Since [D(g′(y), 0̃)]q is (m1,m2, α, β, γ, µ)-convex function & D(g′(y), 0̃) ≤ M ,
we have [

D

(
g′(m1ty +m2(1− t)j), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(j), 0̃

)]q
≤M q

[
m1t

αγ +m2

(
1− tβ

)µ]
,(3.12)
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[
D

(
g′(m1ty +m2(1− t)k), 0̃

)]q
≤ m1t

αγ

[
D
(
g′(y), 0̃

)]q
+m2

(
1− tβ

)µ [
D
(
g′(k), 0̃

)]q
≤M q

[
m1t

αγ +m2

(
1− tβ

)µ]
.(3.13)

Now, using (3.12) and (3.13) in (3.11), we get (3.10).

Remark 3.12. All remarks hold for Theorem 3.3 as we have given remarks (i)
to (xxi) for Theorem 3.1.

Remark 3.13. If we choose m1 = 1, m2 = m, α = β = µ = 1 and γ = α in
Theorem 3.3, we recapture the Theorem 3.3 of [19].

Remark 3.14. If we choose m1 = m2 = 1 and µ = δ in Theorem 3.3, we
recapture the Theorem 3.3 of [14].

Remark 3.15. By choosing suitable values of m1,m2, α, β, γ, µ in Theorem 3.3,
we recapture all results of Corollary 3.3 and Remarks 3.2 of [14].

4. Conclusion

As we all know Ostrowski inequality is one of the most celebrated inequalities. In
this paper, we presented 1st time the generalized notion of (m1,m2, α, β, γ, µ)-
convex function in mixed kind, which contains the generalization of many func-
tions as convex, P -convex, quasi-convex, s-convex in the 1st kind, s-convex in
the 2nd kind, m-convex, (m1,m2)-convex, (m, s)-convex in the 1st kind, (m, s)-
convex in the 2nd kind, (s, r)-convex in mixed kind, (α, β)-convex in the 1st kind,
(α, β)-convex in the 2nd kind, (m, s, r)-convex in mixed kind, (m,α, β)-convex in
the 1st kind, (m,α, β)-convex in the 2nd kind, (m1,m2, s)-convex function in the
1st kind, (m1,m2, s)-convex function in the 2nd kind, (m1,m2, s, r)-convex in
mixed kind, (m1,m2, α, β)-convex in the 1st kind, (m1,m2, α, β)-convex in the
2nd kind, (α, β, γ, µ)-convex in mixed kind, (m,α, β, γ, µ)-convex in mixed kind.
We proved the generalized Ostrowski like inequalities for (m1,m2, α, β, γ, µ)-
convex functions via Fuzzy Riemann Integrals by using Hölder’s and power
mean inequality. Further that we obtained several results with respect to the
convexity of function as special cases and recaptured various established results
of different authors of different papers [19] and [14].
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[19] E. Set, S. Karatas, İ. Mumcu, Fuzzy Ostrowski type inequalities for (α,m)-
convex functions, Journal of New Theory, 2015 (2015), 54-65.

Accepted: November 6, 2023



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 51–2024 (364–385) 364

On a class of half-discrete Hilbert-type inequalities in the whole
plane involving some classical special constants
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Abstract. In this paper, we first define a new half-discrete kernel function in the
whole plane, which involves some exponent functions and unifies some homogeneous
and non-homogeneous kernels. By employing some techniques of real analysis, a new
half-discrete Hilbert-type inequality with the newly defined kernel function, as well as
its equivalent forms are established. Furthermore, the constant factors of the newly
obtained inequalities are proved to be optimal. At last, assigning special values to
the parameters, we get some interesting Hilbert-type inequalities involving hyperbolic
functions, and with the constant factors related to Euler numbers, Bernoulli numbers,
and Catalan constant.

Keywords: Hilbert-type inequality, half-discrete, Bernoulli number, Euler number,
Catalan constant.

1. Introduction

Suppose that p > 1, and f(x), µ(x) are two non-negative measurable functions
defined on a measurable set E. Define

Lp,µ(E) :=

{
f : ∥f∥p,µ :=

[∫
E
fp(x)µ(x)dx

]1/p
<∞

}
.

Specially, if µ(x) ≡ 1, then we have the following abbreviations: ∥f∥p := ∥f∥p,µ
and Lp(E) := Lp,µ(E). Additionally, suppose that p > 1, an, νn > 0, n ∈ F ⊆ Z,
a = {an}n∈F . Define

lp,ν :=

a : ∥a∥p,ν :=

(∑
n∈F

apnνn

)1/p

<∞

 .

Specially, if νn ≡ 1, then we have ∥a∥p := ∥a∥p,ν and lp := lp,ν .
Consider two real-valued sequences: a = {am}m∈N+ ∈ l2 and b = {bn}n∈N+ ∈

l2, then ∑
n∈N+

∑
m∈N+

ambn
m+ n

< π∥a∥2∥b∥2,(1)
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where the constant factor π is the best possible. Inequality (1) was proposed
by D. Hilbert in his lectures on integral equations in 1908, and in 1911, Schur
proved the integral analogy of inequality (1) as follows:∫

y∈R+

∫
x∈R+

f(x)g(y)

x+ y
dxdy < π∥f∥2∥g∥2,(2)

where f, g ≥ 0, f, g ∈ L2(R+), and the constant factor π is the best possible.
Inequalities (1) and (2) are usually known as Hilbert’s inequality [1]. In the

past twenty years, by the introduction of some parameters and special functions
such as the Beta function, some extended forms of (1) and (2) were established,
such as the following[2]:∑

n∈N+

∑
m∈N+

ambn
(m+ n)λ

< B

(
λ

p
,
λ

q

)
∥a∥p,µ∥b∥q,ν ,(3)

where 0 < λ ≤ min{p, q}, µm = mp−λ−1, νn = nq−λ−1, p > 1, 1
p + 1

q = 1, and
B(x, y) is the Beta function [3, 4], that is,

B(x, y) :=

∫ ∞

0

zx−1

(1 + z)x+y
dz (x, y > 0).

In addition, Yang [5] proved the following extended form of (2) in 2004:

(4)

∫
y∈R+

∫
x∈R+

f(x)g(y)

xλ + yλ
dxdy <

π

λ sin rπ
∥f∥p,µ∥g∥q,ν ,

where r, s, λ > 0, r + s = 1, µ(x) = xp(1−λr)−1, ν(x) = xq(1−λs)−1. With regard
to some other extensions of (1) and (2), we refer to [6, 7, 8, 9, 10, 11, 12,
13, 14]. Such extended inequalities as (3) and (4) are usually named as Hilbert-
type inequality. Furthermore, by constructing new kernel functions, introducing
parameters, and considering the reverse form, coefficient refinement and multi-
dimensional extension, a great many Hilbert-type inequalities were established
in the past 20 years (see, [15, 16, 17, 18, 19, 20, 21, 22, 23]).

It should be noted that, in addition to the discrete and integral forms,
Hilbert-type inequality sometimes appears in half-discrete form. The first half-
discrete Hilbert-type inequality was put forward by Hardy et al. (see, Theorem
351 of [1]). However, the constant factor was not proved to be the best possi-
ble. Until recently, researchers established some new half-discrete Hilbert-type
inequalities with the best possible constant factors, such as [24]∫

x∈R+

f(x)
∑
n∈N+

an
(1 + nx)λ

dx < B

(
λ

2
,
λ

2

)
∥f∥2,µ∥a∥2,ν ,(5)

where µ(x) = x
λ
2
−1, νn = n

λ
2
−1. Regarding some other half-discrete Hilbert-type

inequalities, we refer to [25, 26, 27, 28, 29, 30].



366 MINGHUI YOU

The objective of this work is to establish a class of half-discrete Hilbert-type
inequalities with the kernel functions related to some hyperbolic functions. Our
motivation mainly comes from the following integral Hilbert-type inequalities
[31, 32]: ∫

y∈R+

∫
x∈R+

csch(xy)f(x)g(y)dxdy <
π2

4
∥f∥p,µ∥g∥q,ν ,(6)

∫
y∈R

∫
x∈R

f(x)g(y)

|epxy − e−qxy|
dxdy <

(
π

pq sin π
p

)2

∥f∥p,µ̂∥g∥q,ν̂ ,(7)

where µ(x) = x−(p+1), ν(y) = y−(q+1), µ̂(x) = |x|−(p+1), ν̂(y) = |y|−(q+1) .

In this work, we will establish the following Hilbert-type inequalities involv-
ing hyperbolic secant function and hyperbolic cosecant function:∫

x∈R
f(x)

∑
n∈Z0

sech

(
2m+1

√
n

x

)
andx <

Em

22m
(2m+ 1)π2m+1∥f∥p,µ∥a∥q,ν ,(8) ∫

x∈R
f(x)

∑
n∈Z0

∣∣csch ( 2m+1
√
xn
)∣∣ andx<Bm

m
(2m+1)(22m−1)π2m∥f∥p,µ̂∥a∥q,ν̂ ,(9)

where µ(x) = |x|2p−1, νn = |n|−1, µ̂(x) = |x|
p

2m+1
−1, ν̂n = |n|

q
2m+1

−1, Em(m ∈
N) is the Euler number, and Bm(m ∈ N+) is the Bernoulli number.

More generally, we will construct a new kernel function involving several
exponent functions with multiple parameters, which unifies some homogeneous
and non-homogeneous kernels, and then a half-discrete Hilbert-type inequality
and its equivalent forms are established. Detailed lemmas will be presented in
Section 2, and main results and some corollaries will be presented in Section 3
and Section 4, respectively.

2. Some Lemmas

Lemma 2.1. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Suppose that
c > a ≥ b > d > 0, and ab = cd when τη = 1. Define

K(z) :=
| az + τbz |
| cz + ηdz |

(z ̸= 0).(10)

Then, K(z) decreases on R+, and increases on R−.

Proof. If τ = 1, η = 1, then we have ab = cd, and

dK

dz
=

(ac)z log a
c + (bd)z log b

d + (ad)z log a
d + (bc)z log b

c

(cz + dz)2

: = L(z)(cz + dz)−2.
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Since c > a ≥ b > d > 0, we have bc > ad, and ac > bd.
If z ∈ R+, we have

L(z) < (ac)z log
a

c
+ (ac)z log

b

d
+ (bc)z log

a

d
+ (bc)z log

b

c
= 0.

If z ∈ R−, we have

L(z) > (bd)z log
a

c
+ (bd)z log

b

d
+ (ad)z log

a

d
+ (ad)z log

b

c
= 0.

It implies that dK
dz < 0 for z ∈ R+, and dK

dz > 0 for z ∈ R−. Thus, K(z)
decreases on R+ and increases on R− for τ = 1, η = 1.

If τ = 1, η = −1, z ∈ R+, then we have

dK

dz
= −

(ac)z log c
a + (bd)z log b

d + (ad)z log a
d + (bc)z log c

b

(cz − dz)2
< 0.

If τ = 1, η = −1, z ∈ R−, then we have

dK

dz
=

(ad)z log a
d + (bc)z log c

b + (ac)z log c
a + (bd)z log b

d

(cz − dz)2
> 0.

Therefore, K(z) decreases on R+ and increases on R− for τ = 1, η = −1.

If τ = −1, η = −1, then ab = cd, and we have

dK

dz
=

(ac)z log a
c + (bd)z log b

d − (ad)z log a
d − (bc)z log b

c

(cz − dz)2
(11)

:= g(z)

[(√
c

d

)z

−

(√
d

c

)z]−2

,

where g(z) = g1(z) + g2(z)− g3(z)− g4(z), and

g1(z) =
(a
d

)z
log

a

c
=

(√
ac

bd

)z

log

√
ad

bc
,

g2(z) =

(
b

c

)z

log
b

d
=

(√
bd

ac

)z

log

√
bc

ad
,

g3(z) =
(a
c

)z
log

a

d
=

(√
ad

bc

)z

log

√
ac

bd
,

g4(z) =

(
b

d

)z

log
b

c
=

(√
bc

ad

)z

log

√
bd

ac
.
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It follows that

dg1
dz

=

(√
ac

bd

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg2
dz

=

(√
bd

ac

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg3
dz

=

(√
ad

bc

)z [
log2

√
a

b
− log2

√
c

d

]
,

dg4
dz

=

(√
bc

ad

)z [
log2

√
a

b
− log2

√
c

d

]
.

Therefore, we get

dg

dz
=

[
log2

√
a

b
− log2

√
c

d

]
×

[(√
ac

bd

)z

+

(√
bd

ac

)z

−

(√
ad

bc

)z

−

(√
bc

ad

)z]

=

[
log2

√
a

b
− log2

√
c

d

] [(c
b

)z
+

(
b

c

)z

−
(a
c

)z
−
( c
a

)z]
.

Let h(t) := tz + t−z, then it can be shown that h(t) increases on [1,∞) for
arbitrary z ∈ R+. Since c

b ≥ c
a > 1, we have h

(
c
b

)
≥ h

(
c
a

)
, that is,(c

b

)z
+

(
b

c

)z

−
(a
c

)z
−
( c
a

)z
≥ 0.

Additionally, in view of c
d ≥ a

b ≥ 1, we have log2
√

a
b − log2

√
c
d ≤ 0. Thus, we

obtain dg
dz ≤ 0 on R+, which leads to

g(z) ≤ g(0) = log
a

c
+ log

b

d
− log

a

d
− log

b

c
= 0 (z ∈ R+).

By (11), we have dK
dz ≤ 0 (z ∈ R+), and it implies that K(z) decreases on

R+. Similarly, it can be proved that K(z) increases on R−. Thus, we proved
Lemma 2.1 in the case of τ = −1, η = −1.

Lemma 2.2. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Suppose that
c > a ≥ b > d > 0, and ab = cd when τη = 1. Let λ be such that λ ≥ 1, and
λ ̸= 1 for τ = 1, η = −1. K(z) is defined via (10), and

κ (a, b, c, d, τ, η, λ) :=

∞∑
j=0

[
(−η)j

(j log c
d + log c

a)
λ
+

τ(−η)j

(j log c
d + log c

b)
λ

]
(12)

+

∞∑
j=0

[
(−η)j

(j log c
d + log b

d)
λ
+

τ(−η)j

(j log c
d + log a

d)
λ

]
.
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Then ∫
z∈R

K(z) |z|λ−1 dz = Γ(λ)κ (a, b, c, d, τ, η, λ) .(13)

Proof. Expanding 1
cz+ηdz (z ∈ R+) into power series, and observing that c >

d > 0, we obtain

1

cz + ηdz
=

c−z

1 + η(c−1d)z
= c−z

∞∑
j=0

(−η)j
(
d

c

)jz

.

By Lebesgue term-by-term integration theorem, we get∫ ∞

0
K(z)zλ−1dz =

∞∑
j=0

(−η)j
[ ∫ ∞

0

(
d

c

)jz (a
c

)z
zλ−1dz(14)

+ τ

∫ ∞

0

(
d

c

)jz (b
c

)z

zλ−1dz

]
:=

∞∑
j=0

(−η)j(J1 + τJ2).

Let z = u
j log c

d
+log c

a
(j ∈ N), then we have

J1 =
1

(j log c
d + log c

a)
λ

∫ ∞

0
e−uuλ−1du =

Γ(λ)

(j log c
d + log c

a)
λ
.(15)

Similarly, we can obtain

J2 =
1

(j log c
d + log c

b)
λ

∫ ∞

0
e−uuλ−1du =

Γ(λ)

(j log c
d + log c

b)
λ
.(16)

Plug (15) and (16) back into (14), then we obtain∫ ∞

0
K(z)zλ−1dz =

∞∑
j=0

[
(−η)jΓ(λ)

(j log c
d + log c

a)
λ
+

τ(−η)jΓ(λ)
(j log c

d + log c
b)

λ

]
.(17)

Since c > a ≥ b > d > 0, we have 1
d > 1

b ≥ 1
a > 1

c > 0. From the above
discussion, we get∫ 0

−∞
K(z) |z|λ−1 dz =

∫ ∞

0
K(−z)zλ−1dz(18)

=
∞∑
j=0

[
(−η)jΓ(λ)

(j log c
d + log b

d)
λ
+

τ(−η)jΓ(λ)
(j log c

d + log a
d)

λ

]
.

Combining (17) and (18), and using (12), we get (13). Lemma 2.2 is proved.
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Lemma 2.3. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Let

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
,

β ∈ Ω, and γ ∈ R+ ∩ Ω. Suppose that c > a ≥ b > d > 0, and ab = cd when
τη = 1. Let λ be such that λ ≥ 1, λγ ≤ 1, and λ ̸= 1 for τ = 1, η = −1. Let
K(z) be defined via (10), and for an arbitrary positive natural number s which
is large enough, define

ã := {ãn}n∈Z0 :=
{
|n|λγ−1− 2γ

qs

}
n∈Z0

,

f̃(x) :=

{
|x|λβ−1+ 2β

ps , x ∈ E

0, x ∈ R \ E
,

where Z0 := Z \ {0}, and E := {x : |x|sgnβ < 1}. Then

Ĩ : =
∑
n∈Z0

ãn

∫
x∈R

K
(
xβnγ

)
f̃(x)dx =

∫
x∈R

f̃(x)
∑
n∈Z0

ãnK
(
xβnγ

)
dx(19)

>
s

|βγ|

[∫
[−1,1]

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz

]
.

Proof. Let

E+ := {x : x ∈ E ∩ R+}, E− := {x : x ∈ E ∩ R−}.

Then

Ĩ = I1 + I2 + I3 + I4,

where

I1 :=

∫
x∈E−

f̃(x)
∑
n∈Z+

ãnK
(
xβnγ

)
dx,

I2 :=

∫
x∈E−

f̃(x)
∑
n∈Z−

ãnK
(
xβnγ

)
dx,

I3 :=

∫
x∈E+

f̃(x)
∑
n∈Z+

ãnK
(
xβnγ

)
dx,

I4 :=

∫
x∈E+

f̃(x)
∑
n∈Z−

ãnK
(
xβnγ

)
dx.
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In view of λγ ≤ 1, it follows that ãn = |n|λγ−1− 2γ
qs decreases with respect to n if

n ∈ Z+. In addition, for x ∈ E−, n ∈ Z+, we have xβnγ < 0. By Lemma 2.1, it
can be proved that K

(
xβnγ

)
decreases with respect to n if n ∈ Z+. Therefore,

I1 >

∫
x∈E−

|x|λβ−1+ 2β
ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W1.

Similarly, we can obtain

I2 >

∫
x∈E−

|x|λβ−1+ 2β
ps

∫ −1

−∞
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W2,

I3 >

∫
x∈E+

|x|λβ−1+ 2β
ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W3,

I4 >

∫
x∈E+

|x|λβ−1+ 2β
ps

∫ −1

−∞
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx :=W4.

We first consider the case where β < 0, that is, β ∈ Ω ∩ R−. Letting xβyγ = z,

and observing that x
−β

γ = − |x|−
β
γ (x < 0) and z

1
r
−1 = |z|

1
r
−1 (z < 0), we get

W1 =

∫ −1

−∞
|x|λβ−1+ 2β

ps

∫ ∞

1
K
(
xβyγ

)
|y|λγ−1− 2γ

qs dydx(20)

=
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−∞
K(z) |z|λ−1− 2

qs dzdx

=
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ −1

−∞
K(z) |z|λ−1− 2

qs dzdx

+
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx

=
s

2 |βγ|

∫ −1

−∞
K(z) |z|λ−1− 2

qs dz

+
1

γ

∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx.

By Fubini’s theorem, we have∫ −1

−∞
|x|−1+ 2β

s

∫ xβ

−1
K(z) |z|λ−1− 2

qs dzdx(21)

=

∫ 0

−1
K(z) |z|λ−1− 2

qs

∫ z1/β

−∞
|x|−1+ 2β

s dxdz

=
s

2 |β|

∫ 0

−1
K(z) |z|λ−1+ 2

ps dz.

Applying (21) to (20), we get

W1 =
s

2 |βγ|

[∫ −1

−∞
K(z) |z|λ−1− 2

qs dz +

∫ 0

−1
K(z) |z|λ−1+ 2

ps dz

]
.
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In addition, it can be proved that W1 =W4, and

W2 =W3 =
s

2 |βγ|

[∫ ∞

1
K(z) |z|λ−1− 2

qs dz +

∫ 1

0
K(z) |z|λ−1+ 2

ps dz

]
.

Therefore, we have

Ĩ > W1 +W2 +W3 +W4

=
s

|βγ|

[∫
[−1,1]

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz

]
.

Inequality (19) is proved for β < 0. Similarly, (19) can also be proved to be true
for β > 0, and we complete the proof of Lemma 2.3.

Lemma 2.4. Let s1, s2 > 0, s1+ s2 = 1, ψ(z) = cot z, ϕ(z) = csc z and m ∈ N.
Then

∞∑
j=0

[
1

(j + s1)2m+1
− 1

(j + s2)2m+1

]
=
π2m+1

(2m)!
ψ(2m)(s1π),(22)

∞∑
j=0

[
1

(j + s1)2m+2
+

1

(j + s2)2m+2

]
= − π2m+2

(2m+ 1)!
ψ(2m+1)(s1π),(23)

∞∑
j=0

[
(−1)j

(j + s1)2m+1
+

(−1)j

(j + s2)2m+1

]
=
π2m+1

(2m)!
ϕ(2m)(s1π).(24)

Proof. We write the partial fraction expansion of ψ(z) = cot z (0 < z < π) as
follows [4]:

ψ(z) =
1

z
+

∞∑
j=1

(
1

z + jπ
+

1

z − jπ

)
.

Taking the (2m)th derivative of ψ(z), we get

ψ(2m)(z) = (2m)!

 ∞∑
j=0

1

(jπ + z)2m+1
+

∞∑
j=1

1

(z − jπ)2m+1

(25)

= (2m)!
∞∑
j=0

[
1

(z + jπ)2m+1
− 1

(jπ + π − z)2m+1

]
.

Letting z = s1π in (25), and observing that s1 + s2 = 1, we obtain (22). Taking
the first derivative of (25) and setting z = s1π, we arrive at (23). Additionally,
owing to the following identity:

2ϕ(2z) = ψ
(π
2
− z
)
+ ψ(z)

(
0 < z <

π

2

)
,
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we have

22m+1ϕ(2m)(2z) = ψ(2m)
(π
2
− z
)
+ ψ(2m)(z).(26)

Let u = s1π
2 in (26), and use (22), then we have

ϕ(2m) (s1π) =
(2m)!

π2m+1

∞∑
j=0

[
1

(2j + s2)2m+1
− 1

(2j + 1 + s1)2m+1

]
(27)

+
(2m)!

π2m+1

∞∑
j=0

[
1

(2j + s1)2m+1
− 1

(2j + 1 + s2)2m+1

]

=
(2m)!

π2m+1

∞∑
j=0

[
(−1)j

(j + s1)2m+1
+

(−1)j

(j + s2)2m+1

]
.

Equality (27) implies (24) obviously. Lemma 2.4 is proved.

Remark 2.1. By Lemma 2.4, we have the following identities related to classical
special constants:

ψ(2m)
(π
4

)
= 22mEm,(28)

ϕ(2m)
(π
2

)
= Em,(29)

ψ(2m+1)
(π
4

)
=

42m+1

m+ 1

(
1− 22m+2

)
Bm+1,(30)

ψ(2m+1)
(π
2

)
=

22m+1

m+ 1

(
1− 22m+2

)
Bm+1,(31)

where Em is the Euler number, E0 = 1, E1 = 1, E2 = 5, · · · , and Bm+1 is
Bernoulli number, B1 = 1

6 , B2 = 1
30 , B3 = 1

42 , · · · . In fact, let s1 = 1
4 , s2 = 3

4 in
(22). In view of [4]

∞∑
j=0

(−1)j

(2j + 1)2m+1
=

π2m+1Em

22m+2(2m)!
,(32)

and

∞∑
j=0

[
1

(4j + 1)2m+1
− 1

(4j + 3)2m+1

]
=

∞∑
j=0

(−1)j

(2j + 1)2m+1
,

we can get (28). Similarly, let s1 = s2 = 1
2 in (24). By (32), we have (29).

Additionally, let s1 =
1
4 , s2 =

3
4 in (23), and observe that [4]

∞∑
j=0

1

(2j + 1)2m+2
=

Bm+1

2(2m+ 2)!

(
22m+2 − 1

)
π2m+2 (m ∈ N),

then we get (30). At last, letting s1 = s2 =
1
2 in (23), we arrive at (31).
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3. Main results

Theorem 3.1. Let τ, η ∈ {1,−1}, and τ ̸= −1 when η = 1. Let

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
β ∈ Ω, and γ ∈ R+ ∩ Ω. Suppose that c > a ≥ b > d > 0, and ab = cd when
τη = 1. Let λ be such that λ ≥ 1, λγ ≤ 1, and λ ̸= 1 for τ = 1, η = −1. Assume
that µ(x) = |x|p(1−λβ)−1, νn = |n|q(1−λγ)−1, n ∈ Z0 := Z \ {0}, f(x), an ≥ 0
with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν , p > 1, 1

p + 1
q = 1. Let K(z) and

κ (a, b, c, d, τ, η, λ) be defined via (10) and (12), respectively. Then the following
inequalities hold and are equivalent:

I : =
∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(33)

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µ∥a∥q,ν ,

J1 : =
∑
n∈Z0

|n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p
(34)

<
[
|β|−

1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

]p
∥f∥pp,µ,

J2 : =

∫
x∈R

|x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q

dx(35)

<
[
|β|−

1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

]q
∥a∥qq,ν ,

where the constant |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) in (33), (34) and (35) is

the best possible.

Proof. For y ∈ [n − 1, n), n ∈ N+, let K̃
(
xβyγ

)
:= K

(
xβnγ

)
, g(y) := an,

h(y) := n. For y ∈ [n, n + 1), n ∈ N−, let K̃
(
xβyγ

)
:= K

(
xβnγ

)
, g(y) := an,

h(y) := |n|. By Hölder’s inequality, we have∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(36)

=

∫
y∈R

∫
x∈R

K̃
(
xβyγ

)
f(x)g(y)dxdy

=

∫
y∈R

∫
x∈R

[
K̃
(
xβyγ

)]1/p
[h(y)](λγ−1)/p |x|(1−λβ)/q f(x)

×
[
K̃
(
xβyγ

)]1/q
|x|(λβ−1)/q [h(y)](1−λγ)/pg(y)dxdy

≤
{∫

x∈R

∫
y∈R

K̃
(
xβyγ

)
[h(y)]λγ−1 |x|p(1−λβ)/q fp(x)dydx

}1/p



ON A CLASS OF HALF-DISCRETE HILBERT-TYPE INEQUALITIES ... 375

×
{∫

y∈R

∫
x∈R

K̃
(
xβyγ

)
|x|λβ−1 [h(y)]q(1−λγ)/pgq(y)dxdy

}1/q

=

[∫
x∈R

Ψ(x) |x|p(1−λβ)/q fp(x)dx

]1/p ∑
n∈Z0

Φ(n) |n|q(1−λγ)/p aqn

1/q

,

where

Ψ(x) =
∑
n∈Z0

K
(
xβnγ

)
|n|λγ−1 ,(37)

Φ(n) =

∫
x∈R

K
(
xβnγ

)
|x|λβ−1 dx.(38)

In view of λγ ≤ 1, it can be easy to show that |n|λγ−1 decreases if n ∈ N+ and
increases if n ∈ N−. Additionally, using Lemma 2.1, and observing that β ∈ Ω
and γ ∈ R+ ∩ Ω, it can be proved that whether x > 0 or x < 0, K

(
xβnγ

)
decreases with respect to n when n ∈ N+, and increases with respect to n when
n ∈ N−. Therefore, we get

Ψ(x) <

∫
y∈R

K
(
xβyγ

)
|y|λγ−1 dy.(39)

We first consider the case where x < 0. Let xβyγ = z. Observing that β ∈ Ω

and γ ∈ R+ ∩Ω, we have x
−β

γ = − |x|−
β
γ (x < 0) and z

1
r
−1 = |z|

1
r
−1. It follows

therefore that∫
y∈R

K
(
xβyγ

)
|y|λγ−1 dy =

|x|−λβ

γ

∫
z∈R

K(z) |z|λ−1 dz.(40)

Similarly, it can also be proved that (40) holds when x > 0. Therefore, for
arbitrary x (x ̸= 0), combining (39) and (40), and using (13), we have

Ψ(x) <
|x|−λβ

γ
Γ(λ)κ (a, b, c, d, τ, η, λ) .(41)

Furthermore, by similar discussion, we have

Φ(n) =
|n|−λγ

|β|
Γ(λ)κ (a, b, c, d, τ, η, λ) .(42)

Plugging (41) and (42) back into (36), we get (33). In what follows, we will prove
(34) and (35) via (33). In fact, assuming (33) holds, and setting b = {bn}n∈N0 ,
where

bn := |n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p−1

,
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we obtain

J1 =
∑
n∈Z0

|n|pλγ−1

[∫
x∈R

K
(
xβnγ

)
f(x)dx

]p
(43)

=
∑
n∈Z0

bn

∫
x∈R

K
(
xβnγ

)
f(x)dx

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µ∥b∥q,ν

= |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥f∥p,µJ1/q

1 .

Inequality (43) implies (34) obviously. Moreover, let

g(x) := |x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q−1

.

By (33), we get

J2 =

∫
x∈R

|x|qλβ−1

∑
n∈Z0

K
(
xβnγ

)
an

q

dx(44)

=

∫
x∈R

g(x)
∑
n∈Z0

K
(
xβnγ

)
andx

< |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥g∥p,µ∥a∥q,ν

= |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ∥a∥q,νJ1/p

2 .

Thus, we get (35) via (33). Conversely, if (34) or (35) holds, it can also be
proved that (33) is valid. In fact, we first suppose that (34) holds. By Hölder’s
inequality, we obtain

I =
∑
n∈Z0

[
|n|λγ−1/p

∫
x∈R

K
(
xβnγ

)
f(x)dx

] [
an |n|−λγ+1/p

]
(45)

≤ J
1/p
1

∑
n∈Z0

aqn |n|
q(1−λγ)−1

1/q

= J
1/p
1 ∥a∥q,ν .

Applying (34) to (45), we arrive at (33). Similarly, supposing that (35) holds,
we can also get (33). Therefore, Based on the above discussions, inequalities
(33), (34) and (35) are equivalent.

Lastly, it will be proved that the constant |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ)

in (33), (34) and (35) is the best possible. In fact, assume that there exists a
constant C satisfying

0 < C ≤ |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) ,(46)
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and

I =
∑
n∈Z0

an

∫
x∈R

K
(
xβnγ

)
f(x)dx =

∫
x∈R

f(x)
∑
n∈Z0

K
(
xβnγ

)
andx(47)

< C∥f∥p,µ∥a∥q,ν .

Replacing an and f(x) in (47) by ãn and f̃(x) defined in Lemma 2.3, repectively,
and using (19), we have∫

[−1,1]
K(z) |z|λ−1+ 2

ps dz +

∫
R\[−1,1]

K(z) |z|λ−1− 2
qs dz(48)

<
|βγ|
s
Ĩ <

|βγ|C
s

∥f̃∥p,µ∥ã∥q,ν

=
|βγ|C
s

(
2

∫
E+

x
2β
s
−1dx

) 1
p

(
2 + 2

∞∑
n=2

n
−2γ
s

−1

) 1
q

<
2 |βγ|C

s

(∫
E+

x
2β
s
−1dx

) 1
p
(
1 +

∫ ∞

1
x−

2γ
s
−1dx

) 1
q

= 2 |βγ|C
(

1

2 |β|

) 1
p
(
1

s
+

1

2γ

) 1
q

.

Applying Fatou’s lemma to (48), and using (13), it follows that

Γ(λ)κ (a, b, c, d, τ, η, λ) =

∫
z∈R

K(z) |z|λ−1 dz

=

∫
[−1,1]

lim
s→∞

K(z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

lim
s→∞

L (z) |z|λ−1− 2
qs dz

⩽ lim
s→∞

[∫
[−1,1]

L (z) |z|λ−1+ 2
ps dz +

∫
R\[−1,1]

L (z) |z|λ−1− 2
qs dz

]

⩽ lim
s→∞

[
2 |βγ|C

(
1

2 |β|

) 1
p
(
1

s
+

1

2γ

) 1
q

]
= C |β|

1
q γ

1
p .

It implies that

C ≥ |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) .(49)

Combining (46) and (49), we get C = |β|−
1
q γ

− 1
pΓ(λ)κ (a, b, c, d, τ, η, λ) . There-

fore, the constant factor in inequality (33) is the best possible. Owing to the
equivalence of (33), (34) and (35), it can be proved that the constant factors in
(34) and (35) are the best possible. Theorem 3.1 is proved.
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4. Corollaries

Let τ = η = −1, and λ = 2m+1(m ∈ N) in Theorem 3.1, then we have ab = cd.
By (22), we have

κ (a, b, c, d, τ, η, λ) =

∞∑
j=0

[
2

(j log c
d + log b

d)
2m+1

− 2

(j log c
d + log c

b)
2m+1

]

=
2

(2m)!

(
π

ln c
d

)2m+1

ψ(2m)

(
π ln b

d

ln c
d

)
.

Thus, we have the following corollary.

Corollary 4.1. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and ab = cd. Let m be such that (2m +

1)γ ≤ 1, m ∈ N. Assume that ψ(z) = cot z, µ(x) = |x|p[1−(2m+1)β]−1, νn =

|n|q[1−(2m+1)γ]−1, n ∈ Z0 := Z \ {0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and
a = {an}n∈Z0 ∈ lq,ν . Then∫

x∈R
f(x)

∑
n∈Z0

ax
βnγ − bx

βnγ

cxβnγ − dxβnγ andx(50)

< 2 |β|−
1
q γ

− 1
p

(
π

ln c
d

)2m+1

ψ(2m)

(
π ln b

d

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (50), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

sinh
(
τ1x

βnγ
)
csch

(
τ2x

βnγ
)
andx(51)

< 2 | β |−
1
q γ

− 1
p

(
π

2τ2

)2m+1

ψ(2m)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Let τ2 = 2α, τ1 = α (α > 0) in (51). By (28), we obtain

(52)

∫
x∈R

f(x)
∑
n∈Z0

sech(αxβnγ)andx<|β|−
1
q γ

− 1
p
Em

22m

(π
α

)2m+1
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 m ∈ N, and α = 1 in (52), we get∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
andx <

Em

22m
(2m+ 1)π2m+1∥f∥p,µ∥a∥q,ν ,(53)
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where µ(x) = |x|−1, νn = |n|−1. Setting β = − 1
2m+1 , γ = 1

2m+1 , and α = 1 in
(52), we get (8).

Let τ2 = 3α, τ1 = α (α > 0) in (51), then we obtain∫
x∈R

f(x)
∑
n∈Z0

an
2cosh (2αxβnγ) + 1

dx(54)

< 2 |β|−
1
q γ

− 1
p

( π
6α

)2m+1
ψ(2m)

(π
3

)
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 , and α = 1

2 in (54), we get∫
x∈R

f(x)
∑
n∈Z0

an
2cosh ( 2m+1

√
xn) + 1

dx(55)

< (4m+ 2)
(π
3

)2m+1
ψ(2m)

(π
3

)
∥f∥p,µ∥a∥q,ν ,

where µ(x) = |x|−1, νn = |n|−1. Let m = 0 in (55), then (55) is transformed
into ∫

x∈R
f(x)

∑
n∈Z0

an
2cosh (xn) + 1

dx <
2
√
3π

9
∥f∥p,µ∥a∥q,ν .(56)

Let τ2 = 4α, τ1 = α (α > 0) in (51), then we have∫
x∈R

f(x)
∑
n∈Z0

sech
(
αxβnγ

)
sech

(
2αxβnγ

)
andx(57)

<
1

26m
|β|−

1
q γ

− 1
p

(π
α

)2m+1
ψ(2m)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Setting β = γ = 1
2m+1 , and α = 1 in (57), we get∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
sech

(
2 2m+1

√
xn
)
andx

<
2m+ 1

26m
π2m+1ψ(2m)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Let τ = −1, η = 1, and λ = 2m + 2 (m ∈ N) in Theorem 3.1, By (23), we
have

κ (a, b, c, d, τ, η, λ)

=

∞∑
j=0

[
1

(j log c
d + log c

a)
2m+2

+
1

(j log c
d + log a

d)
2m+2

]

+

∞∑
j=0

[
1

(j log c
d + log b

d)
2m+2

+
1

(j log c
d + log c

b)
2m+2

]

=
1

(2m+ 1)!

(
π

ln c
d

)2m+2
[
ψ(2m+1)

(
π ln c

a

ln c
d

)
+ ψ(2m+1)

(
π ln b

d

ln c
d

)]
.
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Thus, we have the following corollary.

Corollary 4.2. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and m satisfies (2m + 2)γ ≤ 1 (m ∈ N).
Assume that ψ(z) = cot z, µ(x) = |x|p[1−(2m+2)β]−1, νn = |n|q[1−(2m+2)γ]−1,
n ∈ Z0 := Z\{0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν .
Then ∫

x∈R
f(x)

∑
n∈Z0

ax
βnγ

+ bx
βnγ∣∣cxβnγ − dxβnγ
∣∣andx < − |β|−

1
q γ

− 1
p

(
π

ln c
d

)2m+2

(58)

×

[
ψ(2m+1)

(
π ln c

a

ln c
d

)
+ ψ(2m+1)

(
π ln b

d

ln c
d

)]
∥f∥p,µ∥a∥q,ν .

Let a = b = 1 in (58), then we get c > 1 > d > 0. Since

ψ(2m+1)(z) = ψ(2m+1)(π − z), z ∈ (0, π),(59)

inequality (58) is transformed into∫
x∈R

f(x)
∑
n∈Z0

an∣∣cxβnγ − dxβnγ
∣∣dx < − |β|−

1
q γ

− 1
p(60)

×
(

π

ln c
d

)2m+2

ψ(2m+1)

(
π ln c

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let c = ep, d = e−q in (60), then (60) reduces to∫
x∈R

f(x)
∑
n∈Z0

an∣∣epxβnγ − e−qxβnγ
∣∣dx(61)

< − |β|−
1
q γ

− 1
p

(
π

pq

)2m+2

ψ(2m+1)

(
π

p

)
∥f∥p,µ∥a∥q,ν .

Let m = 0, β = γ = 1
3 in (61), then we get∫

x∈R
f(x)

∑
n∈Z0

an∣∣ep 3√xn − e−q 3√xn
∣∣dx <

( √
3π

pq sin π
p

)2

∥f∥p,µ∥a∥q,ν ,(62)

where µ(x) = |x|
p
3
−1, νn = |n|

q
3
−1.

Let c = eα, d = e−α (α > 0) in (60). By (31), we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣csch(αxβnγ)∣∣∣ andx(63)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .
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Setting β = γ = 1
2m+3 (m ∈ N), α = 1 in (63), and replacing m+ 1 with m, we

get (9). Similarly, setting β = − 1
2m+3 , γ = 1

2m+3 , α = 1 in (63), and replacing
m+ 1 with m, we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣∣csch( 2m+1

√
n

x

)∣∣∣∣ andx < Bm

m
(2m+ 1)(22m − 1)π2m∥f∥p,µ∥a∥q,ν ,

where µ(x) = |x|
(4m+1)p
2m+1

−1, νn = |n|
q

2m+1
−1 (m ∈ N+).

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (58), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

cosh
(
τ1x

βnγ
) ∣∣∣csch(τ2xβnγ)∣∣∣ andx(64)

<− 2 |β|−
1
q γ

− 1
p

(
π

2τ2

)2m+2

ψ(2m+1)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Let τ2 = 2α, τ1 = α (α > 0) in (64). By using (30), we can also get (63). Let
τ2 = 4α, τ1 = α (α > 0) in (64), then we have∫

x∈R
f(x)

∑
n∈Z0

∣∣∣csch(αxβnγ)∣∣∣ sech(2αxβnγ) andx(65)

<− 1

82m+1
|β|−

1
q γ

− 1
p

(π
α

)2m+2
ψ(2m+1)

(
3π

8

)
∥f∥p,µ∥a∥q,ν .

Additionally, let a = b = e−α, c = e2α, d = e−2α (α > 0) in (58). By (59)
and (30), we get the following inequality with the same constant factor as (63),
that is, ∫

x∈R
f(x)

∑
n∈Z0

∣∣∣csch(αxβnγ)− sech
(
αxβnγ

)∣∣∣ andx(66)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .

Furthermore, let a = b = eα, c = e2α, d = e−2α (α > 0) in (58). Then we get∫
x∈R

f(x)
∑
n∈Z0

∣∣∣csch(αxβnγ)+ sech
(
αxβnγ

)∣∣∣ andx(67)

< |β|−
1
q γ

− 1
p
Bm+1

m+ 1
(22m+2 − 1)

(π
α

)2m+2
∥f∥p,µ∥a∥q,ν .

Let τ = η = 1, and λ = 2m + 1(m ∈ N) in Theorem 3.1, then we have
ab = cd. By (24), we get

κ (a, b, c, d, τ, η, λ) =

∞∑
j=0

[
2(−1)j

(j log c
d + log b

d)
2m+1

+
2(−1)j

(j log c
d + log c

b)
2m+1

]

=
2

(2m)!

(
π

ln c
d

)2m+1

ϕ(2m)

(
π ln b

d

ln c
d

)
.

Therefore, Theorem 3.1 is transformed into the following corollary.



382 MINGHUI YOU

Corollary 4.3. Let β ∈ Ω, and γ ∈ R+ ∩ Ω, where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that c > a ≥ b > d > 0, and ab = cd. Let m be such that (2m +

1)γ ≤ 1, m ∈ N. Assume that ϕ(z) = csc z, µ(x) = |x|p[1−(2m+1)β]−1, νn =

|n|q[1−(2m+1)γ]−1, n ∈ Z0 := Z \ {0}. Let f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and
a = {an}n∈Z0 ∈ lq,ν . Then

∫
x∈R

f(x)
∑
n∈Z0

ax
βnγ

+ bx
βnγ

cxβnγ + dxβnγ andx(68)

< 2 |β|−
1
q γ

− 1
p

(
π

ln c
d

)2m+1

ϕ(2m)

(
π ln b

d

ln c
d

)
∥f∥p,µ∥a∥q,ν .

Let a = eτ1 , b = e−τ1 , c = eτ2 , d = e−τ2 in (68), where 0 < τ1 < τ2. Then∫
x∈R

f(x)
∑
n∈Z0

cosh
(
τ1x

βnγ
)
sech

(
τ2x

βnγ
)
andx(69)

<2 |β|−
1
q γ

− 1
p

(
π

2τ2

)2m+1

ϕ(2m)

(
(τ2 − τ1)π

2τ2

)
∥f∥p,µ∥a∥q,ν .

Letting τ2 = α (α > 0), τ1 = 0 in (69), and using (29), we can also get (52).
Letting τ2 = 2α, τ1 = α (α > 0) in (70), we have∫

x∈R
f(x)

∑
n∈Z0

csch
(
αxβnγ

)
tanh

(
2αxβnγ

)
andx

<
1

24m
|β|−

1
q γ

− 1
p

(π
α

)2m+1
ϕ(2m)

(π
4

)
∥f∥p,µ∥a∥q,ν .

At last, let τ = η = 1, a = b, and λ = 2 in Theorem 3.1. Then, we have
cd = a2. Let c

a = a
d = eα (α > 0), then

log
c

a
= log

c

b
= log

b

d
= log

a

d
=

1

2
log

c

d
= α,

and

κ (a, b, c, d, τ, η, λ) =
4

α2

∞∑
j=0

(−1)j

(2j + 1)2
=

4c0
α2

,

where c0 is the Catalan constant. Thus, Theorem 3.1 is transformed into the
following corollary.
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Corollary 4.4. Let α > 0, β ∈ Ω, γ ∈ R+ ∩ Ω and γ ≤ 1
2 , where

Ω :=

{
z : z =

2i+ 1

2l + 1
, i, l ∈ Z

}
.

Suppose that µ(x) = |x|p(1−2β)−1, νn = |n|q(1−2γ)−1, n ∈ Z0 := Z \ {0}. Let
f(x), an ≥ 0 with f(x) ∈ Lp,µ(R) and a = {an}n∈Z0 ∈ lq,ν . Then∫

x∈R
f(x)

∑
n∈Z0

sech
(
αxβnγ

)
andx <

4c0
α2

|β|−
1
q γ

− 1
p ∥f∥p,µ∥a∥q,ν .(70)

Setting β = γ = 1
2m+1 (m ∈ N+), α = 1 in (70), we have∫

x∈R
f(x)

∑
n∈Z0

sech
(

2m+1
√
xn
)
andx < 4c0(2m+ 1)∥f∥p,µ∥a∥q,ν ,(71)

where µ(x) = |x|
2m−1
2m+1

p−1, νn = |n|
2m−1
2m+1

q−1 (m ∈ N+).
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Abstract. The purpose of the present paper is to investigate the commutativity of a
prime near ring N with a generalized derivation F associated with a nonzero derivation
d satisfying one of the conditions: For some nonnegative integers p and q:

(i) [F (x), y] = ±yp(x ◦ y)yq;
(ii) [x, F (y)] = ±xp(x ◦ y)xq;
(iii) F (x) ◦ y = ±yp[x, y]yq;
(iv) x ◦ F (y) = ±xp[x, y]xq;
(v) F (x) ◦ y = ±yp(x ◦ y)yq;
(vi) [x, F (y)] = ±xp[x, y]xq;
(vii) [F (x), y] = ±yp[x, y]yq;

*. Corresponding author
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(viii) x ◦ F (y) = ±xp(x ◦ y)xq,

for all x, y ∈ N . Moreover, we give an example which shows the necessity of primness
hypothesis in the theorems.

Keywords: prime near ring, derivation, generalized derivation, commutativity.

MSC 2020: 16N60, 16W25, 16Y30

1. Introduction

A right near ring N is a triplet (N,+, ·), where + and · are two binary operations
such that (i) (N,+) is a group (not necessarily abelian), (ii) (N, ·) is a semigroup,
and (iii) (x+y) ·z = x ·z+y ·z, for all x, y, z ∈ N . Analogously, if instead of (iii),
N satisfies the left distributive law, then N is said to be a left near ring. A near
ring N is said to be zero-symmetric if x0 = 0, for all x ∈ N (right distributivity
yields that 0x = 0). Throughout the paper, N represents a zero-symmetric
right near ring with multiplicative center Z(N). For any x, y ∈ N , the symbols
[x, y] and (x ◦ y) denote the Lie product xy − yx and Jordan product xy + yx
respectively. A near ring N is said to be prime if xNy = {0}, for all x, y ∈ N
implies that x = 0 or y = 0. A near ring N is said to be 2-torsion free if (N,+)
has no element of order 2.

The notion of derivation in near rings was introduced by Bell and Mason
[8]. An additive mapping d : N → N is said to be a derivation on N if d(xy) =
xd(y)+d(x)y, for all x, y ∈ N or equivalently in [20], d(xy) = d(x)y+xd(y), for
all x, y ∈ N . Motivated by the definition of derivation in near rings, Gölbaşi [13]
defined generalized derivation in near rings as follows: An additive mapping F :
N → N is said to be a right (resp. left) generalized derivation associated with
a derivation d on N if F (xy) = F (x)y + xd(y) (resp. F (xy) = d(x)y + xF (y)),
for all x, y ∈ N . Moreover, F is said to be a generalized derivation associated
with a derivation d on N if it is both a right generalized derivation as well as
a left generalized derivation on N . All derivations are generalized derivations.
There has been a great deal of work by various authors with some suitable
constraints on derivations and generalized derivations to prime and semiprime
rings (see [5, 10, 11, 12, 15, 17]). A number of authors have obtained some
comparable results on near rings, (c.f. [1, 2, 4, 6, 8, 16, 19, 20]).

Daif and Bell [10] proved that if R is a prime ring, I a nonzero ideal of
R and d is a derivation on R such that d([x, y]) = ±[x, y], for all x, y ∈ I,
then R is commutative. Further, Dhara [12] proved that if R is a semiprime
ring with a generalized derivation F associated with a derivation d satisfying
F ([x, y]) = ±[x, y] or F (x ◦ y) = ±(x ◦ y), for all x, y ∈ I, a nonzero ideal of R,
then R must contain a nonzero central ideal, provided d(I) ̸= {0}. Moreover, he
proved that in case R is a prime ring, R must be commutative, provided d ̸= 0.
Motivated by the above results, Boua and Oukhtite [9] proved that a prime near
ring N with a derivation d is a commutative ring if one of the conditions holds:
(i) d([x, y]) = ±[x, y], (ii) d(x ◦ y) = ±(x ◦ y), for all x, y ∈ N .
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Recently, Shang [19] considered the more general situations (i) F ([x, y]) =
±xk[x, y]xl, (ii) F (x ◦ y) = ±xk(x ◦ y)xl, for all x, y ∈ N , k ≥ 0, l ≥ 0 non
negative integers and proved that the prime near ring N is a commutative ring
if it satisfies one of the above conditions.

In this line of investigation, we prove that a prime near ring N equipped with
a generalized derivation F associated with a nonzero derivation d is a commu-
tative ring if it satisfies one of the following conditions: For some nonnegative
integers p and q: (i) [F (x), y] = ±yp(x ◦ y)yq, (ii) [x, F (y)] = ±xp(x ◦ y)xq, (iii)
F (x) ◦ y = ±yp[x, y]yq, (iv) x ◦F (y) = ±xp[x, y]xq, (v) F (x) ◦ y = ±yp(x ◦ y)yq,
(vi) [x, F (y)] = ±xp[x, y]xq, (vii) [F (x), y] = ±yp[x, y]yq and (viii) x ◦ F (y) =
±xp(x ◦ y)xq, for all x, y ∈ N .

2. Preliminary results

For developing the proof of our theorems, we shall need the following lemmas.
These results appear in the case of left near rings and so it is easy to observe
that they also hold for right near ring as well.

Lemma 2.1 ([14], Lemma 2.2). Let N be a near ring admitting a generalized
derivation F associated with a derivation d. Then:

(i) F (x)y + xd(y) = xd(y) + F (x)y, for all x, y ∈ N ,

(ii) F (xy) = xF (y) + d(x)y, for all x, y ∈ N .

Lemma 2.2. Let N be a near ring admitting a generalized derivation F asso-
ciated with a derivation d. Then

(i) x(F (y)z + yd(z)) = xF (y)z + xyd(z), for all x, y, z ∈ N ,

(ii) x(yd(z) + F (y)z) = xyd(z) + xF (y)z, for all x, y, z ∈ N .

Proof. (i) For all x, y, z ∈ N , we have

F (x(yz)) = d(x)yz + xF (yz) = d(x)yz + x(F (y)z + yd(z)).(1)

Also

F ((xy)z) = F (xy)z + xyd(z) = d(x)yz + xF (y)z + xyd(z).(2)

Comparing (1) and (2), we get

x(F (y)z + yd(z)) = xF (y)z + xyd(z), for all x, y, z ∈ N.

(ii) For all x, y, z ∈ N ,

F (x(yz)) = xF (yz) + d(x)yz = x(yd(z) + F (y)z) + d(x)yz.(3)

On the other hand,

F ((xy)z) = xyd(z) + F (xy)z = xyd(z) + xF (y)z + d(x)yz.(4)

Comparing (3) and (4), we get the result.
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Lemma 2.3 ([7], Theorem 2.1). If a prime near ring N admits a nonzero
derivation with d(N) ⊆ Z(N), then N is a commutative ring.

3. Main results

Theorem 3.1. Let N be a prime near ring. If there exist non negative integers
p ≥ 0, q ≥ 0 and F is a generalized derivation on N associated with a nonzero
derivation d satisfying one of the following:

(i) [F (x), y] = ±yp(x ◦ y)yq, for all x, y ∈ N ,

(ii) [x, F (y)] = ±xp(x ◦ y)xq, for all x, y ∈ N ,

then N is a commutative ring.

Proof of Theorem 3.1. (i) Suppose that

(5) [F (x), y] = yp(x ◦ y)yq, for all x, y ∈ N.

Replacing x by xy in (5) and using (xy ◦ y) = (x ◦ y)y, we have

[F (xy), y] = yp(xy ◦ y)yq = yp(x ◦ y)yq+1 = [F (x), y]y,

F (xy)y − yF (xy) = F (x)y2 − yF (x)y, for all x, y ∈ N.(6)

Applying the definition of F and Lemma 2.1, we get

(F (x)y + xd(y))y − y(xd(y) + F (x)y) = F (x)y2 − yF (x)y, for all x, y ∈ N.

Invoking Lemma 2.2, we obtain

F (x)y2 + xd(y)y − yxd(y)− yF (x)y = F (x)y2 − yF (x)y, for all x, y ∈ N,

which reduces to

(7) xd(y)y = yxd(y), for all x, y ∈ N.

Substituting zx in place of x for z ∈ N in (7) and using (7), we find that

zxd(y)y = yzxd(y) = zyxd(y), for all x, y, z ∈ N.

This implies that [y, z]xd(y) = 0, for all x, y, z ∈ N , i.e., [y, z]Nd(y) = {0}, for
all y, z ∈ N . Since N is prime, we get

(8) [y, z] = 0, for all y, z ∈ N or d(y) = 0, for all y ∈ N.

But d ̸= 0, we have

(9) [y, z] = 0, for all y, z ∈ N,
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replacing y by yd(x), for any x, y ∈ N in (9), we get

[yd(x), z] = 0, for all x, y, z ∈ N,

which reduces to

(10) [y, z]d(x) + y[d(x), z] = 0, for all x, y, z ∈ N.

Using (8) in (10) and N is zero-symmetric, we get

(11) y[d(x), z] = 0, for all x, y, z ∈ N.

Again replacing y by d(r)y, for any r ∈ N in (11), we have

d(r)y[d(x), z] = 0, for all r, x, y, z ∈ N.

This implies that

d(r)N [d(x), z] = {0}, for all r, x, z ∈ N.

Since N is prime, we get

d(r) = 0, for all r ∈ N or [d(x), z] = 0 for all x, z ∈ N.

But d ̸= 0, we have

[d(x), z] = 0, for all x, z ∈ N.

This implies that

d(x) ∈ Z(N), for all x ∈ N.

d(N) ⊆ Z(N).

Therefore, by Lemma 2.3, N is a commutative ring.

Now, we taking

(12) [F (x), y] = −yp(x ◦ y)yq, for all x, y ∈ N.

Replacing x by xy in (12) and using (xy ◦ y) = (x ◦ y)y, we have

[F (xy), y] = −yp(xy ◦ y)yq = −yp(x ◦ y)yq+1 = [F (x), y]y,

F (xy)y − yF (xy) = F (x)y2 − yF (x)y, for all x, y ∈ N.(13)

Equation (13) is the same as equation (6). Now arguing in the similar manner,
we can obtain the result.

(ii) By hypothesis,

(14) [x, F (y)] = xp(x ◦ y)xq, for all x, y ∈ N.
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Substituting yx in place of y in (14), we get

[x, F (yx)] = xp(x ◦ yx)xq = xp(x ◦ y)xq+1 = [x, F (y)]x,

xF (yx)− F (yx)x = xF (y)x− F (y)x2, for all x, y ∈ N,

x(F (y)x+ yd(x))− (yd(x) + F (y)x)x = xF (y)x− F (y)x2, for all x, y ∈ N.

Using Lemma 2.2, we obtain

xF (y)x+ xyd(x)− yd(x)x− F (y)x2 = xF (y)x− F (y)x2, for all x, y ∈ N.

This reduces to,

(15) xyd(x) = yd(x)x, for all x, y ∈ N.

Replacing y by zy, where z ∈ N in (15) and using it again, we arrive at

xzyd(x) = zyd(x)x = zxyd(x), for all x, y, z ∈ N,

which implies that [x, z]yd(x) = 0, for all x, y, z ∈ N , i.e., [x, z]Nd(x) = {0}.
The primness of N gives that [x, z] = 0 or d(x) = 0, for all x ∈ N . Since d is a
nonzero derivation on N , then we have,

(16) [x, z] = 0, for all x, z ∈ N.

Similar proof follows from equation (9).
Now, we taking

(17) [x, F (y)] = −xp(x ◦ y)xq, for all x, y ∈ N.

Substituting yx in place of y in (17), we get

[x, F (yx)] = −xp(x ◦ yx)xq = −xp(x ◦ y)xq+1 = [x, F (y)]x.

Now arguing in the similar manner as above, we can obtain the result.

Theorem 3.2. Let N be a prime near ring. If there exist non negative integers
p ≥ 0, q ≥ 0 and F is a generalized derivation on N associated with a nonzero
derivation d satisfying one of the following:

(i) F (x) ◦ y = ±yp[x, y]yq, for all x, y ∈ N ,

(ii) x ◦ F (y) = ±xp[x, y]xq, for all x, y ∈ N ,

then N is a commutative ring.

Proof of Theorem 3.2. (i) Assume that

(18) F (x) ◦ y = yp[x, y]yq, for all x, y ∈ N.
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Replacing x by xy in (18) and using [xy, y] = [x, y]y, we get

F (xy) ◦ y = yp[xy, y]yq = yp[x, y]yq+1 = (F (x) ◦ y)y,

which implies that

(F (x)y + xd(y))y + y(xd(y) + F (x)y) = (F (x)y + yF (x))y, for all x, y ∈ N.

Applying Lemma 2.2, we obtain

F (x)y2 + xd(y)y + yxd(y) + yF (x)y = F (x)y2 + yF (x)y, for all x, y ∈ N,

which reduces to,

(19) yxd(y) = −xd(y)y, for all x, y ∈ N.

Substituting zx for x in (19), where z ∈ N , we have

yzxd(y) = −zxd(y)y = (−z)(xd(y)y) = (−z)(−yxd(y)) = (−z)((−y)xd(y)).

Replacing y by −y in the above expression, we find that

−yzxd(−y) = (−y)zxd(−y) = (−z)yxd(−y) = −zyxd(−y), for all x, y, z ∈ N.

The last expression yields that [y, z]xd(−y) = 0, for all x, y, z ∈ N . This implies
that

[y, z]Nd(−y) = {0}, for all y, z ∈ N.

By primness of N , we get [y, z] = 0, for all y, z ∈ N or d(−y) = 0, for all y ∈ N .
Taking d(−y) = 0, for all y ∈ N , this imply that d(y) = 0, for all y ∈ N . But
d ̸= 0, so we have,[y, z] = 0, for all y, z ∈ N . Hence, by the same argument as
in the proof of Theorem 3.1, we conclude that N is a commutative ring.

Arguing in the similar manner as above, we can obtain the results for F (x)◦
y = −yp[x, y]yq, for all x, y ∈ N .

(ii) By hypothesis, we have

(20) x ◦ F (y) = xp[x, y]xq, for all x, y ∈ N.

Substituting yx for y in (20), we have

x ◦ F (yx) = xp[x, yx]xq = xp[x, y]xq+1 = (x ◦ F (y))x,
x(F (y)x+ yd(x)) + (F (y)x+ yd(x))x = xF (y)x+ F (y)x2.

Applying Lemma 2.1 and Lemma 2.2, the last expression yields that

xF (y)x+ xyd(x) + (yd(x) + F (y)x)x = xF (y)x+ F (y)x2.

This implies that

(21) xyd(x) = −yd(x)x, for all x, y ∈ N.
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Replacing y by zy for z ∈ N in (21), we obtain

xzyd(x) = −zyd(x)x = (−z)(yd(x)x) = (−z)(−xyd(x)) = (−z)((−x)yd(x)).

Substituting −x in place of x, we arrive at [x, z]yd(−x) = 0, for all x, y, z ∈ N .
This implies that [x, z]Nd(−x) = {0}, for all x, z ∈ N . By primness of N , we
get [x, z] = 0, for all x, z ∈ N or d(−x) = 0, for all x ∈ N . Taking d(−x) = 0,
for all x ∈ N , this imply that d(x) = 0, for all x ∈ N . But d ̸= 0, we have
[x, z] = 0, for all x, z ∈ N . Hence, by the same argument as in the proof of
Theorem 3.1, we conclude that N is a commutative ring.

Arguing in the similar manner as above, we can obtain the result for x ◦
F (y) = −xp[x, y]xq, for all x, y ∈ N .

Theorem 3.3. Let N be a prime near ring. If there exist non negative integers
p ≥ 0, q ≥ 0 and F is a generalized derivation on N associated with a nonzero
derivation d satisfying one of the following:

(i) F (x) ◦ y = ±yp(x ◦ y)yq, for all x, y ∈ N ,

(ii) [x, F (y)] = ±xp[x, y]xq, for all x, y ∈ N ,

then N is a commutative ring.

Proof of Theorem 3.3. (i) Assume that

(22) F (x) ◦ y = yp(x ◦ y)yq, for all x, y ∈ N.

Replacing x by xy in (22), we get

F (xy) ◦ y = yp(xy ◦ y)yq = yp(x ◦ y)yq+1 = (F (x) ◦ y)y,
F (xy)y + yF (xy) = F (x)y2 + yF (x)y,

(F (x)y + xd(y))y + y(xd(y) + F (x)y) = F (x)y2 + yF (x)y.

Applying Lemma 2.2, the above expression reduces to

(23) yxd(y) = −xd(y)y, for all x, y ∈ N.

Equation (23) is same as Equation (19), arguing in the similar manner as in
Theorem 3.2, we can get the result.

Arguing in the similar manner as above, we can obtain the result for F (x) ◦
y = −yp(x ◦ y)yq, for all x, y ∈ N .

(ii) Suppose that

(24) [x, F (y)] = xp[x, y]xq, for all x, y ∈ N.

Substituting yx for y in (24), we obtain

[x, F (yx)] = xp[x, yx]xq = xp[x, y]xq+1 = [x, F (y)]x,

xF (yx)− F (yx)x = xF (y)x− F (y)x2, for all x, y ∈ N.
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Applying the definition of F and Lemma 2.1(i), the above expression yields that

x(F (y)x+ yd(x))− (yd(x) + F (y)x)x = xF (y)x− F (y)x2, for all x, y ∈ N.

Using Lemma 2.2, we get

xF (y)x+ xyd(x)− yd(x)x− F (y)x2 = xF (y)x− F (y)x2, for all x, y ∈ N.

The above expression reduces to

(25) xyd(x) = yd(x)x, for all x, y ∈ N.

Since Equation (25) is same as Equation (15), arguing in the similar manner as
in Theorem 3.1, we can get the result.

