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In memoriam of Professor Ali Reza Ashrafi 

 

 

 

The Italian Journal of Pure and Applied Mathematics (IJPAM) cannot more take 

advantage of the precious collaboration of prof. Ali Reza Ashrafi, who has passed away 

this year. 

 

The members of Editorial Board express their deep sorrow for this loss. 

 

The Chief Editors and the IJPAM Core Team regret the loss of Prof. Ali Reza Ashrafi. He 

has been a great man of science. 

 

All they who knew him will remember always his scientific value and his human qualities. 
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Abstract. In the present paper, the authors introduce an arithmetic based on finite
groups with respect to arbitrary bijections. This algebraic background is used to con-
struct the function system WGb,φb

of the Walsh functions over the set Gb of groups
with respect to the set φb of bijections. The developed algebraic base is also used to
introduce a wide class of two-dimensional nets Gb,φb

Zκ,µ
b,ν of type of Halton-Zaremba.

Four concrete nets of this class are constructed and graphically illustrated. The so-
called (WGb,φ;α)−diaphony is applied as a appropriate tool for studying the nets of
the introduced class. An exact formula for the (WGb,φ;α)−diaphony of the nets of class

Gb,φb
Zκ,µ
b,ν is presented. This formula allows us to show the influence of the vector α on

the exact order of the (WGb,φ;α)−diaphony of these nets.

Keywords: (WGb,φ;α)− diaphony, nets of type of Halton-Zaremba constructed over
finite groups, exact formula, exact orders.

1. Introduction

Let s ≥ 1 be a fixed integer, which will denote the dimension of the objects
considered in the paper. We will remind the notion of uniformly distributed
sequence. So, following Kuipers and Niederreiter [16] let ξ = (xn)n≥0 be an
arbitrary sequence of points in [0, 1)s. For an arbitrary integer N ≥ 1 and a
subinterval J of [0, 1)s with a Lebesgue measure λs(J) let us denote AN (ξ; J) =
#{n : 0 ≤ n ≤ N −1,xn ∈ J}. The sequence ξ is called uniformly distributed in

∗. Corresponding author
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[0, 1)s if the limit equality limN→∞
AN (ξ;J)

N = λs(J) holds for each subinterval J
of [0, 1)s.

The functions of some orthonormal function systems are used to solve many
problems of the theory of the uniformly distributed sequences with very big
success. We will remind the definitions of the functions of some of these classes.

For an arbitrary integer k and a real x the function ek : R → C is defined as
ek(x) = e2πikx. For an arbitrary vector k = (k1, . . . , ks) ∈ Zs the k−th multivari-
ate trigonometric function ek : [0, 1)s → C is defined as ek(x) =

∏s
j=1 ekj (xj),

x = (x1, . . . , xs) ∈ [0, 1)s. The set T s = {ek(x) : k ∈ Zs, x ∈ [0, 1)s} is called
trigonometric function system.

Following Chrestenson [4] we will recall the constructive principle of the
Walsh functions. Let b ≥ 2 be a fixed integer. For an arbitrary integer k ≥ 0
and a real x ∈ [0, 1) with the b−adic representation k =

∑ν
i=0 kib

i and x =∑∞
i=0 xib

−i−1, where ki, xi ∈ {0, 1, . . . , b − 1}, kν ̸= 0 and for infinitely many
values of i we have xi ̸= b − 1, the k−th Walsh function bwalk : [0, 1) → C is
defined as

bwalk(x) = e
2πi
b

(k0x0+...+kνxν).

Let us denote N0 = N ∪ {0}. For an arbitrary vector k = (k1, . . . , ks) ∈ Ns0
the k−th multivariate Walsh function bwalk : [0, 1)s → C is defined as

bwalk(x) =
s∏
j=1

bwalkj (xj), x = (x1, . . . , xs) ∈ [0, 1)s.

The set W(b) = {bwalk(x) : k ∈ Ns0, x ∈ [0, 1)s} is called Walsh function system
in base b. In the case when b = 2 the systemW(2) is the original system of Walsh
[22] functions.

The different kinds of the diaphony are numerical measures, which show
the quality of the distribution of the points of sequences and nets. So, let
ξN = {x0,x1, . . . ,xN−1} be an arbitrary net composed by N points in [0, 1)s.

Firstly Zinterhof [25] introduced the notion of the so-called classical di-
aphony. So, the classical diaphony of the net ξN is defined as

F (T s; ξN ) =

 ∑
k∈Zs\{0}

R−2(k)

∣∣∣∣∣ 1N
N−1∑
n=0

ek(xn)

∣∣∣∣∣
2
 1

2

,

where for each vector k = (k1, . . . , ks) ∈ Zs the coefficient R(k) =
∏s
j=1R(kj)

and for an arbitrary integer k

R(k) =

{
1, if k = 0,

|k|, if k ̸= 0.

Hellekalek and Leeb [15] introduced the notion of the dyadic diaphony, which
is based on using the original system W(2) of the Walsh function. Grozdanov
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and Stoilova [10] generalized the notion of the dyadic diaphony to the so-called
b−adic diaphony. So, the b−adic diaphony of the net ξN is defined as

F (W(b); ξN ) =

 1

(b+ 1)s − 1

∑
k∈Ns

0\{0}

ρ(k)

∣∣∣∣∣ 1N
N−1∑
n=0

bwalk(xn)

∣∣∣∣∣
2
 1

2

,

where for each vector k = (k1, . . . , ks) ∈ Ns0 the coefficient ρ(k) =
∏s
j=1 ρ(kj)

and for an arbitrary non-negative integer k

ρ(k) =

{
1, if k = 0,

b−2g, if bg ≤ k ≤ bg+1, g ≥ 0, g ∈ Z.

In 1986 Proinov [18] established a general lower bound of the classical di-
aphony. So, for any net ξN composed of N points in [0, 1)s the lower bound

(1) F (T s; ξN ) > α(s)
(logN)

s−1
2

N

holds, where α(s) is a positive constant depending only on the dimension s.
For a dimension s = 1 from the inequality (1) the result of Stegbuchner [20] is
obtained

F (T s; ξN ) ≥
π√
3
· 1

N
.

To show the exactness of the lower bound (1) for a dimension s = 2 we need
to present the techniques of the construction of two classical two-dimensional
nets. For this purpose, let ν > 0 be a fixed integer. For 0 ≤ i ≤ bν−1 we denote
ηb,ν(i) = i

bν . Following Van der Corput [21] and Halton [12] for an arbitrary

integer i, 0 ≤ i ≤ bν − 1, with the b−adic representation i =
∑ν−1

j=0 ijb
j , where

for 0 ≤ j ≤ ν− 1 ij ∈ {0, 1, . . . , b− 1}, we put pb,ν(i) =
∑ν−1

j=0 ijb
−j−1. Roth [19]

considered the two-dimensional net Rb,ν = {(ηb,ν(i), pb,ν(i)) : 0 ≤ i ≤ bν − 1},
which now is called a net of Roth. The net Rb,ν is also known as two-dimensional
Hammersley [14] point set.

In 1969, Halton and Zaremba [13] used the original net of Van der Corput
{p2,ν(i) = 0.i0i1 . . . iν−1 : 0 ≤ i ≤ 2ν−1 ij ∈ {0, 1}} and change the digits ij that
stay in the even positions with the digit 1− ij . Let us for 0 ≤ i ≤ 2ν − 1 signify
z2,ν(i) = 0.(1−i0)i1(1−i2) . . . . The net Z2,ν = {(η2,ν(i), z2,ν(i)) : 0 ≤ i ≤ 2ν−1},
which is called net of Halton-Zaremba is constructed.

In 1998 Xiao [24] proved that the classical diaphony of the net of Roth Rb,ν

and the net of Halton-Zaremba Z2,ν have an exact order O
(√

logN
N

)
, where

respectively N = bν and N = 2ν .
Cristea and Pillichshammer [5] proved a general lower bound of the b−adic

diaphony. So, for any net ξN composed of N points in [0, 1] the lower bound

(2) F (W(b); ξN ) ≥ C(b, s)
(logN)

s−1
2

N
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holds, where C(b, s) is a positive constant depending on the base b and the
dimension s.

Grozdanov and Stoilova [11] proved the exactness of the lower bound (2)
for dimension s = 2. They proved that the b−adic diaphony of the net of Roth

Rb,ν and the net of Halton-Zaremba Z2,ν have an exact order O
(√

logN
N

)
, where

respectively N = bν and N = 2ν .
The b−adic diaphony is closely related with the worst-case error of the quasi-

Monte Carlo integration in appropriate Hilbert spaces. Aronszajn [1] introduced
the notion of a reproducing kernel for Hilbert space. So, following this approach
let Hs(K) be a Hilbert space with a reproducing kernel K : [0, 1)s → C, an inner
product < ·, · >Hs(K) and a norm || · ||Hs(K). We are interested to approximate
the multivariate integral

Is(f) =

∫
[0,1]s

f(x)dx, f ∈ Hs(K).

Let N ≥ 1 be an arbitrary and fixed integer. We will approximate the in-
tegral Is(f) through quasi-Monte Carlo algorithm Qs(f ;PN ) =

1
N

∑N−1
n=0 f(xn),

where PN = {x0, . . . ,xN−1} is a deterministic sample point set in [0, 1)s. The
worst-case error of the integration in the space Hs(K) by using the net PN is
defined as

e(Hs(K);PN ) = sup
f∈Hs(K), ||f ||Hs(K)≤1

|Is(f)−Qs(f ;PN )|.

Dick and Pillichshammer [6] used the Walsh functions as a tool for investi-
gation of the worst-case error of the multivariate integration in Hilbert spaces.
This error is presented in the terms of the reproducing kernel, which generates
this space.

Likewise, Dick and Pillichshammer [7] introduced a special reproducing ker-
nel Hilbert space and the worst-case error of the integration in this space and
the b−adic diaphony of the net of the nodes of the integration are connected. In
this sense, we see that the so-called low diaphony nets with very big success can
be used in the practice of the quasi-Monte Carlo integration. This determines
the interest to this class of nets.

The rest of the paper is organized in the following manner: In Section 2
the concept of the function system WGb,φb

is reminded. In Section 3 we intro-
duce a class of nets Gb,φb

Zκ,µb,ν of type of Halton-Zaremba constructed over finite
groups. By graphical illustrations, we show the distribution of four nets from
this class. In Section 4 the concept of the (WGb,φ;α)−diaphony is presented. In
Section 5 an explicit formula for the (WGb,φ;α)−diaphony of the nets Gb,φb

Zκ,µb,ν
is presented. This formula allows us to show the influence of the vector α of
exponential parameters to the exact orders of the considered diaphony of these
nets. In Section 6 some preliminary results are presented. In Section 7 the main
results of the paper are proved.
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2. The function system WGb,φb

In 1996 Larcher, Niederreiter and W. Ch. Schmid [17] introduced the concept
of the so-called Walsh function system over finite groups. So, the details are as
follows: Let m ≥ 1 be a given integer and let {b1, b2, . . . , bm : bl ≥ 2, 1 ≤ l ≤ m}
be a set of fixed integers. For 1 ≤ l ≤ m let Zbl = {0, 1, . . . , bl − 1} and the
operation ⊕bl be the addition modulus bl of the elements of the set Zbl . Then,
(Zbl ,⊕bl) is a discrete cyclic group of order bl.

Let G = Zb1×. . .×Zbm be the Cartesian product of the sets Zb1 , . . . ,Zbm . For
each pair g = (g1, . . . , gm), y = (y1, . . . , ym) ∈ G by using the group operations
⊕b1 , . . . ,⊕bs let the operation ⊕G be defined as g⊕G y = (g1⊕b1 y1, . . . , gm⊕bm

ym). Then, (G,⊕G) is a finite group of order b = b1b2 . . . bm. For the given
elements g,y ∈ G the character function on the group G is defined as

χg(y) =
m∏
l=1

e
2πi

glyl
bl .

Let us denote Zb = {0, 1, . . . , b − 1} and let φ : Zb → G be an arbitrary
bijection, which satisfies the condition φ(0) = 0.

Definition 1. For an arbitrary integer k ≥ 0 and a real x ∈ [0, 1) with the
b−adic representations k =

∑ν
i=0 kib

i and x =
∑∞

i=0 xib
−i−1, where for i ≥ 0

ki, xi ∈ {0, 1, . . . , b−1} kν ̸= 0 and for infinitely many values of i xi ̸= b−1, the
function G,φwalk : [0, 1) → C is defined as G,φwalk(x) =

∏ν
i=0 χφ(ki) (φ(xi)) .

The set WG,φ = {G,φwalk(x) : k ∈ N0, x ∈ [0, 1)} is called Walsh function
system over the group G with respect to the bijection φ.

Now, we will introduce the concept of the multidimensional function system
of Walsh functions over finite groups. For this purpose, let b = (b1, . . . , bs) be a
vector of not necessarily distinct integers bj ≥ 2. For 1 ≤ j ≤ s let (Gbj ,⊕Gbj

)

be an arbitrary group of order bj constructed as above. Let us denote Zbj =
{0, 1, . . . , bj−1} and let φbj : Zbj → Gbj be an arbitrary bijection, which satisfies
the condition φbj (0) = 0. Let WGbj

,φbj
= {Gbj

,φbj
walk(x) : k ∈ N0, x ∈ [0, 1)}

be the corresponding Walsh function system over the group Gbj with respect to
the bijection φbj .

By using the groups Gb1 , . . . , Gbs , the sets Zb1 , . . . ,Zbs and the bijections
φb1 , . . . , φbs let us introduce the next significations Gb = (Gb1 , . . . , Gbs), Zb =
(Zb1 , . . . ,Zbs) and φb = (φb1 , . . . , φbs).

Let WGb,φb
= WGb1

,φb1
⊗. . .⊗WGbs ,φbs

be the tensor product of the function
systems WGb1

,φb1
, . . . ,WGbs ,φbs

. This means that for an arbitrary vector k =
(k1, . . . , ks) ∈ Ns0 the k−th Walsh function Gb,φb

walk(x) is defined as

Gb,φb
walk(x) =

s∏
j=1

Gbj
,φbj

walkj (xj), x = (x1, . . . , xs) ∈ [0, 1)s.
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We will call the set WGb,φb
= {Gb,φb

walk(x) : k ∈ Ns0, x ∈ [0, 1)s} a
multidimensional system of the Walsh functions over the set Gb of groups with
respect to the set φb of bijections.

We will introduce some elements of the b−adic arithmetic. By using the
operation ⊕G over the group G and the bijection φ we will define the operation
⊕Zb,φ : Z2

b → Zb by the following manner: for arbitrary elements u, v ∈ Zb, we
put u ⊕Zb,φ v = φ−1(φ(u) ⊕G φ(v)). For an arbitrary element u ∈ Zb, let the
element u ∈ Zb be such that u ⊕Zb,φ u = 0. We will prove that for arbitrary
digits p, q, r ∈ Zb the character function satisfies the equalities

(3) χφ(p)(φ(q)⊕G φ(r)) = χφ(p)(φ(q))χφ(p)(φ(r))

and

(4) χφ(p)⊕Gφ(q)(φ(r)) = χφ(p)(φ(r))χφ(q)(φ(r)).

Let us signify φ(p) = (p(1), . . . , p(m)), φ(q) = (q(1), . . . , q(m)) and φ(r) =
(r(1), . . . , r(m)). Hence, we obtain that

χφ(p)(φ(q)⊕G φ(r)) =

m∏
l=1

e
2πi

p(l)[q(l)+r(l)(mod bl)]

bl =

m∏
l=1

e
2πi

p(l)(q(l)+r(l))
bl

=

m∏
l=1

e
2πi p

(l)q(l)

bl

m∏
l=1

e
2πi p

(l)r(l)

bl = χφ(p)(φ(q))χφ(p)(φ(r))

and

χφ(p)⊕Gφ(q)(φ(r)) =

m∏
l=1

e
2πi

[p(l)+q(l)(mod bl)]r
(l)

bl =

m∏
l=1

e
2πi

(p(l)+q(l))r(l)

bl

=

m∏
l=1

e
2πi p

(l)r(l)

bl

m∏
l=1

e
2πi q

(l)r(l)

bl = χφ(p)(φ(r))χφ(q)(φ(r)).

For arbitrary reals x, y ∈ [0, 1) with the b−adic representations x =
∑∞

i=0 xib
−i−1

and y =
∑∞

i=0 yib
−i−1, where for i ≥ 0 xi, yi ∈ Zb and for infinitely many values

of i xi, yi ̸= b− 1, let us define the next operation

x⊕[0,1)
Zb,φ

y =

( ∞∑
i=0

(xi ⊕Zb,φ yi)b
−i−1

)
(mod 1).

We will prove that for an arbitrary integer k ∈ N0 and arbitrary reals x, y ∈ [0, 1)
the equality holds

(5) G,φwalk(x⊕[0,1)
Zb,φ

y) = G,φwalk(x)G,φwalk(y).
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Let k have the b−adic representation k =
∑ν

i=0 kib
i, where for 0 ≤ i ≤ ν

ki ∈ {0, 1, . . . , b − 1}, x and y be as above. Then, by using the equality (3) we
obtain that

G,φwalk(x⊕[0,1)
Zb,φ

y)

=

ν∏
i=0

χφ(ki)(φ(φ
−1(φ(xi)⊕G φ(yi)))) =

ν∏
i=0

χφ(ki)(φ(xi)⊕G φ(yi))

=
ν∏
i=0

χφ(ki)(φ(xi))
ν∏
i=0

χφ(ki)(φ(yi)) = G,φwalk(x)G,φwalk(y).

For arbitrary vectors x = (x1, . . . , xs) ∈ [0, 1)s and y = (y1, . . . , ys) ∈ [0, 1)s

to define the operation x ⊕[0,1)s

Zb,φb
y = (x1 ⊕[0,1)

Zb1
,φb1

y1, . . . , xs ⊕[0,1)
Zbs ,φbs

ys). Then,

the following equality holds

(6) Gb,φb
walk(x⊕[0,1)s

Zb,φb
y) = Gb,φb

walk(x)Gb,φb
walk(y), ∀ k ∈ Ns0.

Let k = (k1, . . . , ks) ∈ Ns0 be an arbitrary vector. Then, by using the equality
(5) the following holds

Gb,φb
walk(x⊕[0,1)s

Zb,φb
y) =

s∏
j=1

Gbj
,φbj

walkj (xj ⊕
[0,1)
Zbj

,φbj
yj)

=
s∏
j=1

Gbj
,φbj

walkj (xj)Gbj
,φbj

walkj (yj)

=
s∏
j=1

Gbj
,φbj

walkj (xj)
s∏
j=1

Gbj
,φbj

walkj (yj) = Gb,φb
walk(x)Gb,φb

walk(y).

3. Nets of type of Halton - Zaremba constructed over finite groups

To present the definition of the nets of type of Halton-Zaremba constructed over
finite groups, we will apply the same algebraic basis, which we used to present
the functions of the system WGb,φb

. In this way, a process of a synchronization
between the construction of the nets and the tool for their investigation will be
realized.

For this purpose, let b1 ≥ 2 and b2 ≥ 2 be arbitrary and fixed bases and
denote b = (b1, b2). Let (Zb1 ,⊕b1) and (Zb2 ,⊕b2) be the corresponding discrete
cyclic groups of orders b1 and b2. Let b = b1b2 and as yet to define Gb = Zb1×Zb2
and ⊕Gb

= (⊕b1 ,⊕b2). Let Zb = {0, 1, . . . , b−1}, φ1 : Zb → Gb and φ2 : Zb → Gb
be two arbitrary bijections, which satisfy the conditions φ1(0) = 0, φ2(0) = 0

and denote φb = (φ1, φ2). Let ⊕[0,1)
Zb,φ1

and ⊕[0,1)
Zb,φ2

be the operations over [0, 1),
which correspond respectively to the bijections φ1 and φ2.

Let ν ≥ 1 be an arbitrary and fixed integer. Let κ = 0.κ0κ1 . . . κν−1 and
µ = 0.µ0µ1 . . . µν−1 be arbitrary and fixed b−adic rational numbers. For 0 ≤
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i ≤ bν − 1 let us denote ηb,ν(i) =
i
bν and pb,ν(i) be the general term of the Van

der Corput sequence. Let us define the b−adic rational numbers

Gb,φ1ξ
κ
b,ν(i) = ηb,ν(i)⊕

[0,1)
Zb,φ1

κ and Gb,φ2ζ
µ
b,ν(i) = pb,ν(i)⊕

[0,1)
Zb,φ2

µ.

Dimitrievska Ristovska and Grozdanov [8] introduced the next class of two-
dimensional nets:

Definition 2. For an arbitrary integer ν ≥ 1 and for arbitrary fixed b−adic
rational numbers κ and µ we define the net

Gb,φb
Zκ,µb,ν =

{(
Gb,φ1ξ

κ
b,ν(i),Gb,φ2ζ

µ
b,ν(i)

)
: 0 ≤ i ≤ bν − 1

}
,

which we will call a net of type of Halton-Zaremba constructed over the group
Gb with respect to the set φb, which corresponds to the parameters κ and µ in
base b.

We will concrete the choice of the parameters κ and µ from Definition 2:
Let us choose κ = 0. We will construct the digits of the parameters µ in the
following manner: Let p, q ∈ Zb be arbitrary and fixed digits. For 0 ≤ j ≤ ν − 1
we define the digits µj ∈ Zb as the solutions of the linear recurrence equation
µj ≡ p · j + q (mod b) and to put µ = 0.µ0µ1 . . . µν−1. For 0 ≤ i ≤ bν − 1

let us denote Gb,φ2ζ
p,q
b,ν (i) = pb,ν(i) ⊕

[0,1)
Zb,φ2

µ. In this case, we obtain the net

Gb,φ2Z
p,q
b,ν =

{
(ηb,ν(i),Gb,φ2ζ

p,q
b,ν (i)) : 0 ≤ i ≤ bν − 1

}
, which was introduced by

Grozdanov [9].

In the case when G = Zb and φ2 = id is the identity of the set Zb in itself,
from the net Gb,φ2Z

p,q
b,ν we obtain the net Zb,idZ

p,q
b,ν , which was introduced by

Grozdanov and Stoilova [11]. In the case when p = 1 and q = 0 from the net

Zb,idZ
p,q
b,ν we obtain the net Zb,idZ

1,0
b,ν , which was introduced by Warnock [23]. In

the case when b = 2, p = 1 and q = 1 from the net Zb,idZ
p,q
b,ν we obtain the net

Z2,idZ
1,1
2,ν , which is the original net of Halton-Zaremba. In the case when b = 2,

p = 0 and q = 0 from the net Zb,idZ
p,q
b,ν we obtain the net Z2,idZ

0,0
2,ν , which is the

original net of Roth [19].

We will construct and show the distributions of the points of four concrete
nets Gb,φb

Zκ,µb,ν of type of Halton-Zaremba.

Example 1. The algebraic background of the first example is as follows: Let
m = 2 and choose the bases b1 = 2 and b2 = 3. The discrete cyclic groups of or-
ders b1 and b2 are Zb1 = {0, 1} and Zb2 = {0, 1, 2}.We have that b = 6, the group
Gb is Gb = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} and Zb = {0, 1, 2, 3, 4, 5}. Let
us select the bijections φ1 and φ2 as φ1(0) = (0, 0), φ1(1) = (1, 0), φ1(2) =
(0, 2), φ1(3) = (1, 2), φ1(4) = (0, 1), φ1(5) = (1, 1) and φ2(0) = (0, 0), φ2(1) =
(1, 2), φ2(2) = (1, 0), φ2(3) = (1, 1), φ2(4) = (0, 2), φ2(5) = (0, 1). In addition,
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we choose the parameters ν = 2, κ = 0.42 and µ = 0.15. The points of the
obtained net are:

G6,φ6Z
κ,µ
6,2

=

{(
26

36
,
11

36

)
,

(
27

36
,
35

36

)
,

(
28

36
,
29

36

)
,

(
29

36
,
5

36

)
,

(
24

36
,
23

36

)
,

(
25

36
,
17

36

)
,(

32

36
,
8

36

)
,

(
33

36
,
32

36

)
,

(
34

36
,
26

36

)
,

(
35

36
,
2

36

)
,

(
30

36
,
20

36

)
,

(
31

36
,
14

36

)
,(

2

36
,
9

36

)
,

(
3

36
,
33

36

)
,

(
4

36
,
27

36

)
,

(
5

36
,
3

36

)
,

(
0

36
,
21

36

)
,

(
1

36
,
15

36

)
,(

8

36
,
7

36

)
,

(
9

36
,
31

36

)
,

(
10

36
,
25

36

)
,

(
11

36
,
1

36

)
,

(
6

36
,
19

36

)
,

(
7

36
,
13

36

)
,(

14

36
,
6

36

)
,

(
15

36
,
30

36

)
,

(
16

36
,
24

36

)
,

(
17

36
,
0

36

)
,

(
12

36
,
18

36

)
,

(
13

36
,
12

36

)
,(

20

36
,
10

36

)
,

(
21

36
,
34

36

)
,

(
22

36
,
28

36

)
,

(
23

36
,
4

36

)
,

(
18

36
,
22

36

)
,

(
19

36
,
16

36

)}
.

The distribution of the points of the net G6,φ6Z
κ,µ
6,2 is shown in Figure 1a).

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

a) b)

Figure 1: Nets of Example 1 and 2 (ν = 2, b1 = 2, b2 = 3, different bijections
φ1, φ2)

Example 2. To construct the second net, we will use the same group Gb and
parameters ν = 2, κ = 0.42 and µ = 0.15. Let us choose the bijections φ1(0) =
(0, 0), φ1(1) = (1, 1), φ1(2) = (1, 2), φ1(3) = (0, 2), φ1(4) = (0, 1), φ1(5) = (1, 0)
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and φ2(0) = (0, 0), φ2(1) = (0, 2), φ2(2) = (1, 1), φ2(3) = (1, 0), φ2(4) =
(1, 2), φ2(5) = (0, 1). The distribution of the points of the obtained net is shown
in Figure 1b).

Example 3. To construct the third net, we use the same groupGb and bijections
φ1 and φ2 as in Example 1. We choose the parameters ν = 4, κ = 0.2112 and
µ = 0.1302. The distribution of the points of the obtained net is shown in Figure
2.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Net of Example 3: ν = 4, b1 = 2, b2 = 3.

Example 4. The algebraic background of the fourth net is as follows: Letm = 2
and choose the bases b1 = 3 and b2 = 4. The discrete cyclic groups of orders b1
and b2 are Zb1 = {0, 1, 2} and Zb2 = {0, 1, 2, 3}. We have that b = 12, the group
Gb is Gb = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2),
(2, 3)} and Zb = {0, 1, . . . , 11}. Let us select the bijections φ1(0) = (0, 0),
φ1(1) = (1, 0), φ1(2) = (0, 3), φ1(3) = (1, 2), φ1(4) = (0, 1), φ1(5) = (2, 3),
φ1(6) = (0, 2), φ1(7) = (2, 2), φ1(8) = (1, 3), φ1(9) = (1, 1), φ1(10) = (2, 0),
φ1(11) = (2, 1) and φ2(0) = (0, 0), φ2(1) = (1, 3), φ2(2) = (1, 0), φ2(3) = (2, 1),
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φ2(4) = (0, 3), φ2(5) = (2, 3), φ2(6) = (2, 0), φ2(7) = (1, 2), φ2(8) = (1, 1),
φ2(9) = (0, 2), φ2(10) = (0, 1), φ2(11) = (2, 2). We choose the parameters
ν = 2, κ = 0.42 and µ = 0.15. The distribution of the points of the obtained net
is shown in Figure 3.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Net of Example 4: m = 2, b1 = 3, b2 = 4.

We will present the program code in the mathematical packageMathematica,
which can compute the coordinates and visualize the points of an arbitrary net
of type of Halton-Zaremba.

1 (*Program code for constructing nets *)

2 e = Input[e];m = Input[m]; (*vectors Eta and Mu*)

3 points = {};

4 b1 = Input[b1];b2 = Input[b2];

5 ni = Input[ni];b = b1*b2;

6 phi1 = Input[phi1];

7 phi2 = Input[phi2];

8 Do[i = IntegerDigits[i1, b]; k = ni - 1;

9 While[k > 0,

10 If[i1 < b^k, PrependTo[i, 0]]; k = k - 1];

11 apc = ord = 0;

12 Do[ cif1 = phi1[[i[[j]] + 1]];

13 cif2 = phi1[[e[[j]] + 1]];
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14 cif = {Mod[cif1[[1]] + cif2[[1]], b1],

15 Mod[cif1[[2]] + cif2[[2]], b2]};

16 cifra = Position[phi1, cif][[1]][[1]] - 1;

17 apc = apc + cifra/b^j;

18 cif1 = phi2[[i[[ni - j + 1]] + 1]];

19 cif2 = phi2[[m[[j]] + 1]];

20 cif = {Mod[cif1[[1]] + cif2[[1]], b1],

21 Mod[cif1[[2]] + cif2[[2]], b2]};

22 cifra = Position[phi2, cif][[1]][[1]] - 1;

23 ord = ord + cifra/b^j,

24 {j, 1, ni}];

25 AppendTo[points, {apc, ord}],

26 {i1, 0, b^ni - 1}];

27 ListPlot[points,AspectRatio->Automatic]

4. The (WGb,φ;α)−diaphony

In the previous section, we presented one wide class of two-dimensional nets
constructed over finite groups with respect to arbitrary bijections. We need
of appropriate analytical tool for studying the quality of the distribution of
the points of these nets. In our case, it is important to realize a process of a
synchronisation between the technique for construction of the nets and the tool
for their investigation.

The different kinds of the diaphony are numerical measures for studying
the irregularity of the distribution of sequences and nets. The construction
of the diaphony is always connected with some complete orthonormal func-
tion system. Concrete for studying sequences and nets constructed over finite
groups with respect to arbitrary bijections, the suitable version of the diaphony
is the one, which is based on the system of Walsh functions constructed also
over the same finite groups. For us, this is the motivation to use the so-called
(WGb,φ;α)−diaphony as a tool for studying of the nets of the class Gb,φb

Zκ,µb,ν .

To define the concept of the (WGb,φ;α)−diaphony we need to present some
preliminary notations. Let the considered sets of bases and bijections be b =
(b, . . . , b) and φ = (φ, . . . , φ). Let WGb,φ = {Gb,φwalk(x) : k ∈ Ns0, x ∈ [0, 1)s}
be the defined in previous section system of Walsh functions over the group Gb

with respect to the bijection φ.

For arbitrary integers b ≥ 2, k ≥ 0 and a real α > 1 we introduce the
coefficient

ρ(α; b; k) =

{
1, if k = 0,

b−α·g, if bg ≤ k < bg+1, g ≥ 0, g ∈ Z.
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Let α = (α1, . . . , αs), where for 1 ≤ j ≤ s αj > 1, be a given vector of real
numbers. For an arbitrary vector k = (k1, . . . , ks) ∈ Ns0 we define the coefficient

(7) R(α;b;k) =

s∏
j=1

ρ(αj ; b; kj).

Let us signify C(α;b) =
∑

k∈Ns
0\{0}

R(α;b;k). So, the equality holds

(8) C(α;b) = −1 +

s∏
j=1

[
1 + (b− 1)

bαj

bαj − b

]
.

The notion of (WGb,φ;α)−diaphony is a partial case of more general kind
of the diaphony, called hybrid weighted diaphony, which was introduced by
Baycheva and Grozdanov [2]. So, following this concept we will present the
next definition:

Definition 3. Let ξ = (xn)n≥0 be an arbitrary sequence of points in [0, 1)s.
For each integer N ≥ 1 the (WGb,φ;α)−diaphony of the first N elements of the
sequence ξ is defined as

FN (WGb,φ;α; ξ) =

 1

C(α;b)

∑
k∈Ns

0\{0}

R(α;b;k)

∣∣∣∣∣ 1N
N−1∑
n=0

Gb,φwalk(xn)

∣∣∣∣∣
2
 1

2

,

where the coefficients R(α;b;k) and the constant C(α;b) are defined respectively
by the equalities (7) and (8).

Following Baycheva and Grozdanov [2], see also [3], it is a well known fact
that the sequence ξ is uniformly distributed in [0, 1)s if and only if the next limit
equality limN→∞ FN (WGb,φ;α; ξ) = 0 holds for each vector α, as above.

To the authors is unknown a lower bound of the (WGb,φ;α)−diaphony of an
arbitrary net as the one presented in the equality (2) and which is related with
the b−adic diaphony.

5. On the (WGb,φ;α)−diaphony of the nets of type of Halton-Zaremba

In the next theorem we will give an explicit formula for the (WGb,φ;α)−diaphony
of an arbitrary net Gb,φb

Zκ,µb,ν of type of Halton-Zaremba.

Theorem 1. Let Gb,φb
Zκ,µb,ν be an arbitrary net of type of Halton-Zaremba. For

each integer ν ≥ 1 the (WGb,φ;α)−diaphony of the net Gb,φb
Zκ,µb,ν satisfies the
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equality

F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν )

=
1

C(α; b)

(b− 1)bα2(bα2 − 1)

bα2 − b
· 1

bα2ν

ν−1∑
g=0

b(α2−α1)g

+(b− 1)
bα1

bα1 − b

[
1 + (b− 1)

bα2

bα2 − b

]
1

bα1ν
+ (b− 1)

bα2

bα2 − b
· 1

bα2ν

}
,

where C(α; b) = (b−1)bα1

bα1−b + (b−1)bα2

bα2−b + (b− 1)2 bα1+α2

(bα1−b)(bα2−b) .

Corollary 1. Let the conditions of Theorem 1 be realized. Let us assume that
α1 = α2 = α > 1. Then, the following statements follow:

(i) For each integer ν > 0 the (WGb,φ;α)−diaphony of the net Gb,φb
Zκ,µb,ν

satisfies the equality

F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν ) =

bα − 1

(b− 1) bα

bα−b + 2
· ν

bαν
+

1

bαν
;

(ii) Let us signify N = bν . Then, the limit equality holds

lim
ν→∞
N=bν

N
α
2 · F (WGb,φ;α;Gb,φb

Zκ,µb,ν )√
logN

=

√√√√ bα − 1[
(b− 1) bα

bα−b + 2
]
log b

.

(iii) Let 1 < α < 2. Then, there exists a number ε such that 0 < ε < 1
2 , for

which the inclusion F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN
N1−ε

)
holds;

(iv) Let α = 2. Then, the inclusion F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN
N

)
holds;

(v) Let α = 2. Then, the limit equality holds

lim
ν→∞
N=bν

N · F (WGb,φ;α;Gb,φb
Zκ,µb,ν )√

logN
=

√
b2 − 1

(b+ 2) log b
.

(vi) Let α > 2. Then, there exists a positive number ε such that the inclusion
holds

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN

N1+ε

)
.

Corollary 2. Let the conditions of Theorem 1 be realized. Let us assume that
α1 > α2 > 1. Then, the following statements follow:
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(i) For each integer ν > 0 the (WGb,φ;α)−diaphony of the net Gb,φb
Zκ,µb,ν

satisfies the equality

bα2ν · F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν )

=
1

C(α; b)

{
(b− 1)

bα2

bα2 − b

[
bα1(bα2 − 1)

bα1 − bα2
+ 1

]
+

[
(b− 1)bα1+α2(b · bα1 + bα2 − bα1+α2 − b)

(bα1 − b)(bα2 − b)(bα1 − bα2)
+ (b− 1)

bα1

bα1 − b

]
1

b(α1−α2)ν

}
,

where the constant C(α; b) was defined in the condition of Theorem 1;
(ii) Let us signify N = bν . Then, the limit equality holds

lim
ν→∞
N=bν

N
α2
2 · F (WGb,φ;α;Gb,φb

Zκ,µb,ν )

=

√
bα2(bα1 − b)[bα1 − bα2 + bα1(bα2 − 1)]

(bα1 − bα2)[bα1(bα2 − b) + bα2(bα1 − b) + (b− 1)bα1+α2 ]
.

(iii) Let 1 < α2 < 2. Then, there exists a number ε such that 0 < ε < 1
2 , for

which the inclusion F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1

N1−ε

)
holds;

(iv) Let α2 = 2. Then, the inclusion F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1
N

)
holds;

(v) Let α2 > 2. Then, there exists a number ε > 0 such that the inclusion
holds

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1

N1+ε

)
.

The results of Theorem 1 and Corollaries 1 and 2 were announced by authors
in [8]. Here we will develop the complete proofs of these statements.

6. Preliminary results

In this section, we will present some preliminary statements, which will be es-
sentially used to prove the main results of the paper. The following lemmas
hold:

Lemma 1. Let b ≥ 2 be a fixed integer, Gb be a finite group of order b and
φ : Zb → Gb be an arbitrary bijection. For arbitrary integers ν > 0 and k ≥ 1
we define the function

δbν (k) =

{
1, if k ≡ 0 (mod bν),

0, if k ̸≡ 0 (mod bν).

Then, the equalities hold

bν−1∑
i=0

Gb,φwalk(ηb,ν(i)) =

bν−1∑
i=0

Gb,φwalk(pb,ν(i)) = bν · δbν (k).
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Proof. For the integer k and an arbitrary integer i, 0 ≤ i ≤ bν − 1, we will use
the b−adic representations k =

∑∞
j=0 kjb

j and i =
∑ν−1

j=0 ijb
j . Then, we have

that ηb,ν(i) = 0.iν−1iν−2 . . . i0 and Gb,φwalk(ηb,ν(i)) =
∏ν−1
j=0 χφ(kj)(φ(iν−1−j)).

Hence, we obtain that

(9)

bν−1∑
i=0

Gb,φwalk(ηb,ν(i)) =

b−1∑
iν−1=0

χφ(k0)(φ(iν−1)) . . .

b−1∑
i0=0

χφ(kν−1)(φ(i0)).

Let us assume that k ≡ 0(mod bν). Then, we have that k0 = k1 = . . . =
kν−1 = 0 and from the equality (9) we obtain that

∑bν−1
i=0 G,φwalk(ηb,ν(i)) = bν .

Let us assume that k ̸≡ 0(mod bν). Then, there exists at least one in-
dex δ, 0 ≤ δ ≤ ν − 1 such that kδ ̸= 0. In this case, the corresponding
sum

∑b−1
iν−1−δ=0 χφ(kδ)(φ(iν−1−δ)) = 0 and from the equality (9) we obtain that∑bν−1

i=0 G,φwalk(ηb,ν(i)) = 0.
The second equality of the statement of the Lemma can be proved by similar

manner.

Lemma 2. Let the conditions (C1) and (C2) be fulfilled. Then, the following
holds:

(i) For arbitrary integers 0 ≤ g ≤ g1 ≤ ν − 1 we define the set

A(g1; g)

=

k1 : k1 =
g1∑
j=g

k
(1)
j bj , g ≤ j ≤ g1, k

(1)
j ∈ {0, 1, . . . , b− 1} and k(1)g , k(1)g1 ̸= 0

 .

For each integer k1 ∈ A(g1; g) we define the integer k
∗
1 =

∑g1
j=g k

(1)
j bν−1−j . Then,

for all integers 0 ≤ g2 ≤ ν − 1 and bg2 ≤ k2 ≤ bg2+1 − 1 the equalities hold

bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i)) =

{
bν , if k2 = k∗1,

0, if k2 ̸= k∗1.

In the case when k2 = k∗1, we have that g2 = ν − 1− g;
(ii) Let the integers g1 and g2 such that 0 ≤ g1 ≤ ν − 1 < g2 be arbitrary.

An arbitrary integer k1 such that bg1 ≤ k1 ≤ bg1+1 − 1 we present in the form

k1 =
∑ν−1

j=0 k
(1)
j bj . An arbitrary integer k2 such that bg2 ≤ k2 ≤ bg2+1 − 1 we

present in the form k2 =
∑g2

j=0 k
(2)
j bj . For each integer k1, as above, we define

the set

A(k1) =

k2 =
g2∑
j=0

k
(2)
j bj : k

(2)
0 = k

(1)
ν−1, k

(2)
1 = k

(1)
ν−2, . . . , k

(2)
ν−1 = k

(1)
0

and the digits k(2)ν , k
(2)
ν+1, . . . , k

(2)
g2 are arbitrary

}
.
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Then, the equalities hold∣∣∣∣∣
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣ =
{
bν , if k2 ∈ A(k1),

0, if k2 ̸∈ A(k1);

(iii) Let the integers g2 and g1 such that 0 ≤ g2 ≤ ν − 1 < g1 be arbitrary.
An arbitrary integer k2 such that bg2 ≤ k2 ≤ bg2+1 − 1 we present in the form

k2 =
∑ν−1

j=0 k
(2)
j bj . An arbitrary integer k1 such that bg1 ≤ k1 ≤ bg1+1 − 1 we

present in the form k1 =
∑g1

j=0 k
(1)
j bj . For each integer k2, as above, we define

the set

B(k2) =

k1 =
g1∑
j=0

k
(1)
j bj : k

(1)
0 = k

(2)
ν−1, k

(1)
1 = k

(2)
ν−2, . . . , k

(1)
ν−1 = k

(2)
0

and the digits k(1)ν , k
(1)
ν+1, . . . , k

(1)
g1 are arbitrary

}
.

Then, the equalities hold∣∣∣∣∣
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣ =
{
bν , if k1 ∈ B(k2),

0, if k1 ̸∈ B(k2);

(iv) Let the integers g1 and g2 such that g1 ≥ ν and g2 ≥ ν be arbitrary.
Arbitrary integers k1 and k2 such that bg1 ≤ k1 ≤ bg1+1 − 1 and bg2 ≤ k2 ≤
bg2+1 − 1 we present in the form k1 =

∑g1
j=0 k

(1)
j bj and k2 =

∑g2
j=0 k

(2)
j bj . For

each integer k1, as above, we define the set

C(k1) =

k2 =
g2∑
j=0

k
(2)
j bj : k

(2)
0 = k

(1)
ν−1, k

(2)
1 = k

(1)
ν−2, . . . , k

(2)
ν−1 = k

(1)
0

and the digits k(2)ν , k
(2)
ν+1, . . . , k

(2)
g2 are arbitrary

}
.

Then, the equalities hold∣∣∣∣∣
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣ =
{
bν , if k2 ∈ C(k1),

0, if k2 ̸∈ C(k1).

Proof. For an arbitrary integer i, 0 ≤ i ≤ bν−1, with the b−adic representation
i =

∑ν−1
j=0 ijb

j we have that ηb,ν(i) = 0.iν−1iν−2 . . . i0 and pb,ν(i) = 0.i0i1 . . . iν−1.

(i) For each integer k1 ∈ A(g1; g) we have that

(10) Gb,φwalk1(ηb,ν(i)) =

g1∏
j=g

χ
φ(k

(1)
j )

(φ(iν−1−j)) =

ν−1−g∏
j=ν−1−g1

χ
φ(k

(1)
ν−1−j)

(φ(ij)).
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Let an arbitrary integer k2 such that bg2 ≤ k2 ≤ bg2+1 − 1 have the b−adic

representation k2 =
∑ν−1

j=0 k
(2)
j bj with the assumption that for g2+1 ≤ j ≤ ν−1

the equalities k
(2)
j = 0 hold. Hence, we have that

Gb,φwalk2(pb,ν(i)) =

ν−1∏
j=0

χ
φ(k

(2)
j )

(φ(ij))

=

ν−2−g1∏
j=0

χ
φ(k

(2)
j )

(φ(ij)).

ν−1−g∏
j=ν−1−g1

χ
φ(k

(2)
j )

(φ(ij)).
ν−1∏
j=ν−g

χ
φ(k

(2)
j )

(φ(ij)).(11)

Then, from the equalities (4), (10) and (11) we obtain that

bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

=

ν−2−g1∏
j=0

b−1∑
ij=0

χ
φ(k

(2)
j )

(φ(ij))(12)

×
ν−1−g∏

j=ν−1−g1

b−1∑
ij=0

χ
φ(k

(1)
ν−1−j)⊕Gb

φ(k
(2)
j )

(φ(ij))

ν−1∏
j=ν−g

b−1∑
ij=0

χ
φ(k

(2)
j )

(φ(ij)).

Let us assume that k2 = k∗1. This means the following: For 0 ≤ j ≤ ν−2−g1
we have that k

(2)
j = 0. For ν−1− g1 ≤ j ≤ ν−1− g we have that k

(2)
j = k

(1)
ν−1−j

and hence, for each ij , 0 ≤ ij ≤ b−1, the equality χ
φ(k

(1)
ν−1−j)⊕Gb

φ(k
(2)
j )

(φ(ij)) = 1

holds. For ν − g ≤ j ≤ ν − 1 we have that k
(2)
j = 0. Then, from the equality

(12) we obtain that

bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i)) = bν .

The condition k2 ̸= k∗1 means that there exists at least one index δ, 0 ≤ δ ≤
ν − 2− g1, such that k

(2)
δ ̸= 0, or there exists at least one index κ, ν − 1− g1 ≤

κ ≤ ν − 1 − g, such that k
(2)
κ ̸= k

(1)
ν−1−κ, or there exists at least one index τ,

ν − g ≤ τ ≤ ν − 1, such that k
(2)
τ ̸= 0. In the first case, the corresponding sum∑b−1

iδ=0 χφ(k(2)δ )
(φ(iδ)) = 0, in the second case

∑b−1
iκ=0 χφ(k(1)ν−1−κ)⊕Gb

φ(k
(2)
κ )

(φ(iκ)) =

0 and in the third case
∑b−1

iτ=0 χφ(k(2)τ )
(φ(iτ )) = 0. According to the equality (12),

we obtain that
∑bν−1

i=0 Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i)) = 0.

The another statements of Lemma 2 can be proved by using similar tech-
niques.
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7. Proofs of the main results

Proof of Theorem 1. According to Definition 3, and by using the equality (5)
for the (WGb,φ;α)−diaphony of the net Gb,φb

Zκ,µb,ν , we have that

F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν ) =

1

C(α; b)

∑
(k1,k2)∈N2

0\{0}

R(α;b; (k1, k2))

× |Gb,φwalk1(κ)|
2|Gb,φwalk2(µ)|

2

×

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣
2

=
1

C(α; b)


∞∑
k=1

ρ(α1; b; k)

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk(ηb,ν(i))

∣∣∣∣∣
2

+
∞∑
k=1

ρ(α2; b; k)

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk(pb,ν(i))

∣∣∣∣∣
2

+

 ν−1∑
g1=0

bg1+1−1∑
k1=bg1

ν−1∑
g2=0

bg2+1−1∑
k2=bg2

+

ν−1∑
g1=0

bg1+1−1∑
k1=bg1

∞∑
g2=ν

bg2+1−1∑
k2=bg2

+
∞∑
g1=ν

bg1+1−1∑
k1=bg1

ν−1∑
g2=0

bg2+1−1∑
k2=bg2

+
∞∑
g1=ν

bg1+1−1∑
k1=bg1

∞∑
g2=ν

bg2+1−1∑
k2=bg2


× R(α;b; (k1, k2))

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣
2


=
1

C(α; b)
(Σ1 +Σ2 +Σ3 +Σ4 +Σ5 +Σ6).(13)

We will calculate the sums in the equality (13). For the sum Σ1, we have
the following: In Lemma 1 for each integer k ≥ 1 was shown the exact value of
the trigonometric sum

∑bν−1
i=0 Gb,φwalk(ηb,ν(i)). By using this result, we obtain

that

Σ1 =
∞∑
k=1

ρ(α1; b; k)

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk(ηb,ν(i))

∣∣∣∣∣
2

=
∞∑
k=1

ρ(α1; b; k).δbν (k)

=

∞∑
k=1

k≡0(mod bν)

ρ(α1; b; k) =

∞∑
k1=1

ρ(α1; b; k1b
ν) =

∞∑
g1=0

bg1+1−1∑
k1=bg1

ρ(α1; b; k1b
ν)

=
∞∑
g1=0

bg1+1−1∑
k1=bg1

b−α1(g1+ν) = b−α1ν
∞∑
g1=0

b−α1g1

bg1+1−1∑
k1=bg1

1
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= (b− 1)b−α1ν
∞∑
g1=0

b(1−α1)g1 = (b− 1)
bα1

bα1 − b
· 1

bα1ν
.(14)

By using the same technique, we can prove that

(15) Σ2 =

∞∑
k=1

ρ(α2; b; k)

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk(pb,ν(i))

∣∣∣∣∣
2

= (b− 1)
bα2

bα2 − b
· 1

bα2ν
.

To calculate the sum Σ3, we will use the introduced in Lemma 2 (i) sets
A(g1; g) and obtain that

Σ3 =
ν−1∑
g1=0

b−α1g1

g1∑
g=0

∑
k1∈A(g1;g)

ν−1∑
g2=0

b−α2g2

bg2+1−1∑
k2=bg2

×

∣∣∣∣∣ 1bν
bν−1∑
i=0

Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))

∣∣∣∣∣
2

.

By using Lemma 2 (i), we have that only in the case when g2 = ν − 1 − g and
k2 = k∗1 the trigonometric sum

∑bν−1
i=0 Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i)) has a

value bν and in the another cases - a value 0. In this way, we obtain that

Σ3 =
ν−1∑
g1=0

b−α1g1

g1∑
g=0

∑
k1∈A(g1;g)

b−α2(ν−1−g) =
bα2

bα2ν

ν−1∑
g1=0

b−α1g1

g1∑
g=0

bα2g
∑

k1∈A(g1;g)

1.

For arbitrary integers 0 ≤ g ≤ g1 ≤ ν − 1 the set A(g1; g) has a cardinality

|A(g1; g)| =

{
(b− 1)2bg1−g−1, if ≤ g ≤ g1 − 1,

b− 1, if g = g1.

According to the above two statements, for the sum Σ3, we will use the
following presentation

Σ3 =
bα2

bα2ν

 ν−1∑
g1=0

b(α2−α1)g1
∑

k∈A(g1;g1)

1 +

ν−1∑
g1=1

b−α1g1

g1−1∑
g=0

bα2g
∑

k1∈A(g1;g)

1


=

bα2

bα2ν

(b− 1)

ν−1∑
g1=0

b(α2−α1)g1 +
(b− 1)2

b

ν−1∑
g1=1

b(1−α1)g1

g1−1∑
g=0

b(α2−1)g


=

bα2

bα2ν

(b− 1)

ν−1∑
g1=0

b(α2−α1)g1 +
(b− 1)2

bα2 − b

ν−1∑
g1=1

b(1−α1)g1
[
b(α2−1)g1 − 1

]
=

bα2

bα2ν

(b−1)

ν−1∑
g1=0

b(α2−α1)g1+
(b−1)2

bα2−b

ν−1∑
g1=1

b(α2−α1)g1−
ν−1∑
g1=1

b(1−α1)g1
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=
bα2

bα2ν

(b− 1)

ν−1∑
g1=0

b(α2−α1)g1 +
(b− 1)2

bα2 − b

 ν−1∑
g1=0

b(α2−α1)g1 − 1


−(b− 1)2

bα2 − b

ν−1∑
g1=1

b(1−α1)g1


=

bα2

bα2ν

(b− 1)

ν−1∑
g1=0

b(α2−α1)g1 +
(b− 1)2

bα2 − b

ν−1∑
g1=0

b(α2−α1)g1

−(b− 1)2

bα2 − b
− (b− 1)2

bα2 − b

ν−1∑
g1=1

b(1−α1)g1


=

bα2

bα2ν

(b− 1)(bα2 − 1)

bα2 − b

ν−1∑
g1=0

b(α2−α1)g1 − (b− 1)2

bα2 − b

ν−1∑
g1=0

b(1−α1)g1


=

bα2

bα2ν

(b−1)(bα2−1)

bα2−b

ν−1∑
g1=0

b(α2−α1)g1+
(b−1)2bα1

(bα1−b)(bα2−b)

[
b(1−α1)ν−1

]
=

(b− 1)bα2(bα2 − 1)

bα2 − b
· 1

bα2ν

ν−1∑
g=0

b(α2−α1)g

+
(b− 1)2bα1+α2

(bα1 − b)(bα2 − b)
· 1

b(α1+α2−1)ν
− (b− 1)2bα1+α2

(bα1 − b)(bα2 − b)
· 1

bα2ν
.(16)

We will calculate the sum Σ4. For this purpose, let the integers 0 ≤ g1 ≤ ν−1,
bg1 ≤ k1 ≤ bg1+1−1, and g2 ≥ ν be fixed. We will use the introduced in Lemma
2 (ii) sets A(k1). Hence for each integer bg2 ≤ k2 ≤ bg2+1 − 1 the modulus of

the trigonometric sum
∣∣∣∑bν−1

i=0 Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))
∣∣∣ will accept a

value bν exactly (b − 1)bg2−ν times. This is based on the fact that the digits

k
(2)
ν , k

(2)
ν+1, . . . , k

(2)
g2 can be arbitrary. In this way, we obtain that

Σ4 =
ν−1∑
g1=0

b−α1g1

bg1+1−1∑
k1=bg1

∞∑
g2=ν

b−α2g2 .(b− 1)bg2−ν

=
(b− 1)2

bν

ν−1∑
g1=0

b(1−α1)g1

∞∑
g2=ν

b(1−α2)g2

= (b− 1)2
bα2

bα2 − b
· 1

bν
· 1

b(α2−1)ν

ν−1∑
g1=0

b(1−α1)g1

= (b− 1)2
bα2

bα2 − b
· 1

bα2ν

[
bα1

bα1 − b
− bα1

bα1 − b
· 1

b(α1−1)ν

]
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= (b− 1)2
bα1+α2

(bα1 − b)(bα2 − b)
· 1

bα2ν

− (b− 1)2
bα1+α2

(bα1 − b)(bα2 − b)
· 1

b(α1+α2−1)ν
.(17)

To calculate the sum Σ5, we can use the same techniques as above and obtain
that

Σ5 = (b− 1)2
bα1+α2

(bα1 − b)(bα2 − b)
· 1

bα1ν

− (b− 1)2
bα1+α2

(bα1 − b)(bα2 − b)
· 1

b(α1+α2−1)ν
.(18)

It is evident the symmetry between the results obtained in the equalities (17)
and (18).

We will calculate the sum Σ6. For this purpose, let the integers g1 ≥ ν,
bg1 ≤ k1 ≤ bg1+1−1, and g2 ≥ ν be fixed. We will use the introduced in Lemma
2 (iv) sets C(k1). Hence, for each integer bg2 ≤ k2 ≤ bg2+1 − 1 the modulus of

the trigonometric sum
∣∣∣∑bν−1

i=0 Gb,φwalk1(ηb,ν(i))Gb,φwalk2(pb,ν(i))
∣∣∣ will accept a

value bν exactly (b − 1)bg2−ν times. This is based on the fact that the digits

k
(2)
ν , k

(2)
ν+1, . . . , k

(2)
g2 can be arbitrary. In this way, we obtain that

Σ6 =
∞∑
g1=ν

b−α1g1

bg1+1−1∑
k1=bg1

∞∑
g2=ν

b−α2g2 .(b− 1)bg2−ν

= (b− 1)2
1

bν

∞∑
g1=ν

b(1−α1)g1

∞∑
g2=ν

b(1−α2)g2

= (b− 1)2
1

bν
· bα1

bα1 − b
· 1

b(α1−1)ν
· bα2

bα2 − b
· 1

b(α2−1)ν

= (b− 1)2
bα1+α2

(bα1 − b)(bα2 − b)
· 1

b(α1+α2−1)ν
.(19)

From the equalities (13), (14), (15), (16), (17), (18) and (19) we obtain that the
(WGb,φ;α)− diaphony of the net Gb,φb

Zκ,µb,ν satisfies the equality

F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν ) =

1

C(α; b)

(b− 1)bα2(bα2 − 1)

bα2 − b
· 1

bα2ν

ν−1∑
g=0

b(α2−α1)g

+(b− 1)
bα1

bα1 − b

[
1 + (b− 1)

bα2

bα2 − b

]
1

bα1ν
+ (b− 1)

bα2

bα2 − b
· 1

bα2ν

}
with the introduced in the condition of the theorem constant C(α; b). Theorem
1 is finally proved.
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Proof of Corollary 1. (i) According to Theorem 1, in the case when α1 =
α2 = α we obtain that

F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν ) =

bα − 1

(b− 1) bα

bα−b + 2
· ν

bαν
+

1

bαν
.

(ii) From the above expression we obtain that

bαν · F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν )

ν
=

bα − 1

(b− 1) bα

bα−b + 2
+

1

ν

and hence, the limit equality holds

lim
ν→∞

b
α
2
ν · F (WGb,φ;α;Gb,φb

Zκ,µb,ν )√
ν

=

√
bα − 1

(b− 1) bα

bα−b + 2
.

We put N = bν and find that ν = logN
log b . From the above limit equality we obtain

that

(20) lim
ν→∞
N=bν

N
α
2 · F (WGb,φ;α;Gb,φb

Zκ,µb,ν )√
logN

=

√√√√ bα − 1[
(b− 1) bα

bα−b + 2
]
log b

.

(iii) Let us assume that 1 < α < 2. Then, there exists a number 0 < ε < 1
2

such that α
2 = 1− ε. The equality (20) gives us that

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN

N1−ε

)
.

(iv) When α = 2 the equality (20) shows that

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN

N

)
.

(v) Let us in the equality (20) put α = 2 and obtain the limit equality

lim
ν→∞
N=bν

N · F (WGb,φ;α;Gb,φb
Zκ,µb,ν )√

logN
=

√
b2 − 1

(b+ 2) log b
.

(vi) Let us assume that α > 2. Then, there exists a number ε > 0 that
α
2 = 1 + ε. The equality (20) shows that the inclusion

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(√
logN

N1+ε

)
holds.

Corollary 1 is finally proved.
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Proof of Corollary 2. (i) The condition α1 > α2 allows us to calculate the
value of the sum

∑ν−1
g=0 b

(α2−α1)g. So, the equality holds

ν−1∑
g=0

b(α2−α1)g =
bα1

bα1 − bα2
− bα1

bα1 − bα2
· 1

b(α1−α2)ν
.

According to Theorem 1, in the case when α1 > α2 the presentation holds

bα2ν · F 2(WGb,φ;α;Gb,φb
Zκ,µb,ν )

=
1

C(α; b)

{
(b− 1)

bα2

bα2 − b

[
bα1(bα2 − 1)

bα1 − bα2
+ 1

]
+

[
(b− 1)bα1+α2(b · bα1 + bα2 − bα1+α2 − b)

(bα1 − b)(bα2 − b)(bα1 − bα2)
+ (b− 1)

bα1

bα1 − b

]
1

b(α1−α2)ν

}
.

(ii) From the above equality we obtain the limit equality

lim
ν→∞
N=bν

N
α2
2 · F (WGb,φ;α;Gb,φb

Zκ,µb,ν )

=

√
bα2(bα1 − b)[(bα1 − bα2) + bα1(bα2 − 1)]

(bα1 − bα2)[bα1(bα2 − b) + bα2(bα1 − b) + (b− 1)bα1+α2 ]
.(21)

(iii) Let us assume that 1 < α2 < 2. Then, there exists a number 0 < ε < 1
2

such that α2
2 = 1− ε. The equality (21) gives us that

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1

N1−ε

)
.

(iv) Let α = 2. From the equality (21) we find that

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1

N

)
.

(v) Let us assume that α2 > 2. Then, there exists a number ε > 0 such that
α2
2 = 1 + ε.

The equality (21) shows us that the inclusion

F (WGb,φ;α;Gb,φb
Zκ,µb,ν ) ∈ O

(
1

N1+ε

)
holds.