Arguing in the similar manner as above, we can obtain the result for [x, F (y)]
= −xp[x, y]xq, for all x, y ∈ N .

Theorem 3.4. Let N be a prime near ring. If there exist non negative integers
p ≥ 0, q ≥ 0 and F is a generalized derivation on N associated with a nonzero
derivation d satisfying one of the following:

(i) [F (x), y] = ±yp[x, y]yq, for all x, y ∈ N ,

(ii) x ◦ F (y) = ±xp(x ◦ y)xq, for all x, y ∈ N ,

then N is a commutative ring.

Proof of Theorem 3.4. (i) Assume that

(26) [F (x), y] = yp[x, y]yq, for all x, y ∈ N.

Replacing x by xy in (26) and using [xy, y] = [x, y]y, we find that

[F (xy), y] = yp[xy, y]yq = yp[x, y]yq+1 = [F (x), y]y.

This implies that

(F (x)y + xd(y))y − y(xd(y) + F (x)y) = F (x)y2 − yF (x)y, for all x, y ∈ N.

Using Lemma 2.2, we get

F (x)y2 + xd(y)y − yxd(y)− yF (x)y = F (x)y2 − yF (x)y, for all x, y ∈ N,

which reduces to

(27) xd(y)y = yxd(y), for all x, y ∈ N.

Since Equation (27) is same as Equation (15), arguing in the similar manner as
in Theorem 3.1, we get the result.
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Arguing in the similar manner as above, we can obtain the result for [F (x), y] =
−yp[x, y]yq, for all x, y ∈ N .

(ii) By hypothesis

(28) x ◦ F (y) = xp(x ◦ y)xq, for all x, y ∈ N.

Replacing y by yx in (28) and using (x ◦ yx) = (x ◦ y)x, we get

x ◦ F (yx) = xp(x ◦ yx)xq = xp(x ◦ y)xq+1 = (x ◦ F (y))x,
x(F (y)x+ yd(x)) + (yd(x) + F (y)x)x = xF (y)x+ F (y)x2.

Applying Lemma 2.2(i), the above expression gives

xF (y)x+ xyd(x) + yd(x)x+ F (y)x2 = xF (y)x+ F (y)x2,

which reduces to,

(29) xyd(x) = −yd(x)x, for all x, y ∈ N.

Since Equation (29) is same as Equation (21), arguing in the similar manner as
in Theorem 3.2, we can get the result.

Arguing in the similar manner as above, we can obtain the result for
x ◦ F (y) = −xp(x ◦ y)xq, for all x, y ∈ N .

The following example demonstrates that the primness hypothesis in the
Theorems 3.1, 3.2, 3.3 and 3.4 is not superfluous.

Example 3.1. Let S be a zero-symmetric right near ring. Let us consider

N =


 0 0 a

0 0 b
0 0 0

 | 0, a, b ∈ S

 .

It is easy to verify that N is a non prime zero-symmetric right near ring
with respect to matrix addition and matrix multiplication. Define mappings
F, d : N → N by

F

 0 0 a
0 0 b
0 0 0

 =

 0 0 a
0 0 0
0 0 0

 and d

 0 0 a
0 0 b
0 0 0

 =

 0 0 a
0 0 0
0 0 0

 .

Then, F is a nonzero generalized derivation associated with a nonzero derivation
d on N satisfying for some nonnegative integers p and q:

(i) [F (x), y] = ±yp(x ◦ y)yq;

(ii) [x, F (y)] = ±xp(x ◦ y)xq;

(iii) F (x) ◦ y = ±yp[x, y]yq;
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(iv) x ◦ F (y) = ±xp[x, y]xq;

(v) F (x) ◦ y = ±yp(x ◦ y)yq;

(vi) [x, F (y)] = ±xp[x, y]xq;

(vii) [F (x), y] = ±yp[x, y]yq;

(viii) x ◦ F (y) = ±xp(x ◦ y)xq, for all x, y ∈ N .

However, N is not commutative.

4. Concluding remarks

In this paper, the class of near rings involving generalized derivations satisfying
some differential identities has been studied. We proved commutativity of prime
near rings with differential identities on generalized derivations. This work can
be further studied by considering multiplicative generalized derivations on prime
near rings and semiprime near rings along with examples that illustrates the
necessity of the assumptions used which is left for future work.
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1. Introduction

Data involving uncertainties are present in various disciplines such as economics,
engineering, social science, and medical science. Uncertainty in events compli-
cates decision making in many aspects. To handle problems with uncertainty,
the concept of fuzzy sets was first defined by Zadeh [34]. Though fuzzy set the-
ory helped in solving problems with uncertainty, assigning membership values to
a large number of data was challenging. To overcome such difficulties, the con-
cepts of rough set and soft set were developed. Pawlak [26] first defined rough
sets in 1982. These sets were related to upper and lower approximations and
generally are crisp sets. Pawlak’s rough sets are based on equivalence relations,
but finding an equivalence relation among the elements of a set was difficult.
Though different relations were used to define rough set theory, they had compli-

*. Corresponding author
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cations in modelling problems with uncertainty. Hence, Moldtsov [22] initiated
the theory of soft sets. It was further investigated by Maji et al. and other
researchers [7, 8, 19, 20, 23]. Soft set theory has application in various fields like
decision making, game theory, operations research, etc. Continuity functions of
soft near open sets in soft topological spaces [2, 3], continuity functions of rough
sets [28], fuzzy continuous functions [13, 17], and many other hybrid topological
spaces are studied in literature [5, 24]. In addition, the relationship between soft
sets and fuzzy sets was studied by Alcantud [4], and the relationship between
soft, rough, and fuzzy sets was investigated by Feng et al. [11]-[12]. A review
on soft set based parameter reduction and decision making was done by Sani
Danjuma et al. [9].

Extension of theories of uncertainty over n number of different non-empty
finite sets helps the decision maker to make many decisions at a time. This will
help in the future advancements in different areas of research. When it comes
to two universes, the rough set model was first studied in 1996 [33]. Following
them, numerous studies utilising uncertainty theories were conducted over two
universes [18], [27], [29], [30], [31], [32], [35], [36], [37].

In recent years, attempts have been made to generalise the soft sets over a
single universe to two or more universes. The binary soft set was first defined
and studied by Ackogz et al. [1]. Following them, Hussain [14] studied the topo-
logical properties of binary soft set. Further, binary soft mappings, separation
axioms, connectedness, and other hybrid concepts like binary bipolar soft sets,
fuzzy binary soft sets, etc. are studied by researchers in [6, 13, 15, 16]. Simply*
alpha open sets are useful in the field of decision making as it contributes to
attribute reduction. It was studied over a rough set by El Safty et al. [10].
Although it is examined in a rough set, it is appropriate to study the simply*
alpha open set over the soft set since the soft set contains a parametrization
tool. Simply* alpha open set is extended to soft set theory over two different
universes using soft binary relations in the author’s previous work [25]. In that
work, BR-soft topological rough approximation space was obtained, the defini-
tion of BR-soft simply* alpha open sets, other related BR-soft sets are defined,
and their basic properties are studied.

Decision-making becomes relatively simple if we can identify continuous
mapping from one set of parameters to another set and continuous mapping
among the universal set. In this paper, the notions of BR-soft simply* alpha
continuous mapping, contra continuous, and irresolute are defined between soft
topological rough approximation space and newly obtained soft topology. This
can be used to deal with uncertainty and vagueness in many areas, like data
analysis, machine learning, etc.

This paper is divided into three main sections. In Section 2, the basic defi-
nitions used in the paper is discussed. Section 3 deals with the BR-soft simply*
alpha open sets and related topological notions. In Section 4, BR-soft sim-
ply* alpha mapping, continuous functions, and contra continuous functions are
introduced along with theorems and examples followed by concluding remarks.
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2. Preliminary

Definition 2.1. Let S be the universe set, E be the parameter set, and k be the
subset of the parameter set E. Then, a soft set is a mapping from a subset of a
parameter set to the power set of the universe set.

Definition 2.2. Let (m1, k) and (m2, j) be two soft sets over a common universe
S. Then, (m1, k) is said to be a soft subset of (m2, j), if k is a subset of j for
all e belongs to k, mi(e) are identical approximations.

Definition 2.3. A soft set (m, k) over S is said to be an absolute soft set if for
every e belongs to k, m(e) = S.

Definition 2.4. A relation between the sets S and T is a subset of the cartesian
product S × T , where S × T = {(s, t) : s ∈ S, t ∈ T}.

Definition 2.5. Let S and T be two different nonempty finite sets. k be the
subset of a parameter set E. A pair (m, k) or mk is called a soft binary relation
over S and T if (m, k) is a soft set (binary soft set or BR-soft set) over S × T .

(Throughout this paper, BR stands for binary.)

Example 2.1. Let S denote the set of three patients {N,Z,C}, and T de-
note the set of three diseases {Typhoid(Ty), Dengue(D), Pneumonia(P )}. Let
E be the set of parameter that define the symptoms of diseases, where E =
{e1(fever), e2(breathingproblem), e3(jointpain), e4(headache)},K = {e1, e2} ⊆
E. Let S × T = {(N,Ty), (N,D), (N,P ), (Z, Ty), (Z,D), (Z,P ), (C, Ty),
(C,D), (C,P )} be the universal set. Then, soft set (m,K) = {(e1, {(N,Ty),
(N,P ), (Z, Ty), (Z,P ), (C, Ty), (C,P )}), (e2, {(N,D), (N,P ), (Z,D), (Z,P ),
(C,D), (C,P )})} denotes patients and their symptoms along with the possi-
bility of diseases.

Definition 2.6. A binary relation R(m(s,t)) on S and T induced by mk is defined
by (s, t)Rm(s,t)(s1, t1) ⇐⇒ {(s, t)mk(s1, t1)} for each (s, t), (s1, t1) ∈ S × T .

Definition 2.7. The successor neighbourhood of each (s, t) in S×T is given by
Rm(s,t)(s, t) = {(s1, t1) ∈ S × T ; (s, t)Rm(s,t)(s1, t1)}.

Definition 2.8. Let mk be a soft binary relation over S × T . G × J ⊆ S × T
and (S, T,Rm(s,t)) be a rough approximation space with respect to the parameter
set. The approximation operators are defined as follows:

Sapr(G× J) ={(s, t) ∈ S × T ;Rm(s,t)(s, t) ⊆ (G× J)},

Sapr(G× J) ={(s, t) ∈ S × T ;Rm(s,t)(s, t) ∩ (G× J) ̸= ∅},

where Sapr(G× J) is the lower rough soft approximation and Sapr(G× J) is the

upper rough soft approximation over two different universal sets. If Sapr(G ×
J) = Sapr(G×J), then G×J is a definable soft set. If Sapr(G×J) ̸= Sapr(G×J),
then (G× J) is a rough soft set.
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Definition 2.9. Let (S, T,Rm(s,t)) be a rough approximation space, and τBR be
a soft topology obtained from soft binary relation over S, T . Thus, (S, T,Rm(s,t),
τBR) is said to be BR-topological rough approximation space, where the elements
of τBR are BR-soft open, and its complements are closed.

Definition 2.10. Let (S, T,Rm(s,t), τBR) be a BR-topological rough approxima-
tion space. For each mki ⊆ mk, the BR-topological approximation operators are
defined as follows:

τBR(mki) = ∪ {mkj ∈ τBR;mkj ⊆ mki},
τBR(mki) = ∩ {mkj ∈ τ cBR;mki ⊆ mkj}.

In other words, τBR, τBR is considered the interior and closure of the BR-
topological approximation space, respectively.

3. BR-soft simply* alpha open set

Definition 3.1. In a BR-topological rough approximation space, a BR-soft sub-
set is called BR-soft nowhere dense, if τBR(τBR(mki)) = ∅.

Definition 3.2. In a BR-topological rough approximation space, a BR-soft sub-
set is said to be BR-soft alpha open if mki ⊆ τBR(τBR(τBR(mki))) and is BR-
soft alpha closed if τBR(τBR(τBR(mki))) ⊆ mki.

Definition 3.3. In a BR-topological rough approximation space, a BR-soft sub-
set is called a BR-soft simply* alpha open set if (mki) ∈ {∅,mk, (mkj) ∪ (mkl) :
(mkj) is BR − soft alpha open, (mkl)isBR − soft nowhere dense}. The col-
lection of BR-soft simply* alpha open set is denoted by BRSS

∗αO(mki), the
complement is BR-soft simply* alpha closed.

Proposition 3.1. Let (S, T,Rm(s,t), τBR) be a BR-topological rough approxima-
tion space.

i) The arbitrary union of the BR-Soft simply* alpha open set is BR-Soft
simply* alpha open.

ii) Finite intersection of BR-Soft simply* alpha open set is BR-Soft simply*
alpha open.

Definition 3.4. Let (S, T,Rm(s,t), τBR) be a BR-topological rough approxima-
tion space. For each mki ⊆ mk, where mki,mk are BR-soft simply* alpha open
sets. Then the BR-topological approximation operators are defined as follows:

BRS(mki) = ∩ {mkj ∈ τ cBR;mki ⊆ mkj},
BRS(mki) = ∪ {mkj ∈ τBR;mkj ⊆ mki},

where BRS(mki), BRS(mki) are the closure and interior of BR soft simply*
alpha open sets in BR-topological rough approximation space respectively.
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Theorem 3.1. A collection of BR-Soft simply* alpha open sets forms a BR-soft
topology τ∗BR.

Definition 3.5. Let τ∗BR be a BR-soft topology obtained from the collection of
BR-soft simply* alpha open sets. For each BR-soft simply* alpha open sets
mki ⊆ mk, the BR-topological approximation operators are defined as follows:

BRS(mki) = ∩ {mkj ∈ (τ∗BR)
c;mki ⊆ mkj},

BRS(mki) = ∪ {mkj ∈ τ∗BR;mkj ⊆ mki},

where BRS(mki), BRS(mki) are the closure and interior of BR soft simply*
alpha open sets in τ∗BR respectively.

4. Continuous mapping of BR-soft simply* alpha open set

Definition 4.1. Let (S, T, τ∗BR, E) be a BR-soft topological space obtained from
the collection of BR-soft simply* alpha open sets and (U, V,Rm(s,t), τBR) be a soft
topological approximation space. Then, f : (S, T, τ∗BR, E) → (U, V,Rm(s,t), τBR)
is said to be BRSS

∗α-continuous, if f−1(mk) is BR-soft simply* alpha open set
for every mk ∈ (U, V,Rm(s,t), τBR).

Example 4.1. Let U = {b, c, d}, V = {e, f}. Then U ×V = {(b, e), (b, f), (c, e),
(c, f), (d, e), (d, f)}. Let the parameter sets be E = {e1, e2},K = {k1, k2} re-
spectively, and me = {(e1, {(c, e), (d, e)}), (e2, {(b, e), (c, f)})} be the BR-soft
set. Then, the topological rough approximation space obtained is

τBR ={∅, {(e1, {(d, e)})}, {(e1, {(c, e)})}, {(e2, {(c, f)})}, {(e2, {(b, e)})},
{(e1, {(c, e), (d, e)})}, {(e1, {(d, e)}), (e2, {(c, f)})}, {(e1, {(d, e)}),
(e2, {(b, e)})}, {(e1, {(c, e)}), (e2, {(c, f)})}, {(e1, {(c, e)}), (e2, {(b, e)})},
{(e2, {(b, e), (c, f)})}, {(e1, {(c, e), (d, e)}), (e2, {(c, f)})}, {(e1, {(c, e),
(d, e)}), (e2, {(b, e)})}, {(e1, {(d, e)}), (e2, {(b, e), (c, f)})}, {(e1, {(c, e)}),
(e2, {(b, e), (c, f)})}, {(e1, {(c, e), (d, e)}), (e2, {(b, e), (c, f)})}}.

Let S = {2, 3, 5}, T = {4, 6}, and S×T = {(2, 4), (2, 6), (3, 4), (3, 6), (5, 4), (5, 6)}.
Let mk = {(k1, {(3, 4), (5, 4)}), (k2, {(2, 4), (3, 6)})} be the BR-soft set. Then,
the topological rough approximation space obtained is

τBR ={∅, {(e1, {(5, 4)})}, {(e1, {(3, 4)})}, {(e2, {(3, 6)})}, {(e2, {(2, 4)})},
{(e1, {(3, 4), (5, 4)})}, {(e1, {(5, 4)}), (e2, {(3, 6)})}, {(e1, {(5, 4)}),
(e2, {(2, 4)})}, {(e1, {(3, 4)}), (e2, {(3, 6)})}, {(e1, {(3, 4)}), (e2, {(2, 4)})},
{(e2, {(2, 4), (3, 6)})}, {(e1, {(3, 4), (5, 4)}), (e2, {(3, 6)})}, {(e1, {(3, 4),
(5, 4)}), (e2, {(2, 4)})}, {(e1, {(5, 4)}), (e2, {(2, 4), (3, 6)})}, {(e1, {(3, 4)}),
(e2, {(2, 4), (3, 6)})}, {(e1, {(3, 4), (5, 4)}), (e2, {(2, 4), (3, 6)})}.
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Then, the collection of BR-soft simply*alpha open sets forming soft topology
τBR = τ∗BR, where ∅ is the BR-soft nowhere dense set. Here, w : S × T →
U × V and p : E → K are defined as w(2, 4) = (c, f);w(2, 6) = (b, e);w(3, 4) =
(d, f);w(3, 6) = (d, e);w(5, 4) = (b, f);w(5, 6) = (c, e); p(e1) = k1; p(e2) = k2.

Let mk = {(e2, {(b, e), (c, f)})} be a BR-soft open set in U × V and f :
(S, T, τ∗BR, E) → (U, V,Rm(s,t), τBR) is a BR-soft mapping. Then, f−1(mk) =
{(e2, {(2, 4), (3, 6)})} is BR-soft simply*alpha open set in S × T . Therefore, f
is a BR-soft simply*alpha- continuous function.

Example 4.2. Consider Example 4.1, where τ ′BR, τ
′′
BR be two BR soft topologi-

cal spaces obtained when {(e1, {(5, 6)}), (e2, {(2, 6)})}, {(e1, {(5, 6)})} are taken
as BR-soft nowhere dense sets, respectively. Let mk = {(e1, {(d, e)})} be a BR-
soft open set in τ

′′
BR. Then, f

−1(mk) = {(e1, {(5, 6)})} is not a BR-soft simply*
alpha open set in τ ′BR. Therefore, f is not a BR-soft simply*alpha- continuous
function.

Theorem 4.1. For the class of BR-soft simply*alpha continuous functions, the
following are equivalent:

i) f is BR-soft simply*alpha continuous function.

ii) f−1(mk) is BR-soft simply*alpha closed for every BR-soft closed set mk.

Proof of Theorem 4.1. i) =⇒ ii). Letmk be a BR-soft closed set over U×V .
Then, (mk)

c ∈ SO(U × V ). Hence, f−1((mk)
c) ∈ BRSS

∗αO(S × T ). That is,
(f−1(mk))

c ∈ BRSS
∗αO(S × T ) which implies f−1(mk) ∈ BRSS

∗αC(S × T ).

ii) =⇒ i). Let mk ∈ SO(U × V ). Then, (mk)
c ∈ SC(U × V ). So,

f−1((mk)
c) ∈ BRSS

∗αC(S × T ). That is, (f−1(mk))
c ∈ BRSS

∗αC(S × T )
implies that f−1(mk) ∈ BRSS

∗αO(S × T ). Thus, f−1 is BRSS
∗α-continuous.

Theorem 4.2. For a BR-soft simply*alpha continuous function f : (S, T, τ∗BR, E)
→ (U, V,Rm(s,t), τBR), where mk is any BR-soft subset.

i) BR(f−1(τBR(mk))) ⊆ f−1(mk)

ii) BR(f−1(τBR(mk))) ⊆ f−1(τBR(mk))

iii) f−1(τBR(mk)) ⊆ BR(f−1(τBR(mk)))

Proof of Theorem 4.2. i) Since f is BR-soft simply* alpha continuous,
and τBR(mk) is BR-soft open in U ×V , f−1(τBR(mk)) is BR-soft simply*
alpha open in S × T . We know that τBR(mk) ⊆ mk, which implies that
f−1(τBR(mk)) ⊆ f−1(mk). Since BR-soft simply* alpha interior of mk

is the largest open subset of mk. Thus, BR(f−1(τBR(mk))) ⊆ f−1(mk).
Hence the proof.

ii) The proof is obvious from (i).
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iii) Let mk be any BR-soft subset, and τBR(mk) is the largest BR-soft open
subset of mk. Since f is BR-soft simply* alpha continuous, f−1(τBR(mk))
is BR-soft simply* alpha open. Thus, we have

f−1(τBR(mk)) ⊆ BR(f−1(τBR(mk))).

Definition 4.2. Let (S, T, τ∗BR, E) be a BR-soft topological space obtained from
the collection of BR-soft simply* alpha open sets and (U, V,Rm(s,t), τBR) be a soft
topological rough approximation space. Then, f : (S, T, τ∗BR, E) → (U, V,Rm(s,t),
τBR) is said to be BR soft semi-continuous, if f−1(mk) is BR-soft semi open
set for every mk ∈ (U, V,Rm(s, t), τBR).

Definition 4.3. Let (S, T, τ∗BR, E) be a BR-soft topological space obtained from
the collection of BR-soft simply* alpha open sets and (U, V,Rm(s,t), τBR) be a soft
topological rough approximation space. Then, f : (S, T, τ∗BR, E) → (U, V,Rm(s,t),
τBR) is said to be BR soft beta-continuous, if f−1(mk) is BR-soft beta open set
for every mk ∈ (U, V,Rm(s,t), τBR).

Theorem 4.3. Every BR-soft semi continuous is BR-soft simply*alpha-conti-
nuous.

Proof of Theorem 4.3. Under a BR-soft semi continuous function, the inverse
image of every BR-soft open set is BR-soft semi open. Since every BR-soft semi
open is BR-soft simply*alpha open, inverse image of BR-soft open set is BR-soft
simply*alpha open.

Theorem 4.4. Every BR-soft simply*alpha-continuous function is BR-soft beta
continuous.

Proof of Theorem 4.4. Under a BR-soft beta continuous function, the inverse
image of every BR-soft open set is BR-soft beta open. Since every BR-soft beta
open is BR-soft simply*alpha open, inverse image of BR-soft open set is BR-soft
simply*alpha open.

Definition 4.4. Let (S, T, τ ′BR, E), and (U, V, τ
′′
BR, E) be two BR-soft topological

spaces obtained from the collection of BR-soft simply*alpha open sets. Then, f :
(S, T, τ ′BR, E) → (U, V, τ

′′
BR, E) is BR-soft simply* alpha-irresolute, if f−1(mk)

is BR-soft simply* alpha open for every BR-soft simply* alpha open set mk ∈
τ

′′
BR.

Example 4.3. Consider Example 4.1, where τ ′BR be a BR-soft topological
space obtained from the collection of BR-soft simply*alpha open sets where
{e1, {(3, 4), (5, 4)}, (e2, {(2, 4), (3, 6)})} is BR-soft open and {(e1, {(5, 6)}), (e2,
{(2, 6)})} is a BR-soft nowhere dense set. Let τ

′′
BR be a BR-soft topological

space obtained from the collection of BR-soft simply*alpha open sets where
{e1, {(c, e), (d, e), (d, f)}, (e2, {(b, e), (b, f), (c, f)})} is BR-soft open and empty
set is BR-soft nowhere dense set.
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Let mk = {e1, {(d, e), (d, f)}, (e2, {(b, e), (b, f)})} be BR-soft simply* alpha
open set in τ

′′
BR. Then, f−1(mk) = {(e1, {(5, 4), (5, 6)}), (e2, {(2, 6),

(3, 6)})} is also BR-soft simply* alpha open set in τ ′BR.

Example 4.4. Consider Example 4.1, where τ ′BR is a BR-soft topological space
obtained from the collection of BR-soft simply*alpha open sets where
{(e1, {(5, 6)}), (e2, {(2, 6)})} is a BR-soft nowhere dense set.

Similarly, τ
′′
BR is a BR-soft topological space obtained from the collection

of BR-soft simply*alpha open sets where {(e1, {(d, f)})} is a BR-soft nowhere
dense.

Letmk = {e1, {(b, f), (c, e)}, (e2, {(c, f), (d, e)})} and f−1(mk) = {(e1, {(5, 4),
(5, 6)}), (e2, {(2, 4), (3, 6)})}. Here, mk is BR-soft simply*alpha open set in τ

′′
BR

but f−1(mk) is not a BR-soft simply*alpha open set in τ ′BR. Thus, f is not a
BR-soft simply* alpha-irresolute.

Theorem 4.5. Every BR-soft simply* alpha-irresolute is BR-soft simply* alpha-
continuous.

Proof of Theorem 4.5. Let f : (S, T, τ ′BR, E) → (U, V, τ
′′
BR, E) is BR-soft

simply* alpha-irresolute. Let mk be a BR-soft open set in (U, V, τ
′′
BR, E). Then

mk is BR-soft simply*alpha open set in (U, V, τ
′′
BR, E). Since f is BR-soft sim-

ply* alpha-irresolute mapping, f−1(mk) is a BR-soft simply* alpha open set in
(S, T, τ ′BR, E). Hence f is BR-soft simply* alpha-continuous mapping.

Definition 4.5. A mapping f : (S, T, τ ′BR, E) → (U, V, τ
′′
BR, E) is said to be

a BR-soft simply*alpha open map if the image of every BR-soft open set in
(S, T, τ ′BR, E) is BR-soft simply* alpha open in (U, V, τ

′′
BR, E).

Definition 4.6. A mapping f : (S, T, τ ′BR, E) → (U, V, τ
′′
BR, E) is said to be

a BR-soft simply*alpha closed map if the image of every BR-soft closed set in
(S, T, τ ′BR, E) is a BR-soft simply* alpha closed set in (U, V, τ

′′
BR, E).

Definition 4.7. A map f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) is called contra
BR-soft simply* alpha continuous if f−1(mk) is BR-soft simply* alpha closed in
(S, T, τ ′BR, E) for every BR-soft open set mk of (U, V,Rm(s,t), τBR).

Example 4.5. Considering Example 4.1, f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR)
be a map where τBR is the topological rough approximation space over U × V .
Then, BR-soft topology over S × T is obtained by taking {(e1, {(5, 6)}), (e2,
{(2, 6)})} as nowhere dense set. Let mk = {(e2, {(c, f)})} is BR-soft open in
τBR and f−1(mk) = {(e2, {(2, 4)})} is BR-soft simply* alpha closed. Thus, f is
contra BR-soft simply* alpha continuous.

Theorem 4.6. Let arbitrary union of BR-soft simply* alpha open set is BR-
soft simply* alpha open. Then, the following statements are equivalent for a
map f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR)

i) f is BR-soft simply* alpha contra continuous.
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ii) For every BR-soft closed set mk of (U, V,Rm(s,t), τBR), f
−1(mk) is BR-soft

simply* alpha open in (S, T, τ ′BR, E).

Proof of Theorem 4.6. i) =⇒ ii). Letmk be BR-soft closed set of (U, V,Rm(s,t),
τBR) over U × V . Then, U × V −mk is BR-soft open in (U, V,Rm(s,t), τBR). By
(i), f−1(U ×V −mk) = S×T −f−1(mk) BR-soft simply* alpha closed in S×T .
Thus f−1(mk) is BR-soft simply* alpha open in (S, T, τ ′BR, E).

ii) =⇒ i). Let mki be BR-soft open in (U, V,Rm(s,t), τBR). Then, U ×
V −mki is BR-soft closed in (U, V,Rm(s,t), τBR). By (ii), f−1(U × V −mki)=
f−1(U ×V −mki) = S×T − f−1(mki) is BR-soft simply* alpha open in S×T .
Thus, f−1(mki) is BR-soft simply* alpha closed in (S, T, τ ′BR, E).

Theorem 4.7. Let f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) be contra BR-soft
simply* alpha continuous. Then, BR(f−1(τBR(mk))) ⊂ f−1(mk) for every mk

in (U, V,Rm(s,t), τBR).

Proof of Theorem 4.7. Let f be a contra BR-soft simply* alpha contin-
uous function. Let τBR(mk) is BR-soft closed in (U, V,Rm(s,t), τBR). Then
f−1(τBR(mk)) is BR-soft simply* alpha open in (S, T, τ ′BR, E). Also, we know
that BR(mk) ⊂ mk, such that BR(f−1(τBR(mk))) ⊂ f−1(mk).

Theorem 4.8. If f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) is contra BR-soft
simply* alpha continuous, then the following statements hold:

i) f is contra BR-soft simply* alpha continuous

ii) For every (s, t) ∈ S × T and every BR-soft closed set mk of (U, V,Rm(s,t),
τBR) containing f(s, t), there exists a BR-soft simply* alpha open set mki

such that (s, t) ∈ mki and f(mki) ⊆ mk, if arbitrary union of BR-soft
simply* alpha open sets is BR-soft simply* alpha open.

iii) The inverse image of each BR-soft open set in (U, V,Rm(s,t), τBR) is BR-
soft simply* alpha closed in (S, T, τ ′BR, E).

Proof of Theorem 4.8. i) =⇒ ii). Let f be a contra BR-soft simply* alpha
continuous. Let (s, t) ∈ S×T andmk be a BR-soft closed set in U×V containing
f(s, t). So, (s, t) ∈ f−1(mk), which is BR-soft simply* alpha open in S×T . Let
f−1(mk) = mki. Hence, (s, t) ∈ mki. Thus, f(mki) = ff−1(mk) ⊂ mk.

ii) =⇒ i). Let mk be BR-soft closed in U × V . Let (s, t) ∈ f−1(mk).
Thus, f(s, t) ∈ mk. Hence, there exists a BR-soft simply* alpha open set mkj

containing (s, t) such that f(mkj) ⊂ mk. That is, (s, t) ∈ mkj ⊂ f−1(mk).
Therefore, f−1(mk) is a BR-soft simply*alpha open set in (S, T, τ ′BR, E).

iii) =⇒ i. The proof is obvious.

Theorem 4.9. Let f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) be a contra BR-soft

simply* alpha continuous function and g : (U, V,Rm(s,t), τBR) → (P,Q, τ
′′
BR, E)

be a BR-soft continuous function. Then g ◦ f : (S, T, τ ′BR, E) → (P,Q, τ
′′
BR, E)

is contra BR-soft simply* alpha continuous.
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Proof of Theorem 4.9. Let mk be any BR-soft open set over P × Q. Since
g is BR-soft continuous, g−1(mk) is BR-soft open cover over U × V . Since f
is contra BR-soft simply* alpha continuous, f−1(g−1(mk)) = (g ◦ f)−1(mk) is
BR-soft simply* alpha closed over S×T . Thus g ◦f is a contra BR-soft simply*
alpha continuous function.

Theorem 4.10. Let f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) be a BR-soft sim-

ply* alpha irresolute and g : (U, V,Rm(s,t), τBR) → (P,Q, τ
′′
BR, E) be a contra

BR-soft simply* alpha continuous function. Then (g ◦ f) : (S, T, τ ′BR, E) →
(P,Q, τ

′′
BR, E) is contra BR-soft simply* alpha continuous function.

Proof of Theorem 4.10. Let mk be any BR-soft open set over P ×Q. Since g
is contra BR-soft simply* alpha continuous, g−1(mk) is BR-soft simply* alpha
closed over U ×V . Since f is BR-soft simply* alpha irresolute, f−1(g−1(mk)) =
(g ◦ f)−1(mk) is BR-soft simply* alpha closed over S×T . Thus g ◦ f is a contra
BR-soft simply* alpha continuous function.

Definition 4.8. A map f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) is called per-
fectly BR-soft simply* alpha continuous if f−1(mk) is BR-soft simply* alpha
clopen in (S, T, τ ′BR, E) for every BR-soft open in (U, V,Rm(s,t), τBR).

Theorem 4.11. Every perfectly BR-soft simply* alpha continuous is contra
BR-soft simply* alpha continuous.

Proof of Theorem 4.11. Let f : (S, T, τ ′BR, E) → (U, V,Rm(s,t), τBR) be per-
fectly BR-soft simply* alpha continuous. Let mk be BR-soft closed in (U, V,
Rm(s,t), τBR). Then, f−1(mk) is BR-soft simply* alpha clopen, and hence
f−1(mk) is BR-soft simply* alpha open. Thus, f is contra BR-soft simply*
alpha continuous.

The converse of the above theorem need not be true, as can be seen from
the following example:

Example 4.6. From Example 4.5, it is shown that f−1(mk) is BR-soft simply*
alpha closed but not BR-soft simply* alpha open.

5. Conclusion

A new class of binary soft sets, namely BR-soft simply* alpha open sets, was
studied over two different universes. This is followed by the study of the con-
tinuous functions of the defined new class of set. Definitions of BR-soft simply*
alpha continuous function, BR-soft simply* alpha contra continuous, BR-soft
simply* alpha perfectly continuous, BR-soft simply* alpha open map, BR-soft
simply* alpha closed map, and BR-soft simply* alpha irresolute are introduced
and studied. The properties and results of the definitions are illustrated with
examples. The definitions of such a new class of sets and the study of their
continuous functions can lead to simplification in the decision making process
in various fields of research and may help in further developments. In addition
to this study, other topological properties of the defined set are being studied.
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Abstract. In this paper, some structural properties of the product maximal graph like
matching, vertex covering, edge covering and cordial labeling are studied. Furthermore,
the number of triangles of Γpm(R) are calculated. The isomorphism between the product
maximal graph of cartesian product of two commutative rings and cartesian product of
two product maximal graphs of commutative rings and its relations is interpreted with
an example.
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1. Introduction

A graph G is an ordered pair (V,E), where V = V (G) is a set of elements
called vertices, E = E(G) is a set of elements called edges and each edge is
an unordered pair of vertices (its ends or end vertices or end-points). Graph
theory has become a very popular and promptly increasing area of discrete
mathematics for its numerous theoretical development and manifold applications
to the practical problems. Graphs constructed from algebraic structures have
been studied extensively by many authors and have become a major field of
research.

Groups as graphs contain the most merging combination which is used re-
peatedly in the algebraic graph theory. The graphs from groups include power
graph, commuting graph, non-commuting graph etc., Another important kind
of graph construction is the construction of graphs from rings. The study of
graphs from rings contributes to the interplay between the ring invariants and
the graph structure. Graphs from rings are introduced by Beck. I [2] and it is

*. Corresponding author
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named as the zero-divisor graphs of a finite commutative ring. The complete
summary of graphs from rings and the results are found in [4]. Some graphs
[11, 12, 13] may represent the molecular structure of certain chemical compound
and it is mainly associated with the different molecular biology.

Moreover, D. Kalamani and G. Ramya [10] defined a new graph from ring
called product maximal graph. It is a graph of a finite commutative ring with
unity whose vertices are all the elements of ring R and two distinct vertices are
adjacent if and only if the product of two vertices are in maximal ideals of R.
They also extended the graph properties such as domination number [14] and
some graph theoretic properties [9] of the product maximal graph.

A graph labeling is an assignment of integers to the vertices or edges or both
subject to certain conditions. Labelled graphs serve useful mathematical models
for a broad range of applications. Graph labeling is useful in network problems
because each network node has a different transmission capacity for sending or
receiving messages in wired or wireless link. Most of the details related to graph
labeling and different methods of labeling like cordial labeling, graceful labeling,
hormonius labeling are in [8]. G. Ramya and D. Kalamani [15] establish that the
commuting graph of the subset of the dihedral group admits sum cordial, signed
product cordial and divisor cordial labeling. Further notation and terminologies
are followed from Frank Harary [7] and Douglas B. West [6] for graphs and from
Dummit and Foote [5] for algebra concepts.

2. Preliminaries

In this section, the essential definitions of the matching, covering, labeling, cor-
dial labeling and cartesian product are specified. Also some basic properties of
the covering and product maximal graph are given.

Definition 2.1. Let R be a finite commutative ring with unity and M1,M2, . . . ,
Mr be the maximal ideals of R. The product maximal graph of a commutative
ring R is the graph whose vertices are the elements of R and two distinct vertices
u and v are adjacent if and only if the product uv ∈Mi, i = 1, 2, . . . , r and it is
denoted by Γpm(R).

Definition 2.2. A subset M of the edge set E is called a matching or edge
independent set in G if no two edges of M are adjacent in a graph G. The
two ends of an edge in M are said to be matched under M .

Definition 2.3. A matching M is a maximum matching if a graph G has no
matching M ′ with |M ′| > |M |. The number of edges in a maximum matching
of G is called the matching number (edge independent number) of a graph
G. It is denoted by α′(G).

Definition 2.4. A set S of vertices which covers all the edges of a graph G is
called vertex cover, in the sense that every edge of G is incident with some
vertex in S. A vertex cover with minimum cardinality is the minimum vertex
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cover, the cardinality of minimum vertex cover is called the vertex covering
number and it is denoted by β(G) for the graph G.

Definition 2.5. A set S of edges which covers all the vertices of a graph G
is called edge cover of G. A minimum edge cover is one with minimum car-
dinality. The cardinality of a minimum edge cover of a graph G is called the
edge covering number and it is denoted by β′(G). The graph without isolated
vertices have an edge cover.

Definition 2.6. Let G = (V,E) be a graph. A mapping f : V (G) → {0, 1} is
called binary vertex labeling of G and f(v) is called the label of the vertex v
of G under f .

For an edge e = uv, the induced edge labeling f∗ : E(G) → {0, 1} is given
by f∗(e) = |f(u)−f(v)|. Let vf (0), vf (1) be the number of vertices of G having
label 0 and 1 respectively under f and ef (0), ef (1) be the number of edges
having label 0 and 1 respectively under f∗.

Definition 2.7. A vertex labeling f : V (G) → {0, 1} and the induced edge
labeling f∗ : E(G) → {0, 1} is given by f∗(uv) = |f(u)− f(v)|. Such labeling is
called cordial labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph
G is cordial if it admits cordial labeling.

Definition 2.8. A binary vertex labeling of a graph G with induced edge labeling
f∗ : E(G) → {0, 1} is defined by f∗(uv) = (f(u) + f(v))(mod2) is named as
sum cordial labeling if |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. A graph
G is sum cordial if it admits sum cordial labeling.

Definition 2.9. A vertex labeling, f : V (G) → {−1, 1} of a graph G with
induced edge labeling f∗ : E(G) → {−1, 1} defined by f∗(uv) = f(u)f(v) is
called a signed product cordial labeling if |vf (−1)−vf (1)| ≤ 1 and |ef (−1)−
ef (1)| ≤ 1 . A graph G is signed product cordial if it admits signed product
cordial labeling.

Definition 2.10. A divisor cordial labeling of a graph G with the vertex set
V is a bijection f : V → {1, 2, . . . , |V |} such that if each edge uv is assigned the
label 1 if f(u)|f(v) or f(v)|f(u) and 0 otherwise. A graph G is divisor cordial
if it admits divisor cordial labeling.

Definition 2.11. An isomorphism from a simple graph G to a simple graph
H is a bijection f : V (G) → V (H) such that uv ∈ E(G) iff f(u)f(v) ∈ E(H).

Definition 2.12. The cartesian product of G and H, written as G × H is
the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to
(u′, v′) iff

� u = u′ and vv′ ∈ E(H) or
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� v = v′ and uu′ ∈ E(G).

Theorem 2.1 ([6]). In a graph G, the subset S is an independent set iff S is a
vertex cover and hence α(G) + β(G) = n.

Theorem 2.2 ([6]). If G is a graph without isolated vertices, then α′(G) +
β′(G) = n, where n is the number of vertices in G.

Lemma 2.1 ([10]). Let R be a finite commutative ring with unity andM1,M2, . . . ,
Mr be the maximal ideals of R. Let Γpm(R) be a product maximal graph of R.
Then, the degree of vertex v of the graph Γpm(R) is given by

deg(v) =

{
n− 1, v ∈Mi, i = 1, 2, . . . , r,

m, otherwise,

where m and n are the cardinalities of M =
⋃r

i=1Mi and R respectively.

Lemma 2.2 ([10]). Let Γpm(R) be the product maximal graph of a finite com-
mutative ring R. Then, the independent number is α(Γpm(R)) = n−m, where
m and n are the cardinalities of M =

⋃r
i=1Mi and R respectively.

3. Main results

In this section, the number of triangles of the product maximal graph and some
graph theoretic properties like matching, covering, cordial labeling are discussed.
Also the product maximal graph of a finite commutative ring which is isomorphic
to the product maximal graph of cartesian product of two commutative rings
is found. Moreover, the relation between product maximal graph of cartesian
product of two rings and cartesian product of two product maximal graphs are
established.

Theorem 3.1. Let R be a commutative ring of order n, where n is not a
prime then the number of triangles for the product maximal graph Γpm(R) is
mC2(n−m) +mC3, where m is the number of elements in

⋃r
i=1Mi.

Proof. We know that the elements which are in maximal ideals form the com-
plete subgraph.

Note that, the number of triangles for the complete graph is mC3,

∴ △(Km) = mC3.

Now, the elements which are in non-maximal ideals are adjacent to the
elements in maximal ideals. Therefore, (n−m) vertices of non-maximal elements
form the triangles withmC2 vertices of maximal elements. Hence, △(Γpm(R)) =
mC2(n−m) +mC3.

Corollary 3.1. If p is a prime, then the product maximal graph of a finite
commutative ring of order p has no triangles.
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3.1 Matching number of the product maximal graph

Graph matching has applications in flow networks, scheduling and planning,
modeling bonds in chemistry, the stable marriage problem, neural networks in
artifical intelligance. A matching is a subset of the edge set such that no two
edges have a common vertex. Any matching with the largest size in G is called
a maximum matching. A maximal matching in a graph is a matching that
cannot be enlarged by adding an edge. Every maximum matching is a maximal
matching but the converse need not hold. The matching number of Γpm(R) is
shown in Theorem 3.3.

Theorem 3.2. Let R be the finite commuatative ring with unity andM1,M2, . . . ,
Mr be the maximal ideals of R then the matching number of the product maximal
graph is

α′(Γpm(R)) =

{
n
2 , n is even,

m, n is odd,

where n is the number of vertices in Γpm(R) and m is the number of elements
in M =

⋃r
i=1Mi.

Proof. Let E(Γpm(R)) be the edge set of the product maximal graph.

The matching set M is the subset of the edge set E(Γpm(R)) and the end
points of the edges of M are obtained in the following ways:

(i) both ends are in maximal ideals.

(ii) one end is in maximal ideal and other end is in non-maximal ideal.

Denote the subset of M defined by (i) as M1 and the subset defined by (ii)
as M2. Clearly the matching set M is the disjoint union of two subsets M1 and
M2 of the edge set E(Γpm(R)). The edges in M1 and M2 are all independent.

Case 1. n is even. In this case, |M | ≥ |M | and m is even.

If |M | = |M |, then the number of edges in M1 various from 0 to m
2 and

the number of edges in M2 various from 0 to n
2 . Combining M1 and M2 , the

matching set M has k edges, where m
2 ≤ k ≤ n

2 . From this, it is clear that the
maximum matching set M has n

2 edges and the matching number is n
2

α′(Γpm(R)) =
n

2
.

If |M | > |M |, then the number of edges in M1 various from m− n
2 to m

2 and
the number of edges in M2 various from 0 to n−m. Combining M1 and M2 ,
the matching set M has k edges, where m

2 ≤ k ≤ n
2 . From this, it is clear that

the maximum matching set M has n
2 edges and the matching number is n

2

α′(Γpm(R)) =
n

2
.
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Case 1. n is odd. In this case, |M | < |M | and m is odd.
The number of edges in M1 various from 0 to m−1

2 and the number of edges
in M2 various from 1 to m. Combining M1 and M2 , the matching set M has k
edges, where m+1

2 ≤ k ≤ m. From this, it is clear that the maximum matching
set M has m edges and the matching number is m.

Hence, the maximum matching number of the product maximal graph is
α′(Γpm(R)) = m.

Example 3.1. The maximummatching of the product maximal graph Γpm(Z/8Z)
and Γpm(Z/9Z) are shown below:

� Let R = Z/8Z. The maximal ideal of Z/8Z is M1 =< 2 >. Here, n
is even and |M | = |M | then the matching set M has 4 edges. M =
{(0, 1), (2, 7), (3, 6), (4, 5)} is one of the maximum matching set and hence
α′(Γpm(Z/8Z)) = 4 and the matching is shown in Figure 1 with colored
lines.

Figure 1: The Graph Γpm(Z/8Z) with matching.

� Let R = Z/9Z. The maximal ideal of Z/9Z is M1 =< 3 >. Here, n is odd
and |M | < |M | then the matching set M may have either 2 or 3 edges. One
of the maximum matching set of the graph is M = {(0, 1), (3, 5), (6, 8)}
and hence α′(Γpm(Z/9Z) = 3 and the matching is shown in Figure 2 with
colored lines.

3.2 Vertex covering and edge covering of the product maximal graph

Graph covering is one of the classical topics in graph theory. The vertex covering
problem, matching number problem are said to be classical optimization problem
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Figure 2: The Graph Γpm(Z/9Z) with matching.

in computer science. A covering graph is a subgraph that has either all the
vertices or all the edges belonging to another graph. Edge covering refers to a
subgraph that has all of the vertices. Vertex covering number and edge covering
number of the product maximal graph are shown in the following theorems.

Theorem 3.3. Let Γpm(R) be the product maximal graph of the finite commu-
tative ring R with unity. The vertex covering number of the product maximal
graph is β(Γpm(R)) = m.

Proof. Let n be the number of vertices in the product maximal graph and m
be the number of elements in M =

⋃r
i=1Mi.

The vertex cover is the subset of the vertex set of the product maximal
graph which covers all the edges of the graph Γpm(R). By Theorem 2.1, the
complement of the independent set is a vertex covering set of the graph Γpm(R).
By Lemma 2.3, the independent set for the product maximal graph is I = {v ∈
Γpm(R)|v /∈M}.

The independence number of Γpm(R) is n−m. i.e., |I| = n−m. Now, the
complement of the independent set of the product maximal graph is I = {v ∈
Γpm(R)|v ∈M} and its cardinality is m.
Hence, the vertex covering number of the product maximal graph is m.

β(Γpm(R)) = m.

Theorem 3.4. Let R be the finite commutative ring with unity andM1,M2, . . . ,
Mr be the maximal ideals of R. The edge covering number of the product maxi-
mal graph is

β′(Γpm(R)) =

{
n
2 , if n is even,

n−m, if n is odd.
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Proof. An edge cover is the subset of the edge set which covers all the vertices
in the graph Γpm(R). By Theorem 2.2, the edge covering number of Γpm(R) is
the complement of the matching number in the product maximal graph.

∴ The edge covering number of Γpm(R) is

β′(Γpm(R)) =

{
n
2 , if n is even,

n−m, if n is odd.

Example 3.2. Let R = Z/12Z whose maximal ideals are M1 =< 2 > and
M2 =< 3 >.

Figure 3: The Graph Γpm(Z/12Z) with vertex covering and edge covering.

� The subset {0, 2, 3, 4, 6, 8, 9, 10} of the vertex set V (Γpm(R)) covers all
the edges of the graph Γpm(Z/12Z) and it is the minimum vertex cover.
Hence, the vertex covering number β(Γpm(Z/12Z)) = 8 and the graph
Γpm(Z/12Z) is shown in Figure 3 with colored vertices.

� The subset {(0, 1), (2, 5), (4, 7), (8, 1), (10, 3), (6, 9)} of the edge set
E(Γpm(R)) covers all the vertices of the graph Γpm(Z/12Z) and it is the
minimum edge cover. Hence, the edge covering number β′(Γpm(Z/12Z)) =
6 and is shown in Figure 3 with colored lines.
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3.3 Cordial labeling of the product maximal graph

Cahit [3] has introduced a weeker version of both graceful and harmonious label-
ing. The following theorem shows that the graph Γpm(R) satisfies sum cordial,
signed product cordial and divisor cordial labeling if n = p2, where p is a prime.

Theorem 3.5. The product maximal graph Γpm(Z/p2Z) admits sum cordial
labeling if p = 2 or p ≡ 3(mod 4), where p is a prime number.

Proof. Let Γpm(Z/p2Z) be the product maximal graph, where Z/p2Z is the
finite commutative ring with unity and < p > is the maximal ideal of Z/p2Z.
Assume that, for i < j then, vi < vj .

Let the vertex bijective mapping f : V (Γpm(Z/p2Z)) −→ {0, 1} be defined
as

f(vi) =

{
0, if 1 ≤ i ≤ ⌈p

2

2 ⌉,
1, if ⌈p

2

2 ⌉+ 1 ≤ i ≤ p2.

Case 1. p = 2. Clearly vf (0) = vf (1) = p. The edge labeling f∗ : E(Γpm(Z/p2Z))
−→ {0, 1} is given by f∗(vivj) = |f(vi) + f(vj)|(mod2), where 1 ≤ i, j ≤ p2 and
i ̸= j.

We have ef (0) = p and ef (1) = p + 1. Thus, |vf (0) − vf (1)| ≤ 1 and
|ef (0)− ef (1)| ≤ 1.

∴ The product maximal graph satisfies the sum cordial labeling if p = 2.

Case 2: p ≡ 3(mod 4). Clearly, vf (0) = ⌈p
2

2 ⌉ and vf (1) = ⌊p
2

2 ⌋.
The edge labeling f∗ : E(Γpm(Z/p2Z)) −→ {0, 1} is given by f∗(vivj) =

|f(vi) + f(vj)|(mod2), where 1 ≤ i, j ≤ p2 and i ̸= j. We have ef (0) =

⌊p(p−1)(1+2p)
4 ⌋ and ef (1) = ⌈p(p−1)(1+2p))

4 ⌉. Thus, |vf (0) − vf (1)| ≤ 1 and
|ef (0)− ef (1)| ≤ 1.

∴ The product maximal graph satisfies the sum cordial labeling if p ≡
3(mod 4).

Theorem 3.6. The product maximal graph Γpm(Z/p2Z) admits signed product
cordial labeling if p = 2 or p ≡ 3(mod 4), where p is a prime number.

Proof. Assume that i < j then vi < vj .

Let the vertex bijective mapping f : V (Γpm(Z/p2Z)) −→ {1,−1} be define
as

f(vi) =

{
1, if 1 ≤ i ≤ ⌈p

2

2 ⌉,
−1, if ⌈p

2

2 ⌉+ 1 ≤ i ≤ p2.

Case 1. p = 2. Clearly vf (1) = vf (−1) = p.

The edge labeling f∗ : E(Γpm(Z/p2Z)) −→ {1,−1} is given by f∗(vivj) =
f(vi)f(vj), where 1 ≤ i, j ≤ p2 and i ̸= j.

We have ef (1) = p and ef (−1) = p + 1. Thus, |vf (1) − vf (−1)| ≤ 1 and
|ef (1)− ef (−1)| ≤ 1.
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∴ The product maximal graph satisfies the signed product cordial labeling
if p = 2.

Case 2. p ≡ 3(mod 4). Clearly, vf (1) = ⌈p
2

2 ⌉ and vf − (1) = ⌊p
2

2 ⌋.
The edge labeling f∗ : E(Γpm(Z/p2Z)) −→ {1,−1} is given by f∗(vivj) =

f(vi)f(vj), where 1 ≤ i, j ≤ p2 and i ̸= j.

We have ef (1) = ⌊p(p−1)(1+2p)
4 ⌋ and ef (−1) = ⌈p(p−1)(1+2p)

4 ⌉. Thus, |vf (1)−
vf (−1)| ≤ 1 and |ef (1)− ef (−1)| ≤ 1.

∴ The product maximal graph satisfies the signed product cordial labeling
if p ≡ 3(mod 4).

Theorem 3.7. The product maximal graph Γpm(Z/p2Z) admits divisor cordial
labeling if p = 2 or p ≡ 3(mod4), where p is a prime number.

Proof. Let the vertex bijective mapping f : V (Γpm(Z/p2Z)) −→ {1, 2, . . . , p2}
be define as f(vi) = i, where 1 ≤ i ≤ p2.

Then, the edge labeling f∗ : E(Γpm(Z/p2Z)) −→ {0, 1} is given by f∗(vivj) =
f(vi)|f(vj) or f(vi)|f(vj), where 1 ≤ i, j ≤ p2 and i ̸= j.

We have ef (0) = ⌈p(p−1)(1+2p)
4 ⌉ and ef (1) = ⌊p(p−1)(1+2p)

4 ⌋.
∴ |ef (1)− ef (−1)| ≤ 1.

The product maximal graph satisfies the divisor cordial labeling if p = 2 and
p ≡ 3(mod 4).

4. Cartesian product

In this section, the product maximal graph of the cartisean product R × S of
two finite commutative rings R and S and the cartesian product of the product
maximal graphs Γpm(R) and Γpm(S) are studied and its relation is also discussed
in the subsequent theorems.

4.1 Product maximal graph of the cartesian product of two rings

Let R and S be two finite commutative rings with unity whose orders are n1
and n2 respectively. Then, the cartesian product R × S of two rings is also a
finite commutative ring with unity whose order is n1n2. If I and J are the ideals
of R and S respectively then every ideal of R× S is of the form I × J [1].

Let Mi, i = 1, 2, . . . , r and Nj , j = 1, 2, . . . , s be the maximal ideals of R and
S respectively then the maximal ideals of R × S are of the form R × Nj and
Mi × S. Note that the number of maximal ideals of R × S is equal to the sum
of the number of maximal ideals of R and S.

The next theorem explains the isomorphism between the product maximal
graph of cartesian product of Z/n1Z and Z/n2Z and the product maximal graph
Z/n1n2Z. It is proved that Z/n1n2Z ∼= Z/n1Z × Z/n2Z whenever (n1, n2) = 1
in [5].
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Theorem 4.1. Let Γpm(Z/n1n2Z) and Γpm(Z/n1Z × Z/n2Z) be the product
maximal graphs of Z/n1n2Z and Z/n1Z×Z/n2Z respectively then Γpm(Z/n1n2Z)
∼= Γpm(Z/n1Z× Z/n2Z) whenever (n1, n2) = 1.

Proof. Let Γpm(Z/n1n2Z) be the product maximal graph of Z/n1n2Z and
Γpm(Z/n1Z × Z/n2Z) be the product maximal graph of cartesian product of
Z/n1Z and Z/n2Z, where Z/n1Z and Z/n2Z are the integers modulo n1 and n2
respectively.

Let the vertex mapping f : V (Γpm(Z/n1n2Z)) −→ V (Γpm(Z/n1Z×Z/n2Z))
be defined as [x]n1n2 −→ ([x]n1 , [x]n2), where [x]n1 is the residue class of x mod n1.
Obviously the function f is bijective.

LetM1,M2, . . . ,Mr and N1, N2, . . . , Ns be the maximal ideals of Z/n1Z and
Z/n2Z respectively and M1,M2, . . . ,Mr, N1, N2, . . . , Ns be the maximal ideals
of Z/n1n2Z.

Let x and y be any two vertices in Γpm(Z/n1n2Z). If x and y are adjacent in
Γpm(Z/n1n2Z) then either x or y is an element of the maximal ideal of Z/n1n2Z.
Without loss of generality, we assume that x is an element of the maximal ideal
of Z/n1n2Z.

Since f is bijective, f(x) is an element of the maximal ideal of Z/n1Z×Z/n2Z.
This implies that f(x) is adjacent to all other elements in Γpm(Z/n1Z×Z/n2Z).
It means that f(x) and f(y) are adjacent in Γpm(Z/n1Z× Z/n2Z).

∴ Γpm(Z/n1n2Z) ∼= Γpm(Z/n1Z× Z/n2Z).

Figure 4: Γpm(Z/6Z) ∼= Γpm(Z/2Z× Z/3Z).

Example 4.1. Consider Γpm(Z/6Z) and Γpm(Z/2Z × Z/3Z) be the product
maximal graphs. The isomorphism between Γpm(Z/6Z) and Γpm(Z/2Z×Z/3Z)
is shown in Figure 4.
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4.2 Cartesian product of two product maximal graphs Γpm(R) and
Γpm(S)

In this section, the graph theoretic property like cartesian product of two graphs
is explained and it is applied for product maximal graph of the commutative
ring.

Theorem 4.2. Let Γpm(R) and Γpm(S) be the two product maximal graphs of
commutative rings R and S respectively. Then, the degree of the vertex (x, y)
of the cartesian product Γpm(R)×Γpm(S) is deg(x, y) = deg(x)+ deg(y), where
x ∈ Γpm(R) and y ∈ Γpm(S).

Proof. LetM1,M2, . . . ,Mr and N1, N2, . . . , Ns be the maximal ideals of R and
S respectively. By Lemma 2.3, the degree of the vertex x of the product maximal
graph Γpm(R) is

(1) deg(x) =

{
n1 − 1, x ∈Mi, i = 1, 2, . . . r,

m, otherwise,

where m = |
⋃r

i=1Mi|. Similarly, the degree of the vertex y of the product
maximal graph Γpm(S) is

(2) deg(y) =

{
n2 − 1, y ∈ Nj , i = 1, 2, . . . , s

n, otherwise,

where n = |
⋃s

j=1Nj |.
The degree of the vertex (x, y) of the cartesian product of two graphs Γpm(R)

and Γpm(S) is

(3) deg(x, y) =


n1 + n2 − 1, x ∈Mi, y ∈ Nj

n1 − 1 + n, x ∈Mi, y /∈ Nj

m+ n2 − 1, x /∈Mi, y ∈ Nj

m+ n, x /∈Mi, y /∈ Nj .

Comparing (1), (2) and (3), we conclude that

deg(x, y) = deg(x) + deg(y).

The following example explains the degree of the cartesian product of two
graphs Γpm(Z/3Z) and Γpm(Z/4Z).

Example 4.2. Consider the cartesian product Γpm(Z/3Z)×Γpm(Z/4Z) of two
product maximal graphs Γpm(Z/3Z) and Γpm(Z/4Z). The graphs of Γpm(Z/3Z)
, Γpm(Z/4Z) and Γpm(Z/3Z) × Γpm(Z/4Z) are shown in Figure 5. Table 1
shows the degrees of some of the vertices (x, y) of Γpm(Z/3Z) , Γpm(Z/4Z) and
Γpm(Z/3Z)× Γpm(Z/4Z).



STRUCTURAL INVARIANTS OF THE PRODUCT MAXIMAL GRAPH 423

Figure 5: Cartesian product of two product maximal graph Γpm(Z/3Z) ×
Γpm(Z/4Z).

Table 1: Degrees of Γpm(Z/3Z), Γpm(Z/4Z) and Γpm(Z/3Z)× Γpm(Z/4Z).
Γpm(Z/3Z) Γpm(Z/4Z) Γpm(Z/3Z)× Γpm(Z/4Z)
deg(0) = 2 deg(0) = 3 deg(0, 0) = 5
deg(1) = 1 deg(1) = 2 deg(1, 1) = 3
deg(2) = 1 deg(2) = 3 deg(2, 2) = 4

Theorem 4.3. Let Γpm(R×S) be the product maximal graph of cartesian prod-
uct R and S and Γpm(R) × Γpm(S) be the cartesian product of two product
maximal graphs then Γpm(R× S) is not isomorphic to Γpm(R)× Γpm(S).

Proof. Let Mi, i = 1, 2, . . . , r and Nj , j = 1, 2, . . . , s be the maximal ideals of
R and S respectively and T1, T2, . . . , Tt be the maximal ideals of R × S, where
Tk is either in R×Nj or Mi × S.

Since the number of vertices of Γpm(R)× Γpm(S) is n1n2 then the degree of
the vertex (x, y) in Γpm(R× S) is

(4) deg(x, y) =

{
n1n2 − 1, (x, y) ∈ Tk, k = 1, 2, . . . , t,

l, otherwise,

where l be the number of elements in l = |
⋃t

k=1 Tk|. By Theorem 4.2, the
degree of the vertex (x, y) in the cartesian product of two product maximal
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graphs Γpm(R)× Γpm(S) is

(5) deg(x, y) = deg(x) + deg(y) = n1 + n2.

But from (4) and (5) the degrees are not equal i.e., the degree of any vertex in
Γpm(R × S) is not the same as the degree of that vertex in Γpm(R) × Γpm(S).
Hence, the graphs Γpm(R× S) and Γpm(R)× Γpm(S) are not isomorphic.

Example 4.3. Consider the product maximal graph Γpm(Z/2Z × Z/4Z) and
Γpm(Z/2Z) × Γpm(Z/4Z). Then, Figure 6 shows that there is no isomorphism
between Γpm(Z/2Z×Z/4Z) and Γpm(Z/2Z)×Γpm(Z/4Z). The degree of every
vertex in two graphs are given in the Table 2 .

Figure 6: Γpm(Z/2Z× Z/4Z) is not isomorphic to Γpm(Z/2Z)× Γpm(Z/4Z).

Table 2: Degrees of Γpm(Z/2Z× Z/4Z) and Γpm(Z/2Z)× Γpm(Z/4Z)

(x, y) degree of Γpm(Z/2Z× Z/4Z) degree of Γpm(Z/2Z)× Γpm(Z/4Z)
deg(0, 0) 7 4
deg(0, 1) 7 3
deg(0, 2) 7 4
deg(0, 3) 7 3
deg(1, 0) 7 4
deg(1, 1) 6 3
deg(1, 2) 7 4
deg(1, 3) 6 3
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Conclusion

In this paper, the product maximal graph and its graph theoretic properties
like matching, covering and some cordial labeling are studied. Also, the relation
between the product maximal graph of cartesian product of finite commutative
ring and cartesian product of two product maximal graphs are discussed with
theorems and suitable examples.
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Abstract. The non-commuting graph is defined on a finite group G, denoted by ΓG,
with G\Z(G) is the vertex set of ΓG and vp ̸= vq ∈ G\Z(G) are adjacent whenever
they do not commute in G. In this paper, we focus on ΓG for dihedral groups of
order 2n, D2n, where n ≥ 3. We show the spectrum, spectral radius and energy
of the graph corresponding to the degree sum exponent distance matrix and analyze
the hyperenergetic property. Moreover, we then present the correlation between the
obtained energy and the adjacency energy.

Keywords: non-commuting graph, the energy of a graph, dihedral group, degree sum
exponent distance matrix.

1. Introduction

Let G be a group and Z(G) be a center of G. The non-commuting graph of G,
denoted by ΓG, has vertex set G\Z(G) and two distinct vertices vp, vq in ΓG are
connected by an edge whenever vpvq ̸= vqvp ([1]).

The non-commuting graphs have been studied by many authors for various
kinds of groups. Abdollahi et al. [1] discussed ΓG for a non-abelian group G and
stated that it is always connected with diameter 2. Consequently, the distance
between two vertices in ΓG is well defined, and it is the length of the shortest
path between vp and vq. Moreover, this discussion continues by examining the
isomorphic properties of two non-commuting graphs related to the isomorphic
properties of the corresponding groups. Darafsheh [6] proved the conjecture

*. Corresponding author
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that two non-commuting graphs which are isomorphic imply that the groups
are also isomorphic as well. Likewise, Abdollahi and Shahverdi [2] stated that
if ΓG is isomorphic to ΓG of the alternating group An, then G ∼= An. Besides,
they presented this conjecture as verified for ΓG with the simple groups of Lie
type.

Afterward, Tolue et al. [28] extended the study of ΓG and introduced the new
concept of g−non-commuting graph of finite groups that involve the commutator
between two members of the group. If two groups are isoclinic and the numbers
of their center are the same, then their associated g−non-commuting graphs are
isomorphic. Moreover, Khasraw, et al. [15] presented the mean distance of ΓG

for the dihedral groups.

Moreover, ΓG on n vertices can be interpreted with the adjacency matrix
of ΓG. It is A(ΓG) = [apq] of size n × n whose entries apq = 1 for adjacent vp
and vq; otherwise, apq = 0. For the identity matrix of order n, In, the char-
acteristic polynomial of ΓG is defined as PA(ΓG)(λ) = det (λIn −A(ΓG)), and
its roots are λ1, λ2, . . . , λn as the eigenvalues of ΓG. The spectrum of ΓG is

Spec(ΓG) =
{
λk11 , λ

k2
2 , . . . , λ

km
m

}
, with k1, k2, . . . , km are the respective multi-

plicities of λ1, λ2, . . . , λn.

Energy of ΓG is calculated by adding all the absolute values of λ1, λ2, . . . , λn.
Gutman [10] pioneered this definition in 1978. The graph energy on n vertices
with a value more than EA(Kn) can be stated as hyperenergetic, or it can be
said that E(ΓG) > 2(n − 1) [16]. In addition, the adjacency energy bounds
of the graph can be found at [7] and graphs with self-loops can be seen at
[11]. Additionally, Sun et al. have demonstrated that the clique path has the
maximum distance of eigenvalues and energy in their work [27]. It has been
shown that the adjacency energy is not equal to an odd integer [4] and is never
equal to its square root [18].

In 2008, Indulal et al. [12] introduced the graph matrix whose entries depend
on the distance between two vertices. They showed the distance energy of
graphs. For the degree product distance energy, the readers can refer [13].
Moreover, the discussion of the degree sum exponent distance of graphs can be
found in [14].

In this work, the set of vertex for ΓG is the non-abelian dihedral group of or-
der 2n, D2n where n ≥ 3 which denoted by D2n =

〈
a, b : an = b2 = e, bab = a−1

〉
[3]. The center of D2n and the centralizer of v, where v ∈ D2n are denoted by
Z (D2n) and CD2n(v), respectively. Therefore, we have

Z (D2n) =

{
{e}, if n is odd{
e, a

n
2

}
, if n is even,

CD2n(a
i) = {aj : 1 ≤ j ≤ n}, and

CD2n(a
ib) =

{
{e, aib}, if n is odd{
e, a

n
2 , aib, a

n
2
+ib

}
, if n is even.
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Energy studies of the commuting and non-commuting graphs involving D2n as
the set of vertex have been carried out by several authors. Romdhini and Nawawi
[21, 22] and Romdhini et al. [23] formulated the energy of ΓG by considering
the eigenvalues of the degree sum, degree subtraction, and neighbors degree sum
matrices, meanwhile, [17] presented the adjacency energy. The degree exponent
sum, maximum and minimum degree energies were shown in [24, 25].

In studies of correlations between molecules containing heteroatoms and
their total electron energy, Gowtham and Swamy [9] reports a correlation coef-
ficient of 0.952 between Sombor energy values and total electron energy. The
authors of Redzepovic and Gutman [20] also developed a numerical approach
to compare a graph’s Sombor energy with its adjacency energy, and it remains
an open problem for mathematical verification. Based on these two papers, the
authors take the initiative to apply it to ΓG. Then, this paper is dedicated
to formulating the energy based on the degree sum exponent distance matrix
DSED for ΓG on D2n and comparing the results obtained and the adjacency
energy.

2. Preliminaries

In this part, we begin with the definition of DSED-matrix. Suppose that dpq is
the distance between vertex vp and vq in ΓG and dvp is the degree of vertex vp.

Definition 2.1 ([14]). The degree sum exponent distance matrix of ΓG is an
n× n matrix DSED(ΓG) = [dsedpq] whose (p, q)-th entry is

dsedpq =

{(
dvp + dvq

)dpq , if vp ̸= vq

0, if vp = vq.

The DSED−energy of ΓG is given by

EDSED(ΓG) =

n∑
i=1

|λi| ,

with λ1, λ2, . . . , λn represent the eigenvalues (not necessarily distinct) of
DSED(ΓG).

The degree sum exponent distance spectral radius of ΓG is

(1) ρDSED(ΓG) = max{|λ| : λ ∈ Spec(ΓG)}.

From the fact that ΓG has 2n−1 and 2n−2 vertices for odd and even n, re-
spectively, then ΓG can be classified as hyperenergetic whenever theDSED−ener-
gy fulfil the following terms:

(2) EDSED(ΓG) >

{
4(n− 1), for odd n

4(n− 1)− 2, for even n,
.
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We now supply some previous results in support of the theorems derived in
Section 3. Obtaining the graph energy requires formulating the characteristic
polynomial of ΓG. Here is an essential result that assists in formulating the
characteristic polynomial of ΓG.

Theorem 2.1 ([8]). If M =

[
A B
C D

]
is a square matrix with four block

matrices and |A| ≠ 0, then

|M | =
∣∣∣∣ A B
O D − CA−1B

∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
Lemma 2.1 ([5]). If Kn is the complete graph on n vertices, then its adjacency
matrix is (J − I)n, and the spectrum is {(n− 1)(1), (−1)(n−1)}.

This article concerned on D2n of order 2n, D2n, where n ≥ 3. Let G1 =
{ai : 1 ≤ i ≤ n}\Z (D2n) and G2 = {aib : 1 ≤ i ≤ n}. Now, the degree of every
vertex of ΓG for G = G1 ∪G2 is determined as follows:

Theorem 2.2 ([15]). Let ΓG be the non-commuting graph on G, where G =
G1 ∪G2. Then

1. dai = n, and

2. daib =

{
2(n− 1), if n is odd

2(n− 2), if n is even.
.

Thus, we can see the isomorphism between ΓG and some common graph
types in the theorem as given below:

Theorem 2.3 ([15]). Let ΓG be a non-commuting graph for G.

1. If G = G1, then ΓG
∼= K̄s, for s = |G1|.

2. If G = G2, then ΓG
∼=

{
Kn, if n is odd

Kn − n
2K2, if n is even.

,

where n
2K2 denotes n

2 copies of K2.

In order to compare the DSED and adjacency energies of ΓG for D2n, here
we write the adjacency energy from Mahmoud et al. [17] as given below:

Theorem 2.4 ([17]). The adjacency energy of ΓG, where G = G1∪G2, EA(ΓG)
is

1. for odd n, EA(ΓG) = (n− 1) +
√
5n2 − 6n+ 1, and

2. for even n, EA(ΓG) =

{
8, if n = 4

(n− 2) +
√
5n2 − 12n+ 4, if n > 4

.
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To define the elements of DSED−matrix, we need to determine the distance
for every pair of vertices in ΓG, for G = G1 ∪G2. The discussion is in Theorem
2.5 below:

Theorem 2.5 ([26]). For two distinct vertices vp, vq in ΓG, where G = G1∪G2,
the distance between vp and vq is

1. for the odd n, dpq =

{
2, if vp, vq ∈ G1

1, otherwise,
and

2. for the even n, dpq =


2, if (vp, vq ∈ G1) or

(
vp ∈ G2, vq ∈

{
a

n
2
+ib

}
,

or vice versa)

1, otherwise.

.

3. Characteristic polynomial of some matrices

Several properties need to be performed in order to provide DSED−energy of
ΓG, for G = G1 ∪G2 in Section 4. In this section, we derive three theorems of
the solution of the determinant of a particular matrix.

Lemma 3.1 ([19]). If a, b, c, and d are real numbers, and Jn is an n×n matrix
whose all entries are equal to one, then the determinant of∣∣∣∣ (λ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (λ+ b)In2 − bJn2

∣∣∣∣
can be simplified as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1) a) (λ− (n2 − 1) b)− n1n2cd) ,

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

Theorem 3.1. For real numbers a, b, the characteristic polynomial of an n×n
matrix

M =


a b . . . b
b a . . . b
...

...
. . .

...
b b . . . a


can be simplified as

PM (λ) = (λ− a− (n− 1)b)(λ− a+ b)n−1.

Proof. Let a, b are real numbers and M is a square matrix of order n as

M = [(a− b)In + bJn] .
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Then, we get the characteristic polynomial of M as

(3) PM (λ) = |λIn −M | = |(λ− a+ b)In − bJn| .

The first step, we apply R
′
i = Ri − R1, for 2 ≤ i ≤ n. Consequently, Equation

3 is as the following:

(4) PM (λ) =

∣∣∣∣ λ− a −bJ1×(n−1)

−(λ− a+ b)J(n−1)×1 (λ− a+ b)I(n−1)

∣∣∣∣ .
The next step is replacing C1 by C

′
1 = C1 +C2 +C3 + . . .+Cn, then Equation

4 can be written as

(5) PM (λ) =

∣∣∣∣ λ− a− (n− 1)b −bJ1×(n−1)

0(n−1)×1 (λ− a+ b)I(n−1)

∣∣∣∣ .
It is obvious from Equation 5, PM (λ) is an upper triangle matrix. Thus, it

can be simplified as given below:

PM (λ) = (λ− a− (n− 1)b)(λ− a+ b)n−1,

and we complete the proof.

Theorem 3.2. For real numbers a, b, the characteristic polynomial of an n×n
matrix

M =

[
U V
V U

]
,

where U = [b(J − I)n
2
] and V = [b(J − I)n

2
+ aIn

2
], can be simplified as

PM (λ) = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) (λ+ a)

n
2 .

Proof. For real numbers s, t, suppose that M is an n× n matrix

M =

[
U V
V U

]
=



0 . . . b a . . . b
...

. . .
...

...
. . .

...
b . . . 0 b . . . a
a . . . b 0 . . . b
...

. . .
...

...
. . .

...
b . . . a b . . . 0


=

[
b(J − I)n

2
b(J − I)n

2
+ aIn

2

b(J − I)n
2
+ aIn

2
b(J − I)n

2

]
.

Then, equation PM (λ) = |λIn −M | can be written as follows:

(6) PM (λ) =

∣∣∣∣∣ (λ+ b)In
2
− bJn

2
−aIn

2
− b(J − I)n

2

−bIn
2
− b(J − I)n

2
(λ+ b)In

2
− bJn

2

∣∣∣∣∣ .
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To solve the determinant in Equation 6, it is necessary to perform row and
column operations. The first step is replacing Rn

2
+i by R

′
n
2
+i = Rn

2
+i − Ri,

where 1 ≤ i ≤ n
2 . Consequently, Equation 6 is as the following:

(7) PM (λ) =

∣∣∣∣∣ (λ+ b)In
2
− bJn

2
−aIn

2
− b(J − I)n

2

−(λ+ a)In
2

(λ+ a)In
2

∣∣∣∣∣ .
Next, the second step is replacing Ci by C

′
i = Ci + Cn

2
+i, where 1 ≤ i ≤ n

2 .
Hence, Equation 7 can be written as follows:

(8) PM (λ) =

∣∣∣∣∣ (λ− a+ 2b)In
2
− 2bJn

2
−aIn

2
− b(J − I)n

2

0n
2

(λ+ a)In
2

∣∣∣∣∣ =
∣∣∣∣ A B
C D

∣∣∣∣ .
Bearing in mind Theorem 2.1 and since C = 0, it implies Equation 8 can be
simplified to

(9) PM (λ) = |A| |D| .

We first consider |A| using Theorem 3.1 as follows:

(10) |A| = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) .

Meanwhile, as a result of D as a diagonal matrix, as a consequence, we derive:

(11) |D| = (λ+ a)
n
2 .

Therefore, by substituting Equations 10 and 11 to Equation 9, we obtain

PM (λ) = (λ− a+ 2b)
n
2
−1 (λ− a− (n− 2) b) (λ+ a)

n
2 .

Theorem 3.3. For real numbers a, b, c, d, the characteristic polynomial of a
(2n− 2)× (2n− 2) matrix:

M =

 a(J − I)n−2 cJ(n−2)×n
2

cJ(n−2)×n
2

cJn
2
×(n−2) d(J − I)n

2
d(J − I)n

2
+ bIn

2

cJn
2
×(n−2) d(J − I)n

2
+ bIn

2
d(J − I)n

2

 ,
can be simplified as

PM (λ) = (λ+ a)n−3 (λ− b+ 2d)
n
2
−1 (λ+ b)

n
2(

λ2 − (b+ (n− 2)d+ a(n− 3))λ+ a(n− 3) (b+ (n− 2)d)− n(n− 2)c2
)
.
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4. Degree sum exponent distance energy of non-commuting graph
for dihedral groups

This section will present the results of non-commuting graph energy for D2n,
using the corresponding DSED-matrix. Since for n = 1 and n = 2, D2n is
abelian, then strictly it is for n ≥ 3. The following is an example of ΓG for D2n,
where n = 4.

Example 4.1. Let D8 = {e, a, a2, a3, b, ab, a2b, a3b} and Z(D8) = {e, a2}, where
CD8(a

i) = {e, a, a2, a3}, CD8(b) = {e, a2, b, a2b} = CD8(a
2b),

CD8(ab) = {e, a2, ab, a3b} = CD8(a
3b). For G = D8\Z(D8), according to each

element’s centralizer in G, as a consequence, ΓG is presented in Figure 1.

Figure 1: Non-commuting graph for D8

The vertex degree of a and a3 is four. Similarly, for 1 ≤ i ≤ 4, and the
degree of b, ab, a2b, and a3b is also four. The distance between a and b, between
a2b and a3b, and between a3 and ab are found to be equal, i.e. equal to one,
otherwise it is two.

In the next theorem, we derive DSED−energy of ΓG in terms of G = G1

and G = G2.

Theorem 4.1. Let ΓG be the non-commuting graph on G.

1. If G = G1, then EDSED(ΓG) is undefined, and

2. If G = G2, then EDSED(ΓG) =

{
4(n− 1)2, if n is odd

4n(n− 2)2, if n is even.
.

Proof. 1. For G = G1 case, by Theorem 2.3, ΓG
∼= K̄m, where m = |G1|.

Then, ΓG consists of m isolated vertices which implies the distance of every pair
vertices of G1 is undefined.

2. For the second case when G = G2, we first proceed for odd n. Again, by
Theorem 2.3, ΓG

∼= Kn. Then, for every vp of ΓG, dvp = (n− 1) and every pair
of vertices are at distance 1. Now, the DSED−matrix of ΓG is DSED(ΓG) =
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dsedpq, with (p, q)−entry if vp ̸= vq is ((n− 1) + (n− 1))1 = 2(n− 1), and zero
if vp = vq. Hence,

DSED(ΓG) =


0 2(n− 1) 2(n− 1) . . . 2(n− 1)

2(n− 1) 0 2(n− 1) . . . 2(n− 1)
2(n− 1) 2(n− 1) 0 . . . 2(n− 1)

...
...

...
. . .

...
2(n− 1) 2(n− 1) 2(n− 1) . . . 0


= 2(n− 1)A(Kn).

In other words, DSED(ΓG) is the product of 2(n − 1) and A(Kn). Therefore,
from Lemma 2.1, the DSED−energy of ΓG is 2(n− 1).2(n− 1) = 4(n− 1)2.

Meanwhile for the even n, by Theorem 2.3, ΓG
∼= Kn − n

2K2, then every

vertex has degree (n− 2) and the distance between every pair aib and a
n
2
+i for

all 1 ≤ i ≤ n is 2, and 1, otherwise. Thus, DSED(ΓG) = dsedpq and for vp ̸= vq,

dsedij =


4(n− 2)2, if vp = aib, vq = a

n
2
+ib, 1 ≤ i ≤ n

2(n− 2), if vp = aib, vq ̸= a
n
2
+ib, 1 ≤ i ≤ n

0, otherwise.

.

Now, we can construct DSED(ΓG) as follows:

DSED(ΓG) =



0 . . . 2(n− 2) 4(n− 2)2 . . . 2(n− 2)
...

...
...

...
. . .

...
2(n− 2) . . . 0 2(n− 2) . . . 4(n− 2)2

4(n− 2)2 . . . 2(n− 2) 0 . . . 2(n− 2)
...

...
...

...
. . .

...
2(n− 2) . . . 4(n− 2)2 2(n− 2) . . . 0


=

[
2(n− 2)(J − I)n

2
2(n− 2)(J − I)n

2
+ 4(n− 2)2In

2

2(n− 2)(J − I)n
2
+ 4(n− 2)2In

2
2(n− 2)(J − I)n

2

]
.

In this case, we have four block matrices of DSED(ΓG):

(12) DSED(ΓG) =

[
U V
V U

]
,

where U and V are n
2 × n

2 matrices. Matrix U consists of zero diagonal entries,
otherwise, the entries are 2(n− 2), while the diagonal entries of V are 4(n− 2)2

and the non-diagonal entries are 2(n− 2). By Theorem 3.2 with a = 4(n− 2)2

and b = 2(n− 2), Equation 12 is
(13)

PDSED(ΓG)(λ) =
(
λ+ 4(n− 2)2

)n
2 (λ− 4(n− 2)(n− 3))

n
2
−1 (λ− 6(n− 2)2

)
.
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Therefore, using the roots of Equation 13, the DSED−energy of ΓG is

EDSED(ΓG) =
(n
2

) ∣∣−4(n− 2)2
∣∣+ (n

2
− 1

)
|4(n− 2)(n− 3)|+

∣∣6(n− 2)2
∣∣

= 4n(n− 2)2.

Our next proposition will provide us with the characteristic polynomial of
ΓG for G = G1 ∪G2.

Theorem 4.2. Let ΓG be the non-commuting graph on G on G = G1 ∪ G2,
where n ≥ 3. Then, the characteristic polynomial of ΓG is

1. for n is odd:

PDSED(ΓG)(λ) =(λ+ 4n2)n−2(λ+ 4(n− 1))n−1

((λ− 4n2(n− 2))(λ− 4(n− 1)2)− (n− 1)n(3n− 2)2),

2. for n is even:

PDSED(ΓG)(λ)=(λ+4n2)n−3(λ−8(n− 2)(2n− 5))
n
2
−1(λ+16(n− 2)2)

n
2

(λ2 − (20(n−2)2+4n2(n− 3))λ+80n2(n− 3)(n−2)2−n(n−2)(3n− 4)2).

Proof. 1. Let n is odd, from Theorem 2.2, we have dai = n and daib = 2(n−1),
for 1 ≤ i ≤ n. Following Theorem 2.5, we then obtain the distance of every pair
of vertices. Since Z(D2n) = {e}, then there are 2n − 1 vertices for ΓG, where
G = G1∪G2. The vertex set consists of n−1 vertices of ai, for i = 1, 2, . . . , n−1,
and n vertices of aib, i = 1, 2, . . . , n. Then, from Definition 2.1, DSED(ΓG) is
an (2n− 1)× (2n− 1) matrix as the following:

DSED(ΓG) =



0 . . . 4n2 3n− 2 . . . 3n− 2
...

. . .
...

...
. . .

...
4n2 . . . 0 3n− 2 . . . 3n− 2

3n− 2 . . . 3n− 2 0 . . . 4(n− 1)
...

. . .
...

...
. . .

...
3n− 2 . . . 3n− 2 4(n− 1) . . . 0


.

It can be partitioned into four block matrices:

(14) DSED(ΓG) =

[
4n2(J − I)n−1 (3n− 2)J(n−1)×n

(3n− 2)J(n−1)×n 4(n− 1)(J − I)n

]
.

Now, the characteristic polynomial of Equation 14 is

PDSED(ΓG)(λ) = |λI2n−1 −DSED(ΓG)|

=

∣∣∣∣ (λ+ 4n2)In−1 − 4n2Jn−1 −(3n− 2)J(n−1)×n

−(3n− 2)Jn×(n−1) (λ+ 4(n− 1))In − 4(n− 1)Jn)

∣∣∣∣ .
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According to Lemma 3.1, with a = 4n2, b = 4(n − 1), c = d = 3n − 2, and
n1 = n−1, n2 = n, then we obtain the formula of PDSED(ΓG)(λ), and we obtain
the desired outcome.

2. Let us prove the even n case. Based on Theorem 2.2, we know that
d(ai) = n and d(aib) = 2(n − 2), for all 1 ≤ i ≤ n. Since Z(D2n) = {e, a

n
2 },

then there are 2n − 2 vertices in ΓG. The vertex set contains n − 2 vertices of
ai, for 1 ≤ i < n

2 ,
n
2 < i < n, and n vertices of aib, for 1 ≤ i ≤ n. Following

the result of Theorem 2.5 and by Definition 2.1, then matrix DSED(ΓG) of size
(2n− 2)× (2n− 2) is as given below:

0 . . . 4n2 3n− 4 . . . 3n− 4 3n− 4 . . . 3n− 4
...

. . .
...

...
. . .

...
...

. . .
...

4n2 . . . 0 3n− 4 . . . 3n− 4 3n− 4 . . . 3n− 4
3n− 4 . . . 3n− 4 0 . . . 4(n− 2) 16(n− 2)2 . . . 4(n− 2)

...
. . .

...
...

. . .
...

...
. . .

...
3n− 4 . . . 3n− 4 4(n− 2) . . . 0 4(n− 2) . . . 16(n− 2)2

3n− 4 . . . 3n− 4 16(n− 2)2 . . . 4(n− 2) 0 . . . 4(n− 2)
...

. . .
...

...
. . .

...
...

. . .
...

3n− 4 . . . 3n− 4 4(n− 2) . . . 16(n− 2)2 4(n− 2) . . . 0


.

Now, we provide nine block matrices of DSED(ΓG) as follows: 4n2(J − I)n−2 (3n− 4)J(n−2)×n
2

(3n− 4)J(n−2)×n
2

(3n− 4)Jn
2
×(n−2) 4(n− 2)(J − I)n

2
4(n− 2)(J − I)n

2
+ 16(n− 2)2In

2

(3n− 4)Jn
2
×(n−2) 4(n− 2)(J − I)n

2
+ 16(n− 2)2In

2
4(n− 2)(J − I)n

2

 .

By Theorem 3.3 with r = 4n2, s = 16(n − 2)2, t = 3n − 4, u = 4(n − 2), we
then obtain the required result.

As a result of Theorem 4.2, we proceed to the two following theorems.

Theorem 4.3. Let ΓG be a non-commuting graph on G, where G = G1 ∪ G2,
then DSED−spectral radius for ΓG is

1. for n is odd:

ρDSED(ΓG) =2n2 (n− 2) + 2 (n− 1)2+√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ n (n− 1) (3n− 2)2,

2. for n is even:

ρDSED(ΓG) =10 (n− 2)2 + 2n2 (n− 3)+√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2.



438 M.U. ROMDHINI and A. NAWAWI

Proof. 1. Consider the first case for odd n, DSED(ΓG) has four eigenvalues,
where it follows the result of Theorem 4.2 (1). They are λ1 = −4n2 of multiplic-
ity (n − 2) and λ2 = −4(n − 1) of multiplicity (n − 1). The quadratic formula
gives the other two eigenvalues, which are

λ3, λ4 = 2n2 (n− 2) + 2 (n− 1)2

±
√(

2n2 (n− 2)− 2 (n− 1)2
)2

+ (n− 1)n (3n− 2)2.

They are positive real numbers. Hence, the spectrum of ΓG as the following:

Spec(ΓG) =


(
2n2 (n− 2) + 2 (n− 1)2 +

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

)1

,

(
2n2 (n− 2) + 2 (n− 1)2 −

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

)1

,

(−4(n− 1))n−1,
(
−4n2

)n−2
}
.

By determining the maximum absolute eigenvalues, consequently, we derive the
spectral radius of ΓG as the desired result.

2. We may consider the even n case, it follows from Theorem 4.2 (2),
DSED(ΓG) has five eigenvalues. Hence, we get λ1 = −4nn of multiplicity
(n−3), the second is λ2 = 8(n−2)(2n−5) of multiplicity n

2 −1, and the third is
λ3 = −16(n−2)2 of multiplicity n

2 . From the quadratic formula we have λ4, λ5 =

10 (n− 2)2 + 2n2 (n− 3)±
√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2.

Hence, the spectrum of ΓG as the following:

Spec(ΓG) =

{(
10 (n− 2)2 + 2n2 (n− 3) +

√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2

)1

,

(
10 (n− 2)2 + 2n2 (n− 3)−

√
(10(n− 2)2 − 2n2(n− 3))2 + n(n− 2)(3n− 4)2

)1

,

(8(n− 2)(2n− 5))
n
2
−1,

(
−4n2

)n−3
,
(
−16(n− 2)2

)n
2

}
.

Now, for i = 1, 2, 3, 4, the maximum of |λi| isDSED−spectral radius of ΓG.

Theorem 4.4. Let ΓG be a non-commuting graph on G, where G = G1 ∪ G2,
then DSED−energy for ΓG is

1. for n is odd: EDSED(ΓG) = 8n2 (n− 2) + 8 (n− 1)2

2. for n is even: EDSED(ΓG) = 8n2 (n− 3) + 8 (n− 2)2 + 8n(n− 2)2.

Proof. 1. The proving part of Theorem 4.3 (1) was given the spectrum of ΓG
for odd n, then the DSED−energy of ΓG can be calculated as follows:

EDSED(ΓG) =(n− 2)
∣∣−4n2

∣∣+ (n− 1) |−4(n− 1)|+∣∣∣∣∣2n2 (n− 2) + 2 (n− 1)2 ±
√(

2n2 (n− 2)− 2 (n− 1)2
)2

+ (n− 1)n (3n− 2)2

∣∣∣∣∣
=8n2 (n− 2) + 8 (n− 1)2



DEGREE SUM EXPONENT DISTANCE ENERGY OF NON-COMMUTING GRAPH ... 439

2. Let n is even, by Theorem 4.3 (2), the DSED−energy of ΓG is derived
as follows:

EDSED(ΓG) =(n− 3)
∣∣−4n2

∣∣+ (n
2
− 1
)
|−8(n− 2)|+

(n
2

) ∣∣−16(n− 2)2
∣∣+∣∣∣∣∣2n2 (n− 3) + 2 (n− 2)2 ±

√(
2n2 (n− 2)− 2 (n− 1)2

)2
+ (n− 1)n (3n− 2)2

∣∣∣∣∣
=8n2 (n− 3) + 8 (n− 2)2 + 8n(n− 2)2.

Example 4.2. Following Example 4.1, we can construct 6 × 6 degree sum
exponent distance matrix of ΓG as follows:

DSED(ΓG) =



0 64 8 8 8 8
64 0 8 8 8 8
8 8 0 8 64 8
8 8 8 0 8 64
8 8 64 8 0 8
8 8 8 64 8 0


Here PDSED(ΓG)(λ) is derived as follows:

PDSED(ΓG)(λ) = (λ− 48)2(λ+ 64)3(λ− 96).

As a result of using Maple, we have determined that

Spec(ΓG) =
{
(96)1, (48)2, (−64)3

}
.

Therefore, the DSED−energy of ΓG is as follows:

EDSED(ΓG) = (1)|96|+ (2)|48|+ (3)| − 64| = 384.

5. Discussion

As in the previous result of Theorem 4.4 for G = G1 ∪G2, in the following, we
get the classification of the DSED−Energy of ΓG for D2n.

Corollary 5.1. Graph ΓG associated with the degree sum exponent distance
matrix is hyperenergetic.

Moreover, based on the facts obtained in the previous section, the energies
in Theorem 4.4 yield the following fact:

Corollary 5.2. DSED−energy of ΓG is always an even integer.

The fact in Corollary 5.2 corresponds with the well-known statement from
[4] and [18]. Furthermore, as a comparison of the energies from Theorems 2.4
and 4.4, as a consequence, we derive the following conclusion:

Corollary 5.3. EDSED(ΓG) > EA(ΓG).
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Figure 2: Correlation of EDSED(ΓG) with EA(ΓG) for odd n

In our graph, the DSED−energy of ΓG for D2n, where n ≥ 3 is always
greater than the adjacency energy. In addition, it can be seen from Figures 2
and 3 that EDSED(ΓG) has a significant correlation with EA(ΓG), with a corre-
lation coefficient of 0.8619 for odd n, 0.865 for even n. Those results state that
EDSED(ΓG) and EA(ΓG) have a strong correlation between them and comply
with the result from [9]. However, it is slightly different from the claim from
[20].

Figure 3: Correlation of EDSED(ΓG) with EA(ΓG) for even n
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1. Introduction

For a graph Γ, we denote its vertex set and edge set by V (Γ) and E(Γ) respec-
tively. In a directed graph, we use (u, v) for a directed edge from u to v, the
in-degree of a vertex v is the number of edges coming to the vertex v and the
out-degree of a vertex v is the number of edges going out from the vertex v.
Further, in a digraph D, a vertex with zero in-degree (out-degree) is called a
transmitter (receiver), whereas a vertex v with positive in-degree and positive
out-degree is called a transitive vertex if (u,w) ∈ E(D) whenever (u, v) and
(v, w) belong to E(D), see [1]. If G is a graph whose vertex set is V and S is
a non-empty subset of V , then the subgraph of G having vertex set S and edge
set as the set of those edges of G that have both ends in S is called the subgraph
of G induced by S. For more details of graph theory, the reader may refer to
Bondy and Murty [2].

Singh and Santosh [3] conceptualized divisor graphs for non-empty sets of
integers. Assume that S is a finite non-empty set of integers. The divisor graph
G(S) of S is a graph with vertex set S such that two distinct vertices x and y are
adjacent if either x|y or y|x. Further, the divisor digraph D(S) of S has vertex
set S and (x, y) is an arc of D(S) if x|y. A graph Γ is called a divisor graph if Γ
is isomorphic to G(S) for some finite non-empty set S of integers. Chartrand et
al. [4] studied the divisor graphs in terms of non-empty sets of positive integers.
The term divisor graph used in the paper is in the same sense as in [4]. Thus,
if Γ is a divisor graph, then there exists a function f : V (Γ) → N such that Γ is
isomorphic to G(f(V (Γ))). Such a function f is called a divisor labeling of the
graph Γ. Divisor graphs associated with algebraic structures have also caught
the attention of researchers. Osba and Alkam [5] worked on the necessary and
sufficient conditions for the zero-divisor graphs of a class of rings to be divisor
graph. Recently, Takshak et al. [6] showed that the power graph of a finite
group is always a divisor graph but the converse is not true.

In 2021, Banerjee [7] introduced the co-prime order graph of a group G
as the graph whose vertex set is G and two distinct vertices x, y are adjacent
if gcd(o(x), o(y)) is either 1 or a prime number. Since then many researchers
[8, 9, 10, 11] have studied co-prime order graphs and have shown their utility in
characterizing finite groups.

In this paper, we shall find out some conditions under which the co-prime
order graphs of finite groups (especially abelian groups and permutation groups)
are/are not divisor graphs. All graphs considered in this paper are finite and
simple.

2. Preliminaries

In this section, we state some relevant notations and basic results used in the
paper. If G is a group and g is an arbitrary element of G, then their orders are
denoted by o(G) and o(g) respectively. Sn denotes the permutation group of
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degree n. Θ(G) shall denote the co-prime order graph of the group G. Further,
Γ1 ∨ Γ2 represents the join of graphs Γ1 and Γ2. The complete graph on n
vertices is denoted by Kn and Kn1,n2,...,nk

denotes the complete k-partite graph.
Now we state some well-known results on divisor graphs.

Theorem 2.1 ([4]). Let Γ be a graph. Then Γ is a divisor graph if and only if
there exists an orientation D of Γ such that every vertex of D is a transmitter,
a receiver or a transitive vertex.

Theorem 2.2 ([4]). Every induced subgraph of a divisor graph is a divisor graph.

Theorem 2.3 ([4]). If Γ1 and Γ2 are two divisor graphs, then Γ1 ∨ Γ2 is a
divisor graph.

Theorem 2.4. Let Γ1 and Γ2 be two divisor graphs whose vertex sets are dis-
joint, then Γ1 ∪ Γ2 is also a divisor graph.

Theorem 2.5 ([4, 5]). A graph that contains the following (Figure 1) induced
subgraph is not a divisor graph.

v1

v2

v3 v4v5 v6

Figure 1

3. Main results

We begin this section with the following observation:
Let Γ be a graph having {a1, a2, . . . , an1 , b1, b2, . . . , bn2 , c1, c2, . . . , cn3 , d1, d2,

. . . , dn4 , e1, e2, . . . , en5} as the vertex set s.t. its orientation is represented by
Figure 2.

ai

bj

ck dl

em

Figure 2
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It is obvious that each ai is a transitive vertex. Further, ck’s and em’s are
transmitters and bj ’s and dl’s are receivers. Thus, each of the vertices of Γ is
either a receiver, a transmitter or a transitive vertex. Hence, Γ is a divisor graph
by Theorem 2.1.

Theorem 3.1. Let S be a subset of a finite group such that the order of its every
element divides p1

mp2
n, where p1 and p2 are distinct primes and m,n ∈ N, then

Θ(S) is a divisor graph.

Proof. Firstly, consider the case wherein there exist xi, yj , zk, αl, βr, γs, δt ∈ S
such that

• o(xi) = 1 or p1 or p2, where 1 ≤ i ≤ n1;

• o(yj) = p1
2 or p1

3 . . . or p1
m, where 1 ≤ j ≤ n2;

• o(zk) = p2
2 or p2

3 . . . or p2
n, where 1 ≤ k ≤ n3;

• o(αl) = p1p2, where 1 ≤ l ≤ n4;

• o(βr) = p1
2p2 or p1

3p2 . . . or p1
mp2, where 1 ≤ r ≤ n5;

• o(γs) = p1p2
2 or p1p2

3 . . . or p1p2
n, where 1 ≤ s ≤ n6;

• o(δt) = p1
2p2

2 or p1
2p2

3 . . . or p1
mp2

n, where 1 ≤ t ≤ n7.

Now, let us partition the vertex set of graph Θ(S) into three mutually disjoint
sets A,B and C, where

A = {x1, x2, . . . , xn1},
B = {y1, y2, . . . , yn2 , z1, z2, . . . , zn3 , α1, α2, . . . , αn4 , β1, β2, . . . , βn5 , γ1, γ2, . . . , γn6},
C = {δ1, δ2, . . . , δn7}.

Let Γ1,Γ2 (Figure 3) and Γ3 denote the subgraphs of Θ(G) induced by A,
B and C respectively. So, we have

Θ(S) = Γ1 ∨ (Γ2 ∪ Γ3).
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yn2y2y1

zn3z2z1

α1 α2 αn4

γn6γ2γ1

βn5β2β1

Figure 3: Subgraph Γ2

Consider the following orientation of Γ2 :
For j ∈ {1, 2, . . . , n2}, k ∈ {1, 2, . . . , n3}, l ∈ {1, 2, . . . , n4}, r ∈ {1, 2, . . . , n5}
and s ∈ {1, 2, . . . , n6}, we take (yj , zk), (yj , αl), (yj , γs), (αl, zk) and (βr, zk) as
edges of Γ2.

As this orientation of Γ2 is similar to that of Γ (Figure 2), it is a divisor
graph. Further, as Γ1

∼= Kn1 and Γ3
∼= n7K1, so Γ1 and Γ3 are also divisor

graphs. Hence, Θ(S) is a divisor graph in this case.
In each of the remaining cases, the co-prime order graph of G is nothing

but an induced subgraph of Θ(G) considered in the above case, hence a divisor
graph by Theorem 2.2.

Corollary 3.1. If order of every element of a finite group G divides p1
mp2

n,
where p1 and p2 are distinct prime numbers and m,n ∈ N, then Θ(G) is a
divisor graph.

Corollary 3.2. If G is a group of order p1
mp2

n, where p1 and p2 are distinct
prime numbers and m,n ∈ N, then Θ(G) is a divisor graph.

The following result can be proved by proceeding as in Theorem 3.1:

Theorem 3.2. Let G be a finite group s.t. o(G) = pm, where p is a prime
number and m ∈ N, then Θ(G) is a divisor graph.
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Theorem 3.3. Assume that the order of every element of a finite group G
divides p1p2p3, where p1, p2 and p3 are distinct prime numbers, then Θ(G) is a
divisor graph.

Proof. As in Theorem 3.1, it is sufficient to prove the result in the following
case:

Let there exist xi, yj , zk, αl, βm ∈ G s.t.

• o(xi) = 1 or p1 or p2 or p3, where 1 ≤ i ≤ n1;

• o(yj) = p1p2, where 1 ≤ j ≤ n2;

• o(zk) = p1p3, where 1 ≤ k ≤ n3;

• o(αl) = p2p3, where 1 ≤ l ≤ n4;

• o(βm) = p1p2p3, where 1 ≤ m ≤ n5.

Now, we partition the vertex set of graph Θ(G) into three mutually disjoint
subsets {x1, x2, . . . , xn1}, {y1, y2, . . . , yn2 , z1, z2, . . . , zn3 , α1, α2, . . . , αn4} and {β1,
β2, . . . , βn5}. Let Γ4,Γ5 and Γ6 respectively denote the subgraphs of Θ(G) in-
duced by these sets. It follows that Θ(G) = Γ4 ∨ (Γ5 ∪ Γ6).

Further, Γ4, Γ5 and Γ6 are divisor graphs as Γ4
∼= Kn1 ,Γ5

∼= Kn2,n3,n4 and
Γ6

∼= n5K1. Hence, Θ(G) is also a divisor graph.

Corollary 3.3. Let G be a group of order p1
m1p2

m2p3
m3 such that it has no

element of order p1
2 or p2

2 or p3
2, then Θ(G) is a divisor graph.

Theorem 3.4. Assume that a finite group G contains at least one element of
order p1p2, p1p3, p1p4, p1p2p3, p1p2p4 and p1p3p4 each, where p1, p2 and p3 are
distinct prime numbers. Then Θ(G) is not a divisor graph.

Proof. Let x1, x2, x3, x4, x5 and x6 be elements ofG whose orders are p1p2, p1p3,
p1p4, p1p2p3, p1p2p4 and p1p3p4 respectively. Then, the subgraph of Θ(G) in-
duced by the set {x1, x2, x3, x4, x5, x6} is isomorphic to the graph represented
by Figure 1. So, by Theorem 2.2, Θ(G) is not a divisor graph.

Corollary 3.4. Let G be an abelian group such that o(G) = n and p1
m1p2

m2 . . .
pk

mk be prime power decomposition of n. Then, for k ≥ 4, Θ(G) is not a divisor
graph.

Theorem 3.5. If a finite group G contains at least one element of order p1p2,
p1p3, p1

2, p1
2p2, p1

2p3 and p1p2p3 each, where p1, p2 and p3 are distinct prime
numbers, then Θ(G) is not a divisor graph.

Proof. Let x1, x2, x3, x4, x5, x6 ∈ G such that their orders are p1p2, p1p3, p1
2,

p1
2p2, p1

2p3 and p1p2p3 respectively. Considering the subgraph of Θ(G) induced
by the set {x1, x2, x3, x4, x5, x6} and proceeding as in Theorem 3.4, it follows
that Θ(G) is not a divisor graph.
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Corollary 3.5. If a group G contains at least one element of order p1
2p2p3,

where p1, p2 and p3 are distinct prime numbers, then Θ(G) is not a divisor graph.

Corollary 3.6. Let G be an abelian group of order n and p1
m1p2

m2p3
m3 be

prime power decomposition of n. If G contains at least one element of order p1
2

or p2
2 or p3

2, then Θ(G) is not a divisor graph.

Corollary 3.7. If n ≥ 10, then Θ(Sn) is not a divisor graph.

Proof. Consider x1 = (1, 2)(3, 4, 5), x2 = (1, 2)(3, 4, 5, 6, 7), x3 = (1, 2, 3, 4), x4 =
(1, 2, 3, 4)(5, 6, 7), x5 = (1, 2, 3, 4)(5, 6, 7, 8, 9) and x6 = (1, 2)(3, 4, 5)(6, 7, 8, 9, 10).
Then, x1, x2, x3, x4, x5 and x6 are elements of Sn with orders 6, 10, 4, 12, 20 and
30 respectively and using the above theorem, it can be concluded that Θ(Sn) is
not a divisor graph for n ≥ 10.

The following result is an implication of the results discussed above:

Theorem 3.6. Let G be an abelian group of order n and p1
m1p2

m2 . . . pk
mk be

the prime decomposition of n, then Θ(G) is divisor graph if and only if k ≤ 3,
with the condition that if k = 3, then G contains no element of order p1

2 or p2
2

or p3
3.

Theorem 3.7. If a finite group G contains no element whose order is other
than 1, p1, p2, p3, p4, p1p2, p1p3, p1p4, p2p3, p1

2, p2
2, p1

3, p1
2p2, p1

2p3, where p1, p2,
p3 and p4 are distinct prime numbers, then Θ(G) is a divisor graph.

Proof. Let there exist xi, yj , zk, ws, αl, βr, γm, δn, uq ∈ G s.t.

• o(xi) = 1 or p1 or p2 or p3 or p4, where 1 ≤ i ≤ n1;

• o(yj) = p1p4, where 1 ≤ j ≤ n2;

• o(zk) = p2p3, where 1 ≤ k ≤ n3;

• o(ws) = p2
2, where 1 ≤ s ≤ n4;

• o(αl) = p1p3, where 1 ≤ l ≤ n5;

• o(βr) = p1p2, where 1 ≤ r ≤ n6;

• o(γm) = p1
2p2, where 1 ≤ m ≤ n7;

• o(δn) = p1
2p3, where 1 ≤ n ≤ n8;

• o(uq) = p1
2 or p1

3, where 1 ≤ q ≤ n9.

We write V (Θ(G)) = D ∪ E ∪ F , where D,E and F are three mutually
disjoint sets given by:

D = {x1, x2, . . . , xn1},
E = {y1, y2, . . . , yn2 , z1, z2, . . . , zn3 , w1, w2, . . . , wn4},
F = {α1, α2, . . . , αn5 , β1, β2, . . . , βn6 , γ1, γ2, . . . , γn7 , δ1, δ2, . . . , δn8 , u1, u2, . . . , un9}.
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Consider Γ7, Γ8 and Γ9 (Figure 4), the subgraphs of Θ(G) induced by D, E
and F respectively. Clearly, Γ7 and Γ8 are divisor graphs as Γ7

∼= Kn1 and
Γ8

∼= Kn2,n3,n4 . Also, we have Θ(G) = (Γ7 ∨ Γ8) ∨ Γ9.

αn5α2α1

βn6β2β1

u1 u2 un9

γn7γ2γ1

δn8δ2δ1

Figure 4: Subgraph Γ9

Consider an orientation of the subgraph Γ9 as stated below:
For every l∈{1, 2, . . . , n5}, r∈{1, 2, . . . , n6},m ∈ {1, 2, . . . , n7}, n ∈ {1, 2, . . . , n8}
and q ∈ {1, 2, . . . , n9}, we take (αl, uq), (αl, βr), (αl, γm), (uq, βr) and (δn, βr) as
edges of Γ9. Then, proceeding as in Theorem 3.1, it can be shown that the
subgraph Γ9, and hence Θ(G), is a divisor graph.

Corollary 3.8. For n ≤ 9, then Θ(Sn) is a divisor graph.

Proof. It is easy to check that for n ≤ 9, the order of each element of Sn
belongs to the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20}. In the above theorem,
if we take p1 = 2, p2 = 3, p3 = 5 and p4 = 7 then, Θ(Sn) becomes an induced
subgraph of Θ(G). Thus, Sn is a divisor graph for n ≤ 9.

It follows from the Corollary 3.7 and Corollary 3.8 that:
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Theorem 3.8. Θ(Sn) is a divisor graph if and only if n ≤ 9.
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1. Introduction

In the last few decades, fixed point theorems were developed in a metric space,
normed linear space, topological space etc., while the conditions on the under-
lying mappings are usually metrical or compact type conditions. Further, new
algebraic structures were also formulated to improve the results. For instance,
the following notion of b-metric space is a generalization of a metric space, due
to Bakhtin [2].

*. Corresponding author
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Definition 1.1. Let s ≥ 1, X be a nonempty set and rs : X ×X → [0,+∞) be
such that

(b1) rs(x, y) = 0 if and only if x = y

(b2) rs(x, y) = rs(y, x), for all x, y ∈ X

(b3) rs(x, y) ≤ s[rs(x, z) + rs(y, z)], for all x, y, z ∈ X.

Then, rs is called a b-metric on X, and the pair (X, rs) denotes a b-metric space.

If s = 1, the condition (b3) reduces to the the triangle inequality of a metric.
Thus metric space is a particular case of a b-metric space, when s = 1. However,
a b-metric space is not necessarily a metric space. For instance, consider the
pair (X, rs), where X = R and rs(x, y) = |x − y|2, for all x, y ∈ R. Then, the
conditions (b1) and (b2) are obvious. Further, rs(x, y) = |x− y|2 = |x− z + z −
y|2 ≤ 2(|x− z|2 + |z − y|2) = 2[rs(x, z) + rs(y, z)], for all x, y ∈ X. Thus (R, rs)
is a b-metric space with b = 2. Since rs(1, 3) + rs(1, 0) = 5 and rs(0, 3) = 9, the
triangle inequality fails to hold good, showing that rs is not a metric. Thus the
class of b-metric spaces contains that of metric spaces.

Definition 1.2. A b-ball in a b-metric space (X, rs) is defined by

Brs
(x, r) =

{
y ∈ X : rs(x, y) < r

}
.

The family of all b-balls forms a basis for topology, which is called the b-metric
topology τ(rs) on X.

Definition 1.3. Let (X, rs) be a b-metric space with parameter s. A sequence
⟨xn⟩∞n=1 in X is said to be

(a) b-convergent, with limit p, if it converges to p in the b-metric topology
τ(rs)

(b) b-Cauchy, if limn,m→∞ rs(xn, xm) = 0

(c) b-complete, if every b-Cauchy sequence in X is b-convergent in it.

Remark 1.1. A b-metric is not jointly continuous in its coordinate variables x
and y, even though a metric d is known to be continuous (see, Example 2.13,
[8]).

Definition 1.4. Let (X, rs) be a b-metric space with parameter s. Given x0 ∈
X, and self-maps A, S and T on X, if there exist points x0, x1, x2, . . . , xn, . . .
such that

y2n−1 = Sx2n−2 = Ax2n−1, y2n = Tx2n−1 = Ax2n for n = 1, 2, . . . ,(1.1)

then, the sequence ⟨Axn⟩∞n=1 is called an (S, T )-orbit with respect to A at x0 or
simply an (S, T,A)-orbit at x0, and is denoted by OS,T,A(x0).
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The pair (S, T ) is said to be asymptotically regular with respect to A at
x0 , if limn→∞ rs(Axn, Axn+1) → 0, and (S, T ) is asymptotically regular with
respect to A, if it is asymptotically regular with respect to A at each x0 ∈ X.
The b-metric space X is said to be (S, T,A)-orbitally b-complete at x0, if every
b-Cauchy sequence in OS,T,A(x0) converges in X. The space X is said to be
(S, T,A)-orbitally b-complete, if it is (S, T,A)-orbitally b-complete at each x0.

Definition 1.5. Let (X, rs) be a b-metric space with parameter s. A self-map
T : X → X is said to be continuous at p ∈ X, if limn→∞ rs(Tpn, Tp) = 0
whenever ⟨pn⟩∞n=1 ⊂ X limn→∞ rs(pn, p) = 0. And, T is continuous on X, if it
is continuous at every x0 ∈ X.

Definition 1.6. The self-map A is (S, T ) orbitally continuous at x0 or simply
orbitally continuous at x0, if it is continuous on some (S, T,A)-orbit at x0.

Self-maps A and S on a metric space (X, d) are commuting, if Asx = SAx,
for all x ∈ X. As a weaker form of it, Sessa [7] introduced weakly commuting
maps A and S on X with the choice d(ASx, SAx) ≤ d(Ax, Sx), for all x ∈ X.
Gerald Jungck [4] introduced compatible maps as a generalization for weakly
commuting maps as follows:

Definition 1.7. Self-maps f and r on a metric space (X, d) are said to be
compatible, if

(1.2) lim
n→∞

d(ASpn, SApn) = 0,

whenever there exists a sequence ⟨pn⟩∞n=1 ⊂ X such that

(1.3) lim
n→∞

Apn = lim
n→∞

Spn = z, for some z ∈ X.

In [1], the following notion was introduced:

Definition 1.8. Let (X, d) be a metric space. Self-maps T and A on X are
(T,A)-weak compatible, if

(1.4) lim
n→∞

ATpn = Tz, and lim
n→∞

TApn = lim
n→∞

T 2pn = Tz,

whenever there exists a sequence ⟨pn⟩∞n=1 ⊂ X with the choice (1.3).

Note that, compatible maps T and A are (T,A)-weak compatible. However,
the converse is not true. For example, let X = (−∞,+∞) with usual metric
d(x, y) = |x− y|, for all x, y ∈ X.

As the compatibility of a pair of self-maps on a b-metric space is just similar
to that in metric space, we skip its discussion. In this paper, we establish a
common fixed point theorem for three self-maps on a b-metric space, which
satisfy a rational inequality, through the notions of orbital completeness, orbital
continuity and the compatibility.
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2. Main results

We use the following results from [5]:

Lemma 2.1. Let (X, rs) be a b-metric space with parameter s. Suppose that
⟨xn⟩∞n=1 is b-convergent with limit x, and ⟨yn⟩∞n=1 is b-convergent with limit y in
X. Then

(2.1)
1

s2
rs(x, y) ≤ lim inf

n→∞
rs(xn, yn) ≤ lim sup

n→∞
rs(xn, yn) ≤ s2rs(x, y).

In particular, if x = y, then limn→∞ rs(xn, yn) = 0. Further, for each z ∈ X,
we have

(2.2)
1

s
rs(x, z) ≤ lim inf

n→∞
rs(xn, z) ≤ lim sup

n→∞
rs(xn, z) ≤ srs(x, z).

The following is the main result of this paper:

Theorem 2.1. Let A, S and T be self-maps on a b-metric space (X, rs) with
s ≥ 1, satisfying the inclusions:

S(X) ⊂ A(X) and T (X) ⊂ A(X)(2.3)

and the rational inequality

rs(Sx, Ty) ≤ a rs(Ax,Ay) + b ·
rs(Ay, Ty)[1 + rs(Ax, Sx)]

1 + rs(Ax,Ay)
(2.4)

+ g ·
rs(Ay, Ty) + rs(Ay, Sx)

1 + rs(Ay, Ty)rs(Ay, Sx)
, for all x, y ∈ X,

where a, b and g are non-negative numbers, not all being zero, such that

s4a+ (s4 + 1)b+ (s5 + s4 + s)g < 1.(2.5)

Then, (S, T ) is asymptotically regular with respect to A at each x0 ∈ X. Suppose
that

(a) the space X is (S, T,A)-orbitally b-complete,

(b) A is orbitally continuous.

If one of the pairs (A,S) and (A, T ) is compatible, then S, T and A have a
unique common fixed point.

Proof. Given x0 ∈ X, in view of (2.3), we see that Sx0 = Ax1 for some x1 ∈ X
and Tx1 = Ax2 for some x2 ∈ X and so on. Thus inductively we choose points
x1, x2, . . . , xn, . . . in X with the choice (1.1).
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Writing x = x2n−2, y = x2n−1 in (2.4) and using (1.1),

rs(y2n−1, y2n) = rs(Sx2n−2, Tx2n−1)(2.6)

≤ a rs(Ax2n−2, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(Ax2n−2, Sx2n−2)]

1 + rs(Ax2n−2, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, Sx2n−2)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, Sx2n−2)

= a rs(y2n−2, y2n−1)

+ b ·
rs(y2n−1, y2n)[1 + rs(y2n−2, y2n−1)]

1 + rs(y2n−2, y2n−1)

+ g ·
rs(y2n−1, y2n) + rs(y2n−1, y2n−1)

1 + rs(y2n−1, y2n)rs(y2n−1, y2n−1)

≤ a

1− b− g
· rs(y2n−2, y2n−1) < q.rs(y2n−2, y2n−1),

where

q =
a+ b+ (s+ 1)g

1− b− sg
·(2.7)

Similarly, in view of (1.1), the inequality (2.4) with x = x2n−2 and y = x2n−3,
gives

rs(y2n−2, y2n−1) = rs(y2n−1, y2n−2)

= rs(Sx2n−2, Tx2n−3)

≤ a rs(Ax2n−2, Ax2n−3)

+ b ·
rs(Ax2n−3, Tx2n−3)[1 + rs(Ax2n−2, Sx2n−2)]

1 + rs(Ax2n−2, Ax2n−3)

+ g ·
rs(Ax2n−3, Tx2n−3) + rs(Ax2n−3, Sx2n−2)

1 + rs(Ax2n−3, Tx2n−3)rs(Ax2n−3, Sx2n−2)

= a rs(y2n−3, y2n−2) + b ·
rs(y2n−3, y2n−2)[1 + rs(y2n−2, y2n−1)]

1 + rs(y2n−2, y2n−3)

+ g ·
rs(y2n−3, y2n−2) + rs(y2n−3, y2n−1)

1 + rs(y2n−3, y2n−2)rs(y2n−3, y2n−1)

≤ a rs(y2n−3, y2n−2) + b rs(y2n−3, y2n−2) + b rs(y2n−2, y2n−1)

+ grs(y2n−3, y2n−2) + sg[rs(y2n−3, y2n−2) + rs(y2n−2, y2n−1)]

so, that

rs(y2n−2, y2n−1) ≤ q.rs(y2n−3, y2n−2).(2.8)

Thus from (2.6) and (2.8), it follows that

rs(yn−1, yn) ≤ qrs(yn−2, yn−1), for all n.
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By induction,

rs(yn, yn+1) ≤ qrs(yn−1, yn) ≤ q2rs(yn−2, yn−1) ≤ · · · ≤ qn−1rs(y1, y2), n ≥ 1.

(2.9)

Since q < 1/s4 < 1, (2.9) implies that rs(yn, yn+1) → 0 as n→ ∞. Thus, (S, T )
is asymptotically regular with respect to A at x0.

Now, for all m > n, employing the condition (b3) repeatedly and using (2.9),

rs(yn, ym) ≤ s[rs(yn, yn+1) + rs(yn+1, ym)]

≤ srs(yn, yn+1) + s2[rs(yn+1, yn+2) + rs(yn+2, ym)]

≤ srs(yn, yn+1) + s2rs(yn+1, yn+2) + s3[rs(yn+2, yn+3) + rs(yn+3, ym)]

. . .

≤ srs(yn, yn+1) + s2rs(yn+1, yn+2) + · · ·+ sm−nrs(ym−1, ym)

≤
[
sqn−1 + s2qn + · · ·+ sm−nqm−2

]
rs(y1, y2)

= sqn−1

[
1 + sq + · · ·+ (sq)m−n−1

]
rs(y1, y2)

≤ sqn−1

1− sq
· rs(y1, y2).

Proceeding the limit as n → ∞ in this, we see that rs(yn, ym) → 0. Thus
⟨yn⟩∞n=1 is a b-Cauchy sequence.

Since X is (S, T,A)-orbitally b-complete at x0, there exists a point z ∈ X
such that limn→∞ yn = z. That is,

(2.10) lim
n→∞

Ax2n+1 = lim
n→∞

Sx2n = lim
n→∞

Ax2n+2 = lim
n→∞

Tx2n+1 = z.

In view of the condition (b) of the theorem, from (2.10) we get that

(2.11) lim
n→∞

A2x2n+1 = lim
n→∞

ASx2n = lim
n→∞

A2x2n+2 = lim
n→∞

ATx2n+1 = Az.

First, we suppose that (A,S) is compatible. Then, from (2.11), it follows that

(2.12) lim
n→∞

SAx2n = lim
n→∞

ASx2n = Az.

Now, from (2.4) with x = Ax2n and y = x2n−1,

rs(SAx2n, Tx2n−1) ≤ a rs(A
2x2n, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(A

2x2n, SAx2n)]

1 + rs(A
2x2n, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, SAx2n)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, SAx2n)
,
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which, in view of (2.1), (2.10), (2.11) and (2.12), gives

1

s2
rs(Az, z) ≤ lim inf

n→∞
rs(SAx2n, Tx2n−1) ≤ lim sup

n→∞
rs(SAx2n, Tx2n−1)

≤ lim sup
n→∞

[
a rs(A

2x2n, Ax2n−1)

+ b ·
rs(Ax2n−1, Tx2n−1)[1 + rs(A

2x2n, SAx2n)]

1 + rs(A
2x2n, Ax2n−1)

+ g ·
rs(Ax2n−1, Tx2n−1) + rs(Ax2n−1, SAx2n)

1 + rs(Ax2n−1, Tx2n−1)rs(Ax2n−1, SAx2n)

]
≤ s2

[
a rs(Az, z) + b ·

rs(z, z)[1 + rs(Az,Az)]

1 + rs(Az, z)

+ g ·
rs(z, z) + rs(z,Az)

1 + rs(z, z)rs(z,Az)

]
= s2(a+ g)rs(z,Az)

so that rs(Az, z) ≤ s4(a+ g)rs(z,Az) and hence Az = z.
On one hand, writing x = Ax2n and y = z in (2.4),

rs(SAx2n, T z) ≤ a rs(A
2x2n, Az) + b ·

rs(Az, Tz)[1 + rs(A
2x2n, SAx2n)]

1 + rs(A
2x2n, Az)

+ g ·
rs(Az, Tz) + rs(Az, SAx2n)

1 + rs(Az, Tz)rs(Az, SAx2n)

Using (2.2), (2.10), (2.11) and (2.12), this gives

1

s
rs(Az, Tz) ≤ lim inf

n→∞
rs(SAx2n, T z)

≤ lim sup
n→∞

rs(SAx2n, T z)

≤ s

[
ars(Az, Tz) + b ·

rs(Az, Tz)[1 + rs(Az,Az)]

1 + rs(Az,Az)

+ g ·
rs(Az, Tz) + rs(Az,Az)

1 + rs(Az, Tz)rs(Az,Az)

]
so that rs(Az, Tz) ≤ s2(a + b + g)rs(Az, Tz) or rs(Az, Tz) = 0 and hence
Az = Tz. Thus

Az = Tz = z.(2.13)

On the other hand, writing x = z and y = z in (2.4), and using (2.13),

rs(Sz, z) = rs(Sz, Tz) ≤ a rs(Az,Az) + b ·
rs(Az, Tz)[1 + rs(Az, Sz)]

1 + rs(Az,Az)

+ g ·
rs(Az, Tz) + rs(Az, Sz)

1 + rs(Az, Tz)rs(Az, Sz)

= rs(Az, Sz)
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so that rs(Sz, z) = 0 or Sz = z. In other words, z is a common fixed point of A,
S and T . Similarly, a common fixed point of A, S and T is obtained, if (A, T )
is compatible.

It is not hard to establish the uniqueness of the common fixed point. □

Corollary 2.1. Let T be a self-map on a b-metric space (X, rs) with s ≥ 1,
satisfying the inequality

rs(Tx, Ty) ≤ a rs(x, y) + b ·
rs(y, Ty)[1 + rs(x, Tx)]

1 + rs(x, y)
(2.14)

+ g ·
rs(y, Ty) + rs(y, Tx)

1 + rs(y, Ty)rs(y, Tx)
, for all x, y ∈ X,

where a, b and g are non-negative numbers, not all being zero, such that

s4a+ (s4 + 1)b+ (s5 + s4 + s)g < 1.(2.15)

If the space X is T -orbitally b-complete, then T has a unique fixed point.

Proof. We write S = T and A = IX in Theorem 2.1, where IX is the identity
self-map on X. Note that IX commutes with every map and hence (I, T ) is com-
patible. Since every continuous function is T -orbitally continuous, by Theorem
2.1, T has a unique fixed point. □

The following result was proved in [6]:

Theorem 2.2. Let T be a self-map on a complete b-metric space (X, rs) with s ≥
1, satisfying the inequality (2.14), where a, b and g are non-negative numbers,
not all being zero, such that

sa+ b+ g < 1.(2.16)

Then, T has a unique fixed point.

Remark 2.1. It may be noted that a complete b-metric space is T -orbitally
b-complete at each of its points, and sa+b+g < s4a+(s4+1)b+(s5+s4+s)g < 1,
a unique fixed point of T follows from Corollary 2.1. Therefore, Corollary 2.1 is
a generalization of Theorem 2.2.

Since every complete metric space is orbitally complete, the following result
of Dass and Gupta [3] follows from Corollary 2.1 with s = 1 and g = 0:

Corollary 2.2. Let T be a self-map on a complete metric space (X, d) satisfying
the inequality

d(Tx, Ty) ≤ a d(x, y) + b · d(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
, for all x, y ∈ X,(2.17)

where a and b are non-negative numbers, not both being zero, such that

a+ 2b < 1.(2.18)

Then, T has a unique fixed point.
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3. Conclusions

In the introductory section of this paper, a brief account of b-metric space and
its relation with metric space is presented along with its topological properties.
The highlights of Theorem 2.1 for three compatible self-maps on a b-metric space
satisfying a rational type condition are the notions of asymptotic regularity,
orbital completeness and orbital continuity. Also, the main result of this paper
is an elegant extension of theorems of Sarwar and Rahman [6], and Dass and
Gupta [3].
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Abstract. Let (mn)n∈N be an unbounded sequence of complex numbers and (av)v∈N
be a sequence of numbers in the unit circle

C(0, 1) = {z ∈ C | |z| = 1},

where N is the set of natural numbers.
We shall prove that there is an entire function f so that, for every entire function

g there is a subsequence (λn), n ∈ N of (mn)n∈N such that, for every compact subset
L ⊆ C and for every v ∈ N,

sup
z∈L

|f(z + λnav)− g(z)|→ 0 as n→∞.

In relation with other results about hypercyclic operators, the new element in this
paper is that we achieve the approximation with the same sequence (λn), for all numbers
av (v = 1, 2, . . .).