Corollary 2 is finally proved.
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Abstract. The recently introduced regular topology for the function space C(X,Y )
has been explored up to some metrizability and various countability and completeness
properties. The main aim of this paper is to explore the regular topology on the func-
tion space C(X,Y ) in which we study submetrizability and extend various properties
equivalent to the metrizability of the space Cr(X,Y ). We also study number of maps
corresponding to the space Cr(X,Y ) and prove that the regular topology on the space
C(X,Y ) is strong when X is taken discrete. Furthermore, we study various separation
axioms on the space Cr(X,Y ), where we prove that the function space Cr(X) is normal
by taking X to be countable, compactly generated compact space and prove certain
equivalent conditions to various separation axioms on the space Cr(X,Y ).

Keywords: function space, regular topology, Gδ set, submetrizability, induced map,
pseudocompact, separation axioms.

1. Introduction

The function space C(X,Y ) symbolizes the space of continuous functions from
a space X to a space Y . This space has been topologized in numerous ways
and those topologies include the innate topologies such as point-open topol-
ogy, compact-open topology and uniform topology. However, more stronger
topologies than that of the uniform topology such as the fine topology (also
known as m-topology) and the graph topology have also been studied. The fine
topology on C(X) = C(X,R) along with the topological properties was stud-
ied by Hewitt [4]. Moreover, the basis elements for fine topology on C(X,Y )
where X is a Tychonoff space and (Y, d) a metric space are of the fashion:
B(f, ϵ) = {g ∈ C(X,Y )|d(f(x), g(x)) < ϵ(x),∀x ∈ X}, where f ∈ C(X,Y ) and
ϵ is a positive unit of the ring C(X). Later, the topological properties corre-

*. Corresponding author
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sponding to this topology have also been discussed in [11]. The space C(X,Y )
equipped with fine topology is proved to be submetrizable in [11].

Iberklied et al. in [15] introduced a more stronger topology than the fine
topology on the space C(X) and named it as the regular topology or the r-
topology. This topology was defined in a manner that the positive unit in the
basis elements of fine topology is replaced by a positive regular element of the
ring C(X). That is the basis elements for the regular topology on the space C(X)
are of the fashion: R(f, r) = {g ∈ C(X) : |f(x) − g(x)| < r(x),∀x ∈ coz(r)},
where f ∈ C(X), r is a positive regular element (non-zero divisor) of the ring
C(X) and coz(r) = {x ∈ X : r(x) ̸= 0}. The space C(X) equipped with the
regular topology is represented as Cr(X). Afterwards, Azarpanah et al. in [5]
investigated compactness, connectedness and countability of this topology on
the space C(X). However, no study has been done on the submetrizability,
separation axioms with respect to the regular topology on C(X) and no map
has been studied corresponding to the regular topology on the space C(X).

Later, Jindal et al. [1] explored this regular topology on a more general space
C(X,Y ), where X is Tychonoff and Y is a metric space with non-trivial path.
They used the same idea as before to define the basis element for the regular
topology on C(X,Y ) as : R(f, r) = {g ∈ C(X,Y )|d(f(x), g(x)) < r(x), ∀x ∈
coz(r)}, where where f ∈ C(X,Y ), r is a positive regular element (non-zero
divisor) of the ring C(X). The space C(X,Y ) endowed with regular topology is
represented as Cr(X,Y ). Moreover, they studied various topological properties
like metrizability, countability and several completeness properties. Despite all,
the submetrizability was not studied on the space Cr(X,Y ), no separation axiom
has been investigated for the space Cr(X,Y ) and no map with respect to this
topology was studied. However, the submetrizability property has been studied
for various function space topologies in [12], [14], [2].

The main concern of our work is to investigate submetrizability for the func-
tion space Cr(X,Y ), to investigate certain separation axioms and various kinds
of maps on the space Cr(X,Y ), where X is a Tychonoff space and Y a metric
space with a non-trivial path. In the first section, we demonstrate that the
space Cr(X,Y ) is submetrizabe along with some equivalent conditions to its
submetrizability. Moreover, we stretch the listicle of equivalent properties to its
metrizability by replacing the metric space Y with a normed linear space with
supremum norm. With this, we also see how by taking Y as a normed linear
space makes the function space Cr(X,Y ) into a topological group.

In the second section, we study various maps such as composition function,
induced map and embedding with respect to the regular topology on C(X,Y ).
Specifically, we show how one function space can be embedded into other and
derive a necessary condition when the regular topology on C(X,Y ) can be cat-
egorized as a strong topology.

Finally, in last portion we examine several separation axioms for the space
Cr(X,Y ) such as Hausdorffness and regularity and provide some equivalent
characterizations with respect to other function space topologies.
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Moreover, the conventions that we use throughout this paper are : The space
X will always represent a Hausdorff completely regular space ( we will acknnowl-
edge if it has an extra structure). The set of positive regular elements(non-zero
divisors) of the ring C(X) is symbolized by r+(X) and the multiplicative units of
the same ring are symbolized by U+(X). The function space C(X) and C(X,Y )
equipped with the regular topology are represented as Cr(X) and Cr(X,Y ), re-
spectively. The operation ≤ is used to represent the strength of two comparative
topologies, which means the one on LHS is weaker than the one on RHS.

2. Pre-requisites

Definition 2.1.

1. Let g ∈ C(X), then Z(g) = {x ∈ X : g(x) = 0} denotes the zero set of g
and coz(g) = {x ∈ X : g(x) ̸= 0}, is the set-theoretic complement of Z(g).

2. Topologically, the regular elements of the ring C(X) are characterized as
: Let g ∈ C(X), then it is said to be the regular element of C(X) if and
only if IntX(Z(g)) = ϕ if and only if coz(g) is dense subset of X.

3. A space Z is said to be pseudocompact if f(Z) is bounded subset of R, ∀
f ∈ C(X), that is, for every f ∈ C(X) there exists a natural number N
for which |f(z)| ≤ N ∀ z ∈ Z.

Definition 2.2. In [15], an almost P -space is defined as the space where each
nonempty Gδ-set has a nonempty interior. Moreover, in terms of elements of
the ring C(X), a space X is said to be an almost P -space if the regular elements
coincide with the multiplicative units of ring C(X).

Theorem 2.1 (Theorem 2.1, [1]). A space X is said to be an almost P -space
if it satisfies anyone of the following conditions :

1. Every non-empty zero set of X has a non-empty interior.

2. Every non-empty Gδ-set of X has a non-empty interior.

3. Every zero set in X is a regular-closed set.

4. Every Gδ-set has an interior dense in itself.

Theorem 2.2 (Theorem 1.8, [15]). For a space X, the following are equivalent:

1. Cr(X) = Cm(X).

2. X is an almost P -space.

3. r+(X) = U+(X).

Theorem 2.3 (Theorem 1.9, [15]). For a space X, the following are equivalent:

1. Cr(X) = Cu(X)

2. X is pseudocompact, almost P -space.
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3. Submetrizability

In this section, we are going to investigate when the space Cr(X,Y ) is sub-
metrizable. Moreover, we discuss how the submetrizability of space Cr(X) can
be characterized in terms of other weaker properties.

Definition 3.1. A completely regular Hausdorff space (X, τ) is called submetriz-
able if it admits a weaker metrizable topology, equivalently, if there exists a con-
tinuous injection f : X → Y , where Y is a metric space.

Theorem 3.1. For a space X and a Tychonoff space Y , the space Cr(X,Y ) is
Tychonoff.

Proof. Suppose Y is a Tychonoff space, implies Y is uniformizable. Conse-
quently, Cr(X,Y ) is uniformizable [1]. Which means Cr(X,Y ) is Tychonoff.

Theorem 3.2. For a space X and a metric space (Y, d), the space Cr(X,Y ) is
always submetrizable.

Proof. As we know that the regular topology on C(X,Y ) is stronger than the
fine topology on it [1]. Consequently, we can write Cd(X,Y ) ≤ Cr(X,Y ), and
since Cd(X,Y ) is always metrizable (Corollary 2.1, [11]). Therefore, the space
Cr(X,Y ) is submetrizable.

Definition 3.2 (Definition 2.2, [11]). A topological space Y is called a space of
countable pseudocharacter if every point in Y is a Gδ-set (countable intersection
of open sets) in Y . Such spaces are also called as E0-spaces. Moreover, in a
submetrizable space, every point is a Gδ-set. So, the submetrizable spaces are
E0-spaces. The study regarding E0-spaces and submetrizable spaces can be found
in [3] and [6], respectively.

Corollary 3.1. The space Cr(X,Y ) is of countable pseudocharacter.

Remark 3.1 (Remark 5.2 in [12]).

1. If a space is havingGδ-diagonal, that is for a spaceX, if the set {(x, x) : x ∈
X} is a Gδ-set in the product space X×X, then each element of X is a Gδ-
set. Note that every metrizable space has a zero-set diagonal which implies
it has a regular Gδ-diagonal implies it has a Gδ-diagonal. Consequently,
every submetrizable space has a zero-set diagonal.

2. In submetrizable spaces, all compact sets, pseudocompact sets, countably
compact sets and singleton sets are Gδ-sets.

Next, we see various properties which are equivalent to the submetrizability
of space Cr(X). The above remark leads us to the following theorem:

Theorem 3.3. For a space X, we have the following equivalent properties:
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1. Cr(X) is submetrizable.

2. Cr(X) has a zero set diagonal.

3. Cr(X) has a regular Gδ-diagonal.

4. Cr(X) has a Gδ-diagonal.

5. Each singleton set in C(X) is Gδ in Cr(X).

6. {0X} is a Gδ in Cr(X).

7. X is separable

8. Cp(X) is submetrizable.

Proof. Since (1) ⇒ (2) ⇒ (3) ⇒ (4) follows from the above discussion. (4) ⇒
(5) ⇒ (6) are immediate.
(6) ⇒ (7) Suppose {0X} is Gδ in Cr(X), then there exists a countable family N
of open sets in Cr(X) so that {0X} =

⋂
N.

Now, assume that N has elements of the form B(f1, r1), · · · ∩ B(fk, rk) ∩
B(0X , rm), · · · ∩B(0X , rn), where fi ∈ C(X), rj ∈ r+(X), 0X is a constant func-
tion and 1 < i < k and 1 < j < n.

Now, for each U = B(f1, r1), · · ·∩B(fk, rk)∩B(0X , rm), · · ·∩B(0X , rn) ∈ N,
fix xj ∈ coz(rj) and put H(U) = {y1, · · · ym, x1, · · · , xn}. Let A = {H(U) : U ∈
N}. Clearly, A is countable. Suppose Cl(A) ̸= X, so ∃ x0 ∈ X − Cl(A). Since
X is a completely regular space so ∃ f ∈ C(X) such that f(x0) = 1, f(y) =
0∀y ∈ cl(A). This implies f ∈ U for each U ∈ N. So, f = 0X , but f(x0) = 1.
Thus, cl(A) = X. Hence, X is separable.

(7) ⇔ (8) is well known.
(8) ⇒ (1) Since Cp(X) ≤ Cr(X).

In the next result, we stretch the list of equivalent characterizations of metriz-
ability of Cr(X,Y ). Infact, we see how X being pseudocompact, almost P -space
acts also as the necessary and sufficient condition for the space Cr(X,Y ) to be
countably tight, radial and pseudoradial.

Theorem 3.4. For a space X and a metric space (Y, d) with a non-trivial path,
we have the following equivalent conditions:

1. X is pseudocompact, almost P -space.

2. Cd(X,Y ) = Cr(X,Y ).

3. Cr(X,Y ) is metrizable.

4. Cr(X,Y ) is first countable.

5. Cr(X,Y ) is of pointwise countable type.
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6. Cr(X,Y ) is an r-space.

7. Cr(X,Y ) is an M -space.

8. Cr(X,Y ) is an p-space.

9. Cr(X,Y ) is an q-space.

10. Cr(X,Y ) is a Frechet space.

11. Cr(X,Y ) is a Sequential space.

12. Cr(X,Y ) is a k-space.

13. Cr(X,Y ) is countably tight.

14. Cr(X,Y ) is radial.

15. Cr(X,Y ) is pseudoradial.

Proof. The equivalent conditions from (1) upto (9) are true as proved in (The-
orem 2.7, [1]).

And since (4) ⇒ (10) ⇒ (11) ⇒ (12) are well known.
(12) ⇒ (13) It supports because a regular k-space having points Gδ is countably
tight. However, let’s prove it by contradiction. Suppose a regular k-space Z
with points Gδ is not countably tight, then there exists a subset S of Z in such
manner that the set H = {P̄ : P ⊆ S and P is countable } ⊊ S̄. Since H
contains S and H is not closed. Therefore, there exists a compact subset C of Z
in such a way that H ∩ C is not closed in C. In addition, every compact space
where singleton sets are Gδ is first countable. Thus, there exists a sequence (xn)
in H ∩ C converging to some x ∈ C\H.

Now, ∀ n ∈ N , ∃ a countable Pn ⊆ S so that xn ∈ P̄n. Hence, x ∈
⋃
n∈N Pn.

Since
⋃
n∈N Pn is countable in S, x ∈ H. Which is a contradiction.

Now, (13) ⇒ (1) Suppose X is not an almost P -space. Then, we can find a
non-empty zero set say S in X which has empty interior. Let r ∈ C(X) such
that Z(r) = S. Since Z(r) = Z(|r|), then we can assume r ≥ 0. Consequently,
r ∈ r+(X). As Cr(X,Y ) is countably tight, so we can consider a countable
subset {gn : n ∈ N}.

Now, choose e ∈ Z(r). Since Y contains a non-trivial path, so we can find
t0 ∈ Y \ {gn(e) : n ∈ N}. Let g0 be a constant function in Cr(X,Y ) taking
values t0. Then, R(g0, r) is a non-empty open set in Cr(X,Y ) that does not
intersect {gn : n ∈ N}. Which is not true. Thus, X is an almost P -space.

Hence, by (Theorem 2.2, [1]), Cf (X,Y ) = Cr(X,Y ). Thus, Cf (X,Y ) is also
countably tight. But, the (Theorem 3.3, [8]) implies that X is pseudocompact.
Which finishes the proof (13) ⇒ (1).

Clearly, (10) ⇒ (14) ⇒ (15). We show that (15) ⇒ (13) by contradiction.
Consider a nonclosed subset N of Cr(X,Y ). Then, there exists a cardinal k
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and a k-sequence in N , say (gσ)σ<k in such a way that the sequence converges
to some g ∈ N . We lay claim to the fact that there is an ℵ0-subsequence that
converges to g. If this is shown, it will declare that Cr(X,Y ) is a sequential
space.

For every natural number n, we can choose an ordinal σn < k so that
σn > σn−1 and for every σn < τ < k, gτ ∈ Bg(g, 1/n). The sequence (σn)
converges to k. Otherwise there is an ordinal τ < k such that σn < τ for each n,
hence g = gτ ∈ N ; a contradiction. Next, for any r ∈ r+(X), there is an ordinal
σ such that for every σ < τ < k, we have gτ ∈ Bg(g, r). Since (σn) converges to
k, there is an n such that σ < σm < k, ∀m ≥ n. Hence, gσm ∈ Bg(g, r) for each
m ≥ n. Thus, gσm∀m ≥ n converges to g.

Example 3.1. Let X = [0, ω1) and Y = R, the the space Cr([0, ω1)) is sub-
metrizable. Since the space [0, ω1) is countably compact [Example 2.2, [11] ] im-
plies X is pseudocompact. The space Cf ([0, ω1)) is metrizable. Also the space
[0, ω1) is not an almost P -space. Therefore, we have Cf ([0, ω1)) ̸= Cr([0, ω1)).
Hence, the space Cr([0, ω1)) is submetrizable.

Example 3.2. For a real line R, let βR denotes its Stone-Cech compactification.
LetX = βR−R, thenX is an almost P -space [10] and since R is locally compact,
so it is open in βR, and βR−R is therefore compact, thus pseudocompact. Then,
we have Cd(βR−R) = Cr(βR−R), implies Cr(βR−R) is metrizable and hence
submetrizable.

In the upcoming result, we see how by taking Y as a normed linear space with
supremum norm, one can further stretch the list of characterizations equivalent
to metrizability of the space Cr(X,Y ). Before that we require the below results
to prove the main theorem.

Theorem 3.5. For a space X and a normed linear space (Y, ∥.∥∞) with supre-
mum norm, the function space Cr(X,Y ) is a topological group under pointwise
addition.

Proof. Clearly, under pointwise addition, Cr(X,Y ) is a group.
Now, it is sufficient to prove that the group operations are continuous.

Suppose s : Cr(X,Y ) × Cr(X,Y ) → Cr(X,Y ) be defined as s(g1, g2) = g1 +
g2,∀g1, g2 ∈ C(X,Y ). Consider a basic neighborhood B(g1 + g2, r) of g1 + g2
in Cr(X,Y ), where r is the regular element of ring C(X). Take ϵ1 = r(x)/3 =
ϵ2, x ∈ coz(r), and observe the neighborhood B(g1, ϵ1) × B(g2, ϵ2) of (g1, g2)
in Cr(X,Y ) × Cr(X,Y ). Suppose (h1, h2) ∈ B(g1, ϵ1) × B(g2, ϵ2). Then, for
x ∈ coz(r),

∥(g1 + g2)(x)− (h1 + h2)(x)∥ ≤ ∥g1(x)− h1(x)∥+ ∥g2(x)− h2(x)∥
< ϵ1(x) + ϵ2(x) < r(x)

Then, s(B(g1, ϵ1)×B(g2, ϵ2)) ⊆ B(g1 + g2, r). Therefore, s is continuous.
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Now, let I : Cr(X,Y ) → Cr(X,Y ) defined by I(f) = −f for any f ∈
C(X,Y ), where (−f)(x) = −f(x) ∈ Y . Observe the neighborhood B(−f, r) of
−f . Therefore, I(B(f, r)) = B(−f, r). Thus, I is continuous. Hence, Cr(X,Y )
is a topological group.

Since we have shown that the function space Cr(X,Y ) is topological group,
for a space X and a normed linear space (Y, ∥.∥∞). Thus, it is a homogeneous
space [11]. However, a space A is termed to be a homogeneous space if for
each pair of points a, b ∈ A, there exists a homeomorphism of A onto itself that
carries a to b. Further, to prove next result, we first require the following two
lemmas:

Lemma 3.1 (Lemma 2.1, [11]). Let D be a dense subset of a space X and x ∈ D.
Then, x has a countable local π-base in D if and only if x has a countable local
π-base in X.

Lemma 3.2 (Lemma 2.3, [11]). Let D be a dense subset of a space X and C
be a compact subset D. Then, C has countable character in D if and only if C
has countable character in X.

Theorem 3.6. For a space X and a normed linear space (Y, ∥.∥∞), the space
Cr(X,Y ) has a countable π-character if and only if Cr(X,Y ) has a dense sub-
space having countable π-character.

Proof. Consider a dense subspace C of Cr(X,Y ) having a countable π-character.
Take f ∈ C to be arbitrary. Because f has a countable local π-base in C, then
by the (Lemma 3.1) f has a countable local π-base in Cr(X,Y ). Therefore,
there exists a sequence {On : n ∈ N} of open sets in Cr(X,Y ) in such a man-
ner that whenever O is an open set carrying f , On ⊆ O for some n. Take an
arbitrary g ∈ Cr(X,Y ). As Cr(X,Y ) is a homogeneous space, thus there exists
a homeomorphism h : Cr(X,Y ) → Cr(X,Y ) defined by h(f) = g. Therefore,
{h(On) : n ∈ N} is a sequence of open sets in Cr(X,Y ). Let P be an open set
with g ∈ P . Therefore, f ∈ h−1(P ) and there exists n such that On ⊆ f−1(P ).
As a consequence, g has a countable local π-base in Cr(X,Y ). Hence, Cr(X,Y )
has a countable π-character. Clearly, the converse follows.

Theorem 3.7. For a space X and a normed linear space (Y, ∥.∥∞), the space
Cr(X,Y ) is of pointwise countable type if and only if Cr(X,Y ) has a dense
subspace of pointwise countable type.

Proof. Consider a dense subspace C of Cr(X,Y ) that is of pointwise countable
type. Let f ∈ C and g ∈ C(X,Y ). Since Cr(X,Y ) is homogeneous, so there
exists a homeomorphism H : Cr(X,Y ) → Cr(X,Y ) so that H(f) = g. Since C
is a dense subspace of Cr(X,Y ), so there exists a compact subset, say K so that
f ∈ K and is of pointwise countable character in C. Thus, by above (Lemma
3.2), K has countable character in Cr(X,Y ). Therefore, H(K) is a compact
subset of Cr(X,Y ) having countable character in Cr(X,Y ), and g ∈ H(K).
Hence, Cr(X,Y ) is of pointwise countable type. The converse is immediate.
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Theorem 3.8. For a space X and a normed linear space (Y, ∥.∥∞), we have
the following equivalences :

1. X is pseudocompact, almost P -space.

2. Cd(X,Y ) = Cr(X,Y ).

3. Cr(X,Y ) is metrizable.

4. Cr(X,Y ) is of pointwise countable type.

5. Cr(X,Y ) has a dense subset which is of pointwise countable type.

6. Cr(X,Y ) is countably tight.

7. Cr(X,Y ) is first countable.

8. Cr(X,Y ) has a countable π-character.

9. Cr(X,Y ) has a dense subspace of countable π-character.

10. Cr(X,Y ) is normed linear space.

11. Cr(X,Y ) is topological vector space.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) are true (Theorem 2.7, [1]).
(4) ⇔ (5) is proved in above (Theorem 3.7).
(1) ⇔ (6) ⇔ (7) are true as proved in (Theorem 3.4).
(7) ⇒ (8). Since Cr(X,Y ) is a topological group and a topological group is

first countable if and only if it has countable π-character.
(8) ⇔ (9) is proved in above (Theorem 3.6).
(1) ⇒ (10) SupposeX is pseudocompact and almost P -space then Cr(X,Y ) =

Cd(X,Y ) (Theorem 2.7, [1]). But when X is pseudocompact, then Cd(X,Y ) is
a normed linear space under the supremum norm ||.||∞ defined by ∥f∥∞ =
sup{∥f(x)∥ : x ∈ X}. Thus, the space Cr(X,Y ) is a normed linear space.

(10) ⇒ (11) is immediate.
(11) ⇒ (1) Suppose X is not an almost P -space, then there exists a non-

empty zero set say A which has empty interior in X. Let s ∈ C(X) be in such
a way that Z(s) = A. As Z(s) = Z(|s|), thus s ∈ r+(X). Without the loss
of generality, we can assume s in such a way that there ∄ any δ > 0 so that
δ < s(x), ∀x ∈ coz(s). Consider a non-zero element y0 and define fy0 : X → Y as
fy0(x) = y0,∀x ∈ X. We prove that the scaler multiplication is not continuous
at (0, fy0) ∈ R × Cr(X,Y ). Consider a basic neighborhood B(0X , s) of 0X in
Cr(X,Y ) where 0X(x) = 0,∀x ∈ X.

Now, consider a basic neighborhood (−ϵ, ϵ) × B(fy0 , r) of (0, fy0) in R ×
Cr(X,Y ), where ϵ > 0 and r ∈ r+(X). Then, for any non-zero α ∈ (−ϵ, ϵ), αfy0
does not belong to B(0X , s),∀x ∈ coz(s). Because then ||αfy0(x)∥ = |α|∥y0|| <
s(x), ∀x ∈ coz(s). But this contradicts our choice of s ∈ r+(X). So, if X is not
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an almost P -space, then Cr(X,Y ) is not a topological vector space. In other
words, Cr(X,Y ) being topological vector space implies X is an almost P -space.

But X being almost P -space implies that Cr(X,Y ) = Cf (X,Y ) (Theorem
2.2, [1]). Therefore, Cf (X,Y ) is a topological vector space. However, (Theorem
2.2, [11]) shows that Cf (X,Y ) is topological vector space if and only if X is
pseudocompact. This finishes the proof that (11) ⇒ (1).

4. Some special maps

In this section, we will be discussing various maps that can be drawn over or
from the space Cr(X,Y ) which includes composition function, induced map
and embedding. In function spaces, the function i : Y → C(X,Y ) defined as
i(t) = ct, where ct is a constant map is an injection [7]. However, in particular,
the function i : R → C(X,R) defined as i(t) = ct, where ct ∀ t ∈ R is a constant
map is an injection [7].

Definition 4.1 (Composition function). Suppose X, Y and R are spaces, a
composition function ϕ : Cr(X,Y )×Cr(Y,R) → Cr(X,R) is defined by ϕ(f, g) =
g ◦ f , f ∈ Cr(X,Y ), g ∈ Cr(Y,R)

Definition 4.2 (Induced map). Suppose g ∈ Cr(Y,R), then an induced map
g∗ : Cr(X,Y ) → Cr(X,R) is defined by g∗(f) = ϕ(f, g) = g ◦ f , f ∈ Cr(X,Y ).
In particular, for g ∈ Cr(X,Y ), then an induced map for the function space
C(X) is defined as g∗ : Cr(Y ) → Cr(X) with g∗(f) = ϕ(f, g) = g◦f , f ∈ Cr(Y ).

An induced map is formed by fixing one of the components of composition
function. Note that the induced maps preserve composition as : (g◦f)∗ = g∗◦f∗.

Theorem 4.1. Let g ∈ Cr(Y,R), then g is one-to-one if and only if g∗ : Cr(X,Y )
→ Cr(X,R) is one-to-one.

Proof. Let g is one-to-one. To prove g∗ : Cr(X,Y ) → Cr(X,R) is one-to-one.
Let’s consider f1, f2 ∈ Cr(X,Y ) and let g∗(f1) = g∗(f2). This implies ϕ(f1, g) =
ϕ(f2, g). Which implies g ◦ f1 = g ◦ f2. Then, g(f1) = g(f2). Implies f1 = f2.
Therefore, g∗ : Cr(X,Y ) → Cr(X,R) is one-to-one.

Conversely, let g∗ is one-to-one. To prove g ∈ C(Y,R) is one-to-one. For this,
consider x1, x2 ∈ Y and let g(x1) = g(x2). This implies g∗(g(x1)) = g∗(g(x2)).
Which implies ϕ(g(x1), g) = ϕ(g(x2), g). Then, ϕ(g, g) = ϕ(g, g). Then, we can
write g−1(g(x1)) = g−1(g(x2)). Implies x1 = x2. Therefore, g is one-to-one.

Theorem 4.2. Let g ∈ Cr(Y,R) and g∗ : Cr(X,Y ) → Cr(X,R) is onto then g
is onto.

Proof. Let g∗ is onto, then by definition there exists f1 ∈ C(X,R) such that
f1 = g∗(g1), ∀ g1 ∈ C(X,Y ). This implies f1 = ϕ(g1, g), which implies f1 =
g ◦ g1. Then, f1 = g(g1). Thus, g is onto.
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Definition 4.3. A function f from a non-empty set A to a topological space B
is said to be an almost onto map if f(A) is dense in B.

Theorem 4.3 (Theorem 2.2.6 (a), [7]). Let g ∈ C(X,Y ), then the induced map
g∗ : C(Y ) → C(X) is one-one if and only if g is almost onto.

Theorem 4.4. For a Tychonoff space X and a metric space (Y, d), and let
g ∈ Cr(Y,R), then the induced map g∗ : Cr(X,Y ) → Cr(X,R) defined as g∗(f) =
ϕ(f, g) = g ◦ f , f ∈ Cr(X,Y ) is continuous.

Proof. Let B(f, r) be a basic open subset of Cr(X), where r is a non-negative
regular element of the ring C(X) and B(f, r) = {h ∈ C(X) : |f(x) − h(x)| <
r(x), ∀x ∈ coz(r)}.

Now, we will show that g−1
∗ [B(f, r)] is open in Cr(X,Y ). So, for this, let

h ∈ g−1
∗ [B(f, r)] and we will show it is an interior point of g−1

∗ [B(f, r)].

For every x ∈ coz(r), we know from the definition that

|g(h(x))− f(x)| < r(x) ⇒ g(h(x)) ∈ Br(x)(f(x))

Since Br(x)(f(x) is open, we can thus find another regular element ŕ ∈ C(X) so
that

(1) Bŕ(x)(g(h(x))) ⊆ Br(x)(f(x))

Then, as g is continuous so by the continuity of g at x, ∃ δ a non-negative regular
element of ring C(X) such that

(2) ∀y ∈ coz(δ) : dY (h(x), y) < δ(x) ⇒ g(y) ∈ Bŕ(x)(g(h(x)))

Now, if h́ ∈ B(h, δ), from (2) we can conclude that

∀x ∈ coz(ŕ) : g(h́(x)) ∈ Bŕ(x)(g(h(x)))

Thus, from (1) it is evident that g∗(h́)∈B(f, r). Therefore, B(h, δ)⊆g−1
∗ [B(f, r)]

as required.

Corollary 4.1. For a space X, let g ∈ Cr(X,Y ) for some space Y , then the
induced map g∗ : Cr(Y ) → Cr(X) is continuous.

Theorem 4.5. For a space X and a metric space (Y, d), the map ϕ : Y →
Cr(X,Y ) where ϕ(y) = ȳ and ȳ is a constant map in Cr(X,Y ), is an embedding.

Proof. Since, ϕ is one-one and the basis elements for regular topology on
C(X,Y ) are of the form B(f, r) where f ∈ C(X,Y ) , r is a non-negative regular
element of the ring C(X), and

B(f, r) = {g ∈ C(X,Y ) : d(f(x), g(x)) < r(x), ∀x ∈ coz(r)}
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Now, as ϕ maps y ∈ Y to ϕ(y) ∈ Cr(X,Y ) defined by ϕ(y)(x) = ȳ(x)∀x ∈ X
is continuous.

Suppose yn → y0 in (Y, d), it is enough to show sequential continuity, as
Y is a first countable space. Then, it is clear that ϕ(yn) → ϕ(y0) such that if
B(ϕ(y0), r) is a basic neighborhood of ϕ(y0) then by convergence, there is some
N such that n ≥ N implies d(yn, y0) < r(x),∀x ∈ coz(r). Then, also n ≥ N
implies ϕ(yn) ∈ B(ϕ(y0), r).

Thus, ϕ is an embedding and we have ϕ[B(y, r)] ∩ ϕ[Y ] = B(ϕ(y), r) ∩ ϕ[Y ]
so ϕ maps open sets to open sets in ϕ(y).

Corollary 4.2. For a space X and a real line R, the map ϕ : R → Cr(X) where
ϕ(y) = ȳ and ȳ is a constant map in Cr(X) is an embedding.

Now, we provide a scenario in which a function space can be embedded into
another function space with regular topology.

Theorem 4.6. Suppose that the space Y is a continuous image of the space X.
Then, Cr(Y ) can be embedded into Cr(X).

Proof. Let s : X → Y be a continuous surjection, i.e. s is a continuous function
from X onto Y . Define the map ψ : Cr(Y ) → Cr(X) by ψ(f) = f ◦ s for all
f ∈ Cr(Y ). We show that ψ is a homeomorphism from Cr(Y ) into Cr(X).

First we show ψ is a one-to-one map. Let f, g ∈ Cr(Y ) with f ̸= g such
that ψ(f) ̸= ψ(g). Then, there exists y ∈ Y : f(y) ̸= g(y). Choose some
x ∈ X : s(x) = y. Which means f ◦ s ̸= g ◦ s. Implies that f(s(x)) ̸= g(s(x)) ⇒
f(y) ̸= g(y).

Next, we show that ψ is continuous. Let f ∈ Cr(Y ) and B(g, ri) = {q ∈
Cr(X) : |q(xi) − g(xi)| < ri(xi), xi ∈ Coz(ri)}, where xi ∈ X and ri ∈ r+(X).
Next, for each i, f(s(xi)) ∈ B(g, ri).

Now, consider R(h, li) = {p ∈ Cr(Y ) : |p(s(xi)) − h(s(xi))| < li(xi), xi ∈
Coz(li)}. Clearly f ∈ R(h, l). It follows that ψR(h, li) ⊂ B(g, ri). Since for
each p ∈ R(h, li), it is clear that ψ(p) = p ◦ s ∈ B(g, ri).

Now, we prove that ψ−1 : ψ(Cr(Y )) → Cr(Y ) is continuous. Let ψ(f) =
f ◦ s ∈ ψ(Cr(Y )), f ∈ Cr(Y ). Let G be an open set with ψ−1(f ◦ s) = f ∈ G
such that G(g, ri) = {p ∈ Cr(Y ) : |g(yi)− p(yi)| < ri(yi), yi ∈ Coz(ri)}. Choose
x1, x2, . . . xm such that s(xi) = yi∀i. We have f(s(xi)) ∈ G(g, ri)∀i. Define
an open set H(h, li) = {q ∈ ψ(Cr(Y )) ⊂ Cr(X), ∀i such that |h(xi) − q(xi)| <
li(xi)}. Clearly, f ◦ s ∈ H. Note that ψ−1(H) ⊂ G. To see this, let p ◦ s ∈ H,
where p ∈ Cr(Y ). Implies p(s(xi)) = p(yi). It follows that ψ

−1 is continuous.

Now, we define restriction map. Suppose A is a subset of B, then the
restriction map is defined as : πA : C(B) → C(A) as πA(f) = f|A.

Theorem 4.7. For an arbitrary subspace Y of a space X, the map πY : Cr(X) →
Cr(Y ) is continuous.
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Proof. Let B(f, r) = {g ∈ C(Y ) : |f(y) − g(y)| < r(y), y ∈ coz(r)} be an
open set in Cr(Y ). We need to prove that π−1

Y (B(f, r)) is open in Cr(X).
We have π−1

Y (B(f, r)) = {g ∈ C(X) : |πY (g)(y) − f(y)| < r(y), y ∈ coz(r)}
= {g ∈ C(X) : |g|Y (y)− f(y)| < r(y)} which is open in Cr(X). Hence, the map
πY : Cr(X) → Cr(Y ) is continuous.

Theorem 4.8. The map πY : Cr(X) → Cr(Y ) is one-to-one if and only if Y is
dense in X.

Proof. Suppose Y is dense in X, we will show that πY : Cr(X) → Cr(Y ) is
one-to-one. Let f, g ∈ Cr(X). Then, due to the continuity of these functions
and Ȳ = X, it implies that if f ̸= g then f|Y ̸= g|Y ⇒ πY (f) ̸= πY (g). Hence,
πY is one-to-one.

Conversely, suppose that πY is one-to-one. We will show that Y is dense in
X by contradiction. Assume that Y is not dense in X and let f, g ∈ Cr(X).
Then, f ̸= g does not imply that f|Y ̸= g|Y . Thus, we can have f|Y = g|Y ⇒
πY (f) = πY (g), which is a contradiction to πY being one-to-one. Hence, Y is
dense in X.

Theorem 4.9. For a dense subspace Y of a space X, the map πY : Cr(X) →
Cr(Y ) is an embedding.

Proof. Since the map πY is one-to-one and continuous. Then, we only need to
prove that it is an open map onto πY (Cr(X)). For this let B(f, r) be an open
set in Cr(X).

Now, we will show that πY (B(f, r)) = B(f|Y , r) ∩ πY (Cr(X)). Let h ∈
πY (B(f, r)), then by definition |h(y) − πY (f)(y)| < r(y), y ∈ coz(r) ⇒ |h(y) −
f|Y (y)| < r(y). This implies h ∈ B(f|Y )∩πY (Cr(X)). Therefore, πY (B(f, r)) ⊂
B(f|Y , r) ∩ πY (Cr(X)).

Next, let h ∈ B(fY , r)∩πY (Cr(X)). Then, |h(y)−f|Y (y)| < r(y), y ∈ coz(r)
⇒ |h(y) − πY (f)(y)| < r(y). Therefore, h ∈ πY (B(f, r)) and thus B(f|Y , r) ∩
πY (Cr(X)) ⊂ πY (B(f, r)). Hence, πY is an embedding and πY (Cr(X)) can be
treated as a subspace of Cr(Y ).

Theorem 4.10. For a space X, if Y is a subspace of X and πY : Cr(X) →
Cr(Y ) is defined as πY (f) = f|Y . Then, Cr(Y ) = πY (Cr(X)).

Proof. Since πY (Cr(X)) ⊂ Cr(Y ), we will show that Cr(Y ) ⊂ πY (Cr(X)). So,
for this, let g ∈ Cr(Y ) and B(g, r) be a basic neighborhood of g in Cr(Y ). Define
a function f : X → R as:

f(x) =

{
0, x ∈ X coz(r),

g(y), x ∈ coz(r).

Consequently, f ∈ Cr(X) and πY (f) ∈ B(g, r). Thus, Cr(Y ) ⊂ πY (Cr(X)).
Hence, Cr(Y ) = πY (Cr(X)).
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In the next result, we show that the regular topology on the space C(X,Y )
is strong based on the result that was investigated in [9] as : A topology on
C(X,Y ) is said to be strong if and only if it makes the evaluation map e : C(X,Y )
×X → Y as (f, x) 7→ f(x) continuous.

Theorem 4.11. For a discrete space X and a metric space (Y, d), the regular
topology on C(X,Y ) is strong.

Proof. To prove that the regular topology on C(X,Y ) is strong, it is sufficient
to prove that the evaluation map e : Cr(X,Y )×X → Y defined as (f, x) 7→ f(x)
is continuous.

Given a point (f, x) in Cr(X,Y ) × X and an open set B(f(x), ϵ), ϵ > 0
about the image point e(f, x) = f(x), we wish to find an open set about (f, x)
that e maps into B(f(x), ϵ). Let B(f, r) be an open set in Cr(X,Y ) such that
B(f, r) = {g ∈ C(X,Y ) : d(f(x), g(x)) < r(x), x ∈ coz(r)}. Since coz(r) is
dense in X and X has a discrete topology, then for all x ∈ X, there exists a
neighborhood of x. As a consequence, there exists an open set say U in X such
that B(f, r)×U is open in Cr(X,Y )×X that maps (f, x) to f(x) in Y . Thus,
if (g, a) ∈ B(f, r)× U , then e(g, a) = g(a).

5. Separation axioms

In this section, we are going to discuss about various separation axioms corre-
sponding to the function space Cr(X,Y ) such as Hausdorffness, regularity and
normality.

Theorem 5.1. For a space X, if Y is T0 or T1, then the space Cr(X,Y ) is T0
or T1, respectively.

Proof. Suppose Y is T0 or T1. Then, the space Y X is T0 or T1, respectively in
the Tychonoff topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is
T0 or T1. As Cp(X,Y ) ≤ Cr(X,Y ) and hence Cr(X,Y ) is T0 or T1, respectively.

Theorem 5.2. For a space X, if Y is Hausdorff, then the space Cr(X,Y ) is
also Hausdorff.

Proof. Suppose Y is Hausdorff, then the space Y X is Hausdorff in the Tychonoff
topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is Hausdorff.
As Cp(X,Y ) ≤ Cr(X,Y ) , hence Cr(X,Y ) is Hausdorff.

Theorem 5.3. For a space X, if Y is a completely regular space, then the space
Cr(X,Y ) is also completely regular.

Proof. Since every uniformizable space is completely regular. However, we can
prove it as : Suppose Y is completely regular, then the space Y X is completely
regular in the Tychonoff topology. Since Cp(X,Y ) is a subspace of Y X , implies
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Cp(X,Y ) is completely regular. As Cp(X,Y ) ≤ Cr(X,Y ), hence Cr(X,Y ) is
completely regular.

Theorem 5.4. For a space X, if Y is a regular space, then the space Cr(X,Y )
is also regular.

Proof. Suppose Y is regular, then the space Y X is regular in the Tychonoff
topology. Since Cp(X,Y ) is a subspace of Y X , implies Cp(X,Y ) is regular. As
Cp(X,Y ) ≤ Cr(X,Y ) and hence Cr(X,Y ) is regular.

Theorem 5.5. For a pseudocompact and almost P -space X and a metric space
(Y, d), the space Cr(X,Y ) is normal.

Proof. Since the space Cr(X,Y ) is metrizable if and only if X is pseudocom-
pact and almost P -space. Also we know that all metrizable spaces are normal
(Theorem 3.20, [13]). Hence, the space Cr(X,Y ) is normal.

Theorem 5.6. For a countable, compactly generated, compact space X, the
space Cr(X) is normal.

Proof. Suppose X is a compactly generated compact space, then Ck(X) =
Cr(X) and thus Cr(X) is closed in RX . Since X is countable, and we know
that RX is normal if and only if X is countable. Thus, we get RX is normal.
However, Cr(X) being closed subset of RX is also normal.

Corollary 5.1. For a discrete space X, the space Cr(X) is normal if and only
if X is countable.

Theorem 5.7. For a pseudocompact and almost P -space X and a metric space
(Y, d), the space Cr(X,Y ) is completely normal.

Proof. Since the space Cr(X,Y ) is metrizable if and only ifX is pseudocompact
and almost P -space. Also, metrizable spaces are completely normal (Chapter
4, [13]). Hence, the space Cr(X,Y ) is completely normal.

Theorem 5.8. For a pseudocompact and almost P -space X, the space Cr(X,Y )
is perfectly normal Hausdorff.

Proof. Since the space Cr(X,Y ) is metrizable if and only ifX is pseudocompact
and almost P -space. As we know that all metrizable spaces are perfectly normal
Hausdorff. Hence, the proof.

Corollary 5.2. For a pseudocompact and almost P -space, the space Cr(X,Y )
is completely normal Hausdorff.

Proof. All perfectly normal Hausdorff spaces are completely normal Hausdorff.
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Theorem 5.9. For Tychonoff spaces X and Y , the space Cr(X,Y ) is regular
Hausdorff and completely Hausdorff.

Proof. Since the space Cr(X,Y ) is a Tychonoff space, so as every Tychonoff
space is regular Hausdorff and completely Hausdorff. Which proves the theorem.

Theorem 5.10. For a space X and a metric space (Y, d), the following are
equivalent:

1. Y is T1 (respectively T0);

2. Cp(X,Y ) is T1 (respectively T0);

3. Ck(X,Y ) is T1 (respectively T0);

4. Cf (X,Y ) is T1 (respectively T0);

5. Cr(X,Y ) is T1 (respectively T0).

Proof. If Y is T0, T1, then Y X with Tychonoff topology is T0, T1, respec-
tively. Since Cp(X,Y ) is a subspace of Y X is T0, T1, respectively. Moreover,
Cp(X,Y ) ≤ Ck(X,Y ) ≤ Cf (X,Y ) ≤ Cr(X,Y ), then Ck(X,Y ), Cf (X,Y ) and
Cr(X,Y ) are T0, T1, respectively.

(2) ⇒ (3) ⇒ (4) ⇒ (5) are immediate.
(5) ⇒ (1) Now, if Cr(X,Y ) is T0 or T1. Since ϕ : Y → Cr(X,Y ) is an

embedding, and therefore Y can be treated as subspace. Consequently, Y is T0,
T1, respectively.

Theorem 5.11. For a space X and a metric space (Y, d), the following are
equivalent:

1. Y is T2 (respectively T3, T3(1/2));

2. Cp(X,Y ) is T2 (respectively T3, T3(1/2));

3. Ck(X,Y ) is T2 (respectively T3, T3(1/2));

4. Cr(X,Y ) is T2 (respectively T3, T3(1/2)).

Proof. If Y is T2 (respectively, T3, T3(1/2)), then Y
X with Tychonoff topology is

T2 (respectively, T3, T3(1/2)). Since Cp(X,Y ) is a subspace of Y X is T2 (respec-
tively, T3, T3(1/2)). Moreover, Cp(X,Y ) ≤ Ck(X,Y ) ≤ Cr(X,Y ), then Ck(X,Y )
and Cr(X,Y ) are T2 (respectively, T3, T3(1/2)).

(2) ⇒ (3) is immediate.
(3) ⇒ (4) Suppose Ck(X,Y ) is T2 (respectively, T3, T3(1/2)). Since Ck(X,Y ) ≤

Cr(X,Y ), then Cr(X,Y ) is T2 (respectively, T3, T3(1/2)).
(4) ⇒ (1) Now, if Cr(X,Y ) is T2 (respectively, T3, T3(1/2)). Since ϕ : Y →

Cr(X,Y ) is an embedding, and therefore Y can be treated as subspace. Conse-
quently, Y is T2 (respectively, T3, T3(1/2)).
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Abstract. In this paper, we present a new modification of the discontinuous Galerkin
Finite element method (DGFEM). The proposed modification is considered when the
symmetric interior penalty Galerkin scheme involves only space variables by using the
Petrov discontinuous Galerkin Finite element method (PDGFEM), while the time in
the linear diffusion-convection problem remains continuous. We prove the properties
of the bi-linear form (V-elliptic, continuity and stability), and we show that the error
estimate is of second order with respect to the space. We also present some numerical
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experiments to validate the proposed method, and we simulate these peppermints to
illustrate the theoretical results.

Keywords: linear diffusion-convection, Petrov-discontinuous, Galerkin finite element
method, error estimate.

1. Introduction

We consider the problem mentioned in [1, 2, 3] of the diffusion-convection, U ∈
QT −→ R, suth that QT = Ω× (0, T ):

Ut − λ∆U + b · ∇U = f in QT ,(1.1)

U = UD on ∂ΩD × (0, T ),(1.2)

λ
∂U

∂n
= UN on ∂ΩN × (0, T ),(1.3)

U(x, 0) = U0(x), ∀x ∈ Ω,(1.4)

where Ω ⊂ R2 denotes a polygonal domain and T > 0.

Assume that ∂Ω = ∂ΩD ∪ ∂ΩN

b · n ≤ 0 on ∂ΩD,

b · n ≥ 0 on ∂ΩN , ; ∀t ∈ [0, T ].(1.5)

Here n is the unit outer normal to the boundary ∂Ω of Ω, the inflow boundary
is ∂ΩD, and the outflow boundary is ∂ΩN .

Assumptions:

a) Ut ∈ L2(QT ), U,U
0 ∈ L2(Ω),

b)f ∈ C([0, T ];L2(Ω)),

c) UD is the trace of some U ∈ C([0, T ];H1(Ω))∩L∞(QT ) on ∂ΩD × (0, T ),

d) UN ∈ C([0, T ];L2(∂ΩN )),

e) |K| = is the area of K ∈ Th,

f) σ = σ0

|E|β0 , β0 ≥ (d− 1)−1, σ0 > 0.

This problem consists mainly of two components: the terms of diffusion
with the coefficient of diffusion and the terms of convection with the field of
convection velocity. When using the Galerkin Finite Element Method (GFEM)
to solve one-sided turbulent convection problems, the approximate solutions
show pseudo-oscillation, i.e. ∀h > 0, λ

|b|h << 1, this condition can occur as any

combination of weak diffusion (small), strong convection (large), alternatively,
as a result of a large domain, the last case accurate frequently in geophysical
applications. Several approaches have been intensively researched to eliminate
such a downside adding stabilization terms to the problem’s formulation is a
common concept. This is done predominantly by stabilized processes such as
upwinding methods [4, 5], Petrov-Galerkin approach [6, 7], nonlinear diffusivity
method [8, 9, 10], Weak Galerkin method [11, 12] and oscillation theory [13, 14,
15].
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Researchers devised a new approach to address these problems in the 1970s
called the Discontinues Galerkin finite element method (DGFEM). Without hav-
ing any consistency criteria, the DGFEM approach approximates the approxi-
mate limits of the ideal grid solution on finite elements. The DGFEM utilizes
the same function space as the finite volume method (FVM) and continuous
finite element method (FEM), but also with relaxed continuity at inter-element
borders, and may be thought of as a hybrid of the two. The convection compo-
nent dominates over diffusion when λ < h, where h is mesh size, and the usual
Galerkin finite element technique generates an oscillating solution that is not
near to the exact solution ([16]). The PDGFEM is an improvement and prov-
ident of DGFEM.In DGFEM, the shape function and trail function are in the
same field, but in PDGFEM, the test function space differs from the trial func-
tion space. In this paper, we shall show and analyze the PDGFEM in the case
of the SIPG for the linear diffusion-convection problem.V−elliptic,continuity,
stability, and convergence were demonstrated in thesemi-discrete PDGFEM.
We found the L2−error and H1−error of PDGFEM and DGFEM for solving
a linear diffusion-convection problem to discuss the approximation between the
L2−error and the order of error. The following is how this paper is structured.
In the section 2, we have shown the discretization. The variation formulation
of PDGFEM and the semi-discrete PDGFEM are presented in the section 3.
In the section 4, we proved the properties of the bilinear form and stability.
The error estimate is presented in the section 5. In the section 6, we showed
numerical results to confirm the theoretical results. Finally, the conclusions are
shown in the section 6.

2. The discretization

Let Th (h > 0) represent a limited number of closed triangles with mutually
disjoint interiors divided by Ω (the domain closure Ω).A triangulation of Ω is
what we’ll call Th . The conforming qualities of Th that are employed in the
FEM are denoted by Th. That suggests that we recall what are known as
“hanging nodes”. Neighbors are two elements Ki,Kj ∈ Th that share a non-
empty open portion of their sides. If we provide ∂K1 ∩ ∂K2 to has (d − 1) a
positive dimensional measure, suppose that E ∈ K is the edge of K if it is a
maximum connected open subset either of K1 ∩K2, where K1 is a neighbor of
K2or a subset of ∂K ∩ ∂Ω.The term ∂Th refers to the system of all sides of all
elements K ∈ Th. In addition, all inner and border edges are specified in [17]
by

∂TIh = {E ⊂ Ω, E ∈ ∂Th},
∂TBh = {E ⊂ ∂Ω, E ∈ ∂Th},
ΓD = {E ⊂ ∂ΩD, E ∈ ∂TBh },
ΓN = {E ⊂ ∂ΩN , E ∈ ∂TBh }.
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Obviously ∂Th = ∂TIh ∪ ∂TBh for φ ∈ H1(Ω,Th), ∂T
B
h = ΓD ∪ ΓN for each

E ∈ ∂Th.
Each edge E ∈ K has elements on both sides, and they are called outside

and inside elements, respectively, with arbitrary constants. The assessment of
a function v in the inside of E is defined as ∀x ∈ E; v−(x) = v(x)|inside where
v−(x) = limϵ−→0(x − ϵ); ϵ > 0, and the external or the outside elements are
defined as ∀x ∈ E; v+(x) = v(x)|outside where v+(x) = limϵ−→0(x+ ϵ); ϵ > 0.

On the side E, the function v is discontinuous. The discontinuity size must be
quantified. Let us define [v](x) = − (v−(x)− v+(x)) as the function v jumping
on the side E for each x ∈ E. On the discontinuity side E, a function v is
undefined, and the average v is used to close this gap in the definition. For each

x ∈ E, let it be v(x) = (v+(x)+v−(x))
2 , defined as the average of function v on

side E.

2.1 Broken Sobolev spaces

Discontinuous approximations are used in the DGFEM. This is why, for each
r∈N, the so-called broken Sobolev space is defined over triangulation Th:

Hr(Ω,Th) = {∀K ∈ Th; v ∈ L2(Ω); v|K ∈ Hr(K)}.

The norm of v ∈ Hr(Ω,Th) is defined

||U ||Hr(Ω,Th) = (
∑
K∈Th

||U ||2Hr(Ω))
1/2,

and semi-norm |U |Hr(Ω,Th) = (
∑

K∈Th
|U |2Hr(Ω))

1/2. Assume that l≥0 is a posi-
tive integer. Piecewise polynomial functions with discontinuous coefficients have
a space represented by

Sh = {∀K ∈ Th; v ∈ L2(Ω); v|K ∈ Pl(K)},

where Pl (K) represents the space occupied by all degree ≤ polynomials on K.
The numberl represents the degree of polynomial approximation ([18]). Obvi-
ously, Sh⊂Hr (Ω,Th) .

Let ϑ be trial space and ∅ be a test space

ϑ = Hr(Ω,Th),

∅ = {w : w = v + δb · ∇v; v ∈ ϑ},

and dim ϑ = dim ∅.
We defined PDGFE space

ϑh = Sh,

∅h = {w : w = v + δb · ∇v; v ∈ ϑh},

where δ denotes a constant stability parameter in QT . It can be selected as [19],

δ ≡

{
ηh, if λ < h

0, if λ ≥ h
; 0 < η <

1

4
.
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3. The variation formulation of PDGFEM

By multiplying equation (1.1) by the test function w, we can get U ∈ ϑ in the
SIPG form of the PDGFEM approximation:

(Ut, w) +
∑
K∈Th

λ(∇U,∇w)K −
∑

E∈∂Th

∫
({λ∇U · n}[w]− ε[U ]{λ∇w · n})ds

+
∑

E∈∂Th

∫
({|b · n|U}[w])ds+ σ

∑
E∈∂Th

∫
[U ][w]ds−

∑
K∈Th

(b · ∇U,w)K

= (f, w)+
∑
E∈ΓN

∫
UNwds+

∑
E∈ΓD

∫
λ∇w · nUDds−

∑
E∈ΓD

∫
|b · n|UDwds

− σ
∑
E∈ΓD

∫
UDwds; ∀w ∈ ∅.

Since ε = −1(SIPG) ([1]) and w = v + δb · ∇v then

(Ut, v + δb · ∇v) +
∑
K∈Th

λ(∇U,∇(v + δb · ∇v))K

−
∑

E∈∂Th

∫
({λ∇U · n}[v + δb · ∇v]

+
∑

E∈∂Th

∫
({|b · n|U}[v + δb · ∇v])ds+ [U ]{λ∇(v + δb · ∇v) · n})ds(3.1)

−
∑
K∈Th

(b · ∇U, v + δb · ∇v)K + σ
∑

E∈∂Th

∫
[U ][v + δb · ∇v]ds

= (f, v + δb · ∇v) +
∑
E∈ΓN

∫
UN (v + δb · ∇v)ds

+
∑
E∈ΓD

∫
λ∇(v + δb · ∇v) · nUDds−

∑
E∈ΓD

∫
|b · n|UD(v + δb · ∇v)ds

− σ
∑
E∈ΓD

∫
UD(v + δb · ∇v)ds, ∀v ∈ ϑ.

The variation formulation of PDGFEM is find U ∈ ϑ ∋

(Ut, v) + (Ut, δb · ∇v) + aPD(U, v) = (f, δb · ∇v) + (f, v)

−
∑
E∈ΓD

∫
|b · n|UD(v + δb · ∇v)ds

+
∑
E∈ΓN

∫
UN (v + δb · ∇v)ds− σ

∑
E∈ΓD

∫
UD(v + δb · ∇v)ds(3.2)

+
∑
E∈ΓD

∫
λ∇(v + δb · ∇v) · nUD, ∀v ∈ ϑ,
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where

aPD(U, v) =
∑
K∈Th

λ(∇U,∇v)K −
∑

E∈∂Th

∫
([U ]{λ∇v · n}+ {λ∇U · n}[v])ds

−
∑
K∈Th

(b · ∇U, v + δb · ∇v)K +
∑

E∈∂Th

∫
({|b · n|U}[v])ds

+ σ
∑

E∈∂Th

∫
[U ][v]ds.(3.3)

3.1 The semi-discrete PDGFEM

The semi-discrete solution: find Uh ∈ ϑh,∀v ∈ ϑh, such that:

(Uh,t, v) + aPD (Uh, v) + (Uh,t, δb · ∇v) = (f, v) + (f, δb · ∇v)

+
∑
E∈ΓN

∫
UN (v + δb · ∇v)ds+

∑
E∈ΓD

∫
λ∇(v + δb · ∇v) · nUD

−
∑
E∈ΓD

∫
|b · n|UD(v + δb · ∇v)ds− σ

∑
E∈ΓD

∫
UD(v + δb · ∇v)ds,(3.4)

where

aPD(Uh, v) =
∑
K∈Th

λ(∇Uh,∇v)K −
∑

E∈∂Th

∫
({λ∇Uh · n}[v] + [Uh]{λ∇v · n})ds

+
∑

E∈∂Th

∫
({|b · n|Uh}[v])ds−

∑
K∈Th

(b · ∇Uh, v + δb · ∇v)K

+ σ
∑

E∈∂Th

∫
[Uh][v]ds.(3.5)

4. The properties of aPD(U, v)aPD and stability

In this section, we prove some impotent lemmas for the bilinear form (V−elliptic,
continuous) and stability.

Lemma 4.1 (V−elliptic). Assume the penalty σ is large enough, and there is
a positive constant α independent of h, β0 ≥ (d− 1)−1 such that

(4.1) aPD(U,U) ≥ α ∥U∥2H1(Th)
,

where

∥U∥H1(Th) =

 ∑
K∈Th

∥∥∥λ 1
2∇U

∥∥∥2
L2(K)

+

 ∑
E∈∂Th

∫
σ−1({λ∇U · n})2ds

 1
2


2
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+
∑

E∈∂Th

σ∥[U ]∥2L2(E) + ∥U∥2H1( Th)
+

∑
K∈Th

∥b · ∇U∥2L2( K)

+


 ∑
E∈∂Th

∫
σ1[U ]2ds

 1
2


2


1
2

.

Proof. In the equation (3.3), put v = U

aPD(U,U) =
∑
K∈Th

λ(∇U,∇U)K −
∑

E∈∂Th

∫
({λ∇U · n}[U ]

+
∑

E∈∂Th

∫
({|b · n|U}[U ])ds+ [U ]{λ∇U · n})ds

+ σ
∑

E∈∂Th

∫
[U ][U ]ds−

∑
K∈Th

(b · ∇U,U + δb · ∇U)K + .(4.2)

From [1]

aPD(U,U) =
∑
K∈Th

∥∥∥λ 1
2∇U

∥∥∥2
L2(K)

+
β

2


 ∑
E∈∂Th

∫
σ−1({λ∇U · n})2ds

 1
2


2

+
2

β


 ∑
E∈∂Th

∫
σ1[U ]2ds

 1
2


2

+ ϱ∥U∥2H1(Th)
+ σ2Gt∥U∥2H1( Th)

+
β

2

∑
E∈∂Th

σ∥[U ]∥2L2(E) +
ω2

2β
∥U∥2H1(Th)

+
∑
K∈Th

δ∥b · ∇U∥2L2(K),

aPD(U,U) ≥ g

 ∑
K∈Th

∥∥∥λ 1
2∇U

∥∥∥2
L2(K)

+


 ∑
E∈∂Th

∫
σ−1({λ∇U · n})2ds

 1
2


2

+
∑

E∈∂Th

σ∥[U ]∥2L2(E) + ∥U∥2H1(Th)
+

∑
K∈Th

∥b · ∇U∥2L2( K)

+


 ∑
E∈∂Th

∫
σ1[U ]2ds

 1
2


2
+ ϱ∥U∥2H1(Th)

+ σ2Gt∥U∥2H1(Th)
,

where g = min(β2 ,
ω2

2β , 1, 2
β , δ) ,

aPD(U,U) ≥ g∥U∥2H1‘(Th)
+ q∥U∥2H1‘(Th)



PETROV-DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD ... 51

then

aPD(U,U) ≥ α ∥U∥2H1(Th)
,

where q ≤
(
ϱ+ σ2Gt

)
, and α ≤ (g + q).

Lemma 4.2 (countinuity). If U is the solution of equation (3.2), and v ∈ ϑ is
the test function, then aPD(U, v) is continuous if κ is nonnegative,such that:

∥aPD(U, v)∥ ≤ κ∥U∥H1(Th)
|v∥H1(Th)

, ∀ U, v ∈ ϑ.