Keywords: hypercyclic operator, common hypercyclic vectors, translation operator,
simultaneous approximation.

MSC 2020: 47A16, 30H05, 30E10, 41A28

1. Introduction

We denote H(C) the set of entire functions endowed with the topology Tu of
uniform convergence on compacta.

Let a ∈ C. We denote ta : C→C the translation function, which is given by
the formula ta(z) = z + a, for every z ∈ C.

We consider the translation operator Ta : H(C)→H(C), that is, the operator
defined by the formula Ta(f) = f ◦ ta, for every f ∈ H(C). The operator Ta is
a linear and continuous operator.

We write T 1
a = Ta and

Tn+1
a = Ta ◦ Tn

a , for n = 1, 2, . . . .

Birkhoff proved [4] that there is f ∈ H(C) so that

{Tn
a (f), n ∈ N} = H(C), where a ∈ C∖{0}.
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His proof was constructive.
Let (an)n∈N be an unbounded sequence of complex numbers. Luh [12] proved

that there is f ∈ H(C) so that

{Tan(f), n ∈ N} = H(C).

Gethner and Shapiro [8] and Grosse-Erdmann [9] have also proved the above
results by using the Baire’s Category Theorem. In particular, let U((Tan)) be
the set of entire functions that are universal (or hypercyclic) for the sequence
(Tan), that is,

U((Tan)) = {f ∈ H(C) | {Tan(f) | n ∈ N} = H(C)}.

Then, the set U((Tan)) is a Gδ and dense subset of H(C). Let (bm)m∈N be a
sequence of non-zero complex numbers. Based on the previous result, the set⋂

m∈N U((Tbman)) is a Gδ and dense subset of H(C).
Costakis and Sambarino [6] established a notable strengthening of Birkhoff’s

result. More specifically, they proved that the set⋂
a∈C−{0}

{f ∈ H(C) | {Tn
a (f), n ∈ N} = H(C)}

contains a Gδ and dense subset of H(C). Note that each set in the last inter-
section is U(Ta) := U((Tn

a )) = U((Tan)).
The important element here is the uncountable range of a.
Furthermore, Costakis [5] proved a more general result, that is, the set⋂

b∈C(0,1) U(Tban) contains a Gδ and dense subset of H(C), where an is an un-
bounded and specific sequence of complex numbers.

Let us apply this result, in certain cases.
Let (θv)v∈N be a sequence of distinct numbers in [0, 1) and (mn)n∈N be a

sequence of complex numbers so that mn→∞. We shall consider the numbers
wn(θv) = mne

2πiθv , n, v ∈ N. That is, for every v ∈ N we shall consider the
sequence (wn(θv))n∈N. Of course, we have wn(θv)→∞ as n→ + ∞, for every
v ∈ N.

We now set:

Ev = {f ∈ H(C)|{f(·+ wn(θv)) : n ∈ N} = H(C)}, for every v ∈ N.

Based on Grosse-Erdmann’s result we conclude that, for every v ∈ N the set Ev

is Gδ and dense in H(C). Hence, the set E :=
⋂+∞

v=1Ev is a Gδ dense subset
of H(C), so it is non-empty by Baire’s Category Theorem, given that the space
H(C) is a complete metric space. Let us see in more detail what this result
means.

Let f ∈ E. Then, for every v ∈ N and g ∈ H(C) there is a subsequence
(λvn) = (λn(v, g)) of (wn(θv)), that depends on g and v so that, for every compact
set K ⊆ C one has

sup
z∈K

|f(z + λvn)− g(z)|→ 0 as n→∞.
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So, this convergence depends on the specific sequence λvn = λn(v, g), n ∈ N, and
the sequence λvn depends on the specific number θv ∈ [0, 1). In the present paper
we shall examine whether we can have this convergence without the dependence
on the specific number θv ∈ [0, 1).

With this aim, we shall introduce the set of entire functions that achieve
simultaneous approximation on all numbers θv, v ∈ N, where θv ∈ [0, 1), for
every v ∈ N with the same sequence of indices. More specifically, we shall
consider the set SA (standing for Simultaneous Approximation) defined as

SA = {f ∈ H(C) : for every g ∈ H(C)

there is a subsequence (λn)n∈N of (mn)n∈N such that

sup
z∈K

|f(z + λne
2πiθv)− g(z)|→ 0 as n→∞,

for every compact set K ⊂ C and every v ∈ N}.
Of course SA ⊆ E.

We prove that the set SA is a Gδ-dense subset of H(C), so it is non-empty.
In order to prove that SA is a Gδ, dense subset of H(C) we shall introduce
one other set V ⊆ H(C) and we prove that V is a Gδ, dense subset of H(C)
and SA = V . Other articles dealing with translation operators or sequences of
translation operators on H(C) are [3] and [10].

Also, there are some papers concerning common hypercyclic vectors for
translation operators; see the papers [1], [5], [6], [7], [14], [15], [16], as well as
Chapter 11 in the book [11]. The notion of simultaneous hypercyclicity/univer-
sality was formally introduced (for finitely many operators) in [2].

Whenever we refer to a topology in the H(C) space, we always mean the
topology of uniform convergence on compacta.

In the following Section 2 we prove some helpful propositions in order to
prove our main result Theorem 2.6.

2. The main result

First of all, we shall prove a proposition which is the key in order to prove
our main result.

We fix g ∈ H(C).
We also fix some natural numbers n0 ≥ 2, v0, N0, and some real numbers

θ1, θ2, . . ., θn0 where θi ∈ [0, 1) for each i = 1, . . ., n0 and θi ̸= θj , for every
i, j ∈ An0 = {1, . . ., n0}, i ̸= j. For every natural number m we use the set

Vg(m, v0, N0, n0)=
{
f ∈ H(C)

/
sup
|z|≤v0

∣∣∣f(z +me2πiθj )− g(z)
∣∣∣< 1

N0
,

for every j=1, . . ., n0

}
.
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For every m ∈ N, j ∈ An0 we use the set

Ṽg(m, v0, N0, j) =
{
f ∈ H(C)

∣∣∣ sup
|z|≤v0

∣∣∣f(z +me2πiθj )− g(z)
∣∣∣ < 1

N0

}
.

Of course, we have

Vg(m, v0, N0, n0) =

n0⋂
j=1

Ṽg(m, v0, N0, j),(1)

based on the above definitions.
It is easy to see that the sets Ṽg(m, v0, N0, j) are open in H(C), for everym ∈

N, j = 1, . . ., n0, so the set Vg(m, v0, N0, n0) is open in H(C), for every m ∈ N,
according to the above relation (1). Therefore, the set

⋃+∞
m=1 Vg(m, v0, N0, n0)

is open in H(C).
For a function h : C→C and A ⊆ C, we shall denote ∥h∥A := sup{|h(z)| :

z ∈ A}.

Proposition 2.1. Under the above notations, we have that the set
⋃+∞

m=1 Vg(m, v0,
N0, n0) is dense in H(C).

Proof. We fix a function h ∈ H(C), a compact set K ⊆ C and an ε > 0. It
suffices to show that there are f ∈ H(C) and m0 ∈ N, so that

f ∈ Vg(m0, v0, N0, n0) and ∥f − h∥K < ε.(1)

We set Dv = {z ∈ C | |z| ≤ v}, for every v ∈ N. We also choose v1 ∈ N so that

Dv0 ∪K ⊆ Dv1 .(2)

Let us assume that m ∈ N satisfies

Dv1 ∩ (Dv1 +me2πiθj ) ̸= ∅,

for some j ∈ An0 (if it exists). We remind that An0 = {1, 2, . . ., n0}.
This means that there also exist zj , wj ∈ Dv1 , so that

wj = zj +me2πiθj , for some j ∈ An0 .(3)

According to (3), we shall have:

|wj − zj | = m, and this gives m ≤ 2v1.

Therefore, for every m ∈ N and m > 2v1, we have

Dv1 ∩ (Dv1 +me2πiθj ) = ∅, for every j ∈ An0 .(4)

Let j1, j2 ∈ An0 , so that j1 ̸= j2.
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Let m ∈ N so that

(Dv1 +me2πiθj1 ) ∩ (Dv1 +me2πiθj2 ) ̸= ∅ (if it exists).

This means that there are z1, w1 ∈ Dv1 so that

z1 +me2πiθj1 = w1 +me2πiθj2 .(5)

By (5) we have:

|z1 − w1| = m
∣∣e2πi(θj2−θj1 ) − 1

∣∣.(6)

From (6) we deduce that:

m ≤ 2v1∣∣e2πi(θj2−θj1 ) − 1
∣∣ .(7)

So, for every m ∈ N satisfying

m >
2v1∣∣e2πi(θj2−θj1 ) − 1

∣∣
we have:

(Dv1 +me2πiθj1 ) ∩ (Dv1 +me2πiθj2 ) = ∅.(8)

We set
M0 = min

{∣∣e2πi(θj2−θj1 ) − 1
∣∣ : j1, j2 ∈ An0 : j1 ̸= j2

}
.

We fix now some natural number m0 so that m0 > max{2v1, 2v1M0
}. Then, by (4)

and (8) we derive

Dv1 ∩ (Dv1 +m0e
2πiθj ) = ∅, for every j ∈ An0

and

(9) (Dv1 +m0e
2πiθj1 )∩(Dv1 +m0e

2πiθj2) = ∅, for every j1, j2 ∈ An0 , j1 ̸= j2.

Now, we set

L := Dv1 ∪
( n0⋃

j=1

(Dv1 +m0e
2πiθj )

)
.

Because of (9) we have that the set L is a union of n0 + 1 disjoint closed discs
with the same radius v1.

This means that the set L is a compact set with connected complement. We
shall consider the function F : L→C, defined as follows:

F (z) =

{
h(z), if z ∈ Dv1

g(z −m0e
2πiθj ), if z ∈ Dv1 +m0e

2πiθj , for some j ∈ An0 .
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Of course, F is continuous on L and holomorphic on
◦
L, the interior of L. So,

according to Mergelyan’s Approximation Theorem (see, e.g., [[13], Chapter 20])
there is a complex polynomial f , so that

∥F − f∥L < min

{
ε,

1

N0

}
.(10)

Based on the definition of F and (10), we have:

∥f − h∥K < ε,(11)

because of relation (2), and the definition of L.

Let us suppose w ∈ Dv1 . Then, for j ∈ An0 , w+m0e
2πiθj ∈ Dv1 +m0e

2πiθj .

We also set z = w +m0e
2πiθj . Then, F (z) = g(z −m0e

2πiθj ) = g(w). By
(10) we have, for every w ∈ Dv1 and j ∈ An0 that

∣∣f(w +m0e
2πiθj )− g(w)

∣∣ < 1

N0
.

This yields that f ∈ Vg(m0, v0, N0, n0), because of relation (2) and the fact that
f is a polynomial (so entire). By this fact and (11) the proof of this proposition
is complete now because relation (1) is satisfied.

Now, we shall fix an unbounded sequence (ms)s∈N of complex numbers. With
the notation of the previous Proposition 2.1 we shall consider the set:

Vg(ms, v0, N0, n0) =

{
f ∈ H(C)

∣∣∣ sup
|z|≤v0

∣∣∣f(z +mse
2πiθj )− g(z)

∣∣∣∣ < 1

N0
,

for every j ∈ An0

}
,

for every s ∈ N.
The sets Vg(ms, v0, N0, n0) are open for every s ∈ N, so the set

⋃+∞
s=1 Vg(ms,

v0, N0, n0) is open in H(C).
As in Proposition 2.1, we now state the following proposition:

Proposition 2.2. The set
⋃+∞

s=1 Vg(ms, v0, N0, n0) is dense in H(C).

Proof. The proof is similar to that of Proposition 2.1 and for this reason the
proof is omitted.

Indeed, the only property of {1, 2, . . .} used in the proof of the last proposi-
tion is its non-boundedness.

Recall that the space H(C) is separable, and so we can fix a dense sequence
(pk)k∈N of H(C) (for example (pk)k∈N be an enumeration of all complex poly-
nomials with coefficients in Q+ iQ). For every v,N, k, n, s ∈ N, n ≥ 2 we shall
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consider the set:

Vpk(ms, v,N, n) =

{
f ∈ H(C)

∣∣∣∣ sup
|z|≤v

∣∣∣f(z +mse
2πiθj )− pk(z)

∣∣∣∣ < 1

N
,

for every j ∈ An

}
.

The sets Vpk(ms, v,N, n) are open in H(C), for every v,N, k, n, s ∈ N, n ≥ 2,
so that the set

⋃+∞
s=1 Vpk(ms, v,N, n) is open for every v,N, k, n ∈ N, n ≥ 2.

According to Proposition 2.2, we have that the sets
⋃+∞

s=1 Vpk(ms, v,N, n) are
dense in H(C), for every v,N, k, n ∈ N, n ≥ 2.

We shall also consider the set:

V =
+∞⋂
v=1

+∞⋂
N=1

+∞⋂
k=1

+∞⋂
n=2

(+∞⋃
s=1

Vpk(ms, v,N, n)

)
.

Under the above notation, we shall establish the following assertion

Proposition 2.3. The set V is a Gδ-dense subset of H(C), so V is non-empty.

Proof. The set V is a Gδ subset of H(C) due to its definition, because the sets⋃+∞
s=1 Vpk(ms, v,N, n) are open for every v,N, k, n ∈ N, n ≥ 2. Based on Proposi-

tion 2.2, the sets
⋃+∞

s=1 Vpk(ms, v,N, n) are dense for every v,N, k, n ∈ N, n ≥ 2.
Hence, the conclusion follows from Baire’s Category Theorem because the space
H(C) is a complete metric space.

We now connect the previous set V with the set of entire functions that suc-
ceed simultaneous approximation with respect to a countable set of real num-
bers.

We shall state here the respective data. Let (θn)n∈N be a sequence of real
numbers, so that θn ∈ [0, 1) and θj1 ̸= θj2 , for every j1, j2 ∈ N, j1 ̸= j2, n ∈ N.
Let (ms)s∈N be a fixed sequence of complex numbers which is unbounded.

Let Θ := {θn : n ∈ N}. Of course, the set Θ and the set:

m = {ms : s ∈ N}

consisting of all the terms of the sequence (ms)s∈N are also infinite.
We shall consider the set:

SA = {f ∈ H(C) |, for every g ∈ H(C),

there is a sequence (λn)n∈N so that λn ∈ m, for every n ∈ N, so that for every
a ∈ Θ and for every compact set K ⊆ C it holds that

sup
z∈K

∣∣f(z + λne
2πia)− g(z)

∣∣→ 0 as n→∞}.

The method to prove that SA ̸= ∅ is the following:
We shall prove that SA = V and given that V ̸= ∅ we shall also have SA ̸= ∅.

In order to prove that SA = V we show that SA ⊆ V and V ⊆ SA. This is
the subject of the following two propositions.
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Proposition 2.4. It holds SA ⊆ V .

Proof. If SA = ∅, then the result is obvious. We suppose that SA ̸= ∅. Let
f ∈ SA. We fix v0, N0, n0, k0 ∈ N, n0 ≥ 2.

Because f ∈ SA for g = pk0 there is a sequence (λn)n∈N, so that λn ∈ m,
for every n ∈ N and, for every a ∈ Θ and every compact set K ⊆ C, we have

sup
z∈K

|f(z + λne
2πia)− pk0(z)|→ 0 as n→∞.

So, for K = Dv0 we have that

sup
|z|≤v0

|f(z + λne
2πiθj )− pk0(z)|→ 0 as n→∞,

for every j ∈ An0 .
This entails that for every j ∈ An0 there is some nj ∈ N, so that

sup
|z|≤v0

∣∣f(z + λne
2πiθ)− pk0(z)

∣∣∣ < 1

N0
, for every n ∈ N, n ≥ nj .

Let ñ = max{nj |j ∈ An0}. With this selection we obtain

sup
|z|≤v0

∣∣f(z + λne
2πiθj )− pn0(z)

∣∣∣ < 1

N0
,

for every j ∈ An0 , for every n ∈ N, n ≥ ñ.
This implies that f ∈ Vpk0 (λñ, v0, N0, n0), or equivalently, f ∈

⋃+∞
s=1 Vpk0 (ms,

v0, N0.n0) because λñ ∈ m, that implies f ∈ V and the result is proven.

Proposition 2.5. It holds that V ⊆ SA.

Proof. We know that V ̸= ∅. Let f ∈ V . We shall prove that f ∈ SA.
We fix g ∈ H(C). We shall show that there exists a sequence (λn)n∈N, so

that λn ∈ m, for every n ∈ N, and so that for every a ∈ Θ and every compact
set K ⊆ C

sup
z∈K

∣∣f(z + λne
2πia)− g(z)

∣∣→ 0 as n→∞.

Based on the above mentioned properties, we shall now construct the respective
sequence (λn)n∈N. We shall fix some n0 ∈ N, n0 ≥ 2.

Given that the sequence (pk)k∈N of complex polynomials with coefficients in
Q+ iQ is dense in H(C), there is some k0 ∈ N so that

∥g − pk0∥Dn0
<

1

2n0
.(1)

Since f ∈ V we have f ∈
⋃+∞

s=1 Vpk0 (ms, n0, 2n0, n0). This means that there is
some sn0 ∈ N so that f ∈ Vpk0 (msn0

, n0, 2n0, n0), or equivalently,

sup
|z|≤n0

∣∣f(z +msn0
e2πiθj )− pk0(z)

∣∣∣ < 1

2n0
, for every j ∈ An0 .(2)
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By (1), (2) and the triangle inequality we have:

sup
|z|≤n0

∣∣f(z +msn0
e2πiθj )− g(z)

∣∣∣ < 1

n0
, for every j ∈ An0 .(3)

According to the previous procedure, for every n ∈ N, n ≥ 2, we can choose
some sn ∈ N such that

sup
|z|≤n

∣∣f(z +msne
2πiθj )− g(z)

∣∣∣ < 1

n
, for every j ∈ An.(4)

We shall now prove that for the sequence (sn)n∈N one has the following:

supz∈K

∣∣∣f(z+msne
2πia)− g(z)

∣∣∣→ 0 as n→∞, for every compact set K ⊆ C and

for every a ∈ Θ.
With this aim, fix some ε0 > 0.
There are v0 ∈ N and n0 ∈ N, so that K ⊆ Dv, for every v ∈ N, v ≥ v0 and

a0 = θn0 . Let us choose N0 ∈ N such that 1
N0

< ε0.
Let M0 = max{v0, n0, N0, 2}. For every n ∈ N, n ≥ M , we have n ≥ v0, so

K ⊆ Dn. Of course, a0 ∈ {θ1, θ2, . . ., θn}, for every n ∈ N, n ≥ M0, because
a0 = θn0 and n0 ≤M0 ≤ n. With this, we also get

1

n
≤ 1

M0
≤ 1

N0
< ε0, for every n ∈ N, n ≥M0.

Then, for every n ∈ N, n ≥M0, it follows from (4) that

sup
z∈K

∣∣∣f(z +msne
2πia0)− g(z)| ≤ sup

|z|≤n

∣∣f(z +msne
2πia0)− g(z)

∣∣∣ < 1

n
< ε0.

This yields that

sup
z∈K

∣∣f(z +msne
2πia0)− g(z)

∣∣→ 0 as n→∞.

So, for every a ∈ Θ and every compact set K ⊆ C we have:

sup
z∈K

∣∣f(z +msne
2πia)− g(z)

∣∣→ 0 as n→∞.

Since this is the case for arbitrary g ∈ H(C) we conclude that f ∈ SA and the
proof of this proposition is complete.

Based on the above results, we are ready now to state and prove the main
result of this paper, that is Theorem 2.6.

Theorem 2.6. The set SA is a Gδ dense subset of H(C). In particular, the set
SA is non-empty.

Proof. Based on Proposition 2.4 and 2.5 we have that SA = V . We have also
proved in Proposition 2.3 that the set V is a Gδ and dense subset of H(C). So,
the result follows.
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1. Introduction

Classical logic can no longer fully adapt to people’s reasoning and thinking ac-
tivities in the development of today’s era, and then non-classical logic came into
being. Non-classical logic has become a useful tool for computers to deal with un-
certain and fuzzy information. Various logical algebras have been introduced as
the semantical systems of non-classical logic systems, for instance, MV-algebras
[5], BL-algebras [8], MTL-algebras [16] and residuated lattices [?]. Semihoops
[7] are generalization of hoops [1], which were originally proposed by Bosbach.
Semihoops, as the basic residuated structures, contain all logical algebras that
satisfy the residuated law. Recent years, many scholars have conducted research
on semihoops and obtain some important conclusions. For example, Borzooei
and Kologani [16] studied the relationships between various filters on semihoops
in 2015. In 2019, Niu [13] proposed the tense operators on bounded semihoops
and Zhang [17] introduced the derivations and differential filters on semihoops.
In 2020, Niu and Xin [14] established the ideal theory on bounded semihoops.
Since semihoops are the fundamental residuated structures, the study of semi-
hoops is important for fuzzy logic and some corresponding algebras.

In 1965, Zadeh [18] proposed the concept of fuzzy subset of a nonempty
set X as a function f : X → I, where I = [0, 1] is the unit interval of real
numbers. This marked the formation of fuzzy mathematics as a new discipline.
The concept of fuzzy groups was introduced by Rosenfied [15] in 1971, fuzzy
algebras have developed rapidly, especially fuzzy ideals on logical algebras. For
example, in 2005, Liu and Li [11] proposed the definition of fuzzy filters on BL-
algebras. In 2017, Liu [12] studied the ideal and fuzzy ideal in residuated lattices
and obtained some important conclusions. In 2019, Borzooei [2] introduced the
concept of fuzzy filters in pseudo hoops. However, we find that the current study
of fuzzy ideals is limited to chain structures, but ignores that not all elements
are comparable in some structures. For instance, there exists incomparable
elements in lattice structures. Therefore, we try to associate semihoops with
lattice structures and establish the L-fuzzy ideal theory.

This article is structured as follows: In Section 2, we summarize some fun-
damental definitions and conclusions on bounded semihoops, which will be used
in the sequel chapters. In Section 3, we will propose two types of L-fuzzy ideals
and discuss their relationship. We also study properties and equivalent charac-
terizations of L-fuzzy strong ideal. In the remaining sections, we will introduce
several special classes of L-fuzzy ideals on bounded semihoops, including L-fuzzy
prime ideal, the second type of L-fuzzy prime ideal and L-fuzzy maximal ideal.

2. Preliminaries

In this section, we recall some definitions and conclusions, which will be used in
the following sections.



474 ZHEN YAN WANG, XIAO LONG XIN and XIAO FEI YANG

Definition 2.1 ([7]). An algebra (S,⊙,→,∧, 1) of type (2, 2, 2, 0) is called a
semihoop if it satisfies:

(S1) (S,∧, 1) is a ∧-semilattice and it has a upper bound 1;

(S2) (S,⊙, 1) is a commutative monoid;

(S3) (α⊙ β) → θ = α→ (β → θ), for any α, β, θ ∈ S.

In a semihoop (S,⊙,→,∧, 1), we define α ≤ β if and only if α→ β = 1, for
any α, β ∈ S. It is easy to check that ≤ is a partial order relation on S and we
get α ≤ 1, for all α ∈ S.

Proposition 2.1 ([7]). Let S be a semihoop. Then, the following properties
hold:

(1) α⊙ β ≤ θ if and only if α ≤ β → θ, for every α, β, θ ∈ S;

(2) α⊙ β ≤ α, β, for any α, β ∈ S;

(3) 1 → α = α, α→ 1 = 1, for all α ∈ S;

(4) αn ≤ α, for every α ∈ S, n ∈ N+;

(5) α⊙ (α→ β) ≤ β, for any α, β ∈ S;

(6) α ≤ β implies α ⊙ θ ≤ β ⊙ θ, β → θ ≤ α → θ and θ → α ≤ θ → β, for
every α, β, θ ∈ S;

(7) α ≤ (α→ β) → β, for any α, β ∈ S;

(8) α→ (β → θ) = β → (α→ θ), for every α, β, θ ∈ S.

A semihoop (S,⊙,→,∧, 1) is called a bounded semihoop if there exists an
element 0 ∈ S such that 0 ≤ α, for all α ∈ S. We denote a bounded semihoop
(S,⊙,→,∧, 0, 1) by S.

Example 2.1 ([3]). Let S = {0,m, n, 1} be a chain with 0 < m < n < 1. We
define ⊙ and → on S as follows:

⊙ 0 m n 1
0 0 0 0 0
m 0 0 m m
n 0 m n n
1 0 m n 1

→ 0 m n 1
0 1 1 1 1
m m 1 1 1
n 0 m 1 1
1 0 m n 1

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop.

Example 2.2 ([3]). Let S = {0,m, n, a, 1}. Define ⊙ and → as follows:
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⊠ 0 m n a 1
0 0 0 0 0 0
m 0 m m m m
n 0 m n m n
a 0 m m a a
1 0 m n a 1

→ 0 m n a 1
0 1 1 1 1 1
m 0 1 1 1 1
n 0 a 1 a 1
a 0 n n 1 1
1 0 m n a 1

It’s Hasse diagram is as follows:

1

n a

m

0

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop.

In a bounded semihoop S, we define ⋆: α⋆ = α → 0, for any α ∈ S. A
bounded semihoop is said to have the Double Negation Property or (DNP) for
short if it satisfies α⋆⋆ = α, for all α ∈ S.

Proposition 2.2 ([3]). Let S be a bounded semihoop. Then, we have the fol-
lowing statements hold: for any α, β ∈ S,

(1) 1⋆ = 0, 0⋆ = 1;

(2) α ≤ α⋆⋆;

(3) α⋆⋆⋆ = α⋆;

(4) α⊙ α⋆ = 0;

(5) β⋆ ≤ β → α;

(6) α ≤ β implies β⋆ ≤ α⋆;

(7) if S has (DNP), then α→ β = β⋆ → α⋆;

(8) α→ β ≤ β⋆ → α⋆;

(9) if S has (DNP), then α⋆ → β = β⋆ → α.

Definition 2.2 ([14]). Assume that S is a bounded semihoop. The binary op-
eration ⊕ is defined by α⊕ β = α⋆ → β, for any α, β ∈ S.

Proposition 2.3 ([14]). Let S be a bounded semihoop. Then, the following
properties hold:
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(1) α ≤ β implies α⊕ θ ≤ β ⊕ θ, for every α, β, θ ∈ S;

(2) α ≤ α⊕ β, for any α, β ∈ S;

(3) α⊕ α⋆ = 1, for all α ∈ S;

(4) 0⊕ α = α, α⊕ 0 = α⋆⋆, for all α ∈ S;

(5) α⊕ β = 1 if and only if α⋆ ≤ β, for any α, β ∈ S;

(6) α⋆ ⊙ β⋆ = (α⊕ β)⋆ if S has (DNP), for any α, β ∈ S;

(7) α⋆ ⊕ β⋆ = (α⊙ β)⋆ if S has (DNP), for any α, β ∈ S.

Proposition 2.4 ([3]). Let S be a bounded semihoop and for any α, β ∈ S, we
define: α∨ β = [(α→ β) → β]∧ [(β → α) → α]. Then, the following conditions
are equivalent:

(1) ∨ is an associative operation on S;

(2) α ≤ β implies α ∨ θ ≤ β ∨ θ, for all α, β, θ ∈ A;

(3) α ∨ (β ∧ θ) ≤ (α ∨ β) ∧ (α ∨ θ), for all α, β, θ ∈ A;

(4) ∨ is the join operation on A.

Definition 2.3 ([3]). A bounded semihoop is a bounded ∨-semihoop if it satisfies
one of the equivalent conditions of Proposition 2.9.

Definition 2.4 ([14]). Let S be a bounded semihoop. A nonempty subset Dof
S is called an ideal if it satisfies:

(D1) for any α, β ∈ S, α ≤ β and β ∈ Dimply α ∈ D;

(D2) for any α, β ∈ D, α⊕ β ∈ D.

Definition 2.5 ([3]). Let S be a bounded semihoop. A nonempty subset Fof S
is called a filter if it satisfies:

(F1) for any α, β ∈ S, α ≤ β and α ∈ F imply β ∈ F ;

(F2) for any α, β ∈ F , α⊙ β ∈ F .

We denote the set of all ideals of S by D(S).

Definition 2.6 ([14]). Let S be a bounded semihoop. A proper ideal Dof S is
called a prime ideal if P∩Q ⊆ D implies P ⊆ D or Q ⊆ D, for any P,Q ∈ D(S).

Proposition 2.5 ([14]). Let S be a bounded ∨-semihoop with DNP. Then, every
maximal ideal of S is prime ideal.
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3. L-fuzzy ideals

Definition 3.1. Let S be a semihoop and ρ:S → [0, 1] be a fuzzy subset on A.
Then, ρ is called a fuzzy ideal of S, if for all α, β ∈ Ssatifies:

(FI1) α ≤ β implies ρ(α) ≥ ρ(β);

(FI2) ρ(α⊕ β) ≥ min{ρ(α), ρ(β)}.

Let (S,⊙,→,∧, 0, 1) be a bounded semihoop and (L,⊓,⊔, 0, 1) be a complete
lattice. The map ρ: S → L is called an L-fuzzy subset of S. Let ρ and
χ be two L-fuzzy subsets, then ρ ∧ χ and ρ ∨ χ are L-fuzzy subsets, where
(ρ ∧ χ)(α) = ρ(α) ⊓ χ(α) and (ρ ∨ χ)(α) = ρ(α) ⊔ χ(α), for all α ∈ S.

We can induce the partial order relation on (L,⊓,⊔, 0, 1) with ≤. Define
four types of level sets by ρ1t = {α ∈ S|ρ(α) ≥ t}, ρ2t = {α ∈ S|ρ(α) ≱ t},
ρ3t = {α ∈ S|ρ(α) > t}, ρ4t = {α ∈ S|ρ(α) ≯ t}, for any t ∈ L.

Definition 3.2. Let S be a bounded semihoop. The binary operation ⊞ is defined
by α⊞ β = α⋆ → β⋆⋆, for any α, β ∈ S.

If S is a bounded semihoop with DNP, then we have α⊕ β = α⊞ β, for any
α, β ∈ S. The following example will illustrate that the two binary operations
⊕ and ⊞ are different.

Example 3.1. Let S = {0, e, b, c, d, 1} with 0 < e < 1, 0 < b < c < d < 1,
where e and b are incomparable. Define ⊠ and →as follows,

⊙ 0 e b c d 1
0 0 0 0 0 0 0
e 0 0 0 0 e e
b 0 0 0 0 b b
c 0 0 0 0 c c
d 0 e b c d d
1 0 e b c d 1

→ 0 e b c d 1
0 1 1 1 1 1 1
e c 1 c 1 1 1
b c c 1 1 1 1
c c c c 1 1 1
d 0 e b c 1 1
1 0 e b c d 1

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop. In the bounded semihoop
S, α ⊕ β ̸= α ⊞ βsince e ⊕ b = e⋆ → b = (e → 0) → b = c → b = c,
e⊞ b = e⋆ → b⋆⋆ = (e→ 0) → ((b→ 0) → 0) = c→ (c→ 0) = c→ c = 1.

Since there are incomparable elements in lattice L, we will define two types
of L-fuzzy ideals on bounded semihoops. The infimum and supremum of two
elements x, y ∈ L be denoted by x ⊓ y and x ⊔ y.

Definition 3.3. Let S be a bounded semihoop. An L-fuzzy subset ρ of S is
called an L-fuzzy strong ideal if it satisfies: for any α, β ∈ S,

(LFD1) α ≤ β implies ρ(α) ≥ ρ(β);

(LFD2) ρ(α⊞ β) ≥ ρ(α) ⊓ ρ(β).
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Definition 3.4. Let S be a bounded semihoop. An L-fuzzy subset ρ of S is
called an L-fuzzy ideal if it satisfies: for any α, β ∈ S,

(LFD1
′
) α ≤ β implies ρ(α) ≥ ρ(β) or ρ(α) and ρ(β) are incomparable;

(LFD2
′
) ρ(α⊞ β) ≥ ρ(α) ⊓ ρ(β).

Obviously, each L-fuzzy strong ideal of S is an L-fuzzy ideal.
In the following we will explain the difference between fuzzy ideals and L-

fuzzy ideals through definitions:

(1) Since all elements on [0,1] are comparable, α ≤ β implies ρ(α) ≥ ρ(β) in
Definition 3.1(FD1). However, not all elements in the lattice are compara-
ble, so based on this feature we propose L-fuzzy strong ideals and L-fuzzy
ideals.

(2) Since all elements on [0,1] are comparable, ρ(α ⊕ β) ≥ min{ρ(α), ρ(β)}
in Definition 3.1(FD2). However, not all elements in the lattice are com-
parable, but a lower bound exists for any two elements in the lattice.
Thus, ρ(α ⊞ β) ≥ ρ(α) ⊓ ρ(β) is satisfied in Definitions 3.3(LFD2) and
3.4(LFD2

′
), where ρ(α) ⊓ ρ(β) is the infimum of ρ(α) and ρ(β).

Example 3.2 ([10]). Let S = {0,m, n, p, 1} with 0 < m < p < 1, 0 < n < p < 1,
where m and n are incomparable. Define ⊙ and → as follows,

⊙ 0 m n p 1
0 0 0 0 0 0
m 0 m 0 m m
n 0 0 n n n
p 0 m n p p
1 0 m n p 1

→ 0 m n p 1
0 1 1 1 1 1
m n 1 n 1 1
n m m 1 1 1
p 0 m n 1 1
1 0 m n p 1

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop. Let L = {0, c1, a1, b1, d1, 1}
be a complete lattice. It’s Hasse diagram is as follows:

1

c1

a1 b1

d1

0
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We define an L-fuzzy subset ρ of Sby

ρ(α) =


c1, if α = 0

b1, if α = m

d1, if α = n, p, 1

for all α ∈ S. Then, ρ is an L-fuzzy strong ideal of S.

Remark 3.1. Let S be a bounded semihoop. Then, an L-fuzzy ideal of Smay
not be an L-fuzzy strong ideal.

The following example will illustrate Remark 3.1.

Example 3.3 ([9]). Let S = {0, n, e, p, q, r,m, 1} with 0 < n < e < 1, 0 <
p < q < m < 1, 0 < r < m < 1, where e and p are incomparable, q and r are
incomparable. Define ⊙ and → as follows,

⊙ 0 n e p q r m 1
0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 n
e 0 0 e 0 e 0 0 e
p 0 0 0 0 0 p p p
q 0 0 e 0 e p q q
r 0 0 0 p p r r r
m 0 0 e p q r m m
1 0 n e p q r m 1

→ 0 n e p q r m 1
0 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1
e r r 1 r 1 r 1 1
p q q q 1 1 1 1 1
q p p q r 1 r 1 1
r e e e q q 1 1 1
m n n e p q r 1 1
1 0 n e p q r m 1

We can see that (S,⊙,→,∧, 0, 1) is a bounded semihoop. Let L = {0, c, d, b,
a, 1} be a complete lattice. It’s Hasse diagram is as follows:

1

a

c b

d

0

We define an L-fuzzy subset ρ of S by

ρ(α) =


a, if α = 0, n

b, if α = p

c, if α = e

d, if α = q, r,m, 1



480 ZHEN YAN WANG, XIAO LONG XIN and XIAO FEI YANG

for all α ∈ S. Then, ρ is an L-fuzzy ideal of Sbut it is not an L-fuzzy strong
ideal since e < qbut ρ(e) = c and ρ(q) = d are incomparable.

Definition 3.5. Let S be a bounded semihoop. An L-fuzzy subset ρ of S is
called an L-fuzzy strong filter if it satisfies: for each α, β ∈ S,

(LFF1) α ≤ β implies ρ(α) ≤ ρ(β);

(LFF2) ρ(α⊙ β) ≥ ρ(α) ⊓ ρ(β).

Definition 3.6. Let S be a bounded semihoop. An L-fuzzy subset ρ of S is
called an L-fuzzy filter if it satisfies: for each α, β ∈ S,

(LFF1′) α ≤ β implies ρ(α) ≤ ρ(β) or ρ(α) and ρ(β) are incomparable;

(LFF2′) ρ(α⊙ β) ≥ ρ(α) ⊓ ρ(β).

Example 3.4. In Example 3.2, we define an L-fuzzy subset ρ of S by

ρ(α) =


c1, if α = p, 1

b1, if α = n

d1, if α = 0,m

for all α ∈ S. Then, ρ is an L-fuzzy strong filter of S.

Example 3.5. In Example 3.3, we define an L-fuzzy subset ρ of S by

ρ(α) =


a, if α = 1,m

b, if α = r

c, if α = q, e

d, if α = p, n, 0

for all α ∈ S. Then, ρ is an L-fuzzy filter of Sbut it is not an L-fuzzy strong
filter since p < qbut ρ(q) = c and ρ(p) = d are incomparable.

Proposition 3.1. Let S be a bounded semihoop with DNP.

(1) If ρ is an L-fuzzy strong ideal of S, then ρ⋆ is an L-fuzzy strong filter of
S;

(2) If ρ is an L-fuzzy strong filter of S, then ρ⋆ is an L-fuzzy strong ideal of
S;

(3) If ρ is an L-fuzzy ideal of S, then ρ⋆ is an L-fuzzy filter of S;

(4) If ρ is an L-fuzzy filter of S, then ρ⋆ is an L-fuzzy ideal of S;

where ρ⋆(α) = ρ(α⋆), for any α ∈ S.
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Proof. (1) Assume that ρ is an L-fuzzy strong ideal of S. Let α, β ∈ Ssuch
that α ≤ β, then β⋆ ≤ α⋆. By Definition 3.3(LFD1), we get ρ(α⋆) ≤ ρ(β⋆),
so ρ⋆(α) ≤ ρ⋆(β). Since S is a bounded semihoop with DNP, by Proposition
2.3(7), we have α⋆ ⊞ β⋆ = α⋆ ⊕ β⋆ = (α ⊙ β)⋆. By Definition 3.3(LFD2),
ρ((α ⊙ β)⋆) = ρ(α⋆ ⊞ β⋆) ≥ ρ(α⋆) ⊓ ρ(β⋆), then ρ⋆(α ⊙ β) ≥ ρ⋆(α) ⊓ ρ⋆(β).
Therefore, ρ⋆ is an L-fuzzy strong filter.

(2) Let ρ be an L-fuzzy strong filter of S. Let α, β ∈ Ssuch that α ≤ β,
then β⋆ ≤ α⋆. By Definition 3.5(LFF1), we get ρ(β⋆) ≤ ρ(α⋆), so ρ⋆(β) ≤
ρ⋆(α). Since S is a bounded semihoop with DNP, by Proposition 2.3(6), we
have α⋆ ⊙ β⋆ = (α ⊕ β)⋆ = (α ⊞ β)⋆. By Definition 3.5(LFF2), ρ((α ⊞ β)⋆) =
ρ(α⋆ ⊙ β⋆) ≥ ρ(α⋆)⊓ ρ(β⋆), then ρ⋆(α⊞ β) ≥ ρ⋆(α)⊓ ρ⋆(β). Therefore, ρ⋆ is an
L-fuzzy strong ideal.

(3)The proof of the conclusion is similar to (1).
(4)The proof of the conclusion is similar to (2).

Proposition 3.2. Assume that S is a bounded semihoop and ρ, χ are two L-
fuzzy strong ideals of S. Then, ρ ∧ χ is an L-fuzzy strong ideal.

Proof. The proof of this proposition is obvious.

Remark 3.2. Assume that S is a bounded semihoop and ρ, χ are two L-fuzzy
strong ideals of S. Then, ρ ∨ χmay not be an L-fuzzy strong ideal.

The following example will illustrate Remark 3.2.

Example 3.6. Let S be a bounded semihoop in Example 3.2 and L = {0, x, y, 1}
be a complete lattice. The Hasse diagram of L is as follows:

0

x y

0

We define two L-fuzzy subsets by

ρ1(α) =


1, if α = 0

x, if α = n

0, if α = m, p, 1

and

ρ2(α) =


1, if α = 0

y, if α = m

0, if α = n, p, 1
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for any α ∈ S. Then, ρ1 and ρ2 are two L-fuzzy strong ideals of S. Moreover,
we get an L-fuzzy subset ρ1 ∨ ρ2 by

(ρ1 ∨ ρ2)(α) =


1, if α = 0

y, if α = m

x, if α = n

0, if α = p, 1

for any α ∈ S. Then, ρ1∨ρ2 is not an L-fuzzy strong ideal since (ρ1∨ρ2)(n) = x
and (ρ1 ∨ ρ2)(m) = y are incomparable.

Corollary 3.1. Let S be a bounded semihoop and ρ, χ be two L-fuzzy strong
ideals of S. If ρ ⊆ χ, then ρ ∨ χ is an L-fuzzy strong ideal.

Proof. The proof is clearly.

Proposition 3.3. Given a bounded semihoop S.

(1) An L-fuzzy subset ρ of S is an L-fuzzy strong ideal if and only if the level
set ρ1t = {α ∈ S|ρ(α) ≥ t}(̸= ∅) is an ideal, for any t ∈ L.

(2) If Lsatisfies y = ∨{x ∈ L|x < y}, for any y ∈ L, then an L-fuzzy subset
ρ of S is an L-fuzzy strong ideal if and only if the level set ρ3t = {α ∈
S|ρ(α) > t}(̸= ∅) is an ideal, for any t ∈ L.

Proof. (1)Assume that ρ is an L-fuzzy strong ideal. Let α, β ∈ Ssuch that
α ≤ β and β ∈ ρ1t , then ρ(β) ≥ t. By Definition 3.3(LFD1), ρ(α) ≥ ρ(β) ≥ t,
so ρ(α) ≥ t, then α ∈ ρ1t . Let α, β ∈ ρ1t , that is ρ(α) ≥ t and ρ(β) ≥ t, so
ρ(α) ⊓ ρ(β) ≥ t. By Definition 3.3(LFD2), ρ(α ⊞ β) ≥ ρ(α) ⊓ ρ(β) ≥ t, so
ρ(α⊞ β) ≥ t, then α⊞ β ∈ ρ1t . Hence, ρ

1
t ( ̸= ∅) is an ideal of S.

Conversely, let ρ1t (̸= ∅) be an ideal. Taking t = ρ(α) ⊓ ρ(β), we get α ∈ ρt
and β ∈ ρt, for any α, β ∈ S. Since ρ1t is an ideal of S, thus α ⊞ β ∈ ρ1t , so
ρ(α ⊞ β) ≥ t = ρ(α) ⊓ ρ(β). Let α, β ∈ Ssuch that α ≤ β. Taking t = ρ(β),
then β ∈ ρ1ρ(β). Since ρ

1
ρ(β) is an ideal of S, thus α ∈ ρ1ρ(β), that is ρ(α) ≥ ρ(β).

Therefore, ρ is an L-fuzzy strong ideal of S.
(2)The proof is similar to (1).

By Proposition 3.3, we easily obtain that an L-fuzzy subset ρ of S is an L-
fuzzy strong ideal if and only if the complement of ρ2t ( ̸= ∅) is an ideal. Similarly,
an L-fuzzy subset ρ of S is an L-fuzzy strong ideal if and only if the complement
of ρ4t (̸= ∅) is an ideal.

Proposition 3.4. Let S be a bounded semihoop with DNP. An L-fuzzy subset
ρ of S is an L-fuzzy strong ideal if and only if for any α, β ∈ S, the following
conditions hold:

(1) ρ(0) ≥ ρ(α);
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(2) ρ(α) ⊓ ρ(α⋆ ⊙ β) ≤ ρ(β).

Proof. For all α ∈ S, we have 0 ≤ α. Since ρ is an L-fuzzy strong ideal of
S, by Definition 3.3(LFD1), we get ρ(0) ≥ ρ(α). Since β → (α ⊞ (α⋆ ⊙ β)) =
β → (α⋆ → (α⋆ ⊙ β)⋆⋆) = (β ⊙ α⋆) → (β ⊙ α⋆)⋆⋆ = (β ⊙ α⋆) → (β ⊙ α⋆) = 1,
for any α, β ∈ S, thus α ⊞ (α⋆ ⊙ β) ≥ β, then ρ(α ⊞ (α⋆ ⊙ β)) ≤ ρ(β). By
Definition 3.3(LFD2), ρ(α) ⊓ ρ(α⋆ ⊙ β) ≤ ρ(α ⊞ (α⋆ ⊙ β)) ≤ ρ(β). Hence,
ρ(α) ⊓ ρ(α⋆ ⊙ β) ≤ ρ(β).

Conversely, for any α, β ∈ Ssuch that α ≤ β, so β⋆ ≤ α⋆, then α ⊙ β⋆ ≥
α⊙α⋆ = 0, so ρ(β⋆⊙α) ≤ ρ(0). By (1), ρ(0) ≥ ρ(β⋆⊙α), then ρ(0) = ρ(β⋆⊙α).
By (2), ρ(α) ≤ ρ(β) ⊓ ρ(β⋆ ⊙ α) = ρ(β) ⊓ ρ(0) = ρ(β), so ρ(α) ≥ ρ(β). Since
α⋆⊙(α⊞β) = α⋆⊙(α⋆ → β⋆⋆) = α⋆⊙(α⋆ → β) ≤ β, thus ρ(α⋆⊙(α⊞β)) ≥ ρ(β),
then ρ(α⊞β) ≥ ρ(α)⊓ρ(α⋆⊙ (α⊞β)) ≥ ρ(α)⊓ρ(β). Therefore, ρ is an L-fuzzy
strong ideal of S.

Proposition 3.5. Let S be a bounded semihoop with DNP. An L-fuzzy subset
ρ of S is an L-fuzzy strong ideal if and only if for any α, β ∈ S, the following
conditions hold:

(1) ρ(0) ≥ ρ(α);

(2) ρ(α) ⊓ ρ(α∗ → β⋆)⋆ ≤ ρ(β).

Proof. By Proposition 2.3(6), α⋆⊙β = α⋆⊙β⋆⋆ = (α⊞β⋆)⋆ = (α∗ → β⋆⋆⋆)⋆ =
(α⋆ → β⋆)⋆, for every α, β ∈ S. Thus, by Proposition 3.4, the conclusion
holds.

Proposition 3.6. Let S be a bounded semihoop. An L-fuzzy subset ρ of S is
an L-fuzzy strong ideal if and only if for any α, β ∈ S, the following conditions
hold:

(1) ρ(α ∧ β) ≥ ρ(α);

(2) ρ(α⊞ β) ≥ ρ(α) ⊓ f(β).

Proof. The proof is clearly.

Lemma 3.1. Assume that S is a bounded semihoop and ρ is an L-fuzzy strong
ideal of S. Then, ρ(α⋆⋆) = ρ(α), for each α ∈ S.

Proof. By Proposition 2.2(2), α ≤ α∗∗. Since ρ is an L-fuzzy strong ideal,
by Definition 3.3(LFD1), we obtain ρ(α) ≥ ρ(α⋆⋆). By Definition 3.3(LFD2),
ρ(α⋆⋆) = ρ(α⊞ 0) ≥ ρ(α) ⊓ ρ(0) = ρ(α), so ρ(α⋆⋆) ≥ ρ(α). Therefore, ρ(α⋆⋆) =
ρ(α), for all α ∈ S.

Given a nonempty subset Dof S and x, y ∈ L such that x > y. Define an
L-fuzzy set ρDx,y by

ρDx,y(α) =

{
x, if α ∈ D

y, others
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for any α ∈ S.

Proposition 3.7. Let S be a bounded semihoop and D be a nonempty subset
of S. Then, ρDx,y is an L-fuzzy strong ideal if and only if D is an ideal.

Proof. Assume that ρDx,y is an L-fuzzy strong ideal of S. Let α, β ∈ D, then

ρDx,y(α) = ρDx,y(β) = x, so ρDx,y(α ⊞ β) ≥ ρDx,y(α) ⊓ ρDx,y(β) = x, then α ⊞ β ∈ D.

Let α ≤ β and β ∈ D, for any α, β ∈ S, then ρDx,y(α) ≥ ρDx,y(β) and ρ
D
x,y(β) = x,

so ρDx,y(α) ≥ x, then α ∈ D. Therefore, D is an ideal of S.
Conversely, let D be an ideal of S.
Firstly, suppose α, β ∈ S, then we discuss the following two situations.

Case (1). If α, β ∈ D, then α⊞β ∈ D and ρDx,y(α) = ρDx,y(β) = x, so ρDx,y(α⊞β) =
x = ρDx,y(α) ⊓ ρDx,y(β).

Case (2). If α /∈ D or β /∈ D, then ρDx,y(α) = y or ρDx,y(β) = y, so ρDx,y(α⊞ β) =

y = ρDx,y(α) ⊓ ρDx,y(β).
Hence, ρDx,y(α⊞ β) ≥ ρDx,y(α) ⊓ ρDx,y(β), for any α, β ∈ S.
Secondly, let α, β ∈ S and α ≤ β, then we also discuss the following two

situations.

Case (1). If β ∈ D, so α ∈ D and ρDx,y(β) = x = ρDx,y(α).

Case (2). If β /∈ D, then ρDx,y(β) = y, so α /∈ I, then ρDx,y(α) ≥ ρDx,y(β) = y.

Hence, ρDx,y(α) ≥ ρDx,y(β), for any α, β ∈ Ssatisfying α ≤ β. Therefore, ρDx,y
is an L-fuzzy strong ideal.

Let S and T be two bounded semihoops. The map h: S → T is said to
be a homomorphism if h(α → β) = h(α) → h(β), h(α ⊙ β) = h(α) ⊙ h(β),
h(α∧ β) = h(α)∧h(β), h(0) = 0L, for any α, β ∈ S. We also get h(1) = 1L and
h(α⋆) = (h(α))⋆, for all α ∈ S.

Let L1 and L2 be two complete lattices. The map h: L1 → L2 is said to
be a lattice-homomorphism if h(α ⊓ β) = h(α) ⊓ h(β), h(α ⊔ β) = h(α) ⊔ h(β),
h(0) = 0L2 , h(1) = 1L2 , for any α, β ∈ S.

Proposition 3.8. Let S and T be two bounded semihoops, ρ be an L-fuzzy
strong ideal of T and h: S → T be a homomorphism. Then, ρh is also an
L-fuzzy strong ideal of S.

Proof. Since h is a homomorphism, thus (ρh)(0) = ρ(h(0)) = ρ(0) ≥ ρ(h(α)) =
(ρh)(α), for all α ∈ S. Since (ρh)(α)⊓ (ρh)((α⋆ → β⋆)⋆) = ρ(h(α))⊓ρ(h((α⋆ →
β⋆)⋆)) = ρ(h(α)) ⊓ ρ((h(α⋆ → β⋆))⋆) = ρ(h(α)) ⊓ ρ((h(α⋆) → h(β⋆))⋆) =
ρ(h(α)) ⊓ ρ(((h(α))⋆ → (h(β))⋆)⋆) ≤ ρ(h(β)) = (ρh)(β), for any α, β ∈ S.
Hence, by Proposition 3.3, ρh is an L-fuzzy strong ideal.

Proposition 3.9. Let L1 and L2 be two complete lattices, ρ be an L1-fuzzy
strong ideal of S and h: L1 → L2 be a lattice-homomorphism. Then, hρ is also
an L2-fuzzy strong ideal of S.
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Proof. Since h is a lattice-homomorphism and ρ be an L1-fuzzy strong ideal
of S, thus (hρ)(α ∧ β) = h(ρ(α ∧ β)) ≥ h(ρ(α)) = (hρ)(α), for all α, β ∈ S.
Moreover, (hρ)(α ⊞ β) = h(ρ(α ⊞ β) ≥ h(ρ(α) ⊓ ρ(β)) = h(ρ(α)) ⊓ h(ρ(β)) =
(hρ)(α) ⊓ (hρ)(β), for all α, β ∈ S. Therefore, by Proposition 3.6, hρ is also an
L2-fuzzy strong ideal of S.

Proposition 3.10. Let S be a bounded semihoop with DNP, L be a complete
lattice, ρ be an L-fuzzy strong ideal of S and H be an up-set sublattice of L.
Then, ρ−1(H) is an ideal of S.

Proof. We will prove the proposition in the following parts:
(i) Since H is a sublattice of L, thus there exists α ∈ Ssuch that ρ(α) = x ∈

H, so α ∈ ρ−1(H), then ρ−1(H) is a non-empty set of S.
(ii) Let α, β ∈ S with α ≤ β and β ∈ ρ−1(H), then ρ(β) ∈ H and ρ(α) ≥

ρ(β). Since H is an up-set, thus ρ(α) ∈ H, so α ∈ ρ−1(H).
(iii) For any α, β ∈ ρ−1(H), then ρ(α), ρ(β) ∈ H. Since H is an up-set

sublattice of L, thus ρ(α) ⊓ ρ(β) ∈ H. From Definition 3.3(LFD2) and S
has with DNP, ρ(α ⊞ β) = ρ(α ⊕ β) ≥ ρ(α) ⊓ ρ(β), then ρ(α ⊕ β) ∈ H, so
α⊕ β ∈ ρ−1(H). Therefore, ρ−1(H) is an ideal of S.

Definition 3.7. Let S be a bounded semihoop and ρ be an L-fuzzy strong ideal
of A. The smallest L-fuzzy strong ideal containing ρ is called the L-fuzzy strong
ideal generalized by ρ, written [ρ].

Proposition 3.11. Let S be a bounded semihoop and ρ be an L-fuzzy subset
of S. Then, [ρ](α) = ⊔{ρ(α1) ⊓ ρ(α2) ⊓ · · · ⊓ ρ(αn)|α ≤ α1 ⊞ α2 ⊞ · · · ⊞ αn,
α1, α2, · · · , αn ∈ S}.

Proof. Let f(α) = ⊔{ρ(α1) ⊓ ρ(α2) ⊓ · · · ⊓ ρ(αn)|α ≤ α1 ⊞ α2 ⊞ · · · ⊞ αn,
α1, α2, · · · , αn ∈ S}.

First, we prove that f(α) is an L-fuzzy strong ideal of S. Obviously, f(0) ≥
f(α), for all α ∈ S. Let α, β ∈ S, if there are a1, · · · , an, b1, · · · , bm ∈ Ssuch
that α ≤ a1 ⊞ · · · ⊞ an and α∗ ⊙ β ≤ b1 ⊞ · · · ⊞ bm, then β ≤ α ⊞ (α∗ ⊙ β) =
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(a1 ⊞ · · · ⊞ an) ⊞ (b1 ⊞ · · · ⊞ bm), so f(β) ≥ ρ(a1) ⊓ · · · ⊓ ρ(an) ⊓ ρ(b1) ⊓ · · · ⊓
ρ(bm). Since f(α) ⊓ f(α∗ ⊙ β) = (⊔{ρ(a1) ⊓ · · · ⊓ ρ(an)|α ≤ a1 ⊞ · · · ⊞ an,
a1, · · · , an ∈ S}) ⊓ (⊔{ρ(b1) ⊓ · · · ⊓ ρ(bm)|α∗ ⊙ β ≤ b1 ⊞ · · · ⊞ bm, b1, · · · , bm ∈
S}) = ⊔{ρ(a1) ⊓ · · · ⊓ ρ(an) ⊓ ρ(b1) ⊓ · · · ⊓ ρ(bm)|α ≤ a1 ⊞ · · · ⊞ an, α

∗ ⊙ β ≤
b1⊞· · ·⊞bm, a1, · · · , an, b1, · · · , bm ∈ S}, thus f(α)⊓f(α∗⊙β) ≤ f(β). Therefore
by Proposition 3.4, we have f is an L-fuzzy strong ideal of S.

Next, since α ≤ α⊞α, we have f(α) ≥ ρ(α)⊓ ρ(α) = ρ(α). Thus, fcontains
ρ.

Finally, suppose ω is also an L-fuzzy strong ideal of Ssuch ωcontains ρ. Then,
for any α ∈ S, f(α) = ⊔{ρ(α1)⊓· · ·⊓ρ(αn)|α ≤ α1⊞· · ·⊞αn, α1, · · · , αn ∈ S} ≤
⊔{ω(α1) ⊓ · · · ⊓ ω(αn)}|α ≤ α1 ⊞ · · ·⊞ αn, α1, · · · , αn ∈ S} ≤ ω(α). Therefore,
f is an L-fuzzy strong ideal generated by ρ, that is [ρ] = f .

4. L-fuzzy prime ideals

In this part, we will introduce the concept of L-fuzzy prime ideals on bounded
semihoops and study some of their properties.

Definition 4.1. Let S be a bounded semihoop. An L-fuzzy strong ideal ρ of S
is called an L-fuzzy prime ideal if ρ(α ∧ β) ≤ ρ(α) ⊔ ρ(β), for any α, β ∈ S.

Example 4.1 ([14]). Let S = {0, r,m, n, 1} be a chain with 0 < r < m < n < 1.
Define ⊙ and → on S in the following:

⊠ 0 r m n 1
0 0 0 0 0 0
r 0 0 0 0 r
m 0 0 0 r m
n 0 0 r r n
1 0 r m n 1

→ 0 r m n 1
0 1 1 1 1 1
r r 1 1 1 1
m m n 1 1 1
n r n n 1 1
1 0 r m n 1

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop.

Let L = {0, a1, b1, c1, d1, 1} be a lattice. It’s Hasse diagram is as follows:
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Define an L-fuzzy subset ρ of S by

ρ(α) =



1, if α = 0

a1, if α = r

c1, if α = m

d1, if α = n

0, if α = 1

for α ∈ S. We can see that ρ is an L-fuzzy prime ideal of S.

Proposition 4.1. Suppose that S is a bounded semihoop. An L-fuzzy strong
ideal ρ of S is an L-fuzzy prime ideal if and only if ρ(α∧β) = ρ(α) or ρ(α∧β) =
ρ(β), for any α, β ∈ S.

Proof. Let ρ be a L-fuzzy prime ideal of S, then ρ(α) ⊔ ρ(β) ≥ ρ(α ∧ β), for
every α, β ∈ S, so ρ(α) ≥ ρ(α ∧ β) or ρ(β) ≥ ρ(α ∧ β). Since α ∧ β ≤ α and
α ∧ β ≤ β, thus ρ(α ∧ β) ≥ ρ(α), ρ(α ∧ β) ≥ ρ(β). Therefore, ρ(α ∧ β) = ρ(α)
or ρ(α ∧ β) = ρ(β).

Conversely, the proof is obviously.

Proposition 4.2. Suppose that S is a bounded semihoop.

(1) An L-fuzzy strong ideal ρ of S is an L-fuzzy prime ideal if and only if the
level set ρ1t = {α ∈ S|ρ(α) ≥ t}( ̸= ∅) is a prime ideal, for any t ∈ L.

(2) If Lsatisfies y = ∨{x ∈ L|x < y}, for any y ∈ L, then an L-fuzzy strong
ideal ρ of S is an L-fuzzy prime ideal if and only if the level set ρ3t = {α ∈
S|ρ(α) > t}(̸= ∅) is a prime ideal, for any t ∈ L.

Proof. (1) Let ρ be an L-fuzzy prime ideal of S. By Proposition 3.3(1), we get
that ρ1t is an ideal of S. For any α, β ∈ Ssatisfying α∧β ∈ ρ1t , then ρ(α∧β) ≥ t,
so t ≤ ρ(α ∧ β) ≤ ρ(α) ⊔ ρ(β), so ρ(α) ⊔ ρ(β) ≥ t. Since ρ(α) ⊔ ρ(β) = ρ(α)
or ρ(α) ⊔ ρ(β) = ρ(β), thus ρ(α) ≥ t or ρ(β) ≥ t, that is α ∈ ρ1t or β ∈ ρ1t .
Therefore, by the definition of prime ideal, we get that ρ1t is a prime ideal.

Conversely, let ρ1t be a prime ideal. By Proposition 3.3(1), we get ρ is an
L-fuzzy strong ideal. Taking t = ρ(α ∧ β), so α ∧ β ∈ ρ1ρ(α∧β), for α, β ∈ S. So

α ∈ ρ1ρ(α∧β) and β ∈ ρ1ρ(α∧β), then ρ(α) ≥ ρ(α ∧ β) and ρ(β) ≥ ρ(α ∧ β), so

ρ(α) ⊔ ρ(β) ≥ ρ(α ∧ β). Hence, ρ is an L-fuzzy prime ideal.
(2) The proof is similar to part (1).

By Proposition 4.2, we obtain that an L-fuzzy strong ideal ρ of S is an
L-fuzzy prime ideal if and only if the complement of ρ2t ( ̸= ∅) is a prime ideal.
Similarly, an L-fuzzy strong ideal ρ of S is an L-fuzzy prime ideal if and only if
the complement of ρ4t (̸= ∅) is a prime ideal.

Proposition 4.3. Assume that S is a bounded semihoop and ρ is an L-fuzzy
strong ideal of S. Then, the following conditions are equivalent:
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(1) ρ is an L-fuzzy prime ideal of S;

(2) ρ(α ∧ β) = ρ(0) implies ρ(α) = ρ(0) or ρ(β) = ρ(0), for any α, β ∈ S.

Proof. (1) ⇒ (2) Let ρ be an L-fuzzy prime ideal of S, then ρ(α ∧ β) ≤
ρ(α) ⊔ ρ(β), for any α, β ∈ S. Suppose α, β ∈ Ssuch that ρ(α ∧ β) = ρ(0), so
ρ(0) ≥ ρ(α) ⊔ ρ(β). Since ρ is an L-fuzzy strong ideal, thus ρ(0) ≤ ρ(α) ⊔ ρ(β),
then ρ(α) ⊔ ρ(β) = ρ(0). Hence, ρ(α) = ρ(0) or ρ(β) = ρ(0).

(2) ⇒ (1) For any α, β ∈ Ssatisfying α ∧ β ∈ ρ1t , then ρ(α ∧ β) ≥ t, taking
t = ρ(0). Since ρ is an L-fuzzy strong ideal, thus ρ(α ∧ β) ≤ t = ρ(0), then
ρ(α∧β) = ρ(0), so ρ(α) = ρ(0) ≥ t or ρ(β) = ρ(0) ≥ t, that is α ∈ ρ1t or β ∈ ρ1t ,
then ρ1t is a prime ideal. By Proposition 4.2, we obtain that ρ is an L-fuzzy
prime ideal.

Proposition 4.4. Suppose that S is a bounded semihoop and D is an ideal of
S and ρ is an L-fuzzy strong ideal of S. Then, ρDx,y is an L-fuzzy prime ideal if
and only if D is a prime ideal.