Proof. From the equation(3.3) we have

|aPD(U, v)| =| σ
∑

E∈∂Th

∫
[U ][v]ds−

∑
E∈∂Th

∫
({λ∇U · n}[v] + [U ]{λ∇v · n})ds

−
∑
K∈Th

(b · ∇U, v + δb · ∇v)K +
∑

E∈∂Th

∫
({|b · n|U}[v])ds

+
∑
K∈Th

λ(∇U,∇v)K |,

|aPD(U, v)| ≤ σ
∑

E∈∂Th

∫
|[U ][v]|ds−

∑
E∈∂Th

∫
|[U ]{λ∇v · n}+ {λ∇U · n}[v]|ds

+
∑

E∈∂Th

∫
|({|b · n|U}[v])|ds−

∑
K∈Th

|(b · ∇U, v + δb · ∇v)K |

+
∑
K∈Th

|λ(∇U,∇v)K | =
6∑
i=1

Bi.(4.3)

From [1], we get

|a(U, v)| ≤ ς||U ||H1(Th)||v||H1(Th) + 2|λ|σG2
t ||U ||H1(Th)||v||H1(Th)

+ σG2
t ||U ||H1(Th)||v||H1(Th) + σ2G2

t ||U ||L2(Th)||v||L2(Th).(4.4)

To estimate B5

B5 =
∑
K∈Th

(b · ∇U, δb · ∇v)K ≤
∑
K∈Th

|δ|L∞ |b · ∇U |L2(K)|b · ∇v|L2(K)

≤
∑
K∈Th

|δ|L∞

∣∣b2∣∣
L∞ |∇U |L2(K)|∇v|L2(K) = Λ

∑
K∈Th

∥U∥H1(K)∥v∥H1(K)

= Λ∥U∥H1(Th)∥v∥H1(Th),(4.5)

where Λ=|δ|L∞

∣∣b2∣∣
L∞ .
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Substituting (4.4) and (4.5) in(4.3) we get,

∥aPD(U, v)∥ ≤ Λ∥U∥H1(Th)∥v∥H1(Th) + |a(U, v)| = ς||U ||H1(Th)||v||H1(Th)

+ 2|λ|σG2
t ||U ||H1(Th)||v||H1(Th) + σG2

t ||U ||H1(Th)||v||H1(Th)

+ σ2G2
t ||U ||L2(Th)||v||L2(Th) + Λ∥U∥H1(Th)∥v∥H1(Th)

= (ς + 2|λ|σG2
t + σG2

t + σ2G2
t + Λ)∥U∥H1(Th)∥v∥H1(Th)

≤ κ∥U∥H1(Th)∥v∥H1(Th),(4.6)

where κ ≥ (ς + 2 |λ|σGt
2+σGt

2 + σ2Gt
2 + Λ).

Lemma 4.3 (stability). There are a set of variables ξ, A, ϖ > 0 that are
independent of h and are as follows:

∥Uh(t)∥2L2(Ω) +Υ ∥Uh,t∥2L2(0,T ;L2(Ω)) + ξ ∥Uh∥2L2(0,T ;H1(Th))
≤ ϖ

(
∥f∥2L2(0,T ;L2(Th))

+
∥∥∥Uh(0)∥2L2(Ω)

)
+ϖ

∑
E∈∂Th

(
∥UN∥2L2(0,T ;L2(ΓN )) + ∥UD∥2L2(0,T ;L2(ΓD))

)
.

Proof. Let v = Uh in equation (3.4), we obtain

(Uh,t, Uh) + (Uh,t, δb · ∇Uh) + aPD (Uh, Uh) = (f, Uh) + (f, δb · ∇Uh)

+
∑
E∈ΓN

∫
UN (Uh + δb · ∇Uh) ds+

∑
E∈ΓD

∫
λ∇ (Uh + δb · ∇Uh) · nUD

−
∑
E∈ΓD

∫
|b · n|UD(Uh+δb · ∇Uh)ds−σ

∑
E∈ΓD

∫
UD(Uh+δb · ∇Uh)ds.(4.7)

From Lemma (4.1), we have

(4.8) (Uh,t, Uh) + aPD (Uh, Uh) ≥
1

2

d

dt
∥Uh∥2L2(Ω) + α ∥Uh∥2H1(Th)

.

By Young’s-inequality and Cauchy [18], we get

(Uh,t, δb · ∇Uh) ≤ ∥Uh,t∥L2(Ω) ∥δb · ∇Uh∥L2( Th)

≤ β

2
∥Uh,t∥2L2(Ω) +

1

2β
δ ∥b · ∇Uh∥2L2(Th)

≤ Υ
(
∥Uh∥2H1(Th)

+ ∥Uh,t∥2L2(Ω)

)
.(4.9)
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By the Young’s-inequality and using Cauchy inequality of equation (4.7), we
have

1

2

d

dt
∥Uh∥2L2(Ω) +Υ

(
∥Uh,t∥2L2(Ω) + ∥Uh∥2H1(Th)

)
+ α ∥Uh∥2H1(Th)

≤ C
(
∥f∥2L2(Th)

+ ∥Uh∥L2(Th)

)
+Υ

(
∥f∥2L2(Th)

+ ∥Uh∥2H1(Th)

)
+ 2C

∑
E∈ΓD

(
∥Uh∥2H1(K) +

∥∥UD
∥∥2
L2(ΓD)

)
+ 2C

∑
E∈ΓN

(
∥Uh∥2H1(K) +

∥∥UN
∥∥2
L2(ΓN )

)
+ 2C

∑
E∈ΓD

(
∥Uh∥2H1(K) +

∥∥UD
∥∥2
L2(ΓD)

)
+ 2C

∑
E∈ΓD

(
∥Uh∥2H1(K) +

∥∥UD
∥∥2
L2(ΓD)

)
,

1

2

d

dt
∥Uh∥2L2(Ω)+Υ∥Uh,t∥2L2(Ω)+(α−9C)∥Uh∥2H1(Th)

≤ (C+Υ)∥f∥2L2(Th)

+ 2C
∑

E∈∂Th

(3∥UD∥2L2(ΓD) + ∥UN∥2L2(ΓN )).(4.10)

By integrating the equation (4.10) both sides from 0 to t, we get,

∥Uh(t)∥2L2(Ω)| − ∥Uh(0)∥2L2(Ω) +Υ

∫ t

0
∥Uh,t∥2L2(Ω) + ξ

∫ t

0
∥Uh∥2H1(Th)

≤ A

∫ t

0
∥f∥2L2(Th)

+ 2C
∑

E∈∂Th

(∫ t

0

∥∥UN
∥∥2
L2(ΓN )

+ 3

∫ t

0

∥∥UD
∥∥2
L2(ΓD)

)
,

where ξ ≤ (α− 9C) and A = (C +Υ), we obtain

∥Uh(t)∥2L2(Ω) +Υ∥Uh,t
∥∥∥2L2(0,T ;L2(Ω)) + ξ

∥∥∥Uh ∥∥∥2L2(0,T ;H1(Th))

≤ A∥ f∥2L2(0,T ;L2(Th))
+ ∥Uh(0)∥2L2(Ω)(4.11)

+ 2C
∑

E∈∂Th

(∥∥UN
∥∥2
L2(0,T ;L2(ΓN ))

+ 3
∥∥UD

∥∥2
L2(0,T ;L2(ΓD))

)
,

∥Uh(t)∥2L2(Ω) +Υ ∥Uh,t∥2L2(0,T ;L2(Ω)) + ξ ∥Uh∥2L2(0,T ;H1(Th))

≤ ϖ
(
∥f∥2L2(0,T ;L2(Th))

+ ∥Uh(0)∥2L2(Ω)

)
(4.12)

+ϖ
∑

E∈∂Th

(∥∥UN
∥∥2
L2(0,T ;L2(ΓN ))

+
∥∥UD

∥∥2
L2(0,T ;L2(ΓD))

)
,

where ϖ ≥ 6C.

5. The error estimate

This section shows the semi-discrete PDGFEM error estimates in the SIPG case.
The L2-error will be used to estimate the U − Uh error.



54 MOHAMMED WALEED ABDULRIDHA, HASHIM A. KASHKOOL and ALI HASAN ALI

Theorem 5.1. Let U represent the solution of equation (3.2), Uh∈ ϑh re-
present the approximate solution of equation (3.4) and U ∈ L2(H1 (Ω)),Ut ∈
L2

(
0, T ; H1 (Ω)

)
and σ is large enough, then C is a constant such that:

∥U − Uh∥L2(Ω) ≤ ch2∥U∥L2(H1) +

√
β

2
ch2

(
∥Ut∥L2(0,T ;H1) + ∥U∥L2(0,T ;H1)

)
.

Proof. Let ΠU be the interpolate of U , and e = U − Uh = (U −ΠU) + (ΠU −
Uh) = Θ− Ξ,So

(5.1) ∥U − Uh∥L2(Ω) ≤ ∥Θ∥L2(Ω) + ∥Ξ∥L2(Ω).

From [3]

(5.2) ∥Θ∥L2(Ω) ≤ ch2∥U∥L2(H1).

Now,

(Ut, w) + aPD (U,w) = (f, w) +
∑
E∈ΓN

∫
UNwds+

∑
E∈ΓD

∫
λ∇w · nUDds

−
∑
E∈ΓD

∫
|b · n|UDwds− σ

∑
E∈ΓD

∫
UDwds, ∀w ∈ ∅,(5.3)

(Uh,t, w) + aPD (Uh, w) = (f, w) +
∑
E∈ΓN

∫
UNwds+

∑
E∈ΓD

∫
λ∇w · nUDds

−
∑
E∈ΓD

∫
|b · n|UDwds− σ

∑
E∈ΓD

∫
UDwds, ∀w ∈ ∅h.(5.4)

Subtracting (5.3) from (5.4), we obtain,

((U − Uh)t , w) + aPD(U − Uh, w) = ((Θ− Ξ)t , w)

+ aPD(Θ− Ξ, w) = 0, ∀w ∈ ∅h.(5.5)

Then

(5.6) (Θt, w) + aPD (Θ, w) = (Ξt, w) + aPD (Ξ, w) .

Let w = Ξ, we have,

(5.7) (Θt, Ξ) + aPD (Θ, Ξ) = (Ξt, Ξ) + aPD (Ξ, Ξ) .

From Lemma 4.1, we have,

(5.8) (Ξt, Ξ) + aPD (Ξ, Ξ) ≥ 1

2

d

dt
∥ Ξ∥2L2(Ω) + α ∥Ξ∥2L2(Th)

.
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By Young inequality and Schwartz [18], we have,

(5.9) (Θt, Ξ) ≤ β

2
c2h4Ut

2
L2(H1) +

1

2β
∥Ξ∥2L2(Th)

.

From Lemma 4.2, we obtain,

aPD(Θ,Ξ) ≤ κ∥Θ∥L2(Th)∥Ξ∥L2(Th)

≤ β

2
∥Θ∥L2(Th) +

κ2

2β
∥Ξ∥L2( Th)

≤ β

2
c2h4∥U∥2L2(H1) +

κ2

2β
∥Ξ∥L2(Th).(5.10)

Substituting (5.8),(5.9) and (5.10) in (5.7), we have,

1

2

d

dt
∥Ξ∥2L2(Ω) + α∥Ξ∥2L2(Th)

≤ β

2
c2h4 ∥Ut∥2L2(H1) +

1

2β
∥Ξ∥2L2(Th)

+
β

2
c2h4∥U∥2L2(H1) +

κ2

2β
∥Ξ∥L2(Th).(5.11)

Then

1

2

d

dt
∥ Ξ∥2L2(Ω) +

(
α− 1

2β
− κ2

2β

)
∥Ξ∥2L2(Th)

≤ β

2
c2h4

(
||Ut||2L2(H1)+ ∥ U∥2L2(H1)

)
.(5.12)

Then

(5.13)
1

2

d

dt
∥ Ξ∥2L2(Ω) + C1∥Ξ∥2L2(Th)

≤ β

2
c2h4

(
||Ut||2L2(H1)+ ∥ U∥2L2(H1)

)
,

where C1 ≤ (α− 1
2β − κ2

2β ).

We can get the following result by integrating two sides of the equation (5.13)
from 0 to t:

(5.14) ∥ Ξ (t) ∥2L2(Ω) − ∥ Ξ0 ∥2L2(Ω) ≤
β

2
c2h4

∫ t

0

(
∥ Ut ∥2L2(H1)+ ∥ U∥2L2(H1)

)
.

Since Ξ0 = 0, then

(5.15) ∥Ξ (t) ∥2L2(Ω) ≤
β

2
c2h4

(
∥Ut∥2L2(0,T ;H1) + ∥U∥2L2(0,T ;H1)

)
.

Then

(5.16) ∥ Ξ∥L2(Ω) ≤
√

β

2
ch2

(
∥Ut∥L2(0,T ;H1) + ∥U∥L2(0,T ;H1)

)
.
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Substituting equations (5.2) and (5.16) in (5.1), we have,

(5.17) ∥U−Uh∥L2(Ω)≤ch2∥U∥L2(H1)+

√
β

2
ch2

(
∥U∥L2(0,T ;H1)+∥Ut∥L2(0,T ;H1)

)
.

Then

∥U − Uh ∥L2(Ω) ≤ Ch2
(
||U ||L2(H1) + (||Ut||L2(0, T ; H1(Ω)) + ||U ||L2(0,T ;H1(K))

)
.

where C ≥ c+ c
√

β
2 .

6. Numerical results

In this section, we find the error U −Uh of L2−error and H1−error of the semi-
discrete PDGFEM and DGFEM in the SIPG case by using Matlab software.
The problem of diffusion-convection is as follows:

(6.1) Ut − λ∆U + b · ∇U = f, in Ω× J.

A homogeneous Dirichlet border condition and a homogeneous beginning con-
dition were used.The analytical solution to this problem is:

U (x, y, t) = e−tsin (πx) sin (πy) .

Suppose that Ω= [0, 1]×[0, 1], b= [0, 1], as the time interval J= (0, 1), σ= 2782,
and f it is calculated by inserting the real solution into the left side of the
equation (6.1). The square domain is evenly partitioned into N×N sub-squares
by Ω= (0, 1)×(0, 1). For triangular meshes, set h = 1/N(N = 4, 8, 16, 32, 64)
as the mesh size. The numerical error outcomes and degree of convergence for
DGFEM when δ = 0 in Table 1 and convergence rate in Figure 1, the results
of the numerical error and degree of convergence for PDGFEM when δ = h/6
in Table 2 and convergence rate in Figure 2. In DGFEM, we can note that the
numerical solution is not compatible with the precise solution (see Figure 3),
but in PDGFEM, we note that the numerical solution is compatible with the
precise solution (see Figure 4).

Table 1: Numerical results for λ = 0.001 in DGFEM.

h H1-error H1-order L2-error L2-order

1/4 0.4075 0 0.1473 0
1/8 0.3227 0.3367 0.0557 1.4042
1/16 0.2373 0.4434 0.0191 1.5416
1/32 0.1734 0.4528 0.0066 1.5261
1/64 0.1283 0.4349 0.0024 1.4978
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Table 2: Numerical results for λ = 0.001 in PDGFEM.

h H1-error H1-order L2-error L2-order

1/4 0.1992 0 0.0736 0
1/8 0.1021 0.9644 0.0196 1.9074
1/16 0.0533 0.9382 0.0048 2.0310
1/32 0.0293 0.8631 0.0012 2.0272
1/64 0.0158 0.8906 0.0003 2.0017

Figure 1: Convergence rate in DGFEM for λ = 0.001 in L2norm.

Figure 2: Convergence rate in PDGFEM for λ = 0.001 in L2−norm.
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Figure 3: (a) The exact solution with λ = 0.001 and h = 1/64 . (b) The numerical

solution of DGFEM with λ = 0.001 and h = 1/64.
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Figure 4: (a) The exact solution with λ = 0.001 and h = 1/64 . (b) The numerical

solution of PDGFEM with λ = 0.001 and h = 1/64.

Conclusion

Throughout this current work, we have proved the continuity and V−elliptic
properties of aPD (U, v) and the stability in PDGFEM. In addition, we demon-
strated a theoretical analysis that shows how the PDGFEM is convergent of
order O(h2). Moreover, depending on the comparison of Table 1 and Figure 1
for the DGFEM with Table 2 and Figure 2 for the PDGFEM, we stated that
the numerical results of the PDGFEM showed improvement and regularity when
compared to the numerical results of the DGFEM. Finally, when we smoothed
the network with n = 64, we found that the numerical results in DGFEM are
oscillated as shown in the Figure 3, but the numerical results in PDGFEM were
appropriately approximated as well as free from oscillation as in the Figure 4.
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Abstract. Keeping in view the generalized approximation space, the goal of this
paper is to suggest and investigate four different styles for approximating rough sets.
The proposed approximations are based on various general topologies. In fact, we first
generalize the notion of the initial-neighborhood and thus we construct four different
topologies generated from these neighborhoods. The relationships between the new
neighborhoods (respectively, topologies) and the previous are studied. Comparisons of
the degrees of different accuracy of the presented approximations are investigated. The
essential characteristics of these operators are obtained.

Keywords: initial-neighborhoods, rough sets, topology.

1. Introduction

The number of research articles published has been rapidly increasing, partic-
ularly in Topology and its applications. Several proposals were made for using
mathematical methodologies and relevant formulas to solve real-world problems
in order to assist decision-makers in making the best decisions possible to deal
with unpredictability in challenges (see [1, 4, 5, 6, 13, 14, 17, 18, 19, 20, 21, 22,
23, 24, 28, 30, 31, 36]). In 1982, Pawlak [25] proposed rough set theory as a
new mathematical technique or set of simple tools for dealing with ambiguity in
knowledge-based systems and data dissection. This theory has a wide range of
applications, including process control, economics, medical diagnosis, and others
(see [5, 6, 10, 13, 14, 18, 19, 20, 21, 22, 23, 28, 30, 31]). To extend the field of
application for this theory, many papers were published (see [1]-[18], [27]-[28],
[32]-[36]).

The novel notion “the J-neighborhood space” (in short, J − NS) was sug-
gested by Abd El-Monsef et al. [1] as a general frame of neighborhood space.
In fact, they hosted a structure for extending Pawlak’s approach [25, 26] and
some of the other generalizations. As a result, they devised various rough ap-
proximations to fulfill all properties of the rough sets without any constraints.
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These methods paved the way for more topological applications of rough sets,
as well as assisting in the formalization of many real-worlds applications.

The involvement of this article is to suggest a generalization for the idea of
“initial-neighborhood” given by El-Sayed et al. [18]. It must be mentioned that
the concept of ”initial-neighborhood” was proposed by another notion (namely,
”subset neighborhood”) by Al-shami and Ciucci [9] in 2022 as an extension of
the concept of initial-neighborhood. Hence, we produce four topologies and then
we investigate the relationships among these topologies and the previous ones
[1, 18]. Accordingly, we achieve four techniques to find the approximations of
rough sets. Comparisons of the degrees of different accuracy of the presented
approximations are investigated. Therefore, we ascertain that the recommended
ways are extra precise than the others.

The present manuscript is prepared as follows: In section 2, we outline
the main ideas about the J − NS cited in [1] and the basic properties of the
initial-neighborhood [18]. Section 3 is devoted to introducing and studying
new generalizations to the concept of “initial-neighborhood”. We define three
different types of initial neighborhoods and compare them with the previous one
[18]. Moreover, using Theorem 1 in [1], we purpose a new method to generate
four different topologies induced by the new neighborhoods. A comparison
between these topologies and the previous one is investigated. Finally, in section
4, we use these new topologies to generate new generalizations to Pawlak rough
sets and study their properties. We compare the suggested approaches with the
previous one [1, 18] and verify that these techniques are more perfect than other
approaches.

2. Preliminaries

The central ideas about J − NS cited in [1] and properties of the initial-
neighborhood [18] are provided in the present part.

Definition 2.1 ([1]). Suppose that U be a non-empty finite set and R be a
binary relation on it. Therefore, we define a J-neighborhood of x ∈ U, denoted
by NJ(x), J ∈ {r, ↿,⋏,⋎} as follows:

(i) r-neighborhood: Nr(x) = {Y ∈ U : xRy}.

(ii) ↿-neighborhood: N↿(x) = {Y ∈ U : yRx}.

(iii) ⋏-neighborhood: N⋏(x) = Nr(x) ∩N↿(x).

(iv) ⋎-neighborhood: N⋎(x) = Nr(x) ∪N↿(x).

Definition 2.2 ([1]). Consider R be a binary relation on U and ξJ : U → P(U)
represents a map that gives for every x in U its J-neighborhood NJ(x). Thus,
triple (U,R, ξJ) is said to be a J-neighborhood space (in briefly, J−NS).
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Theorem 2.3 ([1]). If (U,R, ξJ) is a J−NS, then for each J ∈ {r, ↿,⋏,⋎} the
collection

TJ = {M ⊆ U : ∀m ∈ M,NJ(m) ⊆ M}

represents a topology on U.

Definition 2.4 ([1]). Consider (U,R, ξJ) be a J − NS. The subset M ⊆ U is
said to be an “J-open set” if M ∈ TJ, its complement is an “J-closed set”. The
family FJ of all J-closed sets of a J−NS is defined by FJ = {F ⊆ U : F c ∈ TJ}.

Definition 2.5 ([1]). Suppose that (U,R, ξJ) be a J − NS and M ⊆ U. The
“J-lower” (respectively, “J-upper”) approximation of M is provided by

RJ(M) = ∪{G ∈ TJ : G ⊆ M} = intJ(M)

(respectively, RJ(M) = ∩{H ∈ FJ : M ⊆ H} = clJ(M)), where intJ(M) (respec-
tively, clJ(M)) is the J-interior of M (respectively, J-closure of M).

Definition 2.6 ([1]). Let (U,R, ξJ) be a J − NS and M ⊆ U. Then, for each
J ∈ {r, ↿,⋏,⋎}, the subset M is called “J-exact” set if RJ(M) = RJ(M) = M.
Else, it is “J-rough”.

Definition 2.7 ([1]). Consider (U,R, ξJ) to be a J−NS and M ⊆ U. The “J-
boundary”, “J-positive” and “J-negative” regions of M are defined respectively
by BJ(M) = RJ(M)− RJ(M), POSJ(M)= RJ(M) and NEGJ(M) =U − RJ(M).

The “J-accuracy” of J-approximations of M ⊆ U is given as follows: δJ(M) =
|RJ(M)|
|RJ(M)| , where |RJ(M)| ≠ 0. Clearly, 0 ≤ δJ(M) ≤ 1 and if δJ(M) = 1, then M

is a J− exact set. Else,it is J-rough.

3. Topologies generated from neighborhoods

The main ideas of this part is to generalize the concept of “initial-neighborhood
[18]” and thus we produce four different topologies from these neighborhoods.

Definition 3.1. For a binary relation R on U, we define the following neigh-
borhoods of x ∈ U:

(i) r-initial neighborhood [18]: Ni
r(x) = {Y ∈ U : Nr(x) ⊆ Nr(Y)};

(ii) ↿-initial neighborhood: Ni
↿(x) = {Y ∈ U : N↿(x) ⊆ N↿(Y)};

(iii) ⋏-initial neighborhood: Ni
⋏(x) = Ni

r(x) ∩Ni
↿(x);

(iv) ⋎-initial neighborhood: Ni
⋎(x) = Ni

r(x) ∪Ni
↿(x).

The next lemmas give the main properties of the above neighborhoods.

Lemma 3.2. If R is a binary relation on U. Then, for each J ∈ {r, ↿,⋏,⋎}:
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(i) x ∈ Ni
J(x).

(ii) Ni
J(x) ̸= φ.

(iii) If Y ∈ Ni
J(x), then Ni

J(y) ⊆ Ni
J(x), for each J ∈ {r, ↿,⋏}.

Proof. Firstly, the proof of (i) and (ii) is obvious by Definition 3.1.
(iii) According to Definition 3.1, if Y ∈ Ni

J(x). Then

Nr(x) ⊆ Nr(y)(1)

Now, let Z ∈ Ni
J(Y). Then Nr(Y) ⊆ Nr(Z). Consequently, by(1), Nr(x) ⊆ Nr(Z)

and this implies Z ∈ Ni
J(x). Consequently, N

i
J(Y) ⊆ Ni

J(x).

Lemma 3.3. If R is a binary relation on U. Then, ∀x ∈ U:

(i) Ni
⋏(x) ⊆ Ni

r(x) ⊆ Ni
⋎(x).

(ii) Ni
⋏(x) ⊆ Ni

↿(x) ⊆ Ni
⋎(x).

Proof. Straightforward.

The relationships between the initial-neighborhoods and J-neighborhoods
are given by the next lemma.

Lemma 3.4. Suppose that (U,R, ξJ) represents a J − NS. If R is a reflexive
and symmetric relation. Then, ∀x ∈ U, Ni

J(x) ⊆ NJ(x).

Proof. Let Y ∈ Ni
J(x), then NJ(x) ⊆ NJ(Y). But, R is a reflexive relation which

implies x ⊆ NJ(x) and thus x ⊆ NJ(Y). Since R is a symmetric relation, then
Y ⊆ NJ(x). Therefore, N

i
J(x) ⊆ NJ(x),∀x ∈ U.

The following result (depends on Theorem 2.3.) discusses an exciting tech-
nique to create different topologies using the above neighborhoods.

Theorem 3.5. Let (U,R, ξJ) be a J−NS. Then, for each J ∈ {r, ↿,⋏,⋎}, the
collection Ti

J = {M ⊆ U : ∀m ∈ M,Ni
J(M) ⊆ M} is a topology on U.

Proof.

(T1) Clearly, U and φ belong to Ti
J.

(T2) Let{An : n ∈ N} be a family of members in Ti
J and p ∈ UnAn. Then

there exists n0 ∈ N such that P ∈ An0 . Thus Ni
J(p) ⊆ An0 this implies

Ni
J(p) ⊆ UnAn. Therefore, UnAn ∈ Ni

J(p).

(T3) Let A1,A2 ∈ Ni
J and p ∈ A1 ∩ A2. Then p ∈ A1 and p ∈ A2 which

implies Ni
J(p) ⊆ A1 and Ni

J(p) ⊆ A2. Thus Ni
J(p) ⊆ A1 ∩ A2 and hence

A1 ∩A2 ∈ Ti
J.
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From (T1), (T2)and (T3) Ti
J forms a topology on U.

The next proposition gives the relationships among different topologies Ti
J.

Proposition 3.6. If (U,R, ξJ) be a J−NS. Then:

(i) Ti
⋎ ⊆ Ti

r ⊆ Ni
⋏.

(ii) Ti
⋎ ⊆ Ti

↿ ⊆ Ti
⋏.

Proof. By Lemma 3.3, the proof is obvious.

Example 3.7 demonstrates that the opposite of Proposition 3.6 is not correct
in general.

Example 3.7. Suppose that R = {(a, a), (a, d), (b, a), (b, c), (c, c), (c, d), (d, a)}
be a relation on U = {a, b, c, d}. Accordingly, we obtain Nr(a) = {a, d}, Nr(b) =
{a, c}, Nr(c) = {c, d}, and Nr(d) = {a}.

N↿(a) = {a, b, d},N↿(b) = φ,N↿(c) = {b, c},N↿(d) = {a, c},
N⋏(a) = {a, d},N⋏(b) = φ,N⋏(c) = {c},N⋏(d) = {a},
N⋎(a) = {a, b, d},N⋎(b) = {a, c},N⋎(c) = {b, c, d},N⋎(d) = {a, c}.

Therefore, we obtain Ni
r(a) = {a}, Ni

r(b) = {b}, Ni
r(c) = {c}, and Ni

r(d) =
{a, b, d}

Ni
↿(a) = {a},Ni

↿(b) = U,Ni
↿(c) = {c},Ni

↿(d) = {d},
Ni

⋏(a) = {a},Ni
⋏(b) = {b},Ni

⋏(c) = {c},Ni
⋏(d) = {d},

Ni
⋎(a) = {a},Ni

⋎(b) = U,Ni
⋎(c) = {c},Ni

⋎(d) = {a, b, d}.

Consequently, we generate the following topologies:

Ti
r = {U, φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}},

Ti
↿ = {U, φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}},

Ti
⋏ = P(U),Ti

⋎ = {U, φ, {a}, {c}, {a, c}, {b, c}}.

The subsequent proposition gives the connections amongst the topologies Ti
J

and TJ.

Proposition 3.8. If (U,R, ξJ) is a J−NS such that R is a reflexive and sym-
metric relation. Then, for each J ∈ {r, ↿,⋏,⋎} : TJ ⊆ Ti

J.

Proof. By Lemma 3.4, the proof is clear.

Remark 3.9. For any a J−NS(U,R, ξJ), Example 3.7 shows the following:

(i) The topologies Ti
J and TJ are independent in general case.
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(ii) The topologies Ti
r and Ti

↿ are independent in general case.

(iii) The property (iii) in Lemma 3.2 is not true for case j = ⋎.

Example 3.10 proves that the opposite of Proposition 3.8 is not correct gene-
rally.

Example 3.10. Let U = {a, b, c, d} and R = {(a, a), (a, b), (b, a), (b, b), (b, c),
(c, b), (c, c), (d, d)} be a reflexive and symmetric relation on U. Thus, we com-
pute the topologies Ti

J, and TJ in the case of J = r, and the others simi-

larly Tr = {U, φ, {d}, {a, b, c}}, and Ti
r = {U, φ, {b}, {d}, {a, b}, {b, c}, {b, d},

{a, b, c}, {a, b, d}, {b, c, d}}.
Diagram 1 summarize the relationships among different topologies such that

R represents a reflexive and symmetric relation.

Diagram 1 The relationships among different topologies

4. Rough approximations based on topological structures

In this part, we present four new approximations called J-initial lower and J-
initial upper approximations, which we use to define new regions and accuracy
measures of a set using the interior and closure of the topologies Ti

J, for each
J ∈ {r, ↿,⋏,⋎}. We show that these methods yield the best approximations and
the highest accuracy measures. There are illustrative examples provided.

Definition 4.1. Suppose that (U,R, ξJ) be a J − NS and A ⊆ U. Therefore,
A is called an J-initial open set if A ⊆ Ti

J, and its complement is called an

J-initial closed set. The family Fi
J of all J-initial closed sets is defined by:

Fi
J = {F ⊆ U : Fc ∈ Ti

J}. Moreover, we define the following:

(i) The J-initial interior of A ⊆ U is: intiJ(A) = ∪{G ∈ Ti
J : G ⊆ A}.

(ii) The J-initial closure of A ⊆ U is: cliJ(A) = ∩{H ∈ Fi
J : A ⊆ H}.

Definition 4.2. Let (U,R, ξJ) be a J−NS. Then, we define J-initial lower and
J-initial upper approximations of A respectively as follows: Ri

J(A) = intiJ(A),

and R
i
J(A) = cliJ(A).
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Definition 4.3. Suppose that (U,R, ξJ) be a J −NS. The J-initial boundary,
J-initial positive and J-initial negative regions of A ⊆ U are given, respectively,

by Bi
J(A) = R

i
J(A)−Ri

J(A),POSiJ(A) = Ri
J(A) and NEGi

J(A) = U−R
i
J(A).

Moreover, the J-initial accuracy of the J-initial approximations of A ⊆ U is

defined by αi
J(A) =

|Ri
J(A)|

|Ri
J(A)|

, where |Ri
J(A)| ≠ 0. It is clear that, 0 ≤ αi

J(A) ≤ 1.

In addition, A is called an J-initial definable (J-initial exact) set if αi
J(A) = 1,

and it is called J-initial rough if αi
J(A) ̸= 1.

Example 4.4. By using Example 3.7, we get the following:

Ti
r = {U, φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, d}},

Fi
r = {U, φ, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}},

Ti
↿ = {U, φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}},

Fi
↿ = {U, φ, {b}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}},

Ti
⋏ = Fi

⋏ = P(U),Ti
⋎ = {U, φ, {a}, {c}, {a, c}},

Fi
⋎ = {U, φ, {b, d}, {a, b, d}, {b, c, d}}.

Thus, we can get Tables 1 and 2 that give the J-initial lower, J-initial upper
approximations and the J-initial accuracy of J-initial approximations of all sub-
sets of U:

Table 1: Comparison among different types of J-initial approximations

P(U) Ti
r Ti

↿ Ti
⋏ Ti

⋎

Ri
r(A) R

i
r(A) Ri

↿(A) R
i
↿(A) Ri

⋏(A) R
i
⋏(A) Ri

⋎(A) R
i
⋎(A)

{a} {a} {a, d} {a} {a, b} {a} {a} {a} {a, b, d}
{b} {b} {b, d} φ {b} {b} {b} φ {b, d}
{c} {c} {c} {c} {b, c} {c} {c} {c} {b, c, d}
{d} φ {d} {d} {b, d} {d} {d} φ {b, d}
{a, b} {a, b} {a, b, d} {a} {a, b} {a, b} {a, b} {a} {a, b, d}
{a, c} {a, c} {a, c, d} {a, c} {a, b, c} {a, c} {a, c} {a, c} U

{a, d} {a} {a, d} {a, d} {a, b, d} {a, d} {a, d} {a} {a, b, d}
{b, c} {b, c} {b, c, d} {c} {b, c} {b, c} {b, c} {c} {b, c, d}
{b, d} {b} {b, d} {d} {b, d} {b, d} {b, d} φ {b, d}
{c, d} {c} {c, d} {c, d} {b, c, d} {c, d} {c, d} {c} {b, c, d}
{a, b, c} {a, b, c} U {c} {a, b, c} {a, b, c} {a, b, c} {a, c} U

{a, b, d} {a, b, d} {a, b, d} {a, d} {a, b, d} {a, b, d} {a, b, d} {a} {a, b, d}
{a, c, d} {a, c} {a, c, d} {a, c, d} U {a, c, d} {a, c, d} {a, c} U

{b, c, d} {b, c} {b, c, d} {c, d} {b, c, d} {b, c, d} {b, c, d} {c} {b, c, d}
U U U U U U U U U
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Table 2: Comparison among different types of J-initial accuracy

P(U) αi
r(A) αi

↿(A) αi
⋏(A) αi

⋎(A)

{a} 1/2 1/2 1 1/3

{b} 1/2 0 1 0

{c} 1 1/2 1 1/3

{d} 0 1/2 1 0

{a, b} 2/3 1/2 1 1/3

{a, c} 2/3 2/3 1 1/2

{a, d} 1/2 2/3 1 1/3

{b, c} 2/3 1/2 1 1/3

{b, d} 1/2 1/2 1 0

{c, d} 1/2 2/3 1 1/3

{a, b, c} 3/4 1/3 1 1/2

{a, b, d} 1 2/3 1 1/3

{a, c, d} 2/3 3/4 1 1/2

{b, c, d} 2/3 2/3 1 1/3

U 1 1 1 1

Remark 4.5. According to Tables 1 and 2 of Example 4.4, we conclude that by
using different types of Ti

J in constructing the approximations of sets, the best of

them is that given by Ti
⋏ since αi

⋎(A) ≤ αi
r(A) ≤ αi

⋏(A) and α
i
⋎(A) ≤ αi

↿(A) ≤
αi
⋏(A). In addition, these approaches are more accurate than the previous one

in [18].

Some properties of the J-initial approximations are provided in the next
result. Moreover, it represents one of the distinctions between our approaches
and other generalizations such as [1, 12-16, 21, 22, 25-28, and 33-36].

Proof. Suppose that (U,R, ξJ) be a J−NS and A, B ⊆ U. Thus:

(1) Ri
J(A) ⊆ A ⊆ R

i
J(A).

(2) Ri
J(U) = R

i
J(U) = U, and Ri

J(φ) = R
i
J(φ) = φ.

(3) R
i
J(A ∪ B) = R

i
J(A) ∪RJ(B).

(4) Ri
J(A ∩ B) = Ri

J(A) ∩Ri
J(B).

(5) If A ⊆ B, then Ri
J(A) ⊆ Ri

J(B).

(6) If A ⊆ B, then R
i
J(A) ⊆ R

i
J(B).

(7) Ri
J(A ∪ B) ⊇ Ri

J(A) ∪Ri
J(B).

(8) R
i
J(A ∩ B) ⊆ R

i
J(A) ∩R

i
J(B).

(9) Ri
J(A) = [R

i
J(A

c)]c,Ac is the complement of A.

(10) R
i
J(A) = [Ri

J(A
c)]c.
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(11) Ri
J(R

i
J(A) = Ri

J(A).

(12) R
i
J(R

i
J(A)) = R

i
J(A).

Proof. The proof is directly simple by applying the properties of interior intiJ
and closure cliJ.

The subsequent results illustrate the relationships among the suggested ap-
proximations (J-initial approximations).

Proposition 4.6. If (U,R, ξJ) is a J−NS and A ⊆ U. Then:

(1) Ri
⋎(A) ⊆ Ri

r(A) ⊆ Ri
⋏(A).

(2) Ri
⋎(A) ⊆ Ri

↿(A) ⊆ Ri
⋏(A).

(3) R
i
⋏(A) ⊆ R

i
r(A) ⊆ R

i
⋎(A).

(4) R
i
⋏(A) ⊆ R

i
↿(A) ⊆ R

i
⋎(A).

Proof. By using Proposition 3.6, the proof is obvious.

Corollary 4.7. If (U,R, ξJ) is a J−NS and A ⊆ U. Then:

(1) Bi
⋏(A) ⊆ Bi

r(A) ⊆ Bi
⋎(A).

(2) Bi
⋏(A) ⊆ Bi

↿(A) ⊆ Bi
⋎(A).

(3) αi
⋎(A) ≤ αi

r(A) ≤ αi
⋏(A).

(4) αi
⋎(A) ≤ αi

↿(A) ≤ αi
⋏(A).

(5) The subset A is an ⋎-initial exact set ⇒ A is r-initial exact ⇒ A is
⋏-initial exact.

(6) The subset A is an ⋎-initial exact set ⇒ A is ↿-initial exact ⇒ A is
⋏-initial exact.

Remark 4.8. The converse of the above results is not true in general as illus-
trated in Example 4.4.

The following results introduce comparisons between the proposed approx-
imations (J-initial approximations) and the previous approximations (J-initial
approximations [1]).

Theorem 4.9. If (U,R, ξJ) is a J-NS and A ⊆ U such that R is a reflexive and
symmetric relation on U. Then, for each J ∈ {r, ↿,⋏,⋎}:

(1) RJ(A) ⊆ Ri
J(A).

(2) R
i
J(A) ⊆ RJ(A).

Proof. We shall prove the first statement and the other similarly.

Let x ∈ RJ(A), then ∃G ∈ TJ such that x ∈ G ⊆ A. But, from Propo-
sition 3.8, TJ ⊆ Ti

J. Therefore, G ∈ Ti
J such that x ∈ G ⊆ A which implies

x ∈ Ri
J(A).
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Corollary 4.10. Let (U,R, ξJ) be a J-NS . Then:
(1) Bi

J(A) ⊆ BJ(A).

(2) αJ(A) ≤ αi
J(A).

(3) The subset A is an J-exact set if it is J-initial exact.

Remark 4.11. The inverse of the above results is not true in general as illus-
trated by Example 4.12.

Example 4.12. Consider Example 3.10, we compare between the J-approxi-
mations and J-initial approximations in the case of J = r and the others simi-
larly.

First, the topologies Ti
J and TJ in the case of J = r are:

Tr = Fr = {U, φ, {d}, {a, b, c}},
Ti
r = {U, φ, {b}, {d}, {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}} and

Fi
r = {U, φ, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, b, c}, {a, c, d}}.
Therefore, we get Table 3 which represents a comparison between the r-

accuracy of J- approximations and r-initial accuracy of r-initial approximations
of all subsets of U.

Table 3: Comparison between r-accuracies and r-initial accuracies

P(U) αr(A) αi
r(A)

{a} 0 0

{b} 0 1/3

{c} 0 0

{d} 1 1

{a, b} 0 2/3

{a, c} 0 0

{a, d} 1/4 1/2

{b, c} 0 2/3

{b, d} 1/4 1/2

{c, d} 1/4 1/2

{a, b, c} 1 1

{a, b, d} 1/4 3/4

{a, c, d} 1/4 1/3

{b, c, d} 1/4 3/4

U 1 1

Remark 4.13. According to Table 3 of Example 4.12, we notice that r-initial
approximations are more accurate than r-approximations of sets since αr(A) ≤
αi
r(A). Therefore, we can say that the proposed approximations J-initial approx-

imations represent golden tools in removing the vagueness of sets. For example,
in Table 3, the subset A = {b, c} its r-approximations are Rr(A) = φ and
Rr(A) = {a, b, c} which implies Br(A) = {a, b, c} and αr(A) = 0 and this means
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that A is a r-rough set. Moreover, the r-positive region of A is POSr(A) = φ
although A consist of two elements which is a contradiction to the knowledge
of Example 4.12. On the other hand, we find r-initial approximations of A are

Ri
r(A) = {b, c} and R

i
r(A) = {a, b, c} that is the r-initial positive region of A is

POSir(A) = A and αi
r(A) = 2/3.

Conclusion

The present paper is devoted to introducing and studying new generalizations
to the concept of “initial-neighborhood”. We defined three different types and
compare them with the previous one [18]. Moreover, using Theorem 1 in [1],
we purposed a new method to generate four different topologies induced by the
new neighborhoods. A comparison between these topologies and the previous
one was investigated. Finally, we used these new topologies to generate new
generalizations to Pawlak rough sets and study their properties. We compared
the suggested approaches with the previous one [1, 18] and proved that these
methods are more accurate than other methods. Theorem 3.5 gives an easy
method to generate these topologies directly from relations without using sub-
base or base. We believe that the using of this technique is easier in application
fields and useful for applying many topological concepts in future studies.
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Abstract. In this present study, we shed light on some separation axioms via nano
Sβ-open sets including nano Sβ-regular, Sβ-normal, Sβ − S0 and Sβ − S1 axioms in
nano topological spaces where nano Sβ-open set is defined and related to nano semi-
open and nano β-closed sets. Here, we implement each axiom on the family of all
nano Sβ-open sets according to upper and lower approximations in which there exist
exactly six families of nano Sβ-open sets. This research work brings out some interesting
results such as it is shown that in which condition a nano topological space is always
nano Sβ-normal space where upper and lower approximations are leading conditions.
In addition, the relationship among those axioms is also considered.

Keywords: nano Sβ-open sets, nano Sβ-regular, nano Sβ-normal, nano Sβ−S0, nano
Sβ − S1.

1. Introduction

The concept of nano topological space is introduced by Thivagar and Richard
[2] with respect to a subset X of U as the universe. Then, some types of nano
open sets are defined and introduced such as nano semi-open sets, nano α-open
sets and nano pre-open sets in [2] and nano rare sets by Thivagar et al., [7].
After that, nano β-open sets are introduced by Revathy and Ilango [3]. By using
nano semi-open sets with nano β-open sets, nano Sβ-open sets are introduced by
Pirbal and Ahmed [4]. Moreover, regarding the structure of nano Sβ-open sets,
nano SC-open sets defined by Pirbal and Ahmed [10]. The authors of [4] studied
connectedness by using nano Sβ-open sets in [11]. In addition, some separation

*. Corresponding author
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axioms via nano β-open sets studied by Ghosh [8] and almost nano regular space
by David et al., [9]. So, in this study, since separation axioms are the main tool
to distinguish two points, two sets or a point with a set topologically, it was
such an inspiration for the authors to introduce some separation axioms such
as nano Sβ-regular, Sβ-normal, Sβ −S0 and Sβ −S1 axioms in nano topological
spaces. Then, each axiom is applied on the family of all nano Sβ-open sets in
terms of upper and lower approximations.

2. Preliminaries

Definition 2.1 ([1]). Let U be a non-empty finite set of objects called the
universe and R be an equivalence relation on U called as the indiscernibility
relation. Elements belonging to the same equivalence class are said to be in-
discernible with one another. The pair (U, R) is said to be the approximation
space. Let X ⊆ U :

1. The lower approximation of X with respect to R is the set of all objects
which can be for certain classified as X with respect to R and it is denoted
by LR(X). That is, LR (X) =

⋃
x∈U {R (x) ;R(x) ⊆ X}, where R(x)

denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects
which can be possibly classified as X with respect to R and it is denoted
by UR (X) . That is, UR (X) =

⋃
x∈U {R (x) ;R(x) ∩X ̸= ϕ}.

3. The boundary region of X with respect to R is the set of all objects which
can be classified neither as X nor as not-X with respect to R and it is
denoted by BR (X) . That is, BR(X) = UR (X)− LR (X).

Definition 2.2 ([2]). Let U be the universe and R be an equivalence relation
on U and τR (X) = {ϕ, U, LR (X) , UR (X) , BR(X)} where X ⊆ U. Then,
τR (X) satisfies the followings axioms:

1. U and ϕ ∈ τR (X);

2. the union of elements of any subcollection of τR (X) is in τR (X);

3. the intersection of elements of any finite subcollection of τR (X) is in
τR (X) .

That is, τR (X) forms a topology on U and called the nano topology on U with
respect to X. We call (U, τR (X)) as the nano topological space. The elements
of τR (X) are called as nano open sets and [τR (X)]c is called as the nano dual
topology of τR (X).

Definition 2.3. Let (U, τR (X)) be a nano topological space and A ⊆ U . The
set A is said to be:



SOME SEPARATION AXIOMS VIA NANO Sβ-OPEN SETS IN NANO TOPOLOGICAL ... 77

1. Nano semi-open [2], if A ⊆ ncl (nint (A)).

2. Nano β-open (nano semi pre-open) [3], if A ⊆ ncl (nint (ncl (A))).

3. Nano Sβ-open [4], if A is nano semi-open and A = ∪{Fα; Fα nano β-closed
sets}.

The set of all nano semi-open, nano β-open and nano Sβ-open sets denoted by
nSO (U, X), nβO (U, X) and nSβO (U, X).

Theorem 2.4 ([5]). Let A be any subset of a nano topological space (U, τR(X)),
then:

1. nSβint(A) = ∪{G : G is nSβ-open and G ⊆ A};

2. nSβcl(A) = ∩{F : F is nSβ-closed and A ⊆ F};

Theorem 2.5 ([4]). If UR (X) = U and LR (X) = ϕ in a nano topological space
(U, τR (X)), then nSβO (U,X) = {U, ϕ}.

Theorem 2.6 ([4]). If UR (X) = U and LR (X) ̸= ϕ in a nano topological space
(U, τR (X)), then τR (X) = τ Sβ

R
(X).

Theorem 2.7 ([4]). Let (U, τR (X)) be a nano topological space. If UR (X) =
LR (X) = {x}, x ∈ U , then nSβO (U,X) = {ϕ, U}.

Theorem 2.8 ([4]). Let (U, τR (X)) be a nano topological space. If UR (X) =
LR(X) ̸= U and UR (X) contains more than one element of U , then the set of
all nSβ-open sets in U are ϕ and those sets A for which UR(X) ⊆ A.

Theorem 2.9 ([4]). Let (U, τR (X)) be a nano topological space. If UR (X) ̸=
U , LR (X) = ϕ and UR (X) contains more than one element of U , then the set
of all nSβ-open sets in U are ϕ and those sets A for which UR(X) ⊆ A.

Theorem 2.10 ([4]). Let (U, τR (X)) be a nano topological space. If UR (X) ̸=
LR(X) where UR(X) ̸= U and LR (X) ̸= ϕ, then ϕ, LR (X) , BR (X) , LR (X)∪
B, BR (X)∪B and any set containing UR (X) where B ⊆ [UR (X)]c are the only
nSβ-open sets in U .

Theorem 2.11 ([5]). Let (U, τR (X)) be a nano topological space. If UR (X) =
LR(X) ̸= U and UR (X) contains more than one element of U , then for any
non-empty subset A of U :

nSβcl (A)=

{
A, if A ⊂ [UR (X)]c

U, otherwise
.

Theorem 2.12. Let (U, τR (X)) be a nano topological space. The only nSβ-
clopen subset of U are ϕ and U if:
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1. UR (X) = U and LR (X) = ϕ;

2. UR (X) = LR(X) = {x}, x ∈ U ;

3. UR (X) = LR(X) ̸= U and UR (X) contains more than one element of U ;

4. UR (X) ̸= U , LR (X) = ϕ and UR (X) contains more than one element of
U .

Proof. Obvious.

Theorem 2.13. If UR (X) = U and LR (X) ̸= ϕ in a nano topological space
(U, τR (X)), then [

τ
Sβ
R

(X)

]
=

[
τ
Sβ
R

(X)

]c
.

Proof. Obvious.

Theorem 2.14. Let (U, τR (X)) be a nano topological space. If UR (X) ̸=
LR(X), where UR(X) ̸= U and LR (X) ̸= ϕ, then LR (X) , BR (X) , LR (X) ∪
B and BR (X)∪B are non-empty proper nSβ-clopen in U where B ⊆ [UR (X)]c.

Proof. By Theorem 2.10, LR (X) , BR (X) , LR (X) ∪ B and BR (X) ∪ B are
non-empty proper nSβ-open set in U where B ⊆ [UR (X)]c. We have to show
that they are also nSβ-closed in U .

Now, nSβcl(LR(X)) = nSβcl([BR(X) ∪B]c) where B = [UR(X)]c, but
[BR(X) ∪B]c is nSβ-closed, so nSβcl([BR(X) ∪B]c) = [BR(X) ∪B]c = LR(X).
Also, nSβcl(BR(X))=nSβcl([LR(X)∪B]c), whereB⊆[UR(X)]c, but [LR(X) ∪B]c

is nSβ-closed, so nSβcl([LR(X) ∪B]c) = [LR(X) ∪B]c = BR(X).

Also, nSβcl(LR(X) ∪ B) = nSβcl([BR(X)]C) = [BR(X)]C = LR(X) ∪ B

and nSβcl(BR(X)∪B)=nSβcl([LR(X)]C)=[LR(X)]C = BR(X)∪B, where B ⊂
[UR(X)]c. Hence, LR(X), BR(X), LR(X) ∪B and BR(X) ∪B are nSβ-clopen
where B ⊆ [UR(X)]c.

3. Nano Sβ-regular spaces

Definition 3.1. A nano topological space (U, τR (X)) is said to be nSβ-regular
if for each x∈U and each nano closed set A such that x/∈A, there exist two nSβ-
open sets G and H such that x∈G,A⊆H and G∩H=ϕ.

Remark 3.2. Nano indiscrete topological space is nSβ-regular space.

Theorem 3.3. Let (U, τR (X)) be a nano topological space. Then, U is a nSβ-
regular space if and only if for each x∈U and each nano open set G containing
x, there exist a nSβ-open set V containing x such that x∈V⊆nSβcl(V )⊆G.
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Proof. Let G be a nano open set and x∈G. Then, U−G is nano closed set such
that x/∈U −G. By nSβ-regularity of U , there are nSβ-open sets M and W such
that x∈M, U − G⊆W and M∩W =ϕ. Therefore, x∈M⊆U − W⊆G, Hence,
x∈M⊆nSβcl (M)⊆nSβcl (U −W)=U − W⊆G. Thus, nSβcl(M)⊆U − W⊆G.
Conversely, let F be nano closed set in U and let x/∈F . Then, U−F is a nano
open set and x∈U−F. By assumption, there exist a nSβ-open set H such that
x∈H and nSβcl(H)⊆U−F. Define K=U−nSβcl(H). Then, K∈nSβO(U,X)
andH⊆nSβcl (H) , thenH∩K=H∩(U−nSβcl(H)) =ϕ (U−nSβcl(H)⊆U−H).
Thus, for x/∈F ,∃ disjoint nSβ-open sets H and K such that x∈H and F⊆K.
Hence, U is a nSβ-regular space.

Theorem 3.4. Let (U, τR (X)) be a nano topological space, then U is nSβ-
regular if:

1. UR (X)=U and LR (X)=ϕ;

2. UR (X)=U and LR(X) ̸=ϕ;

3. UR (X) ̸= LR(X), where UR(X) ̸= U and LR (X) ̸= ϕ.

Proof.

1. By Theorem 2.5, τR (X) = nSβO (U,X)= {ϕ, U}. Hence, U is nSβ-
regular.

2. By Theorem 2.6, τR (X) =nSβO (U,X)= {ϕ, U, LR (X) , BR (X)} . Let
x ∈ U , since LR (X) ∩ BR (X) = ϕ and LR (X) ∪ BR (X) = U , then
either x ∈ LR (X) or x ∈ BR (X). Also, LR (X) = [BR (X)]c. Let say
x ∈ LR (X), then x ∈ LR (X) ⊆ nSβcl(LR (X)) = [BR (X)]c ⊆ LR (X).
If x ∈ BR(X), then x ∈ BR (X) ⊆ nSβcl(BR (X)) = [LR (X)]c ⊆ BR (X).
Hence, U is nSβ-regular.

3. Let x ∈ UR(X), then either x ∈ LR (X) or x ∈ BR (X). Since by Theo-
rem 2.14 LR (X) and BR(X) are nSβ-clopen in U , then let x ∈ UR(X):

If x ∈ LR (X), then

x ∈ LR (X) ⊆ nSβcl (LR (X)) ⊆

{
UR(X)

LR(X)
.

If x ∈ BR(X), then

x ∈ BR (X) ⊆ nSβcl (BR (X)) ⊆

{
UR(X)

LR(X)
.

If x /∈ UR(X), then the only nano open set containing x is U .

Therefore, U is nSβ-regular space.



80 NEHMAT K. AHMED and OSAMA T. PIRBAL

Remark 3.5. Let (U, τR (X)) be a nano topological space, then U is not nSβ-
regular if:

1. UR (X) = LR(X) ̸= U and UR (X) contains more than one element of U .
Since τR (X) = {ϕ, U, UR (X)} and by Theorem 2.8, ϕ and those subsets
A for which UR(X) ⊆ A are nSβ-open sets in U . Let x ∈ UR(X), then
there is no nSβ-open set V such that x ∈ V ⊆ nSβcl (V ) ⊆ UR(X), since
by Theorem 2.11, nSβcl (V ) = U . Hence, U is not nSβ-regular space.

2. UR (X) ̸= U , LR (X) = ϕ and UR (X) contains more than one element
of U . Since τR (X) = {ϕ, U, UR (X)} and by Theorem 2.9, ϕ and those
subsets A for which UR(X) ⊆ A are nSβ-open sets in U . Let x ∈ UR(X),
then there is no nSβ-open set V such that x ∈ V ⊆ nSβcl (V ) ⊆ UR(X),
since by Theorem 2.11, nSβcl (V ) = U . Hence, U is not nSβ-regular space.

3. UR (X)=LR(X )̸=U and UR (X)={x}, x∈U . Since τR (X) = {ϕ, U, {x}}
and by Theorem 2.7, nSβO (U,X)={ϕ, U}. Then, there is no nSβ-open
set V such that x ∈ V ⊆ nSβcl (V ) ⊆ {x}. Hence, U is not nSβ-regular
space.

4. Nano Sβ-normal spaces

Definition 4.1. A nano topological space U is said to be nSβ-normal if for any
disjoint nano closed sets A,B of U , there exist nSβ-open sets G and H such
that A⊆G,B⊆H and G∩H=ϕ.

Theorem 4.2. A topological space U is nSβ-normal if and only if for each
nano closed set F in U and nano open set G containing F , there is an nSβ-
open set H such that F⊆H⊆nSβcl(H)⊆G.

Proof. Suppose that G is nano open set containing F , then U − G and F
are disjoint nano closed sets in U . Since U is nSβ-normal, so there exist
nSβ-open sets H and V such that F⊆H,U − G⊆V and H∩V=ϕ. Hence,
F⊆H⊆nSβcl (H)⊆nSβcl (U − V )=U − V⊆G, or F⊆H⊆nSβcl(H)⊆G.

Conversely, assume that for any nano-closed F and nano open set G con-
taining F , there exists a nSβ-open set H such that F⊆H⊆nSβcl(H)⊆G. Let
F and K be disjoint nSβ-closed sets in U . So F∩K=ϕ then F⊆U−K.As F
is a nSβ-closed set and U−K is a nSβ-open set, by assumption ∃ nSβ-open
sets H in U such that, F⊆H⊆nSβcl(H)⊆U−K. We get K⊆U−nSβcl(H). De-
fine G=U−nSβcl(H). Thus ∃ G,H∈nSβO(U,X) such that F⊆H,K⊆G and
H∩G=ϕ. Hence, U is a nSβ-normal space.

Theorem 4.3. Let (U, τR (X)) be a nano topological space, then U is nSβ-
normal if:

1. UR (X)=U and LR (X)=ϕ;
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2. UR (X)=U and LR(X) ̸=ϕ;

3. UR (X)=LR (X)={x}, x∈U ;

4. UR (X) = LR(X) ̸= U and UR (X) contains more than one element of U ;

5. UR (X) ̸= U , LR (X) = ϕ and UR (X) contains more than one element of
U ;

6. UR (X) ̸= LR(X), where UR(X) ̸= U and LR (X) ̸= ϕ.

Proof.

1. Since τR (X) = {ϕ, U}. By Theorem 2.5, τR (X) = nSβO (U,X)= {ϕ, U}.
Hence, U is nSβ-normal space.

2. Since τR (X) = {ϕ, U, LR (X) , BR (X)}. By Theorem 2.6, τR (X) =
nSβO (U,X)= {ϕ, U, LR (X) , BR (X)}. Since LR (X) ∩ BR (X) = ϕ,
LR (X) ∪ BR (X) = U and LR (X) = [BR (X)]c. Hence, U is nSβ-normal
space.

3. Since τR (X) = {ϕ, U, {x}} and by Theorem 2.7, nSβO (U,X)={ϕ, U}.
Then, it is clear that U is nSβ-normal space.

4. Since τR (X) = {ϕ, U, UR (X)}, by Theorem 2.8, ϕ, U and those sets
A for which UR(X) ⊆ A are nSβ-open sets in U . In this case, ‘ϕ with
[UR (X)]c’ and ‘ϕ with U ’ are the disjoint nano closed sets in U . For ‘ϕ
with [UR (X)]c, ϕ ⊆ ϕ and [UR (X)]c ⊆ U and for ‘ϕ and U ’ the result is
clear. Hence, U is nSβ-normal.

5. Similar to part (i).

6. Since the only disjoint nano closed sets are ϕ and U . Therefore, U is
nSβ-normal space.

5. Nano Sβ-S0 and Sβ-S1 spaces

Definition 5.1. A nano topological space (U, τR (X)) is called nSβ-S0 if for
every non-empty nSβ- open set A,A⊆nSβcl({x}), ∀x∈A.

Definition 5.2. A topological space (U, τR (X)) is called nSβ-S1 if for any dis-
tinct points x, y∈U with nSβcl({x}) ̸=nSβcl({y}), there exist non-empty disjoint
nSβ-open sets G and H such that, G⊆nSβcl({x}) and H⊆nSβcl({y}).

Theorem 5.3. Let (U, τR (X)) be a nano topological space. Then, U is nSβ-S0
space if:

1. UR (X)=U and LR (X)=ϕ;
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2. UR (X)=LR(X )̸=U and UR (X)={x}, x∈U ;

3. UR (X)=U and LR(X) ̸=ϕ;

4. UR (X) ̸=U and LR(X) =ϕ and UR (X) contains more than one element
of U ;

5. UR (X) = LR(X) ̸= U and UR (X) contains more than one element of U .

Proof.

1. Since nSβO (U,X)={ϕ, U}. Then, only non-empty nSβ-open subset is U
and U = nSβcl ({x}), ∀x ∈ U . Hence, U is nSβ-S0 space.

2. Since nSβO (U,X)={ϕ, U}. Then, only non-empty nSβ-open subset is U
and U ⊆ nSβcl ({x}), ∀x ∈ U . Hence, U is nSβ-S0 space.

3. Since nSβO (U,X)= {ϕ, U, LR (X) , BR (X)}, then

LR (X)⊆nSβcl ({x})=LR(X),∀x∈LR(X)

and similarly for BR(X). Hence, U is nSβ-S0.

4. Since ϕ, U and those sets A for which UR(X) ⊆ A are nSβ-open sets in
U , but nSβcl ({x}) = U, ∀x ∈ UR(X), then UR (X) ⊆ U . Hence, U is
nSβ-S0 space.