Proof. Given an L-fuzzy prime ideal ρDx,y. By Proposition 4.1, ρDx,y(α ∧ β) =

ρDx,y(α) or ρ
D
x,y(α∧ β) = ρDx,y(β). Let for any α∧ β ∈ D, that is ρDx,y(α∧ β) = x,

then ρDx,y(α) = x or ρDx,y(β) = x, so α ∈ D or β ∈ D. Therefore, D is a prime
ideal.

Conversely, let D be a prime ideal of S. For any α, β ∈ S, if α∧β ∈ D, then
α ∈ D and β ∈ D, in other words, ρDx,y(α) = x or ρDx,y(β) = x, so ρDx,y(α ∧ β) =
x = ρDx,y(α) ⊔ ρDx,y(β). If α ∧ β /∈ D, then α /∈ D and β /∈ D, that is ρDx,y(α) = y

and ρDx,y(β) = y, so ρDx,y(α ∧ β) = y = ρDx,y(α) ⊔ ρDx,y(β) and so α ∧ β /∈ D.

Therefore, ρDx,y is an L-fuzzy prime ideal.

Proposition 4.5. Suppose that S is a bounded semihoop and ρ is an L-fuzzy
subset of S. Define a map ρ□ : S → Lby ρ□(α) = ρ(α) ⊔ w, for any α ∈ S,
w ∈ Lsatisfying w < ρ(0). Then, ρ is an L-fuzzy prime ideal if and only if ρ□

is an L-fuzzy prime ideal.

Proof. Let ρ be an L-fuzzy prime ideal of S, then ρ(0) ≥ ρ(α), for every
α ∈ S, so ρ□(α) = ρ(α) ⊔ w ≤ ρ(0) ⊔ w = ρ□(0). Since ρ□(α) ⊓ ρ□(α⋆ ⊙ β) =
(ρ(α) ⊔ w) ⊓ (ρ(α⋆ ⊙ β) ⊔ w) = (ρ(α) ⊓ ρ(α⋆ ⊙ β)) ⊔ w ≤ ρ(β) ⊔ w = ρ□(β),
for any α, β ∈ S. So by Proposition 3.4, ρ□ is an L-fuzzy strong ideal. Since
ρ is an L-fuzzy prime ideal, thus ρ(α) ⊔ ρ(β) ≥ ρ(α ∧ β), then ρ□(α ∧ β) =
ρ(α ∧ β) ⊔ w ≤ (ρ(α) ⊔ ρ(β)) ⊔ w = (ρ(α) ⊔ w) ⊔ (ρ(β) ⊔ w) = ρ□(α) ⊔ ρ□(β).
Therefore, ρ□ is an L-fuzzy prime ideal of S.

Conversely, given an L-fuzzy prime ideal ρ□, so ρ□(0) ≥ ρ□(α), so ρ(0) ⊔
w ≥ ρ(α) ⊔ w, then ρ(0) ≥ ρ(α). Since ρ□(α) ⊓ ρ□(α⋆ ⊙ β) ≤ ρ□(β), thus
(ρ(α)⊔w)⊓ (ρ(α⋆ ⊙ β)⊔w) ≤ (ρ(β)⊔w), then ρ(α)⊓ ρ(α⋆ ⊙ β) ≤ ρ(β), so ρ is
an L-fuzzy strong ideal. Since ρ□(α ∧ β) ≤ ρ□(α) ⊔ ρ□(β), thus ρ(α ∧ β) ⊔w ≤
(ρ(α)⊔w)⊔(ρ(β)⊔w) = (ρ(α)⊔ρ(β))⊔w, so ρ(α∧β) ≤ ρ(α)⊔ρ(β). Therefore,
ρ is an L-fuzzy prime ideal of S.
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5. The second type of L-fuzzy prime ideals

Definition 5.1. Let S be a bounded semihoop. An L-fuzzy strong ideal ρ is called
the second type of L-fuzzy prime if ρ is non-constant and ρ((α → β)⋆) = ρ(0)
or ρ((β → α)⋆) = ρ(0), for any α, β ∈ S.

Example 5.1. Let S be a bounded semihoop in Example 3.5 and L be a lattice
in Example 3.2. Define two L-fuzzy subsets ρ and χby

ρ(α) =

{
1, if α = 0,m

x, if α = n, p, 1

and

χ(α) =

{
x, if α = 0, n

0, if α = m, p, 1

for any α ∈ S. Through verification, we can see that ρ and χ are the second
type of L-fuzzy prime ideals.

Lemma 5.1. Given a bounded semihoop S. Then, (α ∧ β) ⊞ (α → β)⋆ ≥ α,
(α ∧ β)⊞ (β → α)⋆ ≥ β, for any α, β ∈ S.

Proof. Since (α ⊙ β)⋆ = (α ⊙ β) → 0 = α → (β → 0) = α → β⋆, for every
α, β ∈ S, thus (α ∧ β) ⊞ (α → β)⋆ = (α ∧ β)⋆ → (α → β)⋆⋆⋆ = (α ∧ β)⋆ →
(α → β)⋆ = ((α ∧ β)⋆ ⊙ (α → β))⋆ = ((α ∧ β)⋆ ⊙ (α → β)) → 0 = ((α →
β) ⊙ (α ∧ β)⋆) → 0 = (α → β) → ((α ∧ β)⋆ → 0) = (α → β) → (α ∧ β)⋆⋆.
Since (α ∧ β)⋆⋆ ≥ α ∧ β, thus (α ∧ β) ⊞ (α → β)⋆ = (α → β) → (α ∧ β)⋆⋆ ≥
(α → β) → (α ∧ β) = ((α → β) → α) ∧ ((α → β) → β) ≥ α ∧ α = α, then
(α ∧ β)⊞ (α→ β)⋆ ≥ α. Similarly, (α ∧ β)⊞ (β → α)⋆ ≥ β.

Proposition 5.1. Let S be a bounded semihoop. Then, the second type of L-
fuzzy prime ideal ρ of S is an L-fuzzy prime ideal.

Proof. Suppose that ρ is the second type of L-fuzzy prime ideal of S, then
ρ((α → β)⋆) = ρ(0) or ρ((β → α)⋆) = ρ(0), for any α, β ∈ S. Since ρ is
an L-fuzzy strong ideal and by Lemma 5.1, thus ρ((α ∧ β)) ⊓ ρ((α → β)⋆) ≤
ρ((α∧β)⊞ (α→ β)⋆) ≤ ρ(α), so ρ((α∧β))⊓ρ((α→ β)⋆) = ρ((α∧β))⊓ρ(0) =
ρ((α ∧ β)) ≤ ρ(α), then ρ((α ∧ β)) ≤ ρ(α). The same to be, ρ((α ∧ β)) ≤ ρ(β).
So ρ((α ∧ β)) ≤ ρ(α) ⊔ ρ(β). Therefore, the conclusion holds.

Definition 5.2. A bounded semihoop S is called a bounded prelinearity semihoop
if it satisfies (α→ β) ∨ (β → α) = 1, for any α, β ∈ S.

Proposition 5.2. Let S be a bounded prelinearity semihoop. Then, an L-fuzzy
prime ideal ρ of S is the second type of L-fuzzy prime ideal.
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Proof. Since S be a bounded prelinearity semihoop, thus (α→ β)∨ (β → α) =
1, then (α → β) = 1 or (β → α) = 1, then (α → β)⋆ = 1⋆ = 0 and (β → α)⋆ =
1⋆ = 0, so (α → β)⋆ ∧ (β → α)⋆ = 0. Since ρ is an L-fuzzy prime ideal of S,
thus ρ(0) = ρ(0 ∧ 0) = ρ((α → β)⋆ ∧ (β → α)⋆) ≤ ρ((α → β)⋆) ⊔ ρ((β → α)⋆),
so ρ(0) ≤ ρ((α → β)⋆) or ρ(0) ≤ ρ((β → α)⋆), by Proposition 3.4(1), we get
ρ(0) ≥ ρ((α → β)⋆) and ρ(0) ≥ ρ((β → α)⋆), then ρ(0) = ρ((α → β)⋆) or
ρ(0) = ρ((β → α)⋆). Therefore, the conclusion holds.

If there exist α, β ∈ Ssuch that (α → β) ∨ (β → α) ̸= 1, then an L-fuzzy
prime ideal may not be the second type of L-fuzzy prime ideal, by the following
example will illustrate.

Example 5.2 ([10]). Let S = {0,m, n, r, p, q, 1} with 0 < m < n < q < 1,
0 < r < p < q < 1 and L be a complete lattice in Example 3.6. Define ⊙ and
→as follows,

⊙ 0 m n r p q 1
0 0 0 0 0 0 0 0
m 0 m m 0 0 m m
n 0 m m 0 0 m n
r 0 0 0 r r r r
p 0 0 0 r r r p
q 0 m m r r q q
1 0 m n r p q 1

→ 0 m n r p q 1
0 1 1 1 1 1 1 1
m p 1 1 p p 1 1
n p q 1 p p 1 1
r n n n 1 1 1 1
p n n n q 1 1 1
q 0 n n p p 1 1
1 0 m n r p q 1

We can see that (S,⊙,→,∧, 0, 1) is a bounded semihoop but S is not satisfy
(α → β) ∨ (β → α) = 1, for any α, β ∈ Ssince (r → n) ∨ (n → r) = n ∨ p ̸= 1.
We define an L-fuzzy subset by

ρ(α) =


1, if α = 0

x, if α = m,n

y, if α = r, p

0, if α = q, 1

for all α ∈ S. Then, ρ is an L-fuzzy prime ideal but it is not the second
type of L-fuzzy prime since ρ((m → r)⋆) = ρ(p⋆) = ρ(n) = x ̸= 1 = ρ(0),
ρ((r → m)⋆) = ρ(n⋆) = ρ(p) = y ̸= 1 = ρ(0).

In a bounded semihoop S, we denote that FD(S) is the L-fuzzy strong ideal
set of S. A partial order relation ⪯ is defined by ρ ⪯ χif ρ(α) ≤ χ(α), for all
α ∈ S, ρ, χ ∈ FD(S).

Proposition 5.3. Assume that S is a bounded semihoop and ρ, χ are L-fuzzy
strong ideals of S and satisfying ρ ⪯ χ and ρ(0) = χ(0). If ρ is the second type
of L-fuzzy prime ideal of S, then χ is also the second type of L-fuzzy prime ideal.
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Proof. Let ρ be the second type of L-fuzzy prime ideal, then ρ((α → β)⋆) =
ρ(0) or ρ((β → α)⋆) = ρ(0), for any α, β ∈ S. So χ(0) = ρ(0) ≤ ρ((α →
β)⋆) ≤ χ((α → β)⋆) or χ(0) = ρ(0) ≤ ρ((β → α)⋆) ≤ χ((β → α)⋆), then
χ(0) ≤ χ((α→ β)⋆) or χ(0) ≤ χ((β → α)⋆). Since χ is an L-fuzzy strong ideal,
thus χ(0) ≥ χ((α → β)⋆) or χ(0) ≥ χ((β → α)⋆), then χ(0) = χ((α → β)⋆) or
χ(0) = χ((β → α)⋆). Therefore, χ is the second type of L-fuzzy prime ideal.

Proposition 5.4. Assume that S is a bounded semihoop and ρ is the second
type of L-fuzzy prime ideal of S. If w < ρ(0), for any w ∈ L, then ρ□ is the
second type of L-fuzzy prime ideal.

Proof. By Proposition 4.5, we get that ρ□ is an L-fuzzy strong ideal. Since
ρ(α) ≤ ρ(α) ⊔ w = ρ□(α), for all α ∈ S, thus ρ ⪯ ρ□. Since ρ(0) = ρ(0) ⊔ w =
ρ□(0). Therefore, by Proposition 5.3, ρ□ is the second type of L-fuzzy prime
ideal.

6. L-fuzzy maximal ideals

Definition 6.1. Let S be a bounded semihoop. A proper L-fuzzy strong ideal
ρ of S is called an L-fuzzy maximal ideal if ρ1t is non-trivial implies ρ1t is a
maximal ideal, for any t ∈ L.

Example 6.1 ([10]). Let S = {0,m, n, a, p, q, 1} with 0 < m < n < 1, 0 < a <
p < q < 1, where n and a are incomparable. Define ⊙ and →as bellow:

⊙ 0 m n a p q 1
0 0 0 0 0 0 0 0
m 0 m m m m m m
n 0 m m m m m n
a 0 m m a a a a
p 0 m m a a a p
q 0 m m a a q q
1 0 m n a p q 1

→ 0 m n a p q 1
0 1 1 1 1 1 1 1
m 0 1 1 1 1 1 1
n 0 q 1 q 1 1 1
a 0 n n 1 1 1 1
p 0 n n q 1 1 1
q 0 n n p p 1 1
1 0 m n a p q 1

Then, (S,⊙,→,∧, 0, 1) is a bounded semihoop. Let L = {0, x, y, 1} be a
complete lattice with 0 < x < y < 1. We define an L-fuzzy subset ρ by

ρ(α) =

{
x, if α = 0,

0, if α ̸= 0,

for any α ∈ S. Then, ρ is an L-fuzzy maximal ideal of S.

Proposition 6.1. Assume that S is a bounded semihoop and ρ is an L-fuzzy
maximal ideal of S. If ρ(α) < ρ(β) and ρ1ρ(β) ̸= ρ1ρ(α), then ρ1ρ(β) = {0} or

ρ1ρ(α) = S, for any α, β ∈ S.
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Proof. Since ρ(α) < ρ(β), thus ρ1ρ(β) ⊂ ρ1ρ(α), for any α, β ∈ S. If ρ1ρ(β) ̸= {0},
since ρ is an L-fuzzy maximal ideal, then ρ1ρ(β) is a maximal ideal, so ρ1ρ(α) = S.

Therefore, ρ1ρ(β) = {0} or ρ1ρ(α) = S, for any α, β ∈ S.

Proposition 6.2. Let S be a bounded semihoop, L be a complete lattice and
ρ : S → L is a non-constant L-fuzzy strong ideal of S. Then, the following
statements are equivalent:

(1) ρ is an L-fuzzy maximal ideal of S;

(2) ρ1ρ(0) is a maximal ideal of S;

(3)

ρ(α) =

{
ρ(0), if α ∈ ρ1ρ(0)
ρ(α1), if α /∈ ρ1ρ(0)

for some α1 ∈ S with ρ(α1) < ρ(0).

Proof. (1) ⇒ (2) Let ρ is an L-fuzzy maximal ideal of S. By Proposition 3.4(1),
we have ρ(0) ≥ ρ(α), for any α ∈ S. Since ρ is not constant, thus there exists
α1 ̸= ρ(0), so ρ(α1) < ρ(0), then α1 /∈ ρ1ρ(0). Since 0 ∈ ρ1ρ(0), thus ρ

1
ρ(0) ̸= ∅ and

ρ1ρ(0) ̸= S, so ρ1ρ(0) is a maximal ideal of S.

(2) ⇒ (3) Let ρ1ρ(0) be a maximal ideal of S. Since ρ is an L-fuzzy strong

ideal of S, for any α ∈ ρ1ρ(0), we have ρ(α) ≥ ρ(0) and ρ(α) ≤ ρ(0)by Proposition

3.4(1), then ρ(α) = ρ(0). Since ρ is not constant, thus there is α1 ∈ Ssuch that
ρ(α1) ̸= ρ(0), so ρ(α1) < ρ(0). Suppose that there exists α2 ∈ Ssuch that
ρ(α2) ̸= ρ(0) and ρ(α2) ̸= ρ(α1). We will discuss the following cases:

(i) If ρ(α1) < ρ(α2) < ρ(0) or ρ(α2) < ρ(α1) < ρ(0), then ρ1ρ(0) ⊂ ρ1ρ(α2)
⊂

ρ1ρ(α1)
or ρ1ρ(0) ⊂ ρ1ρ(α1)

⊂ ρ1ρ(α2)
. From Proposition 3.3(1), ρ1ρ(α1)

and ρ1ρ(α2)
are

ideals, which contradicts ρ1ρ(0) be a maximal ideal of S.

(ii) If ρ(α1) and ρ(α2) < ρ(0) are incomparable, then α1 /∈ ρ1ρ(α2)
and

α2 /∈ ρ1ρ(α1)
, so ρ1ρ(0) ⊂ ρ1ρ(α1)

⊂ S and ρ1ρ(0) ⊂ ρ1ρ(α2)
⊂ S, which contradicts

ρ1ρ(0) be a maximal ideal of S.

Then, ρ(α2) = ρ(0) or ρ(α2) = ρ(α1). Therefore, the conclusion holds.
(3) ⇒ (1) Suppose

ρ(α) =

{
ρ(0), if α ∈ ρ1ρ(0)
ρ(α1), if α /∈ ρ1ρ(0)

for some α1 ∈ S with ρ(α1) < ρ(0). Then, ρ1t ∈ {ρ1ρ(0), S, ∅}, for any t ∈ L, so ρ
is an L-fuzzy maximal ideal of S.

Corollary 6.1. Let S be a bounded semihoop and ρ : S → [0, 1] be a fuzzy
maximal ideal of S. Then, ρ has exactly two values.
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Proposition 6.3. Let S be a bounded ∨-semihoop with DNP and ρ be an L-
fuzzy strong ideal on S. If ρ is an L-fuzzy maximal ideal of S, then ρ is an
L-fuzzy prime ideal of S.

Proof. Let ρ be an L-fuzzy maximal ideal of S. Then, for any t ∈ Lsuch that
ρ1t is non-trivial implies ρ1t is a maximal ideal of S. From Proposition 2.5, so ρ1t
is a prime ideal of S. Therefore, from Proposition 4.4(1), we have that ρ is an
L-fuzzy prime ideal of S.

Proposition 6.4. Suppose that S is a bounded semihoop and ρ is a proper L-
fuzzy strong ideal of S. If s and t are incomparable, for any s, t ∈ L, then the
following conditions hold:

(1) ρ1s and ρ1t are proper ideals;

(2) if ρ is an L-fuzzy maximal ideal, then ρ1s and ρ1t are maximal ideals.

Proof. (1) Let α, β ∈ Ssuch that ρ(α) = s and ρ(β) = t. From Proposition
3.3(1), we have ρ1s and ρ1t are two ideals. Since ρ(α) = s and ρ(β) = t are
incomparable, thus ρ(α) ̸= ρ(0) and ρ(β) ̸= ρ(0), so {0} ⊂ ρ1s and {0} ⊂ ρ1t .
Moreover, α /∈ ρ1t and β /∈ ρ1s, then ρ

1
s ⊂ S and ρ1t ⊂ S. Therefore, ρ1s and ρ1t

are proper ideals.

(2) Let ρ be an L-fuzzy maximal ideal of S. From (1), ρ1s and ρ1t are proper
ideals, so ρ1s and ρ1t are non-trivial. Thus, ρ1s and ρ1t are maximal ideals by
Definition 6.1.

7. Conclusion

In this paper, we associate bounded semihoops with lattice structures and es-
tablish L-fuzzy ideals theory on bounded semihoop. In particular, we obtain
several important conclusions. (1)Let S be a bounded semihoop and L be a
complete lattice. Then, each L-fuzzy strong ideal is an L-fuzzy ideal but an
L-fuzzy ideal may not be an L-fuzzy strong ideal. (2)Let S be a bounded semi-
hoop, L be a complete lattice and ρ : S → L be an L-fuzzy set of S. (i)If ρ
is an L-fuzzy strong ideal(filter) of S, then ρ⋆ is an L-fuzzy strong filter(ideal).
(ii)If ρ is an L-fuzzy ideal(filter) of S, then ρ⋆ is an L-fuzzy filter(ideal), where
ρ⋆(α) = ρ(α⋆), for any α ∈ S. (3)We establish equivalence descriptions between
L-fuzzy strong ideals and ideals using four types of level sets. (4)Let S be a
bounded semihoop, ρ be an L-fuzzy strong ideal of S and H be an up-set sub-
lattice of L. Then, ρ−1(H) is an ideal of S. (5)Let S be a bounded semihoop.
Then, each the second type of L-fuzzy prime ideal is an L-fuzzy prime ideal but
an L-fuzzy prime ideal may not be the second type of L-fuzzy prime ideal unless
S is a bounded prelinearity semihoop. (6)Let S be a bounded semihoop and
ρ : S → [0, 1] be an L-fuzzy maximal ideal of S. Then, ρ has exactly two values.
(7) Let S be a bounded ∨-semihoop with DNP and ρ be an L-fuzzy strong ideal
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on S. If ρ is an L-fuzzy maximal ideal of S, then ρ is an L-fuzzy prime ideal of
S.

Since semihoops are the fundamental residuated structures, these properties
and conclusions in this article can be applied to other residuated structures.
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Abstract. The dynamical behaviors of a predator-prey model with commercial har-
vesting are studied in the present work. The model is developed from the Leslie
predator-prey model with harvesting on predator, which is established by differential-
algebra equations. The harvesting is considered from an economic perspective, and the
impacts of the harvesting profit on the dynamics of our model are investigated. Firstly,
basing on the parameterisation approach of differential-algebra system, the local sta-
bility of positive equilibrium point is studied. Further, by treating the harvesting profit
as a bifurcation parameter, the Hopf bifurcation occurring at the equilibrium point is
analyzed, and we find a qualitative change in the dynamics. Besides, the stability of cen-
tre is also considered. Some computer simulations using Matlab software are presented
to support the analytical results. Lastly, we relate the results on mathematics and
dynamics with the biology, and interpret these results in terms of ecosystem stability
and destruction.

Keywords: predator-prey, differential-algebra, local stability, Hopf bifurcation, cen-
tre, harvesting profit.
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1. Introduction

Predator-prey interactions are the fundamental blocks of any complex biologi-
cal and ecological systems, as well as generalized competitive and cooperative
systems [1]. As a result, the dynamic relationship between the populations of
predators and preys is an important research theme in the areas of applied
mathematics and theoretical ecology (see, [2, 3]). Actually, as with the dynamic
theory of differential equations has been widely used in these research areas, in
the past few years the dynamics of predator-prey system (usually formulated
by differential equations) also has become an interesting subject in itself, since
many complicated dynamical behaviors have been discovered in this subject, for
instances, instability, stability switches, limit cycle, oscillations, various kinds of
bifurcations, chaos, and so on [2-5]. Especially, in this work, by combining the
dynamic theories of differential-algebra system and differential equations, we aim
to present a complete dynamical analysis for a modified Leslie’s predator-prey
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model with commercial harvesting, which takes the form of differential-algebra
equations. The establishing process of our model is introduced as follows.

The fundamental model that we consider is the following predator-prey
model introduced by Leslie [6], which is a system of nonlinear ordinary dif-
ferential equations:

(1.1)

 ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)

)
,

where x(t) and y(t) represent the densities of preys and predators at time t ≥ 0,
respectively; besides, the parameters r1, a, r2, and b are positive constants,
which stand for the intrinsic growth rate of prey species, the catch rate at which
the predator population kills its preys, the intrinsic growth rate of predator
species, and the conversion rate of consumed preys into the newborns of predator
species, respectively. For more details on the biological significance of model
(1.1), refer to the literature [6, 7].

In reality, biological populations are often harvested to satisfy people’s de-
mands for material life [8, 9]. For predator-prey system, in order to avoid the
extinction of prey population, harvesting of predator population is commonly
practiced, which is effective in controlling the population size of predators. So
we consider human harvesting effort E(t) on the predator species in model (1.1),
and then we have

(1.2)

 ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
.

Subsequently, the number of predators harvested by people is E(t)y(t), which
is regarded as the market supply here. We assume that the market is quite
capable of absorbing all the catches. Referring to Refs. [10, 11], the selling price
and market supply move in opposite directions, and harvesting cost also moves
inversely to the population density of harvested population. In light of these
rules, we let the unit selling price p̃ and the unit harvesting cost c̃ respectively
be p/[l + E(t)y(t)] and c/y(t), where p, l and c are positive parameters, p/l is
the maximum unit selling price, and c is the harvesting cost for unit population
density of predators. And then, we can show that p̃→ p/l as E(t)y(t) → 0, and
p̃ → 0 as E(t)y(t) → +∞, which indicate that the selling price will decrease
when the supply E(t)y(t) increases. Moreover, c̃→ +∞ as y(t) → 0, and c̃→ 0
as y(t) → +∞, which imply that the harvesting cost will increase when the
population density of predators becomes small. It is easy to imagine that, when
the predators are rare, people must make more effort to capture them. In this
way, the total revenue from harvesting is [p/(l+E(t)y(t))]·E(t)y(t) and the total
harvesting cost is [c/y(t)] ·E(t)y(t). Consequently, the net economic revenue is
[p/(l + E(t)y(t))] · E(t)y(t) − [c/y(t)] · E(t)y(t). On the basis of model (1.2),
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so we can establish the following modified predator-prey model with economic
harvesting, which is a differential-algebra system:

(1.3)


ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
,

0= E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v,

where v denotes people’s harvesting profit. In addition, when time t = 0, the
initial values of system (1.3) should be positive. That is,

(1.4) x(0) > 0, y(0) > 0, E(0) > 0.

In recent years, dynamical behaviors of harvested predator-prey models are
reported in Refs. [46-50]. The literature [45] has investigated the nontrivial
equilibrium solution and transcritical bifurcation of a three dimensional in-
traguild predator-prey model with Michaelis-Menten type of harvesting in preda-
tor. Besides, the stability of equilibria, limit cycle, saddle-node bifurcation and
Bogdanov-Takens bifurcation in several predator-prey systems with nonlinear
prey harvesting are discussed in Refs. [46, 47]. Das et al. [48] have studied the
endangeredness, resilience and extinction of a predator-prey system under prey
harvesting and predator harvesting, respectively. Kashyap et al. [49] have ex-
plored the coexistence, ecologically feasible steady states and local codimension
one bifurcations of a predator-prey system with predator harvesting. Moreover,
local and global stability at the interior equilibrium points of a harvested three
species predator-prey model (prey, predator, and super predator) have been
considered in Ref. [50]. Clearly, these harvested predator-prey models [46-50]
are modelled by systems of differential equations. In contrast, our harvested
predator-prey model (1.3) is established by differential-algebra equations. Com-
pared with the familiar harvested predator-prey models expressed by differen-
tial equations, the superiority of our modified model (1.3) is that it not only
involves population interactions in the harvested predator-prey system but also
investigates the harvesting from an economic viewpoint. Some relevant modi-
fied models are presented in the publications [21, 24, 26, 29, 32]. By employing
Rouche’s theorem [22] as well as the centre manifold reduction methods [23, 25],
Refs. [21, 24] have analyzed the existence of time-delay-induced Hopf bifurca-
tion phenomena and the stability of bifurcating periodic orbits in delayed mod-
ified predator-prey models. Moreover, the authors [26, 29, 32] have discussed
the local stability of equilibrium points and bifurcations (flip bifurcation and
N-S bifurcation) in several discrete modified predator-prey models by apply-
ing the center manifold theory and the bifurcation theory of discrete systems
in Refs. [27, 28, 30, 31]. Different from the literature [21, 24, 26, 29, 32], we will
investigate the impact of the harvesting profit v on the dynamics (including
the local stability of equilibrium point, Hopf bifurcation and stability of cen-
tre) in the modified predator-prey model (1.3), and then afterwards we propose
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an appropriate scope for the profit to guarantee the maintenance of long-term
sustainable development of our biological system. Besides, it is notable that
the relevant differential-algebra predator-prey models [21, 24, 26, 29, 32] are all
established under the assumptions that the price p̃ and cost c̃ are constants,
which results in that the harvesting variable E(t) can be explicitly solved out
from the algebra equation, and then the differential-algebra models can be easily
reduced to the systems of differential equations. Apparently, our differential-
algebra model (1.3) has overcome the shortages.

Furthermore, it is worth noting that there are many essential distinctions
between differential-algebra system and the system of differential equations, see
the literature [34-38] for more details. In the sense of index, the system of
ordinary differential equations is a special case of differential-algebraic system,
since the index of the former is zero, while the index of the latter is nonzero.
Obviously, it is a leap from a zero index system to a nonzero index one. In fact,
the dynamics of differential-algebra system is much more difficult to investigate
than the corresponding system of differential equations (see, [35-37]). Hence,
in a certain meaning, our work supplements and enhances the research in the
previous publications [12-21, 24, 26, 29, 32, 45-50] on the dynamic analysis for
predator-prey models.

We organize the rest of this paper as follows. In the next section, we deduce
the Jacobian matrix of model (1.3) and investigate the corresponding charac-
teristic equation, which give the local stability results for the equilibrium point.
In Section 3, we study the Hopf bifurcation of our model in detail basing on
the previous section. To complement Sections 2 and 3, the stability of the cen-
tre is further explored in Section 4. Moreover, some numerical simulations are
presented in Section 5 to make the derived findings more complete. Finally, in
Section 6 we discuss the theoretical results and summarize the research work of
this article.

2. Stability analysis for equilibrium point

In this section, combining the parameterisation approach [39, 40] with Routh-
Hurwitz stability criteria [2, 3], we study local stability of the equilibrium point
of model (1.3). At first, we prove the positiveness of the solutions of model (1.3).

Lemma 2.1. The trajectories of model (1.3)with initial values (1.4) and v > 0
stay in R3

+ = {(x(t), y(t), E(t)) | x(t) > 0, y(t) > 0, E(t) > 0}, for ∀ t > 0.

Proof. In view of model (1.3), we have

dx(t)

x(t)
= (r1 − ay(t)) dt.

Due to the initial value x(0) > 0, by integrating above equation in the interval
[0, t], we obtain
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x(t) = x(0) exp

{∫ t

0
(r1 − ay(s)) ds

}
> 0, for ∀ t > 0.

Similarly, we can get

y(t) = y(0) exp

{∫ t

0

(
r2 − b

y(s)

x(s)
− E(s)

)
ds

}
> 0, for ∀ t > 0.

Furthermore, E(t) is also positive for ∀ t > 0, since the harvesting profit v > 0
here.

Lemma 2.1 suggests that only the positive equilibrium point of model (1.3)
is required to be considered. If X0 := (x0, y0, E0)

T is an equilibrium point of
model (1.3), then we have

r1 − ay0 = 0,

r2 − b
y0
x0

− E0 = 0,

pE0y0
l + E0y0

− cE0 − v = 0.

By means of solving this set of linear equations, model (1.3) has an equilibrium
point:

X0(v) = (x0, y0, E0)
T =

(
by0

r2 − E0
,
r1
a
,E0

)T

,

where E0 =
{
(py0 − vy0 − cl)±

√
(cl + vy0 − py0)2 − 4clvy0

}
/2cy0.

To make such an equilibrium point X0 is positive, in this paper we need to
suppose that

(2.1) r2 > E0, py0 > cl + vy0, (cl + vy0 − py0)
2 ≥ 4clvy0.

On the basis of the theory of differential-algebra system [35-37], near the
point of X0, model (1.3) can be locally equivalent to

(2.2)



ẋ(t) = x(t) (r1 − ay(t)) ,

ẏ(t) = y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
,

Ė(t) = f3(x(t), y(t), E(t)),

0 = E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v,

where the function f3 satisfies f3(X0) = 0. The explicit expression of f3 is not
required to be defined, refer to Eq. (A.5) in Appendix.
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For the purpose of discussions, we denote

f(X) =

f1(X)
f2(X)
f3(X)

 =


x(t) (r1 − ay(t))

y(t)

(
r2 − b

y(t)

x(t)
− E(t)

)
f3(x(t), y(t), E(t))

 ,

g(X) = E(t)y(t)

(
p

l + E(t)y(t)
− c

y(t)

)
− v, X = (x(t), y(t), E(t))T .(2.3)

So, system (2.2) can be written as

(2.4)

{
Ẋ = f(X),
0 = g(X).

In the following, we consider the parameterisation ψ [39, 40] for system (2.4):

(2.5) X = ψ(Y ) = X0 + U0Y + V0h(Y ) and

(2.6) g(ψ(Y )) = 0,

where Y = (y1, y2)
T ∈ R2, U0=

(
I2
0

)
, I2 denotes an identity matrix of dimension

2×2, V0=

(
0
0
1

)
, h : R2 → R is a smooth mapping. Consequently, by the param-

eterised system (A.5) in Appendix, the Taylor expansions of the parameterised
system of system (2.2) at X0 takes the form of

(2.7) Ẏ = UT
0 DXf(X0)DY ψ(0)Y + o(|Y |),

where D denotes the differential operator, and DXf(X) represents the Jacobian
matrix of function f(X) regarding X. With respect to the derivation process of
the formula (2.7), refer to Appendix.

Summarizing the above analysis, we have the following results.

Theorem 2.1. For model (1.3),
(i) if (

by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)2

≥ 4aby20
x0

,

then, when by0/x0 > plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

stable node; when by0/x0 < plE0y0/[ply0 − c(l + E0y0)
2], the equilibrium point

X0 is an unstable node;
(ii) if (

by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)2

<
4aby20
x0

,

then, when by0/x0 > plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

sink ; when by0/x0 < plE0y0/[ply0 − c(l+E0y0)
2], the equilibrium point X0 is a

source.
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Proof. We can derive the following Jacobian matrix P of system (2.7) in view
of Eqs. (2.7), (A.2) and (A.3) (in Appendix) that

P =

(
Dy1f1(ψ(Y )) Dy2f1(ψ(Y ))
Dy1f2(ψ(Y )) Dy2f2(ψ(Y ))

)∣∣∣∣
Y=0

= UT
0 DXf(X0)DY ψ(0) = UT

0 DXf(X0)

(
DXg(X0)

UT
0

)−1(
0
I2

)

=

Dxf1(X0) Dyf1(X0)−
plE0 ·DEf1(X0)

ply0 − c(l + E0y0)2

Dxf2(X0) Dyf2(X0)−
plE0 ·DEf2(X0)

ply0 − c(l + E0y0)2


=

 0 −ax0
by20
x20

−by0
x0

+
plE0y0

ply0 − c(l + E0y0)2

 ,(2.8)

where DXf1(X0)=
(
0,−ax0, 0

)
, DXf2(X0)=

(
by20/x

2
0,−by0/x0,−y0

)
, DXg(X0)

=
(
0, plE0/(l+E0y0)

2, [ply0 − c(l+E0y0)
2]/(l+E0y0)

2
)
. Hence, from Eq. (2.8),

the characteristic equation of matrix P is

(2.9) λ2 +

(
by0
x0

− plE0y0
ply0 − c(l + E0y0)2

)
λ+

aby20
x0

= 0.

For case (i), if by0/x0 > plE0y0/[ply0 − c(l + E0y0)
2], then Eq. (2.9) has

two negative real roots. Hence, X0 is a stable node. Conversely, X0 is an
unstable node iff Eq. (2.9) has two positive real roots. For case (ii), if by0/x0 >
plE0y0/[ply0 − c(l + E0y0)

2], then Eq. (2.9) has two complex roots which have
negative real parts, and therefore X0 is a sink. On the contrary, X0 is a source
iff the two complex roots of Eq. (2.9) have positive real parts. And then, in view
of Eq. (2.9), we are easy to derive Theorem 2.1 on the grounds of Routh-Hurwitz
stability criteria [2, 3].

Remark 2.1. By analyzing the eigenvalues of characteristic equation (2.9),
Hopf bifurcation can take place in model (1.3) under certain conditions, which
will be discussed in the following section.

3. Hopf bifurcation analysis

In this section, by choosing the economic profit v as a variable bifurcation pa-
rameter, we investigate the Hopf bifurcation in model (1.3) on the grounds of
the Hopf bifurcation theorem developed by Guckenheimer and Holmes [33].

When ∆ = {by0/x0 − plE0y0/[ply0 − c(l + E0y0)
2]}2 − 4aby20/x0 < 0, it is

clear that Eq. (2.9) has the following complex roots:

λ1,2(v) := α(v)± iω(v),
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where α(v) = −(1/2){by0/x0−plE0y0/[ply0−c(l+E0y0)
2]}, ω(v) = {aby20/x0−

(1/4)[by0/x0−plE0y0/(ply0 − c(l + E0y0)
2)]2}1/2. Besides, in view of Eq. (2.9),

the bifurcation value v0 of variable v firstly needs to meet the equation

(3.1)
by0
x0(v)

=
plE0(v)y0

ply0 − c(l + E0(v)y0)2
.

Further, in order to guarantee the existence of Hopf bifurcation in model (1.3),
we assume that the following transversality conditions in the literatrue [33] are
satisfied throughout this section:

α(v0) = 0, α′(v0) =

(
− b2y20
x20(r2 − E0(v0))2

− ply0
ply0 − c(l + E0(v0)y0)2

− 2pcly20E0(v0)(l+E0(v0)y0)

[ply0−c(l+E0(v0)y0)2]2

)
·E′

0(v0) ̸=0, ω(v0) := ω0=

√
ab

x0
y0 ̸=0,(3.2)

where E′
0(v0) = − 1

2c ±
v0y0−py0−cl

2c
√

(cl+v0y0−py0)2−4clv0y0
. So Hopf bifurcation takes place

if the quantity v attains the critical value v0.

To derive the detailed information about the Hopf bifurcation, in the light
of the Hopf bifurcation theorem in Ref. [33], we need to make system (2.7)
equivalent to the following normal form:

(3.3)



ẏ1 = −ω0y2 +
1

2
a111y

2
1 + a112y1y2 +

1

2
a122y

2
2 +

1

6
a1111y

3
1 +

1

2
a1112y

2
1y2

+
1

2
a1122y1y

2
2 +

1

6
a1222y

3
2 + o(|Y |4) ,

ẏ2 = ω0y1 +
1

2
a211y

2
1 + a212y1y2 +

1

2
a222y

2
2 +

1

6
a2111y

3
1 +

1

2
a2112y

2
1y2

+
1

2
a2122y1y

2
2 +

1

6
a2222y

3
2 + o(|Y |4) .

Subsequently, we should first of all calculate the following third order Taylor
series developments of system (2.7):

(3.4)



ẏ1 = f1y1(X0)y1 + f1y2(X0)y2 +
1

2
f1y1y1(X0)y

2
1 + f1y1y2(X0)y1y2

+
1

2
f1y2y2(X0)y

2
2 +

1

6
f1y1y1y1(X0)y

3
1 +

1

2
f1y1y1y2(X0)y

2
1y2

+
1

2
f1y1y2y2(X0)y1y

2
2 +

1

6
f1y2y2y2(X0)y

3
2 + o(|Y |4),

ẏ2 = f2y1(X0)y1 + f2y2(X0)y2 +
1

2
f2y1y1(X0)y

2
1 + f2y1y2(X0)y1y2

+
1

2
f2y2y2(X0)y

2
2 +

1

6
f2y1y1y1(X0)y

3
1 +

1

2
f2y1y1y2(X0)y

2
1y2

+
1

2
f2y1y2y2(X0)y1y

2
2 +

1

6
f2y2y2y2(X0)y

3
2 + o(|Y |4).
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The coefficients of (3.4) are calculated as follows. From Eq. (2.3), we have

DXf1(X) = (r1−ay, −ax, 0) , DXf2(X) =

(
by2

x2
, r2−

2by

x
−E, −y

)
,

DXg(X) =

(
0,

plE

(l + Ey)2
,
ply − c(l + Ey)2

(l + Ey)2

)
.(3.5)

In view of Eqs. (A.2) and (A.3) in Appendix, we can derive

DY ψ(Y ) =

(
DXg(X)
UT
0

)−1(
0
I2

)
=

0
plE

(l + Ey)2
ply − c(l + Ey)2

(l + Ey)2

1 0 0
0 1 0


−1

×

0 0
1 0
0 1

 =


1 0
0 1

0 − plE

ply − c(l + Ey)2

 :=
(
Dy1ψ(Y ), Dy2ψ(Y )

)
.(3.6)

By Eqs. (2.7), (3.5) and (3.6), we get

f1y1(X) =DXf1(X)Dy1ψ(Y ) = r1 − ay,

f1y2(X) =DXf1(X)Dy2ψ(Y ) = −ax,

f2y1(X) =DXf2(X)Dy1ψ(Y ) =
by2

x2
,

f2y2(X) =DXf2(X)Dy2ψ(Y ) = r2 −
2by

x
− E +

plEy

ply − c(l + Ey)2
.(3.7)

Substituting X = X0 into Eq. (3.7), we obtain

f1y1(X0) = 0, f1y2(X0) = −ax0, f2y1(X0) =
by20
x20

,

f2y2(X0) = −by0
x0

+
plE0y0

ply0 − c(l + E0y0)2
= 0.(3.8)

By Eq. (3.7), we have

DXf1y1(X)=(0,−a, 0), DXf1y2(X)=(−a, 0, 0), DXf2y1(X)=

(
−2by2

x3
,
2by

x2
, 0

)
,

DXf2y2(X) =

(
2by

x2
, −2b

x
+

plE

ply − c(l + Ey)2
− p2l2Ey

[ply − c(l + Ey)2]2

+
2pclE2y(l+Ey)

[ply−c(l+Ey)2]2
,−1+

ply

ply−c(l+Ey)2
+

2pclEy2(l+Ey)

[ply−c(l+Ey)2]2

)
.(3.9)
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In view of Eqs. (2.7), (3.6) and (3.9), we obtain

f1y1y1(X)=DXf1y1(X)Dy1ψ(Y)= 0, f1y1y2(X)=DXf1y1(X)Dy2ψ(Y)=−a,

f1y2y2(X)=DXf1y2(X)Dy2ψ(Y)= 0, f2y1y1(X)=DXf2y1(X)Dy1ψ(Y)=−2by2

x3
,

f2y1y2(X)=DXf2y1(X)Dy2ψ(Y )=
2by

x2
,

f2y2y2(X)=DXf2y2(X)Dy2ψ(Y )=−2b

x
+

2plE

ply − c(l + Ey)2

− 2p2l2Ey

[ply−c(l+Ey)2]2
+

2pclE2y(l+Ey)

[ply−c(l+Ey)2]2
− 2p2cl2E2y2(l+Ey)

[ply−c(l+Ey)2]3
.(3.10)

Substituting X = X0 into Eq. (3.10), which yields

f1y1y1(X0) = 0, f1y1y2(X0) = −a, f1y2y2(X0) = 0,

f2y1y1(X0) =− 2by20
x30

, f2y1y2(X0) =
2by0
x20

,

f2y2y2(X0) =− 2p2l2E0y0
[ply0 − c(l + E0y0)2]2

+
2pclE2

0y0(l + E0y0)

[ply0 − c(l + E0y0)2]2

− 2p2cl2E2
0y

2
0(l + E0y0)

[ply0 − c(l + E0y0)2]3
.(3.11)

Besides, in view of Eqs. (3.6) and (3.10), we have

DXf1y1y1(X0) = DXf1y1y2(X0) = DXf1y2y2(X0) = (0, 0, 0),

DXf2y1y1(X0)=

(
6by20
x40

,−4by0
x30

, 0

)
, DXf2y1y2(X0)=

(
− 4by0

x30
,
2b

x20
, 0

)
,

DXf2y2y2(X0)=

(
2b

x20
,
2plE0(3clE0+4E2

0y0−2pl)

[ply0−c(l+E0y0)2]2

+
2p2l2E0y0(2pl − 9cE2

0y0)

[ply0 − c(l + E0y0)2]3
+

8pc2lE3
0y0(l + E0y0)

2 − 16p2cl3E2
0y0

[ply0 − c(l + E0y0)2]3

+
6p2cl2E2

0y
2
0(l + E0y0)[pl − 2cE0(l + E0y0)]

[ply0 − c(l + E0y0)2]4
,

2pl

ply0−c(l+E0y0)2
+
2ply0[4clE0+5cE2

0y0−pl]
[ply0−c(l+E0y0)2]2

+
8pc2lE2

0y
2
0(l+E0y0)

2

[ply0−c(l+E0y0)2]3

− 2p2l2E0y
2
0(6cl + 7cE0y0)

[ply0 − c(l + E0y0)2]3
− 12p2c2l2E2

0y
3
0(l + E0y0)

2

[ply0 − c(l + E0y0)2]4

)
,

DY ψ(0) =


1 0
0 1

0 − plE0

ply0 − c(l + E0y0)2

 :=
(
Dy1ψ(0), Dy2ψ(0)

)
.(3.12)
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Furthermore, Eqs. (2.7) and (3.12) can give that

f1y1y1y1(X0) =DXf1y1y1(X0)Dy1ψ(0) = 0,

f1y1y1y2(X0) =DXf1y1y1(X0)Dy2ψ(0) = 0,

f1y1y2y2(X0) =DXf1y1y2(X0)Dy2ψ(0) = 0,

f1y2y2y2(X0) =DXf1y2y2(X0)Dy2ψ(0) = 0,

f2y1y1y1(X0) =DXf2y1y1(X0)Dy1ψ(0) =
6by20
x40

,

f2y1y1y2(X0) =DXf2y1y1(X0)Dy2ψ(0) = −4by0
x30

,

f2y1y2y2(X0) =DXf2y1y2(X0)Dy2ψ(0) =
2b

x20
,

f2y2y2y2(X0) =DXf2y2y2(X0)Dy2ψ(0) =
2plE0(3clE0 + 4E2

0y0 − 3pl)

[ply0 − c(l + E0y0)2]2

+
2p2l2E0y0(3pl−14cE2

0y0−12clE0)+8pc2lE3
0y0(l+E0y0)

2

[ply0−c(l+E0y0)2]3

+
2p2cl2E2

0y
2
0(l + E0y0)[3pl − 10cE0(l + E0y0)]

[ply0 − c(l + E0y0)2]4

+
2p3l3E2

0y
2
0(6cl + 7cE0y0)

[ply0 − c(l + E0y0)2]4
+

12p3c2l3E3
0y

3
0(l + E0y0)

2

[ply0 − c(l + E0y0)2]5
.(3.13)

Substituting Eqs. (3.8), (3.11) and (3.13) into Taylor series developments (3.4),
we derive

(3.14)


ẏ1 = −ax0y2 − ay1y2,

ẏ2 =
by20
x20

y1 −
by20
x30

y21 +
2by0
x20

y1y2 +
1

2
f2y2y2(X0)y

2
2 +

by20
x40

y31

−2by0
x30

y21y2 +
b

x20
y1y

2
2 +

1

6
f2y2y2y2(X0)y

3
2 + o(|Y |4).

In view of the required form (3.3), we need to make a matrix transformation
— viz. Y = TZ for system (3.14), where Z = (z1, z2)

T , T2×2 is an invertible
matrix and satisfies

T−1

 0 −ax0
by20
x20

0

T =

(
0 −ω0

ω0 0

)
.

By computing, we can get T =

x
3
2
0 0

0

√
b

a
y0

. For convenience, Z is denoted

as Y . Accordingly, we obtain the normal form of system (3.14):
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(3.15)



ẏ1 = −ω0y2 −
√
aby0y1y2,

ẏ2 = ω0y1−
√
aby0y

2
1+

2by0√
x0
y1y2+

y0
2

√
b

a
f2y2y2(X0)y

2
2+

√
abx0y0y

3
1

−2by0y
2
1y2 +

b
3
2 y0√
ax0

y1y
2
2 +

by20
6a

f2y2y2y2(X0)y
3
2 + o(|Y |4).

Summarizing the above analysis, we have the following Hopf bifurcation
theorem.

Theorem 3.1. For model (1.3), there exist a small neighborhood Ω of equilib-
rium point X0(v) as well as a small positive constant γ.

Case I. If

y0f2y2y2y2(X0) > 2f2y2y2(X0),

then
(i) when v0 < v < v0 + γ, X0(v) is unstable, which excludes the points in Ω;
(ii) when v0−γ < v < v0, there exists a periodic orbit in Ω \{X0(v)}, besides

X0(v) is locally asymptotically stable, which attracts the points in Ω;

Case II. If

y0f2y2y2y2(X0) < 2f2y2y2(X0),

then
(i) when v0−γ < v < v0, X0(v) is locally asymptotically stable, which attracts

the points in Ω;
(ii) when v0 < v < v0+γ, there exists a periodic orbit in Ω \{X0(v)}, besides

X0(v) is unstable, which excludes the points in Ω.

Proof. In terms of the Hopf bifurcation theorem in the literature [33], we need
to calculate the important quantity 16ϱ0 (see below), in view of the normal
forms (3.3) and (3.15), we have

16ϱ0 :={a111(a112 − a211) + a222(a
1
22 − a212) + (a112a

1
22 − a211a

2
12)}/ω0

+ (a1111 + a1122 + a2112 + a2222)

=

{√
b

a
y0f2y2y2(X0)

(
0− 2by0√

x0

)
+ 2

√
aby0 ·

2by0√
x0

}/{√
ab

x0
y0

}

− 4by0 +
by20
a
f2y2y2y2(X0)

=− 2by0
a
f2y2y2(X0) +

by20
a
f2y2y2y2(X0).

Next, the two cases 16ϱ0 > 0 and 16ϱ0 < 0 need further discussion. Because the
rest of the process is quite similar to Ref. [33], and therefore it is eliminated in
this paper.
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4. Stability analysis for centre

In view of Eq. (2.9), when by0/x0 = plE0y0/[ply0 − c(l + E0y0)
2] (i.e., v = v0),

the eigenvalues of Eq. (2.9) are a pair of imaginary roots: ± i
√
ab/x0y0. That is

to say, the equilibrium point X0 is a centre. Nevertheless, for v = v0, Theorems
2.1 and 3.1 don’t include the corresponding stability result. In this section, we
study the stability of the centre.

Theorem 4.1. When v = v0,

(i) if

y0f2y2y2y2(X0) > 2f2y2y2(X0),

then the centre X0 of model (1.3) is unstable;

(ii) if

y0f2y2y2y2(X0) < 2f2y2y2(X0),

then the centre X0 of model (1.3) is stable.

Proof. First of all, we need to make system (3.15) equivalent to the following
form according to the formal series approach [33, 41, 42]:

(4.1)

{
ẏ1 = −y2 +M2(y1, y2) +M3(y1, y2) + o(|Y |4),
ẏ2 = y1 +N2(y1, y2) +N3(y1, y2) + o(|Y |4),

whereMi(y1, y2) and Ni(y1, y2) denote the i
th degree homogeneous polynomials

of y1 and y2.

On writing t̄ = ω0t in system (3.15), and in this section Ẏ denotes the
derivative of vector function Y regarding t̄, then (3.15) is transformed into

(4.2)



ẏ1 = −y2 −
√
aby0
ω0

y1y2,

ẏ2 = y1−
√
aby0
ω0

y21+
2by0
ω0

√
x0
y1y2+

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2+

√
abx0y0
ω0

y31

−2by0
ω0

y21y2 +
b
3
2 y0

ω0
√
ax0

y1y
2
2 +

by20
6aω0

f2y2y2y2(X0)y
3
2 + o(|Y |4).

Next, we consider the following formal series for the above system (4.2):

V (y1, y2) = y21 + y22 +
∞∑
n=3

Vn(y1, y2),



POPULATION DYNAMICS OF A MODIFIED PREDATOR-PREY MODEL ... 509

where Vn(y1, y2) denotes the n
th degree homogeneous polynomials of y1 and y2.

We then have

dV (y1, y2)

dt̄

∣∣∣∣
(4.2)

=
∂V (y1, y2)

∂y1
· ẏ1 +

∂V (y1, y2)

∂y2
· ẏ2

=

(
2y1+

∞∑
n=3

∂Vj(y1, y2)

∂y1

)(
−y2−

√
aby0
ω0

y1y2

)
+

(
2y2+

∞∑
n=3

∂Vj(y1, y2)

∂y2

)

×
(
y1−

√
aby0
ω0

y21+
2by0
ω0

√
x0
y1y2+

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2

+

√
abx0y0
ω0

y31 −
2by0
ω0

y21y2 +
b
3
2 y0

ω0
√
ax0

y1y
2
2 +

by20
6aω0

f2y2y2y2(X0)y
3
2 + · · ·

)
.(4.3)

Setting the 3 th degree homogeneous polynomial in Eq. (4.3) to 0, we obtain

y1
∂V3(y1, y2)

∂y2
− y2

∂V3(y1, y2)

∂y1

=
4
√
aby0
ω0

y21y2 −
4by0
ω0

√
x0
y1y

2
2 −

y0
ω0

√
b

a
f2y2y2(X0)y

3
2.(4.4)

Let y1 = r cos θ, y2 = r sin θ, then by chain rule we can get

y1
∂Vn(y1, y2)

∂y2
− y2

∂Vn(y1, y2)

∂y1
=
∂Vn(y1, y2)

∂θ
= rn · dVn(cos θ, sin θ)

dθ
.(4.5)

In view of Eqs. (4.4) and (4.5), we have

dV3(cos θ, sin θ)

dθ
=
4
√
aby0
ω0

cos2 θ sin θ − 4by0
ω0

√
x0

cos θ sin2 θ

− y0
ω0

√
b

a
f2y2y2(X0) sin

3 θ

:=−H3(cos θ, sin θ) =
σ0
2

+
∞∑
δ=1

(aδ cos δθ + bδ sin δθ),(4.6)

where (σ0/2) +
∑∞

δ=1(aδ cos δθ + bδ sin δθ) is the Fourier series of H3. Such

a V3(cos θ, sin θ) exists if and only if σ0 = 0, viz.,
∫ 2π
0 H3(cos θ, sin θ) dθ = 0.

Indeed,∫ 2π

0

{
4
√
aby0
ω0

cos2 θ sin θ− 4by0
ω0

√
x0

cos θ sin2 θ− y0
ω0

√
b

a
f2y2y2(X0) sin

3 θ

}
dθ= 0.

Hence, V3(y1, y2) exists, and by Eq. (4.6) we derive

V3(y1, y2) =

(
2y0
3ω0

√
b

a
f2y2y2(X0)−

4
√
aby0

3ω0

)
y31

+
y0
ω0

√
b

a
f2y2y2(X0)y1y

2
2 −

4by0
3ω0

√
x0
y32.(4.7)
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Again, setting 4 th degree homogeneous polynomial in Eq. (4.3) to 0, which yields

y1
∂V4(y1, y2)

∂y2
− y2

∂V4(y1, y2)

∂y1
= −2

√
abx0y0
ω0

y31y2 +
4by0
ω0

y21y
2
2

− 2b
3
2 y0

ω0
√
ax0

y1y
3
2 −

by20
3aω0

f2y2y2y2(X0)y
4
2 +

√
aby0
ω0

y1y2 ·
∂V3(y1, y2)

∂y1

+

(√
aby0
ω0

y21 −
2by0
ω0

√
x0
y1y2 −

y0
2ω0

√
b

a
f2y2y2(X0)y

2
2

)
· ∂V3(y1, y2)

∂y2
.(4.8)

Furthermore, setting y1 = r cos θ, y2 = r sin θ in Eq. (4.8), which leads to

dV4(cos θ, sin θ)

dθ
=

(
− 2

√
abx0y0
ω0

+
2by20
ω2
0

f2y2y2(X0)−
4aby0
ω2
0

+
2by20
ω2
0

)
cos3 θ sin θ

+

(
4by0
ω0

− 4b
√
aby20

ω2
0

√
x0

− 4by20
ω2
0

√
x0

√
b

a
f2y2y2(X0)

)
cos2 θ sin2 θ

+

(
by20
ω2
0

f2y2y2(X0)−
2b

3
2 y0

ω0
√
ax0

+
8b2y20
ω2
0x0

− by20
aω2

0

(f2y2y2(X0))
2

)
cos θ sin3 θ

+

(
2by20
ω2
0

√
x0

√
b

a
f2y2y2(X0)−

by20
3aω0

f2y2y2y2(X0)

)
sin4 θ

:= −H4(cos θ, sin θ).

Similarly, such a V4(cos θ, sin θ) exists if and only if
∫ 2π
0 H4(cos θ, sin θ)dθ = 0.

But, ∫ 2π

0
H4(cos θ, sin θ)dθ

= − by0π

ω0
+
b
√
aby20π

ω2
0

√
x0

− by20π

2ω2
0

√
x0

√
b

a
f2y2y2(X0) +

by20π

4aω0
f2y2y2y2(X0) ̸= 0.

There upon we should amend V4(cos θ, sin θ) such that

dV4(cos θ, sin θ)

dθ
=−H4(cos θ, sin θ) + ℵ4 := −H̃4(cos θ, sin θ),

where ℵ4 =
1
2π

∫ 2π
0 H4(cos θ, sin θ)dθ = − by0

2ω0
+

b
√
aby20

2ω2
0

√
x0

− by20
4ω2

0

√
x0

√
b
af2y2y2(X0)

+
by20
8aω0

f2y2y2y2(X0). Substituting ω0 =
√
ab/x0y0 into ℵ4, which yields ℵ4 =

1
2a(

y0
2 f2y2y2y2(X0) − f2y2y2(X0)) ̸= 0. Clearly,

∫ 2π
0 H̃4(cos θ, sin θ)dθ = 0, there-

fore the amended V4(cos θ, sin θ) exists.
We now construct the Lyapunov function V (y1, y2)= y21 + y22 + V3(y1, y2) +

V4(y1, y2) for system (4.2), and further we have

dV (y1, y2)

dt̄

∣∣∣∣
(4.2)

= ℵ4(y
2
1 + y22)

2 + o ((y21 + y22)
2).
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If ℵ4 > 0 (viz., y0f2y2y2y2(X0) > 2f2y2y2(X0)), then the equilibrium point (0, 0)T

of system (4.2) is unstable, consequently the centre X0 is unstable. On the
contrary, if ℵ4 < 0 (viz., y0f2y2y2y2(X0) < 2f2y2y2(X0)), then the equilibrium
point (0, 0)T of system (4.2) is stable, hence the centre X0 is stable.

Remark 4.1. Due to
∫ 2π
0 H2µ−1(cos θ, sin θ)dθ = 0, µ = 2, 3, · · · , so if∫ 2π

0 H4(cos θ, sin θ)dθ = 0, then we should find the minimum positive integer

ϑ such that
∫ 2π
0 H2ϑ(cos θ, sin θ)dθ ̸= 0, and then afterwards, amending the

corresponding function V2ϑ(cos θ, sin θ) similar to V4(cos θ, sin θ).

5. Numerical simulations

In this section, we perform several Matlab simulations to complement the ana-
lytical results above.

As an example, we consider the harvested predator-prey model (1.3) with
the coefficients r1 = 2, a = 1, r2 = 3

4 , b = 1, p = 1, l = 1, c = 4
9 . Then by

the analysis in section 2, we can find that model (1.3) has a positive equilibrium
point X0 = (4, 2, 0.25) and the bifurcation value v0 = 2/9. We can check that
model (1.3) satisfies the requirement (2.1), the transversality conditions for Hopf
bifurcation in (3.2), as well as the condition of case (i) in Theorems 3.1 and 4.1.

In accordance with Theorems 3.1 and 4.1 (on choosing γ = 0.002), we present
four groups of numerical simulations as follows:

(i) The equilibrium point X0 is locally asymptotically stable when v =
0.2205 < v0, which is verified as shown in Fig. 1. In this case, the prey species,
predator species and economic harvesting are in a stable state, so the ecological
balance can be maintained.

(ii) A Hopf-bifurcating periodic orbit bifurcates from the equilibrium point
X0 when v = 0.222222 < v0, which is verified as shown in Fig. 2. The emergence
of the periodic orbit would generate small-amplitude population oscillations in
our ecosystem.

(iii) The centre X0 is unstable when v equals to v0 = 2/9, which is verified
as shown in Fig. 3. Unstable center means that the aforementioned population
oscillations are growing as time t goes on, i.e., the prey species, predator species
and economic harvesting can’t coexist in an oscillatory mode.

(iv) The equilibrium point X0 is unstable when v = 0.223 > v0, which is
verified as shown in Fig. 4. At this moment, the biological populations and
harvesting effort are unstable, which can result in ecological unbalance.

From Figs. 1-4, it is clear that our harvested predator-prey model can exhibit
a Hopf bifurcation as the increase of the harvesting profit v, which can cause
potentially dramatic variations in the dynamical behaviors of the population
model. Hence, the Hopf bifurcation is biologically important.
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Figure 1: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.9999, y(0) = 1.9999, E(0) =
0.2499, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is locally asymptotically stable when v =
0.2205 < v0 = 2/9.
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Figure 2: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.999, y(0) = 1.999, E(0) =
0.249, numerical simulations show that a periodic orbit bifurcates
from the equilibrium point X0 = (4, 2, 0.25) of model (1.3) when v =
0.222222 < v0 = 2/9.
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Figure 3: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.99984, y(0) = 1.99985, E(0) =
0.24986, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is an unstable centre when v equals to the
bifurcation value v0 = 2/9.
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Figure 4: For the parameters of model (1.3) with the values r1 = 2, a = 1, r2 =
3
4 , b = 1, p = 1, l = 1, c = 4

9 , x(0) = 3.9999, y(0) = 1.9999, E(0) =
0.2499, numerical simulations show that the equilibrium point X0 =
(4, 2, 0.25) of model (1.3) is unstable when v = 0.223 > v0 = 2/9.
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6. Concluding remarks

The present paper has studied the dynamics of a predator-prey model with ex-
ternal harvesting for predators. The original predator-prey model (1.1) proposed
by Leslie is described by two differential equations, which has been reasonably
modified as the differential-algebra predator-prey system (1.3) on the basis of
the consideration of expressing the harvesting profit. The asymptotic stabil-
ity of the modified predator-prey model (1.3) is investigated here, which reveals
that the population model can be asymptotically stable under certain condition.
In such a circumstance, the prey population, predator population and human
harvesting are able to coexist in harmony. For the benefit of maintaining the
ecological balance, the rational range of the harvesting profit v of human beings
should be the interval (0, v0). It means that people can’t exploit the biological
resource too heavy. Otherwise, the ecological balance would be in danger of be-
ing damaged, and then people will completely loss their productivity eventually.

Besides, it is interesting to note that the parameterisation used in section
2 can reduce our model (1.3) described by differential-algebra equations to the
system (3.14) of differential equations, which has a significant effect in this study.
Refs. [34-37] suggest that Differential-Algebraic Equations have widespread ap-
plications in constrained dynamical systems, so we expect that the parameter-
isation can be employed to analyze the dynamics of more complex constrained
systems in biology and engineering.

Finally, Refs. [43, 44] show that the impact of delays on the dynamics of a
system is an interesting problem. Thus, further studies on the stability and
bifurcations of differential-algebra population model (1.3) with delays can be
considered.
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Appendix

Here we deduce the formula (2.7). Substituting X = ψ(Y ) into system (2.4),
we have

(A.1) DY ψ(Y )Ẏ = f(ψ(Y )),
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Next, differentiating Eq. (2.5) regarding Y and then left multiplying UT
0 to the

differentiated equation, which lead to

(A.2) UT
0 DY ψ(Y ) = I2.

Differentiating Eq. (2.6) regarding Y , which yields

(A.3) DXg(X)DY ψ(Y ) = 0.

By Eqs. (A.1)-(A.3), we get

(A.4)

(
DXg(X)
UT
0

)−1(
0
I2

)
Ẏ (t) = f(ψ(Y )).

Further, Eqs. (A.1), (A.3) and (A.4) suggest that system (2.4) can be locally
equivalent to

(A.5) Ẏ = UT
0 f(ψ(Y )),

which shows that X0 corresponds to Y = 0 of system (A.5).
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1. Introduction

Let C be the complex filed. The set Cm×n denotes the set of all m×n matrices
over C. Let A ∈ Cm×n. The symbol A∗ denotes the conjugate transpose of A.
Notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn}, N (A) = {x ∈ Cn : Ax = 0}
and CCM

n = {A ∈ Cn×n| rank (A) = rank (A2)} will be used in the sequel. The
smallest positive integer k such that rank (Ak) = rank(Ak+1) is called the index
of A ∈ Cn×n and denoted by ind(A).

Let A ∈ Cm×n. If a matrix X ∈ Cn×m satisfies

AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA,

then X is called the Moore-Penrose inverse of A [11, 15] and denoted by X =
A†.We call X is an inner inverse of A, if we have AXA = A. The set A{1}
denotes the set of all inner inverse of A. We call X is a {1, 4} inverse of A,
if we have AXA = A and (XA)∗ = XA. The set A{1, 4} denotes the set of
all {1, 4} inverse of A. The Moore-Penrose can be used to represent orthogonal
projectors PA ≜ AA† and QA ≜ A†A onto R(A) and R(A∗), respectively. Let
A,X ∈ Cn×n with ind (A) = k. Then, algebraic definition of the Drazin inverse
as follows: if

X = XAX, XAk+1 = Ak and AX = XA,

then X is called a Drazin inverse of A. It is unique and denoted by AD [4]. Note
that, for a square complex matrix, the algebraic definition of the Drazin inverse
is equivalent to the functional definition of the Drazin inverse. If ind (A) = 1,
the Drazin inverse is called the group inverse of A and denoted by A#. The
core inverse and the dual core inverse for a complex matrix were introduced by
Baksalary and Trenkler [2]. Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a
core inverse of A, if it satisfies AX = PA and R(X) ⊆ R(A), where PA is the
orthogonal projector onto R(A). And if such a matrix exists, then it is unique
(and denoted by A#O). Baksalary and Trenkler gave several characterizations
of the core inverse by using the decomposition of Hartwig and Spindelböck [7].
Let A ∈ Cn×n, the DMP inverse of A was introduced by using the Drazin and
the Moore-Penrose inverses of A in [14], and the formula of the DMP inverse
of A is AD,† = ADAA† [14, Theorem 2.2]. The CMP inverse of A ∈ Cn×n

was introduced by Mehdipour and Salemi in [13], who using the core part in
core-nilpotent decomposition of A and the Moore-Penrose inverse of A, the
CMP inverse of A was denoted by Ac,†. Manjunatha Prasad and Mohana [12]
introduced the core-EP inverse of matrix [12, Definition 3.1]. Let A ∈ Cn×n. If
there exists X ∈ Cn×n such that XAX = X,R(X) = R(X∗) = R(Ak), then
X is called the core-EP inverse of A. If such inverse exists, then it is unique
and denoted by A �O. The concept of the MPCEP-inverse of a Hilbert space
operators was initially introduced by Chen, Mosić and Xu [3] and this concept
was expanded on quaternion matrices by Kyrchei, Mosić and Stanimirović [8, 9].
Let A ∈ Cn×n with ind (A) = k. If there exists a matrix X ∈ Cn×n such that

XAX = X, AX = AA �O and XA = A†AA �OA
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then X is called the MPCEP-inverse of A and denoted by A†, �O.

In [18, Theorem 2.1], Wang introduced a new matrix decomposition, namely
the Core-EP decomposition of A ∈ Cn×n with ind (A) = k. Given a matrix A ∈
Cn×n, then A can be written as the sum of matrices A1 ∈ Cn×n and A2 ∈ Cn×n,
that is A = A1 + A2, where A1 ∈ CCM

n , Ak
2 = 0 and A∗

1A2 = A2A1 = 0. In
[18, Theorem 2.3 and Theorem 2.4], Wang proved this matrix decomposition is
unique and there exists a unitary matrix U ∈ Cn×n such that

(1) A1 = U

[
T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗,

where T ∈ Cr×r is nonsingular and N ∈ C(n−r)×(n−r) is nilpotent with rank (Ak)
= r.

Let A,B,C ∈ Cn×n. We say that Y ∈ Cn×n is a (B,C)-inverse of A if we
have

Y AB = B, CAY = C, N (C) ⊆ N (Y ) and R(Y ) ⊆ R(B).

If such Y exists, then it is unique (see [1, Definition 4.1] and [16, Definition 1.2]).
Note that, the (B,C)-inverse was introduced in the setting of semigroups [5].

In [6, Definition 1.2] and [10, Definition 2.1], the authors introduced the
one-sided (b, c)-inverse in rings. In [1, Definition 2.7], the authors introduced
the one-sided (B,C)-inverse for complex matrices. Let A,B,C ∈ Cn×n. We
call that X ∈ Cn×n is a left (B,C)-inverse of A if we have N (C) ⊆ N (X) and
XAB = B. We call that Y ∈ Cn×n is a right (B,C)-inverse of A if we have
R(Y ) ⊆ R(B) and CAY = C.

In fact, there is an important generalized inverse was introduced in [17] by
Rao and Mitra. Let A ∈ Cn×n. In [16], Rakić showed that Rao and Mitra’s
constrained inverse of A coincides with the (B,C)-inverse of A, where B,C ∈
Cn×n.

In 1972, Rao and Mitra introduced two different types of constraints in order
to extend the concept of Bott-Duffin inverse and define a new constrained inverse
Y ∈ Cn×n of a matrix A ∈ Cn×n in [17]. Let B,C ∈ Cn×n.

Constraints of type 1 :

c : Y maps vectors of Cm into R(B);

r : Y ∗ maps vectors of Cn into R(C∗);

Constraints of type 2 :

C : Y A is an identity on R(B);

R : (AY )∗ is an identity on R(C∗).

Note that, Rao and Mitra denoted their inverse by AcrCR . In fact, they
defined this inverse in a broader context, where A is an m× n matrix mapping
vectors of Cn to Cm, where Cn denotes an n dimensional vector space with an
inner product.
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Let A,B,C ∈ Cn×n. A matrix Y ∈ Cn×n is a crCR constrained inverse of A
if it satisfies constraints c, r,C and R. Here the crCR constrained inverse of A
will be denoted by A∥(B,C). In the sequel, one can see that the crCR constrained
inverse of A coincides with the (B,C)-inverse of A, thus, we use the symbol of
the (B,C)-inverse to denoted the crCR constrained inverse of A.

In order to rewrite the constraints c, r,C and R in purely multiplicative
language, we need the following fact: the condition R(Y ) ⊆ R(B) if and only
if Y = BK, for some K ∈ Cn×n; the condition R(Y ∗) ⊆ R(C∗) if and only if
N (C) ⊆ R(Y ) if and only if Y = LC, for some L ∈ Cn×n; the constraint C is
clearly equivalent to Y AB = B and the constraint R is equivalent to CAY = C.
Therefore, these constraints can be rewritten as follows:

Constraints of type 1 :

c : R(Y ) ⊆ R(B);

r : R(Y ∗) ⊆ R(C∗);

Constraints of type 2 :

C : Y AB = B;

R : CAY = C.

Let A ∈ Cm×n with rank (A) = r. Let T, S be two subspaces of Cn with

dim (T ) = s ⩽ r and dim (S) = n − r. Recall that the out inverse A
(2)
T,S with

prescribed the column space T and null space S is the unique matrix X ∈ Cn×m

satisfying AT ⊕ S = Cn. It is well-known fact that the following ten kinds of

generalized inverse are all special cases of the out inverse A
(2)
T,S with prescribed

the column space T and null space S: the Moore-Penrose inverse A† [11, 15],
the Drazin inverse AD [4], the group inverse A# [4], the core inverse A#O [2], the
DMP-inverse AD,† [14] and the core-EP inverse A �O [12]. Thus, all the results

related the the out inverse A
(2)
T,S with prescribed the column space T and null

space S are applicable to these generalized inverses.

2. Existence criteria and expressions of one sided MPCEP-inverse

In [18, Theorem 2.3], Wang proved that A1 can be described by using the Moore-
Penrose inverse of Ak. The explicit expressions of A1 can be found in the follows
lemma.

Lemma 2.1. Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the Core-EP
decomposition of A, then A1 = Ak(Ak)†A and A2 = A−Ak(Ak)†A.

Motivated by the ideal of one-sided (B,C)-inverse of A, one-sided MPCEP-
inverse was introduced.

Definition 2.1. Let A ∈ Cn×n with ind (A) = k. We call that X ∈ Cn×n is a
left MPCEP-inverse of A if we have

(2) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.
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We call that Y ∈ Cn×n is a right MPCEP-inverse of A if we have

(3) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Theorem 2.1. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is a left
MPCEP-inverse of A.

Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(4) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

Then

X = U(Ak)∗ for some U ∈ Cn×n

= U(Ak)∗[(Ak)∗]†(Ak)∗ = X[(Ak)∗]†(Ak)∗

= X[Ak(Ak)†]∗ = XAk(Ak)† = A†Ak(Ak)†

(5)

by (4). Thus, A†Ak(Ak)† is a left MPCEP-inverse of A by (5).

In the following theorem, a general expression of the left MPCEP-inverse of
A was given.

Theorem 2.2. Let A ∈ Cn×n with ind (A) = k. Then, a general solution of the
left MPCEP-inverse of A is

A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗,

for any V ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}.

Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(6) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

Then

(7) X = U(Ak)∗ for some U ∈ Cn×n.

Hence

(8) A†Ak = XAk = U(Ak)∗Ak

by (6) and (7). That is A†Ak = U(Ak)∗Ak.

Since rank
(
(Ak)∗Ak

)
= rank (Ak), so one can check that

(
(Ak)∗Ak

)−
=

(Ak)−
(
(Ak)∗

)−
, for any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1} as

follows:
The condition rank

(
(Ak)∗Ak

)
= rank (Ak) implies N

(
(Ak)∗Ak

)
= N (Ak).

We have the equality (Ak)∗Ak[In −
(
(Ak)∗Ak

)−
(Ak)∗Ak] = 0 in view of the
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equality (Ak)∗Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak = (Ak)∗Ak, so In−

(
(Ak)∗Ak

)−
(Ak)∗Ak ∈

N ((Ak)∗Ak) ⊆ N (Ak), thus Ak[In −
(
(Ak)∗Ak

)−
(Ak)∗Ak] = 0, that is

Ak = Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak,

gives
(
(Ak)∗Ak

)−
(Ak)∗ is an inner inverse of Ak.

Since
(
(Ak)∗Ak

)−
(Ak)∗ ∈ Ak{1}, so let (Ak)− =

(
(Ak)∗Ak

)−
(Ak)∗, then

(Ak)∗Ak(Ak)−((Ak)∗)−(Ak)∗Ak = (Ak)∗Ak[((Ak)∗Ak)−(Ak)∗]((Ak)∗)−(Ak)∗Ak

= (Ak)∗Ak((Ak)∗Ak)−((Ak)∗((Ak)∗)−(Ak)∗)Ak

= (Ak)∗Ak((Ak)∗Ak)−(Ak)∗Ak

= (Ak)∗Ak.

That is, for any
(
(Ak)∗

)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}, the equality(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
holds.

Since{
A†

(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]}

(Ak)∗Ak

= A†
(
(Ak)†

)∗
(Ak)∗Ak + V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]
(Ak)∗Ak

= A†
(
(Ak)†

)∗
(Ak)∗Ak = A†

(
Ak(Ak)†

)∗
Ak

= A†Ak,

hence a general solution of A†Ak = U(Ak)∗Ak is

A†
(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]

can be written as

A†
(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
,

for any V ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}. Let
X̃ = A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−((Ak)∗)−

]
(Ak)∗. One can check X̃ is

a left MPCEP-inverse of A in what follows.

X̃Ak = A†Ak(Ak)†Ak + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗Ak

= A†Ak(Ak)†Ak + V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]
(Ak)∗Ak

= A†Ak + V

[
In(A

k)∗Ak − (Ak)∗Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak

]
= A†Ak.

(9)
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Since

X̃ = A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= A†
[
Ak(Ak)†

]∗
+ V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= A†
[
(Ak)†

]∗
(Ak)∗ + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= Q(Ak)∗,

(10)

where Q = A†[(Ak)†]∗ + V [In − (Ak)∗Ak(Ak)−((Ak)∗)−]. Hence, (10) gives

(11) X̃ = Q(Ak)∗.

The equality in (11) is equivalent to R(Ak)⊥ ⊆ N (X̃). Thus, X̃ is a left
MPCEP-inverse of A by R(Ak)⊥ ⊆ N (X̃) and X̃Ak = A†Ak in (9).

Theorem 2.3. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is a right
MPCEP-inverse of A.

Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have

(12) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Then

Y = A†AkV for some V ∈ Cn×n

= A†Ak(Ak)†AkV = A†
[
Ak(Ak)†

]∗
AkV = A†

[
(Ak)†

]∗
(Ak)∗AkV

= A†
[
(Ak)†

]∗
(Ak−1)∗A∗AkV = A†

[
(Ak)†

]∗
(Ak−1)∗(AA†A)∗AkV

= A†
[
(Ak)†

]∗
(Ak−1)∗A∗(AA†)∗AkV=A†

[
(Ak)†

]∗
(Ak−1)∗A∗AA†AkV

= A†
[
(Ak)†

]∗
(Ak)∗AA†AkV = A†

[
(Ak)†

]∗
(Ak)∗AY

= A†
[
(Ak)†

]∗ [
(AY )∗Ak

]∗
= A†

[
(Ak)†

]∗
(Ak)∗

= A†Ak(Ak)†

(13)

by (12). Thus, A†Ak(Ak)† is a right MPCEP-inverse of A by (13).

Theorem 2.4. Let A ∈ Cn×n with ind (A) = k. Then, a general solution of the
right MPCEP-inverse of A is

A†Ak(Ak)† +A†Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T,

for any T ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}.
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Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have

(14) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Then

(15) Y = A†AkS for some S ∈ Cn×n.

Hence

(16) (Ak)∗ = (Ak)∗AY = (Ak)∗AA†AkS = (Ak)∗AY = (Ak)∗AkS

by (14) and (15). That is (Ak)∗ = (Ak)∗AkS.

Since rank
(
(Ak)∗Ak

)
= rank (Ak), so

(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
, for

any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1} by the proof Theorem 2.2.
Since

(Ak)∗Ak

{
(Ak)† +

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

}
= (Ak)∗Ak(Ak)† + (Ak)∗Ak

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

= (Ak)∗Ak(Ak)† = (Ak)∗[Ak(Ak)†]∗

= (Ak)∗,

hence a general solution of (Ak)∗ = (Ak)∗AkS is

(Ak)† +

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

can be written as

(Ak)† +

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T,

for any T ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}. Let
Ỹ = A†Ak(Ak)† + A†Ak[In − (Ak)−((Ak)∗)−(Ak)∗Ak]T . One can check Ỹ is a
right MPCEP-inverse of A in what follows.

Ỹ = A†Ak(Ak)† +A†Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

= A†Ak

{
(Ak)† +

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}
= A†AkP,

(17)

where P = (Ak)† + [In − (Ak)−((Ak)∗)−(Ak)∗Ak]T . Hence, (17) gives

(18) Ỹ = A†AkP.
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The following equality will be used in the sequel.

Ak = Ak(Ak)†Ak =
[
Ak(Ak)†

]∗
Ak =

[
(Ak)†

]∗
(Ak)∗Ak

=
[
(Ak)†

]∗
(Ak)∗Ak

[
(Ak)∗Ak

]−
(Ak)∗Ak

= Ak
[
(Ak)∗Ak

]−
(Ak)∗Ak

= Ak(Ak)−
(
(Ak)∗

)−
(Ak)∗Ak

(19)

by
(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
, for any ((Ak)∗)− ∈ (Ak)∗{1} and some

(Ak)− ∈ Ak{1}.
Since

(AỸ )∗Ak =

{
AA†Ak(Ak)†+AA†Ak

[
In−(Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=

{
Ak(Ak)† +Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=

{
Ak(Ak)† +

[
Ak −Ak(Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=
[
Ak(Ak)†

]∗
Ak

= Ak

(20)

by (19). The equality in (18) is equivalent to R(Ỹ ) ⊆ R(A†Ak). Thus, Ỹ is a
right MPCEP-inverse of A by R(Ỹ ) ⊆ R(A†Ak) and (AỸ )∗Ak = Ak in (20).

In the following theorem, we will use the core part A1 of the Core-EP de-
composition to describe the left MPCEP-inverse of A.

Theorem 2.5. Let A ∈ Cn×n with ind (A) = k. Then, X ∈ Cn×n is a left
MPCEP-inverse of A if and only if N (A1A

†) ⊆ N (X) and XAA†A1 = A†A1

hold.

Proof. Firstly, we will prove N (A1A
†) = R(Ak)⊥. Let u ∈ N

(
(Ak)∗AA†),

then

A1A
†u = Ak(Ak)†AA†u =

[
Ak(Ak)†

]∗
AA†u

=
[
(Ak)†

]∗
(Ak)∗AA†u = 0

(21)

by Lemma 2.1. Let v ∈ N (A1A
†), then

(Ak)∗AA†v = (Ak)∗
[
(Ak)∗

]†
(Ak)∗AA†v = (Ak)∗

[
Ak(Ak)†

]∗
AA†v

= (Ak)∗Ak(Ak)†AA†v = (Ak)∗A1A
†v = 0

(22)
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by Lemma 2.1. So, by (21) and (22) we have

(23) N (A1A
†) = N

(
(Ak)∗AA†

)
Note that

(24) R(Ak)⊥ = N
(
(Ak)∗

)
= N

(
(AA†Ak)∗

)
= N

(
(Ak)∗AA†

)
.

The equality N (A1A
†) = N ((Ak)∗AA†) in (23) gives N (A1A

†) = R(Ak)⊥ by
(24). Hence, N (A1A

†) ⊆ N (X) if and only if R(Ak)⊥ ⊆ N (X) by N (A1A
†) =

R(Ak)⊥.
Next, we will prove XAA†A1 = A†A1 if and only if XAk = A†Ak. The

condition XAA†A1 = A†A1 can be written as

(25) XAA†Ak(Ak)†A = A†Ak(Ak)†A

by Lemma 2.1, (25) can be written as

(26) XAk(Ak)†A = A†Ak(Ak)†A

by Lemma AA†A = A. Post-multiplying by Ak−1 on (26) gives

XAk(Ak)†AAk−1 = A†Ak(Ak)†AAk−1,

that is XAk = A†Ak.

In the following theorem, we will use the core part A1 of the Core-EP de-
composition to describe the right MPCEP-inverse of A.

Theorem 2.6. Let A ∈ Cn×n with ind (A) = k. Then, Y ∈ Cn×n is a right
MPCEP-inverse of A if and only if R(Y ) ⊆ R(A†A1) and A1A

†AY = A1A
†

hold.

Proof. Firstly, we will proof R(A†Ak) = R(A†A1). Since, we have

(27) A†A1 = A†Ak(Ak)†A

and

(28) A†Ak = A†Ak(Ak)†Ak = A†Ak(Ak)†AAk−1 = A†A1A
k−1

by Lemma 2.1. The conditions in (27) and (28) imply R(A†Ak) = R(A†A1).
Since

A1A
†AY = A1A

†

⇔ Ak(Ak)†AA†AY = Ak(Ak)†AA†

⇔ Ak(Ak)†AY = Ak(Ak)†AA†

⇔ (Ak)†AY = (Ak)†AA†

⇔ (Ak)∗AY = (Ak)∗AA†

⇔ (Ak)∗AY = (Ak)∗(AA†)∗

⇔ (Ak)∗AY = (AA†Ak)∗

⇔ (AY )∗Ak = Ak

(29)
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by Lemma 2.1.

Theorem 2.7. Let A ∈ Cn×n. If A is both left and right MPCEP-invertible,
then the left MPCEP-inverse of A and the right MPCEP-inverse of A are
unique. Moreover, the left MPCEP-inverse of A coincides with the right MPCEP-
inverse of A.

Proof. Let X be a left MPCEP-inverse of A and Y be a right MPCEP-inverse
of A. Then

(30) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

and

(31) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak

hold. Thus, X = U(Ak)∗ and Y = A†AkV , for some U, V ∈ Cn×n by (30) and
(31). Therefore,

X = U(Ak)∗ = U(Ak)∗AY = XAY,

Y = A†AkV = XAkV = XAA†AkV = XAY
(32)

by (30) and (31). Hence, X = Y by (32). If Z is a another right MPCEP-
inverse of A, one can prove X = Z in a similar way. Then, Y = Z by X = Y
and X = Z, which says the right MPCEP-inverse of A is unique. One also can
prove the left MPCEP-inverse of A is unique by a similar proof of the uniqueness
of the right MPCEP-inverse of A. By the above proof, we can get that the left
MPCEP-inverse of A coincides with the right MPCEP-inverse of A.

The concept of the MPCEP-inverse of A will be introduced by using left
MPCEP-inverse of A and right MPCEP-inverse of A. The concept of the
MPCEP-inverse of a Hilbert space operators was introduced by Chen, Mosić
and Xu in [3].

Definition 2.2. Let A ∈ Cn×n with ind (A) = k. We call that X ∈ Cn×n is
the MPCEP-inverse of A if A is both left MPCEP-invertible and right MPCEP-
invertible. That is,

(33) R(Ak)⊥ ⊆ N (X),R(X) ⊆ R(A†Ak), XAk = A†Ak and (AX)∗Ak = Ak.

And X is denoted by the symbol A†, �O, that is A†, �O = X.

By Theorem 2.7 and Definition 2.2, we have the uniqueness of the MPCEP-
inverse of A in what follows:

We have A†, �O=A†AA �O = A†AADAk(Ak)† = A†ADAk+1(Ak)† = A†Ak(Ak)†

by A �O = ADAk(Ak)†. So, the MPCEP-inverse defined in Definition 2.2 coin-
cides with ones introduced in [3] that was expanded to matrices in [8, 9].
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Theorem 2.8. Let A ∈ Cn×n. Then, the MPCEP-inverse of A is unique.

The formula of the MPCEP-inverse of a complex matrix was given in the
following theorem.

Theorem 2.9. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is the
MPCEP-inverse of A.

Proof. By Definition 2.2, a MPCEP-invertible matrix, is both left MPCEP-
invertible and right MPCEP-invertible. Then, By Theorem 2.1, we have
A†Ak(Ak)† is a left MPCEP-inverse of A. And by Theorem 2.3, we have
A†Ak(Ak)† is a right MPCEP-inverse of A. The proof is finished by Theo-
rem 2.7.

3. Existence criteria and expressions of the MPCEP-inverse

The CMP inverse of A ∈ Cn×n was introduced by Mehdipour and Salemi in
[13], who using the core part in core-nilpotent decomposition of A and the
Moore-Penrose inverse of A. Motivated by the above method, we have a natural
question as follows: Using the core part A1 in Core-EP decomposition of A and
the Moore-Penrose inverse of A to introduce a matrix X = A†A1A

†.
Question What is X ?
In the following theorem, we answer this question, we proved that X =

A†A1A
† is a formula of the MPCEP-inverse.

Theorem 3.1. Let A ∈ Cn×n with ind(A) = k and A = A1+A2 is the Core-EP
decomposition of A. Then, the formula of the MPCEP-inverse is X = A†A1A

†.

Proof. Let X = A†A1A
†. Then, by Lemma 2.1, we have

X = A†A1A
† = A†Ak(Ak)†AA†

= A†[Ak(Ak)†]∗(AA†)∗ = A†[AA†Ak(Ak)†]∗

= A†[Ak(Ak)†]∗ = A†[(Ak)†]∗(Ak)∗.

(34)

The condition R(Ak)⊥ ⊆ N (X) holds by (34). Since

(35) X = A†A1A
† = A†Ak(Ak)†AA†

so, the condition R(X) ⊆ R(A†Ak) holds by (35). Since

(36) XAk = A†Ak(Ak)†AA†Ak = A†Ak(Ak)†Ak = A†Ak

so, the condition XAk = A†Ak holds by (36). Since

(37) (AX)∗Ak = [AA†Ak(Ak)†AA†]∗Ak = AA†Ak(Ak)†AA†Ak = Ak

so, the condition (AX)∗Ak = Ak holds by (37). Thus, the proof is finished by
Definition 2.2.
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The following exmaple shows that the core part in core-nilpotent decom-
position of A is different from the core part in Core-EP decomposition of A.
Moreover, this example also shows that the MPCEP-inverse is different from
the CMP inverse.

Example 3.1. Let A =


1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

 ∈ C4×4. Then, the core part

in core-nilpotent decomposition of A is AADA =


1 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 and the

core part in Core-EP decomposition of A is AA �OA =


1 −1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 Thus,

Ac,† =


1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 by Ac,† = A†AADAA† and A†, �O =


1 0 0 −2
0 0 0 0
0 0 0 0
0 0 0 0


by A†, �O = A†AA �OAA†.

The following example shows that the MPCEP-inverse can equal to the CMP
inverse.

Example 3.2. Let A =


1 0 1 2
0 1 1 2
0 0 2 4
0 0 −1 4

 ∈ C4×4. It is easy to check that the

index of A is 2. By [18, Corollary 3.3], we have

A �O=A2(A3)#O=A2(A2)#O=A2(A2)#A2(A2)†=A2(A2)†=


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 = AD,

which gives the core part in core-nilpotent decomposition of A equals to the
core part in Core-EP decomposition of A. Moreover, the MPCEP-inverse of A
equals to the CMP inverse of A.

In [18, Theorem 3.4], Wang proved that A1 can be described by using the
Core-EP inverse of A. The explicit expressions of A1 can be found in the follows
lemma.

Lemma 3.1. Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the Core-EP
decomposition of A, then A1 = AA �OA and A2 = A−AA �OA.
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Theorem 3.2. Let A ∈ Cn×n. Then, the MPCEP-inverse of A is an outer
inverse of A.

Proof. Let A = A1 +A2 is the Core-EP decomposition of A and X ∈ Cn×n be
the MPCEP-inverse of A. Then, X = A†A1A

† by Theorem 3.1, thus

XAX = A†A1A
†AA†A1A

† = A†A1A
†A1A

†

= A†Ak(Ak)†AA†Ak(Ak)†AA†

= A†Ak(Ak)†Ak(Ak)†AA†

= A†Ak(Ak)†AA†

= A†A1A
†

= X

(38)

by Lemma 2.1.

Let A ∈ Cn×n and i,m ∈ N. A matrix X ∈ Cn×n is called an ⟨i,m⟩-core
inverse of A, if it satisfies

(39) X = ADAX and AmX = Ai(Ai)†.

The ⟨i,m⟩-core inverse of A is unique and denoted by A⊕
i,m.

Proposition 3.1 ([19, Proposition 1]). Let A ∈ Cn×n with ind (A) = k. If

i ⩾ k, then AmA⊕
i,m is the orthogonal projector onto R(Ai) along R(Ai)

⊥
.

Theorem 3.3. Let A ∈ Cn×n with ind (A) = k and i,m ∈ N. If i ⩾ k, then

AA†, �O is the orthogonal projector onto R(Ai) along R(Ai)
⊥
. Moreover, we have

(40) AA†, �O = A1A
† = AA �O = AmA⊕

i,m = Ak(Ak)† = Ai(Ai)†,

where A1 is the core part A1 in Core-EP decomposition of A and A �O is the
Core-EP inverse of A.

Proof. By Theorem 2.9, we have A†, �O = A†Ak(Ak)†. Then

(41) AA†, �O = AA†Ak(Ak)† = Ak(Ak)†.

The equality AA �O = Ak(Ak)† can be got [18, Corollary 3.3]. The equality
AmA⊕

i,m = Ak(Ak)† = Ai(Ai)† is hold by Lemma 3.1. By Lemma 2.1, we have

A1 = Ak(Ak)†A, then

A1A
† = Ak(Ak)†AA† = [Ak(Ak)†]∗(AA†)∗

= [AA†Ak(Ak)†]∗ = [Ak(Ak)†]∗

= Ak(Ak)†.

Thus, the proof is finished by (41).
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Theorem 3.4. Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A.
Then, X can be written as the crCR constrained inverse of A, where

Constraints of type 1 :

c : R(X) ⊆ R(A†A1);

r : R(X∗) ⊆ R((A1A
†)∗);

Constraints of type 2 :

C : XAA†A1 = A†A1;

R : A1A
†AX = A1A

†.

Where A1 is the core part of the Core-EP decomposition of A.

Proof. The proof of Constraints of type 1:

Let X ∈ Cn×n be the MPCEP-inverse of A. Then, X = A†A1A
† by The-

orem 3.1, which gives the condition c : R(X) ⊆ R(A†A1). Let u ∈ N (A1A
†),

then Xu = A†A1A
†u = 0, which implies N (A1A

†) ⊆ N (X). The condi-
tion r : R(X∗) ⊆ R((A1A

†)∗) is satisfied by R(X∗) ⊆ R((A1A
†)∗) if and only if

N (A1A
†) ⊆ N (X).

The proof of Constraints of type 2:

By Lemma 2.1, we have A1 = Ak(Ak)†A. Then

XAA†A1 = XAA†A1 = A†A1A
†AA†A1

= A†A1A
†A1 = A†Ak(Ak)†AA†Ak(Ak)†A

= A†Ak(Ak)†Ak(Ak)†A

= A†Ak(Ak)†A

= A†A1,

A1A
†AX = A1A

†AA†A1A
†

= A1A
†A1A

† = Ak(Ak)†AA†Ak(Ak)†AA†

= Ak(Ak)†Ak(Ak)†AA†

= Ak(Ak)†AA†

= A1A
†.

(42)

The condition C and R are satisfied by (42).

If we let B = A†A1 and C = A1A
†, then by the proof of Theorem 3.4, we

have that the MPCEP-inverse of A coincides with the (A†A1, A1A
†)-inverse of

A. That is, we have the following theorem.

Theorem 3.5. Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A.
Then, X is the (A†A1, A1A

†)-inverse of A, where A1 is the core part of the
Core-EP decomposition of A.
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Theorem 3.6. Let A ∈ Cn×n with ind (A) = k. The MPCEP-inverse of A
coincides with the (A†Ak, (Ak)∗)-inverse of A.

Proof. One can prove this theorem by using Theorem 2.5, Theorem 2.6 and
Theorem 2.7.

The MPCEP-inverse of A can be got by using the “S” part of the Core-EP
inverse and the “T” part of the CMP inverse by Theorem 3.6.

4. The CE matrix based on the Core-EP decomposition

We introduced CE matrix by mimicking the concept of EP matrix. The notation
[A,B] = AB −BA will be used in the sequel.

Definition 4.1. Let A ∈ Cn×n with A = A1+A2 be the Core-EP decomposition
of A as in (1). If A†A1 = A1A

†, then we call A is a CE matrix.

Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A. If A is a CE
matrix, then X is the (A†A1, A1A

†)-inverse by Theorem 3.5.

Theorem 4.1. Let A ∈ Cn×n. Then, A is a CE matrix if and only if [A†, �O, A] =
0.

Proof. By Theorem 3.3, we have AA†, �O = A1A
†. By Theorem 2.9, we have

A†, �O = A†Ak(Ak)†. Then, A†, �OA = A†Ak(Ak)†A = A†[Ak(Ak)†A] = A†A1.
Thus

A†, �OA−AA†, �O = A†A1 −A1A
† = 0

by the definition of the CE matrix.

Proposition 4.1. Let A ∈ Cn×n is a CE matrix with ind (A) = k. Then,
A†Ak+1 = Ak.

Proof. By the definition of the CE matrix, we have A†A1 = A1A
†, which is

equivalent to

(43) A†Ak(Ak)†A = Ak(Ak)†AA†

by Lemma 2.1. Post-multiplying by Ak on (43) gives

A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak

⇔ A†Ak(Ak)†AkA = Ak(Ak)†Ak

⇔ A†Ak+1 = Ak.

(44)

Thus, A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak if and only if A†Ak+1 = Ak. The proof
is finished by A†A1 = A1A

† implies A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak.

Proposition 4.2. Let A ∈ Cn×n with ind (A) = k. If A†Ak+1 = Ak, then
A†A2 ∈ A†, �O{1, 4}.
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Proof. By the hypothesis of the proposition, we have A†Ak+1 = Ak. From
Theorem 3.3, we have AA†, �O = A1A

† = Ak(Ak)†. In view of Lemma 2.1, we
have A1 = Ak(Ak)†A. Then

AA†, �O = A1A
† = Ak(Ak)†AA† = A†Ak+1(Ak)†AA†

= A†AAk(Ak)†AA† = A†A[Ak(Ak)†]∗(AA†)∗

= A†A[AA†Ak(Ak)†]∗ = A†A[Ak(Ak)†]∗

= A†AAk(Ak)† = A†AAA†, �O

= A†A2A†, �O.

(45)

The equality (45) gives AA†, �O = A†A2A†, �O. By Theorem 3.2, we have the
MPCEP-inverse of A is an outer inverse of A. Pre-multiplying by A†, �O on
AA†, �O = A†A2A†, �O gives A†, �O = A†, �OAA†, �O = A†, �OA†A2A†, �O, that is A†A2 is
an inner inverse of A†, �O. Since A†A2A†, �O = A†A2A†Ak(Ak)† = A†AAk(Ak)† =
A†Ak+1(Ak)† = Ak(Ak)†, then A†A2 ∈ A†, �O{4} by Ak(Ak)† = [Ak(Ak)†]∗.

5. Conclusions

One-sided MPCEP-inverse for matrices was introduced in this paper. The
MPCEP-inverse can be described by using the core part A1 in Core-EP de-
composition of A and the Moore-Penrose inverse of A. The MPCEP-inverse of
A coincides with the (A†Ak, (Ak)∗)-inverse of A, that is, the MPCEP-inverse

of A is A
(2)

R(A†Ak),N ((Ak)∗)
. In addition, the CE matrix was introduced, a nec-

essary and sufficient condition such that a matrix A to be a CE matrix is the
MPCEP-inverse of A commutes with A, that is [A†, �O, A] = 0, where A†, �O is the
MPCEP-inverse of A. The future perspectives for research are proposed:

Part 1. The reverse order law of the MPCEP-inverse.
Part 2. The rank properties of the MPCEP-inverse.
Part 3. The weighted MPCEP-inverse of matrices.
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Inequalities for the generalized inverse trigonometric and
hyperbolic functions with one parameter
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Abstract. In this paper, we show some inequalities for the generalized inverse trigono-
metric and hyperbolic functions with one parameter of (2, q). Especially, we also present
several Shafer-Fink, Wilker and Huygens type inequalities of these functions. These re-
sults are consistent with previously known results.

Keywords: generalized inverse trigonometric function; Lerch Phi function; Shafer-
Fink type inequalities; Wilker and Huygens type inequalities.

1. Introduction

For p, q ∈ (1,+∞) and x ∈ [0, 1], the function sinp,q(x) is defined by the inverse
function of

sin−1
p,q(x) =

∫ x

0
(1− tq)−1/pdt.

The function sin−1
p,q(x) is increasing in [0, 1] onto [0, πp,q/2] where

πp,q
2

= sin−1
p,q(1) =

∫ 1

0
(1− tq)−1/pdt =

1

q
B(1− 1

p
,
1

q
).

The function sinp,q(x) is defined on [0, πp,q/2] and can be extended to (−∞,+∞).
Similarly, we can define cosp,q(x), tanp,q(x) and their inverses (see [11]). In the
same way, we can define the generalized hyperbolic functions as follows:

sinh−1
p,q(x) =

∫ x

0
(1 + tq)−1/pdt, x ∈ R.

*. Corresponding author
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Recently, the arc lemniscate sine function and the hyperbolic arc lemniscate
sine function defined by

arcsl(x) =

∫ x

0
(1− t4)−1/2dt, |x| < 1(1)

and

arcslh(x) =

∫ x

0
(1 + t4)−1/2dt, x ∈ R(2)

are deeply studied. In fact, (1) and (2) are sin−1
2,4 and sinh−1

2,4 respectively.
Neuman used the arc lemniscate sine function and the hyperbolic arc lem-

niscate sine function, respectively, to define the arc lemniscate tangent function
and the hyperbolic arc lemniscate tangent function, as follows(see [14], [15]):

arctl(x) = arcsl

(
x

4
√
1 + x4

)
, x ∈ R,

arctlh(x) = arcslh

(
x

4
√
1− x4

)
, |x| < 1.

(3)

In [3], [4], Chen established several lemniscate function inequalities of the
Wilker and Huygens type. Recently, some Shafer-Fink type inequalities for the
lemniscate functions were established. In [5], inequalities of the Wilker and
Huygens type involving inverse trigonometric functions were given by Chen et.
al.. For more results, the reader may see references: [6], [10], [13], [16], [17].
In [18], Xu et. al. got some new bounds for the arc lemniscate functions. In
particular, from the point view of bivariate means, Zhao [20, 21, 22] et. al. dealt
with the arc lemniscate functions and got optimal bounds for these bivariate
means.

For several functions connected to the generalized inverse lemniscate and the
generalized hyperbolic inverse lemniscate functions, Yin and Lin [19] investi-
gated monotonicity and some inequalities. By utilizing the Lerch Phi function,
they provided a bound estimation of the generalized inverse lemniscate func-
tions. Later, some inequalities of the Shafer-Fink, Wilker, and Huygens types
were obtained.

The lemniscate inverse functions and the generalized inverse lemniscate func-
tions are the generalized (2, 4)-trigonometric and (2, 6)-trigonometric functions
respectively, thus are the special cases of the generalized (2, q)-trigonometric
functions. Motivated by the work of references [1, 4, 17, 19], we mainly study
the generalized (2, q)-trigonometric and hyperbolic functions:

sin−1
2,q(x) =

∫ x

0
(1− tq)−1/2dt, |x| < 1,

sinh−1
2,q(x) =

∫ x

0
(1 + tq)−1/2dt, x ∈ R.
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Previously, mathematicians focused on the study of generalized trigonomet-
ric and hyperbolic functions, the reader may refer to the literature [7, 8, 9, 12].
However, the generalized (2, q)-trigonometric and hyperbolic functions have
rarely been studied. Here, we mainly showed several the Shafer-Fink, Wilker
and Huygens type inequalities for the generalized (2, q)-trigonometric and hy-
perbolic functions.

2. Bounds of sin−1
2,q(x)

Lemma 2.1 ([19, Theorem 1.1]). Let −∞ < a < b < +∞, and let f, g : [a, b] →
R be continuous functions that are differentiable on (a, b) with f(a) = g(a) = 0
or f(b) = g(b) = 0. Assume that g′(x) ̸= 0 for each x ∈ (a, b). If f ′/g′ is
increasing (decreasing) on (a, b), then so is f/g.

Theorem 2.1. For all x ∈ (0, 1) and q ≥ 4, we have

(4) αxΦ(xq, 3/2, 1/q) < sin−1
2,q(x) < βxΦ(xq, 3/2, 1/q)

with the best possible constants α = q−
3
2 and β = B(1/2,1/q)

qζ(3/2,1/q) where

Φ(z, s, α) =
∞∑
n=0

zn

(n+ α)s
, α ̸= 0,−1 . . . , |z| < 1,

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt,

ζ(s, α) = Φ(1, s, α) =
∞∑
n=0

1

(n+ α)s

are Lerch Phi function, classical beta function and Hurwitz zeta function respec-
tively. If 1 < q ≤ 3, the inequalities (4) are inverse.

Proof of Theorem 2.1. Let

(5) F (x) =
sin−1

2,q(x)

xΦ(xq, 3/2, 1/q)
.

Applying the Lemma 2.1 with f(x) = sin−1
2,q(x) and g(x) = xΦ(xq, 3/2, 1/q) and

simple computation, we get

f(0+) = g(0+) = 0, f ′(x) =
1√

1− xq
, g′(x) = q

3
2

∞∑
n=0

xqn√
qn+ 1

.

So, we obtain
f ′(x)

g′(x)
=

1

q
3
2h(xq)

,
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where

h(t) =
√
1− t

∞∑
n=0

tn√
qn+ 1

, t ∈ (0, 1).

By differentiation, we get

2
√
1− th′(t) =

∞∑
n=0

(
2n+ 2√
qn+ q + 1

− 2n+ 1√
qn+ 1

)tn.

Let an = 2n+2√
qn+q+1

− 2n+1√
qn+1

, then

an =
(4− q)n+ 3− q

(2n+ 2)(qn+ 1)
√
qn+ q + 1 + (2n+ 1)(qn+ q + 1)

√
qn+ 1

.

If q ≥ 4, we have an < 0, thus h′(t) < 0, it follows that h(t) is strictly decreasing

on (0, 1). This implies thatf
′(x)

g′(x) is strictly increasing on(0, 1), by Lemma 2.1,

we conclude that F (x) is strictly increasing on(0, 1). Thus F (0) < F (x) < F (1)
for x ∈ (0, 1). By simple computation, we get

F (0+) = lim
x→0+

f ′(x)

g′(x)
= q−

3
2 ,

F (1−) =
sin−1

2,q(1)

Φ(1, 3/2, 1/q)
=
B(1/2, 1/q)

qζ(3/2, 1/q)
.

(6)

If 1 < q ≤ 3, we easily complete the proof.

Remark 2.1. When 3 < q < 4, the situation is more complex. Taking q = 3.1
as an example, then by (5), we have

F (x) =
sin−1

2, 31
10

(x)

xΦ(x
31
10 , 32 ,

10
31)

.

By (6), we get

F (1−) =
B(12 ,

10
31)

31
10ζ(

3
2 ,

10
31)

= 0.183373 . . . .

However, F (0.9) = 0.183419 . . . > F (1−). Therefore, it is necessary to find the
maximum value of F (x) in (0, 1). This is a challenging problem and open.

3. Shafer-Fink type inequalities

Lemma 3.1. For q > 1, we have

(i) The function f1(x) =
sin−1

2,q(x)

x is strictly increasing on (0, 1) with range
(1,

π2,q

2 ), where
π2,q

2 = sin−1
2,q(1) =

1
qB(12 ,

1
q );
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(ii) The function f2(x) =
sinh−1

2,q(x)

x is strictly decreasing on (0,+∞) with range
(0, 1).

Proof of Lemma 3.1. Lemma 2.1 allows us to simply finish the proof.

Lemma 3.2. For q ≥ 4, we have

(i) The function g1(x) =
x− q√1−xq sin−1

2,q(x)

sin−1
2,q(x)−x

is strictly increasing on (0, 1) with

range ( q+2
q , 2

π2,q−2);

(ii) The function g2(x) =
q√1+xq sinh−1

2,q(x)−x

x−sinh−1
2,q(x)

is strictly decreasing on (0,+∞)

with range (
π2q/(q+2),q

2 − 1, q+2
q ) where

π2q/(q+2),q

2 = 1
qB( q−2

2q ,
1
q ).

Proof of Lemma 3.2. (i) Let g1(x) =
g11(x)
g12(x)

where g11(x) = x− q
√
1− xq sin−1

2,q(x)

and g12(x) = sin−1
2,q(x)− x. Then g11(0

+) = g12(0
+) = 0. By differentiation, we

obtain

g′11(x)

g′12(x)
=

1 + xq−1(1− xq)
1−q
q sin−1

2,q(x)− (1− xq)
2−q
2q

(1− xq)−
1
2 − 1

with g′11(0
+) = g12(0

+) = 0. Computing once more, we obtain

g′′11(x)

g′′12(x)
=

2(q − 1)

q

sin−1
2,q(x)

x
(1− xq)

2−q
2q +

4− q

q
(1− xq)

1
q .

As q ≥ 4, by lemma 3.1,
g′′11(x)
g′′12(x)

is strictly increasing, as a result, g1(x) strictly

increases by Lemma 2.1, it follows that g1(0
+) < g1(x) < g1(1

−). Simple com-
putation yields g1(0

+) = q+2
q and g1(1

−) = 2
π2,q−2 .

(ii) Let g2(x) =
g21(x)
g22(x)

where g21(x) =
q
√
1 + xq sinh−1

2,q(x) − x and g22(x) =

x− sinh−1
2,q(x). Then g21(0

+) = g22(0
+) = 0. By differentiation, we obtain

g′21(x)

g′22(x)
=
xq−1(1 + xq)

1−q
q sinh−1

2,q(x) + (1 + xq)
2−q
2q − 1

1− (1− xq)−
1
2

with g′11(0
+) = g′12(0

+) = 0. Differentiating again, we get

g′′21(x)

g′′22(x)
=

2(q − 1)

q

sinh−1
2,q(x)

x
(1 + xq)

2−q
2q +

4− q

q
(1 + xq)

1
q .

As q ≥ 4,
g′′21(x)
g′′22(x)

is strictly decreasing by lemma 3.1. Hence, g2(x) is strictly de-

creasing by Lemma 2.1, thus, it follows g2(0
+) > g2(x) > g2(+∞). The limiting

values read as follows

g2(0
+) =

q + 2

q
,
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g2(+∞) = sinh−1
2.q(+∞)− 1 =

∫ +∞

0
(1 + tq)−1/2dt− 1

=

∫ 1

0
(1− sq)

−q−2
2q ds− 1 =

π2q/(q+2),q

2
− 1,

where we apply the substitution 1 + tq = 1
1−sq . This completes the proof.

Theorem 3.1. For q ≥ 4, the following inequalities exist:

(i)
π2,q

2 + (π2,q − 2) q
√
1− xq

<
sin−1

2,q(x)

x
<

2q + 2

q + 2 + q q
√
1− xq

, 0 < |x| < 1;

(ii)
π2q/(q+2),q

(π2q/(q+2),q − 2) + 2 q
√
1 + xq

<
sinh−1

2,q(x)

x
<

2q + 2

q + 2 + q q
√
1 + xq

, |x| > 0.

Proof of Theorem 3.1. We finished the proof by utilizing Lemma 3.2.

4. Wilker and Huygens type inequalities

The fact that the Pochhammers symbol (a)n is defined by

(a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1), n = 1, 2, . . . ,

and the ordinary binomial expansion can be written with the following notation,

(7) (1− z)−a =
∞∑
n=0

(a)n
n!

zn.

As an analogy to arc lemniscate functions which are defined in (3), tan−1
2,q(x)

and tanh−1
2,q(x) have been defined as follows:

tan−1
2,q(x) = sin−1

2,q

(
x

q
√
1 + xq

)
=

∫ x
q√1+xq

0
(1− tq)−1/2dt, x ∈ R,

tanh−1
2,q(x) = sinh−1

2,q

(
x

q
√
1− xq

)
=

∫ x
q√1−xq

0
(1 + tq)−1/2dt, |x| < 1.

By using (7), we get the following power series expansions:

Lemma 4.1. For q > 1, we have

sin−1
2,q(x) =

∞∑
n=0

(12)n

(qn+ 1)n!
xqn+1, |x| < 1,(8)

sinh−1
2,q(x) =

∞∑
n=0

(−1)n
(12)n

(qn+ 1)n!
xqn+1, x ∈ R,(9)

tan−1
2,q(x) =

∞∑
n=0

(−1)n
(12 + 1

q )n

(qn+ 1)n!
xqn+1, x ∈ R,(10)

tanh−1
2,q(x) =

∞∑
n=0

(12 + 1
q )n

(qn+ 1)n!
xqn+1, x ∈ R, |x| < 1.(11)
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Proof of Lemma 4.1. We only prove (10), other proofs are completely similar.
By simple computation, we get

d

dx

(
tan−1

2,q(x)
)
=

d

dx

∫ x
q√1+xq

0

1√
1− tq

dt = (1 + xq)
− 1

2
− 1

q

=

∞∑
n=0

(−1)n
(12 + 1

q )n

n!
xqn.

Hence,

tan−1
2,q(x) =

∞∑
n=0

(−1)n
(12 + 1

q )n

(qn+ 1)n!
xqn+1.

Lemma 4.2. Let q ≥ 1 be an integer. Then for all 0 < x < 1,

(12) (i)

2p−1∑
k=0

(−1)kakx
qk+1 < sinh−1

2,q(x) <

2p∑
k=0

(−1)kakx
qk+1

where

ak =
(12)k

(qk + 1)k!
, k = 0, 1 . . . .

(13) (ii)

2p−1∑
k=0

(−1)kbkx
qk+1 < tan−1

2,q(x) <

2p∑
k=0

(−1)kbkx
qk+1

where

bk =
(12 + 1

q )k

(qk + 1)k!
, k = 0, 1 . . . .

Proof of Lemma 4.2. We only prove (i). Simple computation results in

ak
ak+1

=
(12)k

(qk + 1)k!

(qk + q + 1)(k + 1)!

(12)k+1

=
(qk + q + 1)(2k + 2)

(qk + 1)(2k + 1)
> 1.

That is to say, ak > ak+1. We have

akx
qk+1 − ak+1x

q(k+1)+1 = xqk+1(ak − ak+1x
q) > 0

because of ak+1x
q < ak+1 < ak. According to (9), we get

sinh−1
2,q(x) =

∞∑
n=0

(−1)nanx
qn+1

= (a0x− a1x
q+1) + (a2x

2q+1 − a3x
3q+1) + . . .(14)

= a0x− (a1x
q+1 − a2x

2q+1)− (a3x
3q+1 − a4x

4q+1) + . . . .(15)

By using (14) and (15), we complete the proof of (i).
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Theorem 4.1. For q ≥ 2 and 0 < x < 1, we have

(16)

(
sin−1

2,q(x)

x

)2

+
tan−1

2,q(x)

x
> 2.

Proof of Theorem 4.1. For 0 < x < 1, by using (8) and (13), we get(
sin−1

2,q(x)

x

)2

=

(
1 +

1

2(q + 1)
xq +

3

8(2q + 1)
x2q + . . .

)2

= 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q + . . .

> 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q(17)

and

(18) 1− q + 2

2q(q + 1)
xq <

tan−1
2,q(x)

x
< 1.

So, we find(
sin−1

2,q(x)

x

)2

+
tan−1

2,q(x)

x
− 2

> 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q + 1− q + 2

2q(q + 1)
xq − 2

>
q − 2

2q(q + 1)
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q > 0

since q ≥ 2.

Theorem 4.2. For q ≥ 3 and 0 < x < 1, we have

(19)

(
x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

< 2.

Proof of Theorem 4.2. For 0 < x < 1, by using (17) and (18), we get(
x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

− 2

<
1

1 + 1
q+1x

q + 3q2+8q+4
4(2q+1)(q+1)2

x2q
+

1

1− q+2
2q(q+1)x

q
− 2

=

xq[(q + 2)(3q2 + 8q + 4)x2q − (q + 1)(3q3 − 16q − 8)xq

− 2(q − 2)(2q + 1)(q + 1)2]

4q(2q + 1)(q + 1)3(1 + 1
q+1x

q + 3q2+8q+4
4(2q+1)(q+1)2

x2q)(1− q+2
2q(q+1)x

q)
.
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Let f(t) = at2 + bt+ c where

a = (q + 2)(3q2 + 8q + 4),

b = −(q + 1)(3q3 − 16q − 8),

c = −2(q − 2)(2q + 1)(q + 1)2,

t = xq ∈ (0, 1).

As q ≥ 3, so a > 0, b < 0, c < 0 and f(1−) = −7q4 − 2q3 + 42q2 + 58q + 20 < 0,
Using the property of quadratic function, we get f(t) < 0, for all t ∈ (0, 1).
Hence, (

x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

− 2 < 0.

The proof is complete.

Corollary 4.1. For q ≥ 3 and 0 < x < 1, we have

(20)
2 sin−1

2,q(x)

x
+

tan−1
2,q(x)

x
> 3.

Proof of Corollary 4.1. Another option for inequality (19) is

2
1(

sin−1
2,q(x)

x

)2 + 1
tan−1

2,q(x)

x

> 1.

The arithmetic-geometric-harmonic mean inequality provides the following re-
sult:

2 sin−1
2,q(x)

x
+

tan−1
2,q(x)

x
≥ 3

3

√√√√(sin−1
2,q(x)

x

)2
tan−1

2,q(x)

x

≥ 3
2

1(
sin−1

2,q(x)

x

)2 + 1
tan−1

2,q(x)

x

> 3.

In [2], Chen and Cheung proved the following inequalities:( x

arcsinx

)2
+

x

arctanx
< 2, 0 < |x| < 1,

2 arcsinx

x
+

arctanx

x
> 3, 0 < |x| < 1.

So, we conject that the condition q ≥ 3 in Theorem 4.2 and Corollary 4.1 can
be changed to q ≥ 2.
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Theorem 4.3. For q > 1 and 0 < x < 1, we have

(21)

(
x

tanh−1
2,q(x)

)2

+
x

sinh−1
2,q(x)

< 2.

Proof of Theorem 4.3. For 0 < x < 1, by using (11) and (12), we have(
tanh−1

2,q(x)

x

)2

=

(
1 +

q + 2

2q(q + 1)
xq + . . .

)2

= 1 +
q + 2

q(q + 1)
xq + . . .

> 1 +
q + 2

q(q + 1)
xq

and
sinh−1

2,q(x)

x
> 1− 1

2(q + 1)
xq.

So, we get (
x

tanh−1
2,q(x)

)2

+
x

sinh−1
2,q(x)

− 2

<
1

1 + q+2
q(q+1)x

q
+

1

1− 1
2(q+1)x

q
− 2

=
xq ((2q + 4)xq − (q + 1)(q + 4))

(2q + 2− xq) (q2 + q + (q + 2)xq)
< 0

since

(2q + 4)xq − (q + 1)(q + 4) < (2q + 4)− (q + 1)(q + 4) < 0.

This completes the proof.

Corollary 4.2. For q > 1 and 0 < x < 1, we have

(22)

(
tanh−1

2,q(x)

x

)2

+
sinh−1

2,q(x)

x
> 2

and

(23)
2 tanh−1

2,q(x)

x
+

sinh−1
2,q(x)

x
> 3.

Proof of Corollary 4.2. Inequality (21) can be rewritten as

2
1(

tanh−1
2,q(x)

x

)2 + 1
sinh−1

2,q(x)

x

> 1.
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The result of applying the arithmetic-geometric-harmonic mean inequality is(
tanh−1

2,q(x)

x

)2

+
sinh−1

2,q(x)

x

2
≥

√√√√(tanh−1
2,q(x)

x

)2
sinh−1

2,q(x)

x

≥ 2
1(

tanh−1
2,q(x)

x

)2 + 1
sinh−1

2,q(x)

x

> 1

and

2 tanh−1
2,q(x)

x
+

sinh−1
2,q(x)

x
≥ 3

3

√√√√(tanh−1
2,q(x)

x

)2
sinh−1

2,q(x)

x
> 3.
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[13] J. Liu, C. P. Chen, Padé approximant related to inequalities for Gauss
lemniscate functions, J. Inequal. Appl., 2016 (2016), 320.

[14] E. Neuman, On Gauss lemniscate functions and lemniscatic mean, Math.
Pannon., 18 (2007), 77-94.

[15] E. Neuman, On Gauss lemniscate functions and lemniscatic mean 2, Math.
Pannon., 23 (2012), 65-73.

[16] J. L. Sun and C. P. Chen, Shafer-type inequalities for inverse trigonometric
functions and Gauss lemniscate functions, J. Inequal. Appl., 2016 (2016),
212.

[17] M. J. Wei, Y. He and G. D. Wang, Shafer-Fink type inequalities for arc
lemniscate functions, Rev. R. Acad. Cienc. Exactas F́ıs. Nat., Ser. A Mat.,
RACSAM, 114 (2020), Paper No. 53, 14 pages.

[18] H. Z. Xu, W. M. Qian and Y. M. Chu, Sharp bounds for the lemniscatic
mean by the one-parameter geometric and quadratic means, Rev. R. Acad.
Cienc. Exactas F́ıs. Nat., Ser. A Mat., RACSAM, 116 (2022), Paper No.
21.

[19] L. Yin, X. L. Lin, Monotonicity and inequalities related to the generalized
inverse Lemniscate functions, Rev. R. Acad. Cienc. Exactas F́ıs. Nat., Ser.
A Mat., RACSAM, 116 (2021), Paper No. 52, 13 pages.



550 X. L. WANG and L. YIN

[20] T. H. Zhao, W. M. Qian and Y. M. Chu, On approximating the arc lem-
niscate functions, Indian J. Pure Appl. Math., 53 (2022), 316-329.

[21] T. H. Zhao, Zh. H. Shen and Y. M. Chu, Sharp power mean bounds for
the lemniscate type means, Rev. R. Acad. Cienc. Exactas F́ıs. Nat., Ser. A
Mat., RACSAM, 115 (2021), Paper No. 174, 16 pages.

[22] T. H. Zhao, M. K. Wang, Sharp bounds for the lemniscatic mean by the
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Abstract. In this paper, we present singular value inequalities for matrices. As a
consequence, we prove singular value inequalities for sector matrices. Moreover, we give
singular value inequalities involving operator concave function, which are generalizations
of some existing results.
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1. Introduction

Throughout this paper, let Mn represent the set of all n× n complex matrices.
In denotes the identity matrix. For two Hermitian matrices A,B ∈Mn, we use
A ≥ B to mean that A−B is positive semidefinite. If the eigenvalues of matrix
A ∈ Mn are all real, the jth largest eigenvalue of A is denoted by λj(A), j =
1, 2, · · · , n. The singular values sj(A)(j = 1, 2, · · · , n) of A are the eigenvalues

of |A| = (A∗A)
1
2 arrange in a decreasing order. For A = Re(A) + iIm(A),

the matrices Re(A) = A+A∗

2 and Im(A) = A−A∗

2i are called the real part and
imaginary part of A, respectively. A real valued continuous function f on an
interval J is called matrix concave of order n if f(αA + (1 − α)B) ≥ αf(A) +
(1 − α)f(B) for any two Hermitian matrices A,B ∈ Mn with spectrum in J
and all α ∈ [0, 1]. If f is operator concave function for all n, then it is called
operator concave. It is well known that a continuous non-negative function f
on [0,∞) is operator monotone if and only if f is operator concave.

The numerical range of A ∈Mn is described by

W (A) = {x∗Ax|x ∈ Cn, x∗x = 1}.

For α ∈ [0, π2 ), we define a sector on the complex plane

Sα = {z ∈ C : Re(z) > 0, |Im(z)| ≤ tanαRe(z)}.

Clearly, for some α ∈ [0, π2 ), if W (A),W (B) ⊂ Sα, then W (A + B) ⊂ Sα.
As 0 /∈ Sα, if W (A) ⊂ Sα, then A is nonsingular. A matrix A ∈ Mn is said to
be sector matrix if its numerical range is contained in Sα, for some α ∈ [0, π2 ).
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Garg and Aujla [1] proved that if A,B ∈Mn and 1 ≤ r ≤ 2. Then

(1.1)
k∏

j=1

sj(|A+B|r) ≤
k∏

j=1

sj(In + |A|r)
k∏

j=1

sj(In + |B|r)

and

(1.2)

k∏
j=1

sj(In + f(|A+B|)) ≤
k∏

j=1

sj(In + f(|A|))
k∏

j=1

sj(In + f(|B|)),

where f : [0,∞) → [0,∞) is an operator concave function and 1 ≤ k ≤ n.

Xue and Hu [2] showed that if A,B ∈ Mn such that W (A),W (B) ⊂ Sα.
Then

(1.3)

k∏
j=1

sj(A+B) ≤
k∏

j=1

s2j (In +
sec(α)

2
Re(A))

k∏
j=1

s2j (In +
sec(α)

2
Re(B))

and

(1.4)
k∏

j=1

sj(In+A+B) ≤
k∏

j=1

s2j (In+
sec(α)

2
Re(A))

k∏
j=1

s2j (In+
sec(α)

2
Re(B)),

where 1 ≤ k ≤ n.

Recently, Lin and Fu [3], Yang [4] and Nasiri and Furuichi [5] independently
gave some singular value inequalities for sector matrices related to Garg and
Aujla’s results.

In this paper, we give some new singular value inequalities for sector matri-
ces, which are generalizations of existing results.

2. Main results

We begin this section with the following lemmas which will turn out to be useful
in the proof of our results.

Lemma 2.1 ([6]). Let A,B ∈ Mn. There exist unitary matrices U, V ∈ Mn

such that

|A+B| ≤ U∗|A|U + V ∗|B|V.

Lemma 2.2 ([7]). Let A,B ∈Mn be positive semidefinite matrices. Then A♯B
is the largest Hermitian matrix X such that[

A X
X B

]
is positive semidefinite.
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Lemma 2.3 ([8]). Let A ∈Mn be Hermitian matrix. Then

k∏
j=1

sj(A) = max |det(U∗AU)| ,

where maximum is taken over n× k matrices U for U∗U = Ik, 1 ≤ k ≤ n.

Lemma 2.4 ([1]). Let A ∈ Mn be Hermitian matrix and B be positive definite
matrix with A < B,−A < B. Then

| detA| < detB.

Lemma 2.5 ([1]). Let A,B ∈Mn be positive semidefinite matrices. Then

k∏
j=1

λj(A♯B) ≤ (
k∏

j=1

λj(A))♯(
k∏

j=1

λj(B)), 1 ≤ k ≤ n.

Lemma 2.6 ([6]). Let A,B ∈Mn. Then

k∏
j=1

sj(AB) ≤
k∏

j=1

sj(A)sj(B), 1 ≤ k ≤ n.

Lemma 2.7 ([1]). The inequality

(1 + xt)r ≤ (1 + xr)t

holds, for all x > 0 and 0 ≤ r ≤ t.

Lemma 2.8 ([9]). Let A ∈ Mn be such that W (A) ⊂ Sα and A = U |A| be the
polar decomposition of A. Then

|A| ≤ sec(α)

2
(Re(A) + U∗(Re(A))U).

Lemma 2.9 ([10]). If f : [0,+∞) → [0,+∞) is operator monotone. Then

f(αt) ≤ αf(t),

for α ≥ 1.