5. Since ϕ, U and those sets A for which UR(X) ⊆ A are nSβ-open sets in
U , but nSβcl ({x}) = U, ∀x ∈ UR(X), then UR (X) ⊆ U . Hence, U is
nSβ-S0 space.

Remark 5.4. Let (U, τR (X)) be a nano topological space. Then, U is not
nSβ-S0 space if UR (X) ̸= LR(X) where UR(X) ̸= U and LR (X) ̸= ϕ. Since
UR(X) ∈ nSβO (U,X) but UR(X) ⊈ nSβcl ({x}) for any x ∈ UR(X). Hence, U
is not nSβ-S0 space.

Theorem 5.5. Let (U, τR (X)) be a nano topological space. Then, U is nSβ-S1
space if:

1. UR (X)=U and LR (X)=ϕ;

2. UR (X) = LR (X) = {x}, x ∈ U ;

3. UR (X)=U and LR(X) ̸=ϕ.

Proof.

1. Obvious.

2. Obvious.
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3. Since nSβO (U,X)= {ϕ, U, LR (X) , BR (X)} and LR (X)∩ BR(X) =
ϕ also LR (X) ⊆ nSβcl ({x}) = LR (X) , ∀x ∈ LR (X) and BR (X) ⊆
nSβcl ({x}) = BR (X) , ∀x ∈ BR (X), then for any x ∈ LR (X) and
y ∈ BR (X), nSβcl ({x}) ̸= nSβcl ({y}) and LR (X)⊆nSβcl({x}) and
BR (X)⊆nSβcl({y}). Hence, U is nSβ-S1 space.

Remark 5.6. Let (U, τR (X)) be a nano topological space. Then, U is not
nSβ-S1 space if:

1. UR (X) ̸=U and LR(X) =ϕ and UR (X) contains more than one element
of U .

Since for any distinct points x, y∈U with nSβcl({x})̸=nSβcl({y}), there is
no non-empty disjoint nSβ-open sets G and H such that, G⊆nSβcl({x})
and H⊆nSβcl ({y}), since every nSβ-open set containing UR(X). Hence,
U is not nSβ-S1 space.

2. Similar to part (i).

3. UR (X) ̸= LR(X) where UR(X) ̸= U and LR (X) ̸= ϕ. Since any non-
empty proper subset A of U with less than one element of U is nSβ-open
set and its complement is singleton nSβ-closed, then nSβcl ({x}) = {x},
for any x ∈ [UR (X)]c. Also, nSβcl ({y}) = LR(X), for any y ∈ LR(X),
then nSβcl ({x}) ̸= nSβcl ({y}), but there is no non-empty nSβ-open set
such that G ⊆ nSβcl ({x}). Hence, U is not nSβ-S1 space.

Theorem 5.7. Every nSβ-S1 space is nSβ-S0.

Proof. The proof follows form Theorem 5.3 and Theorem 5.5.

The converse of above theorem need not to be true, as it shown by the
following example.

Example 5.8. Let U = {a, b, c} with U/R = {{a, b} , {c}} and X = {a, b}.
Then, τR (X) = nSβO(U,X) = {ϕ, U, {a, b}}. Then, nSβcl ({a})=U and
nSβcl ({c})={c} which there is no non-empty disjoint nSβ-open sets G and
H containing nSβcl({a}) and nSβcl ({c}) respectively. Hence, U is not nSβ-S1
space.

6. Conclusion

In this paper, we have introduced the concepts of nano Sβ-regular, Sβ-normal,
Sβ −S0 and Sβ −S1 axioms in nano topological spaces. According to the family
of all nano Sβ-open sets, the axioms are studied and the relationship among
the axioms presented in the table below. For instance, we can see that every
nSβ-regular space is nSβ-normal but the converse is proved that is not true in
three cases.
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Family of nSβ-open sets in
term of upper and lower
approximations if:

nSβ-regular nSβ-normal nSβ − S0 nSβ − S1

UR (X) = U and LR (X) =
ϕ

1 1 1 1

UR (X) = U and LR (X) ̸=
ϕ

1 1 1 1

UR (X) = LR (X) = {x},
x ∈ U

0 1 1 1

UR (X) = LR (X) ̸= U and
UR(X) contains more than
one element of U .

0 1 1 0

UR (X) ̸= U , LR (X) = ϕ
and UR (X) contains more
than one element of U .

0 1 1 0

UR (X) ̸= U , LR (X) ̸= ϕ
and UR (X) ̸= LR (X)

1 1 0 0
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1. Introduction and preliminaries

Throughout this paper all rings with identity and all modules are unitary.

Refai and Al-Zoubi in [23] introduced the concept of graded primary ideal.
The concept of graded 2-absorbing ideal was introduced and studied by Al-
Zoubi, Abu-Dawwas and Ceken in [5]. The concept of graded prime submodule
was introduced and studied by many authors, see for example [2, 3, 12, 13,
15, 22]. The concept of graded classical prime submodules as a generalization
of graded prime submodules was introduced in [17] and studied in [11]. The
concept of graded weakly classical prime submodules, generalizations of graded
classical prime submodules, was introduced by Abu-Dawwas and Al-Zoubi in [1].
The concept of graded 2-absorbing submodule, generalizations of graded prime
submodule, was introduced by Al-Zoubi and Abu-Dawwas in [4] and studied in
[8, 9]. Then, many generalizations of graded 2-absorbing submodules were stud-
ied such as graded 2-absorbing primary (see [16]), graded weakly 2-absorbing
primary (see [7]) and graded 2-absorbing Ie-prime submodules (see [14]).

*. Corresponding author
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Recently, Al-Zoubi and Al-Azaizeh, in [6] introduced the concept of graded
classical 2-absorbing submodules over a graded commutative ring as a new gen-
eralization of graded 2-absorbing submodules.

Here, we introduce the concept of graded weakly classical 2-absorbing sub-
module as a new generalization of graded classical 2-absorbing submodule on
the one hand and a generalization of a graded weakly classical prime submodule
on other hand.

First, we recall some basic properties of graded rings and modules which
will be used in the sequel. We refer to [18, 19, 20, 21] for these basic properties
and more information on graded rings and modules. Let G be a group with
identity element e. A ring R is called a graded ring (or G-graded ring) if there
exist additive subgroups Rh of R indexed by the elements h ∈ G such that
R = ⊕g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G. The non-zero elements of Rg

are said to be homogeneous of degree g and all the homogeneous elements are
denoted by h(R), i.e. h(R) = ∪h∈GRh. If r ∈ R, then r can be written uniquely
as
∑

g∈G rg, where rg is called a homogeneous component of r in Rg. Moreover,
Re is a subring of R and 1 ∈ Re (see [21]). Let R = ⊕g∈GRg be a G-graded ring.
An ideal I of R is said to be a graded ideal if I =

∑
h∈G(I ∩ Rh) :=

∑
h∈G Ih

(see [21]). Let R = ⊕g∈GRg be a G-graded ring. A left R-module M is said
to be a graded R-module (or G-graded R-module) if there exists a family of
additive subgroups {Mg}g∈G of M such that M = ⊕g∈GMg and RgMh ⊆ Mgh

for all g, h ∈ G. Similarly, if an element of M belongs to ∪g∈GMh = h(M), then
it is called a homogeneous. Note that Mg is an Re-module for every g ∈ G. Let
R = ⊕g∈GRg be a G-graded ring. A submodule N of M is said to be a graded
submodule of M if N = ⊕g∈G(N ∩Mg) := ⊕g∈GNg. In this case, Ng is called
the g-component of N . Moreover, M/N becomes a G-graded R-module with
g-component (M/N)g := (Mg +N)/N for g ∈ G.

2. Graded weakly classical 2-absorbing submodules

Definition 2.1. Let R be a G-graded ring, M a graded R-module, N a proper
graded submodule of M and g ∈ G.

(i) We say that Ng is a weakly classical g-2-absorbing submodule of the Re-
module Mg if Ng ̸= Mg; and whenever re, se, te ∈ Re and mg ∈ Mg

with 0 ̸= resetemg ∈ Ng, then either resemg ∈ Ng or retemg ∈ Ng or
setemg ∈ Ng.

(ii) We say that N is a graded weakly classical 2-absorbing submodule of M
if rh, sα, tβ ∈ h(R) and mλ ∈ h(M) with 0 ̸= rhsαtβmλ ∈ N, then either
rhsαmλ ∈ N or rhtβmλ ∈ N or sαtβmλ ∈ N .

Clearly, every graded classical 2-absorbing submodule is a graded weakly
classical 2-absorbing. However, since {0} is always a graded weakly classical
2-absorbing submodule (by defintion), a graded weakly classical 2-absorbing
submodule need not be a graded classical 2-absorbing submodule.
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Theorem 2.2. Let R be a G-graded ring, M a graded R-module and N a graded
submodule of M . If N is a graded weakly classical 2-absorbing submodule of M ,
then for each g ∈ G with Ng ̸= Mg, Ng is a weakly classical g-2-absorbing
submodule of the Re-module Mg.

Proof. Suppose that N is a graded weakly classical 2-absorbing submodule of
M and g ∈ G with Ng ̸= Mg. Now, assume that 0 ̸= resetemg ∈ Ng where
re, se, te ∈ Re and mg ∈ Mg. Then, 0 ̸= resetemg ∈ N. Since N is a graded
weakly classical 2-absorbing submodule ofM , either resemg ∈ N or retemg ∈ N
or setemg ∈ N . But Ng = N ∩ Mg, so we get that either resemg ∈ Ng or
retemg ∈ Ng or setemg ∈ Ng. Hence, Ng is a weakly classical g-2-absorbing
submodule of the Re-module Mg.

Let R be a G-graded ring,M a graded R-module and N a graded submodule
ofM . A proper submodule Ng of the Re-moduleMg is said to be a classical g-2-
absorbing submodule if whenever re, se, te ∈ Re and mg ∈ Mg with resetemg ∈
Ng, then either resemg ∈ Ng or retemg ∈ Ng or setemg ∈ Ng (see [6]).

Theorem 2.3. Let R be a G-graded ring, M a graded R-module, N a graded
submodule of M and g ∈ G. If Ng is a weakly classical g-2-absorbing submodule
of the Re-module Mg, then either Ng is a classical g-2-absorbing submodule of
the Re-module Mg or (Ng :Re Mg)

3Ng = 0.

Proof. Suppose that (Ng :Re Mg)
3Ng ̸= 0. Let re, se, te ∈ Re andmg ∈Mg such

that resetemg ∈ Ng. If resetemg ̸= 0, then we get the result as Ng is a weakly
classical g-2-absorbing ofMg. So, we assume resetemg = 0. Now, if reseteNg ̸= 0,
then there exists n1g ∈ Ng such that reseten1g ̸= 0, so 0 ̸= resete(mg+n1g) ∈ Ng

which yields either rese(mg + n1g) ∈ Ng or rete(mg + n1g) ∈ Ng or sete(mg +
n1g) ∈ Ng and then either resemg ∈ Ng or retemg ∈ Ng or setemg ∈ Ng. So, we
can assume that reseteNg = 0. Now, if rese(Ng :Re Mg)mg ̸= 0, then there exists
t1e ∈ (Ng :Re Mg) such that reset1emg ̸= 0. Thus, 0 ̸= rese(te+ t1e)mg ∈ Ng and
then either resemg ∈ Ng or re(te + t1e)mg ∈ Ng or se(te + t1e)mg ∈ Ng which
follows either resemg ∈ Ng or retemg ∈ Ng or setemg ∈ Ng.We can assume that
rese(Ng :Re Mg)mg = 0, rete(Ng :Re Mg)mg = 0 and sete(Ng :Re Mg)mg = 0.
Now, if re(Ng :Re Mg)

2mg ̸= 0, then there exist s2e , t2e ∈ (Ng :Re Mg) such
that res2et2emg ̸= 0. Thus, by our assumptions we get 0 ̸= re(se + s2e)(te +
t2e)mg ∈ Ng which gives either re(se + s2e)mg ∈ Ng or re(te + t2e)mg ∈ Ng or
(se + s2e)(te + t2e)mg ∈ Ng, and then either resemg ∈ Ng or retemg ∈ Ng or
setemg ∈ Ng. So, we assume that re(Ng :Re Mg)

2mg = 0, se(Ng :Re Mg)
2mg =

0 and te(Ng :Re Mg)
2mg = 0. Now, if rese(Ng :Re Mg)Ng ̸= 0, then there

exist t3e ∈ (Ng :Re Mg) and n2g ∈ Ng such that reset3en2g ̸= 0. Hence, by
our assumptions we get 0 ̸= rese(te + t3e)(mg + n2g) ∈ Ng and then either
rese(mg+n2g) ∈ Ng or re(te+t3e)(mg+n2g) ∈ Ng or se(te+t3e)(mg+n2g) ∈ Ng

which yields either resemg ∈ Ng or retemg ∈ Ng or setemg ∈ Ng.We assume that
rese(Ng :Re Mg)Ng = 0, rete(Ng :Re Mg)Ng = 0 and sete(Ng :Re Mg)Ng = 0.
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Now, if re(Ng :Re Mg)
2Ng ̸= 0, then there exist s4e , t4e ∈ (Ng :Re Mg) and

n3g ∈ Ng such that res4et4en3g ̸= 0. Thus, by assumptions, 0 ̸= re(se+ s4e)(te+
t4e)(mg+n3g) ∈ Ng, then either re(se+s4e)(mg+n3g) ∈ Ng or re(te+ t4e)(mg+
n3g) ∈ Ng or (se + s4e)(te + t4e)(mg + n3g) ∈ Ng, and then either resemg ∈ Ng

or retemg ∈ Ng or setemg ∈ Ng. So, we can assume that re(Ng :Re Mg)
2Ng = 0,

se(Ng :Re Mg)
2Ng = 0 and te(Ng :Re Mg)

2Ng = 0. Since (Ng :Re Mg)
3Ng ̸= 0,

there exist r5e , s5e , t5e ∈ (Ng :Re Mg) and n4g ∈ Ng such that r5es5et5en4g ̸= 0.
Hence, by our assumptions we get 0 ̸= (re+r5e)(se+s5e)(te+t5e)(mg+n4g) ∈ Ng

which follows that either (re + r5e)(se + s5e)(mg + n4g) ∈ Ng or (re + r5e)(te +
t5e)(mg + n4g) ∈ Ng or (se + s5e)(te + t5e)(mg + n4g) ∈ Ng, and then either
resemg ∈ Ng or retemg ∈ Ng or setemg ∈ Ng. Therefore, Ng is a classical
g-2-absorbing submodule of the Re-module Mg.

Let R be a G-graded ring and M a graded R-module. A proper graded
submodule N of M is said to be a graded weakly classical prime submodule if
whenever rg, sh ∈ h(R) and mλ ∈ h(M) such that 0 ̸= rgshmλ ∈ N , then either
rgmλ ∈ N or shmλ ∈ N (see [1]).

It is easy to see that every graded weakly classical prime submodule is a
graded weakly classical 2-absorbing. The following example shows that the
converse is not true in general.

Example 2.4. Let G = Z2, then R = Z is a G-graded ring with R0 = Z and
R1 = {0}. Let M = Z be a graded R-module with M0 = Z and M1 = {0}. Now,
consider the graded submodule N = 4Z of M. Then, N is not a graded weakly
classical prime submodule ofM since 0 ̸= 2·2·3 ∈ N but 2·3 ̸∈ N. However, easy
computations show that N is a graded weakly classical 2-absorbing submodule
of M.

Theorem 2.5. Let R be a G-graded ring, M a graded R-module and N and K
be two graded submodules of M with N ⊊ K. If N is a graded weakly classical
2-absorbing submodule of M, then N is a graded weakly classical 2-absorbing
submodule of K.

Proof. Let rg, sh, tα ∈ h(R) and mλ ∈ K ∩h(M) such that 0 ̸= rgshtαmλ ∈ N,
then either rgshmλ ∈ N or rgtαmλ ∈ N or shtαmλ ∈ N as N is a graded weakly
classical 2-absorbing submodule of M. So, we get the result.

The following example shows that a graded submodule of a graded weakly
classical 2-absorbing submodule need not be a graded weakly classical 2-absorbing.

Example 2.6. Let G = Z2, then R = Z is a G-graded ring with R0 = Z and
R1 = {0}. Let M = Z be a graded R-module with M0 = Z and M1 = {0}.
Now, consider the graded submodules N = 4Z and K = 16Z ⊆ N of M. It is
easy to see that N is a graded weakly classical 2-absorbing submodule ofM but
K is not a graded weakly classical 2-absorbing since 0 ̸= 2 · 2 · 2 · 2 ∈ K and
2 · 2 · 2 ̸∈ K.
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Theorem 2.7. Let R be a G-graded ring, M a graded R-module and N and K
be two proper graded R-submodules of M such that K ⊆ N . Then, the following
statements hold:

(i) If N is a graded weakly classical 2-absorbing submodule of M, then N/K
is a graded weakly classical 2-absorbing submodule of M/K.

(ii) If K is a graded weakly classical 2-absorbing submodule of M and N/K
is a graded weakly classical 2-absorbing submodule of M/K, then N is a
graded weakly classical 2-absorbing submodule of M .

Proof. (i) Let rg, sh, tα ∈ h(R) and mλ + K ∈ h(M/K) such that 0M/K ̸=
rgshtαmλ +K ∈ N/K. Hence, 0M ̸= rgshtαmλ ∈ N which implies that either
rgshmλ ∈ N or rgtαmλ ∈ N or shtαmλ ∈ N and then either rgshmλ+K ∈ N/K
or rgtαmλ + K ∈ N/K or shtαmλ + K ∈ N/K. Therefore, N/K is a graded
weakly classical 2-absorbing submodule of M/K.

(ii) Let rg, sh, tα ∈ h(R) and mλ ∈ h(M) such that 0M ̸= rgshtαmλ ∈ N.
Now, if 0M ̸= rgshtαmλ ∈ K, then either rgshmλ ∈ K ⊆ N or rgtαmλ ∈ K ⊆ N
or shtαmλ ∈ K ⊆ N. Otherwise, we get 0M/K ̸= rgshtαmλ + K ∈ N/K and
then either rgshmλ +K ∈ N/K or rgtαmλ +K ∈ N/K or shtαmλ +K ∈ N/K.
Thus, either rgshmλ ∈ N or rgtαmλ ∈ N or shtαmλ ∈ N. Therefore, N is a
graded weakly classical 2-absorbing submodule of M .

The following example shows that the intersection of two graded weakly clas-
sical 2-absorbing submodules need not be a graded weakly classical 2-absorbing
submodule.

Example 2.8. Let G = Z2. Then, R = Z is a G-graded ring with R0 = Z and
R1 = {0}. Let M = Z be a graded R-module with M0 = Z and M1 = {0}. Now,
consider the graded submodules N = 4Z and K = 9Z of M. It is easy to see
that N and K are graded weakly classical 2-absorbing submodules of M. But
N ∩ K = 36Z is not a graded weakly classical 2-absorbing submodule of M,
since 0 ̸= 2 · 2 · 3 · 3 ∈ 36Z and neither 2 · 2 · 3 ∈ 36Z nor 2 · 3 · 3 ∈ 36Z.

Theorem 2.9. Let R be a G-graded ring, M a graded R-module and N and K
be two graded submodules of M . If N and K are graded weakly classical prime
submodules of M , then N∩K is a graded weakly classical 2-absorbing submodule
of M.

Proof. Let rg, sh, tα ∈ h(R) and mλ ∈ h(M) such that 0 ̸= rgshtαmλ ∈ N ∩K.
Hence, 0 ̸= rgshtαmλ ∈ N and 0 ̸= rgshtαmλ ∈ K. This yields that either
rgmλ ∈ N or shmλ ∈ N or tαmλ ∈ N and either rgmλ ∈ K or shmλ ∈ K or
tαmλ ∈ K as N and K are graded classical prime submodules of M. Assume,
without loss of generality, rgmλ ∈ N and shmλ ∈ K. Thus, rgshmλ ∈ N ∩K.
Therefore, N ∩K is a graded weakly classical 2-absorbing submodule of M.
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Let M and M ′ be two graded R-modules. A homomorphism of graded R-
modules f :M →M ′ is a homomorphism of R-modules which satisfies f(Mg) ⊆
M ′

g for every g ∈ G (see [21]).

Theorem 2.10. Let R be a G-graded ring, M and M ′ be two graded R-modules
and f :M →M ′ be a graded homomorphism.

(i) If f is a graded epimorphism and N is a graded weakly classical 2-absorbing
submodule of M with ker(f) ⊆ N , then f(N) is a graded weakly classical
2-absorbing submodule of M ′.

(ii) If f is a graded isomorphism and N ′ is a graded weakly classical 2-absorbing
submodule of M ′, then f−1(N ′) is a graded weakly classical 2-absorbing
submodule of M .

Proof. (i) Clearly, f(N) is a proper graded submodule ofM ′. Now, let rg, sh, tα
∈ h(R) and m′

λ ∈ h(M ′) such that 0 ̸= rgshtαm
′
λ ∈ f(N). Since f is a graded

epimorphism, there exists mλ ∈ h(M) such that f(mλ) = m′
λ. Hence, 0 ̸=

rgshtαm
′
λ = f(rgshtαmλ) ∈ f(N) and then there exists n ∈ N ∩ h(M) such

that f(rgshtαmλ) = f(n) which yields that rgshtαmλ−n ∈ ker(f) ⊆ N , so 0 ̸=
rgshtαmλ ∈ N. Thus, as N is a graded weakly classical 2-absorbing submodule
of M we get either rgshmλ ∈ N or rgtαmλ ∈ N or shtαmλ ∈ N. So, either
rgshm

′
λ ∈ f(N) or rgtαm

′
λ ∈ f(N) or shtαm

′
λ ∈ f(N). Therefore, f(N) is a

graded weakly classical 2-absorbing submodule of M ′.
(ii) It is easy to see that f−1(N ′) is a proper graded submodule of M . Now,

let rg, sh, tα ∈ h(R) and mλ ∈ h(M) such that 0 ̸= rgshtαmλ ∈ f−1(N ′). Thus,
0 ̸= rgshtαf(mλ) ∈ N ′ and then either rgshf(mλ) ∈ N ′ or rgtαf(mλ) ∈ N ′

or shtαf(mλ) ∈ N ′ as N ′ is a graded weakly classical 2-absorbing submodule
of M ′. Hence, either rgshmλ ∈ f−1(N ′) or rgtαmλ ∈ f−1(N ′) or shtαmλ ∈
f−1(N ′). Therefore, f−1(N ′) is a graded weakly classical 2-absorbing submodule
of M .

Recall from [4] that a proper graded submodule N of a graded R-module M
is said to be a graded weakly 2-absorbing submodule of M if whenever rg, sh ∈
h(R) and mλ ∈ h(M) with 0 ̸= rgshmλ ∈ N, then either rgsh ∈ (N :R M) or
rgmλ ∈ N or shmλ ∈ N.

Theorem 2.11. Let R be a G-graded ring, M a graded gr-cyclic R-module and
N a proper graded submodule ofM . If N is a graded weakly classical 2-absorbing
submodule of M , then N is a graded weakly 2-absorbing submodule of M.

Proof. Since M is a gr-cyclic, there exists mλ1 ∈ h(M) such that M = Rmλ1 .
Now, let rg, sh ∈ h(R) and mλ2 ∈ h(M) with 0 ̸= rgshmλ2 ∈ N. Hence, there
exists tα ∈ h(R) such that 0 ̸= rgshmλ2 = rgshtαmλ1 ∈ N . This yields that
either rgmλ2 = rgtαmλ1 ∈ N or shmλ2 = shtαmλ1 ∈ N or rgsh ∈ (N :R
mλ1) = (N :R M) as N is a graded weakly classical 2-absorbing submodule of
M. Therefore, N is a graded weakly 2-absorbing submodule of M.
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Recall from [5] that a proper graded ideal I of R is said to be a graded
weakly 2-absorbing ideal of R if whenever rg, sh, tα ∈ h(R) with 0 ̸= rgshtα ∈ I,
then rgsh ∈ I or rgtα ∈ I or shtα ∈ I.

Theorem 2.12. Let R be a G-graded ring, M a graded R-module and N a
proper graded submodule of M .

(i) If N is a graded weakly classical 2-absorbing submodule of M and mλ ∈
h(M)\N with AnnR(mλ) = {0}, then (N :R mλ) is a graded weakly 2-
absorbing ideal of R.

(ii) If (N :R mλ) is a graded weakly 2-absorbing ideal of R for each mλ ∈
h(M)\N, then N is a graded weakly classical 2-absorbing submodule of M.

Proof. (i) Letmλ ∈ h(M)\N, so (N :R mλ) is a proper graded ideal of R. Now,
let rg, sh, tα ∈ h(R) with 0 ̸= rgshtα ∈ (N :R mλ). Since AnnR(mλ) = {0},
0 ̸= rgshtαmλ ∈ N . Hence, we get either rgshmλ ∈ N or rgtαmλ ∈ N or
shtαmλ ∈ N as N is a graded weakly classical 2-absorbing submodule ofM. This
yields that either rgsh ∈ (N :R mλ) or rgtα ∈ (N :R mλ) or shtα ∈ (N :R mλ).
Therefore, (N :R mλ) is a graded weakly 2-absorbing ideal of R.

(ii) Let rg, sh, tα ∈ h(R) and mλ ∈ h(M) such that 0 ̸= rgshtαmλ ∈ N. If
mλ ∈ N , the we get the result. So, we assume mλ ̸∈ N, then (N :R mλ) is a
graded weakly 2-absorbing ideal of R. Hence, 0 ̸= rgshtα ∈ (N :R mλ) which
yields that rgsh ∈ (N :R mλ) or rgtα ∈ (N :R mλ) or shtα ∈ (N :R mλ) and then
either rgshmλ ∈ N or rgtαmλ ∈ N or shtαmλ ∈ N. Therefore, N is a graded
weakly classical 2-absorbing submodule of M.

A graded zero-divisor on a graded R-module M is an element r ∈ h(R) for
which there exists m ∈ h(M) such that m ̸= 0 but rm = 0. The set of all graded
zero-divisors on M is denoted by G-ZdvR(M).

The following result studies the behavior of graded weakly classical 2-absor-
bing submodules under localization.

Theorem 2.13. Let R be a G-graded ring, M a graded R-module, S ⊆ h(R) a
multiplication closed subset of R and N a graded submodule of M . Then, the
following statements hold.

(i) If N is a graded weakly classical 2-absorbing submodule of M and (N :R
M)∩S = ∅, then S−1N is a graded weakly classical 2-absorbing submodule
of S−1M .

(ii) If S−1N is a graded weakly classical 2-absorbing submodule of S−1M such
that S ∩G-ZdvR(N) = ∅ and S ∩G-ZdvR(M/N) = ∅, then N is a graded
weakly classical 2-absorbing submodule of M .

Proof. (i) Suppose that N is a graded weakly classical 2-absorbing submod-
ule of M. Since (N :R M) ∩ S = ∅, S−1N is a proper graded submodule of
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S−1M. Now, let
rg
s1
, shs2 ,

tα
s3

∈ h(S−1R) and mλ
s4

∈ h(S−1M) such that 0S−1M ̸=
rg
s1

sh
s2

tα
s3

mλ
s4

=
rgshtαmλ

s1s2s3s4
∈ S−1N. Hence, there exists s5 ∈ S such that s5rgshtαmλ

∈ N. If s5rgshtαmλ = 0M , then
rg
s1

sh
s2

tα
s3

mλ
s4

=
s5rgshtαmλ

s5s1s2s3s4
= 0S−1M , a contra-

diction. So, 0M ̸= s5rgshtαmλ ∈ N . This yields that either s5rgshmλ ∈ N or
s5rgtαmλ ∈ N or s5shtαmλ ∈ N. Thus, either

rg
s1

sh
s2

mλ
s4

=
s5rgshmλ

s5s1s2s4
∈ S−1N or

rg
s1

tα
s3

mλ
s4

=
s5rgtαmλ

s5s1s3s4
∈ S−1N or sh

s2
tα
s3

mλ
s4

= s5shtαmλ
s5s2s3s4

∈ S−1N. Therefore, S−1N

is a graded weakly classical 2-absorbing submodule of S−1M .
(ii) Let rg, sh, tα ∈ h(R) and mλ ∈ h(M) such that 0M ̸= rgshtαmλ ∈ N.

Hence,
rg
1

sh
1

tα
1

mλ
1 ∈ S−1N. If

rg
1

sh
1

tα
1

mλ
1 = 0S−1M , then there exists s ∈ S with

srgshtαmλ = 0M , but S ∩ G-ZdvR(N) = ∅, a contradiction. So, 0S−1M ̸=
rg
1

sh
1

tα
1

mλ
1 ∈ S−1N. Thus, either

rg
1

sh
1

mλ
1 ∈ S−1N or

rg
1

tα
1

mλ
1 ∈ S−1N or

sh
1

tα
1

mλ
1 ∈ S−1N as S−1N is a graded weakly classical 2-absorbing submod-

ule of S−1M. If
rg
1

sh
1

mλ
1 ∈ S−1N, then there exists s ∈ S with srgshmλ ∈ N

and this follows that rgshmλ ∈ N since S ∩ G-ZdvR(M/N) = ∅. Similarly, if
either

rg
1

tα
1

mλ
1 ∈ S−1N or sh

1
tα
1

mλ
1 ∈ S−1N, then rgtαmλ ∈ N or shtαmλ ∈ N.

Therefore, N is a graded weakly classical 2-absorbing submodule of M .

Theorem 2.14. Let R be a G-graded ring, M1 andM2 be two graded R-modules
and N1 and N2 be two proper graded submodules of M1 and M2, respectively.
Let M =M1 ×M2. Then, the following statements hold.

(i) N1 is a graded weakly classical 2-absorbing submodule of M1 and for each
rg, sh, tα ∈ h(R) and m1λ ∈ h(M1) with rgshtαm1λ = 0, rgshm1λ ̸∈ N1,
rgtαm1λ ̸∈ N1 and shtαm1λ ̸∈ N1, implies rgshtα ∈ AnnR(M2λ) if and
only if N1 ×M2 is a graded weakly classical 2-absorbing submodule of M.

(ii) N2 is a graded weakly classical 2-absorbing submodule of M2 and for each
rg, sh, tα ∈ h(R) and m2λ ∈ h(M2) with rgshtαm2λ = 0, rgshm2λ ̸∈ N2,
rgtαm2λ ̸∈ N2 and shtαm2λ ̸∈ N2, implies rgshtα ∈ AnnR(M1λ) if and
only if M1 ×N2 is a graded weakly classical 2-absorbing submodule of M.

Proof. (i) Suppose that N1 ×M2 is a graded weakly classical 2-absorbing sub-
module ofM. Let rg, sh, tα ∈ h(R) and m1λ ∈ h(M1) such that 0 ̸= rgshtαm1λ ∈
N1. Hence, (0, 0) ̸= rgshtα(m1λ , 0) ∈ N1 ×M2 and then either rgsh(m1λ , 0) ∈
N1 ×M2 or rgtα(m1λ , 0) ∈ N1 ×M2 or shtα(m1λ , 0) ∈ N1 ×M2, and so either
rgshm1λ ∈ N1 or rgtαm1λ ∈ N1 or shtαm1λ ∈ N1. Thus, N1 is a graded weakly
classical 2-absorbing submodule of M1. Now, let rg, sh, tα ∈ h(R) and m1λ ∈
h(M1) such that rgshtαm1λ = 0 and neither rgshm1λ ∈ N1 nor rgtαm1λ ∈ N1 nor
shtαm1λ ∈ N1. And assume rgshtα ̸∈ AnnR(M2λ), then there exists m2λ ∈M2λ

such that rgshtαm2λ ̸= 0. Thus, (0, 0) ̸= rgshtα(m1λ ,m2λ) ∈ N1 ×M2, which
yields either rgsh(m1λ ,m2λ) ∈ N1 × M2 or rgtα(m1λ ,m2λ) ∈ N1 × M2 or
shtα(m1λ ,m2λ) ∈ N1 ×M2 and then either rgshm1λ ∈ N1 or rgtαm1λ ∈ N1 or
shtαm1λ ∈ N1, a contradiction. Therefore, rgshtα ∈ AnnR(M2λ). Conversely, let
rg, sh, tα ∈ h(R) and (m1λ ,m2λ) ∈ h(M) such that (0, 0) ̸= rgshtα(m1λ ,m2λ) ∈
N1 ×M2. If 0 ̸= rgshtαm1λ ∈ N1, then either rgshm1λ ∈ N1 or rgtαm1λ ∈ N1
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or shtαm1λ ∈ N1 as N1 is a graded weakly classical 2-absorbing submodule
of M1, so either rgsh(m1λ ,m2λ) ∈ N1 ×M2 or rgtα(m1λ ,m2λ) ∈ N1 ×M2 or
shtα(m1λ ,m2λ) ∈ N1 ×M2. Now, if rgshtαm1λ = 0, then rgshtαm2λ ̸= 0 and so
rgshtα ̸∈ AnnR(M2λ). Thus, either rgshm1λ ∈ N1 or rgtαm1λ ∈ N1 or shtαm1λ ∈
N1 and then either rgsh(m1λ ,m2λ) ∈ N1 ×M2 or rgtα(m1λ ,m2λ) ∈ N1 ×M2

or shtα(m1λ ,m2λ) ∈ N1 ×M2. Therefore, N1 ×M2 is a graded weakly classical
2-absorbing submodule of M.

(ii) The proof is similar to that in part (i).

Theorem 2.15. Let R be a G-graded ring, M a graded R-module and N a
proper graded submodule of M . If N is a graded weakly classical 2-absorbing
submodule of M, then for each rg, sh, tα ∈ h(R) and mλ ∈ h(M), then (N :R
rgshtαmλ) = (0 :R rgshtαmλ)∪(N :R rgshmλ)∪(N :R rgtαmλ)∪(N :R shtαmλ).

Proof. Let rg, sh, tα ∈ h(R) and mλ ∈ h(M). It is easy to see that (0 :R
rgshtαmλ)∪(N :R rgshmλ)∪(N :R rgtαmλ)∪(N :R shtαmλ) ⊆ (N :R rgshtαmλ).
Now, let lβ ∈ (N :R rgshtαmλ)∩h(R), then lβrgshtαmλ ∈ N. If lβrgshtαmλ = 0,
then lβ ∈ (0 :R rgshtαmλ). If 0 ̸= lβrgshtαmλ ∈ N, then either lβrgshmλ ∈ N or
lβrgtαmλ ∈ N or lβshtαmλ ∈ N. Thus, either lβ ∈ (N :R rgshmλ) or lβ ∈ (N :R
rgtαmλ) or lβ ∈ (N :R shtαmλ). Hence, we get the result.

Theorem 2.16. Let Ri be a G-graded ring and Mi a graded Ri-module, for
i = 1, 2. Let R = R1 × R2, M = M1 ×M2 and g ∈ G with M2g ̸= 0. Suppose
that N = N1 ×M2 is a proper graded submodule of M . Then, the following
statements are equivalent:

(i) N1g is a classical g-2-absorbing submodule of an R1e-module M1g .

(ii) Ng is a classical g-2-absorbing submodule of an Re-module Mg.

(iii) Ng is a weakly classical g-2-absorbing submodule of an Re-module Mg.

Proof. (i) ⇒ (ii) Let (r1e , r2e), (s1e , s2e), (t1e , t2e) ∈ Re and (m1g ,m2g) ∈ Mg

such that (r1e , r2e)(s1e , s2e)(t1e , t2e)(m1g ,m2g) ∈ Ng. Then, r1es1et1em1g ∈ N1g ,
so we get either r1es1em1g ∈ N1g or r1et1em1g ∈ N1gor s1et1em1g ∈ N1g as N1g

is a classical g-2-absorbing submodule of M1g .
Hence, either (r1e , r2e)(s1e , s2e)(m1g ,m2g)∈Ng or (r1e , r2e)(t1e , t2e)(m1g ,m2g)

∈ Ng or (s1e , s2e)(t1e , t2e)(m1g ,m2g) ∈ Ng. Therefore, Ng is a classical g-2-
absorbing submodule of Mg.

(ii) ⇒ (iii) It is easy to see that every classical g-2-absorbing submodule is
a weakly classical g-2-absorbing.

(iii) ⇒ (i) Let r1e , s1e , t1e ∈ R1e and m1g ∈ M1g such that r1es1et1em1g ∈
N1g . Hence, for any 0 ̸=m2g∈M2g , we get 0 ̸=(r1e , 12e)(s1e , 12e)(t1e , 12e)(m1g ,m2g)
∈ Ng. So, either (r1e , 12e)(s1e , 12e)(m1g ,m2g)∈Ng or (r1e , 12e)(t1e , 12e)(m1g ,m2g)
∈ Ng or (s1e , 12e)(t1e , 12e)(m1g ,m2g) ∈ Ng. Then, either r1es1em1g ∈ N1g or
r1et1em1g ∈ N1g or s1et1em1g ∈ N1g . Therefore, N1g is a classical g-2-absorbing
submodule of an R1e-module M1g .
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Theorem 2.17. Let Ri be a G-graded ring, Mi a graded Ri-module and Ni a
proper graded submodule of Mi, for i = 1, 2. Let R = R1 ×R2, M =M1 ×M2,
N = N1 × N2 and g ∈ G. If Ng is a weakly classical g-2-absorbing submodule
of an Re-module Mg and N2g ̸= M2g , then N1g is a weakly classical g-prime
submodule of an R1e-module M1g .

Proof. Let r1e , s1e ∈ R1e and m1g ∈M1g such that 0 ̸= r1es1em1g ∈ N1g . Since
N2g ̸=M2g , there exists m2g ∈M2g\N2g . Hence,

(01g , 02g) ̸= (r1e , 12e)(s1e , 12e)(11e , 02e)(m1g ,m2g) = (r1es1em1g , 02g) ∈ Ng.

This implies that either (r1e , 12e)(11e , 02e)(m1g ,m2g) ∈ Ng or

(s1e , 12e)(11e , 02e)(m1g ,m2g) ∈ Ng

as Ng is a weakly classical g-2-absorbing submodule of Mg and m2g ̸∈ N2g .
Thus, either r1em1g ∈ N1g or s1em1g ∈ N1g . Therefore, N1g is a weakly classical
g-prime submodule of an R1e-module M1g .
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Abstract. In this paper, we provide an improvement of the modular product of
fuzzy graphs defined by [16] in 2015, which we call strong modular product. We give
sufficient conditions for the strong modular product of two fuzzy graphs to be complete
and we show that if the strong modular product of two fuzzy graphs is complete, then
at least one factor is a complete fuzzy graph. Moreover, we give necessary and sufficient
conditions for the strong modular product of two balanced fuzzy graphs to be balanced.

Keywords: fuzzy graph, complete fuzzy graph, strong modular product, balanced
fuzzy graph.

1. Introduction

Graph theory applications in system analysis, operations research and economics
are very important. Since the appearance of graph problems are somtimes not
known beyond doubt, it is nice to deal with them via fuzzy logic. The concept
of fuzzy relation was introduced by Zadeh [23] in his landmark paper ”Fuzzy
sets” in 1965. Fuzzy graph and several fuzzy graph concepts were introduced
by Rosenfeld [21] in 1975. Lately, fuzzy graph theory is having more and more
applications in real time modeling in which the level of information immanent
in the system changes.

Mordeson and Peng [17] defined the concept of complement of fuzzy graph
and studied some operations on fuzzy graphs. In [22], modified the definition
of complement of a fuzzy graph so that the complement of the complement is
the original fuzzy graph, which agrees with the classical graph case. Moreover
several properties of self-complementary fuzzy graphs and the complement of
some operations of fuzzy graphs that were introduced in [17] were studied. For
more on the previous notions and the following ones, one can see [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22].

A fuzzy subset of a non-empty set V is a function σ : V → [0, 1] and a fuzzy
relation µ on σ is a fuzzy subset of V ×V . All throughout this paper, we assume
that V is finite, σ is reflexive and µ is symmetric.

Definition 1.1. [21] A fuzzy graph G : (σ, µ) where σ is a fuzzy subset of V
and µ is a fuzzy relation on σ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ V,
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where ∧ stands for minimum. The underlying crisp graph of G is denoted by
G∗ : (σ∗, µ∗) where σ∗ = sup p(σ) = {x ∈ V : σ(x) > 0} and µ∗ = sup p(µ) =
{(x, y) ∈ V × V : µ(x, y) > 0}.H = (σ′, µ′) is a fuzzy subgraph of G if there
exists X ⊆ V such that, σ′ : X → [0, 1] is a fuzzy subset and µ′ : X ×X → [0, 1]
is a fuzzy relation on σ′ such that µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ X.

Definition 1.2 ([20]). A fuzzy graph G : (σ, µ) is complete if µ(x, y) = σ(x) ∧
σ(y) for all x, y ∈ V.

Next, we recall the following two results from [22].

Lemma 1.1. Let G : (σ, µ) be a self-complemetary fuzzy graph. Then∑
x,y∈V µ(x, y) = (1/2)

∑
x,y∈V (σ(x) ∧ σ(y))

Lemma 1.2. Let G : (σ, µ) be a fuzzy graph satisfying µ(x, y) = (1/2)(σ(x) ∧
σ(y)) for all x, y ∈ V.Then G is self-complemetary.

Definition 1.3 ([15]). Two fuzzy graphs G1 : (σ1, µ1) with crisp graph G∗
1 :

(V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2) are isomorphic if

there exists a bijection h : V1 → V2 such that σ1(x) = σ2(h(x)) and µ1(x, y) =
µ2(h(x), h(y)) for all x, y ∈ V1.

Lemma 1.3 ([18]). Any two isomorphic fuzzy graphs G1 : (σ1, µ1) and G2 :
(σ2, µ2) satisfy

∑
x∈V1 σ1(x) =

∑
x∈V2 σ2(x) and∑

x,y∈V1

µ1(x, y) =
∑
x,y∈V2

µ2(x, y).

Definition 1.4 ([5]). The density of a fuzzy graph G : (σ, µ) is

D(G) = 2(
∑
u,v∈V

µ(u, v))/(
∑
u,v∈V

(σ(u) ∧ σ(v))).

G is balanced if. D(H) ≤ D(G) for all fuzzy non-empty subgraphs H of G.

Theorem 1.1 ([5]). A complete fuzzy graph is balanced.

A new operation on fuzzy graphs is next recalled:

Definition 1.5 ([16]). The modular product of two fuzzy graphs G1 : (σ1, µ1)
with crisp graph G∗

1 : (V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2)

is defined to be the fuzzy graph G1 ⊚ G2 : (σ1 ⊚ σ2, µ1 ⊚ µ2) with crisp graph
G∗ : (V1 × V2, E) where

E = {(u1, v1)(u2, v2) : u1u2 ∈ E1, v1v2 ∈ E2},

(σ1⊚σ2)(u, v)=σ1(u)∧σ2(v), for all (u, v)∈V1×V2 and (µ1⊚µ2)((u1, v1)(u2, v2))
= µ1(u1u2) ∧ µ2(v1v2) when u1u2 ∈ E1, v1v2 ∈ E2, (µ1 ⊚ µ2)((u1, v1)(u2, v2)) =
σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2) when u1u2 /∈ E1, v1v2 /∈ E2.
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In [16], it was proved thet the modular product of two strong fuzzy graphs
is a strong fuzzy graph. Clearly, the modular product of two complete fuzzy
graphs need not be a complete fuzzy graph as (µ1 ⊚ µ2)((u1, v1)(u2, v2)) is not
defined above for the case u1 = u2 or v1 = v2.

In Section 2 of this paper, we provide an improvement of the modular prod-
uct of fuzzy graphs defined by [16], which we call strong modular product. We
give sufficient conditions for the strong modular product of two fuzzy graphs
to be complete and we show that if the strong modular product is complete,
then at least one factor is a complete fuzzy graph. Section 3 is divoted to give
necessary and sufficient conditions for the strong modular product of two fuzzy
balanced graphs to be balanced.

2. Strong modular product of fuzzy graphs

It clear that the modular product of two complete fuzzy graphs need not be
complete, see the example in Figure 4.1 in [16]. Next, we modify the above
definition so that the preceding property holds.

Definition 2.1. The strong modular product of two fuzzy graphs G1 : (σ1, µ1)
with crisp graph G∗

1 : (V1, E1) and G2 : (σ2, µ2) with crisp graph G∗
2 : (V2, E2)

is defined to be the fuzzy graph G1 ⊞ G2 : (σ1 ⊞ σ2, µ1 ⊞ µ2) with crisp graph
G∗ : (V1 × V2, E) where

E = {(u1, v1)(u2, v2) : u1u2 ∈ E1, v1v2 ∈ E2},

(σ1 ⊞ σ2)(u, v) = σ1(u) ∧ σ2(v), for all (u, v) ∈ V1 × V2 and

(µ1 ⊞ µ2)((u1, v1)(u2, v2))

=


µ1(u1u2) ∧ µ2(v1v2), u1u2 ∈ E1, v1v2 ∈ E2

σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2), u1u2 /∈ E1, v1v2 /∈ E2

σ1(u1) ∧ µ2(v1v2), u1 = u2, v1v2 ∈ E2

σ2(v1) ∧ µ1(u1u2), u1u2 ∈ E1, v1 = v2.

Next, we show that the above definition is well-defined.

Theorem 2.1. The strong modular product of two fuzzy graphs is a fuzzy graph.

Proof. Let G1 : (σ1, µ1) and G2 : (σ2, µ2) be two fuzzy graphs with underlying
graphs G∗

1 : (V1, E1) and G∗
2 : (V2, E2), respectively. Since Case 1 and Case 2

are proved in [16] and as Case 3 is similar to Case 4, we only prove Case 3.

Case 3. If u1 = u2, v1v2 ∈ E2, then as G2 is a fuzzy graph

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2)
≤ σ1(u1) ∧ σ2(v1) ∧ σ2(v2).
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Thus

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) ≤ σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)
((σ1 ⊞ σ2)(u1, v1)) ∧ ((σ1 ⊞ σ2)(u2, v2)).

Next, we show that the strong modular product of two complete fuzzy graphs
are again a complete fuzzy graph.

Theorem 2.2. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then
G1 ⊞G2 is a complete fuzzy graph.

Proof. If (u1, v1)(u2, v2) ∈ E, then we have the following cases:
Case 1. u1u2 ∈ E1, v1v2 ∈ E2.
Case 2. u1u2 /∈ E1, v1v2 /∈ E2.
Case 3. u1 = u2, v1v2 ∈ E2.
Case 4. u1u2 ∈ E1, v1 = v2.

Cases 1 and 2 follow from the proof of Theorem 4.2 in [16]. Case 3 and Case
4 are similar, so we only prove Case 3.
Case 3. Since G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧ µ2(v1v2)
= σ1(u1) ∧ σ2(v1) ∧ σ2(v2)
= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)
= (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2)).

Hence, G1 ⊞G2 is complete.

Corollary 2.1. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete (strong) fuzzy
graphs, then G1 ⊞G2 is a strong fuzzy graph.

An interesting property of complement is given next.

Theorem 2.3. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are complete fuzzy graphs, then
G1 ⊞G2 ≃ G1 ⊞G2.

Proof. Let G : (σ, µ) = G1 ⊞G2, µ = µ1 ⊞ µ2, G∗ = (V,E), G1 : (σ1, µ1),
G∗

1 = (V1, E1), G2 : (σ2, µ2), G∗
2 = (V2, E2) and G1 ⊞G2 : (σ1 ⊞σ2, µ1 ⊞µ2). We

only need to show µ1 ⊞ µ2 = µ1 ⊞ µ2. For any arc e joining nodes of V,we have
the following cases:
Case 1. If u1u2 ∈ E1, v1v2 ∈ E2, then as G is complete by Theorem 2.2, µ(e) = 0.
On the other hand, (µ1 ⊞ µ2)(e) = 0 since u1u2 /∈ E1 and v1v2 /∈ E2.
Case 2. If u1u2 /∈ E1, v1v2 /∈ E2, then is case is not possible to occur as both G1

and G2 are complete.
Case 3. e = (u, v1)(u, v2) where v1v2 ∈ E2.Then as G is complete by Theorem
2.2, µ(e) = 0. On the other hand, (µ1 ⊞ µ2)(e) = 0 since v1v2 /∈ E2.
Case 4. Similar proof to Case 3.

In all cases µ1 ⊞ µ2 = µ1 ⊞ µ2 and therefore, G1 ⊞G2 ≃ G1 ⊞G2.
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Next, we show that if the strong modular product of two fuzzy graphs is
complete, then at least one of the two fuzzy graphs must be complete.

Theorem 2.4. If G1 : (σ1, µ1) and G2 : (σ2, µ2) are fuzzy graphs such that
G1 ⊞G2 is complete, then at least G1 or G2 must be complete.

Proof. Suppose to the contrary that both G1 and G2 are not complete. Then
there exists at least one u1, u2 ∈ V1 and v1, v2 ∈ V2 such that µ1(u1u2) <
σ1(u1) ∧ σ1(u2)) and µ2(v1v2) < σ2(v1) ∧ σ2(v2)) then, we have the following
cases:

Case 1. If u1u2 ∈ E1, v1v2 ∈ E2, then (µ1 ⊞ µ2)((u1, v1)(u2, v2)) = µ1(u1u2) ∧
µ2(v1v2) and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)
> µ1(u1u2) ∧ µ2(v1v2),

which is a contradiction.

Case 2. If u1u2 /∈ E1, v1v2 /∈ E2, then (µ1 ⊞ µ2)((u1, v1)(u2, v2)) = σ1(u1) ∧
σ1(u2) ∧ σ2(v1) ∧ σ2(v2) and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)
= µ1(u1u2) ∧ µ2(v1v2),

which is a contradiction.

Case 3. If u1 = u2, v1v2 ∈ E2, then (µ1⊞µ2)((u1, v1)(u2, v2)) = σ1(u1)∧µ2(v1v2)
and as G1 ⊞G2 is complete,

(µ1 ⊞ µ2)((u1, v1)(u2, v2)) = (σ1 ⊞ σ2)((u1, v1)) ∧ (σ1 ⊞ σ2)((u2, v2))

= σ1(u1) ∧ σ2(v1) ∧ σ2(v2)
> µ1(u1u2) ∧ µ2(v1v2),

thus G1 ⊞G2 is not complete.

Case 4. If u1u2 ∈ E1, v1 = v2, the proof is similar to Case 3.

3. Blanced notion virsus strong modular product

We begin this section by proving the following lemma that we use to give nec-
essary and sufficient conditions for the strong modular product of two balanced
fuzzy graphs to be balanced.

Lemma 3.1. Let G1 and G2 be fuzzy graphs. Then D(Gi) ≤ D(G1 ⊞ G2) for
i = 1, 2 if and only if D(G1) = D(G2) = D(G1 ⊞G2).
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Proof. If D(Gi) ≤ D(G1 ⊞G2) for i = 1, 2, then

D(G1) = 2(
∑

u1,u2∈V1

µ1(u1u2))/(
∑

u1,u2∈V1

(σ1(u1) ∧ σ1(u2)))

≥ 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1(u1u2)∧σ2(v1)∧σ2(v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1(u1)∧σ1(u2)∧σ2(v1)∧σ2(v2)))

= 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1(u1u2) ∧ µ2(v1v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1(u1) ∧ σ1(u2) ∧ σ2(v1) ∧ σ2(v2)))

= 2(
∑

u1,u2∈V1
v1,v2∈V2

µ1 ⊞ µ2((u1, v1)(u2, v2))/(
∑

u1,u2∈V1
v1,v2∈V2

(σ1 ⊞ σ2((u1, v1)(u2, v2)))

= D(G1 ⊞G2).

Hence, in all cases D(G1) ≥ D(G1 ⊞ G2) and thus D(G1) = D(G1 ⊞ G2).
Similarly, D(G2) = D(G1⊞G2). Therefore, D(G1) = D(G2) = D(G1⊞G2).

Theorem 3.1. Let G1 and G2 be balanced fuzzy graphs. Then G1 ⊞ G2 is
balanced if and only if D(G1) = D(G2) = D(G1 ⊞G2).

Proof. If G1 ⊞ G2 is balanced, then D(Gi) ≤ D(G1 ⊞ G2) for i = 1, 2 and by
Lemma 3.1, D(G1) = D(G2) = D(G1 ⊞G2).

Conversely, if D(G1) = D(G2) = D(G1 ⊞G2) and H is a fuzzy subgraph of
G1 ⊞G2, then there exist fuzzy subgraphs H1 of G1 and H2 of G2. As G1 and
G2 are balanced and D(G1) = D(G2) = n1/r1, then D(H1) = a1/b1 ≤ n1/r1
and D(H2) = a2/b2 ≤ n1/r1. Thus a1r1+a2r1 ≤ b1n1+b2n1 and hence D(H) ≤
(a1 + a2)/(b1 + b2) ≤ n1/r1 = D(G1 ⊞G2). Therefore, G1 ⊞G2 is balanced.
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Abstract. In this article, we generalized the concepts of total dot product graph (the
chain zero-divisor dot product), which were investigated in 2015 by A. Badawi, to what
we call chain total dot product graph CTD(R) (the chain zero-divisor dot product
graph CZD(R)). We give some basic graph properties for the graphs CTD(R) and
CZD(R) such as connectedness, diameter and the girth.

Keywords: zero-divisor graph, dot product zero-divisor graph, diameter, girth.

1. Introduction

Graph theory has recently become a significant tool for studying the structure
of rings, in addition to being a beautiful and sophisticated theory in its own
right. As a result, several writers explore the relationship between rings and
graph theory. see for example [3, 5, 4].

Throughout this article, let A be a commutative ring with nonzero identity
1, for the natural number n, let R = A × A × · · · × A(n − times). Badawi in
[2] presented the total and the zero-divisor dot product graphs associated to
the ring A, where the total dot product graph, denoted by TD(R), is the graph
with vertex set R∗ = R\{(0, 0, · · · , 0)}, and two vertices x, y are adjacent if
x.y = 0 ∈ A ( the normal dot product between x and y is zero). Also the zero-
divisor dot product graph, denoted by ZD(R), is the induced subgraph of the
total dot product graph TD(R) with vertex set Z(R)∗ = Z(R)\{(0, 0, · · · , 0)}.

In this article, we generalized these concepts by developing the concept of
the dot product. Let A1, A2, . . . , An be commutative rings with nonzero identity
1, such that A1 ⊆ A2 ⊆ . . . ⊆ An. Let R = A1 × A2 × . . . × An, then the
generalized dot product between x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is
x.y = x1y1 + x2y2 + · · ·+ xnyn ∈ An.

Now, we introduce our generalization. Let A be a commutative ring with
nonzero identity 1, R = A × A[α1] × A[α1, α2] · · · × A[α1, α2, . . . αn], where
A[α1, α2, . . . αk] is a ring with elements of the form x = xk1 + xk2α1 + xk3α2 +
· · ·+ xkkαk such that αiαj = 0 for 1 ≤ i, j ≤ k, with the operations



106 BASEM ALKHAMAISEH

Addition: (xk1+xk2α1+xk3α2+ · · ·+xkkαk)+ (yk1+ yk2α1+ yk3α2+ · · ·+
ykkαk) = (xk1 + yk1) + (xk2 + yk2)α1 + (xk3 + yk3)α2 + · · ·+ (xkk + ykk)αk , and

Multiplication: (xk1+xk2α1+xk3α2+· · ·+xkkαk)(yk1+yk2α1+yk3α2+· · ·+
ykkαk) = xk1yk1 + (xk1yk2 + xk2yk1)α1 + (xk1yk3 + xk3yk1)α2 + · · ·+ (xk1ykk +
xkkyk1)αk.

The chain dot product graph, denoted by CTD(R) is a graph with a vertex
set R∗ = R\{(0, 0, · · · , 0)}, and two vertices x, y are adjacent if x.y = 0 ∈ A
(the generalized dot product between x and y is 0). Similarly, as above, the
chain zero-divisor dot product graph, denoted by CZD(R), is the induced
subgraph of the chain total dot product graph CTD(R) with a vertex set
Z(R)∗ = Z(R)\{(0, 0, · · · , 0)} (the nonzero zero-divisors of R).

For undefined notation or terminology consult [6] for graph theory and [7]
for ring theory.

2. Some basic properties of CTD(R) and CZD(R)

In this section, we will study some properties of CTD(R) and CZD(R), such
as connectedness, diameter and girth.

We start by defining the k − th neighborhood for the vertex x.

Definition 2.1. Let G be a finite simple graph, and x be any vertex in G and
let k be any nonnegative integer. Then, the k − th neighborhood for the vertex
x, denoted by Nk(x), is defined as

N0(x) = {x},
N1(x) = N(x), the usual neighborhood of x.

...

for k ≥ 1

Nk(x) =

y ∈ V (G)\
k−1⋃
j=1

N j(x) : z is adjacent to y, for any z ∈ Nk−1(x)


where V (G) is the vertex set of the graph G.

The definition of Nk(x) makes it obvious that there is a path of length k,
between the vertex x and any vertex in Nk(x).

Lemma 2.1. Let G be a finite simple graph, and x, y be two distinct vertices.
Then, there is a path between x and y if and only if there exist two non negative
integers n,m such that Nn(x) and Nm(x) are not disjoint sets.

Proof. Suppose that x−a1−a2−· · ·−at−y is a path between x and y. Then,
a1 ∈ N1(x) ∩N t(y). Conversely, assume that Nn(x) and Nm(x) are not disjoint
sets, for some non negative integers n,m. Hence, Nn(x) and Nm(x) have at least
one vertex in common , say z. Thus, and since z ∈ Nn(x), there is a path between
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the vertex x and z, say x− c1− c2−· · ·− cn−z. Similarly, and since z ∈ Nm(y),
there is a path between the vertex y and z, say z − d1 − d2 − · · · − dm − y.
Therefore, x− c1 − c2 − · · · − cn − z − d1 − d2 − · · · − dm − y.

The following theorem describes when CTD(R) is disconnected.

Theorem 2.1. If A is an integral domain and R = A×A[α], then CTD(R) is
disconnected.

Proof. Let B = {(a, a), (−a, a), (a,−a) : a ∈ A∗} and let x ∈ B. Suppose that
y ∈ R∗, that is y = (y11, y21 + y22α), such that x.y = 0. Since A is an integral
domain, one can deduce y ∈ B (in general, Nn(y) ⊆ B for any positive integer
n)

Let M = {(a, bα) : a ∈ A∗ and b ∈ A} ∪ {(0, a + bα) : a, b ∈ A not both
zero)} and let m ∈ M. Suppose that m.r = 0 for some r ∈ R∗. Again, since A
is an integral domain, we deduce that r ∈ M (in general, Nm(r) ⊆ M for any
positive integer m). It is clear that B and M are disjoint sets.

We claim here that the sets B andM are disconnected in the graph CTD(R).
To see this, suppose the contrary. If x ∈ M and y ∈ B and there is a path
between x and y in the graph CTD(R), then by Lemma 2.1 there exist two
non negative integers n,m such that Nn(x) ∩ Nm(y) is nonempty, which is a
conradiction, since Nn(x) ∩ Nm(y) ⊆ B ∩M . Thus, the graph CTD(R) is
disconnected.

The following theorem establishes the necessary conditions for the chain
zero-divisor dot product graph CZD(R) to be equal to the known zero-divisor
graph Γ(R).

Theorem 2.2. Let A be a ring, 2 ≤ n < ∞, and R = A× A[α1]× A[α1, α2]×
· · · ×A[α1, α2, . . . , αn−1]. Then, CZD(R) = Γ(R) if and only if n = 2 and A is
an integral domain.

Proof. Suppose that A is an integral domain and R = A×A[α]. Then, Z(R) =
{(a, bα) : a ∈ A∗ and b ∈ A} ∪ {(0, a+ bα) : a, b ∈ A } . Let x, y ∈ Z∗(R) such
that x.y = 0. Hence, we have three cases to consider, which are x = (x11, x22α)
and y = (y11, y22α), x = (x11, x22α) and y = (0, y21+y22α) or x = (0, x21+x22α)
and y = (0, y21 + y22α). In all three cases it is clear that x.y = 0 if and only if
xy = (0, 0). Hence, CZD(R) = Γ(R).

Conversely, suppose that CZD(R) = Γ(R). Assume that n ≥ 3, then there
exist x = (0, α1, α1, 0, . . . , 0), y = (0, 1,−1, 0, . . . , 0) ∈ Z∗(R), with x.y = 0, but
xy ̸= (0, 0, 0, . . . , 0). Thus, x − y is an edge of CZD(R) that is not an edge of
Γ(R), a contradiction. Thus, n = 2. Now, if A is not an integral domain, then
there are a, b ∈ A∗ such that ab = 0. Hence, x = (1, a), y = (a,−1+bα) ∈ Z∗(R),
and x.y = 0, but xy ̸= (0, 0). Again, x− y is an edge of CZD(R) that is not an
edge of Γ(R), a contradiction. Thus, A must be an integral domain.
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Corollary 2.1. Let A be an integral domain. If R = A× A[α], then CZD(R)
is connected with diam(CZD(R)) = 3.

Proof. Since A is an integral domain, the vertex set of CZD(R) can be divided
into three disjoint sets X = {(a, bα) : a ∈ A∗ and b ∈ A}, Y = {(0, a+ bα) : a ∈
A∗ and b ∈ A} and Z = {(0, bα) : b ∈ A∗}. It is clear that X, Y are independent
sets (that is any two vertices in X or Y are not adjacent). Also, Z forms a com-
plete subgraph of CZD(R). Now, by Theorem 2.2 and since X is an independent
set, we deduce that CZD(R) is connected with 2 ≤ diam(CZD(R)) ≤ 3. Now,
let x = (1, α) and y = (0, 1+α). Then, x.y ̸= 0. Let t = (t11, t21+t22α) ∈ Z∗(R)
such that x.t = t.y = 0. Then, we conclude that t = (0, 0) which is a contradic-
tion. Thus, dcz(x, y) = 3. Hence, diam(CZD(R)) = 3.

Or (Another Proof) By Theorem (2.2) and sinceR is nonreduced ring and the
zero divisors of R does not form an ideal, then by [1], diam(CZD(R)) = 3.

Theorem 2.3. Let A be a ring that is not an integral domain, and let R =
A×A[α]. Then:

1. CTD(R) is connected with diam(CTD(R)) = 3.

2. CZD(R) is connected with diam(CZD(R)) = 3.

Proof. 1) Let x = (x11, x21 + x22α), y = (y11, y21 + y22α) ∈ R∗, where x ̸= y,
and assume that x.y ̸= 0. Since A is not an integral domain, there are a, b ∈ A∗

(not necessarily distinct) such that ab = 0. Let w = (ax21,−ax11 + ax22α) and
v = (by21,−by11 + by22α). Note that w, v ∈ Z(R). It is clear that x.w = w.v =
v.y = 0. Since x.y ̸= 0, w ̸= y and v ̸= x. Now, there are two cases:

Case 1. Suppose that w ̸= (0, 0) and v ̸= (0, 0). If x.v = 0 or y.w = 0, then
x − v − y or x − w − y is a path of length 2 in CTD(R) from x to y. But, if
x.v ̸= 0 or y.w ̸= 0, then x,w, v and y are distinct and x− w − v − y is a path
of length 3 in CTD(R) from x to y.

Case 2. Suppose that w = (0, 0) and v = (0, 0). If w = (0, 0), then replace w
by (a, a) ∈ Z∗(R), and hence x.w = (x11, x21 + x22α).(a, a) = (ax11 + ax21) +
ax22α = 0. Again, if v = (0, 0), then replace v by (b, b) ∈ Z∗(R), and hence,
y.v = 0. Thus, as we have done, we can redefine w and v so that w, v ∈ Z∗(R)
and x.w = w.v = v.y = 0. Hence, as in the earlier argument, we can conclude
that there is a path of length at most 3 in CTD(R) from x to y.

Thus, CTD(R) is connected with dCT (x, y) ≤ 3, for every x, y ∈ R∗. Now, let
x = (1, 1) and y = (1, 0). It is clear that, x.y ̸= 0. Let t = (t11, t21 + t22α) ∈ R∗

such that x.t = t.y = 0. Then, t11 = t21 = t22 = 0, so t = (0, 0) a contradiction.
Therefore, dCT (x, y) = 3, and hence, diam(CTD(R)) = 3.

Theorem 2.4. Let A be a ring , 4 ≤ n <∞, and let R = A×A[α1]×A[α1, α2]×
· · ·×A[α1, α2, . . . , αn−1]. Then, CTD(R) is connected with diam(CTD(R)) = 2.
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Proof. Let x = (x11, x21+x22α1, x31+x32α1+x33α2, . . . , xn1+
∑n

i=1 xniαi−1),
y = (y11, y21 + y22α1, y31 + y32α1 + y33α2, . . . , yn1 +

∑n
i=1 yniαi−1) ∈ R∗, and

suppose that x.y ̸= 0. Then, let M = {j : xji = yji = 0, 1 ≤ j ≤ n and
1 ≤ i ≤ j}. Now, we have two cases:

Case 1. Suppose that M is not empty set. Then, choose k ∈ M, and let
w = (w11, w21 + w22α1, w31 + w32α1 + w33α2, . . . ,

∑n
i=1wniαi−1) ∈ R∗, where

wij =


1, j = k and i = 1,

0, j = k and 1 < i ≤ j,

0, j ̸= k.

Then, x− w − y is a path of length 2 in CTD(R) from x to y.

Case 2. Suppose that M is empty set. Then, let f(x) = min{j : xj1 ̸= 0, 2 ≤
j ≤ n} and f(y) = min{j : yj1 ̸= 0, 2 ≤ j ≤ n}. SinceM is empty set, we deduce
that f(x) = 2 or f(y) = 2, without loss of generality, assume that f(x) = 2. Let
v = (0, (x31y41 − x41y31)α1, (x41y21 − x21y41)α1, (x21y31 − x31y21)α1, 0, . . . , 0).
Now, we have two subcases:

Subcase 2.1. Suppose that v ̸= (0, 0, . . . , 0). Then, x.v = v.y = 0. Since
x.y ̸= 0, x ̸= v and y ̸= v. Hence, x − v − y is a path of length 2 in CTD(R)
from x to y.

Subcase 2.2. Suppose that v = (0, 0, . . . , 0). Then, x21y31 − x31y21 = 0. Let
w = (0,−x31α1, x21α1, 0, . . . , 0) Since x21 ̸= 0, w ∈ R∗. Hence, x.w = −x31x21+
x21x31 = 0 and w.y = −x31y21 + x21y31 = 0. Since x.w = w.y = 0, and x.y ̸= 0,
x ̸= w and y ̸= w. Thus, x−w− y is a path of length 2 in CTD(R) from x to
y. Hence, CTD(R) is connected with diam(CTD(R)) = 2.

Theorem 2.5. Let A be a ring, and let R = A × A[α1] × A[α1, α2]. Then,
CTD(R) is connected with diam(CTD(R)) = 2.

Proof. Let x = (x11, x21+x22α1, x31+x32α1+x33α2), y = (y11, y21+y22α1, y31+
y32α1 + y33α2) ∈ R∗, and suppose that x.y ̸= 0. Then, let M = {j : xj1 = yj1 =
0, 1 ≤ j ≤ 3}. Now, we have two cases:

Case 1. Suppose that M is not empty set. Then, choose k ∈ M, and let z =,
where

z =


(1, 0, 0), if k = 1

(0, α1, 0), if k = 2

(0, 0, α1), if k = 3

∈ R∗.

Then, x− z − y is a path of length 2 in CTD(R) from x to y.

Case 2. Suppose thatM is an empty set. Then, define f(x) = min{j : xj1 ̸= 0,
2 ≤ j ≤ 3} and f(y) = min{j : yj1 ̸= 0, 2 ≤ j ≤ 3}. Since M is an empty set,
we deduce that f(x) = 2 or f(y) = 2, without loss of generality, assume that
f(x) = 2, that is x21 ̸= 0. Now, we have three subcases:
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Subcase 2.1. Suppose that x31 ̸= 0, y21 = 0. If y31x21 ̸= 0, then select
v1 = (0, x31α1,−x21α1), v2 = (0, α1, 0) ∈ R∗. Thus, x.v1 = v1.v2 = v2.y = 0.
Since x.y ̸= 0, x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2. Hence, x − v1 − v2 − y
is a path of length 3 in CTD(R) from x to y. If y31x21 = 0, then select
v = (0, x31α1,−x21α1) ∈ R∗. So, x.v = v.y = 0. Since x.y ̸= 0, x ̸= v and
y ̸= v. Hence, x− v − y is a path of length 2 in CTD(R) from x to y.

Subcase 2.2. Suppose that x31 = 0, y21 = 0. If y31 ̸= 0, then select v1 =
(0, 0, α1), v2 = (0, α1, 0) ∈ R∗. Then, x.v1 = v1.v2 = v2.y = 0. Since x.y ̸= 0,
x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2. Hence, x − v1 − v2 − y is a path of
length 3 in CTD(R) from x to y. If y31 = 0, then select v = (0, 0, α1) ∈ R∗. So,
x.v = v.y = 0. Since x.y ̸= 0, x ̸= v and y ̸= v. Hence, x − v − y is a path of
length 2 in CTD(R) from x to y.

Subcase 2.3. Suppose that x31 ̸= 0, y21 ̸= 0. If x21y31 − x31y21 = 0, then
select v = (0, x31α1,−x21α1) ∈ R∗. So, x.v = v.y = 0. Since x.y ̸= 0, x ̸= v
and y ̸= v, we have x − v − y a path of length 2 in CTD(R) from x to y. If
x21y31−x31y21 ̸= 0, then select v1 = (0, x31α1,−x21α1), v2 = (0, y31α1,−y21α1)
∈ R∗. Since x.y ̸= 0, x.v2 ̸= 0, y.v1 ̸= 0, x ̸= v1 and y ̸= v2, we have x−v1−v2−y
a path of length 3 in CTD(R) from x to y.

Therefore, by the previous cases we deduce that diam(CTD(R)) ≤ 3. Now,
let x = (1, α1, 1 + α1 + α2) and y = (1, 1 + α1, α1 + α2). Suppose there exists
(v11, v21 + v22α1, v31 + v32α1 + v33α2) ∈ R∗ such that x − v − y is a path of
length 2 in CTD(R) from x to y. Since x.v = v.y = 0, we have the following
equations

v11 + v31 = 0

v21 + v32 + v31 = 0

v33 + v31 = 0

v11 + v21 = 0

v21 + v22 + v31 = 0

v31 = 0

Solving these equations produces that v = (0, 0, 0) which is a contradiction.
Thus, dCT (x, y) = 3, and hence, diam(CTD(R)) = 3.

Theorem 2.6. Let A be a ring, and let R = A × A[α1] × A[α1, α2].If A is an
integral domain, then CZD(R) is connected with diam(CZD(R)) = 3.

Proof. Every path in Γ(R) is also a path in CZD(R). Now, since Γ(R) is
connected with diam(Γ(R)) ≤ 3 by [3], we conclude that CZD(R) is con-
nected with diam(CZD(R)) ≤ diam(Γ(R)). Thus, diam(CZD(R)) ≤ 3. Let
x = (1,−1, 0), y = (1, 0,−1) ∈ Z(R)∗. It is clear that x.y = 1 ̸= 0. Hence,
1 < dCZ(x, y) ≤ 3. Suppose that dCZ(x, y) = 2. Then, there is w = (w11, w21 +
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w22α1, w31+w32α1+w33α2) ∈ Z(R)∗ (Since A is an integral domain w11, w21or
w31 must be zero) such that x.w = w.y = 0. By direct calculations, we deduce
that w = (0, 0, 0) which is a contradiction. Hence, dCZ(x, y) = 3. Therefore,
diam(CZD(R)) = 3.

Theorem 2.7. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1].

(1) If |A| > 2 and 2 ≤ n <∞, then gr(CTD(R)) = gr(CZD(R)) = 3.

(2) IfA is isomorphic to Z2, and 3 ≤ n <∞, then gr(CTD(R)) = gr(CZD(R))
= 3.

(3) If A is isomorphic to Z2, and n = 2 then gr(CZD(R)) = ∞.

Proof. (1) Since |A| > 2, there is a ∈ A\{0, 1}. Let x = (1, 0, . . . , 0), y =
(0, α1, . . . , 0), and z = (0, aα1, . . . , 0). Then, x− y− z− x is a cycle of length 3.

(2) Let x = (1, 0, 0, . . . , 0), y = (0, 1, 0, . . . , 0), and z = (0, 0, 1, 0 . . . , 0).
Then, x− y − z − x is a cycle of length 3.

(3) Clear.

According to the previous results, one can conclude the following corollaries.

Corollary 2.2. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n <∞). Then, the following are equivalent:

(1) gr(CTD(R)) = 3.

(2) gr(CZD(R)) = 3.

(3) |A| > 2 or A is isomorphic to Z2, and 3 ≤ n.

Proof. Obvious, by Theorem 2.7.

Corollary 2.3. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n <∞). Then, the following are equivalent:

(1) gr(CZD(R)) = ∞.

(2) A is isomorphic to Z2, and n = 2.

Proof. Obvious, by Theorem 2.7.

Corollary 2.4. Let A be a ring, and let R = A × A[α1] × A[α1, α2] × · · · ×
A[α1, α2, . . . , αn−1] (with 2 ≤ n <∞). Then, the following are equivalent:

(1) CZD(R) = Γ(R).

(2) CTD(R) is disconnected.

(3) A is an integral domain and n = 2.
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3. Conclusion

Let A be a commutative ring with nonzero identity 1. for the natural number n,
we use the ring R = A×A[α1]×A[α1, α2] · · ·×A[α1, α2, . . . αn] to construct what
we call the chain total dot product graph (the chain zero-divisor dot product
graph), denoted by CTD(R) (CZD(R)). These two graphs are considered to be
a generalization of the total and the zero-divisor dot product graphs in [2]. In
this article, we studied some basic graph properties for the graphs CTD(R) and
CZD(R) such as connectedness, diameter and the girth. Many graph properties,
such as the graph’s core, center, and median, as well as planarity, can be explored
in the future for the graphs CTD(R) and CZD(R).
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1. Introduction

There are many graphs associated to rings and the other algebraic structures
such as groups, semigroups, semirings, near-rings, ternary rings, modules etc.
to understand the properties of algebraic structures via graphs and vice versa.

The idea of associating a graph to a commutative ring R was introduced
by Beck [11] in 1988. He defined a graph with the vertex set as the set of all
elements of R and two distinct vertices x and y are adjacent if and only if xy = 0
and mainly studied about coloring of the graph. In 1993, Anderson and Naseer
[5] determined all finite commutative rings with chromatic number 4. Anderson
and Livingston [6] in 1999, redefined Beck’s graph by taking ZD∗(R), the set
of nonzero zero-divisors of R, as the vertex set and named the graph of R as
zero-divisor graph denoted by Γ(R). They proved that the zero-divisor graph
of a commutative ring R is complete if and only if either R ∼= Z2

2 or xy = 0 for
all x, y ∈ ZD(R), the set of zero-divisors of R.

Afkhami and Khashyarmanesh [1] introduced cozero-divisor graph Γ′(R) of
a commutative ring R. The vertex set of Γ′(R) is W ∗(R), the set of nonzero
nonunits of R and a, b ∈ W ∗(R) are adjacent if and only if a /∈ bR and b /∈
aR. They studied Γ′(R) and its complement Γ′(R) in [2]. In particular, they
characterized all commutative rings whose cozero-divisor graphs are double-star,
unicyclic, a star, or a forest. Further, Akbari et al. [3] continued the study of
cozero-divisor graphs of commutative rings and proved that if Γ′(R) is a forest,
then Γ′(R) is a union of isolated vertices or a star.

The concept of annihilator graph was introduced in 2014 by Badawi [9].
The annihilator graph of a commutative ring R is the simple graph denoted
by AG(R), whose vertex set is ZD∗(R) and two distinct vertices x and y are
adjacent if and only if Ann(xy) ̸= Ann(x) ∪Ann(y), where Ann(x) = {y ∈ R |
xy = 0}. If R is a commutative ring with more than 2 nonzero zero-divisors,
then AG(R) is proved to be connected and diam(AG(R)) ≤ 2. More results on
AG(R) can be found in the survey article [10].

Teresa Arockiamary et al. [18] defined annihilator 3-uniform hypergraph
AH3(N) of a right ternary near-ring (RTNR) N . Let (N,+, [ ]) be an RTNR.
Then, AH3(N) is defined as the 3-uniform hypergraph whose vertex set is the
set of all elements of N having nontrivial annihilators and three distinct vertices
x, y and z are adjacent whenever the intersection of their annihilators is not
{0}, where the annihilator of x is given by (0 : x) = ∩s∈N (0 : x)s and (0 : x)s =
{t ∈ N | [t s x] = 0}. AH3(N) is shown to be an empty hypergraph if N is
a constant RTNR, and AH3(N) is trivial when N is a zero-symmetric integral
RTNR.

Motivated by the results established in [6], [9], [10] and [18], the projection
graphs of rings and near-rings are introduced in this article. Throughout, this
article R is considered as a nonnil unital commutative ring unless otherwise
mentioned. The induced subgraph of P (R) on R \ {0, 1} is denoted by P1(R).
Also, U(R) denotes the set of all units of R.
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Let R be a commutative ring. Then, the vertex set of P (R) is R∗, the set of
all nonzero elements of R and x, y ∈ R∗ are adjacent if and only if the product
xy in R equals either x or y. It is observed that x, y ∈ W ∗(R) are adjacent in
P (R) implies x, y are adjacent in Γ′(R) and therefore the induced subgraph of
P (R) on W ∗(R) is a subgraph of Γ′(R). It is proved that P (R) is a connected
graph with diameter at most 2. Let |R| > 4. Then, it is seen that P1(R) is
nontrivial if and only if R has nonzero zero-divisors. Also P (R) is a star if and
only if R is a field. The girth of P (R) is either 3 or ∞.

A method of finding adjacent vertices using concept of annihilators is given
and it is illustrated for R = Z × Z. Reg(R)\{1}, Nil(R)\{0} are found inde-
pendent sets, where Reg(R) is the set of all regular elements of R and Nil(R)
is the set of all nilpotent elements of R. If R is presimplifiable ring which is not
a domain, then it is proved that P1(R) is bipartite. P (R) is shown to be weakly
pancyclic when R is a local ring, which is not a domain, with ascending chain
condition on the annihilator ideals of elements of R. The projection graphs of
finite isomorphic rings are proved to be isomorphic. It is also shown that P (R)
is complete if and only if either R ∼= Z3 or R ∼= Z4. Some of the graph properties
of P (Zn) are verified for n = 2q, 2k, q is prime and k ≥ 1.

Let N be a near-ring. Then, the projection graph P (N) of N is defined
in the same way as that of a ring. It is shown that if N is either a constant
near-ring or an almost trivial near-ring, then P (N) is a complete graph. Also
P (N) is complete if N is a Boolean near-ring which is subdirectly irreducible.

2. Preliminaries

In this section the basic definitions along with the results relevant to this paper,
related to rings ([8], [4], [14]), near-rings ([15], [16], [17]) and graphs ([12]) are
given. Let R be a commutative ring with unity. Then, an element x ∈ R is
called V on Neumann regular if x = ax2 for some a ∈ R. R is called (i)
Boolean if every x ∈ R is idempotent (ii) a quasilocal ring if R has finitely
many maximal ideals. (iii) a local ring if R has a unique maximal ideal. (iv)
[4] a presimplifiable ring if, for any a, b ∈ R, a = ab implies either a = 0 or
b ∈ U(R). (v) a domain-like ring if ZD(R) ⊆ Nil(R), where Nil(R) equals
the set of all nitpotent elements of R. (vi) a nil ring if every element in R is
nilpotent. It is known that quasilocal rings are presimplifiable rings.

Lemma 2.1 ([14]). If R is nil, then xy ̸= y for all x, y ∈ R∗.

Lemma 2.2 ([4]). If R is a commutative ring, then the following are equivalent:

(i) R is presimplifiable;

(ii) ZD(R) ⊆ J(R);

(iii) ZD(R) ⊆ {1 − u | u ∈ U(R)}, where J(R) denotes the Jacobson radical
and J(R) equals the intersection of all maximal ideals of R.
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Definition 2.1 ([15]). A right near-ring N is an algebraic system with two
binary operations + and · satisfying the following conditions:

(i) (N,+) is a group (not necessarily abelian);

(ii) (N, ·) is a semigroup;

(iii) (x+ y)z = xz + yz for every x, y, z ∈ N .

If N = N0 = {x ∈ N |x0 = 0}, then N is called a zero-symmetric near-ring.
If N = Nc = {x ∈ N |x0 = x} = {x ∈ N |xy = x for every y ∈ N}, then N
is called a constant near-ring. A near-field is a near-ring, in which there is a
multiplicative identity and every non-zero element has a multiplicative inverse.
Also by Pierce Decomposition, (N,+) = N0 +Nc and N0 ∩Nc = {0} .

Definition 2.2 ([16]). A near-ring N is called an almost trivial near-ring if for

all x, y ∈ N , xy =

{
x if y /∈ Nc

0 if y ∈ Nc

.

Lemma 2.3 ([16]). If N is a subdirectly irreducible Boolean near-ring, then N
is an almost trivial near-ring.

A pair G = (V,E) is an undirected graph if V is the set of vertices and E is set
of edges xy, where x, y ∈ V and x ̸= y. If x ∈ V , then NG(x) = {y ∈ V | xy ∈
E, x ̸= y}. The girth of G is the length of shortest cycle in G and if G has no
cycles, then the girth of G is defined to be infinite. G is called weakly pancyclic
if it contains cycles of all lengths between its girth and the longest cycle. The
sequence of degrees of vertices in G arranged in a non decreasing order is called
the degree sequence of G.

3. Projection graphs of rings

Definition 3.1. Let (R,+, ·) be a ring. Then, the projection graph of R, denoted
by P (R), is defined as an undirected graph whose vertex set is the set of all
nonzero elements of R and two distinct vertices x and y are adjacent whenever
the product x · y equals either x or y. That is, P (R) = (V,E), where V = R∗

and E = {xy | x ·y = x or y, x ̸= y}. For the sake of convenience, x ·y is simply
written as xy.

Example 3.1. It is evident that the projection graph of 2Z is an empty graph.
The projection graphs of the rings Z4, Z5, Z6, Z3

2, Z12 and Z2
3 are shown in

Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6, respectively. Note
that, P (Z4) is a complete graph and P (Z5) is a star. In P (Z3

2), ijk stands for
(i, j, k), where i, j, k ∈ Z2. In P (Z2

3), ij stands for (i, j), where i, j ∈ Z3.

Proposition 3.1. Let R be a commutative ring with nonzero identity. Then,
P (R) is a connected graph with diameter at most 2.
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Proof. Note that, P (R) is nontrivial since 1x is an edge for every x ∈ R∗\{1}.
Let x, y ∈ R∗. If xy is an edge, then the distance between x and y is 1. If
xy is not an edge, then x − 1 − y is a path between x and y. Thus, P (R) is
connected and the distance between x and y is at the most 2, which proves the
proposition.

Remark 3.1. Notice that the removal of 1 from the vertex set may result in dis-
connection of P (R). For example, P1(Z5), P1(Z6) and P1(Z2

3) are disconnected.
Also it is observed that P1(R) is disconnected for the Boolean ring R = Z2

2.

Let R be a commutative ring with nonzero identity. If x, y ∈ ZD∗(R)
are adjacent in Γ(R), then x, y are not adjacent in P (R). However, P1(R) is
nontrivial if and only if R has nonzero zero-divisor, which is proved in this
section.

Proposition 3.2. If x, y ∈ R∗\{1} are distinct elements such that x + y ̸= 1,
then the following assertions hold in P1(R):

(i) If xy = 0, then 1− y ∈ NP1(R)(x) and 1− x ∈ NP1(R)(y).

(ii) If x is adjacent to y, then 1− x ∈ NP1(R)(1− y).

Proof. (i) If xy = 0, then x(1− y) = x and (1−x)y = y, where 1−x, 1− y are
in R∗\{1, x, y}, proving (i).

(ii) If x is adjacent to y, then either xy = x or xy = y.
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If xy = x, then (1−x)(1−y) = 1−y. Similarly, if xy = y, then (1−x)(1−y) =
1− x, where 1− x, 1− y ∈ R∗\{1, x, y}, proving (ii).

Proposition 3.3. If R is a Boolean ring with more than 4 elements and x, y ∈
R∗\{1}, then the following assertions hold in P1(R):

(i) If xy = 0 and x+ y ̸= 1, then x− (x+ y)− y is a path between x and y.

(ii) If xy = 0 and x+ y = 1, then there is no z ∈ R∗\{1} such that x− z − y
is a path between x and y.

(iii) If x and y are adjacent and x + y ̸= 1, then either x + y ∈ NP1(R)(x) or
x+ y ∈ NP1(R)(y), but not both.

(iv) If xy ̸= 0 and x, y are not adjacent, then x − xy − y is a path between x
and y.

Proof. (i) If xy = 0 and x+ y ̸= 1, then x(x+ y) = x and (x+ y)y = y, where
x+ y ∈ R∗\{1, x, y}, proving (i).

(ii) Suppose xy = 0 and x+ y = 1.
Let z ∈ R∗\{1} be adjacent to x. Then, either xz = x or xz = z.
Case (a). Suppose xz = x. Then, zy is neither z nor y. For, if zy = z,

then x = xz = xzy = 0, a contradiction to the choice of x. If zy = y, then
1 = x+ y = xz + zy = z(x+ y) = z, a contradiction to the choice of z.

Case (b). Suppose xz = z. Then, zy is neither z nor y. For, if zy = z, then
z = (x+y)z = xz+yz = z+z = 0, a contradiction to the choice of z. If zy = y,
then y = zy = xzy = 0, a contradiction to the choice of y.

Hence, z is not adjacent to y in both the cases, which completes the proof
of (ii).

(iii) Suppose x, y are adjacent and x+y ̸= 1. Then, either xy = x or xy = y.
If xy = x, then x(x+y) = x2+xy = x+x = 0, since R is of characteristic 2. Also
(x+y)y = xy+y2 = x+y. Hence, x+y /∈ NP1(R)(x), whereas x+y ∈ NP1(R)(y).

Similarly, if xy = y, then it can be seen that x+ y ∈ NP1(R)(x) and x+ y /∈
NP1(R)(y).

(iv) If xy ̸= 0 and x, y are not adjacent, then x(xy) = xy and (xy)y = xy,
where xy ∈ R∗\{1, x, y}, proving (vi).

Proposition 3.4. If P1(R) is nontrivial, then R has nonzero zero-divisor.

Proof. Suppose x, y ∈ R∗\{1} and xy is an edge. Then, either xy = x or
xy = y. If xy = x, then x(1 − y) = 0, which shows that x is a nonzero zero-
divisor. Similarly, if xy = y, then y is nonzero zero-divisor.

Remark 3.2. If e ∈ R is a nontrivial idempotent, then 1− e is also a nontrivial
idempotent and the principal ideal generated by e has at least two elements,
namely 0 and e. Also eR has more than 2 elements only if |R| ≥ 6.

Proposition 3.5. If e ∈ R is a nontrivial idempotent, then
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(i) e is adjacent to every element in eR\{0, e}.

(ii) no element in eR\{0} is adjacent to an element in (1− e)R\{0}.

Proof. Suppose e ∈ R is a nontrivial idempotent.

(i) Let x ∈ eR\{0, e}. Then, x = er for some r ∈ R∗\{1} and hence
ex = e(er) = er = x, which shows that e is adjacent to x.

(ii) Let x ∈ eR\{0} and y ∈ (1 − e)R\{0}. Then, x = er and y = (1 − e)s,
for some r, s in R∗ and therefore xy = 0 since e(1− e) = 0. Hence, x and y are
not adjacent.

Proposition 3.6. Let e ∈ R be a nontrivial idempotent. If the principal ideal
generated by e is of size two, then either ex ∈ E or (1− e)x ∈ E, for every
x ∈ R∗\{1, e, 1− e}.

Proof. Suppose |eR| = 2. Then, er is either 0 or e for every r in R.

Let A1(e) = {r ∈ R∗|er = e} and A′
1(e) = {r ∈ R∗|er = 0}. Then,

R∗ = A1(e) ∪A′
1(e), where 1, e ∈ A1(e) and 1− e ∈ A′

1(e).

Let x ∈ R∗\{1, e, 1− e}. If x ∈ A1(e), then ex = e, which implies ex ∈ E. If
x ∈ A′

1(e), then (1− e)x = x, which implies (1− e)x ∈ E.

Proposition 3.7. Let R be a commutative ring with nonzero identity such that
|R| > 4. Then, P1(R) is nontrivial if and only if R has a nonzero zero-divisor.

Proof. By Proposition 3.4, it is enough to prove that P1(R) is nontrivial if R
has nonzero zero-divisor.

Let x ∈ R be nonzero zero-divisor. Then, there exists y ∈ R∗ such that
xy = 0.

Suppose 1− y ̸= x. Then x(1− y) = x− xy = x and so x(1− y) is an edge,
where x, 1−y ∈ R∗\{1}. Suppose 1−y = x. Then, x is a nontrivial idempotent.
Now, consider the cases:

(i) |xR| = 2 (ii) |xR| > 2.

If |xR| = 2, then xR = {0, x} and therefore there exists r ∈ R∗\{1} such
that xr = x, which implies xr ∈ E, where x, r ∈ R∗\{1}.

If |xR| > 2, then by Proposition 3.5(i), there exists y ∈ xR\{0, x} such that
xy ∈ E, where x, y ∈ R∗\{1}.

Corollary 3.1. Let R be a ring with |R| > 4. Then, P (R) is a star if and only
if R satisfies any one of the following equivalent conditions:

(i) P1(R) is trivial.

(ii) R has no nonzero zero-divisor.

(iii) Every element in R∗ has trivial annihilator.
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Proof. P1(R) is trivial if and only if E = {x1|x ∈ R∗\{1}}. Therefore, P (R)
is a star if and only if P1(R) is trivial.

(i) ⇔ (ii) follows from the above proposition.

(ii) ⇔ (iii) follows from the definition of annihilator.

Corollary 3.2. Let R be a ring with |R| > 4. Then, P (R) is a star if and only
if R is a field.

Proposition 3.8. Let R be a ring with |R| > 4. Then, the girth of P (R) is
either 3 or ∞.

Proof. If R has no nonzero zero-divisors, then P (R) is a star by Corollary 3.1
and hence the girth is ∞.

If R has nonzero zero-divisor, then P1(R) is nontrivial by Proposition 3.7.

Let xy ∈ E, where x, y ∈ R∗\{1}. Then, 1 − x − y − 1 forms a cycle and
hence the girth is 3.

For any ring R, write V = R∗ = {1} ∪ (Reg(R)\{1})∪ (ZD(R)\{0}), where
Reg(R) = {x ∈ R∗|x /∈ ZD(R)}. Then, NP (R)(1) = R∗\{1} and for every
x ∈ R∗\{1}, NP (R)(x) = {y ∈ R∗|xy = x or xy = y, y ̸= x}. Now, for every
x ∈ R∗\{1}, write A1(x) = {y ∈ R∗|xy = x} and A2(x) = {y ∈ R∗|xy = y}.
Then, it is observed that x = xy = xy2 = . . . = xyk = . . . holds if y ∈ A1(x)
and y = xy = x2y = . . . = xky = . . . holds if y ∈ A2(x). Thus, NP (R)(x)
contains an infinite number of elements if any one of the above sequences does
not terminate.

Proposition 3.9. Let x ∈ R∗\{1}. Then, the following assertions hold:

(i) A1(x) ∩A2(x) = {x} if and only if x is an idempotent.

(ii) A1(x) = Ann(x) + 1; A2(x) = Ann(1− x)\{0}.

Proof. (i) Suppose x ∈ R∗\{1} is an idempotent element. Then, x2 = x and
so x ∈ A1(x) ∩ A2(x). Also, y ∈ A1(x) ∩ A2(x) implies y = xy = x and hence
A1(x) ∩A2(x) = {x}.

Conversely, suppose A1(x) ∩A2(x) = {x}. Then, xx = x, which proves (i).

(ii) By the definition of A1(x), y ∈ A1(x) ⇔ xy = x ⇔ x(y − 1) = 0 ⇔
y − 1 ∈ Ann(x).

Now, y − 1 ∈ Ann(x) ⇔ y ∈ Ann(x) + 1. For, if y − 1 ∈ Ann(x), then
y = (y − 1) + 1 ∈ Ann(x) + 1. Also if y ∈ Ann(x) + 1, then y = z + 1, for some
z ∈ Ann(x), which implies y−1 = z ∈ Ann(x). Hence, A1(x) = Ann(x)+1. By
the definition of A2(x), y ∈ A2(x) ⇔ y ̸= 0 and xy = y ⇔ y ̸= 0 and y(1− x) =
0 ⇔ y ∈ Ann(1− x)\{0} and hence A2(x) = Ann(1− x)\{0}.

Proposition 3.10. If x ∈ Reg(R)\{1}, then NP (R)(x) ⊆ (ZD(R)\{0}) ∪ {1}.
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Proof. Let x ∈ Reg(R)\{1} and y ∈ NP (R)(x). Then, xy = x or xy = y.
If xy = x, then x(y − 1) = 0, which implies y = 1 by the hypothesis.
If xy = y, then (x− 1)y = 0, which implies y ∈ ZD(R)\{0}, completing the

proof.

Corollary 3.3. Reg(R)\{1} is an independent set.

Proof. Let x ∈ Reg(R)\{1} and y ∈ NP (R)(x). Then, y /∈ Reg(R)\{1} from
the above proposition. Hence, Reg(R)\{1} is independent.

Remark 3.3. If R is finite, then V = R∗ = {1} ∪ (U(R)\{1}) ∪ (ZD(R)\{0}).
Hence, U(R)\{1} is independent by the above corollary.

Theorem 3.1. For any x ∈ R∗\{1}, the following assertions hold, in which E
denotes the set of all nontrivial idempotents in R:

(i) NP (R)(x) = {1} ∪ (Ann(1− x)\{0}) if x ∈ Reg(R)\{1}.

(ii) NP (R)(x) = ((Ann(x)+1)∪Ann(1−x))\{0} if x ∈ ZD(R)\{0} and x /∈ E.

(iii) NP (R)(x) = ((Ann(x) + 1) ∪ Ann(1 − x))\{0, x} if x ∈ ZD(R)\{0} and
x ∈ E.

Proof. Let x ∈ R∗\{1}. Then, by the definitions of A1(x) and A2(x) and
Proposition 3.9(ii), NP (R)(x) = A1(x)∪A2(x) = (Ann(x)+1)∪(Ann(1−x)\{0}).

(i) If x ∈ Reg(R)\{1}, then Ann(x) = {0}. Hence, NP (R)(x) = {1} ∪
(Ann(1− x)\{0}).

(ii) If x ∈ ZD(R)\{0} and x /∈ E, then NP (R)(x) = (Ann(x)+1)∪ (Ann(1−
x)\{0}).

(iii) If x ∈ ZD(R)\{0} and x ∈ E, then NP (R)(x) = ((Ann(x)+1)∪Ann(1−
x))\{0, x}, by Proposition 3.9(i).

Proposition 3.11. If x ∈ R∗\{1} is not a zero-divisor, then NP (R)(x)\{1}
together with 0 forms an ideal.

Proof. If x is not a zero-divisor, then by Theorem 3.1(i), (NP (R)(x)\{1})∪{0} =
Ann(1− x), which is an ideal.

Illustration 3.1. Consider R = Z× Z, where ZD(R) = (Z× {0}) ∪ ({0} × Z)
and Reg(R) = {(m,n) ∈ Z× Z|m,n ̸= 0}.

If x = (1, 1), then NP (R)(x) = R∗\{(1, 1)}.
If x = (m,n) ∈ Reg(R)\{(1, 1)}, then NP (R)(x) = ({0} × Z∗) ∪ {(1, 1)} if

m ̸= 1,n = 1, NP (R)(x) = (Z∗ × {0}) ∪ {(1, 1)} if m = 1,n ̸= 1, NP (R)(x) =
{(1, 1)} if m,n ̸= 1. Thus, Reg(R)\{(1, 1)} is independent.

If x = (m,n) ∈ ZD(R)\{(0, 0)}, then NP (R)(0, 1) = (Z × {1}) ∪ ({0} ×
Z∗)\{(0, 1)}, NP (R)(1, 0) = ({1} × Z) ∪ (Z∗ × {0})\{(1, 0)}.

NP (R)(x) = Z× {1} if m = 0, n ̸= 1, NP (R)(x) = {1} × Z if m ̸= 1, n = 0.
Note that, (0, 1) and (1, 0) are the nontrivial idempotents in R.
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Proposition 3.12. Let e ∈ R be a nontrivial idempotent. Then

(i) NP (R)(e) = (((1− e)R+ 1) ∪ eR)\{0, e}.

(ii) Every element in eR\{0} is adjacent to every element in (1− e)R+ 1.

(iii) For every x ∈ eR\{0, e} and y ∈ ((1− e)R + 1)\{e}, e− x− y − e forms
a cycle.

Proof. (i) If e ∈ R is a nontrivial idempotent, then by Theorem 3.1(iii),
NP (R)(e) = ((Ann(e) + 1) ∪Ann(1− e))\{0, e}.

Now, if r ∈ Ann(e), then re = 0, which implies r = r1 = r((1 − e) +
e) = r(1 − e) ∈ (1 − e)R. Also, r ∈ (1 − e)R implies r ∈ Ann(e). Hence,
Ann(e) = (1− e)R.

Similarly, it can be proved that Ann(1− e) = eR. Thus, NP (R)(e) = (((1−
e)R+ 1) ∪ eR)\{0, e}.

(ii) Let x ∈ eR\{0} and y ∈ (1− e)R+1. Then, x ∈ Ann(1− e)\{0}, which
implies xe = x and there exists z ∈ Ann(e) such that y = z + 1.

Now, xy = x(z + 1) = xe(z + 1) = x. Hence, xy ∈ E, proving (ii).

(iii) Let x ∈ eR\{0, e} and y ∈ ((1− e)R + 1)\{e}. Then, ex, ye ∈ E by (i)
and xy ∈ E by (ii). Hence, e− x− y − e forms a cycle.

Proposition 3.13. Let e ∈ R be a nontrivial idempotent such that both of eR
and (1− e)R+ 1 contain more than 2 elements. Then, the following assertions
hold in P1(R):

(i) P1(R) contains Ki,j, where i = |eR| − 2 and j = |(1− e)R+ 1| − 2.

(ii) P1(R) is not planar if both of eR and (1 − e)R + 1 contain more than 5
elements.

Proof. (i) Let V1 = eR\{0, e} and V2 = ((1 − e)R + 1)\{1, e}. Then, for any
x ∈ V1 and y ∈ V2, xy ∈ E by Proposition 3.12(ii), proving (i).

(ii) Clearly, P1(R) contains K3,3 if both of eR and (1 − e)R + 1 have more
than 5 elements by (i). Hence, P1(R) is not a planar graph.

Proposition 3.14. The following assertions hold in P (R):

(i) If x ∈ R∗ is a nilpotent element, then there exists an integer k ≥ 2 such
that xi is adjacent to 1− xk−i for every 1 ≤ i ≤ k − 1.

(ii) If x ∈ R∗ is a nilpotent element, then NP (R)(x) is a multiplicatively closed
set of the form I + 1 for an ideal I of R.

(iii) Nil(R)\{0} is an independent set.
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Proof. (i) If x ∈ R∗ is a nilpotent element, then there exists an integer k ≥ 2
such that xk = 0 and xi ̸= 0 for 1 ≤ i ≤ k − 1. Hence, xi(1− xk−i) = xi, which
implies that xi is adjacent to 1− xk−i for all 1 ≤ i ≤ k − i.

(ii) Let x ∈ R∗ be a nilpotent element and k be the least positive integer
such that xk = 0. Then, it can be seen that (1−x)(1+x+x2+ . . .+xk−1) = 1
and so 1−x is a unit. Hence, by Theorem 3.1(ii), NP (R)(x) = Ann(x)+1. Thus,
by taking I = Ann(x), NP (R)(x) = I + 1, which is a multiplicatively closed set.

(iii) Let x, y ∈ Nil(R)\{0} and k and l be the least positive integers such
that xk = 0 = yl.

Suppose, xy ∈ E. Then, either xy = x or xy = y.

If xy = x, then x = xy = xy2 = . . . = xyk, a contradiction to the choice of
x.

Similarly, xy = y implies y = xly, a contradiction to the choice of y. Hence,
xy /∈ E.

Example 3.2. In R = Z2[x]
(x3)

, Nil(R)\{0} = {[x], [x2], [x2 + x]}, which is an

independent set.

Remark 3.4. If R is a domainlike ring, then every zero-divisor is a nilpotent
and hence the set of nonzero zero-divisors in R is independent.

Proposition 3.15. If R is not a domain, then P1(R) is bipartite when R has
any one of the following equivalent conditions:

(i) Every nonunit is a nilpotent.

(ii) R has a unique prime ideal.

(iii) R
Nil(R) is a field.

Proof. Suppose that every nonunit in R is a nilpotent. Then, R∗\{1} =
(Nil(R)\{0})∪(U(R)\{1}), in which Nil(R)\{0} and U(R)\{1} are independet
sets. Hence, any edge xy with x, y ∈ R∗\{1} has one end in Nil(R)\{1} and the
other end in U(R)\{1}. Thus, Nil(R)\{1} and U(R)\{1} form a bipartition for
P1(R), as required.

As it is known that (i) ⇔ (ii) ⇔ (iii), the proposition follows.

Proposition 3.16. If R is a ring which is not domain, then P1(R) is bipartite
when R has any one of the following equivalent conditions:

(i) R is presimplifiable.

(ii) ZD(R) ⊆ J(R).

(iii) ZD(R) ⊆ {1− u|u ∈ U(R)}.
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Proof. By Lemma 2.2, (i) ⇔ (ii) ⇔ (iii).
Suppose that R is presimplifiable.
Let xy be any edge with x, y ∈ R∗\{1}. Then, xy = x or xy = y. Now,

consider the following cases:
(i) x, y ∈ U(R)\{1} (ii) x, y ∈ W ∗(R) (iii) x ∈ U(R)\{1} and y ∈

W ∗(R).
Since U(R)\{1} is independent case (i) is not possible. Also, since R is pres-

implifiable and x, y are nonzero elements, if xy = x, then y ∈ U(R). Similarly,
if xy = y, then x ∈ U(R), which shows that case (ii) is also not possible.

Hence, the only possible choice is case (iii). That is, x ∈ U(R)\{1}, y ∈
W ∗(R). Thus, U(R)\{1} and W ∗(R) form a bipartition for P1(R), as desired.

Corollary 3.4. If R is a local ring, which is not a domain, then P1(R) is
bipartite.

Proof. As R is local, it is presimplifiable and hence the proof follows from
Proposition 3.16.

Proposition 3.17. Let R be a local ring, which is not a domain.
If x, y ∈ R∗\{1} and Ann(x) ∩ Ann(y) ̸= {0}, then there exists a path

x− u− y with u ∈ U(R)\{1}.

Proof. Since R is local, it has a unique maximal ideal M, say.
Let x, y ∈ R∗\{1} and t( ̸= 0) ∈ Ann(x)∩Ann(y). Then, tx = ty = 0, which

implies (1− t)x = x and (1− t)y = y.
Hence, as 1 − t ∈ R∗\{1, x, y}, x − (1 − t) − y is a path between x and y.

Now, it is claimed that 1− t is a unit. Suppose 1− t is not a unit. Then, it must
be in a maximal ideal. Now, both t, 1− t ∈ M, which is closed under addition.

Hence, 1 ∈ M, showing that M = R, a contradiction to the fact that M is
a proper ideal. Thus, the claim is proved.

Proposition 3.18. Let R be a local ring, which is not a domain, and R has
ascending chain condition(ACC) on ideals of the form Ann(x), x ∈ R. Then,
the following assertions hold:

(i) P (R) contains cycles of lengths j, 3 ≤ j ≤ 2k + 1, where k is the number
of nontrivial annihilators in R.

(ii) P (R) is weakly pancyclic.

Proof. Since the idealsAnn(x), x∈R satisfy ACC, there exist x1, . . . , xk, xk+1 . . .
in R such that Ann(x1) ⊂ Ann(x2) ⊂ . . . ⊂ Ann(xk) = Ann(xk+1) = . . . for
some positive integer k.

(i) Let yi ∈ Ann(xi)\Ann(xi−1) for every 1 ≤ i ≤ k. Then, xiyi = xi+1yi =
0, which implies xi(1 − yi) = xi and xi+1(1 − yi) = xi+1, where 1 − yi ∈
R∗\{1, xi, xi+1}. Hence, xi − (1 − yi) − xi+1 is a path as in Proposition 3.17.
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Thus, each one of the following is a cycle: 1−x1− (1−y1)−1, (a cycle of length
3), 1−x1−(1−y1)−x2−1, (a cycle of length 4), 1−x1−(1−y1)−x2−(1−y2)−1,
(a cycle of length 5) and so on, proving (i).

(ii) P (R) is weakly pancyclic by (i) and the definition of weakly pancyclic
graph.

The proof of the following proposition is omitted as it is trivial from the
natural product defined in a quotient ring.

Proposition 3.19. Let I be a nontrivial ideal in R. If x, y are adjacent in
P (R), then x+ I and y+ I are adjacent in P (RI ), where

R
I denotes the quotient

ring.

The following proposition shows that the projection graphs of finite isomor-
phic rings are isomorphic.

Proposition 3.20. Let R and S be finite rings such that R ∼= S. Then, P (R) ∼=
P (S).

Proof. By the hypothesis, there exists a one-one, onto ring homomorphism ϕ
between R and S. Let ϕ∗ be the restriction of ϕ to R∗. Then, ϕ∗ is a one-
one, onto function. As |R∗| =|S∗|, |V (P (R))| =|V (P (S))|, where V (P (R)) and
V (P (S)) denote the sets of vertices of R and S respectively.

Let x, y ∈ V (P (R)) such that x and y are adjacent. Then, xy = x or xy = y.
If xy = x, then ϕ∗(xy) = ϕ∗(x), which implies ϕ∗(x)ϕ∗(y) = ϕ∗(x). Therefore,
ϕ∗(x) is adjacent to ϕ∗(y) in P (S).

A similar argument holds for the case, where xy = y, proving that ϕ∗ pre-
serves the adjacency between vertices. Thus, P (R) ∼= P (S).

Example 3.3. Let R = Z2[x]
(x2)

; S = Z2[x]
(x2+1)

. Then, R ∼= S and P (R) ∼= P (S).

Remark 3.5. The converse of the above proposition need not be true. For, if
R = Z4 and S = Z2[x]

(x2)
, then P (R) ∼= P (S) and R ≇ S.

Proposition 3.21. P(R) is not complete in each of the following cases:

(i) R has nontrivial idempotent elements.

(ii) |(U(R)| ≥ 3.

Proof. (i) If R has nontrivial idempotent element e, then P (R) is not complete
since e and 1− e are not adjacent.

(ii) If there are more than three units, then P (R) is not complete since
U(R)\{1} is independent.

Proposition 3.22. Let R be finite. Then, P (R) is complete if and only if either
R ∼= Z3 or R ∼= Z4.
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Proof. It is known that P (Z3) and P (Z4) are complete. Hence, if R ∼= Z3 or
R ∼= Z4, then P (R) is complete by Proposition 3.20.

Conversely, suppose that P (R) is complete. Then, |U(R)| ≤ 2 and R has no
nontrivial idempotents by the above proposition.

Let R = {0, 1, u} ∪ ZD(R), where u ̸= 1 is a unit. Then, it is claimed that
|ZD(R)| ≤ 1.

Suppose x, y ∈ ZD(R) be distinct nonzero zero-divisors. Then, xy = x or
xy = y by the hypothesis.

If xy = x, then (x+u)y = xy+uy = x+y since xu = x by the completeness.
But, (x+ u)y = x+ u or (x+ u)y = y since P (R) is complete.

If (x+u)y = x+u, then from the previous step, x+u = x+y which implies
y = u, a contradiction to the choice of y. Therefore, (x+u)y = y, which implies
x = 0.

By a similar argument, it can be shown that if xy = y, then y = 0. Hence,
there can be at the most one nonzero zero-divisor. Thus, |R| ≤ 4.

If |R| = 3, then R ∼= Z3.

If |R| = 4, then R ∼= Z4, since R is the unital commutative ring of cardinality
4 with no nontrivial idempotents, which completes the proof.

Proposition 3.23. If P (R) is not a star, then there exists x ∈ R∗\{1} such
that either xR or (1− x)R has a nonzero annihilating ideal.

Proof. If P (R) is not a star, then there exists xy ∈ E, for some x, y ∈ R∗\{1},
which implies that either y ∈ (Ann(x) + 1)\{1} or y ∈ Ann(1 − x)\{0} by
Theorem 3.1.

If y ∈ (Ann(x) + 1)\{1}, then there exists a nozero z ∈ Ann(x) such that
y = z+1 and (y−1)xr = zxr = 0 for every r in R, showing that Ann(xR) ̸= {0}.

If y ∈ Ann(1 − x)\{0}, then (1 − x)y = 0 and therefore (1 − x)yr = 0 for
every r ∈ R. Hence, Ann((1− x)R) ̸= {0}. This completes the proof.

Proposition 3.24. If x, y ∈ R∗ are adjacent, then either xR ⊆ yR or yR ⊆ xR.

Proof. Suppose x, y ∈ R∗ and xy ∈ E. Then, either xy = x or xy = y.

Consider the following possible cases:

(i) x, y ∈ U(R) (ii) x ∈ U(R) and y /∈ U(R) (iii) x, y /∈ U(R).

Case (i) If x, y ∈ U(R), then xR = yR = R.

Case (ii) If x ∈ U(R) and y /∈ U(R), then xR = R and so yR ⊆ xR.

Case (iii) Let x, y /∈ U(R). If xy = x, then z ∈ xR implies z = xr for some
r ∈ R. Therefore, z = (xy)r = y(xr) ∈ yR and so xR ⊆ yR.

Similarly, if xy = y, then it can be shown that yR ⊆ xR, which completes
the proof.
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4. Projection graphs of Zn

In this section, Zn, n ≥ 3, is considered and P (Zn) is studied. It is observed
that the vertex set V of P (Zn) is given by V = Z∗

n = U(Zn) ∪ (ZD(Zn)\{0})
and |V | = n− 1.

Proposition 4.1. Let n ≥ 3. Then:

(i) P (Zn) is complete if and only if n = 3, 4.

(ii) P (Zn) is a star if and only if n is a prime.

Proof. (i) The proof follows from Proposition 3.22.

(ii) Zn has no zero-divisors if and only if n is a prime. Hence, (ii) follows
from Corollary 3.1.

Proposition 4.2. diam(P (Zn)) =

{
1, if n = 3, 4

2, otherwise.

Proof. By Proposition 4.1(i), it is clear that the diameter of P (Zn) is 1 if and
only if n = 3, 4 . Hence, by Proposition 3.1, the diameter of P (Zn) is 2 if
n ≥ 5.

Proposition 4.3. girth(P (Zn)) =

{
∞, if n is prime

3, otherwise.

Proof. By Proposition 4.1(ii), it is clear that the girth of P (Zn) is ∞ if and
only if n is a prime. Hence, if n is not a prime, then the girth of P (Zn) is 3 by
Proposition 3.8.

Remark 4.1. Note that, Zn has nontrivial idempotent, if and only if x2 ≡
x mod n for some 1 < x < n if and only if n divides x(1 − x) if and only if n
has at least two nontrivial divisors.

Proposition 4.4. Let x, y ∈ Z∗
n. Then:

(i) Ann(x) = Ann(c) if (x, n) = c.

(ii) Ann(x) = {0} if and only if x ∈ U(Zn).

(iii) Ann(x) = Ann(y) if and only if (x, n) = (y, n).

(iv) If (x, n) = x, then Ann(x) = kZn, where k = n
x and |kZn| = x.

(v) Ann(e) = (1− e)Zn and Ann(1− e) = eZn, where e is a nontrivial idem-
potent.
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Proof. (i) Suppose (x, n) = c. Then, there exist integers k and l,m such that
x = kc and c = lx+mn.

Now, Ann(x) ⊆ Ann(c). For, t ∈ Ann(x) ⇒ tx = 0 ⇒ tlx = 0 ⇒ tc = 0 ⇒
t ∈ Ann(c).

Also, Ann(c) ⊆ Ann(x), since t ∈ Ann(c) ⇒ tc = 0 ⇒ tkc = 0 ⇒ tx = 0 ⇒
t ∈ Ann(x), which proves (i).

(ii) If x ∈ U(Zn), then Ann(x) = {t ∈ Zn|tx = 0} = {0}. Conversely,
suppose x /∈ U(Zn). If x = 0, then Ann(x) = Zn.

If x ̸= 0, then there exists y ∈ Z∗
n such that xy = 0, which implies Ann(x) ̸=

{0}.
(iii) The proof of (iii) follows from (i).

(iv) As Ann(x) is an ideal and every ideal in Zn is principal, Ann(x) = aZn

for some a ∈ Zn.

If (x, n) = x, then there exists an integer k such that kx = n, which implies
k ∈ Ann(x) and hence kZn ⊆ Ann(x). Also, t ∈ Ann(x) ⇒ tx = 0 ⇒ tx = ln,
for some l ∈ Zn ⇒ t = kl ∈ kZn. Hence, Ann(x) ⊆ kZn and |kZn| = x, proving
(iv).

(v) Assertion (v) follows from the proof of Proposition 3.12 (i).

Proposition 4.5. Let s, t be two distinct factors of n. Then:

(i) Ann(s) ̸= Ann(t)

(ii) Ann(s) ⊂ Ann(t), whenever s | t.

(iii) Ann(s) ∩Ann(t) = {0} if and only if (s, t) = 1.

Proof. (i) Note that, (s, n) = s and (t, n) = t. Therefore, from Proposition
4.4(iv), Ann(s) = kZn and Ann(t) = lZn, where k = n

s , l =
n
t . Hence, Ann(s) ̸=

Ann(t), since k ̸= l.

(ii) If s | t, then sk = t for some integer k and therefore r ∈ Ann(s) ⇒
rs = 0 ⇒ krs = 0 ⇒ tr = 0 ⇒ r ∈ Ann(t). Hence, Ann(s) ⊂ Ann(t), since
|Ann(s)| = s < t = |Ann(t)|.

(iii) Suppose (s, t) = 1. Then, there exist integers k and l such that ks+ lt =
1. Hence, if r ∈ Ann(s) ∩Ann(t), then r = rks+ rlt and so r = 0.

Conversely, suppose (s, t) = r ̸= 1. Then, r | s and r | t and hence by (ii),
Ann(s) ∩Ann(t) ⊃ Ann(r) ̸= {0}.

Definition 4.1. Define a relation ∼ on Z∗
n by x ∼ y if and only if Ann(x) =

Ann(y) for every x, y ∈ Z∗
n.

Remark 4.2. The relation ∼ defined above on Z∗
n is an equivalence relation.

Hence, if x ∈ Z∗
n and [x]∼ denotes the equivalence class of x, then by Proposition

4.4(iii), [x]∼ = {y ∈ Z∗
n|Ann(y) = Ann(x)} = {y ∈ Z∗

n|(y, n) = (x, n)}.

Proposition 4.6. Using the above notations, the following statements are true:
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(i) [1]∼ = U(Zn); |[1]∼| = ϕ(n).

(ii) [1]∼\{1} is an independent set of size ϕ(n)− 1.

(iii) If d | n, then [d]∼ = {y ∈ Z∗
n|(y, n) = d}.

(iv) ZD(Zn)\{0} = ∪(x,n) ̸=1[x]∼ = ∪d|n,d ̸=1[d]∼.

Proof. (i) By using Remark 4.2, [1]∼ = {y ∈ Z∗
n|Ann(y) = {0}} = {y ∈

Z∗
n|(y, n) = 1} = U(Zn) and hence |[1]∼| = ϕ(n).
(ii) The proof follows from Corollary 3.3 using (i).
(iii) Let d | n. Then, (d, n) = d and hence [d]∼ = {y ∈ Z∗

n|Ann(y) =
Ann(d)} = {y ∈ Z∗

n|(y, n) = d}.
(iv) From Remark 4.2, Z∗

n = [1]∼∪(∪x∈Z∗
n\{1}[x]∼) and hence ZD(Zn)\{0} =

∪(x,n)̸=1[x]∼ = ∪d|n,d ̸=1[d]∼, by (iii).

Proposition 4.7. Let n = pk, for some k ≥ 2. Then, the following assertions
hold:

(i) ZD(Zn)\{0} is an independent set.

(ii) P1(Zn) is bipartite.

(iii) P (Zn) is weakly pancyclic.

Proof. If n = pk, then ZD(Zn)\{0} = ∪k−1
i=1 [p

i]∼, where [p
i]∼ = {y ∈ Z∗

n|(y, n) =
pi}, by Proposition 4.6(iv).

(i) It is claimed that ZD(Zn) = Nil(Zn). For, if x ∈ ZD(Zn)\{0}, then
x ∈ [pi]∼, for some i, which implies x = tpi for some integer t. Hence, xk−i = 0
and thus x is a nilpotent element, proving the claim.

Hence, ZD(Zn)\{0} = Nil(Zn)\{0}, which is independent by 3.14(iii).
(ii) From the proof of (i), it is noted that the set of all nonunits is equal to

Nil(Zn), which is the unique maximal ideal. Hence, Zn is local and thus P1(Zn)
is bipartite by Corollary 3.4.

(iii) It is claimed that the ideals of the form Ann(x), x ∈ Zn, have ACC.
If x ∈ Z∗

n, then either x ∈ U(Zn) or x ∈ [pi]∼ = {t ∈ Z∗
n|Ann(t) = Ann(pi)},

for some i. If x ∈ U(Zn), then Ann(x) = {0}.
Also, by Proposition 4.5 (ii), Ann(p) ⊂ Ann(p2) ⊂ . . . ⊂ Ann(pk−1), proving

the claim. Thus, P (Zn) is weakly pancyclic by Proposition 3.18.

Proposition 4.8. If n = 2k, for some k ≥ 2, then the following assertions hold:

(i) |U(Zn)\{1}| = |ZD(Zn)\{0}| = n
2 − 1, U(Zn) = [1]∼ = {2j + 1 ∈ Z∗

n|j ∈
Zn}.

(ii) If x ∈ [2i]∼ and x+ u = 1, then deg(x) = deg(u) = 2i, for 1 ≤ i ≤ k − 1.

(iii) The degree sequence is given by (2(a1), 22
(a2) , . . . , 2k−1(ak−1)

, n− 2(1)), where
(ai) denotes the multiplicity and (ai) = 2|[2i]∼| for 1 ≤ i ≤ k − 1.
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Proof. (i) |U(Zn)| = ϕ(n) = 2k − 2k−1 = n− n
2 = n

2 .