Theorem 2.1. Let A,B ∈Mn and µ > 0. Then

k∏
j=1

sj(|A+B|r) ≤ µrk
k∏

j=1

sj(In +
|A|2

µ2
)
r
2

k∏
j=1

sj(In +
|B|2

µ2
)
r
2 ,

where 1 ≤ r ≤ 2 and 1 ≤ k ≤ n.
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Proof. For A,B ∈Mn, by Lemma 2.1, there exist unitary matrices V1, V2 ∈Mn

such that

(2.1) |A+B| ≤ V ∗
1 |A|V1 + V2 ∗ |B|V2.

By µ > 0, we have

(2.2)

[
µIn V ∗

1 |A|V1
V ∗
2 |B|V2 µIn

] [
µIn V ∗

2 |B|V2
V ∗
1 |A|V1 µIn

]

=

[
µ2In + V ∗

1 |A|2 V1 µ(V ∗
1 |A|V1 + V ∗

2 |B|V2)
µ(V ∗

1 |A|V1 + V ∗
2 |B|V2) µ2In + V ∗

2 |B|2 V2

]
≥ 0.

Using (2.1), (2.2) and Lemma 2.2, we have

(2.3)

±µ |A+B| ≤ µ(V ∗
1 |A|V1 + V ∗

2 |B|V2)

≤ (µ2In + V ∗
1 |A|2 V1)♯(µ2In + V ∗

2 |B|2 V2).

By Lemma 2.3, there exists an n× k matrix U with U∗U = Ik and

(2.4)
k∏

j=1

sj(|A+B|) = |det(U∗(A+B)U)| , 1 ≤ k ≤ n.

By (2.3) and Lemma 2.4, we have

(2.5) |det(U∗µ|A+B|U)| ≤ det[U∗((µ2In+V
∗
1 |A|2 V1)♯(µ2In+V ∗

2 |B|2 V2))U ].

Now, from (2.4), (2.5), Lemma 2.5 and Lemma 2.6, we have

k∏
j=1

sj(µ |A+B|) ≤ det[U∗((µ2In + V ∗
1 |A|2 V1)♯(µ2In + V ∗

2 |B|2 V2))U ]

≤ max | det[V ∗((µ2In + V ∗
1 |A|2 V1)♯(µ2In + V ∗

2 |B|2 V2))V ]|

=
k∏

j=1

sj((µ
2In + V ∗

1 |A|2 V1)♯(µ2In + V ∗
2 |B|2 V2))

(byLemma2.3)

≤

√√√√ k∏
j=1

sj(µ2In + V ∗
1 |A|2 V1)

k∏
j=1

sj(µ2In + V ∗
2 |B|2 V2)

≤

√√√√ k∏
j=1

sj(µ2In + |A|2)
k∏

j=1

sj(µ2In + |B|2), 1 ≤ k ≤ n.
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That is

k∏
j=1

sj(|A+B|2) ≤ 1

µ2k

k∏
j=1

sj(µ
2In + |A|2)

k∏
j=1

sj(µ
2In + |B|2)

= µ2k
k∏

j=1

sj(In +
|A|2

µ2
)

k∏
j=1

sj(In +
|B|2

µ2
), 1 ≤ k ≤ n.

Then

k∏
j=1

sj(|A+B|r) ≤ µrk
k∏

j=1

sj(In +
|A|2

µ2
)
r
2

k∏
j=1

sj(In +
|B|2

µ2
)
r
2 .

This completes the proof.

Substituting A and B with A
µ and B

µ in the inequality (1.1), respectively, we
have the following inequality

(2.6)
k∏

j=1

sj(|A+B|r) ≤ µrk
k∏

j=1

sj(In +
|A|r

µr
)

k∏
j=1

sj(In +
|B|r

µr
).

Applying Lemma 2.7, we can obtain the following corollary, which is sharper
than inequality (2.6).

Corollary 2.1. Let A,B ∈Mn and µ > 0. Then

k∏
j=1

sj(|A+B|r) ≤ µrk
k∏

j=1

sj(In +
|A|2

µ2
)
r
2

k∏
j=1

sj(In +
|B|2

µ2
)
r
2

≤ µrk
k∏

j=1

sj(In +
|A|r

µr
)

k∏
j=1

sj(In +
|B|r

µr
),

where 1 ≤ r ≤ 2 and 1 ≤ k ≤ n.

Proof. For 1 ≤ j ≤ n and 1 ≤ r ≤ 2, by Lemma 2.7, we have

(1 + (
sj(A)

µ
)2)

r
2 ≤ 1 + (

sj(A)

µ
)r.

That is

(2.7) sj(In +
|A|2

µ2
)
r
2 ≤ sj(In + (

|A|
µ

)r).
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Now, from Theorem 2.1 and inequality (2.7), we get

k∏
j=1

sj(|A+B|r) ≤ µrk
k∏

j=1

sj(In +
|A|2

µ2
)
r
2

k∏
j=1

sj(In +
|B|2

µ2
)
r
2

≤ µrk
k∏

j=1

sj(In +
|A|r

µr
)

k∏
j=1

sj(In +
|B|r

µr
).

This completes the proof.

Remark 2.1. Let µ = 1 in Corollary 2.1. Obviously, Corollary 2.1 is a gener-
alization of the inequality (1.1).

Using Corollary 2.1, we have the following Theorem which is a generalization
of the inequality (1.3).

Theorem 2.2. Let A,B ∈Mn such that W (A),W (B) ⊂ Sα. Then

k∏
j=1

sj(A+B) ≤ µk
k∏

j=1

s2j (In +
sec(α)

2µ
Re(A))s2j (In +

sec(α)

2µ
Re(B)),

where 1 ≤ k ≤ n and µ > 0.

Proof. Let U, V be unitary matrices, we have the following chain of inequalities:

k∏
j=1

sj(A+B) =
k∏

j=1

sj(|A+B|)

≤ µk
k∏

j=1

sj(In +
|A|
µ

)
k∏

j=1

sj(In +
|B|
µ

) (byCorollary2.1)

≤ µk
k∏

j=1

sj(In +
sec(α)

2µ
(Re(A) + U∗Re(A)U))

sj(In +
sec(α)

2µ
(Re(B) + V ∗Re(B)V )) (byLemma2.8)

≤ µk
k∏

j=1

sj(In +
sec(α)

2µ
Re(A))sj(In +

sec(α)

2µ
U∗Re(A)U)

k∏
j=1

sj(In +
sec(α)

2µ
Re(B))sj(In +

sec(α)

2µ
V ∗Re(B)V )
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(by(1.2))

= µk
k∏

j=1

sj(In +
sec(α)

2µ
Re(A))sj(U

∗(In +
sec(α)

2µ
Re(A))U)

k∏
j=1

sj(In +
sec(α)

2µ
Re(B))sj(V

∗(In +
sec(α)

2µ
Re(B))V )

≤ µk
k∏

j=1

s2j (In +
sec(α)

2µ
Re(A))s2j (In +

sec(α)

2µ
Re(B))

(byLemma2.6).

This completes the proof.

Theorem 2.3. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα and a, b > 0.
Then

k∏
j=1

sj(In + f(|aA+ bB|))

≤
k∏

j=1

s2j (In + sec(α)f(
aRe(A)

2
))

k∏
j=1

s2j (In + sec(α)f(
bRe(B)

2
)),(2.8)

where f : [0,+∞) → [0,+∞) is operator concave function, 1 ≤ k ≤ n.

Proof. Let U, V be unitary matrices, we have the following chain of inequalities:

k∏
j=1

sj(In + f(|aA+ bB|))

≤
k∏

j=1

sj(In + f(a|A|))
k∏

j=1

sj(In + f(b|B|)) (by(1.2))

≤
k∏

j=1

sj(In + f(
a sec(α)

2
(Re(A) + U∗

1Re(A)U1)))

k∏
j=1

sj(In + f(
a sec(α)

2
(Re(B) + U∗

2Re(B)U2))) (byLemma2.8)

≤
k∏

j=1

sj(In + f(
a sec(α)

2
Re(A))sj(In + f(

a sec(α)

2
U∗
1Re(A)U1))
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k∏
j=1

sj(In + f(
b sec(α)

2
Re(B))sj(In + f(

a sec(α)

2
U∗
2Re(B)U2)) (by(1.2))

≤
k∏

j=1

s2j (In + f(
a sec(α)

2
Re(A))

k∏
j=1

s2j (In + f(
b sec(α)

2
Re(B))

(byLemma2.6)

≤
k∏

j=1

s2j (In + sec(α)f(
aRe(A)

2
))

k∏
j=1

s2j (In + sec(α)f(
bRe(B)

2
))

(byLemma2.9).

This completes the proof.

Remark 2.2. Let f(t) = t and a = b = 1 in Theorem 2.3, we obtain the
inequality (1.4).
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Abstract. S. Chouingou, M. A. Hilali, M. R. Hilali and A. Zaim have recently proved,
in certain cases, a relative Hilali conjecture. This is an inequality about the dimensions
of the kernel of homomorphisms of rational homotopy groups and rational homology
groups, hence shall be called a Kernel-relative Hilali conjecture. In this paper we add
another relative Hilali conjecture with respect to the cokernel of such homomorphisms,
which shall be called a Cokernel-relative Hilali conjecture. We consider some examples
for these conjectures and discuss conditions under which these conjectures hold and
also conditions under which they are equivalent to each other. As byproducts of these
computations, we show that dim(π∗(X)⊗Q) and the formal dimension nX of X have
the same parity and that the Hilali conjecture holds when dim(π∗(X)⊗Q) ≤ 4.
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1. Introduction

The homotopy and homology ranks of a topological space X are respectively de-
fined by dim(π∗(X)⊗Q) and dimH∗(X;Q), where π∗(X)⊗Q :=

∑
i≧1 πi(X)⊗Q

and H∗(X;Q) :=
∑

i≧0Hi(X;Q). Since Q is a field, it follows from the Univer-
sal Coefficient Theorem for the homology group, involving the torsion-module
Tor(A,B), that we have Hi(X;Q) ∼= Hi(X)⊗Q where Hi(X) := Hi(X;Z). So,
we use H∗(X)⊗Q instead of H∗(X;Q).

A rationally elliptic space is a simply connected topological space X such
that

dim (π∗(X)⊗Q) <∞ and dim (H∗(X)⊗Q) <∞.

In [9] M. R. Hilali conjectured that if X is a rationally elliptic space, then the
following inequality holds:

(1.1) dim(π∗(X)⊗Q) ≦ dim (H∗(X)⊗Q) .

Namely, since X is simply connected, (1.1) means that

dim

⊕
i≧2

πi(X)⊗Q

 ≦ 1 + dim

⊕
i≧2

Hi(X)⊗Q

 .
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Remark 1.1. Usually the Hilali conjecture is the following inequality, using the
rational cohomology group:

(1.2) dim(π∗(X)⊗Q) ≦ dimH∗(X;Q).

However, since dimH∗(X;Q) < ∞ and dimH∗(X;Q) < ∞, namely H∗(X;Q)
andH∗(X;Q) are finitely generated1, we haveH∗(X;Q) ∼= Hom ((H∗(X;Q),Q)
(more precisely, H i(X;Q) ∼= Hom ((Hi(X;Q),Q) for each i), so H∗(X;Q) ∼=
H∗(X;Q), hence dimH∗(X;Q) = dimH∗(X;Q). Therefore, (1.1) and (1.2) are
the same. Since we use (rational) Hurewicz Theorem later, it is better to use
homology groups instead of cohomology groups.

Remark 1.2. In [19] we showed the Hilali conjecture “modulo product”, which
is that for any rationally elliptic space X such that its fundamental group is an
Abelian group, then there exists some integer n0 such that for any n ≥ n0 the
following strict inequality holds:

dim (π∗(X
n)⊗Q) < dim (H∗(X

n)⊗Q) ,

where Xn is the Cartesian product Xn = X × · · · ×X︸ ︷︷ ︸
n

. As to some work on

such an integer n0 and related topics, see [11, 12, 20].

In our previous paper [17] (also see [18]) we made the following conjecture,
called a relative Hilali conjecture:

Conjecture 1.1. For a continuous map f : X → Y of rationally elliptic spaces
X and Y , the following inequality holds:∑

i≧2

dim (Ker(πi(f)⊗Q)) ≦ 1 +
∑
i≧2

dim (Ker(Hi(f)⊗Q)) .

As remarked below (a remark right after Conjecture 2.1 below in §2), in the
above conjecture it suffices to assume only that the source space X is rationally
elliptic.

In [2, 21] S. Chouingou, M. A. Hilali, M. R. Hilali and A. Zaim have proved
this relative conjecture positively in some cases. This relative conjecture is a
conjecture using the kernel of the homomorphisms π∗(f) ⊗ Q : π∗(X) ⊗ Q →
π∗(Y ) ⊗ Q and H∗(f) ⊗ Q : H∗(X) ⊗ Q → H∗(Y ) ⊗ Q. So, this shall be
called a Kernel-relative Hilali conjecture, abusing words. In this note we add
another relative conjecture, called a Cokernel-relative Hilali conjecture, using the
cokernel of these two homomorphisms. We consider some examples for these two
conjectures and we discuss conditions under which these two conjectures hold

1. If H∗(X;Q) is not finitely generated, then we do not have H∗(X;Q) ∼= H∗(X;Q).
Indeed, if H∗(X;Q) = ⊕n∈NQ, which is note finitely generated, then H∗(X;Q) ∼=
Hom(H∗(X;Q),Q) =

∏
n∈N Q. Thus, H∗(X;Q) ̸∼= H∗(X;Q).
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and also conditions under which they are equivalent to each other. For example,
if the above inequality (1.1) becomes equality for both X and Y , then for any
continuous map f : X → Y the Kernel-relative Hilali conjecture holds if and
only if the Cokernel-relative Hilali conjecture holds.

As byproducts of these computations and using the well-known stringent
restrictions on homotopy groups, we show that if dim (π∗(X)⊗Q) is odd (resp.,
even), the formal dimension nX is odd (resp., even), and also we show that if
dim (π∗(X)⊗Q) = 1, 2, 3, 4, the Hilali conjecture holds.

In this paper we discuss without appealing to minimal models, although
minimal models play important roles in rational homotopy theory.

2. Relative Hilali conjectures

In this section, for the sake of later presentation, we recall some basic ingredi-
ents of homotopical and homological aspects of a continuous map, for example,
homotopical and homological Poincaré polynomial of a map.

Let f : X → Y be a continuous map of simply connected spaces X and Y
of finite type. For the homomorphisms Hi(f) ⊗ Q : Hi(X) ⊗ Q → Hi(Y ) ⊗ Q
and πi(f)⊗Q : πi(X)⊗Q → πi(Y )⊗Q, we have the following exact sequences
of finite dimensional Q-vector spaces2:

0 → Ker(Hi(f)⊗Q) → Hi(X)⊗Q
→ Hi(Y )⊗Q → Coker(Hi(f)⊗Q) → 0, ∀i ≧ 0,(2.1)

0 → Ker(πi(f)⊗Q) → πi(X)⊗Q
→ πi(Y )⊗Q → Coker(πi(f)⊗Q) → 0, ∀i ≧ 2.(2.2)

Since X and Y are simply connected, they are path-connected as well (by
the definition of simply connectedness), thus we have

Q ∼= H0(X)⊗Q f∗
∼=
// H0(Y )⊗Q ∼= Q,

so, Ker(H0(f) ⊗ Q) = Coker(H0(f) ⊗ Q) = 0. It follows from (2.1) and (2.2)
that we get the following equalities: for ∀i ≧ 2

dim(Ker(Hi(f)⊗Q))− dim(Hi(X)⊗Q) + dim(Hi(Y )⊗Q)

− dim(Coker(Hi(f)⊗Q)) = 0,

dim(Ker(πi(f)⊗Q))− dim(πi(X)⊗Q) + dim(πi(Y )⊗Q)

− dim(Coker(πi(f)⊗Q)) = 0.

2. Recall that Coker(T ) := B/ Im(T ) for a linear map T : A → B of vector spaces.
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For later use, we use the following notation.

dim (Ker(π∗(f)⊗Q)) :=
∑
i≧2

dim (Ker(πi(f)⊗Q)) ,

dim (Ker(H∗(f)⊗Q)) :=
∑
i≧2

dim (Ker(Hi(f)⊗Q)) ,

dim (Coker(π∗(f)⊗Q)) :=
∑
i≧2

dim (Coker(πi(f)⊗Q)) ,

dim (Coker(H∗(f)⊗Q)) :=
∑
i≧2

dim (Coker(Hi(f)⊗Q)) .

Definition 2.1. Let f : X → Y be a continuous map of simply connected spaces
X and Y .

1. If dim (Ker(H∗(f)⊗Q)) < ∞ and dim (Ker(π∗(f)⊗Q)) < ∞, then f is
called rationally elliptic with respect to Kernel or rationally Kernel-elliptic.

2. If dim (Coker(H∗(f)⊗Q)) <∞ and dim (Coker(π∗(f)⊗Q)) <∞, then f
is called rationally elliptic with respect to Cokernel or rationally Cokernel-
elliptic.

3. If the map f is rationally elliptic with respect to both kernel and cokernel,
then f is called rationally elliptic.

Remark 2.1. Let f : X → Y be a continuous map of simply connected spaces
X and Y .

1. If X is rationally elliptic, then f is rationally Kernel-elliptic.

2. If Y is rationally elliptic, then f is rationally Cokernel-elliptic.

3. If X and Y are both rationally elliptic, then f is rationally elliptic.

In our previous paper [17] (cf. [18]) we made the following conjecture, called
a relative Hilali conjecture

Conjecture 2.1. For a continuous map f : X → Y of simply connected ratio-
nally elliptic spaces X and Y , the following inequality holds:∑

i≧2

dim (Ker(πi(f)⊗Q)) ≦ 1 +
∑
i≧2

dim (Ker(Hi(f)⊗Q)) .

It follows from the above Remark 2.1 that it suffices to require only the
rational ellipticity of the source space X for the above Conjecture 2.1, which is
a conjecture as to the Kernel. Due to Remark 2.1 (3), clearly Conjecture 2.1
can be modified as follows, adding an inequality with respect to Cokernel:



564 SHOJI YOKURA

Conjecture 2.2. For a rationally elliptic continuous map f : X → Y of simply
connected spaces X and Y , the following inequalities hold:

(2.3)
∑
i≧2

dim (Ker(πi(f)⊗Q)) ≦ 1 +
∑
i≧2

dim (Ker(Hi(f)⊗Q)) ,

(2.4)
∑
i≧2

dim (Coker(πi(f)⊗Q)) ≦ 1 +
∑
i≧2

dim (Coker(Hi(f)⊗Q)) .

Here, we note that when the target space Y is contractible, the above con-
jecture (2.3) becomes the original Hilali conjecture. Similarly, when the source
space X is contractible, the above conjecture (2.4) also becomes the original
Hilali conjecture.

In order to make it clear, we call (2.3) and (2.4), respectively, a Kernel-
relative Hilali conjecture and a Cokernel-relative Hilali conjecture, abusing words.

Remark 2.2. We note that if f : A → B is a linear map of two vector spaces,
then we have

dimCoker f = dim(B/ im(f))

= dimB − dim (im(f))

= dimB − dim(A/ ker(f))

= dimB − dimA+ dim(ker(f)).

Hence, the above (2.4) is also expressed as follows:∑
i≧2

dim (ker(πi(f)⊗Q)) +
∑
i≧2

dim(πi(Y )⊗Q)−
∑
i≧2

dim(πi(X)⊗Q)

≦ 1+
∑
i≧2

dim (ker(Hi(f)⊗Q))+
∑
i≧2

dim(Hi(Y )⊗Q))−
∑
i≧2

dim(Hi(X)⊗Q)).

It may be interesting to see whether these two conjectures are related to
each other or not, namely whether (2.3) implies (2.4) and vice versa.

In [2, 21] S. Chouingou, M. A. Hilali, M. R. Hilali and A. Zaim have proved
the above Kernel-relative Hilali conjecture (2.3) in some cases. Thus, it would
be interesting to see whether the above Cokernel-relative Hilali conjecture also
holds in these cases considered by Chouingou–Hilali–Hilali–Zaim.

3. Some examples

For discussion below, we use the following symbols for the sake of simplicity:

ϖ(X) :=
∑
i≧2

dim(πi(X)⊗Q), η(X) :=
∑
i≧2

dim(Hi(X)⊗Q)),

kerϖ(f) :=
∑
i≧2

dim (ker(πi(f)⊗Q)) , ker η(f) :=
∑
i≧2

dim (ker(Hi(f)⊗Q)) .
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Thus, the Hilali conjecture is claiming

ϖ(X) ≤ 1 + η(X),

i.e., either ϖ(X) = 1 + η(X) or ϖ(X) < 1 + η(X). The latter means that
ϖ(X) ≤ η(X). Clearly, for any rationally elliptic space X, either ϖ(X) ≤ η(X)
or ϖ(X) > η(X). Therefore, the Hilali conjecture claims that if ϖ(X) > η(X),
then ϖ(X) exceeds η(X) only by 1; ϖ(X) = 1 + η(X).

No counterexample to the Hilali conjecture has been found yet. If there
exists a counterexample to the Hilali conjecture, then that would be a rationally
elliptic space Z such that

ϖ(Z) = j + η(Z) for some integer j ≥ 2.

Simple typical examples for ϖ(X) > η(X) are all the even dimensional
spheres S2k(k ≥ 1), by the following well-known results (due to Serre Finiteness
Theorem [14, 15]):

πi(S
2k)⊗Q =

{
Q i = 2k, 4k − 1,

0 i ̸= 2k, 4k − 1,
πi(S

2k+1)⊗Q =

{
Q i = 2k + 1,

0 i ̸= 2k + 1.

ϖ(S2k) = 2 and η(S2k) = 1, thus ϖ(S2k) = 1 + η(S2k) = 2. ϖ(S2k+1) =
η(S2k+1) = 1

For later computation, we recall the rational homotopy and homology groups
of some familiar rationally elliptic spaces:

1. πk(RPn) = πk(S
n) for k > 1. Hence, we have

πk(RPn)⊗Q = πk(S
n)⊗Q.

Hk(RPn;Q) =

{
Q, for k = 0, n,

0, for k ̸= 0, n.

So, ϖ(RPn) = 1 if n is odd and ϖ(RPn) = 2 if n is even. η(RPn) = 1.
Thus, we have

ϖ(RPn) = η(RPn) = 1 for n odd and ϖ(RPn) = 1 + η(RPn) = 2 for n even.

2.

πk(CPn)⊗Q =

{
Q, for k = 2, 2n+ 1,

0, for k ̸= 2, 2n+ 1,

which follows from the long exact sequence of a fibration S1 ↪→ S2n+1 →
CPn:

· · · → πk(S
1) → πk(S

2n+1) → πk(CPn) → πk−1(S
1) → πk−1(S

2n+1) → · · · ,

Hk(CPn;Q) =

{
Q, for k = 0 and 2 ≤ k ≤ 2n for even k,

0, otherwise.
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Hence, ϖ(CPn) = 2 and η(CPn) = n. Therefore, we have

ϖ(CP1) = 1 + η(CP1) = 2 and ϖ(CPn) ≤ η(CPn) for n ≥ 2.

We shall use the following terminology:

Definition 3.1. Le X be a rationally elliptic space.

1. If ϖ(X) ≤ η(X), it is called a space of type ϖ ≤ η, (e.g., S2k+1, RP2k+1,
CPn for n ≥ 2).

2. If ϖ(X) = 1 + η(X), it is called a Hilali space3, (e.g., S2k, RP2k. Here,
S2 = CP1.)

3. If ϖ(X) = j + η(X) with an integer j ≥ 2, it is called a space of type
ϖ = j + η(j ≥ 2) or a non-Hilali space with ϖ = j + η(j ≥ 2).

Or we can simplify these names as follows:

Definition 3.2. A rationally elliptic space X such that ϖ(X) = γ(X) + η(X),
where γ(X) is an integer called a homotopy–homology gap, is called a space of
type ϖ = γ + η.

1. If γ < 1, it is a space of type ϖ ≤ η, which shall be also called a standard
space,

2. If γ = 1, it is a Hilali space,

3. If γ > 1, it is a non-Hilali space of type ϖ = γ + η(γ ≥ 2).

Remark 3.1. The Hilali conjecture [9] claims that γ ≤ 1 for any rationally
elliptic space X.

Remark 3.2. Our previous result [19] about the Hilali conjecture “modulo
product” (see Remark 1.2 above) means that for any rationally elliptic space
X, in particular, whether it is a Hilali space or a non-Hilali space, there exists
a certain integer N0 such that for all integers n ≥ N0 the Cartesian product
Xn of n copies of X becomes a standard space, i.e., even if ϖ(X) > η(X),
ϖ(Xn) ≤ η(Xn) for all integers n ≥ N0.

Example 3.1. Let Y be a rationally elliptic space. The Kernel-relative Hilali
conjecture holds for any continuous map f : S2k+1 → Y . Since πn(S

2k+1)⊗Q =
0 for n ̸= 2k + 1,

ker
(
f∗ ⊗Q : πn(S

2k+1)⊗Q → πn(Y )⊗Q
)
= 0,

3. We call it so, since Hilali made such a conjecture.
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for n ̸= 2k+1. Hence, we consider only f∗⊗Q : π2k+1(S
2k+1)⊗Q → π2k+1(Y )⊗

Q, which is either injective or the zero homomorphism by the dimension reason
since π2k+1(S

2k+1)⊗Q = Q and f∗ ⊗Q is a linear map of vector spaces over Q.

kerϖ(f) = 0 if f∗ ⊗ Q is injective and kerϖ(f) = 1 if f∗ ⊗ Q is the zero
homomorphism. Thus, kerϖ(f) = 0 or 1. As to the rational homology, it is the
same, i.e., ker η(f) = 0 or 1, hence 1 + ker η(f) = 1 or 2. Therefor we have

(3.1) kerϖ(f) ≤ 1 + ker η(f).

Thus, the Kernel-relative Hilali conjecture holds for any continuous map f :
S2k+1 → Y .

Example 3.2. For a continuous map f : S2k+1 → Y , let us consider whether
the Cokernel-relative Hilali conjecture holds or not, i.e., we consider whether
the following holds or not:

(3.2) kerϖ(f) +ϖ(Y )−ϖ(S2k+1) ≤ 1 + ker η(f) + η(Y )− η(S2k+1).

Since ϖ(S2k+1) = η(S2k+1) = 1, the above (3.2) becomes

(3.3) kerϖ(f) +ϖ(Y ) ≤ 1 + ker η(f) + η(Y ).

If Y is a space of type ϖ ≤ η, then the inequality (3.3) holds due to the above
(3.1). Therefore, if Y is a space of type ϖ ≤ η, then the Cokernel-relative Hilali
conjectures hold for any continuous map f : S2k+1 → Y . This result still holds
even if the source space S2k+1 is replaced by S2k+1 × S2m, because a key point
in the above argument is the equality ϖ(S2k+1) = η(S2k+1), which is equal to
1 in this case, and we do have the equality ϖ(S2k+1 × S2m) = η(S2k+1 × S2m),
which is equal to 3 in this case.

Remark 3.3. For a continuous map f : S2k+1 → Y , we consider the cases when
Y is not a space of type ϖ ≤ η.

1. Let Y be a Hilali space, i.e., ϖ(Y ) = η(Y ) + 1. Then (3.3) becomes

(3.4) kerϖ(f) ≤ ker η(f).

Since we have that kerϖ(f) = 0 or 1 and ker η(f) = 0 or 1, we need to
check only the case when kerϖ(f) = 1, namely whether kerϖ(f) = 1
automatically implies ker η(f) = 1 or not. kerϖ(f) = 1 implies that
f∗ ⊗Q : π2k+1(S

2k+1)⊗Q → π2k+1(Y )⊗Q is the zero homomorphism. If
we could claim that f : S2k+1 → Y is homotopic to a constant map, then
f∗ : H2k+1(S

2k+1;Q) → H2k+1(Y ;Q) is the zero homomorphism, thus
ker η(f) = 1, therefore we would get the above (3.4). However, f∗⊗Q = 0
for the homotopy groups does not necessarily imply that f is homotopic
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to a constant map4. So, we can say that if Y is a Hilali space and f :
S2k+1 → Y is homotopic to a constant map, then the Cokernel-relative
Hilali conjecture also holds.

2. Suppose that the Hilali conjecture does not hold, i.e., there is a non-Hilali
space Y , i.e., there is a space Y such that ϖ(Y ) = η(Y ) + j with j ≥ 2.
Then, (3.3) becomes

(3.5) kerϖ(f) + j − 1 ≤ ker η(f),

which may not hold. If j ≥ 3, then clearly (3.5) does not hold.

Now, by the above arguments, simply by the dimension reason, we can show
the following corollary:

Corollary 3.1. 1. Let ϖ(X) = 1. Then, the Kernel-relative Hilali conjec-
ture always holds for any continuous map f : X → Y .

2. Let ϖ(X) = η(X) = 1 and Y be of type ϖ ≤ η. Then, the Kernel-
and Cokernel-relative Hilali conjectures both hold for any continuous map
f : X → Y . (Note: In fact, ϖ(X) = 1 implies η(X) = 1 as we will see in
§4 below.)

Remark 3.4. 1. A typical example for a space X such that ϖ(X) = 1 is the
Eilenberg–Maclane space K(Z, n). A more general one for such a space is

(3.6) K(Z⊕ F01 ⊕ · · · ⊕ F0m, n0)×K(F1, n1)× · · ·K(Fk, nk),

where F0i (i = 1, · · · ,m) and Fi (i = 1, · · · , k) are finite abelian groups.

2. As to the case of η(X) = 1, as an example for such a space we can
consider Moore space M(G,n) (e.g., see [8, Example 2.40, p.143]), which
is a homological analogue of Eilenberg–Maclane space, i.e., a CW complex
X such that Hn(X) ∼= G and H̃i(X) ∼= 0 for i ̸= n. Here, we note that
H0(X) = H̃0(X)⊕ Z and H̃i(X) ∼= Hi(X) for i ≥ 1. So, by the Künneth
Theorem, a more general example of X such that η(X) = 1 is a “Moore
space” version of the above (3.6). i.e.,

M(Z⊕ F01 ⊕ · · · ⊕ F0m, n0)×M(F1, n1)× · · ·M(Fk, nk),

where ni ≥ 2 (i = 0, 1, · · · , k).

4. According to MathOverFlow “Maps which induce the same homomorphism on homotopy
and homology groups are homotopic” (answered by Allen Hatcher), the composition of a
degree one map f : T 3 → S3 with the Hopf map g : S3 → S2 is trivial on homotopy groups,
but g ◦ f is not homotopic to a constant map.
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3. In the case of ϖ(X) = η(X) = 1, which, for example, S2n+1 satisfies as
observed above, it does not seem to be so easy to come up with a general
example of such a space X. For example, although ϖ(K(Z, n)) = 1 for any
n, if n = 2k is even, then η(K(Z, 2k)) = ∞ since H∗(K(Z, 2k);Q) = Q[α]
where α ∈ H2k(K(Z, 2k);Q) ∼= Q is a generator, thus 1 = ϖ(K(Z, 2k)) ̸=
η(K(Z, 2k)) = ∞. Note that, the Eilenberg–Maclane space K(Z, 2n+1) is
rationally homotopy equivalent to the sphere S2n+1. Since the Eilenberg–
Maclane space K(F, n) for a finite abelian group is rationally homotopy
equivalent to a point for any integer n, for the following space

(3.7) X := K(Z; 2n+ 1)×K(F1, n1)× · · ·K(Fs, ns)

with finite abelian groups Fi(i = 1, · · · , s), we have ϖ(X) = η(X) = 1.

Let X = S2n1+1 × · · · × S2nk+1, where ni ̸= nj if i ̸= j. Then, clearly we
have ϖ(X) = k, but we have η(X) = 2k − 1 since dim(H∗(S2ni+1;Q)) = 2.
Hence, we have that k = ϖ(X) < η(X) = 2k − 1 for k ≥ 2. As to the case of
ϖ(X) = η(X) = 2, an example of such a space is CP2 as observed above. So,
we pose the following problem-conjecture:

Problem 3.1. For each n ≥ 3, give an example of a space X satisfying the
equality ϖ(X) = η(X) = n. (See also §4.2 below). Or, we conjecture that there
does not exist such a space X.

Example 3.3. Let us consider the case when Y = S2m in the above Remark
3.3 (1). By the above discussion, it suffices to consider the homomorphism
f∗ : H2k+1(S

2k+1;Q) → H2k+1(S
2m;Q) = 0, which is clearly the zero homo-

morphism, thus η(f) = 1. Therefore, (3.4) holds, thus the Cokernel-relative
Hilali conjecture holds. Namely, for any continuous map f : S2k+1 → S2m, the
Kernel- and Cokernel-relative Hilali conjectures both hold.

Example 3.4. Let X be homotopy equivalent to (3.7) and Y be homotopy
equivalent to the following space

k∏
i=1

K(Z, 2mi + 1)×K(F ′
1, n

′
1)× · · ·K(F ′

j , n
′
j),

where F ′
i (i = 1, · · · , j) is a finite abelian group. Note that, ϖ(Y ) ≤ η(Y ).

Then, by Corollary 3.1, for any continuous map f : X → Y , the Kernel-and
Cokernel-relative Hilali conjectures both hold.

Example 3.5. Let us consider a continuous map f : S2k → Y where k ≥ 1
and Y is a simply connected rationally elliptic space. Since πn(S

2k)⊗Q = 0 for
n ̸= 2k, 4k + 1,

ker
(
f∗ ⊗Q : πn(S

2k+1)⊗Q → πn(Y )⊗Q
)
= 0,
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for n ̸= 2k, 4k + 1. Hence, we consider the following two cases:

(f∗ ⊗Q)2k : π2k(S
2k)⊗Q → π2k(Y )⊗Q,

(f∗ ⊗Q)4k+1 : π4k+1(S
2k)⊗Q → π4k+1(Y )⊗Q,

each of which is either injective or the zero homomorphism by the dimension
reason, in the same way as in Example 3.1. Hence, we have

kerπ(f) =


0, if (f∗ ⊗Q)2k and (f∗ ⊗Q)4k+1 are both injective,

1, if (f∗ ⊗Q)2k is injecive and (f∗ ⊗Q)4k+1 is the zero map,

1, if (f∗ ⊗Q)2k is the zero map and (f∗ ⊗Q)4k+1 is injective,

2, if (f∗ ⊗Q)2k and (f∗ ⊗Q)4k+1 are both the zero map.

Thus, kerϖ(f) = 0, 1 or 2. As to the homology, we consider

f∗ : H2k(S
2k;Q) = Q → H2k(Y ;Q),

which is either injective or the zero map. Hence, we have ker η(f) = 0 or 1,
hence 1 + ker η(f) = 1 or 2. Therefore, unless (f∗ ⊗Q)2k and (f∗ ⊗Q)4k+1 are
both the zero map, we have

(3.8) kerϖ(f) ≤ 1 + ker η(f).

Thus, the Kernel-relative Hilali conjecture holds. If (f∗⊗Q)2k and (f∗⊗Q)4k+1

are both the zero map and f∗ : H2k(S
2k;Q) = Q → H2k(Y ;Q) is also the

zero map, e.g., if f : S2k → Y is homotopic to a constant map, then we also
have (3.8), thus the Kernel-relative Hilali conjecture holds. If (f∗ ⊗ Q)2k and
(f∗ ⊗ Q)4k+1 are both the zero map and f∗ : H2k(S

2k;Q) = Q → H2k(Y ;Q) is
injective, then kerϖ(f) = 2 and 1+ker η(f) = 1, thus the Kernel-relative Hilali
conjecture does not hold.

For the Cokernel-relative Hilali conjecture, we consider whether the following
holds or not.

(3.9) kerϖ(f) +ϖ(Y )−ϖ(S2k) ≤ 1 + ker η(f) + η(Y )− η(S2k).

Since ϖ(S2k) = 2 and η(S2k) = 1, the above (3.9) becomes

(3.10) kerϖ(f) +ϖ(Y )− 2 ≤ ker η(f) + η(Y ),

in other words, we consider whether the following inequality holds or not

(3.11) kerϖ(f) +ϖ(Y ) ≤ 2 + ker η(f) + η(Y ).

Here, we note that from the above discussion, for any space Y the following
inequality always holds:

(3.12) kerϖ(f) ≤ 2 + ker η(f).
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1. If Y is a space of type ϖ ≤ η, then the inequality (3.11) holds due to the
above (3.12). Therefore, if Y is a space of type ϖ ≤ η, then the Cokernel-
relative Hilali conjecture holds for any continuous map f : S2k → Y .

2. If Y is not a space of type ϖ ≤ η, say it is a Hilali space, i.e., ϖ(Y ) =
η(Y ) + 1, then (3.11) becomes (3.8). In other words, in this case the
Kernel-relative Hilali conjecture holds if and only if the Cokernel-relative
Hilali conjecture holds.

3. Suppose that the Hilali conjecture does not hold, i.e., there is a non-Hilali
space Y , i.e., there is a space Y such that ϖ(Y ) = η(Y ) + j with j ≥ 2.
Then, (3.10) becomes

(3.13) kerϖ(f) + j − 2 ≤ ker η(f),

which may not hold. If j ≥ 4, then clearly (3.13) does not hold.

Proposition 3.1. Let X and Y be simply connected rationally elliptic spaces
of type ϖ = γX + η and ϖ = γY + η, respectively. Then, we have:

1. If γY ≤ γX , the Kernel-relative Hilali conjecture implies the Cokernel-
relative Hilali conjecture.

2. If γY ≥ γX , the Cokernel-relative Hilali conjecture implies the Kernel-
relative Hilali conjecture.

3. If both X and Y are Hilali spaces, the Kernel-relative Hilali conjecture
holds if and only if the Cokernel-relative Hilali conjecture holds.

Proof. The proof is simple, but we write it down.

1. Suppose that the Kernel-relative Hilali conjecture holds, i.e., kerϖ(f) ≤
1 + ker η(f). We have ϖ(X) = η(X) + γX and ϖ(Y ) = η(Y ) + γY . Since
γY ≤ γX , we have

(3.14) kerϖ(f) + γY ≤ 1 + ker η(f) + γX .

Hence

kerϖ(f) +ϖ(Y )− η(Y ) ≤ 1 + ker η(f) +ϖ(X)− η(X),

which implies

(3.15) kerϖ(f) +ϖ(Y )−ϖ(X) ≤ 1 + ker η(f) + η(Y )− η(X),

which is nothing but the Cokernel-relative Hilali conjecture.
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2. The Cokernel-relative Hilali conjecture, i.e., (3.15) implies (3.14). Hence,
we have

kerϖ(f) + γY − γX ≤ 1 + ker η(f),

which implies kerϖ(f) ≤ 1 + ker η(f) because γY − γX ≥ 0. Hence, the
Kernel-relative Hilali conjecture holds.

3. It is due to the above results, since γX = γY = 1.

For any continuous map f : X → Y , it is clear that we have kerϖ(f) ≤ ϖ(X)
and ker η(f) ≤ η(X) , similarly we have Cokerϖ(f) ≤ ϖ(Y ) and Coker η(f) ≤
η(Y ). Let us set the gaps between these integers as follows:

kerϖ(f) +ϖf = ϖ(X), ker η(f) + ηf = η(X),

Cokerϖ(f) + Coϖf = ϖ(Y ), Coker η(f) + Co ηf = η(Y ).

Proposition 3.2. Let f : X → Y be a continuous map of simply connected
rationally elliptic spaces.

1. If the Hilali conjecture holds for the source space X and ηf ≤ ϖf , then
the Kernel-relative Hilali conjecture holds.

2. If the Hilali conjecture holds for the target space Y and Co ηf ≤ Coϖf ,
then the Cokernel-relative Hilali conjecture holds.

Proof. Since the second statement is proved in the same way as in the first
one, we prove the first one.

kerϖ(f) = ϖ(X)−ϖf

≤ 1 + η(X)−ϖf

(since the Hilali conjecture holds for X: ϖ(X) ≤ 1 + η(X))

≤ 1 + η(X)− ηf (since −ϖf ≤ −ηf )
= 1 + η(f).

Now, we observe that it follows from the fundamental homomorphism theo-
rem on vector spaces that we have

ϖf = Coϖf , ηf = Co ηf .

Corollary 3.2. Suppose that the Hilali conjecture holds for any simply con-
nected elliptic spaces. Let f : X → Y be a continuous map of simply connected
elliptic spaces X and Y such that ηf ≤ ϖf . Then, the Kernel- and Cokernel-
relative Hilali conjectures both hold.
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4. Stringent restrictions on homotopy groups of rationally elliptic
spaces

In this section we discuss some results which follow from some stringent restric-
tions on homotopy groups of rationally elliptic spaces (see [3], [4], [5]).

First we recall Halperin’s theorems. For that, we set

πeven(X)⊗Q :=
⊕
k≥1

π2k(X)⊗Q, πodd(X)⊗Q :=
⊕
k≥0

π2k+1(X)⊗Q,

ϖeven(X) := dim (πeven(X)⊗Q) , ϖodd(X) := dim (πodd(X)⊗Q) .

χπ(X) := ϖeven(X)−ϖodd(X),

which is called the homotopical Euler–Poincaré characteristic of X and is a
homotopical version of the (usual homological) Euler–Poincaré characteristic

χ(X) = χeven(X)− χodd(X),

where

χeven(X) := dim (Heven(X;Q)) , χodd(X) := dim (Hodd(X;Q)) ,

Heven(X;Q) :=
⊕
k≥0

H2k(X;Q), Hodd(X;Q) :=
⊕
k≥0

H2k+1(X;Q).

S. Halperin proved.

Theorem 4.1 ([7, Theorem 1]). χπ(X) ≤ 0 and χ(X) ≥ 0. Moreover, the
following are equivalent:

1. χπ(X) = 0.

2. χ(X) > 0.

3. Hodd(X)⊗Q = 0.

Remark 4.1. 1. In other words, χπ(X) < 0 ⇐⇒ χ(X) = 0.

2. The equivalence of the above (1), (2) and (3) was posed as a question in
D. Sullivan’s famous paper [16].

Let y1, · · · , yq be a basis of πodd(X)⊗Q and x1, · · · , xr be a basis of πeven(X)⊗
Q. If yj∈π2bj−1(X)⊗Q) and xi∈π2ai(X)⊗Q, 2bj−1 and 2ai are called the degrees
of yj and xj . (b1, · · · , bq) and (a1, · · · , ar) are respectively called b-exponents
and a-exponents of X in [6]. The largest integer nX such that HnX (X;Q) ̸= 0
is called the formal dimension of X. Halperin showed the following:

Theorem 4.2 ([7, Theorem 3’ and Corollary 2]).

1.
∑q

j=1(2bi − 1) ≤ 2nX − 1 and
∑r

i=1 2aj ≤ nX .
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2. nX =
∑q

j=1(2bj − 1)−
∑r

i=1(2ai − 1).

3. Betti numbers βi = dimHi(X;Q) satisfy Poincaré duality; βi = βnX−i.

4. In the case when χπ(X) = 0, i.e., q = r, Poincaré polynomial of X is

(4.1) PX(t) =

∏q
i=1(1− t2bi)∏q
i=1(1− t2ai)

.

In particular, χ(X) = PX(−1) = PX(1) = dim(H∗(X)⊗Q) =
∏q

i=1 bi∏q
i=1 ai

.

Note that χ(X) =
∏q

i=1 bi∏q
i=1 ai

follows from

∏q
i=1(1− t2bi)∏q
i=1(1− t2ai)

=

∏q
i=1(1− (t2)bi)∏q
i=1(1− (t2)ai)

=

∏q
i=1(1 + t2 + · · ·+ (t2)bi−1)∏q
i=1(1 + t2 + · · ·+ (t2)ai−1)

.

Definition 4.1 ([6, Definition, pp.117–118]). Let B = (b1, b2, · · · , bq) and A =
(a1, a2, · · · , ar) be two finite sequences of positive integers.

1. We say that (B;A) satisfies strong arithmetic condition (abbr. S.A.C.) if
for every subsequence A∗ of A of length s (1 ≤ s ≤ r) there exists at least
s elements bj’s of B such that

(4.2) bj =
∑

ai∈A∗

γijai

where γij is a non-negative integer such that
∑

ai∈A∗ γij ≥ 2.

2. If
∑

ai∈A∗ γij ≥ 2 is not required, then we say that (B,A) satisfies arith-
metic condition (abbr. A.C.).

Thus, in both cases, it is necessary that r ≤ q.

In [6, Theorem 1, p.118] J. B. Friedlander and S. Halperin show the following
characterization theorem about a pair (B;A) satisfying S.A.C.

Theorem 4.3 (Friedlander–Halperin Theorem). Let B = (b1, b2, · · · , bq) and
A = (a1, a2, · · · , ar) be a pair of sequences of positive intgers. The following
conditions are equivalent:

1. (B,A) satisfies S.A.C.

2. The sequences B and A are respectively the b-exponents and a-exponents
of a rationally elliptic space X.

Moreover, if bi ≥ 2 for all i and S.A.C. holds, then X may be chosen to be
simply connected; if in addition q > r, X may be taken to be a closed manifold.
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Remark 4.2. (b1, b2, · · · , bq) and (a1, a2, · · · , ar) are respectively called “odd”
exponents and “even” exponents of X in Félix–Halperin–Thomas’s book [4].

In fact, from S.A.C., i.e., (4.2), we get the following result:

Lemma 4.1 ([6, 2.5. Lemma]). If B = (b1, b2, · · · , bq); b1 ≥ b2 ≥ · · · ≥ bq, and
A = (a1, a2, · · · , ar); a1 ≥ a2 ≥ · · · ≥ ar. If (B;A) satisfies S.A.C, then bi ≥ 2ai
for 1 ≤ i ≤ r.

Remark 4.3. Usually we consider the following order b1 ≤ b2 ≤ · · · ≤ bq for
B = (b1, b2, · · · , bq) and a1 ≤ a2 ≤ · · · ≤ ar for A = (a1, a2, · · · , ar), but in order
to prove the above lemma and also for the description of the statement of the
lemma, the above descending order in the lemma is better.

Using Lemma 4.1 we can get the following formulas:

Corollary 4.1 ([6, 1.3. Corollary, p.118]).

1. nX ≥ q + r = dim(π∗(X)⊗Q).

2. nX ≥
∑q

j=1 bj.

3. 2nX − 1 ≥
∑q

j=1(2bj − 1).

4. nX ≥
∑r

i=1 2ai.

Corollary 4.2 ([1, Proposition 2.1]). If q = r, then the Hilali conjecture holds.

Proof. dim(π∗(X)⊗Q) = 2q. It follows from Theorem 4.2 (4) and Lemma 4.1
that

(4.3) dim(H∗(X;Q)) =

∏q
i=1 bi∏q
i=1 ai

≥
∏q

i=1 2ai∏q
i=1 ai

= 2q,

which is [6, 2.6. Proposition (3)]. Since 2q ≤ 2q (q ≥ 1), we have

dim(π∗(X)⊗Q) ≤ dim(H∗(X;Q)).

Next, we discuss the parity of ϖ(X) and η(X). We can show the following:

Lemma 4.2. If ϖ(X) is odd, then η(X) is also odd.

Proof. Suppose that ϖ(X) is odd. Then, the homotopical Euler characteristic
χπ(X) = ϖeven(X) − ϖodd(X) < 0. Indeed, by the dichotomy, χπ(X) ≤ 0. If
χπ(X) = ϖeven(X) − ϖodd(X) = 0, then ϖeven(X) = ϖodd(X), thus ϖ(X) =
ϖeven(X) + ϖodd(X) is even, which is a contradiction. Now, it follows from
Theorem 4.2 that χπ(X) < 0 implies that the Euler–Poincaré characteristic
χ(X) = 0, i.e., χ(X) = χeven(X) − χodd(X) = 0, thus χeven(X) = χodd(X).
Hence 1 + η(X) = χeven(X) + χodd(X) is even, thus η(X) is also odd.
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Remark 4.4. One might be tempted to expect that if ϖ(X) is even, then
η(X) would be also even, but it is not the case. A very simple counterexample
is X = S2n+1 × S2m+1. Then, ϖ(X) = 2, but η(X) = 22 − 1 = 3 is odd. In
general, considerX = S2n1+1×· · ·×S2nk+1. Then, ϖ(X) = k and η(X) = 2k−1,
thus whether ϖ(X) = k is even or odd, η(X) = 2k − 1 is always odd. In fact,
in the case when ϖ(X) is even, η(X) can be both even and odd. A typical
example for this is the complex projective space CPn. ϖ(CPn) = 2 is even for
any n, but the parity of η(CPn) = n depends on the complex dimension n.

Corollary 4.3. Suppose that the Hilali conjecture holds. If X is a ratio-
nally elliptic space such that dim(π∗(X) ⊗ Q) is odd, then dim(π∗(X) ⊗ Q) <
dimH∗(X;Q).

Proposition 4.1. Let X be a rationally elliptic space. The parity of ϖ(X) is
the same as the parity of the formal dimension nX , i.e., if ϖ(X) is odd (resp.,
even), then its formal dimension nX is odd (resp., even).

Proof. Let p := ϖ(X) and e := ϖeven(X). So, ϖodd(X) = p − e. Since
χπ(X) = ϖeven(X)−ϖodd(X) ≤ 0, thus e ≤ p− e. It follows from Theorem 4.2
(2) that if e = 0, then we have

(4.4) nX =

p∑
i=1

(2bi − 1) = 2

p∑
i=1

bi − p,

and if e ≥ 1, then we have

nX =

p−e∑
i=1

(2bi − 1)−
e∑

j=1

(2aj − 1),

which is

(4.5) nX = 2

p−e∑
i=1

bi − (p− e)− 2
e∑

j=1

aj + e = 2

p−e∑
i=1

bi −
e∑

j=1

aj + e

− p.

Therefore, it follows from (4.4) and (4.5) that if p = ϖ(X) is odd (resp., even),
then nX is odd (resp., even).

Remark 4.5. First we note that (4.5) can be also written as follows:

nX = 2

p−e∑
i=1

bi −
e∑

j=1

aj

− (p− 2e).

The parity of p−2e, which is −χπ(X) = ϖodd(X)−ϖeven(X), is also the same as
the parity of the formal dimension nX . For example, in [13, §2] Nakamura and
Yamaguchi call (2a1, 2a2, · · · , 2an : 2b1 − 1, 2b2 − 1, · · · , 2bn+p − 1) a homotopy
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rank type of X and all the homotopy rank types with the formal dimension ≤ 16
are listed in [13, §3]. In their list, if the formal dimension, denoted fd, is even
(resp. odd), then p is even (resp. odd). Note that, their p is equal to our p−2e.
Also note that clearly the parity of p−2e is the same as the parity of p = ϖ(X).

Finally, we discuss lower bounds of η(X) for some cases. Before discussion,
we recall Klaus–Kreck’s rational Hurewicz theorem, which is a version stronger
than the usual one:

Theorem 4.4 ([10, Theorem 1.1]). Let X be a simply connected topological
space with πi(X) ⊗ Q = 0 for 1 < i < r. Then, the Hurewicz map induces an
isomorphism

H : πi(X)⊗Q → Hi(X;Q)

for 1 < i < 2r − 1 and a surjection for i = 2r − 1.

Theorem 4.5. For any rationally elliptic space X such that 1 ≤ ϖ(X) ≤ 4,
the Hilali conjecture holds. To be more precise,

1. If ϖ(X) = 1, then η(X) = 1, thus 1 = ϖ(X) < 1 + η(X) = 2.

2. If ϖ(X) = 2, then η(X) ≥ 1, thus ϖ(X) ≤ 1 + η(X).

3. If ϖ(X) = 3, then η(X) ≥ 3, thus ϖ(X) < 1 + η(X).

4. If ϖ(X) = 4, then η(X) ≥ 3, thus ϖ(X) ≤ 1 + η(X).

Proof. First we recall that

(4.6) ϖ(X) = ϖeven(X) +ϖodd(X) and ϖeven(X) ≤ ϖodd(X).

1. Let ϖ(X) = 1. It follows from (4.6) that ϖeven(X) = 0 and ϖodd(X) = 1.
Hence, π2b−1(X) ⊗ Q ∼= Q for some odd integer 2b − 1 (b ≥ 2) (since X
is simply connected) and πi(X) ⊗ Q ∼= 0 for i ̸= 2b − 1. It follows from
Theorem 4.2 (2) that the formal dimension nX = 2b−1 andH2b−1(X;Q) ∼=
Q and it also follows from the rational Hurewicz Theorem thatHi(X;Q) ∼=
0 for i ̸= 0, 2b− 1. Thus, η(X) = 1.

2. Let ϖ(X) = 2. It follows from (4.6) that we have two possibilities:

(a) ϖeven(X) = 0 and ϖodd(X) = 2. In this case we have

(4.7) π2b1−1(X)⊗Q ∼= Q, π2b2−1(X)⊗Q ∼= Q, where 2≤b1≤b2.

Here, we are a bit sloppy. If b1 = b2, then the above (4.7) is really
understood to mean the following:

π2b1−1(X)⊗Q ∼= Q⊕Q.
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It follows from Theorem 4.2 (2) that the formal dimension nX =
2b1 − 1 + 2b2 − 1 = 2(b1 + b2) − 2, which is greater than 2b2 − 1
since 2b1 − 1 ≥ 0 (in fact, 2b1 − 1 ≥ 3.) It follows from the Hurewicz
Theorem thatH2b1−1(X;Q) ∼= Q if b1 < b2 andH2b1−1(X;Q) ∼= Q⊕Q
if b1 = b2. In the case when b1 < b2, by the Poincaré duality (Theorem
4.2 (3)) we do have H2b2−1(X;Q) ∼= Q since nX − (2b1−1) = 2b2−1.
Hence, in any case we can see that η(X) ≥ 3.

(b) ϖeven(X) = 1 and ϖodd(X) = 1. It follows from Corollary 4.2 that
the Hilali conjecture holds, thus we are done. However, in this paper
we take a more direct approach in order to see more information
about η(X).

π2b−1(X)⊗Q ∼= Q and π2a(X)⊗Q ∼= Q, where b ≥ 2 and a ≥ 1.

The formal dimension nX = 2b−1−(2a−1) = 2b−2a. It follows from
Theorem 4.2 that we have 2b− 1 ≤ 2(2b− 2a)− 1 and 2a ≤ 2b− 2a,
both of which is the same inequality 4a ≤ 2b, i.e., 2a ≤ b. Thus, we
have 2a < 2b− 1 since b− 1 ≥ 1. Then, we can see that we have the
following orders:

2a ≤ b ≤ 2b− 2a < 2b− 1.

Hence, we have H2b−2a(X;Q) ∼= Q and it follows from the rational
Hurewicz theorem that H2a(X;Q) ∼= Q.

i. If b = 2a, then 2b− 2a = 2a. Thus, we have η(X) = 1.

ii. If 2a < b < 3a, then (2b − 2a) − 2a = 2b − 4a = 2(b − 2a) > 0
and 2b− 4a < 2a. Thus, we have the following orders:

2b− 4a < 2a < 2b− 2a.

Then, it follows from the Poincaré duality that H2b−4a(X;Q) ∼=
Q. However, since πi(X) ⊗ Q ∼= 0 for 2 ≤ i2a, the rational
Hurewicz theorem implies that H2b−4a(X;Q) ∼= 0. Therefore,
the case 2a < b < 3a is ruled out. This is a stringent restriction
due to the Poincaré duality.

iii. If b = 3a, then 2b − 2a = 4a and 2b − 4a = 2a, thus we have
η(X) = 2.

iv. If b > 3a, then we have the following orders:

2a < 2b− 4a < 2b− 2a.

Then, by the Poincaré duality H2b−4a(X;Q) ∼= Q, hence η(X) ≥
3.

In any case we have η(X) ≥ 1, thus we have π(X) ≤ 1 + η(X).
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3. Let ϖ(X) = 3. In this case we have the following two possibilities:

(a) ϖeven(X) = 0 and ϖodd(X) = 3. In this case we have

(4.8) π2bi−1(X)⊗Q ∼= Q, where 2 ≤ b1 ≤ b2 ≤ b3

As above, here we are a bit sloppy. E.g., if b1 = b2, then the above
(4.8) is really understood to mean the following:

π2b1−1(X)⊗Q ∼= Q⊕Q and π2b3−1(X)⊗Q ∼= Q

The formal dimension nX = 2(b1 + b2 + b3) − 3. If b1 < b2, then by
the Poincaré duality H2(b2+b3)−2(X;Q) ∼= Q. Hence, η(X) ≥ 3. If
b1 = b2, then by the Poincaré duality H2(b1+b3)−2(X;Q) ∼= Q ⊕ Q.
Hence, η(X) ≥ 5. In any case we have η(X) ≥ 3.

(b) ϖeven(X) = 1 and ϖodd(X) = 2. In this case we have

π2bi−1(X)⊗Q ∼= Q and π2a(X)⊗Q ∼= Q,

where 2 ≤ b1 ≤ b2 and a ≥ 1. The formal dimension nX = 2b1+2b2−
2a− 1. It follows from Theorem 4.2 that 4a ≤ 2b1+2b2− 1, which is
in fact 4a < 2b1 + 2b2 − 1 since 4a is even and 2b1 + 2b2 − 1 is odd.
Hence, 4a ≤ 2b1+2b2−1−1 = (2b1−1)+(2b2−1) ≤ 2(2b2−1) since
b1 ≤ b2. If b1 < b2, then 2a < 2b2 − 1. If b1 = b2, then 2a ≤ 2b1 − 1.
Thus, two possibilities: 2b1 − 1 < 2a and 2a < 2b1 − 1. In any
case by the Hurewicz theorem H2a(X;Q) ∼= Q or H2b1−1(X;Q) ∼=
Q, and by the Poincareé duality we have H2b1+2b2−1(X;Q) ∼= Q or
H2b2−2a(X;Q) ∼= Q. Hence, we can see η(X) ≥ 3.

In any case, we can see that η(X) ≥ 3. The above argument is quite
detailed. Here, is a very simpler argument, which is as follows. In both
cases (a) and (b), we can see that η(X) ≥ 2 since dimH2b1−1(X;Q) ≥
1 and HnX (X;Q) ∼= Q in the case (a) (note that 2b1 − 1 < nX), and
dimH2b1−1(X;Q) = 1 or dimH2a(X;Q) = 1 and HnX (X;Q) ∼= Q in the
case (b). Since η(X) has to be odd, it follows that η(X) ≥ 3.

4. ϖ(X) = 4. In this case we have the following cases

(a) πeven(X) = 0 and πodd(X) = 4: Consider the degrees:

2b1 − 1, 2b2 − 1, 2b3 − 1, 2b4 − 1, (2 ≤ b1 ≤ b2 ≤ b3 ≤ b4).

nX =
∑

(2bi − 1). Since dim(π2b1−1(X) ⊗ Q) ≥ 1 (because b1 ≤
b2 ≤ b3 ≤ b4), it follows from the Hurewicz theorem and the Poincaré
duality that η(X) ≥ 1 + 1 + 1 = 3. If 2bi − 1 ≤ 2(2b1 − 2) holds,
then the inequality η(X) ≥ 3 can be sharpened to η(X) ≥ 2i + 1,
which follows from the rational Hurewicz Theorem. Here, we note
that i ≥ 1, since 2b1 − 1 ≤ 2(2b1 − 2), i.e., 3 ≤ 2b1, which holds since
b1 ≥ 2. In any case, we have ϖ(X) ≤ 1 + η(X).
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(b) ϖeven(X) = 1 and ϖodd(X) = 3: Consider the degrees:

2b1 − 1, 2b2 − 1, 2b3 − 1, 2a, (2 ≤ b1 ≤ b2 ≤ b3, a ≥ 1).

nX = 2(b1 + b2 + b3 − a) − 2. Whether 2b1 − 1 < 2a or 2a <
2b1 − 1, by the Hurewicz Theorem β2b1−1 ≥ 1 or β2a ≥ 1, thus by
the Poincaré duality βnX−2b1−1 ≥ 1 or βnX−2a ≥ 1. Since βnX =
1, we have η(X) ≥ 3. Therefore, ϖ(X) ≤ 1 + η(X). Here, we
need to be a bit careful about βnX−2a. We need to check whether
nX − 2a = 2a. Namely, if 2a < 2b1 − 1 and nX − 2a = 2a, in which
case we cannot use the trick of Poincaré duality, hence η(X) ≥ 2
instead of η(X) ≥ 3. However, we do have nX − 2a > 2a. Indeed
nX −2a−2a = (2b1−1)+(2b2−1)+(2b3−1)− (2a−1)−2a−2a =
{(2b1−1)−2a}+{(2b2−1)−2a}+{(2b3−1)−2a}+1 ≥ 4, because
2a < 2b1 − 1 and b1 ≤ b2 ≤ b3.

(c) ϖeven(X) = 2 and ϖodd(X) = 2: By Corollary 4.2 we do know that
the Hilali conjecture holds, thus η(X) ≥ 3. However, let us see this
without using this corollary. Consider the degrees:

2b1 − 1, 2b2 − 1, 2a1, 2a2, (2 ≤ b1 ≤ b2, 1 ≤ a1 ≤ a2).

It follows from Lemma 4.1 that the following cases are possible:

i. 2a1 < 2b1 − 1 < 2a2 < 2b2 − 1.

ii. 2a1 ≤ 2a2 < 2b1 − 1 ≤ 2b2 − 1.

nX = 2(b1 + b2)− 2(a1 + a2). Then, in which case is it possible that
nX − 2a1 = 2a1? nX − 2a1 − 2a1 = 2(b1 + b2) − 2(a1 + a2) − 4a1 =
2(b1− 3a1)+ 2(b2− a2) ≥ 2(2a1− 3a1)+ 2(2a2− a2) = −2a1+2a2 =
2(a2 − a1). So, when a1 = a2, b1 = 2a1 and b2 = 2a2, we do have
nX − 2a1 = 2a1. In this case, surely we have η(X) ≥ 2 + 1 = 3,
since H2a1(X;Q) = Q⊕Q and HnX (X;Q) = Q. Otherwise we have
nX−2a1 > 0 and nX−2a1 ̸= 2a1. In this case we also have η(X) ≥ 3,
since H2a1(X;Q) = Q, HnX−2a1(X;Q) = Q by the Poincaré duality
and HnX (X;Q) = Q. In any case we do have η(X) ≥ 3.