Hence, |U(Zn)\{1}| = |ZD(Zn)\{0}| = n
2 − 1. Also, U(Zn) = [1]∼ = {y ∈

Z∗
n|(y, 2k) = 1} = {2j + 1 ∈ Z∗

n|j ∈ Zn}.
(ii) Let x ∈ [2i]∼ and x + u = 1. Then, u = 1 − x ∈ U(Zn)\{1} since x is

nilpotent from 4.7(i). Therefore, by Theorem 3.1(i), NP (R)(u) = {1}∪(Ann(1−
u)\{0}) = {1} ∪ (Ann(x)\{0}) = {1} ∪ (Ann(2i)\{0}) = {1} ∪ (2k−iZn\{0})
and so |NP (R)(u)| = 2i. Thus, deg(u) = 2i. Also, NP (Zn)(x) = Ann(2i) + 1 =

2k−iZn + 1 and so |NP (Zn)(x)| = |2k−iZn| = 2i. Thus, deg(x) = 2i. From the
above discussion, it is clear that deg(u) = deg(x) = 2i.

(iii) Note that, Z∗
n = {1}∪(U(Zn)\{1})∪(ZD(Zn)\{0}), where ZD(Zn)\{0} =

∪k−1
i=1 [2

i]∼.

As the degree of 1 is n− 2 and for every x ∈ ZD(Zn)\{0}, there is a unique
u ∈ U(Zn)\{1} such that x+ u = 1, (iii) follows from (ii).

Proposition 4.7 and Proposition 4.8 are illustrated in Figure 7 and Table 1
for n = 32.

Illustration 4.1. Consider Z32, where ZD(Zn)\{0} = ∪4
i=1[2

i]∼ and U(Zn) =
[1]∼ = {y ∈ Z∗

n|(y, 25) = 1} = {1, 3, 5, . . . , 31}.

i {x|x ∈ [2i]∼} Ann(2i) = kZn, k = n
2i

u = 1− x deg(x) = deg(u)

1 {2, 6, . . . , 30} {0, 16} {31, 27, . . . , 3} 2

2 {4, 12, 20, 28} {0, 8, 16, 24} {29,21,13,5} 4

3 {8, 24} {0.4, 8, . . . , 28} {25, 9} 8

4 {16} {0.2, 4, . . . , 30} {17} 16

Table 1: Z32

2 46 810 1214 1618 2022 2426 2830

35 79 1113 1517 1921 2325 2729 31

1

Figure 7: P (Z32)
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Proposition 4.9. Let n = 2q. Then, the following assertions hold:

(i) ZD(Zn) = {2, 4, . . . , 2q − 2} ∪ {q}, U(Zn) = {1, 3, 5, . . . , 2q − 1}\{q}.

(ii) q, q + 1 are the nontrivial idempotents.

(iii) NP (Zn)(q) = {1, 3, . . . , 2q−1}\{q}, NP (Zn)(q+1) = {2, 4, . . . , 2q−2}\{q+
1}.

(iv) NP (Zn)(x) = {1, q} if x ∈ [2]∼\{q + 1}, NP (Zn)(x) = {1, q + 1} if x ∈
U(Zn)\{1}.

(v) deg(x) =


n− 2, if x = 1

q − 1, if x = q, q + 1

2, otherwise.

(vi) The number of triangles in P (Zn) is 2q − 4.

(vii) P (Zn) is the union of two copies of triangular book

(viii) |E| = 4q − 6.

(ix) P (Zn) is planar.

(x) P1(Zn) is disconnected.

Proof. (i) By Proposition 4.6(iv), ZD(Zn)\{0} = [2]∼ ∪ [q]∼, where [2]∼ =
{y ∈ Z∗

n|(y, n) = 2} = {2, 4, . . . , 2q − 2} and [q]∼ = {y ∈ Z∗
n|(y, n) = q} = {q}.

Hence, U(Zn) = Zn\ZD(Zn) = {1, 3, 5, . . . , 2q − 1}\{q}.

............n− 1 n− 2

q q + 1

............

1

24 3 7

Figure 8: P (Z2q)

(ii) Since q is odd, q(q + 1) ≡ 0 mod 2q and hence q and q + 1 are the
idempotents.
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(iii) Note that, 1 − q = q + 1 and as in the proof of Proposition 3.12,
Ann(1 − q) = Ann(q + 1) = qZn = {0, q}. Also, Ann(q) = 2Zn by Proposi-
tion 4.4(iv). Hence, by using Theorem 3.1(iii), NP (Zn)(q) = ((Ann(q) + 1) ∪
Ann(1− q))\{0, q} = ((2Zn + 1) ∪ qZn)\{0, q} = {1, 3, 5, . . . , 2q − 1}\{q}.

Similarly, NP (Zn)(q+1) = ((Ann(q+1)+1)∪Ann(q))\{0, q+1} = ((qZn+
1) ∪ 2Zn)\{0, q + 1} = {1, 2, 4, . . . , 2q − 2}\{q + 1}.

(iv) If x ∈ [2]∼\{q+1}, then NP (Zn)(x) = ((Ann(x)+1)∪Ann(1−x))\{0} by
Theorem 3.1(ii) = (Ann(2)+1) by the definition of ∼ = qZn+1 by Proposition
3.1(iv) = {1, q + 1}. Also, since |qZn| = 2, by Proposition 3.6, either qx ∈ E or
(1− q)x ∈ E, for every x ∈ Z∗

n\{1, q, 1− q}. But, Z∗
n\{1, q, 1− q} = ([2]∼\{q +

1}) ∪ ([1]∼\{1}), where [1]∼\{1} = U(Zn)\{1}.
Hence, for x ∈ U(Zn)\{1}, NP (Zn)(x) = {1, q}.
(v) The proof of (v) follows from (iii) and (iv).
(vi) From (iv), it can be seen that 1− x− (q + 1)− 1 form triangles, which

share (q + 1)1 in common for every x ∈ U(Zn)\{1}.
Similarly, 1− q − y − 1 form triangles, which share 1q in common for every

y ∈ [2]∼\{q + 1}, as drawn in Figure 8.
Hence, the number of triangles = |U(Zn)\{1}|+ |[2]∼\{q+ 1}| = 2(q− 1) =

2q − 4. (vii) From Figure, it is clear that P (Zn) is the union of two copies of
triangular book.

(viii) As each triangle in one page of the triangular book counts two edges
excluding the common edge, |E| = (2(2q − 4)) + 2 = 4q − 6.

(ix) Obviously, P (Zn) is planar.
(x) P (Zn) is disconnected if 1 is removed. Hence, P1(Zn) is disconnected.

5. Projection graphs of near-rings

In this section, the projection graph P (N) of a near-ring N is defined as the
same as that of a ring and the properties of P (N) are discussed. Throughout,
this section N denotes a right near-ring with at least 3 elements.

Proposition 5.1. If N is a near-field, then P (N) is a star.

Proof. Let N be a near-field and 1 be the multiplicative identity. Then, x1 ∈ E
since the equation x1 = x holds in N , for every x ∈ N∗. If xy ∈ E, then either
xy = x or xy = y, which implies x = 1 or y = 1 as every nonzero element in
N has multiplicative inverse. Hence, E = {x1 | x ∈ N∗}. Thus, P (N) is a
star.

Proposition 5.2. If N is a near-ring, then the following hold in P (N):

(i) Every nonzero element in N is adjacent to every element in its constant
part.

(ii) The subgraph induced on the constant part forms a clique.

Proof. The proof follows from the definition of constant part of N .
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Corollary 5.1. If N is a constant near-ring, then P (N) is complete.

Proof. If N is a constant near-ring, then N = Nc and hence P (N) is complete,
by Proposition 5.2(ii).

Remark 5.1. The converse of the above proposition need not be true. For,
consider N = (D8,+, ·), where (D8,+) is the dihedral group and · is defined by

x ·y =

{
x, if y ̸= 0

0, if y = 0.
Clearly, N is a near-ring, which is not constant and P (N)

is complete.

Theorem 5.1. If N is an almost trivial near-ring, then P (N) is complete.

Proof. Suppose N is an almost trivial near-ring, then xy =

{
x, if y /∈ Nc

0, if y ∈ Nc

, for

every x, y ∈ N .
Let x, y ∈ N∗. Then, by Pierce decomposition, x = x0 + xc and y = y0 + yc,

where x0 and y0 are the zero-symmetric parts and xc and yc are the constant
parts of x and y, respectively.

Now, consider the following possible cases:
(i) x, y ∈ N0 (ii) x, y ∈ Nc (iii) x ∈ N0 and y ∈ Nc (iv) x, y /∈ N0∪Nc.
It is claimed that xy ∈ E. For,

(i) If x, y ∈ N0, then x = x0 and xc = 0. Therefore, xy = x.

(ii) If x, y ∈ Nc, then x = xc and x0 = 0. Therefore, xy = xc = x.

(iii) If x ∈ N0 and y ∈ Nc, then y = yc and y0 = 0. So, yx = y.

(iv) If x, y /∈ N0∪Nc, then x = x0+xc, y = y0+yc, where x0, y0 ∈ N0\{0} and
xc, yc ∈ Nc\{0}. Hence, xy = (x0 + xc)(y0 + yc) = x0(y0 + yc) + xc(y0 +
yc)=x0 + xc = x.

Hence, the claim is proved.

Proposition 5.3. If N is a Boolean near-ring, which is subdirectly irreducible,
then P (N) is complete.

Proof. The proof follows from Lemma 2.3 and Theorem 5.1.

6. Conclusion

In this paper, the projection graphs P (R) of a ring R and P (N) of a near-ring
N are introduced and their graph properties are studied. A method of finding
adjacent vertices in P (R), using annihilators is provided. Certain algebraic
properties of rings are observed through their projection graphs. This paper
may be extended by considering substructures of rings and near-rings and more
algebraic properties can be obtained through their projection graphs.
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Abstract. Let N be a near ring and n be a fixed positive integer. An n-additive (addi-
tive in each argument) mapping F : N×N× . . .×N︸ ︷︷ ︸

n−times

→ N is said to be a permu-

ting generalized n-semiderivation on a near ring N if there exists an n-semiderivation
d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N associated with a map g : N → N such that the relation

F (x1x
′
1, x2, . . . , xn)=F (x1, x2, . . . , xn)x

′
1+g(x1)d(x

′
1, x2, . . . , xn)=d(x1, x2, . . . , xn)g(x

′
1)

+x1F (x
′
1, x2, . . . , xn) and g(F (x1, x2, . . . , xn)) = F (g(x1), g(x2), . . . , g(xn)) hold, for all

x1, x
′
1, x2, ....., xn ∈ N . The purpose of the present paper is to prove some commutativ-

ity theorems in case of a semigroup ideal of a 3-prime near ring admitting a generalized
n-semiderivation, thereby extending some known results of derivations, semiderivations
and generalized derivations.

Keywords: 3-prime near-rings, n-semiderivations, generalized n-semiderivations,
semigroup ideals.

*. Corresponding author



CHARACTERIZATION OF GENERALIZED n-SEMIDERIVATIONS OF 3-PRIME ... 137

1. Introduction

A left near ring N is a triplet (N,+, ·), where + and · are two binary operations
such that (i) (N,+) is a group (not necessarily abelian), (ii) (N, ·) is a semigroup,
and (iii) x · (y + z) = x · y + x · z, for all x, y, z ∈ N . Analogously, if instead
of (iii), N satisfies the right distributive law, then N is said to be a right near
ring. The most natural example of a non-commutative left near ring is the
set of all identity preserving mappings acting from right of an additive group
G (not necessarily abelian) into itself with pointwise addition and composition
of mappings as multiplication. If these mappings act from left on G, then we
get a non-commutative right near ring (For more examples, we can refer Pilz
[2]). Throughout the paper, N represents a zero-symmetric left near ring with
multiplicative centre Z(N) and for any pair of elements x, y ∈ N , the symbols
[x, y] and (x ◦ y) denote the Lie Product xy − yx and Jordan product xy + yx.
A near ring N is called zero-symmetric if 0x = 0, for all x ∈ N (recall that
left distributivity yields that x0 = 0). A near ring N is said to be 3-prime
if xNy = {0} for x, y ∈ N implies that x = 0 or y = 0. A near ring N is
called 2-torsion free if (N,+) has no element of order 2. A nonempty subset U
of N is called a semigroup right (resp. semigroup left) ideal of N if UN ⊆ U
(resp. NU ⊆ U) and if U is both a semigroup right ideal and a semigroup left
ideal, it is called a semigroup ideal. Let n ≥ 2 be a fixed positive integer and
Nn = N ×N × . . .×N︸ ︷︷ ︸

n−times

. A map ∆ : Nn → N is said to be permuting on a

near ring N if the relation ∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n)) holds,
for all xi ∈ N , i = 1, 2, . . . , n and for every permutation π ∈ Sn, where Sn is the
permutation group on {1, 2, . . . , n}. An additive mapping F : N → N is said
to be a right (resp. left) generalized derivation with associated derivation d if
F (xy) = F (x)y + xd(y) (resp. F (xy) = d(x)y + xF (y)), for all x, y ∈ N and F
is said to be a generalized derivation with associated derivation d on N if it is
both a right generalized derivation and a left generalized derivation on N with
associated derivation d.

Ozturk et. al. [6] and Park et. al. [5] studied bi-derivations and tri-
derivations in near rings. A symmetric bi-additive mapping d : N × N → N
(i.e., additive in both arguments) is said to be a symmetric bi-derivation on N if
d(xy, z) = d(x, z)y+xd(y, z) holds, for all x, y, z ∈ N . A permuting tri-additive
mapping d : N ×N ×N → N is said to be a permuting tri-derivation on N if

d(xw, y, z) = d(x, y, z)w + xd(w, y, z)

is fulfilled, for all w, x, y, z ∈ N. Muthana [7] defined bimultipliers in rings as
follows: A biadditive (additive in both arguments) mapping B : R × R → R is
called a left (resp. right) bimultiplier on a ring R if B(xy, z) = B(x, z)y (resp.
B(xy, z) = xB(y, z)) holds, for all x, y, z ∈ R. Motivated by this definition we
define an n-additive mapping F : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N is called a left (resp.
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right) n-multiplier on a near ring N if F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1

(resp. F (x1x
′
1, x2, . . . , xn) = x1F (x

′
1, x2, . . . , xn)), for all x1, x

′
1, x2, . . . , xn ∈ N.

Very recently Asma et. al. [1] defined semiderivations in near rings. An additive
mapping d : N → N is said to be a semiderivation on a near ringN if there exists
a mapping g : N → N such that d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y)
and d(g(x)) = g(d(x)), for all x, y ∈ N. Let n be a fixed positive integer. An
n-additive (i.e., additive in each argument) mapping d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N

is said to be an n-semiderivation on a near ring N if there exists a mapping
g : N → N such that the relations

d(x1x
′
1, x2, . . . , xn) = d(x1, x2, . . . , xn)g(x

′
1) + x1d(x

′
1, x2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

d(x1, x2x
′
2, . . . , xn) = d(x1, x2, . . . , xn)g(x

′
2) + x2d(x1, x

′
2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
2 + g(x2)d(x1, x

′
2, . . . , xn)

...

d(x1, x2, . . . , xnx
′
n) = d(x1, x2, . . . , xn)g(x

′
n) + xnd(x1, x2, . . . , x

′
n)

= d(x1, x2, . . . , xn)x
′
n + g(xn)d(x1, x2, . . . , x

′
n)

and g(d(x1, x2, . . . , xn)) = d(g(x1), g(x2), . . . , g(xn)) hold, for all xi, x
′
i ∈ N

for i = 1, 2, . . . , n. An n-additive (i.e., additive in each argument) mapping
F : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N is said to be a generalized n-semiderivation on N

if there exists an n-semiderivation d : N ×N × ...×N︸ ︷︷ ︸
n−times

→ N associated with a

map g : N → N such that the relations

F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1 + g(x1)d(x

′
1, x2, . . . , xn)

= d(x1, x2, . . . , xn)g(x
′
1) + x1F (x

′
1, x2, . . . , xn)

F (x1, x2x
′
2, . . . , xn) = F (x1, x2, . . . , xn)x

′
2 + g(x2)d(x1, x

′
2, . . . , xn)

= d(x1, x2, . . . , xn)g(x
′
2) + x2F (x1, x

′
2, . . . , xn)

...

F (x1, x2, . . . , xnx
′
n) = F (x1, x2, . . . , xn)x

′
n + g(xn)d(x1, x2, . . . , x

′
n)

= d(x1, x2, . . . , xn)g(x
′
n) + xnF (x1, x2, . . . , x

′
n)

and g(F (x1, x2, . . . , xn)) = F (g(x1), g(x2), . . . , g(xn)) hold, for all xi, x
′
i ∈ N for

i = 1, 2, . . . , n. All n-semiderivations are generalized n-semiderivations. More-
over, if g is the identity map on N , then all generalized n-semiderivations are
merely generalized n-derivations, the notion of generalized n-semiderivation gen-
eralizes that of generalized n-derivation. Moreover, generalization is not trivial,
as the following example shows:
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Example 1. Let S be a commutative near ring. Consider

N =

{ 0 x y
0 0 z
0 0 0

 | 0, x, y, z ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 z1
0 0 0

 ,

0 x2 y2
0 0 z2
0 0 0

 , . . . ,

0 xn yn
0 0 zn
0 0 0

) =

0 0 z1z2...zn
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 z1
0 0 0

 ,

0 x2 y2
0 0 z2
0 0 0

 , . . . ,

0 xn yn
0 0 zn
0 0 0

) =

0 0 x1x2...xn
0 0 0
0 0 0


and a map g : N → N by

g

0 x y
0 0 z
0 0 0

 =

0 0 z
0 0 0
0 0 0

 .

It can be easily verified that F is a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d on N .

Example 2. Let S be a commutative near ring. Consider

N =

{ 0 x y
0 0 0
0 0 z

 | 0, x, y, z ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication. Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 0
0 0 z1

 ,

0 x2 y2
0 0 0
0 0 z2

 , . . . ,

0 xn yn
0 0 0
0 0 zn

) =

0 x1x2...xn 0
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 0
0 0 z1

 ,

0 x2 y2
0 0 0
0 0 z2

 , . . . ,

0 xn yn
0 0 0
0 0 zn

) =

0 0 y1z2...zn
0 0 0
0 0 z1z2...zn
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and a map g : N → N by

g

0 x y
0 0 0
0 0 z

 =

0 x 0
0 0 0
0 0 0

 .

It is easy to see that F is a generalized n-semiderivation associated with an
n-semiderivation d and a map g associated with d on N . However, F is not a
generalized n-derivation on N .

2. Preliminary results

We begin with several Lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([3, Lemma 1.2 and Lemma 1.3]). Let N be 3-prime near ring.

(i) If z ∈ Z(N)\{0}, then z is not a zero divisor.

(ii) If Z(N)\{0} contains an element z for which z + z ∈ Z(N), then (N,+)
is abelian.

(iii) If Z(N)\{0} and x is an element of N for which xz ∈ Z(N), then x ∈
Z(N).

Lemma 2.2 ([3, Lemma 1.3 and Lemma 1.4]). Let N be 3-prime near ring and
U be a nonzero semigroup ideal of N .

(i) If x ∈ N and xU = {0} or Ux = {0}, then x = 0.

(ii) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

(iii) If x ∈ N centralizes U , then x ∈ Z(N).

Lemma 2.3 ([3, Lemma 1.5]). If N is a 3-prime near ring and Z(N) contains
a nonzero semigroup left ideal or a nonzero semigroup right ideal, then N is a
commutative ring.

Lemma 2.4. Let N be a 3-prime near ring and d be a nonzero n-semiderivation
of N associated with a map g. If U1, U2, . . . , Un are nonzero semigroup ideals of
N , then d(U1, U2, . . . , Un) ̸= {0}.

Proof. Suppose that d(U1, U2, . . . , Un) = {0}. Then

d(x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un(1)

Replacing x1 by x1r1 for r1 ∈ N in (1) and using it, we have

x1d(r1, x2, . . . , xn) = 0.
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By Lemma 2.2(i), we obtain

d(r1, x2, . . . , xn) = 0.(2)

Now, substituting x2r2 for x2, where r2 ∈ N in (2), we get d(r1, r2, . . . , xn) = 0.
Proceeding inductively as above, we conclude that d(r1, r2, . . . , rn) = 0, for all
r1, r2, . . . , rn ∈ N. This shows that d(N,N, . . . , N) = {0}, leading to a contradic-
tion as d is a nonzero n-semiderivation. Therefore, d(U1, U2, . . . , Un) ̸= {0}.

Lemma 2.5. Let N be a 3-prime near ring. Then F is a generalized n-
semiderivation associated with an n-semiderivation d and a map g associated
with d of N if and only if

F (x1x
′
1, x2, . . . , xn) = g(x1)d(x

′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1,

for all x1, x
′
1, x2, . . . , xn ∈ N .

Proof. We have

F (x1(x
′
1 + x′1), x2, . . . , xn)

= F (x1, x2, . . . , xn)(x
′
1 + x′1) + g(x1)d(x

′
1 + x′1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1 + F (x1, x2, . . . , xn)x

′
1(3)

+ g(x1)d(x
′
1, x2, . . . , xn) + g(x1)d(x

′
1, x2, . . . , xn)

and

F (x1x
′
1 + x1x

′
1, x2, . . . , xn) = F (x1x

′
1, x2, . . . , xn) + F (x1x

′
1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

+ F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn).(4)

Comparing (3) and (4), we get

F (x1, x2, . . . , xn)x
′
1 + g(x1)d(x

′
1, x2, . . . , xn)

= g(x1)d(x
′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1.

This implies that

F (x1x
′
1, x2, . . . , xn) = g(x1)d(x

′
1, x2, . . . , xn) + F (x1, x2, . . . , xn)x

′
1.

Converse can be proved in a similar way.

Lemma 2.6. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N. If N admits a generalized n-semiderivation F associated with
an n-semiderivation d and a map g associated with d such that g(U1) = U1 and
U1 ∩ Z(N) ̸= {0}, then F (Z(N), U2, U3, . . . , Un) ⊆ Z(N).
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Proof. If z ∈ U1 ∩ Z(N), then

F (zx1, x2, . . . , xn) = F (x1z, x2, . . . , xn), for all xi ∈ Ui for i = 1, 2, . . . , n.

Using Lemma 2.5, we have

g(z)d(x1, x2, . . . , xn) + F (z, x2, . . . , xn)x1 = d(x1, x2, . . . , xn)g(z)

+ x1F (z, x2, . . . , xn).

Since g(U1) = U1, so replacing g(z) by arbitrary element z′ ∈ U1∩Z(N), we get

z′d(x1, x2, . . . , xn)+F (z, x2, . . . , xn)x1=d(x1, x2, . . . , xn)z
′+x1F (z, x2, . . . , xn).

This implies that F (z, x2, . . . , xn)x1 = x1F (z, x2, . . . , xn), for all z ∈ U1 ∩
Z(N), xi ∈ Ui for i = 1, 2, . . . , n. Now, replacing x1 by x1r, where r ∈ N in
the last expression and using it again, we obtain x1[F (z, x2, . . . , xn), r] = 0,
for all xi ∈ Ui, r ∈ N for i = 1, 2, . . . , n. By Lemma 2.2(i), we find that
[F (z, x2, . . . , xn), r] = 0. Hence, F (Z(N), U2, U3, . . . , Un) ⊆ Z(N).

Lemma 2.7. Let N be a 3-prime near ring admitting an n-semiderivation d
associated with a map g such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ N , then

N satisfies the following partial distributive law:

{d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= d(x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Proof. For all x1, x
′
1, x2, . . . , xn, y ∈ N , we have

d((x1x
′
1)y, x2, . . . , xn) = d(x1x

′
1, x2, . . . , xn)y + g(x1x

′
1)d(y, x2, . . . , xn)

= {d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(5)

On the other hand

d(x1(x
′
1y), x2, . . . , xn) = d(x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1y, x2, . . . , xn)

= d(x1, x2, . . . , xn)x
′
1y + g(x1){d(x′1, x2, . . . , xn)y

+ g(x′1)d(y, x2, . . . , xn)},
d(x1(x

′
1y), x2, . . . , xn) = d(x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1, x2, . . . , xn)y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(6)

From (5) and (6), we get

{d(x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= d(x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y.
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Lemma 2.8. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N. Let d be a nonzero n-semiderivation of N associated with a
map g such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If x ∈ N and

d(U1, U2, . . . , Un)x = {0}(or xd(U1, U2, . . . , Un) = {0}), then x = 0.

Proof. By hypothesis,

d(x1, x2, . . . , xn)x = 0, for all xi ∈ Ui; 1 ≤ i ≤ n, x ∈ N.(7)

Replacing x1 by r1x1 for r1 ∈ N in (7), we get

{d(r1, x2, . . . , xn)x1 + g(r1)d(x1, x2, . . . , xn)}x = 0.

Using Lemma 2.7 and (7), we get d(r1, x2, . . . , xn)U1x = {0}. By Lemma 2.2(ii),
we have either d(r1, x2, . . . , xn) = 0 or x = 0. If d(r1, x2, . . . , xn) = 0, for all
r1 ∈ N , x2 ∈ U2,. . . , xn ∈ Un, then proceeding as in the proof of Lemma 2.4,
we can show that d(N,N, . . . , N) = {0}, leading to a contradiction. Therefore,
x = 0.

A similar argument using above, handles the case xd(x1, x2, . . . , xn)={0}.

Lemma 2.9. Let N be a 3-prime near ring admitting a generalized n-semi-
derivation F associated with an n-semiderivation d and an onto map g associated
with d such that g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ N. Then N satisfies the

following partial distributive laws:

(i){F (x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= F (x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y.

(ii){d(x1, x2, . . . , xn)g(x′1) + x1F (x
′
1, x2, . . . , xn)}y

= d(x1, x2, . . . , xn)g(x
′
1)y + x1F (x

′
1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Proof. For all x1, x
′
1, x2, . . . , xn, y ∈ N , we have

F ((x1x
′
1)y, x2, . . . , xn) = F (x1x

′
1, x2, . . . , xn)y + g(x1x

′
1)d(y, x2, . . . , xn)

= {F (x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(8)

On the other hand

F (x1(x
′
1y), x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1y, x2, . . . , xn)

= F (x1, x2, . . . , xn)x
′
1y + g(x1){d(x′1, x2, . . . , xn)y

+ g(x′1)d(y, x2, . . . , xn)},
F (x1(x

′
1y), x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1y + g(x1)d(x

′
1, x2, . . . , xn)y

+ g(x1)g(x
′
1)d(y, x2, . . . , xn).(9)
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From (8) and (9), we get

{F (x1, x2, . . . , xn)x′1 + g(x1)d(x
′
1, x2, . . . , xn)}y

= F (x1, x2, . . . , xn)x
′
1y + g(x1)d(x

′
1, x2, . . . , xn)y,

for all x1, x
′
1, x2, . . . , xn, y ∈ N .

Arguing in the similar manner, we can prove the result for case (ii).

Lemma 2.10. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N. If F is a nonzero generalized n-semiderivation on N
associated with an n-semiderivation d and a map g associated with d such that
g(U1) = U1, then F (U1, U2, . . . , Un) ̸= {0}.

Proof. Suppose that

F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(10)

Substituting x1r1 in place of x1, where r1 ∈ N in (10), we have

F (x1, x2, . . . , xn)r1 + g(x1)d(r1, x2, . . . , xn) = 0.

Using (10) and since g(U1) = U1, so replacing g(x1) by an arbitrary element x′1,
we get

x′1d(r1, x2, . . . , xn) = 0, for all x′1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r1 ∈ N.

It follows by Lemma 2.2(i) that d(r1, x2, . . . , xn) = 0, for all x2 ∈ U2, . . . , xn ∈
Un, r1 ∈ N . Arguing in the similar manner as in Lemma 2.4, we obtain d = 0.
Therefore, we have F (r1x1, x2, . . . , xn) = F (r1, x2, . . . , xn)x1 = 0, for all x1 ∈
U1, x2 ∈ U2, . . . , xn ∈ Un, r1 ∈ N, and another appeal to Lemma 2.2(i) gives
F = 0, which is a contradiction.

Lemma 2.11. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . If N admits a nonzero generalized n-semiderivation
F associated with an n-semiderivation d and a map g associated with d such
that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If a ∈ N and

aF (U1, U2, . . . , Un) = {0} (or F (U1, U2, . . . , Un)a = {0}), then a = 0.

Proof. Suppose that

aF (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N.(11)

Replacing x1 by x1x
′
1 in (11) for x′1 ∈ U1, we get

aF (x1, x2, . . . , xn)x
′
1 + ag(x1)d(x

′
1, x2, . . . , xn) = 0.

This implies that aU1d(x1, x2, . . . , xn) = {0}. In view of Lemma 2.2(ii), we
obtain either d(U1, U2, . . . , Un) = {0} or a = 0, for all a ∈ N .
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If d(U1, U2, . . . , Un) = {0}, then aF (x1x′1, x2, . . . , xn) = ax1F (x
′
1, x2, . . . , xn)

= 0, for all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N . Therefore, it follows by

Lemma 2.2(ii) and Lemma 2.10 that a = 0.

Suppose that F (U1, U2, ...Un)a = {0}. Then,

F (x1, x2, . . . , xn)a = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N.(12)

Replacing x1 by x1x
′
1 in (12), where x′1 ∈ U1, we get

(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x

′
1, x2, . . . , xn))a = 0.

Using Lemma 2.9(i), we get

d(x1, x2, . . . , xn)g(x
′
1)a+ x1F (x

′
1, x2, . . . , xn)a = 0.

This implies that d(x1, x2, . . . , xn)g(x
′
1)a = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈

Un, a ∈ N . Replacing g(x′1) by an arbitrary element x′′1 ∈ U1 in the last expres-
sion and applying Lemma 2.2(ii), we find that d(U1, U2, ...Un) = {0} or a = 0,
for all a ∈ N .

If d(U1, U2, ...Un) = {0}, then F (x1x′1, x2, . . . , xn)a = F (x1, x2, . . . , xn)x
′
1a =

0, for all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, a ∈ N . Therefore, it follows by

Lemma 2.2(ii) and Lemma 2.10 that a = 0.

3. Main results

Theorem 3.1. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N. Let F1 and F2 be any two generalized n-semiderivations
associated with n-semiderivations d1 and d2 respectively and a map g associated
with d1 and d2 such that g(U1) = U1. If [F1(U1, U2, . . . , Un), F2(U1, U2, . . . , Un)] =
{0}, then at least one of F1 and F2 is trivial or (N,+) is an abelian group.

Proof. Suppose that x ∈ N is such that

[x, F2(U1, U2, . . . , Un)] = [x+ x, F2(U1, U2, . . . , Un)] = 0.

For all x1, x
′
1 ∈ U1 such that x1 + x′1 ∈ U1,

[x+ x, F2(x1 + x′1, x2, . . . , xn)] = 0.

This implies that

(x+ x)F2(x1 + x′1, x2, . . . , xn) = F2(x1 + x′1, x2, . . . , xn)(x+ x),

(x+ x)F2(x1, x2, . . . , xn) + (x+ x)F2(x
′
1, x2, . . . , xn)

= F2(x1 + x′1, x2, . . . , xn)x+ F2(x1 + x′1, x2, . . . , xn)x,

F2(x1, x2, . . . , xn)(x+ x) + F2(x
′
1, x2, . . . , xn)(x+ x)

= xF2(x1 + x′1, x2, . . . , xn) + xF2(x1 + x′1, x2, . . . , xn),

F2(x1, x2, . . . , xn)x+ F2(x1, x2, . . . , xn)x+F2(x
′
1, x2, . . . , xn)x+F2(x

′
1, x2, . . . , xn)x

= xF2(x1, x2, . . . , xn) + xF2(x
′
1, x2, . . . , xn) + xF2(x1, x2, . . . , xn)

+ xF2(x
′
1, x2, . . . , xn),
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which reduces to xF2((x1, x
′
1), x2, . . . , xn) = 0, for all x2 ∈ U2, . . . , xn ∈ Un, x ∈

N , where (x1, x
′
1) is the additive commutator (x1 + x′1 − x1 − x′1).

If r, s ∈ U1, we have rs ∈ U1 and rs + rs = r(s + s) ∈ U1 and since
[F1(U1, U2, . . . , Un), F2(U1, U2, . . . , Un)] = {0}, taking x = F1(rs, x

′
2, . . . , x

′
n),

where r, s ∈ U1, x
′
2 ∈ U2, . . . , x

′
n ∈ Un gives

[F1(rs, x
′
2, . . . , x

′
n), F2(U1, U2, . . . , Un)] = {0}

= [F1(rs, x
′
2, . . . , x

′
n) + F1(rs, x

′
2, . . . , x

′
n), F2(U1, U2, . . . , Un)].

Arguing in the similar manner as above, we get

F1(U
2
1 , U2, . . . , Un)F2(x1 + x′1 − x1 − x′1, x2, . . . , xn) = {0}.

Since U2
1 is a semigroup ideal, Lemma 2.11 gives

F2(x1 + x′1 − x1 − x′1, x2, . . . , xn) = 0,(13)

for all x1, x
′
1 ∈ U1 such that x1 + x′1 ∈ U1. Now, take x1 = rx′ and x′1 = ry′ for

r ∈ U1 and x′, y′ ∈ N , so that x1, x
′
1 and x1 + x′1 = rx′ + ry′ = r(x′ + y′) ∈ U1.

It follows from relation (13) that

F2(rx
′ + ry′ − rx′ − ry′, x2, . . . , xn) = 0, for all r ∈ U1, x

′, y′ ∈ N.

Replacing r by rw, w ∈ U1 we get F2(U1, U2, . . . , Un)U1(x
′+ y′−x′− y′) = {0},

for all x′, y′ ∈ N and by Lemma 2.2(ii) either F2(U1, U2, . . . , Un) = {0} or
x′ + y′ − x′ − y′ = 0, for all x′, y′ ∈ N . If F2(U1, U2, . . . , Un) = {0}, then
proceeding as in Lemma 2.10, we find F2 = 0 and the second case implies that
(N,+) is an abelian group. Similarly if we consider

[F1(U1, U2, . . . , Un), x] = [F1(U1, U2, . . . , Un), x+ x] = 0

and proceeding as above, we can find either F1 = 0 or (N,+) is an abelian
group.

Theorem 3.2. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N. Let F be a generalized n-semiderivation associated with
an n-semiderivation d and a map g associated with d such that g(U1) = U1 and
g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If F (U1, U2, . . . , Un) ⊆ Z(N), then

F = 0 or N is a commutative ring.

Proof. For all x1, x
′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, we get

F (x1x
′
1, x2, . . . , xn)=d(x1, x2, . . . , xn)g(x

′
1)+x1F (x

′
1, x2, . . . , xn)∈Z(N).(14)

Now, commuting (14) with the element x1, we get

(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x

′
1, x2, . . . , xn))x1

= x1(d(x1, x2, . . . , xn)g(x
′
1) + x1F (x

′
1, x2, . . . , xn)).
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Using the hypothesis and Lemma 2.9(ii), we have

d(x1, x2, . . . , xn)g(x
′
1)x1 + x1x1F (x

′
1, x2, . . . , xn)

= x1d(x1, x2, . . . , xn)g(x
′
1) + x1x1F (x

′
1, x2, . . . , xn).

This implies that,

d(x1, x2, . . . , xn)x
′
1x1 = x1d(x1, x2, . . . , xn)x

′
1.(15)

Replacing x′1 by x′1r for r ∈ N in (22) and using it again, we get

d(x1, x2, . . . , xn)x
′
1[x1, r] = 0, for all x1, x

′
1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r ∈ N.

By Lemma 2.2(ii), either d(x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈
Un or U1 ⊆ Z(N). If d(x1, x2, . . . , xn) = 0, for all x1,∈ U1, x2 ∈ U2, . . . , xn ∈ Un,
then

F (x1x
′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1 ∈ Z(N).

This implies that F (x1, x2, . . . , xn)x
′
1s = sF (x1, x2, . . . , xn)x

′
1, for all x1, x

′
1 ∈

U1, x2 ∈ U2, . . . , xn ∈ Un, and s ∈ N . Replacing x′1 by x′1x
′′
1, for all x

′′
1 ∈ U1 in

above expression and using it again, we find that

F (x1, x2, . . . , xn)U1[x
′′
1, s] = {0}.

By Lemma 2.2(ii), we have F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn
∈ Un or U1 ⊆ Z(N). If F (x1, x2, . . . , xn) = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈
Un, then proceeding as in Lemma 2.10, we can get F = 0 on N . In later case
U1 ⊆ Z(N) implies that N is a commutative ring by Lemma 2.3.

Theorem 3.3. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un
are nonzero semigroup ideals of N . Suppose that N admits a nonzero generalized
n-semiderivation F associated with an n-semiderivations d and a map g associ-
ated with d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1.

If [F (U1, U2, . . . , Un), F (U1, U2, . . . , Un)] = {0}, then F maps Un into Z(N) or
F is an n-multiplier on N .

Proof. By hypothesis, for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un,

F (x1, x2, . . . , xn)F (y1, y2, . . . , yn) = F (y1, y2, . . . , yn)F (x1, x2, . . . , xn).(16)

Replacing y1 by F (z1, z2, . . . , zn)y1 in (16), where z1 ∈ U1, z2 ∈ U2, . . . , zn ∈ Un,
we get

F (x1, x2, . . . , xn)F (F (z1, z2, . . . , zn)y1, y2, . . . , yn)

= F (F (z1, z2, . . . , zn)y1, y2, . . . , yn)F (x1, x2, . . . , xn),
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F (x1, x2, . . . , xn){d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)
+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)}
= {d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)
+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)}F (x1, x2, . . . , xn).

By Lemma 2.9(ii), we have

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)

+ F (x1, x2, . . . , xn)F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)

= d(F (z1, z2, . . . , zn), y2, . . . , yn)g(y1)F (x1, x2, . . . , xn)

+ F (z1, z2, . . . , zn)F (y1, y2, . . . , yn)F (x1, x2, . . . , xn).

This implies that

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)y1

= d(F (z1, z2, . . . , zn), y2, . . . , yn)y1F (x1, x2, . . . , xn).(17)

Replacing y1 by y1t, for all t ∈ N and using (17), we obtain

F (x1, x2, . . . , xn)d(F (z1, z2, . . . , zn), y2, . . . , yn)y1t

= F (x1, x2, . . . , xn)y1td(F (z1, z2, . . . , zn), y2, . . . , yn),

which reduces to,

d(F (z1, z2, . . . , zn), y2, . . . , yn)U1[F (x1, x2, . . . , xn), t] = {0}.

By Lemma 2.2(ii), we get[F (x1, x2, . . . , xn), t] = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn
∈ Un, t ∈ N or d(F (z1, z2, . . . , zn), y2, . . . , yn) = 0, for all z1 ∈ U1, y2, z2 ∈
U2, . . . , yn, zn ∈ Un. In the first case F (U1, U2, . . . , Un) ⊆ Z(N) shows that F
maps Un into Z(N), the centre of N. Let us assume that d(F (U1, U2, . . . , Un),
U2, . . . , Un) = {0}, then

0 = d(F (y1y
′
1, y2, . . . , yn), y2, . . . , yn)

= d{(F (y1, y2, . . . , yn)y′1 + g(y1)d(y
′
1, y2, . . . , yn)), y2, . . . , yn}

= d((F (y1, y2, . . . , yn)y
′
1, y2, . . . , yn) + d(y1d(y

′
1, y2, . . . , yn), y2, . . . , yn)

= F (y1, y2, . . . , yn)d(y
′
1, y2, . . . , yn) + d(y1, y2, . . . , yn)d(y

′
1, y2, . . . , yn)

+ y1d(d(y
′
1, y2, . . . , yn), y2, . . . , yn) for all y1, y

′
1 ∈ U1, y2 ∈ U2, . . . , yn ∈ Un.

Now, replacing y1 by y1z1, for all z1 ∈ U1, we have

{d(y1, y2, . . . , yn)z1 + y1F (z1, y2, . . . , yn)}d(y′1, y2, . . . , yn)
+ {d(y1, y2, . . . , yn)z1 + y1d(z1, y2, . . . , yn)}d(y′1, y2, . . . , yn)
+ y1z1d(d(y

′
1, y2, . . . , yn), y2, . . . , yn)} = 0,
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2d(y1,y2, . . . , yn)z1d(y
′
1, y2, . . . , yn) + y1{F (z1, y2, . . . , yn)d(y′1, y2, . . . , yn)

+ d(z1, y2, . . . , yn)d(y
′
1, y2, . . . , yn) + z1d(d(y

′
1, y2, . . . , yn), y2, . . . , yn)} = 0,

which implies that

2d(y1, y2, . . . , yn)z1d(y
′
1, y2, . . . , yn)=0 for all y1, y

′
1, z1∈U1, y2∈U2, . . . , yn∈Un.

Since N is 2-torsion free, we get

d(y1, y2, . . . , yn)U1d(y
′
1, y2, . . . , yn) = {0} for all y1, y

′
1 ∈ U1, y2 ∈ U2, . . . , yn ∈ Un.

Thus, we obtain d(U1, U2, . . . , Un) = {0}. Arguing as above, we conclude that
F is an n-multiplier on N .

Theorem 3.4. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . Suppose that N admits a generalized n-semiderivation
F associated with an n-semiderivation d and an additive map g associated with
d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. If

F ([x, y], x2, . . . , xn) = ±[x, y], for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is
an n-multiplier or N is a commutative ring.

Proof. By hypothesis

F ([x, y], x2, . . . , xn) = ±[x, y], for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(18)

Replacing y by xy in (18) and using [x, xy] = x[x, y], we get

F (x[x, y], x2, . . . , xn) = ±x[x, y],
d(x, x2, . . . , xn)g([x, y]) + xF ([x, y], x2, . . . , xn) = ±x[x, y].

Using (18), we get

d(x, x2, . . . , xn)g([x, y]) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(19)

This implies that

d(x, x2, . . . , xn)g(x)g(y) = d(x, x2, . . . , xn)g(y)g(x).

Replacing y by yz in the above expression and using it again, we arrive at

d(x, x2, . . . , xn)g(y)[g(x), g(z)] = 0.

Since g(U1) = U1, substituting arbitrary elements x′, y′ and z′ of U1 in place of
g(x), g(y) and g(z) respectively, we obtain

d(x, x2, . . . , un)U1[x
′, z′] = {0}, for all x, x′, z′ ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.
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By Lemma 2.2(ii), we have either d(x, x2, . . . , xn) = 0 or [x′, z′] = 0, for all
x, x′, z′ ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. If d(x, x2, . . . , xn) = 0, then proceeding as
in Lemma 2.4, we can find d = 0 on N . Therefore,

F (x1x
′
1, x2, . . . , xn) = x1F (x

′
1, x2, . . . , xn) = F (x1, x2, . . . , xn)x

′
1,

for all x1, x
′
1, x2, . . . , xn ∈ N and hence F is an n-multiplier on N . In later case,

we have [x′, z′] = 0, i.e., x′z′ = z′x′. Replacing z′ by z′r and using it again,
we find that z′[x′, r] = 0, i.e., U1[x

′, r] = {0}, for all x′ ∈ U1, r ∈ N . By an
application of Lemma 2.2(i) and Lemma 2.3, N is a commutative ring.

Theorem 3.5. Let N be a 2-torsion free 3-prime near ring and U1, U2, . . . , Un
be nonzero semigroup ideals of N . Suppose that N admits a generalized n-
semiderivation F associated with an n-semiderivation d and an additive map
g associated with d such that g(U1) = U1 and g(x1x

′
1) = g(x1)g(x

′
1), for all

x1, x
′
1 ∈ U1. If F (x ◦ y, x2, . . . , xn) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

then F = 0.

Proof. By hypothesis

F (x ◦ y, x2, . . . , xn) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(20)

Replacing y by xy in (20), we get

d(x, x2, . . . , xn)g(x ◦ y) + xF (x ◦ y, x2, . . . , xn) = 0.

Using (20), we get

d(x, x2, . . . , xn)g(x ◦ y) = 0, for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(21)

Since g is additive and g(x1x
′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1, then (21) can

be written as

d(x, x2, . . . , xn)g(x)g(y) = −d(x, x2, . . . , xn)g(y)g(x).

Replacing y by yz in the above expression and using it again, we arrive at

d(x, x2, . . . , xn)g(y)g(−x)g(z) = d(x, x2, . . . , xn)g(y)g(z)g(−x),

which implies that

d(x, x2, . . . , xn)g(y)[g(−x), g(z)] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Putting −x in place of x in the last expression, we obtain

d(−x, x2, . . . , xn)g(y)[g(x), g(z)] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Now, replacing g(x), g(y) and g(z) by arbitrary elements x′, y′ and z′ of U1

and applying Lemma 2.2(ii), we get either d(−x, x2, . . . , xn) = 0 or [x′, z′] =
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0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Since d is n-additive, then
d(−x, x2, . . . , xn) = 0 implies that d(x, x2, . . . , xn) = 0. Hence, we have ei-
ther d(x, x2, . . . , xn) = 0 or [x′, z′] = 0, for all x, y, z ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.
Arguing in the similar manner as in Theorem 3.4, we get F is an n-multiplier
or N is commutative.

If N is commutative, then the hypothesis becomes

0 = F (x ◦ y, x2, . . . , xn) = 2F (xy, x2, . . . , xn).

Since N is 2-torsion free, we get

F (xy, x2, . . . , xn) = 0.(22)

Replacing y by yz in (22), we obtain

F (xy, x2, . . . , xn)z + g(xy)d(z, x2, . . . , xn) = 0,

g(x)g(y)d(z, x2, . . . , xn) = 0.

Since g(U1) = U1, then by Lemma 2.2(ii), we have d(z, x2, . . . , xn) = 0, so
Lemma 2.4 forces that d = 0, thus F is an n-multiplier and (22) becomes
F (x, x2, . . . , xn)y = 0 and Lemma 2.10 forces that F = 0.

If F is an n-multiplier, then replacing y by xy in (20), we obtain

F (x, x2, . . . , xn)(x ◦ y) = 0.

By using same argument as above, we get

F (x, x2, . . . , xn)U1[x, z] = 0.

By Lemma 2.2(ii), we get x ∈ Z(N) or F (x, x2, . . . , xn) = 0. If x ∈ Z(N),
then the hypothesis becomes 2F (xy, u2, u3, . . . , un) = 0. By 2-torsion free-
ness of N , we find that F (x, x2, ...un)y = 0, thus in all the cases we arrive
at F (x, x2, . . . , xn) = 0 and Lemma 2.10 forces that F = 0.

Theorem 3.6. Let N be a 2-torsion free 3-prime near ring; U1, U2, . . . , Un are
nonzero semigroup ideals of N and an additive map g such that g(U1) = U1

and g(x1x
′
1) = g(x1)g(x

′
1), for all x1, x

′
1 ∈ U1. There is no generalized n-

semiderivation F associated with an n-semiderivation d and g such that F (x ◦
y, x2, . . . , xn) = ±(x ◦ y), for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Proof. Suppose that there exists F such that

F (x ◦ y, x2, . . . , xn) = ±(x ◦ y) for all x, y ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.(23)

Substituting xy for y in (23), we get

F (x(x ◦ y), x2, . . . , xn) = ±x(x ◦ y).
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This implies that

d(x, x2, . . . , xn)g(x ◦ y) + xF ((x ◦ y), x2, . . . , xn) = ±x(x ◦ y).

Using (23), we get d(x, x2, . . . , xn)g(x ◦ y) = 0. Arguing in the similar manner
as in Theorem 3.4 and Theorem 3.5, we get N is commutative or F is an n-
multiplier.

If N is commutative, then the hypothesis becomes 2F (xy, x2, . . . , xn) = 2xy
that is F (xy, x2, . . . , xn) = xy this yields that d = 0 and replacing x2 by x2x

′
2

and x2x
′′
2, where x

′
2 ̸= x′′2 and comparing the result, we arrive at

(x′2 − x′′2)(x ◦ y) = 0

This leads to N = (0), a contradiction.
If F is an n-multiplier, then reasoning as above we arrive at N = (0), a

contradiction, so we obtain the required result.

Theorem 3.7. Let N be a prime near ring and U1, U2, . . . , Un be nonzero semi-
group ideals of N . Suppose that N admits a generalized n-semiderivation F as-
sociated with a map d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N and a map g such that g(U1) = U1

and U1 ∩ Z(N) ̸= {0}. If F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1], for
all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is commuting on U1.

Proof. By hypothesis

F ([x1, y1], x2, . . . , xn) = [F (x1, x2, . . . , xn), y1](24)

Replacing y1 by x1y1 in (24), we have

d(x1, x2, ...xn)g([x1, y1]) + x1F ([x1, y1], x2, . . . , xn) = [F (x1, x2, . . . , xn), x1y1],

d(x1, x2, ...xn)g([x1, y1]) + x1[F (x1, x2, . . . , xn), y1] = [F (x1, x2, . . . , xn), x1y1],

d(x1, x2, ...xn)g([x1, y1]) + x1F (x1, x2, . . . , xn)y1 − x1y1F (x1, x2, . . . , xn)

= F (x1, x2, . . . , xn)x1y1 − x1y1F (x1, x2, . . . , xn).

If we choose y1 ∈ U1∩Z(N), then above relation yields that x1F (x1, x2, . . . , xn)y1
= F (x1, x2, . . . , xn)x1y1. This implies that y1[F (x1, x2, . . . , xn), x1] = 0 and by
Lemma 2.2(i), we find [F (x1, x2, . . . , xn), x1] = 0. Hence, F is commuting on
U1. In the similar manner we can prove the result for F ([x1, y1], x2, . . . , xn) =
−[F (x1, x2, . . . , xn), y1], for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un.

Theorem 3.8. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonzero
semigroup ideals of N . Suppose that N admits a generalized n-semiderivation F
associated with a map d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N and a map g such that g(U1) =

U1 and U1 ∩ Z(N) ̸= {0}. If F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],
for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is commuting on U1.
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Proof. By hypothesis

F ([x1, y1], x2, . . . , xn) = [x1, F (y1, x2, . . . , xn)](25)

Replacing x1 by y1x1 in (25), we get

d(y1, x2, ...xn)g([x1, y1]) + y1F ([x1, y1], x2, . . . , xn) = [y1x1, F (x1, x2, . . . , xn)],

d(y1, x2, ...xn)g([x1, y1]) + y1[x1, F (y1, x2, . . . , xn)] = [y1x1, F (x1, x2, . . . , xn)],

d(y1, x2, ...xn)g([x1, y1]) + y1x1F (y1, x2, . . . , xn)− y1F (y1, x2, . . . , xn)x1

= y1x1F (x1, x2, . . . , xn)− F (x1, x2, . . . , xn)y1x1

If we choose x1 ∈ U1∩Z(N), then above relation yields that y1F (y1, x2, . . . , xn)x1
= F (x1, x2, . . . , xn)y1x1. This implies that x1[F (y1, x2, . . . , xn), y1] = 0 and by
Lemma 2.2(i), we find [F (y1, x2, . . . , xn), y1] = 0. Hence F is commuting on
U1. In the similar manner we can prove the result for F ([x1, y1], x2, . . . , xn) =
−[x1, F (y1, x2, . . . , xn)], for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then F is
commuting on U1.

Theorem 3.9. Let N be a 3-prime near ring and U1, U2, . . . , Un be nonzero
semigroup ideals of N . Suppose that N admits a nonzero generalized n-semi-
derivation F associated with an n-semiderivation d on N and a map g such that
g(U1) = U1 and d(Z(N), U2, . . . , Un) ̸={0}. If [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)]
= 0, for all x1, y1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, then N is a commutative ring.

Proof. Let z ∈ Z(N) and d(z, y2, . . . , yn) ̸= 0. Then by hypothesis

F (x1, x2, . . . , xn)F (y1z, y2, . . . , yn) = F (y1z, y2, . . . , yn)F (x1, x2, . . . , xn),

F (x1, x2, . . . , xn)F (y1, y2, . . . , yn)z + F (x1, x2, . . . , xn)g(y1)d(z, y2, . . . , yn)

= F (y1, y2, . . . , yn)zF (x1, x2, . . . , xn)

+ g(y1)d(z, y2, . . . , yn)F (x1, x2, . . . , xn).

This implies that,

F (x1, x2, . . . , xn)g(y1)d(z, y2, . . . , yn) = g(y1)d(z, y2, . . . , yn)F (x1, x2, . . . , xn).

By hypothesis, we find d(z, y2, . . . , yn)[F (x1, x2, . . . , xn), g(y1)] = 0. By Lemma
2.1(i), we get [F (x1, x2, . . . , xn), y1] = 0. Replacing y1 by y1r for r ∈ N , we have

y1[F (x1, x2, . . . , xn), r] = 0.

By Lemma 2.2(ii), we obtain

[F (x1, x2, . . . , xn), r] = 0, for all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un, r ∈ N.

Therefore, F (U1, U2, . . . , Un) ⊆ Z(N) and hence N is a commutative ring by
Theorem 3.2.
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Theorem 3.10. Suppose that N is a prime near ring; U1, U2, . . . , Un are nonzero
semigroup ideals of N and V1, V2, . . . , Vn are nonempty subsets of N .

If F is a generalized n-semiderivation acts as a left multiplier such that
F (x1y1, x2, . . . , xn) = F (y1x1, x2, . . . , xn), for all y1 ∈ V1, x1 ∈ U1, x2 ∈ U2..., xn
∈ Un, then F (V1, V2, . . . , Vn) = {0} or V1 ⊆ Z(N).

Proof. By hypothesis, for all y1 ∈ V1, x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un,

F (x1y1, x2, . . . , xn) = F (y1x1, x2, . . . , xn).(26)

Replacing x1 by y1x1 in (26), we get

F (y1, x2, . . . , xn)x1y1 = F (y1, x2, . . . , xn)y1x1.(27)

Replacing x1 by x1x
′
1, for all x

′
1 ∈ U1 in (27), we have

F (y1, x2, . . . , xn)x1x
′
1y1 = F (y1, x2, . . . , xn)x1y1x

′
1,

which implies that,

F (y1, x2, . . . , xn)U1[x
′
1, y1] = {0}.

By Lemma 2.2(ii), we have F (y1, x2, . . . , xn)=0, for all y1 ∈ V1, x2 ∈ U2, . . . , xn ∈
Un or y1 centralizes U1. In first case, replacing x2 by y2x2, for all y2 ∈
V2, we find that F (y1, y2, . . . , xn)x2 = 0 and again by Lemma 2.2(i), we get
F (y1, y2, . . . , xn) = 0. Proceeding inductively, we obtain F (y1, y2, . . . , yn) = 0,
for all y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn, which completes the proof.

Theorem 3.11. Let N be a 3-prime near ring and U1, U2, . . . , Un are nonempty
subsets of N and V1, V2, . . . , Vn are nonzero semigroup ideals of N . Suppose that
N admits a generalized n-semiderivation F associated with an n- semideriva-
tion d and an additive map g such that g(V1) = V1. If F (x1y1, y2, . . . , yn) =
F (y1x1, y2, . . . , yn), for all x1 ∈ U1, y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn, then
D(U1, U2, . . . , Un) = {0} or U1 ⊆ Z(N).

Proof. By hypothesis, for all x1 ∈ U1, y1 ∈ V1, y2 ∈ V2, . . . , yn ∈ Vn,

F (x1y1, y2, . . . , yn) = F (y1x1, y2, . . . , yn).(28)

Replacing y1 by x1y1 in (28), we have

d(x1, y2, . . . , yn)g(x1y1) + x1F (x1y1, y2, . . . , yn)

= d(x1, y2, . . . , yn)g(y1x1) + x1F (y1x1, y2, . . . , yn),

d(x1, y2, . . . , yn)g(x1y1) + x1F (x1y1, y2, . . . , yn)

= d(x1, y2, . . . , yn)g(y1x1) + x1F (x1y1, y2, . . . , yn).

This implies that,

d(x1, y2, . . . , yn)g(x1y1 − y1x1) = 0.
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Since g is additive and g(V1) = V1, we have

d(x1, y2, . . . , yn)[x1, y1]=0, for all x1∈U1, y1∈V1, y2∈V2, . . . , yn ∈ Vn.(29)

Replacing y1 by y1r, for all r ∈ N in (29) and using (29), we find

d(x1, y2, . . . , yn)y1[x1, r] = 0.

By Lemma 2.2(ii), we get d(x1, y2, . . . , yn) = 0, for all x1 ∈ U1, y2 ∈ V2, . . . , yn ∈
Vn or U1 ⊆ Z(N). In first case, replacing y2 by x2y2, for all x2 ∈ U2, we conclude
that

d(x1, x2, . . . , yn)y2 + g(x2)d(x1, y2, . . . , yn) = 0.

The last expression yields that d(x1, x2, . . . , yn) = 0, for all x1 ∈ U1, x2 ∈
U2, . . . , yn ∈ Vn. Proceeding inductively, we obtain d(x1, x2, . . . , xn) = 0, for
all x1 ∈ U1, x2 ∈ U2, . . . , xn ∈ Un. Hence, d(U1, U2, . . . , Un) = {0} or U1 ⊆
Z(N).

The following example demonstrates that the primeness hypothesis in The-
orems 3.2, 3.4 to 3.11 is not superfluous.

Example 3. Let S be a commutative near ring. Consider

N =

{0 x y
0 0 0
0 z 0

 | 0, x, y, z ∈ S

}
and U =

{0 x y
0 0 0
0 0 0

 | 0, x, y ∈ S

}
.

It can be easily seen that N is a non prime zero-symmetric left near ring with
respect to matrix addition and matrix multiplication and U is a nonzero semi-
group ideal of N . Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸

n−times

→ N by

F

(0 x1 y1
0 0 0
0 z1 0

 ,

0 x2 y2
0 0 0
0 z2 0

 , . . . ,

0 xn yn
0 0 0
0 zn 0

) =

0 z1z2...zn 0
0 0 0
0 0 0

 ,

d

(0 x1 y1
0 0 0
0 z1 0

 ,

0 x2 y2
0 0 0
0 z2 0

 , . . . ,

0 xn yn
0 0 0
0 zn 0

) =

0 y1y2...yn 0
0 0 0
0 0 0

 .

Define a map g : N → N by

g

ccc0 x y
0 0 0
0 z 0

 =

0 z 0
0 0 0
0 0 0

 .

If we choose U1 = U2 = · · · = Un = U , then it is easy to check that F is a nonzero
generalized n-semiderivation associated with a nonzero n-semiderivation d and
a map g associated with d on N satisfying the following conditions:
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(i) F (U1, U2, . . . , Un) ⊆ Z(N), (ii) F ([x1, y1], x2, . . . , xn) = ±[x1, y1],

(iii) F (x1 ◦ y1, x2, . . . , xn) = 0, (iv) F (x1 ◦ y1, x2, . . . , xn) = ±(x1 ◦ y1),

(v) F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1],

(vi) F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],

(vii) [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)] = 0,

for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un. However, N is not commutative.

Example 4. Let N1 = (C,+, ·) be the ring of complex numbers with respect to
the usual addition and multiplication of complex numbers and N2 = (C,+, ⋆),
where C is the set of complex numbers, + is the usual addition of complex
numbers and ⋆ is defined by x ⋆ y =| x | ·y, for all x, y ∈ C. Then it is
easy to see that N2 is a zero-symmetric left near ring. Now, consider the set
S = N1 × N2, which is a non-commutative zero-symmetric left near ring with
respect to the componentwise addition and multiplication. Suppose that

N =

{(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (z, z′) (0, 0)

 | (x, x′), (y, y′), (z, z′), (0, 0) ∈ S

}
.

Then N is a zero-symmetric left near ring with respect to matrix addition and
matrix multiplication but N is not 3-prime. Let

U =

{(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

 | (x, x′), (y, y′), (0, 0) ∈ S

}
,

which is a nonzero semigroup ideal of N .

Define mappings F, d : N ×N × ...×N︸ ︷︷ ︸
n−times

→ N by

F

((0, 0) (x1, x
′
1) (y1, y

′
1)

(0, 0) (0, 0) (0, 0)
(0, 0) (z1, z

′
1) (0, 0)

 ,

(0, 0) (x2, x
′
2) (y2, y

′
2)

(0, 0) (0, 0) (0, 0)
(0, 0) (z2, z

′
2) (0, 0)

 , . . . ,

(0, 0) (xn, x
′
n) (yn, y

′
n)

(0, 0) (0, 0) (0, 0)
(0, 0) (zn, z

′
n) (0, 0)

) =

(0, 0) (ȳ1ȳ2...ȳn, 0) (0, 0)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)

 ,

d

((0, 0) (x1, x
′
1) (y1, y

′
1)

(0, 0) (0, 0) (0, 0)
(0, 0) (z1, z

′
1) (0, 0)

 ,

(0, 0) (x2, x
′
2) (y2, y

′
2)

(0, 0) (0, 0) (0, 0)
(0, 0) (z2, z

′
2) (0, 0)

 , . . . ,
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(0, 0) (xn, x
′
n) (yn, y

′
n)

(0, 0) (0, 0) (0, 0)
(0, 0) (zn, z

′
n) (0, 0)

) =

(0, 0) (y1y2...yn, 0) (0, 0)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0) (0, 0)


and a map g : N → N by

g

(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (z, z′) (0, 0)

 =

(0, 0) (x, x′) (y, y′)
(0, 0) (0, 0) (0, 0)
(0, 0) (0, 0′) (0, 0)

 ,

where ȳ1, ȳ2, . . . , ȳn are the complex conjugates of y1, y2, . . . , yn respectively. If
we choose U1 = U2 = · · · = Un = U , then it is verified that F is a generalized
n-semiderivation associated with an n-semiderivation d and a map g associated
with d on N satisfying the following conditions:

(i) F (U1, U2, . . . , Un) ⊆ Z(N), (ii) F ([x1, y1], x2, . . . , xn) = ±[x1, y1],

(iii) F (x1 ◦ y1, x2, . . . , xn) = 0, (iv) F (x1 ◦ y1, x2, . . . , xn) = ±(x1 ◦ y1),

(v) F ([x1, y1], x2, . . . , xn) = ±[F (x1, x2, . . . , xn), y1],

(vi) F ([x1, y1], x2, . . . , xn) = ±[x1, F (y1, x2, . . . , xn)],

(vii) [F (x1, x2, . . . , xn), F (y1, y2, . . . , yn)] = 0,

for all x1, y1 ∈ U1, x2, y2 ∈ U2, . . . , xn, yn ∈ Un.
But, N is not commutative.

Open problem

(i) However, one can construct a natural example of a non-commutative near
ring satisfying the hypothesis of the above theorems. (ii) Our hypothesis are
dealt with the prime near rings. For further research, one can discuss the com-
mutativity of semiprime near rings which is an interesting work in future.
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Subspace diskcyclic tuples of operators on Banach spaces
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Abstract. In this paper, we study subspace diskcyclic and subspace-disk transitive
tuples of operators. We give some characterizations of these tuples. Also, we give a set
of sufficient conditions for a tuple to be subspace-diskcyclic. We find a relation between
the subspace-diskcyclicity of a tuple of operators and the tuple of the direct sum of
those operators. Finally, we show that if a tuple of operators is subspace-diskcyclic,
then not every operator in the tuple has to be subspace-diskcyclic.

Keywords: subspace-diskcyclic operators, tuple of operators.

1. Introduction

A bounded linear operator T on a separable Banach space X is hypercyclic if
there is a vector x ∈ X such that Orb(T, x) = {Tnx : n ≥ 0} is dense in X,
such a vector x is called hypercyclic for T . The first example of a hypercyclic
operator on a Banach space was constructed by Rolewicz in [12]. He showed
that if B is the backward shift on ℓp(N) then λB is hypercyclic if and only if
|λ| > 1.

In 1974, Hilden and Wallen [6] defined the supercyclicity concept. An ope-
rator T is called supercyclic if there is a vector x such that the scaled orbit
COrb(T, x) is dense in X. The notion of a diskcyclic operator was introduced
by Zeana [17]. An operator T is called diskcyclic if there is a vector x ∈ X such
that the disk orbit DOrb(T, x) = {αTnx : α ∈ C, |α| ≤ 1, n ∈ N} is dense in X,
such a vector x is called diskcyclic for T . For more information about diskcyclic
operators, the reader may refer to [3] [1] [17].

In 2011, Madore and Mart́ınez-Avendaño [9] considered the density of the
orbit in a non-trivial subspace instead of the whole space, this phenomenon
is called the subspace-hypercyclicity. An operator is called M-hypercyclic or
subspace-hypercyclic for a subspace M of X if there exists a vector such that
the intersection of its orbit and M is dense in M. For more information on
subspace-hypercyclicity, one may refer to [7], [8] and [11].

In [14] Xian-Feng et al. defined the subspace-supercyclic operator as follows:
An operator is called M-supercyclic or subspace-supercyclic for a subspace M
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of X if there exists a vector such that the intersection of its scaled orbit and M
is dense in M.

Also, Bamerni and Kılıçman [15] introduced the subspace-diskcyclicity con-
cept in a Banach space X that is the disk orbit of an operator T is dense in a
subspace of X.

Let T = (T1, . . . , Tn) be a commuting n-tuple of continuous linear opera-

tors on a Banach space X and F =
{
T k11 T k22 . . . T knn : ki ≥ 0, 1 ≤ i ≤ n

}
be the

semigroup generated by T , then T is called hypercyclic if there is x ∈ X such
that Orb(T , x) = {Tx : T ∈ F} is dense in X ([5]).

A tuple T is supercyclic if there exists x ∈ X such that COrb(T , x) = {αTx :
T ∈ F , α ∈ C} is dense in X ([13]).

For subspaces, Moosapoor [10] defined subspace-hypercyclic tuples of oper-
ators as follows: A tuple T is subspace-hypercyclic for a subspace M if there
exists a vector x ∈ X such that Orb(T , x) ∩ M is dense in M. By the same
way, a tuple T is subspace-suercyclic for a subspace M if there exists a vector
x ∈ X such that COrb(T , x) ∩M is dense in M ([16]).

Both subspace-hypercyclic and subspace-suercyclic tuples were studied in
details; therefore, in this paper, we study some properties of subspace-diskcyclic
tuples. In particular, we give an equivalent assertion to subspace- diskcyclic
tuple which is called subspace-disk transitive tuple. Also, we give some sufficient
conditions for a tuple to be subspace-diskcyclic which we call subspace-diskcyclic
tuple criterion. We find a relation between the subspace-diskcyclicity of a tuple
of operators and the tuple of the direct sum of those operators. Finally, we show
that if a tuple of operators is subspace-diskcyclic, then not every operator in the
tuple has to be subspace-diskcyclic.

2. Main results

In this section, we characterize the equivalent conditions for a tuple of operators
to be subspace-disk transitive. We provide some sufficient conditions for a tu-
ple to be subspace-diskcyclic which is called subspace-diskcyclic tuple criterion.
Also, we study the diskcyclicity of tuples of direct sum of operators.

In what follows, we let U = {α ∈ C : |α| < 1} and DC(T ,M) be the set of
all M-diskcyclic vectors for the tuple T , that is

DC(T ,M) = {x ∈ X : DOrb(T , x) ∩M is dense in M}.

Definition 2.1. If T = (T1, . . . , Tn) is a tuple on a Banach space X, F =
{T k11 T k22 . . . T knn : ki ≥ 0, 1 ≤ i ≤ n} and M be a closed subspace of X then the
tuple T is called subspace-diskcyclic for M (or M-diskcyclic) if there exists a
vector x ∈ X such that

DOrb(T , x) ∩M = {αTx : T ∈ F , α ∈ D} ∩M

is dense in M.
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It is clear from the above definition, that every subspace-hypercyclic tuple is
subspace-diskcyclic which in turn is subspace-supercyclic.

Definition 2.2. If T = (T1, . . . , Tn) is a tuple on a Banach space X, F =
{T k11 T k22 . . . T knn : ki ≥ 0, 1 ≤ i ≤ n} and M be a closed subspace of X then the
tuple T is called subspace-disk transitive (or M-disk transitive) if for any two
nonempty sets U and V in M, there exists α ∈ U and some positive integers
ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩V contains a relatively open

nonempty subset G of M.

We give the following example of a subspace-diskcyclic tuple.

Example 2.1. Suppose that T is a diskcyclic operator on a Banach space
X and I is the identity operator. Then, it is easy to show that the tuple
T = (T ⊕ I, I ⊕ T ) is both M-diskcyclic and N -diskcyclic where M = X ⊕ {0}
and N = {0}⊕X since both T ⊕ I and I ⊕ T are subspace-diskcyclic operators
[15, Example 2.2.].

The following example shows that not every subspace-diskcyclic tuples is
diskcyclic.

Example 2.2. Let T = (αB ⊕ I, βB ⊕ I) be a 2-tuple where α, β are complex
numbers with modulus greater than 1, I is the identity operator and B is the
backward shift on the sequence space ℓ2(N). Since αB is diskcyclic [3] then it
has a diskcyclic vector, say x. Therefore, the tuple T has an M-diskcyclic vector
(x, 0) for the subspace M = ℓ2(N)⊕{0}. However, the tuple T is not diskcyclic
since αB ⊕ I is not diskcyclic operator.

The following proposition gives an equivalent assertion to subspace- disk
transitive tuple.

Proposition 2.1. LetM be a subspace of a Banach space X and T = (T1, T2, . . . ,
Tn) be a tuple of operators. Then, the following statements are equivalent.

1. The tuple T is M-disk transitive,

2. For any two relatively open subsets U and V of M there exist α ∈ UC and
some positive integers ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩

V ̸= ϕ and T k11 T k22 . . . T knn (M) ⊂ M.

3. For any two relatively open subsets U and V of M there exists α ∈ UC and
some positive integers ki, 1 ≤ i ≤ n such that T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αU)∩

V is non-empty open set in M.

Proof. (1) ⇒ (2): Let U and V be two relatively open subsets of M. By the
statement (1), there exist α ∈ UC , some positive integers ki, 1 ≤ i ≤ n and an

open set G in M such that G ⊂ T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ V . It follows that

(1) T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ V ̸= ϕ.
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Since G ⊂ T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU), it follows that 1

αT
k1
1 T k22 . . . T knn (G) ⊂ U ⊂

M. Let x ∈ M and x0 ∈ G. Then, there exists r ∈ N such that (x0 + rx) ∈ G.
Then, we get

1

α
T k11 T k22 . . . T knn x0 +

1

α
T k11 T k22 . . . T knn rx =

1

α
T k11 T k22 . . . T knn (x0 + rx)

∈ 1

α
T k11 T k22 . . . T knn (G) ⊂ M.

Since x0 ∈ G then 1
αT

k1
1 T k22 . . . T knn x0 ∈ 1

αT
k1
1 T k22 . . . T knn (G) ⊂ M, it follows

that r
αT

k1
1 T k22 . . . T knn x ∈ M and so T k11 T k22 . . . T knn x ⊂ M, i.e,

(2) T k11 T k22 . . . T knn (M) ⊂ M.

The proof follows by (1) and (2).
(2)⇒ (3): The restriction function T k11 T k22 . . . T knn |M ∈ B(M), then

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αU) ∩ M is open in M for any open set U of M. Since

V ⊂ M is open, it follows that T−k1
1 T−k2

2 . . . T−kn
n (αU) ∩ V is an open set in

M.
(3)⇒ (1) is trivial. □
The next theorem shows that every subspace-disk transitive tuple is subspace-

diskcyclic for the same subspace. First, we need the following lemma.

Lemma 2.1. Let T = (T1, T2, . . . , Tn) be M-diskcyclic tuple. Then, there exists
kj ∈ N, 1 ≤ j ≤ n such that

DC(T ,M) =
⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

where {Bi : i ∈ N} is a countable open basis for the relative topology of a subspace
M.

Proof. We have x ∈ DC(T ,M) if and only if

DOrb(T , x) ∩M = {αTx : T ∈ F , α ∈ D} ∩M

is dense in M if and only if for each i > 0, there exist α ∈ D\ {0} and kj ∈
N, 1 ≤ j ≤ n such that αT k11 T k22 . . . T knxn ∈ Bi if and only if

x ∈
⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

Theorem 2.1. Let M be a subspace of a Banach space X and T =(T1, T2, . . . , Tn)
be a tuple of operators. Suppose that T is M-disk transitive tuple. Then,⋂

i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)).

is dense in M.
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Proof. Since T is M-transitive, then by Proposition 2.1, for each i, j ∈ N, there
exist k

(r)
i,j ∈ N, 1 ≤ r ≤ n and αi,j ∈ UC such that

T
−k(n)

i,j
n T

−k(n−1)
i,j

n−1 . . . T
−k(1)i,j

1 (αi,jBi) ∩Bj

is nonempty open in M. Suppose that

Ai =
⋃
j∈N

(
T
−k(n)

i,j
n T

−k(n−1)
i,j

n−1 . . . T
−k(1)i,j

1 (αi,jBi) ∩Bj
)
,

for all i ∈ N. Then, Ai is nonempty and open in M since it is a countable union
of open sets in M. Furthermore, each Ai is dense in M since it intersects each
Bj . By the Baire category theorem, we get⋂

i∈N
Ai =

⋂
i∈N

⋃
j∈N

(
T
−k(n)

i,j
n T

−k(n−1)
i,j

n−1 . . . T
−k(1)i,j

1 (αi,jBi) ∩Bj
)

is a dense set in M. Clearly,⋂
i∈N

⋃
j∈N

(
T
−k(n)

i,j
n T

−k(n−1)
i,j

n−1 . . . T
−k(1)i,j

1 (αi,jBi) ∩Bj
)

⊂
⋂
i∈N

( ⋃
α∈UC

T−kn
n T

−kn−1

n−1 . . . T−k1
1 (αBi)) ∩M.

It follows that
⋂
i∈N

(⋃
α∈UC T−kn

n T
−kn−1

n−1 . . . T−k1
1 (αBi)) ∩ M is desne in M.

The proof is completed. □

Corollary 2.1. If T is an M-disk transitive tuple, then T is M-diskcyclic.

Proof. The proof follows by Proposition 2.1 and Theorem 2.1. □

Theorem 2.2 (M-Diskcyclic Tuple Criterion). LetM be a subspace of a Banach
space X and T = (T1, T2, . . . , Tn) be a tuple of operators. Suppose that for

each 1 ≤ i ≤ n,
〈
r
(i)
k

〉
k∈N

is an increasing sequence of positive integers and

D1, D2 ∈ M are two dense sets in M such that

1. For every y ∈ D2, there is a sequence ⟨xk⟩k∈N in M such that ∥xk∥ → 0

and T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n xk → y as k → ∞,

2. ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥∥xk∥ → 0, for all x ∈ D1 as k → ∞,

3. T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n M ⊆ M, for all k ∈ N.

Then, T is said to be satisfied M-diskcyclic criterion, and T is an M-diskcyclic
tuple.
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Proof. Let U1 and U2 be two relatively open sets in M. Then, we can find
x ∈ D1 ∩ U1 and y ∈ D2 ∩ U2 since both D1 and D2 are dense in M. It
follows from the condition (2) that there exists a sequence of non-zero scalars

⟨λk⟩k∈N such that λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x → 0 and λ−1

k xk → 0. Suppose that

∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥ and ∥xk∥ are not both zero. Then, we have the following

cases:

1. if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥ = 0, set λk = 2k ∥xk∥.

Then, T turns to be M-hypercyclic tuple [4, Theorem 2.4.] and thus M-
diskcyclic.

2. if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥∥xk∥ ≠ 0, set λk = ∥xk∥

1
2 ∥T r

(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥

− 1
2

,

3. if ∥xk∥ = 0, set λk = 2−k∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥−1.

For these two cases if ∥T r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x∥ → 0, then T is M-hypercyclic tuple

and so M-diskcyclic. Otherwise, it follows easily that |λk| ≤ 1, for all k ∈ N.
Set z = x+ λk

−1xk for a large enough k. Since x ∈ U1 ⊂ M and λk
−1xk ∈ M,

then z ∈ M. Since
∥z − x∥ → 0,

it follows that z ∈ U1.
Now, since

λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n z

= λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x+ T

r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n xk

then, by using the condition (3), we get

λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n z and T

r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n xk

belong to M and so λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n x ∈ M.

Moreover, since T
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n xk → y for a large enough k, then∥∥∥∥λkT r(1)k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n z − y

∥∥∥∥ → 0.

Thus, λkT
r
(1)
k

1 T
r
(2)
k

2 . . . T
r
(n)
k
n z ∈ U2. It follows that there exists k ∈ N such that

U1 ∩ T
−r(n)

k
n T

−r(n−1)
k

n−1 . . . T
−r(1)k
1

(
λ−1
k U2

)
̸= ϕ.

By Proposition 2.1 and Corollary 2.1, T is an M-diskcyclic tuple. □
The following theorem gives the relation between the subspace-diskcyclicity

of a tuple of operators and the tuple of the direct sum of those operators.
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Proposition 2.2. Let M be a subspace of a Banach space X and T = (T1, T2,
. . . , Tn) be a tuple. Then, T satisfies subspace-diskcyclic criterion if and only if
the tuple S = (T1⊕T1, T2⊕T2, . . . , Tn⊕Tn) satisfies subspace-diskcyclic criterion.

With out loss of generality, we suppose that S = (T1⊕T1, T2⊕T2) and then
the general case follows by the same way.

For the “if” part, let M be a closed subspace of X such that S satisfies
M ⊕ M-diskcyclic criterion. Let D1 and D2 be dense sets in M then W =
D1 ⊕ D2 is dense in M ⊕ M. Let x ∈ D1 and y ∈ D2, then (x, y) ∈ W . By

hypothesis, there exist two increasing sequence of positive integers
〈
r
(i)
k

〉
k∈N

for

i = 1, 2 and a sequence ⟨(xk, yk)⟩k∈N in M ⊕ M such that ∥(xk yk)∥ → (0, 0)

and (T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (xk, yk) → (x, y) as k → ∞. which means that

(T
r
(1)
k

1 T
r
(2)
k

2 xk, T
r
(1)
k

1 T
r
(2)
k

2 yk) → (x, y). It follows that for each y ∈ D2 there is a
sequence ⟨yk⟩k∈N → 0 in M such that

(3) T
r
(1)
k

1 T
r
(2)
k

2 yk → y.

By hypothesis, we have ∥(T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (x, y)∥ ∥(xk, yk)∥ → (0, 0).

Then, for all x ∈ D1 it easy follows that

(4)

∥∥∥∥T r(1)k
1 T

r
(2)
k

2 x

∥∥∥∥ ∥yk∥ → 0.

Also, since (T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (M⊕M) ⊆ (M⊕M), then

(5) T
r
(1)
k

1 T
r
(2)
k

2 (M) ⊆ M.

From (3), (4) and (5), the tuple T = (T1, T2) satisfies diskcyclic criterion.

For the “only if” part, since T
r
(1)
k

1 T
r
(2)
k

2 M ⊆ M, for all k ∈ N, then,

T
r
(1)
k

1 T
r
(2)
k

2 M⊕ T
r
(1)
k

1 T
r
(2)
k

2 M ⊆ M⊕M.

So,

(T1 ⊕ T1)
r
(1)
k (T2 ⊕ T2)

r
(2)
k (M⊕M) ⊆ M⊕M.

The remainder of the proof follows easily from [13, Corollary 1]. □

Proposition 2.3. Let M be a subspace of a Banach space X and T = (T1, T2,
. . . , Tn) be a tuple of operators. If the semigroup F contains an M-diskcyclic
operator, then T is M-diskcyclic tuple.

Proof. Suppose that T is an M-diskcyclic operator in F , then

M = DOrb(T, x) ∩M ⊆ DOrb(T , x) ∩M ⊆ M.

It follows that DOrb(T , x) ∩M = M and so T is M-diskcyclic tuple. □
The following example gives a tuple of operators which is M-diskcyclic,

however, not every operator in the tuple is M-diskcyclic.
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Example 2.3. Let T1, T2 ∈ B(ℓ2(Z)) be bilateral forward weighted shifts with
the weight sequences wn, kn respectively, where

wn =

{
1
3 if n ≥ 0
1
2 if n < 0

and kn =

{
4 if n ≥ 0

5 if n < 0

and let M be the subspace of ℓ2(Z) consisting of all sequences with zeroes on
the even entries; that is,

M =
{
{an}∞n=−∞ ∈ ℓ2(Z) : a2n = 0, n ∈ Z

}
,

then by [2, Theorem 3.6] T1 is notM-diskcyclic but T2 isM-diskcyclic. However,
the tuple T = (T1, T2) is M-diskcyclic by Proposition 2.3.

3. Conclusion

We studied both subspace-diskcyclic and subspace-disk transitive tuples. We
provided some sufficient conditions for a tuple to be subspace-diskcyclic which
is called subspace-diskcyclic tuple criterion. Then, we found a relation between
the subspace-diskcyclicity of a tuple of operators and the tuple of the direct
sum of those operators. By giving an example, we showed that if a tuple is
subspace-diskcyclic, then there may be a non-diskcyclic operator in that tuple.
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Abstract. Let H be a Hilbert space and let B(H) be the algebra of all bounded
linear operator on H. We characterise surjective maps ϕ : B(H) → B(H), such that
F (ϕ(A) ⋄ ϕ(B)) = F (A ⋄ B), for all A,B ∈ B(H), where F (A) denotes any of R(A) or
N(A) and A ⋄B denotes any binary operations A∗B, AB∗A for all A,B ∈ B(H).

Keywords: nonlinear preservers problem, kernel range operator, skew product.

1. Introduction and preliminaries

Throughout this note, H will denote a Hilbert space over the complex field C
and B(H) will denote the algebra of all bounded linear operators on H with unit
I. For A ∈ B(H) denoted by R(A) the range of A, N(A) its kernel and A∗ its
adjoint. The hyper-range of A ∈ B(X) is defined by R∞(A) :=

⋂
n∈NR(An).

For any x, f ∈ H, as usual, we denote x⊗ f the rank at most one operator
defined by (x ⊗ f)(y) = f(y)x =< y, f > x, for every y ∈ H. The set of
all rank one operators is denoted by F1(H). Fix an arbitrary orthogonal basis
{ei}i∈Γ of H. For x ∈ H, write x =

∑
i∈Γ λiei, and define the conjugate operator

J : H → H by Jx = x =
∑

i∈Γ λiei.

*. Corresponding author
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The study of maps on operator algebras preserving certain properties is a
topic which attracts much attention of many authors, see for example [3, 6, 7,
9, 10, 12, 13], and the references therein. In this direction, in the last decades, a
great activity has occurred in characterising maps preserving a certain property
of the product or triple product (see [1, 2, 4, 6, 11]). In [2], the authors determine
the form of surjective maps on B(H) which satisfies F (ϕ(A) ⋄ϕ(B)) = F (A ⋄B)
for all A,B ∈ B(H) where F (A) denotes any of R(A) or N(A) and A⋄B denotes
any binary operations: the usual product AB and triple product ABA for all
A,B ∈ B(X ). They also cover the main results of [12] by characterizing the maps
that satisfy N(ϕ(A)− ϕ(B)) = N(A−B) (or R(ϕ(A)− ϕ(B)) = R(A−B)).

As a continuation, in this direction, we propose to determine the forms of all
surjective maps ϕ : B(H) → B(H) which satisfy one of the following preserving
properties:

� N(ϕ(A)ϕ(B)∗ϕ(A)) = N(AB∗A);

� N(ϕ(A)∗ϕ(B)) = N(A∗B);

� R(ϕ(A)ϕ(B)∗ϕ(A)) = R(AB∗A);

� R(ϕ(A)∗ϕ(B)) = R(A∗B),

for all A,B ∈ B(H).

2. Preliminaries

In this section, we collect some lemmas that will be used in the proof of our
main results. The first one gives the range and kernel of rank one operators.

Lemma 2.1. Let x, f ∈ H nonzeros vectors. We have

1. R(x⊗ f) = span{x} and N(x⊗ f) = {f}⊥.

2. If f(x) = 1, then N(I −x⊗ f) = R(x⊗ f) = span{x} and R(I −x⊗ f) =
N(x⊗ f) = {f}⊥.

3. If f(x) ̸= 0 then R∞(x⊗ f) = R(x⊗ f) = span{x}.

Proof. See, for example, [8, Lemma 2.1].

The second, quoted from [4], characterizes maps preserving zero skew pro-
ducts of operators in both directions.

Lemma 2.2. Let H be a complex Hilbert space with dim H ≥ 3. Suppose
ϕ : B(H) → B(H) is a surjective map such that

(1) A∗B = 0 ⇔ ϕ(A)∗ϕ(B) = 0 for all A,B ∈ B(H).



170 H. BENBOUZIANE, M. ECH-CHÉRIF EL KETTANI and A. M. VADEL

Then, ϕ preserves rank one operators in both directions and ϕ(0) = 0. Moreover,
there exist unitary U ∈ B(H) and a map h : H×H → H such that:

ϕ(x⊗ f) = Ux⊗ h(x, f), for all x, f ∈ H,

or
ϕ(x⊗ f) = UJx⊗ h(x, f), for all x, f ∈ H.

Proof. See, [4, Theorem 2.1].

The following lemma determines the structure of surjective maps preserving
the zero skew triple product of operators.

Lemma 2.3. Let H be a complex Hilbert space with dim H ≥ 3. Suppose that
ϕ : B(H) → B(H) is a surjective map. Then, ϕ satisfies

(2) AB∗A = 0 ⇔ ϕ(A)ϕ(B)∗ϕ(A) = 0, for all A, B ∈ B(H),

if and only if there exist unitary linear or conjugate linear operators U , V on H
and functional h : H → C \ {0} such that ϕ is of one of the forms:

ϕ(A) = h(A)UAV, for all A ∈ B(H),

or
ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

Proof. See, [11, Corollary 3.5].

We end this section by stating and proving the following lemma which will
be used later.

Lemma 2.4. Let A,B ∈ B(H). The following statements are equivalent.

1. N(R∗A) = N(R∗B) for all rank one operators R.

2. R(A∗R) = R(B∗R) for all rank one operators R.

3. A = cB for a nonzero scalar c ∈ C.

Proof. It’s easy to check that (3) implies (1) and (3) implies (2).
1 ⇒ 3): Assume that N(R∗A) = N(R∗B) for all rank one operators R. Let

R = x⊗ f be a rank one operator where x, f ∈ H. By hypothesis we have

N(R∗A) = N(R∗B) ⇐⇒ N((A∗R)∗) = N((B∗R)∗)

⇐⇒ R(A∗R)⊥ = R(B∗R)⊥.

Which implies that span{A∗x}⊥ = span{B∗x}⊥.
Since span{A∗x} and span{B∗x} are closed subspaces, we deduce that

span{A∗x} = span{B∗x}. Therefore, A∗x = cxB
∗x, where cx ∈ C is a scalar

depending to x.
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Now, to complete the proof, it is suffice to show that N(A∗) = N(B∗).
Indeed, suppose that there is g ∈ H such that A∗g = 0 and B∗g ̸= 0. Then,
there is a non zero vector x ∈ H such that < x.B∗g >= 1.

Note that, (x ⊗ g)B(x) = x ⊗ B∗g(x) =< x,B∗g > x = x ̸= 0. Then,
x /∈ N((x⊗g)B). But x ∈ N((x⊗g)A) because (x⊗g)A(x) = (x⊗A∗g)(x) = 0.
Which contradict the hypothesis.

2 ⇒ 3) let x be a non zero vector in H. By hypothesis, we have

R(A∗x⊗ x) = R(B∗x⊗ x).

Which implies that span{A∗x} = span{B∗x}. We can show, by the same
method as above, that N(A∗) = N(B∗). Therefore, A∗ and B∗ are linearly
dependent. Thus, A and B are linearly dependent, as desired.

3. Nonlinear maps preserving the kernel

We begin this section with the following result which characterizes surjective
maps that preserve the kernel of triple skew product of operators.

Theorem 3.1. Let H be a complex Hilbert space with dimension ≥ 3. A sur-
jective map ϕ : B(H) → B(H) satisfies

(3) N(ϕ(A)ϕ(B)∗ϕ(A)) = N(AB∗A), for all A, B ∈ B(H),

if and only if there exist φ : B(H) → K \ {0} and U unitairy operator in B(H)
such that ϕ(A) = φ(A)UA for all A ∈ B(H).

Proof. The necessarily condition is easily verified. Conversely, assume that ϕ
satisfies the equation (3). In particular,

N(ϕ(A)ϕ(B)∗ϕ(A)) = H ⇐⇒ N(AB∗A) = H, for all A, B ∈ B(H).

Then, ϕ satisfies the equation (2). Since ϕ is surjective, by Lemma 2.3, there
exist unitary linear or conjugate linear operators U , V on H and functional
h : H → C \ {0} such that ϕ is of one of the forms:

(4) ϕ(A) = h(A)UAV, for all A ∈ B(H),

or

(5) ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

We shall show that ϕ can not take the form (5). Assume for the sak of con-
tradiction that ϕ takes a such form, and let us first show that V is a scalar
operator. It suffices to prove that V ∗ is a scalar operator. To do that, assume,
on the contrary, that there exists a non zero vector x ∈ H such that V ∗x and
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x are linearly independent. We could find f ∈ N such that < x, f >= 1 and
< V ∗x.f >= 0. For any B ∈ B(H), we have ϕ(I) = h(I)UV . Then

(6) N(B∗) = N(ϕ(I)ϕ(B∗)∗ϕ(I)) = N(UBV ), for all B ∈ B(H).

According to the lemma 2.1 and applying (6) to B = I − x⊗ f , we obtain

span{f} = N((I − x⊗ f)∗)

= N(U(I − x⊗ f)V )

= N(UV − Ux⊗ V ∗f)

= N(I − V ∗x⊗ V ∗f)

Since < V ∗f.V ∗x >=< f.x >= 1, then by Lemma 2.1, span{f} = span{V ∗x}.
Therefore, f = λV ∗x, for some non zero λ ∈ H.

This shows that < V ∗x.f >= λ ∥ f ∥2 ̸= 0, which is a contradiction. Hence,
V is a scalar operator and ϕ(A) = φ(A)UA, where φ is a scalar function B(H) →
K∗. Since U is injective, (6) becomes

(7) N(B∗) = N(B), for all B ∈ B(H).

On the other hand, we can find z1, z2 ∈ H such that z1, z2 are linearly
independent and < z1, z2 >= 1. Applying (7) to B = I − z1 ⊗ z2 we obtain

span{z1} = N(I − z1 ⊗ z2)

= N((I − z1 ⊗ z2)
∗) = N(I − z2 ⊗ z1)

= span{z2}.

This contadiction shows that ϕ takes the formes (4).

Now, let x, f ∈ H such that < x, f >= 1. For B = I − x⊗ f , from (3) and
Lemma 2.1, we have

span{f} = N((I − x⊗ f)∗)

= N(B∗) = N(UB∗V )

= N(U(I − f ⊗ x)V )

= N(UV − Uf ⊗ V ∗x)

= N(UV (I − V ∗f ⊗ V ∗x))

= N((I − V ∗f ⊗ V ∗x))

= span{V ∗f}.

Therefore, V ∗ is a scalar operator and V is also. Which proves that ϕ(A) =
φ(A)UA, for all A ∈ B(H), with φ : B(H) → K∗ is a scalar function. This
completes the proof.
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The following theorem characterizes surjective maps that preserve the kernel
of skew product of operators.

Theorem 3.2. Let H be a complex Hilbert space with dimension ≥ 3. A sur-
jective map ϕ : B(H) → B(H) satisfies

(8) N(ϕ(A)∗ϕ(B)) = N(A∗B), for all A, B ∈ B(H),

if and only if there exists c ∈ K \ {0} and and unitary U ∈ B(H) such that

(9) ϕ(A) = cUA, ∀A ∈ B(H).

Proof. The ”if” part is easily verified. We, therefore, will only deal with the
”only if” part. So, assume that ϕ is a surjective map from B(H) into B(H)
satisfying (8). In particular,

N(ϕ(A)∗ϕ(B)) = H ⇐⇒ N(A∗B) = H, for all A, B ∈ B(H).

This entails that ϕ satisfies the equation (1). since ϕ is surjective, by Lemma 2.2,
there exist unitary operator U ∈ B(H) and a map h : H×H → H such that:

(10) ϕ(x⊗ f) = Ux⊗ h(x, f), for all x, f ∈ H,

or

(11) ϕ(x⊗ f) = UJx⊗ h(x, f), for all x, f ∈ H.

Let f, x ∈ H and put g = h(x, f). If (10) holds, then

{f}⊥ = N((x⊗ f)∗(x⊗ f))

= N((ϕ(x⊗ f))∗(ϕ(x⊗ f)))

= N((Ux⊗ g)∗(Ux⊗ g))

= {g}⊥.

So, there exists λ ∈ H such that g = λf .
If (11) holds, with no extra effort, we get the same result. Therefore, for

every R ∈ F1 we obtain

(12) ϕ(R) = λV R,

or

(13) ϕ(R) = λV JR.

Let A ∈ B(H) and R ∈ F1. If (12) holds, then

N(R∗A) = N(ϕ(R)∗ϕ(A)) = N(R∗V ∗ϕ(A)).
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Therefore, by Lemma 2.4, there exists non zero scalar c ∈ H such that ϕ(A) =
cV A or

N(R∗A) = N(ϕ(R)∗ϕ(A)) = N(R∗J∗V ∗ϕ(A)).

Then, ϕ(A) = cV JA, for some non zero scalar c ∈ H.
Now, assume that V is unitary. Take an orthonormal basis {ei}i∈Γ of H and

define the conjugate operator J : H → H by Jx = x =
∑

i∈Γ λiei. Then, J is
conjugate unitary. Let U = V J then U is unitary (see, [5, Claim 3 in Theorem
5.1]). We conclude that ϕ(A) = cUA, for all A ∈ B(H) with U is unitary, the
proof is complete.

4. Nonlinear maps preserving the range

The first theorem in this section characterizes surjective maps that preserve the
Range of triple skew product of operators.

Theorem 4.1. Let H be a real or complex Hilbert space of dimension ≥ 3. A
surjective map ϕ : B(H) → B(H) satisfies

(14) R(ϕ(A)ϕ(B)∗ϕ(A)) = R(AB∗A), for all A, B ∈ B(H),

if and only if there exists φ : B(H) → K \ {0} and V unitairy in B(H) such that
ϕ(A) = φ(A)AV , for all A ∈ B(H).

Proof. The necessary condition is easily verified since the operator V is surjec-
tive. Conversely, assume that ϕ is a surjective map satisfying (14). Then

R(ϕ(A)ϕ(B)∗ϕ(A)) = H ⇐⇒ R(AB∗A) = H, for all A, B ∈ B(H).

Which shows that ϕ satisfying the equation (1). It follows, by Lemma 2.3, that
there exist unitary linear or conjugate linear operators U , V on H and functional
h : H → C \ {0} such that ϕ is of one of the forms:

(15) ϕ(A) = h(A)UAV, for all A ∈ B(H),

or

(16) ϕ(A) = h(A)UA∗V, for all A ∈ B(H).

Similarly to the proof of Theorem 2.1, let us first show that ϕ can not take the
second form. Assume, to the contrary, that ϕ takes a such form. Let x be a non
zero vector in H. By (14) and Lemma 2.3, we have

span{x} = R((x⊗ x)∗)

= R(U(x⊗ x)U∗UV )

= R(Ux⊗ x)U∗)

= R(Ux⊗ Ux)

= span{Ux}.
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Which proves that U is a scalar operator. Thus,

ϕ(A) = h(A)A∗V, for all A ∈ B(H).

In particular, for A = x⊗ y where x and y are linearly independent, we obtain

span{y} = R(B∗) = R(ϕ(I)ϕ(B)∗ϕ(I)) = R(BV ) = R(B) = span{x},

which is a contradiction. We conclude that ϕ takes the form (15).
To finish the proof, it remains to show that U is a scalar operator. Indeed,

for any nonzero vector x ∈ H we have

span{x} = R((x⊗ x)∗)

= R(ϕ(I)ϕ((x⊗ x))∗ϕ(I))

= R(U(x⊗ x)∗V )

= R(Ux⊗ x)

= span{Ux}.

This proves that Ux and x are linearly dependent, for all x ∈ H. Therefore,
there is a non zero scalar C such that U = cI. The proof is complete.

By replacing the range of operator by the hyper-range of operator in the
previous theorem we get the following result.

Theorem 4.2. Let H be a real or complex Hilbert space of dimension ≥ 3.
A surjective map ϕ : B(H) → B(H) satisfies

(17) R∞(ϕ(A)ϕ(B)∗ϕ(A)) = R∞(AB∗A), for all A, B ∈ B(H),

if and only if, there exists φ : B(H) → K \ {0} and V unitary in B(H) such that
ϕ(A) = φ(A)AV , for all A ∈ B(H).

We end this paper by the following result which characterizes surjective maps
that preserve the Range of skew product of operators.

Theorem 4.3. Let H be a complex Hilbert space of dimension ≥ 3. A surjective
map ϕ : B(H) → B(H) satisfies

(18) R(ϕ(A)∗ϕ(B)) = R(A∗B), for all A, B ∈ B(H),

if and only if there exists c ∈ K \ {0} and and unitary U ∈ B(H) such that

(19) ϕ(A) = cUA, for all A ∈ B(H).

Proof. The necessarily condition is easily verified since the operators U is sur-
jective. Conversely, assume that ϕ is a surjective additive map from B(H) into
B(H) satisfying (18). In particular,

R(ϕ(A)∗ϕ(B)) = {0} ⇐⇒ R(A∗B) = {0}, for all A, B ∈ B(H).
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This implies that ϕ satisfies the equation (1). By following the same approach
of the proof of Theorem 3.2, we obtain

ϕ(R) = λUR or ϕ(R) = λUJR, for every R ∈ F1.

By the same reasoning and by applying Lemma 2.4, the map ϕ has the desired
form.
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Abstract. In this paper the application of the M -projective curvature tensor in the
general theory of relativity has been studied. Firstly, we have proved that an M -
projectively flat quasi-Einstein spacetime is of a special class with respect to an associ-
ated symmetric tensor field, followed by the theorem that a spacetime with vanishing
M -projective curvature tensor is a spacetime of quasi-constant curvature. Then we have
proved that an M -projectively flat quasi-Einstein spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field ξ. In the next section we have proved
that an M -projectively flat Ricci semi-symmetric quasi-Einstein spacetime satisfying a
definite condition is an N( 2l−m

6 )-quasi Einstein spacetime. In the last section, we have
firstly proved that anM -projectively flat perfect fluid spacetime with torse-forming vec-
tor field ξ satisfying Einstein field equation with cosmological constant represents an
inflation, then we have found out the curvature of such spacetime, followed by proving
the theorem that the spacetime also becomes semi-symmetric under these conditions.
Lastly, we have found out the square of the length of the Ricci tensor in this type of
spacetime and also proved that if an M -projectively flat perfect fluid spacetime satisfy-
ing Einstein field equation with cosmological constant, with torse-forming vector field
ξ admits a symmetric (0, 2) tensor α parallel to ∇ then either λ = k

2 (p − σ) or α is a
constant multiple of g.

Keywords: M -projective curvature tensor, Riemannian curvature tensor, torse-
forming vector field, Einstein equation.
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1. Introduction

An Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose
Ricci tensor S of type (0, 2) is non-zero and proportional to the metric tensor.
Einstein manifolds form a natural subclass of various classes of Riemannian or
semi-Riemannian manifolds by a curvature condition imposed on their Ricci ten-
sor [4]. Also in Riemannian geometry as well as in general relativity theory, the
Einstein manifold plays a very important role. Chaki and Maity [18] generalised
the concept of Einstein manifold and introduced the notion of quasi-Einstein
manifold. According to them, a Riemannian or semi-Riemannian manifold is
said to be a quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is non-zero
and satisfies the condition

S(U, V ) = lg(U, V ) +mA(U)A(V ),(1)

where l and m are two real-valued scalar functions where m ̸= 0 and A is
a non-zero 1-form equivalent to the unit vector field ξ, i.e. g(U, ξ) = A(U),
g(ξ, ξ) = 1. If m = 0 then the manifold becomes Einstein. Quasi-Einstein
manifolds are denoted by (QE)n, where n is the dimension of the manifold.
There are many examples of quasi-Einstein manifolds, like the Robertson-Walker
spacetime is a quasi-Einstein manifold. Also, quasi-Einstein manifolds can be
taken as a model of perfect fluid spacetime in general relativity. The importance
of quasi-Einstein spacetimes lies in the fact that 4-dimensional semi-Riemannian
manifolds are related to study of general relativistic fluid spacetimes, where the
unit vector field ξ is taken as timelike velocity vector field, that is, g(ξ, ξ) = −1.
In the recent papers [1], [23], the application of quasi-Einstein spacetime and
generalised quasi-Einstein spacetime in general relativity have been studied.
Many more works have been done in the spacetime of general relativity [2],
[16], [25], [26], [29], [30], [31]. Let (Mn, g) be an n-dimensional differentiable
manifold of class C∞ with the metric tensor g and the Riemannian connection
∇. In 1971 G. P. Pokhariyal and R. S. Mishra ([12]) defined the M -projective
curvature tensor as follows

P̃ (U, V )W = R(U, V )W − 1

2(n− 1)
[S(V,W )U − S(U,W )V

+ g(V,W )QU − g(U,W )QV ],(2)

where R and S are the curvature tensor and the Ricci tensor ofMn, respectively.
Such a tensor field P̃ is known as the M -projective curvature tensor. Some
authors studied the properties and applications of this tensor [11], [15], [20] and
[21]. In 2010, S. K. Chaubey and R. H. Ojha investigated the M-projective
curvature tensor of a Kenmotsu manifold [24]. The concept of perfect fluid
spacetime arose while discussing the structure of this universe. Perfect fluids are
often used in the general relativity to model the idealised distribution of matter,
such as the interior of a star or isotropic pressure. The energy-momentum tensor
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T̃ of a perfect fluid spacetime is given by the following equation

(3) T̃ (U, V ) = pg(U, V ) + (σ + p)A(U)A(V ),

where σ is the energy-density and p is the isotropic pressure, A is defined earlier
and the unit vector field ξ is timelike, i.e. g(ξ, ξ) = −1. Einstein field equation
with cosmological constant([7]) is given by

(4) S(U, V )− r̃

2
g(U, V ) + λg(U, V ) = kT̃ (U, V ),

where, S is the Ricci tensor, r̃ is the scalar curvature of the spacetime while λ,
k are the cosmological constant and the gravitational constant respectively. It’s
used to describe the dark energy of this universe in modern cosmology, which is
responsible for the possible acceleration of this universe. The equations (3) and
(4) together give

(5) S(U, V ) = (
r̃

2
− λ+ pk)g(U, V ) + k(σ + p)A(U)A(V ).

Comparing to the equation (1) we can say the tensor of the equation (5) repre-
sents the tensor of a quasi-Einstein manifold. The k-nullity distribution N(k)
of a Riemannian manifold M is defined by

N(k) : p→ Np(k) =

{W ∈ Tp(M) : R(U, V )W = k[g(V,W )U − g(U,W )V ]},(6)

for all U, V ∈ TpM , where k is a smooth function. For a quasi-Einstein manifold
M , if the generator ξ belongs to some N(k), then M is said to be N(k)-quasi-
Einstein manifold [19] . Özgür and Tripathi proved that for an n-dimensional
N(k)-quasi Einstein manifold [9], k = l+m

n−1 , where l and m are the respec-
tive scalar functions and n is the dimension of the manifold. In this paper
we have first derived some theorems on M -projectively flat spacetimes. After
that we have introduced the concept of Ricci semi-symmetric spacetime with
vanishing M -projective curvature tensor. Lastly we introduced the concept of
torse-forming vector field in this spacetime and derived some theorems on it,
thereby finding the curvature of the spacetime and finding the square of the
length of the Ricci tensor for this spacetime with torse-forming vector field.

2. Preliminaries

Consider a quasi-Einstein spacetime with associated scalars l, m and associated
1-form A. Then by (1), we have

(7) r = 4l −m,

where r is a scalar curvature of the spacetime. If ξ is a unit timelike vector field,
then g(ξ, ξ) = −1. Again from the equation (1), we have

(8) S(ξ, ξ) = m− l,
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For all vector fields U and V we have the following equation,

(9) g(QU, V ) = S(U, V ),

where Q is the symmetric endomorphism of the tangent space at each point of
the manifold corresponding to the Ricci tensor S. From the equation (5) and
(9) we can get

(10) QU = (
r̃

2
− λ+ pk)U + k(σ + p)A(U)ξ.

If the unit timelike vector field ξ is a torse-forming vector field ([5], [6]) then it
satisfies the following equation,

(11) ∇Uξ = U +A(U)ξ.

In [28] Venkatesha and H. A. Kumara proved that:

Theorem 2.1. On a perfect fluid spacetime with torse-forming vector field ξ,
the following relation holds

(12) (∇UA)(V ) = g(U, V ) +A(U)A(V ).

Considering a frame field and taking a contraction over U and V from the
equation (5) we get,

(13) r̃ = 4λ+ k(σ − 3p).

3. M-projectively flat quasi-Einstein spacetime

In this section we consider a quasi-Einstein spacetime with vanishingM -projective
curvature tensor. If a spacetime with dimension n = 4 is M -projectively flat
then from the equation (2) we have

(14) R(U, V )W =
1

6
[S(V,W )U − S(U,W )V + g(V,W )QU − g(U,W )QV ].

Using the equation (9) in the equation (1) we get

(15) QU = lU +mA(U)ξ.

Using the equations (1), (15) and taking the inner product with T from (14) we
get

R̃(U, V,W, T ) =
l

3
[g(V,W )g(U, T )− g(U,W )g(V, T )]

+
m

6
[g(U, T )A(V )A(W ) + g(V,W )A(U)A(T )

− g(V, T )A(U)A(W )− g(U,W )A(V )A(T )].(16)
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Now, taking

(17) D(U, V ) =

√
l

3
g(U, V ) +

m

2
√
3l
A(U)A(V ),

from the equation (16) we have

(18) R̃(U, V,W, T ) = D(V,W )D(U, T )−D(U,W )D(V, T ).

It is known that an n-dimensional Riemannian or semi-Riemannian manifold
whose curvature tensor R̃ of type (0, 4) satisfies the condition (18), is called a
special manifold with the associated symmetric tensor D and is denoted by the
symbol ψ(D)n, whereD is a symmetric tensor field of type (0, 2). Recently, these
types of manifolds are studied in [10] and [27]. With the use of the equations
(17) and (18) we can state the following theorem:

Theorem 3.1. AnM -projectively flat quasi-Einstein spacetime is ψ(D)4, where
D is the associated symmetric tensor field.

In [8], B.Y. Chen and K. Yano introduced the concept of quasi-constant
curvature. A manifold is said to be a manifold of quasi-constant curvature if it
satisfies the following condition

R̃(U, V,W, T ) = p[g(V,W )g(U, T )− g(U,W )g(V, T )]

+ q[g(U, T )η(V )η(W )− g(V, T )η(U)η(W )

+ g(V,W )η(U)η(T )− g(U,W )η(V η(T )],(19)

where R̃ is the scalar curvature of type (0, 4), p and q are scalar functions
while g(U, ν) = η(U), ν is the unit vector field, η is the respective 1-form and
g(ν, ν) = 1. Thus, in the view of (16) and (19) we state the following theorem:

Theorem 3.2. A spacetime with vanishing M -projective curvature tensor is a
spacetime of quasi-constant curvature.

Now, let us consider the space ξ⊥ = {X : g(X, ξ) = 0, ∀ X ∈ χ(M)}. Let U ,
V , W ∈ ξ⊥, then the equation (16) will imply

(20) R(U, V )W =
l

3
[g(V,W )U − g(U,W )V ].

So, we can state the following theorem:

Theorem 3.3. An M -projectively flat quasi-Einstein spacetime becomes an
N( l3)-quasi Einstein spacetime provided U , V , W ∈ ξ⊥, ξ is a unit timelike
vector field and l is a non-zero real-valued scalar function.

We also derive the following corollary:
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Corollary 3.1. An M -projectively flat quasi-Einstein spacetime satisfies the
following results,

(i)R(U, ξ)V =
m− 2l

6
g(U, V )ξ,

(ii)R(U, ξ)ξ =
m− 2l

6
U,

(21)

where U , V ∈ ξ⊥, ξ is a unit timelike vector field and l, m are two non-zero
real-valued scalar functions.

Lorentzian manifolds are extremely important in applications to general rel-
ativity. Lorentzian manifolds are of signature (3, 1) or, equivalently, (1, 3). A
Lorentzian manifold is called infinitesimally spatially isotropic ([13]) relative to
a unit timelike vector field ξ if its curvature tensor R satisfies the relation

(22) R(X,Y )Z = α[g(Y,Z)X − g(X,Z)Y ],

for all X, Y , Z ∈ ξ⊥ and R(X, ξ)ξ = βX for all X ∈ ξ⊥, α and β are two non-
zero real-valued functions. From the equation (20) and the result (ii) of corollary
(14) it is obvious that the manifold is infinitesimally spatially isotropic. Thus,
we can state the following theorem:

Theorem 3.4. An M -projectively flat quasi-Einstein spacetime is infinitesi-
mally spatially isotropic relative to the unit timelike vector field ξ.

4. M-projectively flat Ricci semi-symmetric quasi-Einstein spacetime

In this section we consider a quasi-Einstein spacetime which is Ricci semi-
symmetric. An n-dimensional semi-Riemannian manifold is said to be Ricci
semi-symmetric if the tensor R.S and the Tachibana tensor Q̃(g, S) are linearly
dependent, i.e.,

(23) R(U, V ) · S(W,T ) = FSQ̃(g, S)(W,T ;U, V )

holds on US where US = {x ∈M : S ̸= r
ng at x} and FS is a scalar function on

US . Now, we know that

(24) R(U, V ) · S(W,T ) = −S(R(U, V )W,T )− S(W,R(U, V )T ),

using the equation (23) we have

(25) FSQ̃(g, S)(W,T ;U, V ) = −S(R(U, V )W,T )− S(W,R(U, V )T ).

We also know that

(26) (U ∧g V )W = g(V,W )U − g(U,W )V.



184 K. CHATTOPADHYAY, A. BHATTACHARYYA and D. DEBNATH

Now, if it is a Ricci semi-symmetric quasi-Einstein spacetime then using the
equations (24), (25) and (26) we get

S(R(U, V )W,T ) + S(W,R(U, V )T ) = FS [g(V,W )S(U, T )− g(U,W )S(V, T )

+ g(V, T )S(W,U)− g(U, T )S(V,W )].(27)

Since we know R̃(U, V,W, T ) = −R̃(U, V, T,W ), thus using the equation (1) in
the equation (27) we obtain

A(R(U, V )W )A(T ) +A(W )A(R(U, V )T )

= FS [g(V,W )A(U)A(T )− g(U,W )A(V )A(T )

+g(V, T )A(W )A(U)− g(U, T )A(V )A(W )],(28)

putting T = ξ in the equation (28) and applying the result g(R(U, V )ξ, ξ) =
g(R(ξ, ξ)U, V ) we get,

(29) A(R(U, V )W ) = FS [g(V,W )A(U)− g(U,W )A(V )],

applying the equation (16) from (29) we get,

(30) (FS − 2l −m

6
)[g(V,W )A(U)− g(U,W )A(V )] = 0.

So, if g(V,W )A(U)− g(U,W )A(V ) ̸= 0 then

(31) FS =
2l −m

6
,

thus using the equations (29) and (31) we get,

(32) R(U, V )W =
2l −m

6
[g(V,W )U − g(U,W )V ],

from the equations (6) and (32) we observe that the spacetime becomes an
N(2l−m

6 )-quasi Einstein spacetime provided g(V,W )A(U) − g(U,W )A(V ) ̸= 0.
This leads us to the next theorem:

Theorem 4.1. AnM -projectively flat Ricci semi-symmetric quasi-Einstein space-
time with g(V,W )A(U)−g(U,W )A(V ) ̸= 0 is an N(2l−m

6 )-quasi Einstein space-
time, where l and m are two non-zero real valued scalar functions.

5. M-projectively flat perfect fluid spacetime with torse-forming
vector field

If a manifold is M -projectively flat then using the divergence ∇ to both the
sides of the equation (14) we get

(33) (∇US)(V,W )− (∇V S)(U,W ) = 0,
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using the equation (9) we get,

(34) g((∇UQ)V − (∇VQ)U,W ) = 0.

From the equation (13) since we observe r̃ is a constant thus using the equation
(10) we get

(35) k(σ + p)[(∇UA)(V )ξ +A(V )∇Uξ − (∇VA)(U)ξ −A(U)∇V ξ] = 0,

using the equations (11) and (12) we get

(36) k(σ + p)[g(V, ξ)U − g(U, ξ)V ] = 0,

since k is the gravitational constant hence k ̸= 0. Thus, g(V, ξ)U −g(U, ξ)V ̸= 0
implies

(37) σ + p = 0,

which means either σ = p = 0 (empty spacetime) or the perfect fluid satisfies the
vacuum-like equation of state. This allows us to derive the following theorem:

Theorem 5.1. AnM -projectively flat perfect fluid spacetime with torse-forming
vector field ξ satisfying Einstein field equation with cosmological constant is
either an empty spacetime or satisfies the vacuumlike equation of state, provided
g(V, ξ)U − g(U, ξ)V ̸= 0.

Now, σ + p = 0 means the fluid behaves as a cosmological constant [14].
This is also termed as Phantom Barrier [22]. Now, in cosmology we know such
a choice σ = −p leads to rapid expansion of the spacetime which is now termed
as inflation [17], [3]. So, we obtain the following theorem:

Theorem 5.2. AnM -projectively flat perfect fluid spacetime with torse-forming
vector field ξ satisfying Einstein field equation with cosmological constant repre-
sents an inflation.

Now, putting σ + p = 0 from the equation (5) we get,

(38) S(U, V ) = [λ+
k

2
(σ − p)]g(U, V ),

thus, the equation (10) becomes

(39) QU = [λ+
k

2
(σ − p)]U.

Using the equations (38) and (39) in the equation (14) we get

(40) R(U, V )W =

{
2λ+ k(σ − p)

6

}
[g(V,W )U − g(U,W )V ].

Hence, we can state the following theorem:
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Theorem 5.3. AnM -Projectively flat perfect fluid spacetime with torse-forming
vector field ξ, satisfying Einstein field equation with cosmological constant is of
constant curvature 2λ+k(σ−p)

6 .

Consequently we obtain the following theorem as:

Theorem 5.4. AnM -projectively flat perfect fluid spacetime with torse-forming
vector field ξ satisfying Einstein field equation with cosmological constant is an
Einstein spacetime.

From the equation (40) we easily obtain

(R(U, V ) · R̃)(X,Y, Z,W ) = −R̃(R(U, V )X,Y, Z,W )

− R̃(X,R(U, V )Y, Z,W )(41)

− R̃(X,Y,R(U, V )Z,W )− R̃(X,Y, Z,R(U, V )W ) = 0,

which implies the manifold is semi-symmetric. Hence, we obtain the following
theorem:

Theorem 5.5. AnM -projectively flat perfect fluid spacetime with torse-forming
vector field ξ satisfying Einstein field equation with cosmological constant is a
semi-symmetric spacetime.

Replacing U by QU from the equation (38) we get

(42) S(QU, V ) = [λ+
k

2
(σ − p)]g(QU, V ).

Using the equation (38)which becomes

(43) S(QU, V ) = [λ+
k

2
(σ − p)]S(U, V ) = [λ+

k

2
(σ − p)]2g(U, V ).

Considering a frame field and taking a contraction over U and V from the
equation (43) we get

(44) ||Q||2 = 4[λ+
k

2
(σ − p)]2 = [2λ+ k(σ − p)]2.

Hence, we can state the following theorem:

Theorem 5.6. The square of the length of the Ricci tensor of an M -projectively
flat perfect fluid spacetime with torse-forming vector field ξ satisfying Einstein
field equation with cosmological constant is [2λ+ k(σ − p)]2.

The Ricci identity is given by

(45) ∇2
U,V α(X,Y )−∇2

V,Uα(X,Y ) = α(R(U, V )X,Y ) + α(X,R(U, V )Y ),
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where α is a symmetric (0, 2) tensor. Now, if α is parallel to ∇ then

(46) ∇α = 0,

which further implies

(47) ∇2α = 0.

Thus, from the equation (45) we get

(48) α(R(U, V )X,Y ) + α(X,R(U, V )Y ) = 0.

Thus, from the equation (40) we get

{2λ+ k(σ − p)

6
}[g(V,X)α(U, Y )− g(U,X)α(V, Y )

+g(V, Y )α(U,X)− g(U, Y )α(V,X)] = 0.(49)

Putting X = Y = V = ξ in the equation (49) we get,

(50) −{2λ+ k(σ − p)

3
}[α(U, ξ) +A(U)α(ξ, ξ)] = 0,

which means either λ = k
2 (p− σ) or

(51) α(U, ξ) = −A(U)α(ξ, ξ).

Now, taking the derivative of α(ξ, ξ) with respect to V and using the equations
(11) and (51) we get

(52) V (α(ξ, ξ)) = 0.

Taking the derivative of the equation (51) with respect to V and using the
equation (52) we get

(53) V (α(U, ξ)) = −α(ξ, ξ)V (g(U, ξ)).

Since α is parallel with respect to ∇ thus using the equation (11) from the
equation (53) we get

(54) α(U, V ) = −α(ξ, ξ)g(U, V ).

Therefore we obtain the following theorem as:

Theorem 5.7. If an M -projectively flat perfect fluid spacetime satisfying Ein-
stein field equation with cosmological constant, with torse-forming vector field ξ
admits a symmetric (0, 2) tensor α parallel to ∇ then either λ = k

2 (p− σ) or α
is a constant multiple of g.
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Abstract. In this paper, we will study and determine all possible torsion sections of
elliptic curves that can appear on quadratic extensions of the set of rational numbers
endowed by the usual addition and a non-standard way of multiplication.
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1. Introduction

Let E be an elliptic curve over Q. By the Mordell-Weil theorem, the group E(Q)
of rational points on E is a finitely generated abelian group. Therefore, it is the
product of the torsion group and r ≥ 0 copies of an infinite cyclic group:

E(Q) ∼= E(Q)tors × Zr.

By Mazur’s theorem [5], we know that E(Q)tors is one of the following 15 groups:{
Z/nZ, with 1 ≤ n ≤ 10 or n = 12,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

Subsequently, S. Kamienny, F. Najman [3] and M. A. Kenku, F. Momose [4]
have worked on the possible torsion groups which can appear on quadratic ex-
tensions of Q. In [3, 4] we find that on a quadratic extension K of Q, we have
that E(K)tors is isomorphic to one of the following groups 26 :

Z/mZ, with 1 ≤ m ≤ 18 , m ̸= 17,

Z/2Z× Z/2mZ, with 1 ≤ m ≤ 6,

Z/3Z× Z/3mZ, with 1 ≤ m ≤ 2,

Z/4Z× Z/4Z.

*. Corresponding author
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Note that E(K)tors is finite over a quadratic numbers field because of S. Kami-
enny theorem [2]. In particular, F. Najman [6, 7] has classified all possible
torsion subgroups on cyclotomic quadratic extensions. Similarly, K. Sarma and
A. Saikia [8] determined the possible torsion subgroups on the other imaginary
quadratic fields of class 1.