Remark 4.6. Let ϖ(X) = 5. Then, it follows from Lemma 4.2 that η(X) is
odd. By an analysis as above, we see that η(X) ≥ 2, hence η(X) ≥ 3 since η(X)
is odd. If η(X) ≥ 5, then the Hilali conjecture holds. If not, there would exist a
counterexample such that ϖ(X) = 5 and η(X) = 3, i.e., 5 = dim(π∗(X)⊗Q) >
dim(H∗(X;Q) = 1 + η(X) = 4. It follows from [1] that the formal dimension of
such a counterexample is greater than or equal to 21.

Proposition 4.2. Let ϖ(X) = 2m+1 such that ϖeven(X) = 0 and ϖodd(X) =
2m+ 1. Let the degrees be

2b1 − 1, · · · , 2bm − 1, · · · , 2b2m+1 − 1,



A REMARK ON RELATIVE HILALI CONJECTURES 581

where b1 ≤ b2 ≤ · · · ≤ b2m+1. If 2bm − 1 ≤ 2(2b1 − 2), then we have η(X) ≥
2m+ 1. In particular the Hilali conjecture holds for such a space X.

Proof. This simply follows from Klaus–Kreck’s rational Hurewicz theorem, i.e.,
we have the Hurewicz homomorphism πi(X) ⊗ Q ∼= Hi(X;Q) for 1 ≤ i ≤
2(2b1 − 2). Since the formal dimension nX =

∑2m+1
j (2bj − 1), by the Poincaré

duality we see that η(X) ≥ 2m+1, since nX − (2bj − 1) is even for any bj , thus
nX − (2bj − 1) cannot be equal to any odd integer 2bk − 1 (k = 1, 2, · · · ,m),
therefore HnX−(2bj−1)(X;Q) = Q for k = 1, 2, · · · ,m.
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Abstract. In this paper, we present some numerical applications for the equation
x2+ax+ b = 0, where a, b are two quaternionic elements in H(α, β). H(α, β) represents
the algebra of real quaternions with parameterized coefficients by α and β. The algebra
of real quaternions is an extension of complex numbers and is represented by algebraic
objects called quaternions. These quaternions are composed of four components: a
real part and three imaginary components. In general, H(α, β) indicates a family of
parameterized quaternion algebras, in which the specific values of α and β determine
the specific properties and structure of the quaternion algebra. Based on well-known
solving methods, we have developed a new numerical algorithm that solves the equation
for any quaternions a and b in any algebra H(α, β).
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Introduction

Quaternions are a number system first introduced in 1843 by Irish mathemati-
cian Sir William Rowan Hamilton. Hamilton was seeking a way to extend the
complex numbers to three dimensions and realized that he could do so by adding
an additional imaginary unit.

Quaternions are different from complex numbers in that they are non-commu-
tative. Quaternions have found many practical applications in fields such as
computer graphics, physics, and engineering. For instance, they are used in
computer graphics to represent 3D rotations and orientations, and in aerospace
engineering to model spacecraft altitude and control systems.

Quaternions are essential in control systems for guiding aircraft and rockets:
each quaternion has an axis indicating the direction and a magnitude deter-
mining the size of the rotation. Instead of representing an orientation change

*. Corresponding author
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through three separate rotations, quaternions use a single rotation to achieve
the same transformation.

Despite their usefulness, quaternions are not as widely used as complex num-
bers, largely due to their non-commutative nature. However, they remain an
important topic in mathematics and physics, and continue to be studied and
applied in various fields to this day. ([1], [4], [6], [10], [13])

We will numerically solve the monic quadratic equation with quaternion
coefficients in the algebra H(α, β) using Scilab, a free and open-source software
for numerical computation.

We chose to use the Scilab software to numerically solve the monic quadratic
equations with quaternionic coefficients in the algebra H(α, β) because Scilab
is a free and open-source software, making it accessible and usable by a large
number of users. Additionally, this software allows us to customize and adapt
it to the specific needs and requirements of our problem. Scilab is renowned for
its powerful functionality in numerical computation. It offers a wide range of
mathematical and algebraic functions, including an integrated solver for poly-
nomial equations. The built-in polynomial equation solver in Scilab provides us
with the necessary tools to efficiently solve the monic quadratic equation with
quaternionic coefficients. Scilab, such as Matlab, which is more widely known,
has a user-friendly and intuitive interface, facilitating ease of use and navigation
within the software. The programming is very intuitive and doesn’t require defi-
nition of any parameters, so the main focus remains the mathematical modeling
of the equations and the algorithm. This decision allows us to obtain precise
and efficient results in studying and applying our new findings in quaternion
algebra.

The aim of the paper is to present an innovative, efficient, and accurate
method for the numerical solution of monic quadratic equations in the algebra
of real quaternions using the Scilab software. We develop a new algorithm that
solves these equations for any quaternionic coefficients in any algebra H(α, β).
Our ultimate goal is to contribute to the development and application of this
knowledge in various fields such as computer graphics, physics, and engineering,
opening up new research and application perspectives for quaternions and monic
quadratic equations with quaternionic coefficients.

1. Preliminaries

The quadratic equation has been explored in the context of Hamilton quater-
nions in the works [11], [13]. In [11], the equation x2+bx+c = 0 is analyzed and
explicit formulas for its roots are obtained. These formulas were subsequently
used in the classification of quaternionic Möbius transformations [14], [2]. In
Hamilton quaternions, every nonzero element can be inverted, while in H(α, β)
there exist split quaternions that cannot be inverted. In an algebraic system,
finding the roots of a quadratic equation is always connected to the factorization
of a quadratic polynomial [12]. In the case of real numbers (R) and complex
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numbers (C), the two problems are identical. However, in noncommutative al-
gebra, these two problems are interconnected. Scharler et al. [15] analyzed
the factorizability of a quadratic split quaternion polynomial, revealing certain
information about the roots of a split quaternionic quadratic equation.

In a publication from 2022, [7] exploring algebras derived from the Cayley-
Dickson process presents challenges in achieving desirable properties due to com-
putational complexities. Hence, the discovery of identities within these algebras
it gains meaning, helping to acquire new properties and making calculations
easier. To this end, the study introduces several fresh identities and proper-
ties within the algebras derived from the Cayley-Dickson process. Furthermore,
when certain elements serve as coefficients, quadratic equations in real division
quaternion algebra can be solved, showcasing the authors ability to provide
direct solutions without relying on specialized software.

In the paper [3], the author specifically focuses on deriving explicit formulas
for the roots of the quadratic equation x2 + bx + c = 0 where b and c are split
quaternions (HS).

The same subject can be found in [1], where quadratic formulas for gener-
alized quaternions are studied. It focuses on obtaining explicit formulas for the
roots of quadratic equations in this specific context of generalized quaternions.

Let H(α, β) be the generalized quaternion algebra over an arbitrary field K,
that is the algebra of the elements of the form q = q1+ q2e1+ q3e2+ q4e3 where
qi ∈ K, i ∈ {1, 2, 3, 4}, and the basis elements {1, e1, e2, e3} satisfy the following
multiplication table:

(1)

· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 α e3 αe2
e2 e2 −e3 β −βe1
e3 e3 −αe2 βe1 −αβ

The conjugate of a quaternion is obtained by changing the sign of the imag-
inary part: q = q1 − q2e1 − q3e2 − q4e3, where q = q1 + q2e1 + q3e2 + q4e3.

The norm of a quaternion is defined as the sum of the squares of its compo-
nents, for this case, the norm is:

n (q) = q · q = ||q||2 = q21 − αq22 − βq23 + αβq24.

If for x ∈ H (α, β), the relation n(x) = 0 implies x = 0, then the algebra
H (α, β) is called a division algebra, otherwise the quaternion algebra is called
a split algebra. (see [4])

If α and β are negative real numbers, it becomes a division algebra, therefore
the norm will be different from zero. The role of α and β is to parameterize
the coefficients of the quaternion algebra H(α, β). These values determine the
specific properties and structure of the quaternion algebra. In the multiplication
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table given in equation (1), α and β appear as parameters that determine the
specific structure and properties of the quaternion algebra H(α, β).

The role of the norm is to provide a measure of the size of a quaternion in the
algebra H(α, β). The norm expression involves the coefficients q1, q2, q3, q4, and
the parameters α and β. The norm plays a crucial role in determining whether
the algebra H(α, β) is a division algebra or a split algebra, based on whether
the norm is nonzero or zero, respectively.

Split quaternions form an algebraic structure and are linear combinations
with real coefficients. Every quaternion can be written as a linear combination
of the elements 1, e1, e2, and e3, where e1, e2, and e3 are the imaginary units
that satisfy the relations e21 = α, e22 = β, and e23 = −αβ.

We will now present some of the most important properties and relations
of quaternions, which play a fundamental role in various fields such as physics,
engineering, computer science, and applied mathematics:

� The addition is done component-wise:
a = a1 · 1 + a2e1 + a3e2 + a4e3,
b = b1 · 1 + b2e1 + b3e2 + b4e3,
⇒ a+ b = (a1 + b1) · 1 + (a2 + b2)e1 + (a3 + b3)e2 + (a4 + b4)e3.

� Quaternion multiplication is not commutative:
a · b = (a1b1+αa2b2+βa3b3−αβa4b4)+ e1(a1b2+a2b1−βa3b4+βa4b3)+
e2(a1b3 + αa2b4 + a3b1 − αa4b2) + e3(a1b4 + a2b3 − a3b2 + a4b1)
b ·a = (a1b1+αa2b2+βa3b3−αβa4b4)+ e1(a2b1+a1b2−βa4b3+βa3b4)+
e2(a3b1 + αa4b2 + a1b3 − αa2b4) + e3(a4b1 + a3b2 − a2b3 + a1b4)
⇒ a · b ̸= b · a.

� Quaternions are associative: (a · b) · c = a · (b · c) = a · b · c.

� The trace of the element q:

t(q) = q + q.

� The multiplication of a quaternion by a scalar:

α·q = α·(q1+q2e1+q3e2+q4e3) = (α·q1)+(α·q2)·e1+(α·q3)·e2+(α·q4)·e3.

� The inverse of a non-zero quaternion q is given by

q−1 =
q

||q||2
=
q1 − q2e1 − q3e2 − q4e3
q21 − αq22 − βq23 + αβq24

.

� The dot product of two quaternions can be defined as q · r = (qr + rq)/2.

These are just some of the many important relations and properties of
quaternions. All these properties make quaternions a powerful tool in math-
ematics and practical applications.



A METHOD FOR SOLVING QUADRATIC EQUATIONS ... 587

2. Known results

In [16] and [17], to find the root of the equation f(xt) = 0, the Newton-Raphson
method relies on the Taylor series expansion of the function around the estimate
xi to find a better estimate xi+1:

f(xi+1) = f(xi) + f ′(xi)(xi+1 − xi) +O(h2),

where xi+1 is the estimate of the root after iteration i+1 and xi is the estimate
at iteration i. O(h2) means the order of error of the Taylor series around the
point xi. Assuming f(xi+1) = 0 and rearranging:

xi+1 ≈ xi −
f(xi)

f ′(xi)
.

The procedure is as follows. Setting an initial guess x0, a tolerance εs, and
a maximum number of iterations N :

At iteration i, calculate xi ≈ xi−1 − f(xi−1)
f ′(xi−1)

and εr. If εr ≤ εs or if i ≥ N ,
stop the procedure. Otherwise, repeat.

In [10], the authors present specific formulas to solve the monic quadratic
equation x2 + bx + c = 0 with b, c ∈ H (α, β) , where α = −1, β = −1, the real
division algebra, according to the multiplication table presented in (1). In the
following we present the results we will use in developing our solutions, and a
proof of lemma 2:

Lemma 2.1 ([10], Lemma 2.1). Let A,B,C ∈ R with the following properties:
C ̸= 0, A < 0 implies A2 < 4B.

Then the equation of order 3:

(2) y3 + 2Ay2 + (A2 − 4B)y − C2 = 0

has exactly one positive solution y.

Lemma 2.2 ([10], Lemma 2.2). Let A,B,C ∈ R such that: B ≥ 0 and A < 0
implies A2 < 4B then the real system:

(3)

{
Y 2 − (A+W 2)Y +B = 0,

W 3 + (A− 2Y )W + C = 0

has at most two solutions (W,Y ) with W ∈ R and Y ≥ 0 as follows:

(i) W = 0, Y = A±
√
A2−4B
2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√

2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B.

(iii) W = ±
√
z, Y = W 3+AW+C

2W provided that C ̸= 0 and z is the unique
positive solution of the real polynomial:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0.
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Proof. Let A,B,C ∈ R such that B ≥ 0 and A < 0 =⇒ A2 < 4B.
We want to show that the real system has at most two solutions (W,Y ) with
W ∈ R and Y ≥ 0 as follows:

(i) W = 0, Y = A±
√
A2−4B
2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√
2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B;

(iii) W = ±
√
z, Y = W 3+AW+C

2W provided that C ̸= 0 and z is the unique
positive solution of the real polynomial:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0.

From Lemma 2.1, we know that the polynomial z3+2Az2+(A2−4B)z−C2 = 0
has exactly one positive solution z when C ̸= 0.

For the cases (i) and (ii), when C = 0, the first equation becomes a quadratic
equation in Y . If A2 ≥ 4B, there are two real solutions for Y , and if A2 < 4B,
there is one real solution for Y . Since W = 0, these solutions correspond to the
cases 1. and 2. in the lemma.

The case (iii), when C ̸= 0, we can express Y as a function of W using the

second equation: Y = W 3+AW+C
2W . Substituting this expression for Y in the

first equation, we obtain a polynomial equation in W 2 of degree 3. Since z is
the unique positive solution of this polynomial, there are two solutions for W :
W = ±

√
z. These solutions correspond to the case 3. in the lemma.

In conclusion, the real system (3) has at most two solutions (W,Y ) with
W ∈ R and Y ≥ 0 as described in the lemma.

Theorem 2.3 ([10], Theorem 2.3). The solution of the quadratic equation x2+
bx+ c = 0 can be obtained in the following way:

Case 1. If b, c ∈ R and b2 < 4c then:

(4) x =
1

2
(−b+ e · e1 + f · e2 + g · e3),

where e2 + f2 + g2 = 4c− b2 where e, f, g ∈ R.

Case 2. If b, c ∈ R and b2 ≥ 4c then:

(5) x =
−b±

√
b2 − 4c

2
.

Case 3. If b ∈ R, c /∈ R then:

(6) x =
−b
2

± m

2
∓ c1
m

· e1 ∓
c2
m

· e2 ∓
c3
m

· e3,

where c = c0 + c1 · e1 + c2 · e2 + c3 · e3, and

(7) m =

√
b2 − 4c0 +

√
(b2 − 4c0)2 + 16(c21 + c22 + c23)

2
.
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Case 4. If b /∈ R then:

(8) x =
(−Re(b))

2
− (b′ +W )−1(c′ − Y ),

where b′ = b − Re(b) = Im(b), c′ = c − (Re(b)/2)(b − (Re(b))/2), where
(W,Y ) are chosen in the following way:

(i) W = 0, Y = (A±
√
A2 − 4B)/2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√

2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B;

(iii) W = ±
√
z, Y = (W 3 + AW + C)/2W provided that C ̸= 0 and z is the

unique positive solution of the equation:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0,

where A = |b′|2 + 2Re(c′), B = |c′|2 and C = 2Re(b′c′).

Corollary 2.4 ([10], Corollary 2.4). The equation has an infinity of solutions
if b, c ∈ R and b2 < 4c.

Corollary 2.5 ([10], Corollary 2.6). The equation has an unique solution if and
only if:

1. b, c ∈ R and b2 − 4c = 0;

2. b /∈ R and C = 0 = A2 − 4B.

Corollary 2.6. If the quadratic equation x2 + bx + c = 0 has real coefficients
b and c, and b2 < 4c, then the solution of the equation can be expressed as
x = 1

2(−b+ e · e1 + f · e2 + g · e3), where e2 + f2 + g2 = 4c− b2 and e, f, g ∈ R.

Corollary 2.7. If the quadratic equation x2 + bx+ c = 0 has real coefficients b

and c, and b2 ≥ 4c, then the solutions of the equation are x = −b±
√
b2−4c
2 .

Corollary 2.8. If b and c are the coefficients of the quadratic equation x2 +
bx + c = 0, such that b /∈ R, then the solution of the equation can be expressed
as:

x =
(−Re(b))

2
− (b′ +W )−1(c′ − Y ),

where b′ = b − Re(b) = Im(b), c′ = c − (Re(b)/2)(b − (Re(b))/2), and (W,Y )
are chosen such that:

� W = 0, Y = (A±
√
A2 − 4B)/2 if C = 0 and A2 ≥ 4B;

� W = ±
√

2
√
B −A, Y =

√
B if C = 0 and A2 < 4B;

� W = ±
√
z, Y = (W 3 + AW + C)/2W if C ̸= 0 and z is the unique

positive solution of the equation z3 + 2Az2 + (A2 − 4B)z −C2 = 0, where
A = |b′|2 + 2Re(c′), B = |c′|2 and C = 2Re(b′c′).
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3. The solutions of the second-degree equation in real quaternions

It is important to mention that the algebra H(α, β) is a mathematical construc-
tion, and its properties can vary depending on the values chosen for α and β.
When we take negative values for α and β in the algebra H(α, β)), it becomes a
division algebra. This means that every nonzero element in the algebra can be
inverted. Multiplication and inversion of elements can be performed using the
specific rules of this algebra.

Therefore, for the algebra H(α, β), we will take negative values for α and β,
thus making it a division algebra, and the norm will be nonzero. If the values
of α and β are positive, we no longer have a division algebra because the norm
is zero.

Next, we will describe the solution of a monic quadratic equation in the alge-
bra of real quaternions. This statement provides an explicit formula for finding
the solutions of the equation and explains how to perform the necessary calcu-
lations. It presents the general formula for the solution of the monic quadratic
equation, where the equation’s coefficients are represented as real quaternions,
and the solution is a linear combination of the imaginary units of the quater-
nions. This formula is presented in a detailed manner, specifying the values
of each component of the solution in terms of the coefficients and other terms
involved in the equation.

Proposition 3.1. Let b = b0+b1·e1+b2·e2+b3·e3 and c = c0+c1·e1+c2·e2+c3·e3
where b, c are two quaternionic elements in H(α, β) and knowing W and Y of
the Theorem 2.3 the solution of the second degree equation x2 + bx+ c = 0 is of
the form

(9) x = x1 + x2e1 + x3e2 + x4e3,

where:

x1 = −t−[Wc1−YW−b2c2α−b3c3β+b4c4αβ−t(Wt−b22α−b23β+b24αβ)]/m,
x2 = (Wc2 − b2c1 + b2Y + b3c4β − b4c3β − tb2(W − t))/m,

x3 = (Wc3 − b2c4α− b3c1 + b3Y + b4c2α− tb3(W − t))/m,

x4 = (Wc4 − b2c3 + b3c2 + b4c1 + b4Y − tb4(W − t))/m

with t = b1
2 and

m =W 2 − αb22 − βb23 + αβb24.

Proof. Let b = b1 + b2 · e1 + b3 · e2 + b4 · e3 and c = c1 + c2 · e1 + c3 · e2 + c4 · e3.
for this case, the norm is:

n (a) = aa = a21 − αa22 − βa23 + αβa24.

We compute the necessary elements for applying the theorem: Re(b) = b1.
Therefore,

b′ = b−Re(b) = Im(b) = b2 · e1 + b3 · e2 + b4 · e3
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and

c′ = c− (Re(b)/2)(b− (Re(b))/2)

= c1 + c2 · e1 + c3 · e2 + c4 · e3 −
b1
2

(
b1 + b2 · e1 + b3 · e2 + b4 · e3 −

b1
2

)
=

(
c1 −

b21
2

+
b21
4

)
+

(
c2 −

b1b2
2

)
e1 +

(
c3 −

b1b3
2

)
e2 +

(
c4 −

b1b4
2

)
e3

=

(
c1 −

b21
4

)
+

(
c2 −

b1b2
2

)
e1 +

(
c3 −

b1b3
2

)
e2 +

(
c4 −

b1b4
2

)
e3.

Using all the above and C = 2Re(b′c′), we find

C = 2Re((−b2 · e1 − b3 · e2 − b4 · e3) · ((c1 −
b21
4
) + (c2 −

b1b2
2

)e1

+ (c3 −
b1b3
2

)e2 + (c4 −
b1b4
2

)e3)).

The real part is obtained only by multiplying terms of the same kind, therefore
we obtain:

C = −2b2c2α+ b1b
2
2α− 2b3c3β + b1b

2
3β + 2b4c4αβ − b1b

2
4αβ

and A = |b′|2 + 2Re(c′) = (−αb22 − βb32 + αβb24) + 2(c1 − b21
4 ). Then A =

−αb22 − βb32 + αβb24 + 2c1 −
b21
2

Computing B = |c′|2 we get

B =

(
c1 −

b21
4

)2

− α

(
c2 −

b1b2
2

)2

− β

(
c3 −

b1b3
2

)2

+ αβ

(
c4 −

b1b4
2

)2

.

We denote b1
2 = t and obtain:

B = (c1 − t2)2 − α(c2 − tb2)
2 − β(c3 − tb3)

2 + αβ(c4 − tb4)
2.

We compute W and Y according to the cases of the theorem. By denoting
m = |b′ +W | =W 2 − αb22 − βb23 + αβb24 and cu t = b1/2, we apply equation (8)
and we find

x1 = −t− (Wc1 − YW − b2c2α− b3c3β + b4c4αβ

− t(Wt− b22α− b23β + b24αβ))/m,

x2 = (Wc2 − b2c1 + b2Y + b3c4β − b4c3β − tb2(W − t))/m,

x3 = (Wc3 − b2c4α− b3c1 + b3Y + b4c2α− tb3(W − t))/m,

x4 = (Wc4 − b2c3 + b3c2 + b4c1 + b4Y − tb4(W − t))/m.

We obtain the solution as

x = x1 + x2e1 + x3e2 + x4e3.
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4. Numerical applications and examples

For the implementation of numerical applications, let’s consider the general case
of H(α, β), b = b1 + b2 · e1 + b3 · e2 + b4 · e3 and c = c1 + c2 · e1 + c3 · e2 + c4 · e3.
Using Proposition 4.1, we present the algorithm from the table 1. The algorithm
described has been implemented in Scilab 6.1.1. To verify our computations, we
apply all the formulas, on some remarkable examples.

Steps

1. Input α, β, b, c

2. Compute C, A, B

3. Identify case

4. If case 1: Compute W = 0,

C = 0, A ≥ 4B Y = (A±
√
A2 − 4B)/2

If case 2: Compute W = ±
√
2
√
B −A,

C = 0, A2 < 4B Y =
√
B

If case 3: Solve the polynomial equations
C ̸= 0 z3 + 2Az2 + (A2 − 4B)z − C2 = 0

and find the positive root.

5. Compute solutions using formula (9).

Table 1: Algorithm for computing the solutions of the quadratic equation.

Example 4.1 ([10], Example 2.12). Consider the quadratic equation x2+xe1+
(1 + e2) = 0, i.e., b = e1 and c = 1+ e2. This belongs to Case 4 in Theorem 2.3.
Then b′ = e1 and c′ = 1 + e2. Moreover, A = 3, B = 2, C = 0. It is Subcase 1
in Case 4. Hence, W = 0 and Y = 2 or Y = 1. Consequently, the two solutions
are x1 = −e1 + e3 and x2 = e3. For α = −1, β = −1, the solution is:

C = 0.000000,

A = 3.000000,

B = 2.000000,

Y1 = 2.000000,

Y2 = 1.000000,
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x1 = −0.000000− 1.000000e1 − 0.000000e2 + 1.000000e3,

x2 = −0.000000− 0.000000e1 − 0.000000e2 + 1.000000e3.

Example 4.2. ([10], Example 2.13) Consider the quadratic equation x2+xe1+
e2 = 0, i.e., b = e1 and c = e2. This belongs to Case 4 in Theorem 2.3. Then
b′ = e1 and c′ = e2. Moreover, A = 1, B = 1, C = 0. It is Subcase 2 in Case
4. Hence, W = +1 or −1 and Y = 1. Consequently, the two solutions are
x1 = (e1 + 1)−1(1− e2) = (1/2)(1− e1 − e2 + e3) and x2 = (e1 − 1)−1(1− e2) =
(1/2)(−1− e1 + e2 + e3). For α = −1, β = −1, the solution of the program:

C = 0.000000,

A = 1.000000,

B = 1.000000,

x1 = 0.500000− 0.500000e1 − 0.500000e2 + 0.500000e3,

x2 = −0.500000− 0.500000e1 + 0.500000e2 + 0.500000e3.

Example 4.3. ([10], Example 2.14) Consider the quadratic equation x2+xe1+
(1 + e1 + e2) = 0, i.e., b = e1 and c = 1 + e1 + e2. This belongs to Case 4 in
Theorem 2.3. Then b′ = e1 and c

′ = 1+e1+e2. Moreover, A = 3, B = 3, C = 2.
It is Subcase 3 in Case 4. Now the unique positive roots of z3 + 6z2 − 3z − 4 is
1, and hence,W = 1 and Y = 3 or W = −1 and Y = 1. Consequently, the two
solutions are x1 = (1/2)(1 − 3e1 − e2 + e3) and x2 = (1/2)(−1 + e1 + e2 + e3).
For α = −1, β = −1, the solution of the program:

C = 2.000000,

A = 3.000000,

B = 3.000000,

x1 = 0.500000− 1.500000e1 − 0.500000e2 + 0.500000e3,

x2 = −0.500000 + 0.500000e1 + 0.500000e2 + 0.500000e3.

The results obtained in Examples 5.1-5.3 are exactly the ones obtain by
direct computation by the authors in [10].

In the following, we will present a few examples using the results presented
above and also calculate the solutions of the equations using the described al-
gorithm, for different values of α and β.

Example 4.4. Next, we aim to find the solution of the equation x2+bx+c = 0
in the case where b and c are quaternions:

b = 5 · 1 + 6 · e1 + 7 · e2 + 8 · e3

and

c = 2 · 1 + 3 · e1 + 4 · e2 + 5 · e3.



594 GEANINA ZAHARIA and DIANA-RODICA MUNTEANU

For α = −1, β = −1, we can compute b′ = b−Re(b) = 6e1 + 7e2 + 8e3 and

c′ = c− 1

2
Re(b)

(
b− 1

2
Re(b)

)
,

c′ =

(
2− 25

2
+

25

4

)
1 + (3− 15) e1 +

(
4− 35

2

)
e2 + (5− 20) e3.

Then

c′ = −17

4
− 12e1 −

27

2
e2 − 15e3.

Consequently,

A = |b′|2 + 2Re(c′) = 62 + 72 + 82 + 2

(
−17

4

)
= 140, 5,

B = |c′|2 =
(
−17

4

)2

+ 122 +

(
27

2

)2

+ (15)2 = 569, 3125,

C = 2Re(b′c′) = −573.

We can check that A2 ≥ 4B, so we can use case 4. Using the formulas in case
4, the next step is to find the values of (W,Y ) using one of the three situations
described in the formula from case 4. Since C ̸= 0, we will use situation 3
z3 + 2Az2 + (A2 − 4B)z − C2 = 0.

To find the unique positive solution z, we will use the Newton-Raphson
method. In this case, we have:

f(z) = z3 + 2Az2 + (A2 − 4B)z − C2,

f ′(z) = 3z2 + 4Az + (A2 − 4B).

The analytical method to find the solutions of the equation is given by
choosing z0 = 1 and applying the Newton-Raphson formula. We can obtain
successive values for z as the fixed number given by:

z1 = z0 −
f(z0)

f ′(z0)
= 1− f(1)

f ′(1)
,

z2 = z1 −
f(z1)

f ′(z1)
,

z3 = z2 −
f(z2)

f ′(z2)
,

z4 = z3 −
f(z3)

f ′(z3)
.

Computing by this formula we use decimal fractions with many decimals,
therefore we used the Scilab solver:

p = −328329 + 17463x+ 281x2 + x3.
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By using of the solver in Scilab, we obtain: W1 = ±3.871934, and using a
numerical application, we obtain:

C = −573.000000,

A = 140.500000,

B = 569.312500,

x1 = −0.564033 + 0.008853e1 + 0.306465e2 − 0.017904e3,

x2 = −4.435967− 5.972266e1 − 6.647896e2 − 7.945509e3.

For α = −2, β = −3, the solution is

C = −2295.000000,

A = 594.500000,

B = 2202.812500,

W = ±3.813764,

x1 = −0.593118 + 0.012038e1 + 0.168839e2 − 0.004699e3,

x2 = −4.406882− 5.982890e1 − 6.819067e2 − 7.985585e3.

Example 4.5 ([7]). We aim to solve the following equation: x2 + (2 + 3e1 +
4e2 + 5e3)x+ (4− 5e1 − 6e2 − 7e3) = 0. For α = −1, β = −1, we write:

(a+be1+ce2+de3)
2+(2+3e1+4e2+5e3)(a+be1+ce2+de3)+(4−5e1−6e2−7e3) = 0.

We expand this equation and group the terms based on the quaternionic units:

(a2 − b2 − c2 − d2 + 2a− 3b− 4c− 5d+ 4) + (2ab+ 3a+ 2b− 5c+ 4d− 5)e1

+ (2ac+ 4a+ 5b+ 2c− 3d− 6)e2 + (2ad+ 5a− 4b+ 3c+ 2d− 7)e3 = 0.

Thus, we can obtain a system of linear equations with 4 equations and 4 un-
knowns: 

a2 − b2 − c2 − d2 + 2a− 3b− 4c− 5d+ 4 = 0,

2ab+ 3a+ 2b− 5c+ 4d− 5 = 0,

2ac+ 4a+ 5b+ 2c− 3d− 6 = 0,

2ad+ 5a− 4b+ 3c+ 2d− 7 = 0.

Solving this system of equations can provide us with the quaternionic solu-
tions to the initial equation. Unfortunately, this system does not seem to have
a simple and analytical solution, but we can try to solve it numerically or look
for a specialized method for solving quaternionic equations.

Using the algorithm, we found the following results:

C = −248.000000,

A = 56.000000,

B = 317.000000,

x1 = 0.988335 + 0.435138e1 − 0.199557e2 + 0.624407e3,

x2 = −2.988335− 3.374360e1 − 5.198324e2 − 5.563629e3.
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For α = −2.35, β = −100, the solution of the equations is

x1 = 1.416406 + 0.030602e1 − 0.009466e2 + 0.006083e3,

x2 = −3.416406− 2.977407e1 − 4.019286e2 − 5.005551e3.

Moreover, C = −36312.800000, A = 7502.150000, B = 43999.400000.

Example 4.6. Next, we aim to find the solution of the equation in the case
where b and c are quaternions: b = 1.25 + 0.2e1 − 0.31e2 − 0.69e3 and c =
−1 + 0.56e1 − 2.35e2 − 4.56e2. Then, the equations is

x2 + (1.25 + 0.2e1 − 0.31e2 − 0.69e3)x− 1 + 0.56e1 − 2.35e2 − 4.56e2 = 0.

Using the program, for α = −1, β = −1, we found the following results:

C = 7.208550,

A = −2.169050,

B = 23.819054,

W = ±3.485216,

x1 = 1.117608 +−0.251329e1 + 0.667362e2 + 1.505501e3,

x2 = −2.367608 + 0.018740e1 − 0.560890e2 − 0.861963e3.

For α = −6, β = −8.5, the solution is

C = 302.988862,

A = 22.556700,

B = 911.964612,

W = ±7.155732,

x1 = 2.952866− 0.219073e1 + 0.340546e2 + 0.917961e3,

x2 = −4.202866− 0.027102e1 − 0.234104e2 − 0.235706e3.

Example 4.7. Next, we aim to calculate by using of the program an example
where C = 0:

Find the solutions of the equation: x2+(e1+e2+e3)x+(−3e1−4e2+7e3) = 0.
We can see that b = e1 + e2 + e3 /∈ R, so we need to use the formula from

case 4. Firstly, we will calculate the values of b′, c′, A, B, and C:

b′ = b− Re(b) = e1 + e2 + e3,

c′ = c− Re(b)

2
(b− Re(b)

2
) = −3e1 − 4e2 + 7e3,

A = |b′|2 + 2Re(c′) = 3,

B = |c′|2 = 74,

C = 2Re(b′c′) = 0.
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The next step is to find the values of (W,Y ) using one of the three situations
described in the formula from case 4. Since C = 0 and A2 < 4B. Now we
can calculate (W,Y ): W = ±

√
2
√
B −A = ±3, 7689057476 and Y =

√
B =

8, 602325267.

By using of the program, we have found the following results:

C = 0.000000,

A = 3.000000,

B = 74.000000,

W = ±3.768906,

Y = 8.602325,

x1 = 1.884453 + 0.796552e1 + 0.608748e2 − 2.091566e3,

x2 = −1.884453− 0.517828e1 − 1.143758e2 + 0.975319e3.

The same equation can be solved for α = −6 and β = −9. In this case,
C ̸= 0. We get

C = 2088.000000,

A = 528.000000,

B = 2844.000000,

W = ±3.919010,

x1 = 1.959505− 0.537980e1 − 1.973780e2 − 3.017625e3,

x2 = −1.959505 + 0.399290e1 − 0.070390e2 + 0.024986e3.

Example 4.8. Next, we intend to use the program to calculate an example
where C=0:

Let’s find the solutions of the equation: x2+(e1+e2+e3)x+(−e1+e3) = 0.

We can see that b = e1 + e2 + e3 /∈ R, so we need to use the formula from
case 4.

Firstly, we will calculate the values of b′, c′, A, B and C:

b′ = b− Re(b) = e1 + e2 + e3,

c′ = c− Re(b)

2
(b− Re(b)

2
) = −e1 + e3,

A = |b′|2 + 2Re(c′) = 3,

B = |c′|2 = 2,

C = 2Re(b′c′) = 0.

The next step is to find the values of (W,Y ) using one of the three situations
described in the formula of case 4. Since C = 0 and A2 ≥ 4B, we will use
situation 1, W = 0, Y = (A±

√
A2 − 4B)/2 result Y1 = 2,Y2 = 1.
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Calculating with the numerical application, we get:

C = 0.000000,

A = 3.000000,

B = 2.000000,

Y1 = 2.000000,

Y2 = 1.000000,

x1 = −0.000000− 0.333333e1 − 0.666667e2 − 0.333333e3,

x2 = −0.000000− 0.000000e1 − 0.333333e2 − 0.000000e3.

For α = −100, β = −100, we get C ̸= 0, like in the other example, and the
solution is

C = 19800.000000,

A = 10200.000000,

B = 10100.000000,

W = ±1.940836,

x1 = 0.970418− 0.989912e1 − 0.999903e2 − 0.999995e3,

x2 = −0.970418 + 0.009513e1 − 0.000097e2 + 0.000191e3.

Example 4.9. ([7]) Let fn be the Fibonacci sequence define as f0 = 0, f1 = 1
and fk = fk−1 + fk−2. We define the quaternion Fn = fn + fn+1e1 + fn+2e2 +
fn+3e3.

Consider the monic quadratic equation x2+Fnx+Fm = 0. We use the same
algorithm for solving the equation.

For n = 3,m = 3, case discussed in ([7]), we obtain F3 = 2+3e1 +5e2 +8e3
and the equation x2 + (2 + 3e1 + 5e2 + 8e3)x+ (2 + 3e1 + 5e2 + 8e3) = 0.

Solving the equations for α = −1, β = −1, and we get

C = 0.000000,

A = 100.000000,

B = 1.000000,

Y1 = 99.989999,

Y2 = 0.010001,

x1 = −1.000000− 3.030306e1 − 4.560714e2 − 8.080816e3,

x2 = −1.000000 + 0.030306e1 + 0.540306e2 + 0.080816e3.

Solving the equations for α = −6.3, β = −5.25, and we get

C = 0.000000,

A = 2306.750000,
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B = 1.000000,

Y1 = 2306.749566,

Y2 = 0.000434,

x1 = −1.000000 +−3.001301e1 − 4.870961e2 − 8.003470e3,

x2 = −1.000000 + 0.001301e1 + 0.133376e2 + 0.003470e3.

For n = 5,m = 10 we obtain F5 = 5+8e1 +13e2 +21e3, and F10 = 55+ 89e1 +
144e2 +233e3. Thus, the equation in this case is x2 +F5x+F10 = 0. Then, the
solution for α = −1, β = −1 found by the algorithm is

C = 11584.000000,

A = 771.500000,

B = 52150.062500,

W = ±13.722364,

x1 = 4.361182− 9.008123e1 − 10.308573e2 − 23.657396e3,

x2 = −9.361182 + 1.019720e1 + 5.966780e2 + 2.645800e3.

For α = −6.3, β = −5.25 the solution provided by the algorithm is

C = −272916.525000,

A = 15974.025000,

B = 1175231.943750,

W = ±16.934907,

x1 = 5.967453− 8.058866e1 − 11.642625e2 − 21.158442e3,

x2 = −10.967453 + 0.062114e1 + 1.552659e2 + 0.157823e3.

Example 4.10. Let pn be the Pell sequence define as p0 = 0, p1 = 1 and
pk = 2pk−1+pk−2. Consider the quaternions Pn = pn+pn+1e1+pn+2e2+pn+3e3.
We solve the monic quadratic equation x2 + Pnx + Pm = 0. For n = 3,m = 3,
we get P3 = 3 + 7e1 + 17e2 + 41e3 and the equation is x2 + (3 + 7e1 + 17e2 +
41e3)x+ 3 + 7e1 + 17e2 + 41e3 = 0.

Solving the equations for α = −1, β = −1 using the algorithm we obtain

C = −2019.000000,

A = 2020.500000,

B = 505.312500,

W = ±0.999011,

x1 = −1.000494 + 0.003464e1 + 0.292570e2 + 0.020287e3,

x2 = −1.999506− 7.003464e1 − 16.724253e2 − 41.020287e3.
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For α = −7, β = −6 the solutions are

C = −72679.000000,

A = 72680.500000,

B = 18170.312500,

W = ±0.999972,

x1 = −1.000014 + 0.000096e1 + 0.055517e2 + 0.000564e3,

x2 = −1.999986− 7.000096e1 − 16.944950e2 − 41.000564e3.

For n = 12,m = 19, the quaternions are P12 = 8119 + 19601e1 + 47321e2 +
114243e3 and P19 = 3880899 + 9369319e1 + 22619537e2 + 54608393e3. The
equations is x2 + P12x+ P19 = 0. Solving for α = −1, β = −1, we get

C = −112279524556439.000000,

A = 15649742008.500000,

B = 201223166914529952.000000,

W = ±7162.787683,

x1 = −478.106158 + 0.284778e1 + 136.813987e2 + 1.659808e3,

x2 = −7640.893842− 19601.284778e1 − 47185.561043e2 − 114244.659808e3.

For α = −7, β = −6 the solutions are

C = −4041981872234103.000000,

A = 564261307428.500000,

B = 7238333535486963712.000000,

W = ±7162.990016,

x1 = −478.004992 + 0.007936e1 + 26.572949e2 + 0.046254e3,

x2 = −7640.995008− 19601.007936e1 − 47294.465369e2 − 114243.046254e3.

Example 4.11. Consider now the Lucas number sequences define as l0 = 2, l1 =
1 and ln = ln−1 + ln−2. We define the quaternion Ln = ln + ln+1e1 + ln+2e2 +
ln+3e3. We solve the monic quadratic equation x2 + Lnx + Lm = 0. For n =
3,m = 8, the quaternions are L3 = 4+ 7e1 + 11e2 + 18e3 and L8 = 47 + 76e1 +
123e2 + 199e3.

Solving the equation x2 + L3x+ L8 = 0 for α = −1, β = −1, we get

C = 8958.000000,

A = 580.000000,

B = 42463.000000,

W = ±13.777285,

x1 = 4.888642− 8.113676e1 − 8.726917e2 − 20.805123e3,

x2 = −8.888642 + 1.040556e1 + 5.802217e2 + 2.878243e3.
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On the other hand, for α = −3, β = −10, the solution are

C = 200864.000000,

A = 11163.000000,

B = 912461.000000,

W = ±17.747518,

x1 = 6.873759− 7.095766e1 − 10.394477e2 − 18.193193e3,

x2 = −10.873759 + 0.051875e1 + 0.848658e2 + 0.197582e3.

For n = 11,m = 14, L11 = 199+322e1+521e2+843e3 and L14 = 843+1364e1+
2207e2 + 3571e3.

Solving the equation x2 + L11x+ L14 = 0 for α = −1, β = −1, we get

C = −4638388100.000000,

A = 24326817.500000,

B = 221017587902.562500,

W = ±190.527592,

x1 = −4.236204 + 0.000233e1 + 0.283353e2 + 0.000622e3,

x2 = −194.763796− 322.000241e1 − 520.717414e2 − 843.000621e3.

Finally, we solve the same equation for α = −1.236, β = −10.023, the solu-
tion are

C = −2220150838.889460,

A = 11634516.036772,

B = 105832184609.751312,

W = ±190.527281,

x1 = −4.236359 + 0.000487e1 + 0.243975e2 + 0.001297e3,

x2 = −194.763641− 322.000504e1 − 520.757626e2 − 843.001295e3.

Conclusion

In this article, we have provided an algorithm in Scilab which allows us to find
solutions for the monic quadratic equation x2 + bx+ c = 0, with b, c ∈ H(α, β).

In Theorem 2.3, the authors offer solutions for all cases of the monic equation
x2 + bx + c = 0. We are interested only in cases 3 and 4 of the theorem. The
article presents several equations solved using the algorithm, implemented in
Scilab. By assigning specific values to the two quaternions, b and c, in the form
of b = b1 + b2e1 + b3e2 + b4e3 and c = c1 + c2e1 + c3e2 + c4e3, and utilizing the
formulas provided in the article, we perform the following calculations: Compute
the values of A,B, and C: A is determined by evaluating the expression A =
|b′|2 +2Re(c′), where b′ = b−Re(b) and c′ = c− (Re(b)/2)(b− (Re(b))/2). B is
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computed as B = |c′|2. C is obtained by calculating C = 2Re(b′c′). Identify the
case we are in, based on the four cases specified in the theorem. Proceeding with
the determined case, we find the two solutions of the monic quadratic equation,
x2 + bx + c = 0, using the appropriate formulas presented in the article. That
this detailed procedure allows us to obtain precise and accurate solutions for
the given quadratic equation in the context of the algebra of real quaternions.

The algorithm can solve monic quadratic equations for any base that respects
the multiplication table of quaternions.
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Abstract. A subgroup D of a group G is called a CAP -embedded subgroup of G, if
for each prime p dividing the order of D, there exists a CAP -subgroup K of G such that
a Sylow p-subgroup of D is also a Sylow p-subgroup of K. Later, we have generalized
CAP -embedded subgroup to nearly CAP -embedded subgroup. A subgroup H of a
group G is said to be nearly CAP -embedded in G if there is a subnormal subgroup T
of G and a CAP -embedded subgroup Hce of G contained in H such that G is equal
to HT and the intersection of H and T is contained in Hce. The main purpose of this
paper is to study the p-nilpotentcy of a group which every second maximal subgroup
of its Sylow p-subgroups is nearly CAP -embedded and some new results are obtained.
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1. Introduction

In this paper, all groups are finite and G stands for a finite group. Let π(G)
denote the set of all prime divisors of |G|. Let F denote a formation, Np the
class of all p-nilpotent groups, and let us denote

GF = ∩{N ⊴G
∣∣G/N ∈ F}

*. Corresponding author
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as the F-residual of G. “H Char G” means that H is a characteristic subgroup
of G, “the group G is A4-free” means that there are no subgroups in G for which
A4 is an isomorphic image. The other notations and terminology are standard
(see, [8]).

The study of the embedding properties of subgroups of finite groups is one
of the most fruitful research areas in the group theory. Many researchers use
the embedding property of second maximal subgroups to describe the structure
of supersolvable groups, solvable groups, p-solvable groups and other concrete
groups. Given a group G, a subgroup K of G is called a second maximal
subgroup if there exists a maximal subgroup M of G such that K is a maximal
subgroup of M . One of the most classical results in this context is due to B.
Huppert. He proved in [9] that if every second maximal subgroup of a group
G is normal in G, then G is supersoluble, and if moreover the order of G is
divisible by at least three distinct primes, then G is nilpotent. Agrawal in [1]
generalized Huppert’s result under the weaker hypothesis of permutability. A
sharper insight regarding the groups such that every second maximal subgroup
of G is normal in G is done by Li Shirong in [10].

Later, many authors investigated the influence of the embedding properties
of second maximal subgroups of a Sylow subgroup on the structure of finite
groups. For example, Adolfo et al. in [2] obtained the completely classification of
finite groups in which the second maximal subgroups of the Sylow p-subgroups,
p is a fixed prime, cover or avoid the chief factors of some of its chief series.
Qiu et al. in [11] got the structure of finite groups in which the second maximal
subgroups of the Sylow p-subgroups, p is a fixed prime, satisfy the partial Π-
property (see, [3, Section 7]). Guo and Shum also in [7] proved the following
result. Let G be a group and p the smallest prime number dividing the order of
G. If all second maximal subgroup of every Sylow p-subgroup of G are c-normal
in G and G is A4-free, then G is p-nilpotent. In [5], Guo and Guo introduced the
notion of CAP -embedded subgroup. A subgroup H of a group G is said to have
the CAP -embedded property in G or is called a CAP -embedded subgroup of
G if, for each prime p dividing the order of H, there exists a CAP -subgroup K
of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K. And
they obtained the same conclusion in the case where c-normality is replaced by
CAP -embedded property.

In order to generalize the c-normality and CAP -embedded property, Xu
and Chen in [14] proposed the defintion of nearly CAP -embedded subgroup. A
subgroup H of a group G is said to be nearly CAP -embedded in G if there is a
subnormal subgroup T of G and a CAP -embedded subgroup Hce of G contained
in H such that G = HT and H ∩ T ≤ Hce. Clearly a c-normal subgroup or
CAP -embedded subgroup must be a nearly CAP -embedded subgroup. But the
converse is not true in general.

Example 1.1. Let A4 be the alternative group of degree 4 and D = ⟨d⟩ be a
cyclic group of order 2. Let G = D×A4. Then, A4 = [K4]C3 where K4 = ⟨a, b⟩
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is the Klein Four Group with generators a and b of order 2 and C3 is the cyclic
group of order 3. Take H = ⟨ad⟩ to be the cyclic subgroup of order 2 of G.
Then G = HA4 and H ∩A4 = 1. By definition, H is nearly CAP -embedded in
G. However, H is not a CAP -embedded subgroup of G as it neither covers nor
avoids (D×K4)/D and there is no the subgroup of order 6 containing H covers
or avoids (D ×K4)/D.

In this note, we investigate the structure of the groups in which some sec-
ond maximal subgroups of a Sylow subgroup satisfy the nearly CAP -embedded
property. Our results are as follows:

Theorem 1.1. Suppose that N is a normal subgroup of a group G such that
G/N is p-nilpotent and P is a Sylow p-subgroup of N , where p is the smallest
prime divisor of |G|. If G is A4-free and every second maximal subgroups of P
is nearly CAP -embedded in G, then G is p-nilpotent.

Theorem 1.2. Let F be the class of groups with Sylow tower of supersolvable
type and N a normal subgroup of a group G such that G/N ∈ F . Suppose that G
is A4-free. If, for every prime p dividing the order of N and P ∈ Sylp(N), every
second maximal subgroup of P is nearly CAP -embedded in G, then G belongs
to F .

Remark 1.1. The hypothesis that p is the smallest prime divisor of |G| in
Theorem 1.1 is essential. For example, consider an elementary abelian group
U = ⟨a, b|a5 = b5 = 1, ab = ba⟩ of order 25. Let α be an automorphism of U
of order 3 such that aα = b, bα = a−1b−1. Let V = ⟨c, d⟩ be a copy of U and
G = [U × V ]⟨α⟩. For any subgroup H of G of order 25, there exists a minimal
normal subgroup K such that H ∩K = 1 (for details, see [11, Example 1.5]),
then H satisfies the nearly CAP -embedded property in G. However, G is not
p-nilpotent.

The assumption that G is A4-free in Theorem 1.1 and Theorem 1.2 can
not be removed. In fact, let G = A4, then the second maximal subgroup of a
Sylow 2-subgroup of G is trivial, of course, it satisfies the nearly CAP -embedded
property in G, but A4 is neither a 2-nilpotent group nor a Sylow tower group.

2. Preliminary results

For convenience, we list here some known results which will be useful in the
sequel.

Lemma 2.1 ([5, Lemma 1]). Suppose that U is CAP -embedded in a group G
and N ⊴G. Then, UN/N is CAP -embedded in G/N .

Lemma 2.2 ([14, Lemma 2.8]). Let U be a nearly CAP -embedded subgroup and
N a normal subgroup of a group G. Then

(1) If N ≤ U , then U/N is nearly CAP -embedded in G/N .
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(2) If (|U |, |N |) = 1, then UN/N is nearly CAP -embedded in G/N .

Lemma 2.3 ([12, Lemma 1.6]). Let P be a nilpotent normal subgroup of a
group G. If P ∩Φ(G) = 1, then P is the direct product of some minimal normal
subgroups of G.

Lemma 2.4 ([15, Lemma 2.6]). Let G be an A4-free group, p = minπ(G), and
let N be a normal subgroup of G such that G/N is p-nilpotent. If p3 ∤ |N |, then
G is p-nilpotent.

Lemma 2.5 ([14, Theorem 3.1]). Let G be a group, N a normal subgroup of G
such that G/N is p-nilpotent and P a Sylow p-subgroup of N , where p ∈ π(G)
with (|G|, p− 1) = 1. If all maximal subgroups of P are nearly CAP -embedded
in G, then G is p-nilpotent.

Lemma 2.6 ([4, Lemma 2.1]). Let H be a subgroups of a group G. Let 1 <
· · · < N < · · · < M < · · · < G be a normal series. If H covers (avoid) M/N ,
then H covers (avoid) any quotient factor between M and N of any refinement
of the normal series.

Lemma 2.7. Let N be a normal subgroup of a group G and V a nearly CAP -
embedded subgroup of G. If V ≤ N , then V is nearly CAP -embedded in N .

Proof. By the hypothesis, there is a subnormal subgroup T of G and a CAP -
embedded subgroup Vce of G contained in V such that G = V T and V ∩T ≤ Vce,
For each prime p dividing the order of Vce, there exists a CAP -subgroup K of G
such that a Sylow p-subgroup (Vce)p of Vce is also a Sylow p-subgroup Kp of K.
Clearly, T ∩N is subnormal in N , V (T ∩N) = N , V ∩T ∩N = V ∩T ≤ Vce, and
by the Lemma 2.6, K ∩N is a CAP -subgroup of N and (Vce)p = (Vce)p ∩N =
Kp ∩N = (K ∩N)p. Hence, V is nearly CAP -embedded in N .

3. Proofs

Now, we prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. Assume that the result is false. Let G be a minimal
counterexample with least |N |+ |G|.

(1) G has a unique minimal normal subgroup L contained in N , G/L is
p-nilpotent and L ≰ Φ(G).

Let L be a minimal normal subgroup of G contained in N . Consider the
factor group G = G/N . Clearly, G/N ∼= G/N is p-nilpotent and P = PL/L
is a Sylow p-subgroup of N , where N = N/L. Now let P1 = P1L/L be a
second maximal subgroup of P . We may assume that P1 is a second maximal
subgroup of P . Then, P1 ∩ L = P ∩ L is a Sylow p-subgroup of L. By the
hypothesis, there is a subnormal subgroup B and a CAP -embedded subgroup
(P1)ce contained in P1 of G such that G = P1B and P1∩B ≤ (P1)ce ∈ Sylp(K),
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where K is a CAP subgroup of G. We have P1L ∩ BL = (P1L ∩ B)L. Let
π(G) = {p1, p2, · · · pn}, where p1 = p, and Bpi be a Sylow pi-subgroup of B
(i = 2, · · · , n). Then, Bpi is also a Sylow pi-subgroup of G, hence Bpi ∩ N is
a Sylow pi-subgroup of N (i = 2, · · · , n). Write V = ⟨L ∩ Bp2 , · · · , L ∩ Bpn⟩,
then V ≤ B. Note that (|L : P1 ∩ L|, |L : V |) = 1, L = (P1 ∩ L)V , thus
P1L∩BL = (P1L∩B)L = (P1V ∩B)L = (P1∩B)V L = (P1∩B)L. By Lemma
2.1, we get (P1L/L) ∩ (BL/L) = (P1 ∩ B)L/L ≤ (P1)ceL/L ∈ Sylp(KL/L).
Therefore, P1 is nearly CAP -embedded in G. The choice of G implies that G
is p-nilpotent. Since the class of p-nilpotent groups is a saturated formation, L
is a unique minimal normal subgroup of G contained in N and L ≰ Φ(G).

(2) Op′(G) = 1.

If E = Op′(G) ̸= 1, we consider G = G/E. Clearly, G/N ∼= G/NE is p-
nilpotent because G/N is, where N = NE/E. Let P1 = P1E/E be a second
maximal subgroup of PE/E. We may assume that P1 is a second maximal
subgroup of P . Since P1 is nearly CAP -embedded in G, P1E/E is nearly CAP -
embedded in G/E by Lemma 2.2 (2). The minimality of G yields that G is
p-nilpotent, therefore G is p-nilpotent, a contradiction.

(3) Op(N) = 1 and so L is not p-nilpotent.

If Op(N) ̸= 1, then by (1), L ≤ Op(N) and there exists a maximal subgroup
M of G such that G = LM and L ∩M = 1. By (1) and Lemma 2.4, we get
|L| ≥ p3. So we may choose a second maximal subgroup P1 of P containing
Mp, where Mp ∈ Sylp(M). Because P1 is a nearly CAP -embedded subgroup
of G, there is a subnormal subgroup T of G and a CAP -embedded subgroup
(P1)ce contained in P1 of G such that G = P1T and P1 ∩ T ≤ (P1)ce ∈ Sylp(K),
where K is a CAP subgroup of G. If K covers L/1, then L ≤ K. It follows
from (P1)ce ∈ Sylp(K) that L ∩ (P1)ce ∈ Sylp(L), and so L ≤ P1, thus P =
LMp = LP1 = P1, a contradiction. So K must avoids L/1, i.e., K∩L = 1, hence
P1∩T ∩L = 1. Consequently, |P ∩T ∩L| ≤ p2. Since T/L∩T ∼= TL/L ≤ G/L,
T/L ∩ T is p-nilpotent. It follows that T is p-nilpotent by Lemma 2.4. Let Tp′

be the normal p-complement of T . Then Tp′ is a Hall p
′
-subgroup of G and

Tp′ Char T ⊴⊴G, so Tp′ ⊴G. Hence, G is p-nilpotent, a contradiction.

If L is p-nilpotent, then Lp′ Char L⊴N , so Lp′ ≤ Op′ (N) ≤ Op′ (G) = 1 by
(2). Thus L is a p-group, L ≤ Op(N) = 1, a contradiction. Hence, (3) holds.

(4) The final contradiction.

If P ≤ L, then P ∈ Sylp(L). By (3) and Lemma 2.4, |P | > p2. For every
second maximal subgroup P3 of P , P3 is nearly CAP -embedded inG. So, there is
a subnormal subgroup T1 of G and a CAP -embedded subgroup (P3)ce contained
in P3 of G such that G = P3T and P3∩T ≤ (P3)ce ∈ Sylp(A), where A is a CAP
subgroup of G. Clearly AL ̸= A and (P3)ce ≤ L∩A = 1, then p3 ∤ |T |, so T is p-
nilpotent by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then, Tp′ is

a Hall p
′
-subgroup ofG and Tp′ Char T⊴⊴G, so Tp′⊴G. Hence, G is p-nilpotent,

a contradiction. Therefore, P ≰ L. If P ∩ L ≤ Φ(P ), then L is p-nilpotent by
Tate’s theorem [8, IV, Th 4.7], contrary to (3). Consequently, P ∩ L ≰ Φ(P ).
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Let P1 be a maximal subgroup of P containing L ∩ P . Clearly, L ∩ P ≰ Φ(P1).
Hence, there exists a maximal subgroup P2 of P1 such that P1 = (L∩P )P2. Let
T be a subnormal supplement of P2 in G, we have P2 ∩ T ≤ (P2)ce ∈ Sylp(K),
where K is a CAP subgroup of G. If K covers L/1, then L ≤ K. It follows
from (P2)ce ∈ Sylp(K) that P2 ∩ K = (P2)ce, then P2 ∩ L ∈ Sylp(L). Thus
L ∩ P = L ∩ P2 ≤ K ∩ P2 = (P2)ce ≤ P2. We obtain P1 = (L ∩ P )P2 = P2, a
contradiction. So K must avoids L/1, i.e., K ∩ L = 1, hence P2 ∩ T ∩ L = 1.
Consequently, |P ∩ T ∩ L| ≤ p2. Since T/L ∩ T ∼= TL/L ≤ G/L, T/L ∩ T is p-
nilpotent. It follows that T is p-nilpotent by Lemma 2.4. Hence, G is p-nilpotent
by the subnormality of T , a contradiction.

This completes the proof.

Corollary 3.1. Let G be an A4-free group, P a Sylow p-subgroup of G, where
p is the smallest prime divisor of |G|. If G is not p-nilpotent, then there is a
second maximal subgroup of P ∩GNp which is not nearly CAP -embedded in G.

Corollary 3.2. Let G be an A4-free group. If, for every prime p dividing the
order of G and P ∈ Sylp(G), every second maximal subgroup of P is nearly
CAP -embedded in G, then G is a Sylow tower group of supersolvable type.

Similarly, we have the following results.

Theorem 3.1. Let N be a normal subgroup of a group G such that G/N is
p-nilpotent and let P be a Sylow p-subgroup of N , where p is a prime divisor
of |G| with (|G|, p2 − 1) = 1. If every second maximal subgroup of P is nearly
CAP -embedded in G, then G is p-nilpotent.

Proof of Theorem 1.2. By Lemma 2.7 and Corollary 3.2, we use induction on
|G| to see that N is a Sylow tower group of supersolvable type. Let r be the
largest prime number in π(N) and R ∈ Sylp(N). Then, R is normal in G
and (G/R)/(N/R) ∼= G/N is a Sylow tower group of supersolvable type. By
induction, G/R ∈ F . Let q be the largest prime divisor of |G| and Q a Sylow
q-subgroup of G. Then, RQ⊴G. If q = r, then G has the Sylow tower property,
as desired. Hence, we may assume that r < q.

Case 1. RQ < G. In this case, we will show G1 = RQ is p-nilpotent. By the
hypothesis and Lemma 2.7, G1 is A4-free and every second maximal subgroup
R1 of R is nearly CAP -embedded in G1. Then, by Theorem 1.1, Q Char RQ
and so Q⊴G. Now, consider (G/Q,NQ/Q). Then, G/Q ∈ F by induction and
Lemma 2.2. Thus G ∈ F , as desired again.

Case 2. G = RQ. Let L be a minimal normal subgroup of G with L ≤ R. Then,
the quotient group G/L satisfies the hypothesis. By induction, we see that G/L
is a Sylow tower group of supersolvable type. Since the class of all Sylow tower
groups is a saturated formation, we have L ⊈ Φ(G) and L is the unique minimal
normal subgroup of G which is contained in R. Therefore, L = F (R) = R by
Lemma 2.3. In particular, R is an abelian group. If R is a cyclic subgroup of
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order r, then r < q implies that G = R×Q. Of course, G ∈ F , which completes
the proof. Hence, we may assume that |R| ≥ r2. Let R1 be a 2-maximal
subgroup of R. By the hypothesis, R1 is nearly CAP -embedded in G. By the
proof of the step (3) in theorem 1.1, we have R is an elementary abelian group
of order r2. Now, any element g of Q induces an automorphism σ of R. When
|R| = r2, we know that |Aut(R)| = (r + 1)r(r − 1)2. If r = 2 and some σ ̸= 1,
then the order of σ must be 3 as r < q. Thus the subgroup R⟨g⟩ is not A4-free,
contrary to the hypothesis. Hence, all σ = 1, i.e., G = R × Q, completing the
proof. The remainder is to consider the case when r > 2. Noticing that r+ 1 is
not a prime, so we have all σ = 1 and G = R ×Q, hence G ∈ F . The proof is
now completed.

Corollary 3.3. Let G be a group of odd order, N a normal subgroup of G such
that G/N is a Sylow tower group of supersolvable type. If, for every prime p
dividing the order of N and P ∈ Sylp(N), every second maximal subgroup of P
is nearly CAP -embedded in G, then G is a Sylow tower group of supersolvable
type.

4. Some applications

Obviously, c-normal subgroups, CAP -subgroups and CAP -embedded subgroups
are nearly CAP -embedded subgroups, a lot of results can be obtained according
to our theorems.

By Theorem 1.1, Theorem 1.2 and Theorem 3.1, we have:

Corollary 4.1 ([7, Theorem 3.2]). Let p is the smallest prime divisor of |G|, P
is a Sylow p-subgroup of G. If every second maximal subgroups of P is c-normal
in G and G is A4-free, then G is p-nilpotent.

Corollary 4.2 ([13, Theorem 4.2]). Let G be a finite group and let p be the
smallest prime divisor of |G|. Assume that G is A4-free and every second max-
imal subgroup of the Sylow p-subgroup of G is c-normal in G. Then, G/Op(G)
is p-nilpotent.

Corollary 4.3 ([6, Theorem 3.11]). Let H be a normal subgroup of a group
G and p the smallest prime number dividing the order of H. If all 2-maximal
subgroups of every Sylow p-subgroup of H are CAP -subgroups of G and G is
A4-free, then H is p-nilpotent.

Corollary 4.4 ([6, Corollary 3.13]). Let H be a normal subgroup of a group G.
If G is A4-free and all 2-maximal subgroups of every Sylow subgroup of H are
CAP -subgroups of G, then H is a Sylow tower group of supersolvable type.

Corollary 4.5 ([5, Theorem 3.3]). Let p be a prime dividing the order of the
group G with (|G|, p − 1) = 1 and let H be a normal subgroup of G such that
G/H is p-nilpotent. If G is A4-free, and there exists a Sylow p-subgroup P of
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H such that every 2-maximal subgroup of P is CAP -embedded in G, then G is
p-nilpotent.

Corollary 4.6 ([5, Corollary 3.4]). Let p be a prime dividing the order of the
group G with (|G|, p2 − 1) = 1 and let H be a normal subgroup of G such that
G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every
2-maximal subgroup of P is CAP -embedded in G, then G is p-nilpotent.
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