In this paper, we will define a non-standard way of multiplying elements in
the quadratic extension of the set of rational numbers, denoted by Q[λ] with
λ =

√
d and d is a square-free integer. Also, we will study and determine

all possible torsion sections of elliptic curves given by a Weierstrass equation
Y ∗2 ∗ Z = X∗3 + a ∗ X ∗ Z2 + b ∗ Z3 that can appear on Q[λ], where Q[λ]
endowed by the usual addition and the new product law defined as follows, so
for X = x0 + x1λ and Y = y0 + y1λ, where x0, x1, y0 and y1 ∈ Q, we have

X + Y = (x0 + y0) + (x1 + y1)λ

and

X ∗ Y = x0y0 + (x0y1 + y0x1 + x1y1)λ.

Note that, if X and Y are two elements of Q, then the product law ∗ is the
usual product law over Q.

In a later work, we will use these results to study the classification of the
torsion section of elliptic curves on imaginary (real) multiquadratic extensions
of the set of rational numbers. Furthermore, we will use these results to give a
new encryption scheme... In what follows, we will use the following notation:

• For X ∈ Q[λ], we have X∗n = X ∗X ∗ ... ∗X︸ ︷︷ ︸
n times

,

• ℑa,b for an elliptic curve over the ring (Q[λ],+, ∗) given by a Weierstrass
equation Y ∗2 ∗Z = X∗3 + a ∗X ∗Z∗2 + b ∗Z∗3, with a, b ∈ Q[λ] and such
that the discriminant D = 4a∗3 + 27b∗2 is invertible in Q[λ],

• Tor(ℑa,b) for the torsion section of ℑa,b.

In this article, we study the mentioned elliptic curve, and we prove the following
theorem,

Theorem 1.1. With the same notation as above, let ℑa,b be an elliptic curve
defined over Q[λ]. So,

Tor(ℑa,b,Q[λ])≃


Z/nZ× Z/mZ, n,m = 1, 2, ..., 10, 12,

Z/2Z× Z/2nZ× Z/mZ, 1≤n≤4,m=1, 2, ..., 10, 12,

Z/2Z× Z/2Z× Z/2nZ× Z/2mZ, 1 ≤ n,m ≤ 4.
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2. The ring (Q[λ],+, ∗)

In this section, we will give some results concerning the ring Q[λ], which are
useful for the rest of this article. So, let X, Y and Z be elements of Q[λ] where
X = x0 + x1λ, Y = y0 + y1λ and Z = z0 + z1λ.

Lemma 2.1. The set Q[λ] together with addition ”+ ” and multiplication ” ∗ ”
is a finitely generated unitary commutative ring.

Proof. By construction we have * is a commutative law.

We shall prove that X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ Z so,

X ∗ (Y ∗ Z) = X ∗ (y0z0 + (y0z1 + z0y1 + y1z1)λ)

= x0y0z0 + (x0[y0z1 + z0y1 + y1z1] + x1y0z0

+ x1[y0z1 + z0y1 + y1z1])λ

= x0y0z0 + (x0y0z1 + x0z0y1 + x0y1z1 + x1y0z0 + x1y0z1

+ x1z0y1 + x1y1z1)λ

on the other hand we have

(X ∗ Y ) ∗ Z = (x0y0 + (x0y1 + y0x1 + x1y1)λ) ∗ Z
= x0y0z0 + (x0y0z1 + [x0y1 + y0x1 + x1y1]z0

+ [x0y1 + y0x1 + x1y1]z1)λ

= x0y0z0 + (x0y0z1 + x0z0y1 + x0y1z1 + x1y0z0 + x1y0z1

+ x1z0y1 + x1y1z1)λ

hence ∗ is associative.

∗ is distributive with respect to the law +

X ∗ (Y + Z) = X ∗ (y0 + z0 + (y1 + z1)λ)

= x0(y0 + z0) + (x0[y1 + z1] + x1[y0 + z0] + x1[y1 + z1])λ

= x0y0 + x0z0 + (x0y1 + x0z1 + x1y0 + x1z0 + x1y1 + x1z1)λ

= [x0y0+(x0y1+x1y0+x1y1)t]+[x0z0+(x0z1+x1z0+x1z1)λ]

= X ∗ Y +X ∗ Z.

Corollary 2.1. Q[λ] is a vector space over Q of dimension 2, and (1, λ) is its
basis.

The next proposition characterize the set Q[λ]× of invertible elements in
Q[λ].

Proposition 2.1. Let X = x0 + x1λ ∈ Q[λ], then X ∈ Q[λ]× if and only if
x0 ̸= 0 and x0+x1 ̸= 0. The inverse is given by: X−1 = x−1

0 −x1x−1
0 (x0+x1)

−1λ.
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Proof. Let X be an invertible element of Q[λ], then there exist Y in Q[λ] such
that X ∗Y = 1 so, x0y0 = 1 and x0y1+ y0x1+x1y1 = 0, then we have y0 = x−1

0

and y1 = −(x0 + x1)
−1x−1

0 x1. So,

Y = X−1 = x−1
0 − (x0 + x1)

−1x−1
0 x1λ.

Hence, X is invertible if and only if x0 ̸= 0 and x0 + x1 ̸= 0.

Corollary 2.2. The non invertible elements of Q[λ] are those elements of the
form aλ and b− bλ, where a, b ∈ Q.

Proposition 2.2.

• Q[λ] is not a local ring,

• Q[λ] is not an integral domain.

Proof. We use the fact that a ring R is a local ring if and only if all elements of
R that are not units form an ideal. So, put I = {b− bλ | b ∈ Q} ∪ λQ the set of
non-invertible elements of Q[λ]. We shall prove that I is not an ideal, this turns
out to prove that {b− bλ|b ∈ Q} ∩ λQ = {0}. So, let X ∈ {b− bλ|b ∈ Q} ∩ λQ
then X = b− bλ = aλ where a, b ∈ Q, it follows that X = 0.

For the 2nd point it is enough to take X = λ and Y = 1 − λ, for which we
have X ∗ Y = 0.

In what follows, we denote by Q̂[λ], the set of integral elements of Q[λ] over

Z. That is, b ∈ Q̂[λ] if and only if b is a root of a monic polynomial over Z.
The following theorem characterizes the set Q̂[λ],

Theorem 2.1. Q̂[λ] = Z[λ].

Proof. Let A = e+fλ ∈ Z[λ], then A∗2 = e2+(2ef+f2)λ, it follows that A∗2 =
e2+2e(A−e)+f(A−e), then A is a root of P (X) = X∗2−e2−2e(X−e)−f(X−e)
over Z. So, we have A is an integral element over Z, then Z[λ] ⊂ Q̂[λ].

On the other hand, let A = e+fλ ∈ Q̂[λ], so there exists a monic polynomial
P (X) = X∗n + a1X

∗n−1 + ... + an over Z[X] such that P (A) = 0, then P (e +
fλ) = (e + fλ)∗n + a1(e + fλ)∗n−1 + ... + an = 0. Since λ∗m = λ for all
m ∈ N − {0} it follows that P (e + fλ) = en + Q1(e) + λ(fn + Q2(e, f)) = 0
with Q1, Q2 are two polynomials respectively belonging in Z[X] and Z[X,Y ]
such that deg(Q1(X)) < n and deg(Q2(e, Y )) < n. So, en + Q1(e) = 0 and
fn +Q2(e, f) = 0 then:

• we have T1(X) = Xn + Q1(X) is a monic polynomial over Z[X] and since
T1(e) = 0 it follows that e is an integral element over Z. Hence, e ∈ Z.

• on the other hand, since e ∈ Z we have T2(X) = Xn + Q2(e,X) is a monic
polynomial over Z[X] and since T2(f) = 0 it follows that f is an integral
element over Z. Hence, f ∈ Z.



TORSION SECTION OF ELLIPTIC CURVES OVER QUADRATIC EXTENSIONS OF Q 195

3. Elliptic curves over Q[λ]

Definition 3.1. An elliptic curve over a commutative ring R is a group scheme
(a group object in the category of schemes) over Spec(R) (the prime spectrum
of R) that is a relative 1-dimensional, smooth, proper curve over R. For more
background information about group schemes, consult [10] for an introduction
to affine group schemes.

Proposition 3.1 ([9]). let R be a ring in which 6 is invertible, let a and b be
two elements of R such that 4a3 + 27b2 is invertible in R, the elliptic curve E
of equation

Y 2Z = X3 + aXZ2 + bZ3

has a unique group scheme structure on Spec(R) whose neutral element is O =
[0 : 1 : 0].

Remark 1. According to the previous proposition we can consider the elliptic
curve ℑa,b on the ring Q[λ] giving by the weirstrass equation Y ∗2 = X∗3 + a ∗
X+b, where (a = a0+a1λ , b = b0+b1λ) ∈ (Q[λ])2 and 4a∗3+27b∗2 is invertible
in Q[λ].

In what follows, we consider ℑ0 and ℑ1 two restriction of ℑa,b over Q, defined
as follows

ℑ0 = {[X : Y : Z] ∈ P 2(Q)|Y 2Z = X3 + a0XZ
2 + b0Z

3}

and

ℑ1 = {[X : Y : Z] ∈ P 2(Q)|Y 2Z = X3 + (a0 + a1)XZ
2 + (b0 + b1)Z

3}

such that 4a30 + 27b20 ̸= 0 and 4(a0 + a1)
3 + 27(b0 + b1)

2 ̸= 0. Suppose that we
have ℑa,b is an elliptic curve over Q[λ], so we have the following lemmas,

Lemma 3.1. ℑ0 is an elliptic curve over Q.

Proof. To prove this result we shall prove that 4a30+27b20 ̸= 0 if△ = 4a∗3+27b∗2

is invertible in Q[λ]. So, △ = 4a∗3 + 27b∗2, where a∗3 = a30 + [(a0 + a1)
3 − a30]λ

and b∗2 = b20 + [b21 + 2b0b1]λ to simplify the notation put, a∗3 = a30 + Q1λ
and b∗2 = b20 + Q2λ, so we have △ = 4(a30 + Q1λ) + 27(b20 + Q2λ) then △ =
4a30+27b20+[4Q1+27Q2]λ and since△ is invertible it follows from the Proposition
2.1 that 4a30 + 27b20 ̸= 0.

Lemma 3.2. ℑ1 is an elliptic curve over Q.

Proof. To prove this result we shall prove that 4[a0 + a1]
3 + 27[b0 + b1]

2 ̸= 0 if
△ = 4a∗3 + 27b∗2 is invertible in Q[λ]. From above we have △ = 4a30 + 27b20 +
[4[a0+ a1]

3− 4a30+27[b0+ b1]
2− 27b20]λ and since △ is invertible it follows from

the Proposition 2.1 that 4[a0 + a1]
3 + 27[b0 + b1]

2 ̸= 0.
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Theorem 3.1. ℑi are elliptic curves over Q for i = 0, 1 if and only if ℑa,b is
an elliptic curve over Q[λ].

Proof. Suppose that ℑ0 and ℑ1 are elliptic curves, then we have 4a30+27b20 ̸= 0
and 4[a0 + a1]

3 + 27[b0 + b1]
2 ̸= 0, and from the Proposition 2.1, it follows that

△ = 4a30+27b20+[4[a0+a1]
3−4a30+27[b0+ b1]

2−27b20]λ is invertible over Q[λ].
To show the opposite direction, we use the lemmas 3.1 and 3.2.

4. The torsion section of elliptic curves over Q[λ]

In this section we will give the possible structure of the torsion section of an
elliptic curve defined over the ring Q[λ].

Theorem 4.1. Let ℑa,b be an elliptic curve over Q[λ]. So,

Tor(ℑa,b,Q[λ])≃


Z/nZ× Z/mZ, n,m = 1, 2, ..., 10, 12,

Z/2Z× Z/2nZ× Z/mZ, 1≤n≤4,m=1, 2, ..., 10, 12,

Z/2Z× Z/2Z× Z/2nZ× Z/2mZ, 1 ≤ n,m ≤ 4.

To prove this result we will define a relation between ℑa,b and ℑ0 ×ℑ1.

Lemma 4.1. Let X = x0 + x1λ, Y = y0 + y1λ, Z = z0 + z1λ, a = a0 + a1λ and
b = b0 + b1λ be elements of Q[λ], then we have [X : Y : Z] is in P 2 (Q[λ]) , if
and only if [x0 : y0 : z0] ∈ P 2 (Q) , and [x0 + x1 : y0 + y1 : z0 + z1] ∈ P 2 (Q).

Proof. Suppose that [X : Y : Z] ∈ P 2 (Q[λ]) , then there exist (U, V,W ) ∈
(Q[λ])3 such that U ∗ X + V ∗ Y +W ∗ Z = 1. So, [u0x0 + (u0x1 + u1x0 +
u1x1)λ] + [v0y0 + (v0y1 + v1y0 + v1y1)λ] + [w0z0 + (w0z1 + w1z0 + w1z1)λ] = 1
, then u0x0 + v0y0 + w0z0 = 1 and u0x1 + u1x0 + u1x1 + v0y1 + v1y0 + v1y1 +
w0z1 + w1z0 + w1z1 = 0.

It follows that (u0 + u1)(x0 + x1) + (v0 + v1)(y0 + y1) + (w0 +w1)(z0 + z1)−
(u0x0 + v0y0 + w0z0) = 0, since u0x0 + v0y0 + w0z0 = 1 we have{

u0x0 + v0y0 + w0z0 = 1,

(u0 + u1)(x0 + x1) + (v0 + v1)(y0 + y1) + (w0 + w1)(z0 + z1) = 1.

So, (x0, y0, z0) ̸= (0, 0, 0) and (x0 + x1, y0 + y1, z0 + z1) ̸= (0, 0, 0), which proves
that [x0 : y0 : z0] and [x0 + x1 : y0 + y1 : z0 + z1] are in P 2 (Q).

Conversely, let [x0 : y0 : z0], [x0 + x1 : y0 + y1 : z0 + z1] ∈ P 2 (Q). Suppose
that y0 ̸= 0, then we distinguish between two case of y0 + y1:

• y0 + y1 ̸= 0 : then Y is invertible in Q[λ], so [X : Y : Z] ∈ P2(Q[λ]).

• y0 + y1 = 0 : then x0 + x1 ̸= 0 or z0 + z1 ̸= 0. So, without loss of generality,
suppose that x0 + x1 ̸= 0 then Y + λ ∗X ∈ (Q[λ])×. Hence, [X : Y : Z] ∈
P 2(Q[λ]).
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We follow the same proof if x0 ̸= 0 or z0 ̸= 0.

Lemma 4.2. With the same notation as above, we have [X : Y : Z] is in ℑa,b
if and only if [x0 : y0 : z0] ∈ ℑ0 and [x0 + x1 : y0 + y1 : z0 + z1] ∈ ℑ1.

Proof. From the previous lemma we have [X : Y : Z] is in P 2 (Q[λ]) , if and
only if [x0 : y0 : z0] ∈ P 2 (Q) , and [x0 + x1 : y0 + y1 : z0 + z1] ∈ P 2 (Q).

On the other hand, it remains to show that [X : Y : Z] is a solution of
Y ∗2 ∗ Z = X∗3 + a ∗X ∗ Z∗2 + b ∗ Z∗3 if and only if [x0 : y0 : z0] is a solution
of Y 2Z = X3 + a0XZ

2 + b0Z
3 and [x0 + x1 : y0 + y1 : z0 + z1] is a solution of

Y 2Z = X3 + (a0 + a1)XZ
2 + (b0 + b1)Z

3.
So, with the same notation as above, we have:

• Y ∗2 ∗ Z = y20z0 + ((y0 + y1)
2(z0 + z1)− y20z0)λ,

• X∗3 = x30 + ((x0 + x1)
3 − x30)λ,

• a ∗X ∗ Z∗2 = a0x0z0 + ((a0 + a1)(x0 + x1)(z0 + z1)
2 − a0x0z0)λ

• b ∗ Z∗3 = b0z
3
0 + ((b0 + b1)(z0 + z1)

3 − b0z
3
0)λ.

We deduce from the Proposition 2.1 that Y ∗2 ∗Z = X∗3 + a ∗X ∗Z∗2 + b ∗Z∗3

if and only if y20z0 = x30 + a0x0z
2
0 + b0z

3
0 and (y0 + y1)

2(z0 + z1) = (x0 + x1)
3 +

(a0 + a1)(x0 + x1)(z0 + z1)
2 + (b0 + b1)(z0 + z1)

3, hence the result.

In the following theorem, we will define a bijective application that allows
us to connect the curve ℑa,b with the elliptic curves ℑ0 and ℑ1,

Theorem 4.2. The mapping

ℑa,b
℘−→ ℑ0 ×ℑ1

[X : Y : Z] 7−→ ([x0 : y0 : z0], [x0 + x1 : y0 + y1 : z0 + z1])

is a bijection.

Proof. From lemma 4.2 it follows that ℘ is well defined.
℘ is a surjective map:
Let [x0 : y0 : z0] ∈ ℑ0 and [x1 : y1 : z1] ∈ ℑ1 then

[x0 + (x1 − x0)λ : y0 + (y1 − y0)λ : z0 + (z1 − z0)λ] ∈ ℑa,b

so, we have:

℘ ([x0 + (x1 − x0)λ : y0 + (y1 − y0)λ : z0 + (z1 − z0)λ])

= ([x0 : y0 : z0], [x0 + (x1 − x0) : y0 + (y1 − y0) : z0 + (z1 − z0)])

= ([x0 : y0 : z0], [x1 : y1 : z1]) ,

hence ℘ is a surjective mapping.
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℘ is injective, for that lets [X : Y : Z] and [X ′ : Y ′ : Z ′] in Ea,b, where
X = x0+x1λ, Y = y0+y1λ, Z = z0+z1λ, X

′ = x′0+x
′
1λ, Y

′ = y′0+y
′
1λ and Z ′ =

z′0 + z′1λ. So, if [x0 : y0 : z0] = [x′0 : y
′
0 : z

′
0] and [x0 + x1 : y0 + y1 : z0 + z1] =

[x′0 + x′1 : y
′
0 + y′1 : z

′
0 + z′1] then there exist β0, β1 ∈ Q× such that x0 = β0x

′
0,

y0 = β0y
′
0, z0 = β0z

′ and x0 + x1 = β1(x
′
0 + x′1), y0 + y1 = β1(y

′
0 + y′1),

z0 + z1 = β1(z
′
0 + z′1). Consider β = β0 + (β1 − β0)λ, it follows that

x0 = β0x
′
0,

y0 = β0y
′
0,

z0 = β0z
′
0

and 
x1 = β1x

′
1 + x′0(β1 − β0),

y1 = β1y
′
1 + y′0(β1 − β0),

z1 = β1z
′
1 + z′0(β1 − β0).

So, we have X = β ∗ X ′, Y = β ∗ Y ′, Z = β ∗ Z ′ and β ∈ Q[λ]× then
[X : Y : Z] = [X ′ : Y ′ : Z ′]. Hence, ℘ is a bijection. We can show that the
mapping ℘−1 defined by:

℘−1([x0 : y0 : z0] , [x1 : y1 : z1])

= [x0 + (x1 − x0)λ : y0 + (y1 − y0)λ : z0 + (z1 − z0)λ]

is the inverse of ℘.

4.1 The group law ⋆ over ℑa,b
To define the group law ⋆ over ℑa,b, we use the explicit formulas in the article
[1] [pages : 236-238], and since ℘ is bijection we can define ⋆ as follows P ⋆Q =
℘−1(℘(P ) + ℘(Q)) for P, Q ∈ ℑa,b.

Corollary 4.1. The mapping

(ℑa,b, ⋆)
℘−→ (ℑ0 ×ℑ1,+)

[X : Y : Z] 7−→ ([x0 : y0 : z0], [x0 + x1 : y0 + y1 : z0 + z1])

is an isomorphism of groups.

Proof. From the previous theorem we have ℘ is a bijection and according to
the construction of the group law over ℑa,b we have ℘([X : Y : Z] ⋆ [X ′ : Y ′ :
Z ′]) = ℘([X : Y : Z])+℘([X ′ : Y ′ : Z ′]). So, ℘ is an isomorphism of groups.

Proposition 4.1. Let P = [X : Y : Z] ∈ ℑa,b such that X = x0 + x1λ,
Y = y0 + y1λ and Z = z0 + z1λ, so P ∈ Tor(ℑa,b) if and only if P0 ∈ Tor(ℑ0)
and P1 ∈ Tor(ℑ1), where P0 = [x0 : y0 : z0] and P1 = [x0+x1 : y0+y1 : z0+z1].
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Proof. Let P ∈ Tor(ℑa,b) then there exist an integer m such that mP =
P ⋆...⋆P = O, so ℘−1(℘(P )+ ...+℘(P )) = O we obtain (P0, P1)+ ...+(P0, P1) =
℘(O) = (O0, O1), then mP0 = O0 and mP1 = O1, hence P0 ∈ Tor(ℑ0) and
P1 ∈ Tor(ℑ1). On the other hand, if there exist an integers m, n such that
mP0 = O0 and nP1 = O1, we have mnP = ℘−1((P0, P1) + ... + (P0, P1) =
℘−1((mnP0,mnP1)) = ℘−1(O0 ×O1) = O.

Corollary 4.2. With the same notation as above we have ℘(Tor(ℑa,b)) =
Tor(ℑ0)× Tor(ℑ1).

Proposition 4.2. According to the above we have Tor(ℑa,b) ≃ Tor(ℑ0) ×
Tor(ℑ1).

Proof. Put

Tor(ℑa,b)
℘/Tor(ℑa,b)−→ Tor(ℑ0)× Tor(ℑ1)

P 7−→ ℘(P ).

the ℘-restriction on the torsion section of ℑa,b. From the theorem 4.2 and the
previous lemmas we have ℘/Tor(ℑa,b) is an isomorphism of groups, hence the
result.

Proof of Theorem 4.1. From the previous proposition we have Tor(ℑa,b) ≃
Tor(ℑ0)× Tor(ℑ1), and from the Mazur’s theorem [6] we deduce the result. □

Example 1. Let λ be a root of the polynomial P (X) = X2 + 2, let a =
−676 + 648λ and b = 13662 − 4968λ two elements in Q[λ]. So, let ℑa,b the
Elliptic curve defined by Y ∗2 ∗ Z = X∗3 + a ∗X ∗ Z∗2 + b ∗ Z∗3 over Q[λ]. We
consider ℑ0 and ℑ1 two restriction of ℑa,b over Q, defined as follows ℑ0 = {[X :
Y : Z] ∈ P 2(Q)|Y 2Z = X3 − 675XZ2 + 13662Z3} and ℑ1 = {[X : Y : Z] ∈
P 2(Q)|Y 2Z = X3−27XZ2+8694Z3}. So, using the magma calculator, we find
that

△ j ℑi(Q)tor Generator of ℑi(Q)tor

ℑ0 −2.14 − 56

2.14 Z6 (1,−2)

ℑ1 −15 − 1
15 Z4 (15, 108)

Hence,

△ j ℑa,b(Q[λ])tor Generator of ℑa,b(Q[λ])tor

ℑa,b −2.14 + 13λ −57.3+23.10189λ
22.3.5.7 Z4 × Z6 (1 + 14λ,−2 + 110λ)

5. Conclusion

In this paper, we have study an elliptic curve ℑa,b given by a Weierstrass equa-
tion Y ∗2 ∗ Z = X∗3 + a ∗ X ∗ Z2 + b ∗ Z3 over (Q[λ],+, ∗) and determine all
possible torsion sections of this elliptic curve. So,

Tor(ℑa,b,Q[λ])≃


Z/nZ× Z/mZ, n,m = 1, 2, ..., 10, 12,

Z/2Z× Z/2nZ× Z/mZ, 1≤n≤4,m=1, 2, ..., 10, 12,

Z/2Z× Z/2Z× Z/2nZ× Z/2mZ, 1 ≤ n,m ≤ 4.
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In later work we will explain how our methods and results can be used to give a
new encryption scheme. We expect that these methods and results can be used
in many other settings.
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Abstract. A polynomial A is called k−perfect over the finite field F2 if the sum of
the kth powers of all distinct divisors of A equals Ak, where k is a positive integer.
We show that a k−perfect polynomial A over F2 must be even when k = 2n, n is a
non-negative integer, and we characterize all 2n−perfect polynomials over F2 that are
of the form xa(x+1)b

∏r
i=1 P

hi
i , where each Pi is a Mersenne prime and a, b and hi are

positive integers.

Keywords: sum of divisors, multiplicative function, polynomials, finite fields, char-
acteristic 2.

1. Introduction

Let n be a positive integer and let σ(n) denote the sum of positive divisors
of the integer n. We call the number n a k−super perfect number if σk(n) =
σ(σ(...(σ(︸ ︷︷ ︸
k−times

n)))) = 2n. When k = 1, n is called a perfect number. An integer

M = 2p− 1, where p is a prime number, is called a Mersenne number. It is also
well known that an even integer n is perfect if and only if n = M(M + 1)/2
for some Mersenne prime number M . Suryanarayana [11] considered k−super
perfect numbers in the case k = 2. Numbers of the form 2p−1 (p is prime) are

*. Corresponding author
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2-super perfect if 2p−1− 1 is a Mersenne prime. It is not known if there are odd
k−super perfect numbers.

Researchers also studied the arithmetic function σk(n) that finds the sum
of the kth powers of the positive divisors of n. Recently, Luca and Ferdinands
[10] showed that σk(n) is divisible by n for infinitely many n when k ≥ 2. Cai
et al. [1] proved that if n = 2a−1p divides σ3(n), where a > 1 is an integer and
p is an odd prime, then n is an even perfect number. Also, they proved that
the converse is true when n ̸= 28. Jiang [9] made an improvement to the result
of Cai et al. They showed that n = 2a−1pb−1 divides σ3(n), where a, b > 1 are
integers and p is an odd prime, if and only if n is an even perfect number other
than 28. Chu [3] found a relation between an even perfect number n and σk(n).
He generalized the work of Cai et al. as given in the following theorem.

Theorem 1.1. Let k > 2 be a prime such that 2k − 1 is a Mersenne prime. If
n = 2a−1p, where a > 1 and p < 3·2a−1 − 1 is an odd prime. Then n divides
σk(n) if and only if n is an even perfect number other than 2k−1(2k − 1).

Chu also generalized the work of Jiang as follows.

Theorem 1.2. If n = 2a−1pb−1, where a, b > 1 and p < 3·2a−1 − 1 is an odd
prime. Then n divides σ5(n) if and only if n is an even perfect number other
than 496.

Chu conjectured if k > 2 is a prime such that 2k − 1 is a Mersenne prime
and if n = 2a−1pb−1, where a, b > 1 and p < 3.2a−1 − 1 is an odd prime, then n
divides σk(n) if and only if n is an even perfect number other than 2k−1(2k−1).

The present paper gives a polynomial analogue of the arithmetic function
σk(n). Let k be a positive integer and let A be a nonzero polynomial defined
over the prime field F2. We denote by σk(A) the sum of the kth powers of the
distinct divisors B of A. That is,

σk(A) =
∑

Bk

B|A

.

If A ∈ F2[x] has the canonical decomposition
∏r
i=1 P

αi
i where the primes

Pi ∈ F2[x] are distinct and αi > 0, then

σk(A) =

r∏
i=1

P
k(αi+1)
i − 1

P ki − 1
.

In the case where k = 1, σk becomes the well-known σ function. For example,
if A = x(x+ 1)2(x2 + x+ 1) ∈ F2[x] then

σ(A) =
∑

B

B|A

= 1 + x+ (x+ 1) + (x+ 1)2 + (x2 + x+ 1) + x(x+ 1) + x(x+ 1)2



ON k-PERFECT POLYNOMIALS OVER F2 203

+ x(x2 + x+ 1) + (x+ 1)(x2 + x+ 1) + (x+ 1)2(x2 + x+ 1)

+ x(x+ 1)(x2 + x+ 1) + x(x+ 1)2(x2 + x+ 1)

= x(x+ 1)2(x2 + x+ 1)

and

σ4(A) =
∑

B4

B|A

= x4(x+ 1)8(x2 + x+ 1)4.

Note that the function σk is multiplicative over F2.

Notation 1.1. We use the following notations throughout the paper.

� deg(A) denotes the degree of the polynomial A.

� A is the polynomial obtained from A with x replaced by x + 1, that is
A(x) = A(x+ 1).

� A∗ is the inverse of the polynomial A with deg(A) = m, in this sense
A∗(x) = xmA( 1x).

� P and Q are distinct irreducible odd polynomials.

A nonzero polynomial A defined over F2 is an even polynomial if it has a
linear factor in F2[x] else it is an odd polynomial. A polynomial T of the form
1 + xa(x+ 1)b with gcd(a, b) = 1 is called a Mersenne polynomial, see [6]. The
first five Mersenne polynomials over F2 are: T1 = 1 + x + x2, T2 = 1 + x + x3,
T3 = 1 + x2 + x3, T4 = 1 + x + x2 + x3 + x4, T5 = 1 + x3 + x4. Note that all
these polynomials are irreducible, so we call them Mersenne primes.

The next definition is the main object of this study in which we introduce a
new concept of k−perfect polynomials over F2.

Definition 1.1. Let k be a positive integer. A polynomial A is called a k−perfect
polynomial over F2 if σk(A) = Ak.

A 1−perfect polynomial A over F2 is a perfect polynomial, so we are inter-
ested in studying the case when k > 1. The polynomial B = x(x+1)2(x2+x+1)
is a 4−perfect polynomial in F2[x]. Note that B is a perfect polynomial over
F2. A natural question arise: Is there a relation between perfect polynomials
and k−perfect polynomials in F2[x]? In Section 3, we answer this question and
we find a relation between the sum of the divisors function σ(A) and the sum
of the powers of the divisors function σk(A), k > 1, of the polynomial A over
the finite field F2. We show that there are no odd 2n−perfect polynomials over
F2 and we characterize all even 2n−perfect polynomials over F2 that have the
form xa(x + 1)b

∏r
i=1 P

hi
i , where each Pi is a Mersenne prime and a, b and hi

are positive integers.
Our main result is given in the following theorem:
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Theorem 1.3. Let a, b, t, hi ∈ N and let Pi be a Mersenne prime in F2[x]. Then,
A = xa(x+ 1)b

∏r
i=1 P

hi
i is a 2n−perfect polynomial over F2 for some n ∈ N if

and only if A ∈ {x2t−1(x+1)2
t−1, x2(x+1)T1, x(x+1)2T1, x

3(x+1)4T5, x
4(x+

1)3T4, x
4(x+ 1)4T4T5, x

6(x+ 1)3T2T3, x
3(x+ 1)6T2T3, x

6(x+ 1)4T2T3T5, x
4(x+

1)6T2T3T5}.

2. Preliminaries

The notion of perfect polynomials over F2 was introduced first by Canaday [2].
A polynomial A is perfect if σ(A) = A. Let ω(A) be the number of distinct
irreducible polynomials that divide A. Canaday studied the case of even perfect
polynomials with ω(A) ≤ 3. In the recent years, Gallardo and Rahavandrainy
[4, 6, 7] showed the non-existence of odd perfect polynomials over F2 with either
ω(A) = 3 or with ω(A) ≤ 9 in the case where all the exponents of the irreducible
factors of A are equal to 2. If the nonconstant polynomial A in F2[x] is perfect,
then ω(A) ≥ 2 (see [4], Lemma 2.3). Moreover, Canaday [2] showed that the only
even perfect polynomials over F2 with exactly two prime divisors are x2

n−1(x+
1)2

n−1 for some positive integers n.
It is well known that an even perfect number is exactly divisible by two

distinct prime numbers but a non-trivial even perfect polynomial A ∈ F2[x]
may be divisible by more than 2 distinct primes as Gallardo and Rahavandrainy
[6] gave some results with ω(A) ≤ 5. Although they did not give a general
form of such polynomials in terms of Mersenne primes but all the non-trivial
even perfect polynomials they found, with only two exceptions, have Mersenne
primes as odd divisors.

The following two lemmas are useful.

Lemma 2.1 (Lemma 2.3 in [6]). If A=A1A2 is perfect over F2 and if gcd(A1, A2)
= 1, then A1 is perfect if and only if A2 is perfect.

Lemma 2.2 (Lemma 2.4 in [6]). If A is perfect over F2, then the polynomial A
is also perfect over F2

In [5], Gallardo and Rahavandrainy gave a complete list for all even perfect
polynomials with at most 5 irreducible factors as given in the following lemma.

Lemma 2.3. The complete list of all even perfect polynomials over F2 with
ω(A) ≤ 5 is:

ω(A) A

0 0
1 1
2 (x2 + x)2

n−1

3 A1 = x2(x+ 1)T1, A2 = A1(x), A3 = x3(x+ 1)4T5, A4(x) = A3

4 A5 = x2(x+ 1)(x4 + x+ 1)T 2
1 , A6 = A5,

A7 = x4(x+ 1)4T4T5, A8 = x6(x+ 1)3T2T3, C9(x) = A8

5 A10 = x6(x+ 1)4T2T3T5, A11 = A10.
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Lemma 2.4 (Proposition 5.1 in [6]). If P is an odd irreducible polynomial in
F2[x], then x(x+ 1) divides σ(P 2m−1) for m ∈ N.

The following lemma shows a nice relation between σk(A) and (σ(A))k when
A has exactly one prime factor.

Lemma 2.5. Let A = Pα ∈ F2[x] with α ≥ 1. Then σk(A) = σ(A)k if and only
if k = 2n.

Proof.

σ2n(A) = 1 + P 2n + ...+ P 2nα = (1 + P + ...+ Pα)2
n
= (σ(A))2

n
.

For the sufficient condition, the proof is done by contrapositive. Let k = 2nu,
u > 1 is odd, then (σ(A))k = (σ(A))2

nu = (1 + P + ... + Pα)2
nu = (1 + P 2n +

...+ P 2nα)u ̸= (1 + P 2nu + ...+ P 2nuα) = σk(A).

Corollary 2.1. Let A =
∏r
i=1 P

αi
i ∈ F2[x], then σ2n(A) = (σ(A))2

n
.

Lemma 2.6. Let A = Pα ∈ F2[x] be an irreducible polynomial and α ≥ 1. Then
A is not a factor of σk(A).

Proof. Assume that A divides σk(A), then there exists a nonconstant B ∈ F2[x]
such that σk(A) = AB with deg(B) < deg(Ak). So, 1+P k+...+P k(α−1)+P kα =
PαB and P

(
P k−1 + ...+ P k(α−1)−1 + Pα−1(P k +B)

)
= 1. Hence, P = 1 and

this contradicts the fact that P is prime in F2[x].

Lemma 2.7 (Lemma 2.6 in [8]). Let m be a positive integer and let T be a
Mersenne prime in F2[x], then σ(x

2m) and σ(T 2m) are both odd and squarefree.

Lemma 2.8. If m and k are positive integers, then σk(P
2m−1) is divisible by

x(x+ 1).

Proof. Let 2m = 2hs, where s is odd and h ≥ 1. Then,

σk(P
2m−1) = 1 + P k + ...+ P k(2

hs−1)

= (1 + P k)2
h−1

(
1 + P k + ...+ P k(s−1)

)2h
But x(x+ 1) divides 1 + P k, P is odd. This completes the proof.

Lemma 2.9. If m and k are positive integers, then σk(P
2m) is not divisible by

x(x+ 1).

Proof. σk(P
2m)=1+P k+...+P 2km. So, σk(P

2m)(0)=1+P k(0)+...+P 2km︸ ︷︷ ︸
2m−times

(0) =

1 and x is not factor of σk(P
2m). Also, σk(P

2m)(1) = 1 and hence σk(P
2m) is

not divisible by x+ 1. The proof is now complete.
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Next we give some properties when k = 2.

Lemma 2.10. Let t be a positive integer, then σ2(x
3.2t−1−1) = (1 + x)2

t−2T 2t
1 .

Proof. We use induction. For t = 1, we have σ2(x
2) = (1 + x + x2)2 = T 2

1 .
Hence, the statement is true for t = 1. Now assume it is true for t, so

σ2

(
x3.2

t−1
)
=
(
1 + x+ ...+ x3.2

t−1−1 + x3.2
t−1
(
1 + x+ ...+ x3.2

t−1−1
))2

=
(
1 + x+ ...+ x3.2

t−1−1
)2 (

1 + x3.2
t−1
)2

= σ2

(
x3.2

t−1−1
) (

1 + x3
)2t

= (1 + x)2
t−2T 2t

1 ((1 + x)T1)
2t

= (1 + x)2
t+1−2T 2t+1

1 .

We are done.

Lemma 2.11. Let t be a positive integer, then σ2((1 + x)3.2
t−1−1) = x2

t−2T 2t
1 .

Lemma 2.12. Let t be a positive integer, then σ2(T
2t−1
1 ) = (x2 + x)2(2

t−1).

Proof. For t = 1, we have σ2(T1) = (1+T1)
2 = (x2+x)2. Hence, the statement

is true for t = 1. Now assume σ2(T
2t−1
1 ) = (x2 + x)2(2

t−1). And,

σ2

(
T 2t+1−1
1

)
=
(
1 + T1 + ...+ T 2t−1

1 + T 2t

1

(
1 + T1 + ...+ T 2t−1

1

))2
=
(
1 + T1 + ...+ T 2t−1

1

)2 (
1 + T 2t

1

)2
= σ2

(
T 2t−1
1

)
(1 + T1)

2t+1

= (x2 + x)2(2
t−1)

(
x2 + x

)2t+1

= (x2 + x)2(2
t+1−1).

The proof is complete.

The following lemma follows directly from Lemmas 2.10, 2.11, and 2.12.

Lemma 2.13. Let t ∈ N and let A = xaT h1 or A = (1+x)aT h1 be polynomials in
F2[x], where a = 3.2t−1−1 and h = 2t−1. Then σ2(A) = x2h(1+x)2(a−1)T h+1

1 .

Lemma 2.14. If a = 2tu− 1 with u odd. Then,

i- σ2 (x
a) = (1 + x)2

t+1−2
(
σ
(
xu−1

))2t+1

ii- σ2 (P
a) = (1 + P )2

t+1−2
(
σ
(
P u−1

))2t+1

.
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Lemma 2.15. Let t ∈ N and let A = xaT h1 or A = (1 + x)aT h1 ∈ F2[x]. If A
divides σ2(A), then a = 3.2t−1 − 1 and h = 2t − 1.

Definition 2.1. Let A ∈ F2[x] be a polynomial of degree m. Then,

i. A inverts into itself if A∗ = A.

ii. A is said to be k−complete if there exists h ∈ N∗ such that A = σk(x
h) =

1 + xk + ...+ xkh.

Lemma 2.16. i. Any k−complete polynomial inverts to itself.

ii. If 1 + xk + ... + xkm = PQ, then P = P ∗ and Q = Q∗ or P = Q∗ and
Q = P ∗, where P and Q are irreducible polynomials in F2[x].

Proof. i. Let A be a k−complete polynomial, then there exists h ∈ N such that

A = σk(x
h)

= 1 + xk + ...+ xkh

A∗ = xkhA

(
1

x

)
= xkh

(
1 +

1

xk
+ ...+

1

xkh

)
, A is k−complete

= A.

Hence, A inverts to itself.
ii. If 1 + xk + ... + xkm = PQ, then PQ is k−complete. Using the above

results, then PQ inverts to itself. Hence, (PQ)∗ = PQ = P ∗Q∗. Therefore,
P = P ∗ and Q = Q∗ or P = Q∗ and Q = P ∗.

3. Proof of Theorem 1.3

The following lemma is a direct consequence of Lemma 2.6.

Lemma 3.1. The polynomial A = Pα, α ≥ 1, is not a k−perfect polynomial
over F2, for every k ≥ 1.

The preceding lemma shows that a k−perfect polynomial A over F2 has at
least 2 prime factors.

Lemma 3.2. Let m ≤ n be positive integers and let A ∈ F2[x], then σ2m(A)
divides σ2n(A).

Proof.

σ2n(A) = (σ(A))2
n

= (σ(A))2
m

(σ(A))2
n−m

= σ2m(A) (σ(A))
2n−m

.
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Notice that σ2(A) divides σ2n(A) for any any n ≥ 1. Hence, if A is a multi-
perfect polynomial over F2, i.e. A divides σ(A), then A is a k−multi-perfect
polynomial over F2 when k = 2n for a positive integer n.

Lemma 3.3. If t ∈ N and A = xaT h1 or A = (1+x)aT h1 be polynomials in F2[x],
where a = 3.2t−1 − 1 and h = 2t − 1, then A divides σ2n(A) for any n ≥ 1.

Proof. Since σ2 divides σ2n and σ2(A) = x2h(1 + x)2(a−1)T h+1
1 with 2h =

a+ 2t−1 − 1.

Lemma 3.4. If a = 2tu− 1 with u odd and n ∈ Z≥0). Then,

i- 1 + x divides σ2n (x
a)

ii- x(1 + x) divides σ2n (P
a)

Proof. We have σ2(A) divides σ2n(A) and 1 + x divides σ2(A) (Lemma 2.14).

Lemma 3.5. If A is k−perfect over F2, then A is also k−perfect over F2.

Proof. Let A(x) =
∏r
i=1 P

αi
i (x), where the primes Pi(x) ∈ F2[x]. Since A is

k−perfect, then

(1) σk(A) =
r∏
i=1

P
k(αi+1)
i − 1

P ki − 1
= Ak.

Let F2t be a splitting field for A(x) over F2, then there exists a1, a2, ..., ak ∈
F2t such that for each i, 1 ≤ i ≤ k, we have Pαi

i (x) =
∏βi−1
j=0 (x− a2

j

i )αi , where
deg(Pi(x)) = βi. Since gcd(Pi(x), Pj(x)) = 1 over F2, for every i ̸= j, then
gcd(Pi(x), Pj(x)) = 1 over F2t , for every i ̸= j. Moreover,

Pi(x+ 1) =

βi−1∏
j=0

(x+ 1− a2
j

i ) =

βi−1∏
j=0

(x− (ai − 1)2
j
).

Since ai − 1 has degree βi, it follows that each Qi(x) = Pi(x + 1) is prime
of degree βi in F2[x]. We have gcd(Qi(x), Qj(x)) = 1 in F2[x], for every i ̸= j,
and hence the primes Qi(x) are distinct. Let B(x) = A(x) =

∏r
i=1 P

αi
i (x+1) =∏r

i=1Q
αi
i (x).

By substituting B(x) in (1), we get

σk(A(x)) = σk(B(x))

=

r∏
i=1

P
k(αi+1)
i (x+ 1)− 1

P ki (x+ 1)− 1

=
r∏
i=1

Q
k(αi+1)
i (x)− 1

Qki (x)− 1

= Bk(x)

= (A(x))k.
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So, B(x) = A(x) is k−perfect over F2

Lemma 2.1 shows the relation between σk(A) and σ(A) when k = 2n, and
its important consequence, Theorem 3.1, completely characterizes all k−perfect
polynomials over F2 when k = 2n.

Theorem 3.1. A is perfect over F2 if and only if A is 2n−perfect over F2.

Proof. Let A =
∏r
i=1 P

αi
i ∈ F2[x] be a perfect polynomial over F2, where Pi is

an irreducible polynomial, then

σ2n(A) = (σ(A))2
n
= A2n .

The converse is done by contrapositive. Assume that A is not perfect. Then,

σ2n(A) = (σ(A))2
n ̸= A2n ,

and we are done.

Lemma 3.6. Let ω(A) ≥ 2 and let A be a 2n−perfect polynomial over F2, then
x(x+ 1) divides A.

The proof of the following lemma can be done by a direct computation.

Lemma 3.7. Let t be a positive integer, then the polynomial x2
t−1(x + 1)2

t−1

is 2n−perfect over F2.

Lemma 3.8. If A = A1A2 is 2n−perfect over F2 and if gcd(A1, A2) = 1, then
A1 is 2n−perfect if and only if A2 is 2n−perfect.

The following lemma contains some interesting results from Canaday’s paper
(see [2], Lemma 6 and Theorem 8).

Lemma 3.9. Let A,B ∈ F2[x] and let n,m ∈ N.

(i) If σ(P 2n) = BmA, with m > 1 and A ∈ F2[x] is nonconstant, then
deg(A)(P ) > deg(A)(B).

(ii) If σ
(
x2n
)
has a Mersenne factor, then n ∈ {1, 2, 3}.

Gallardo and Rahavandrainy [6] conjectured that σ(T 2m) is always divisible
by a non-Mersenne prime, for any m ∈ N, when T = xa(x+1)b+1 is a Mersenne
prime with a+ b ̸= 3.

Lemma 3.10. Let A = xa(x + 1)b
∏
i P

hi
i be a 2n−perfect polynomial over F2

with each Pi is a Mersenne prime. Then hi = 2ci − 1, for every i.
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Proof. Assume that hi is even for every i. A = xa(x + 1)b
∏
i P

hi
i be a

2n−perfect then there exists a non Mersenne prime S such that S divides σ(P hii ).
So, S divides σ2n(A) = A2n . Therefore, S = x or S = x+1 and this contradicts
Lemmas 2.8 and 2.9 as hi must be odd. Now, suppose that hi + 1 = 2ciu, u is

odd and ci ∈ N. But σ(P hii ) = (1 + Pi)
2ci−1

(
σ(P u−1

i )
)2ci

. If u − 1 ≥ 2, again
there exists a non Mersenne prime W such that W divides σ(P u−1

i ). So, W
divides σ2n(A) = A2n . By Lemma 2.9, W ̸= x and W ̸= x + 1. But any prime
divisor of A which is not a Mersenne prime is either x or x+1, a contradiction.
Hence, u = 1 and the result follows.

Lemma 3.11. Let ci ∈ N, and let A = xa(x+1)b
∏
i P

2ci−1
i be a 2n−perfect poly-

nomial over F2 with each Pi is a Mersenne prime. Then, Pi ∈ {T1, T2, ..., T5},
with ci = 1 or 2.

Proof. Since A is 2n−perfect, then any irreducible factor Q of σ(xa) or σ((1 +
x)b) must divide A. So, Q ∈ {x, x + 1, P1, P2, ...}. From Lemma 3.9(ii.), we
have Pi ∈ {T1, T2, ..., T5}. Now, we want to prove that cj ∈ {1, 2}. Note that
σ(P 2ci−1

i ) = (1 + Pi)
2ci−1 is not divisible by Pj , for any i, j. Moreover, if αj

are the exponents of Pj that are found in σ(xa) and in σ((1 + x)b), then αj
∈ {0, 1, 2r : r ∈ N} (Lemma 3.9(ii.)). Comparing exponents of Pj , we get αj
= 2cj − 1 ∈ {0, 1, 2, 2r, 2r + 1, 2r + 2s : r, s ∈ N}. Hence, cj = 1 or 2.

Lemma 3.12. Let ci ∈ N, Pi ∈ {T1, T2, ..., T5}, and A = xa(x+ 1)b
∏
i P

ci
i be a

2n−perfect polynomial over F2 with ci ∈ {1, 3}. Then a or b must be even.

Proof. For contradictional purpose, assume that a and b are both odd. By
Lemma 3.13, we have a = 2ru− 1 and b = 2sv − 1 for some t, s ∈ N, and u and
v are odd positive integers less than or equal to 7. But,

σ(xa) = (x+ 1)2
t−1(1 + x+ ...+ xu−1)2

t

and
σ((1 + x)b) = x2

s−1
(
1 + (1 + x) + ...+ (1 + x)v−1

)2s
.

Also, Pi is not a factor of σ(P
cj
j ) = (1 + Pj)

cj for any i, j. Suppose that Pi is a

factor of 1 + x + ... + xu−1 but is not a factor of 1 + (1 + x) + ... + (1 + x)v−1

for some i, with u ≥ 3. Hence, 2t = ci = 2hi − 1, a contradiction.
Now, assume that Pi is a factor of both 1 + x+ ...+ xu−1 and 1 + (1 + x) +

...+(1+x)v−1, then 2t+2s = ci = 2hi−1, also a contradiction. Therefore, u = 1
and in a similar manner we get v = 1. So, σ(xa) = σ(x2

t−1) = (x + 1)a and
σ
(
(x+ 1)b

)
= σ

(
(x+ 1)2

s−1
)
= xb. Hence, a = b and xa(x+1)b is a 2n−perfect

(Lemma 3.7). By Lemma 3.8, the polynomial
∏r
i=1 P

hi
i is also 2n−perfect. This

contradicts Lemma 3.1.

Lemma 3.13. Let ci ∈ N, u ≥ 1 and a be odd integers and let A = xa(x +
1)b
∏
i P

2ci−1
i be a 2n−perfect polynomial over F2, where each Pi is a Mersenne

prime. Then, a is of the form 2tu− 1 with u ≤ 7.
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Proof. Suppose that a = 2tu−1 with u is odd and t ≥ 1. Since A is 2n−perfect
over F2, then

x2
na(x+ 1)2

nb
∏
i=1

P
2n(2ci−1)
i =

(
σ(xa)σ

(
(x+ 1)b

)∏
i=1

σ
(
P 2ci−1
i

))2n

.

But σ(xa) = 1+ x+ ...+ x2
tu−1 = (1 + x)2

t−1 σ(xu−1)2
t
. If u > 2, then as done

in the proof of the preceding lemma we get u− 1 ≤ 6 and hence the result.

Lemma 3.14. Let a, b, ci∈N such that a is even and let A=xa(x+1)b
∏m
i=1 P

2ci−1
i

be a 2n−perfect polynomial over F2, where each Pi is a Mersenne prime. Then,
a ≤ 6.

Proof. Let a = 2m. Since A is 2n−perfect over F2, then

x2
n+1m(x+ 1)2

nb
∏
i=1

P
2n(2ci−1)
i = A2n

= σ2n(A)

=

(
σ(x2m)σ

(
(x+ 1)b

)∏
i=1

σ
(
P 2ci−1
i

))2n

.

But x and x+ 1 do not divide σ(x2m) and Pi does not divide σ
(
P 2ci−1
i

)
so Pi

divides σ(x2m). We are done by Lemma 3.9 (ii.).

3.1 Cases of the Proof

Let A = xa(x + 1)b
∏r
i=1 P

hi
i , where Pi, is a Mersenne prime be a 2n-perfect

over F2. From Lemma 3.11, we have hi = 1 or 3. By Lemma 3.12, we have a or
b is even. To complete the proof of Theorem 1.3, we study the below cases:
Case 1. Both a and b are even:

In this case, we have

(2) 1 + x+ ...+ xa = Pi1 ...Pis .

Since the Pij ’s are Mersenne primes, then a, b ∈ {2, 4, 6}. Since if A is a

2n−perfect polynomial over F2, then A is a 2n−perfect polynomial over F2

so a and b can be chosen in the way a ≤ b and a, b ∈ {2, 4, 6}.

� If a = b = 2, then 1 + x + x2 = 1 + (x + 1) + (x + 1)2 = T1. Hence, A =
x2(x+1)2T1 and σ(A) = σ

(
x2
)
σ
(
(x+ 1)2

)
σ(T1) = (T1) (T1) (x(1 + x)) =

x(1 + x)T 2
1 ̸= A. Therefore A is not perfect over F2 and hence A is not

2n−perfect over F2 (Theorem 3.1).

� If a = 2 and b = 4, then 1 + x + x2 = T1 and 1 + (x + 1) + ... + (x +
1)4 = 1 + x3(x + 1) = T5. Hence, A = x2(x + 1)4T1T5 and σ(A) =
σ
(
x2
)
σ
(
(x+ 1)4

)
σ(T1)σ(T5) = (T1) (T5) (x(1 + x))

(
x3(1 + x)

)
= x4(1+

x)2T1T5 ̸= A. So, A is not 2n−perfect over F2 (Theorem 3.1).
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� If a = b = 4, then 1 + x + ... + x4 = T4 and 1 + (x + 1) + ... + (x +
1)4 = 1 + x3 + x4 = T5. Hence, A = x4(x + 1)4T4T5 and σ(A) =
σ
(
x4
)
σ
(
(x+ 1)4

)
σ(T4)σ(T5) = (T4) (T5)

(
x(1 + x)3

) (
x3(1 + x)

)
= x4(1+

x)4T4T5 = A. So, A is 2n−perfect over F2 (Theorem 3.1).

� If a = 2 and b = 6, then 1+ x+ x2 = T1 and 1+ (x+ 1)+ ...+ (x+ 1)6 =
(1 + x+ x3)(1 + x2 + x3) = T2T3. Hence, A = x2(x+ 1)6T1T2T3 and

σ(A) = σ
(
x2
)
σ
(
(x+ 1)6

)
σ(T1)σ(T2)σ(T3)

= (T1) (T2T3) (x(1 + x))
(
x(1 + x)2

) (
x2(1 + x)

)
= x4(1 + x)4T1T2T3

̸= A.

Therefore, A is not 2n−perfect over F2.

� If a = 4 and b = 6, then 1+x+ ...+x4 = T4 and 1+(x+1)+ ...+(x+1)6 =
T2T3. Hence, A = x4(x + 1)6T2T3T4 and σ(A) = A. So, A is 2n−perfect
over F2.

� If a = b = 6, then 1 + x + ... + x6 = (1 + x + x3)(1 + x2 + x3) = T2T3 =
1 + (x+ 1) + ...+ (x+ 1)6. Hence, A = x6(x+ 1)6T 2

2 T
2
3 and

σ(A) = σ
(
x6
)
σ
(
(x+ 1)6

)
σ
(
T 2
2

)
σ
(
T 2
3

)
= T 2

1 T
2
2 T

2
3 T4T5 ̸= A. Therefore,

A is not 2n−perfect over F2.

Case 2. a is even and b is odd:
By Lemmas 3.13 and 3.14, we have a ∈ {2, 4, 6} and b = 2tu − 1 for some

t ∈ Z≥1 and u ∈ {1, 3, 5, 7}.

� If u = 1 and a = 2, then σ(x2) = T1, σ((x+ 1)2
t−1) = x2

t−1, and σ(T1) =
x(x+1). Hence, 2t−1+1 = b+1 ≤ a = 2. Thus, t = 1 and A = x2(x+1)T1.

� If u = 1 and a = 4, then σ(x4) = T4, σ((x+ 1)2
t−1) = x2

t−1, and σ(T4) =
x(x+1)3. Hence, 2t−1+1 = b+1 ≤ a = 4. Thus, t ≤ 2 and 3 ≤ b = 2t−1,
so t = 2 and A = x4(x+ 1)3T4.

� If u = 1 and a = 6, then σ(x6) = T2T3, σ((x + 1)2
t−1) = x2

t−1, σ(T2) =
x(x + 1)2 and σ(T3) = x2(x + 1). Hence, 2t − 1 + 2 + 1 = b + 3 ≤ a = 6.
Thus, t ≤ 2 and 3 ≤ b = 2t − 1, so t = 2 and A = x6(x+ 1)3T2T3.

� If u = 3 and a = 2, then σ(x2) = T1, σ((x + 1)3.2
t−1) = x2

t−1T 2t
1 . Hence,

T 2t+1
1 divides σ(A) = A but T 2t+2

1 does not divide σ(A) = A. By Lemma
3.11, we have 2t + 1 ∈ {1, 3} and thus t = 1 and A = x2(1 + x)5T1. But
σ(x2(1 + x)5T1) ̸= x2(1 + x)5T1 and hence A is not 2n−perfect over F2.

� If u = 3 and a = 4, then σ(x4) = T4. Since T1 does not divide σ(x4), then

T 2t
1 divides σ(A) = A but T 2t+1

1 does not divide σ(A) = A. By Lemma
3.11, we have 2t ∈ {1, 3}, a contradiction.
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� The case u = 3 and a = 6 is similar to the preceding one.

� If u = 5 and a ∈ {2, 6}, then σ((x + 1)5.2
t−1) = x2

t−1T 2t
4 . Since T4 does

not divide σ(xa), then T 2t
4 divides σ(A) = A where T 2t+1

1 does not divide
σ(A) = A. By Lemma 3.11, we have 2t ∈ {1, 3}, a contradiction.

� If u = 5 and a = 4, then σ(x4) = T4. Since T
2t+1
4 divides A and T 2t+2

1

does not divide A. By Lemma 3.11, we have 2t + 1 ∈ {1, 3}. Thus t = 1
and A = x4(1 + x)9T 3

1 . But σ(x
4(1 + x)9T 3

1 ) ̸= x4(1 + x)9T 3
1 . Hence, A is

not 2n−perfect over F2.

� If u = 7 and a ∈ {2, 4}, then σ((x + 1)7.2
t−1) = x2

t−1T 2t
2 T

2t
3 . Since T2

and T3 do not divide σ(xa), then T 2t
2 divides A and T 2t+1

2 does not divide
σ(A) = A. By Lemma 3.11, we have 2t ∈ {1, 3}, a contradiction.

� If u = 7 and a = 6, then σ
(
x6
)
= T2T3. So, T

2t+1
2 (resp. T 2t+1

3 ) divides A

and T 2t+1
2 (resp. T 2t+1

3 ) does not divide A. By Lemma 3.11, we have 2t+1 ∈
{1, 3}. Thus t = 1 and A = x6(1 + x)13T 3

2 T
3
3 . But σ

(
x6(1 + x)13T 3

2 T
3
3

)
̸=

x6(1 + x)13T 3
2 T

3
3 . Hence, A is not 2n−perfect over F2.

The proof of Theorem 1.3 is now complete

4. Conclusion

We show the non existence of odd 2n−perfect, n ∈ N, polynomials over F2.
A characterization of 2n−perfect polynomials A over the prime field with two
elements that are divisible by x, x+ 1, and Mersenne primes is given.
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Abstract. A graph is one-regular and arc-transitive if its full automorphism group acts
on its arcs regularly and transitively, respectively. In this paper, we classify connected
one-regular graphs of prime valency and order 18p for each prime p. As a result there
are two infinite families of such graphs, one is the cycle C18p with valency two and the
other is the normal Cayley graph on the generalized dihedral group (Z3p×Z3)⋊Z2 with
valency three and p ≡ 1 (mod 6).

Keywords: symmetric graph, arc-transitive graph, one-regular graph.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts or graph-theoretic terms not defined
here we refer the reader to [21, 22] or [2, 3], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the
subgroup of G fixing the point v. We say that G is semiregular on Ω if Gv = 1
for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-

char 42 . Corresponding author



216 QIAO-YU CHEN and SONG-TAO GUO

transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all known
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is 1-regular with full automorphism group D2n. Let p be a prime.
Classifying s-transitive and s-regular graphs has received considerable attention.
The classification of s-transitive graphs of order p and 2p was given in [6] and
[7], respectively. Pan [20] characterized the prime-valent s-transitive graphs
of square free order. Kutnar [17] classified cubic symmetric graphs of girth 6
and Oh [19] determined arc-transitive elementary abelian covers of the Pappus
graph. The classification of pentavalent and heptavalent s-transitive graphs of
order 18p was given in [1] and [13], respectively.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic
case, s-transitivity always means s-regularity by Miller [11]. However, for the
other prime-valent case, this is not true, see for example [14] for pentavalent
case and [15] for heptavalent case. Thus, characterization and classification of
prime-valent s-regular graphs is very interesting and also reveals the s-regular
global and local actions of the permutation groups on s-arcs of such graphs.
In particular, 1-regular action is the most simple and typical situation. In this
paper, we classify prime-valent one-regular graphs of order 18p for each prime
p.

2. Preliminary results

Let X be a connected G-symmetric graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as
the graph with vertices the orbits of N on V (X) and with two orbits adjacent
if there is an edge in X between those two orbits. In view of [18, Theorem 9],
we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then, one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), the quotient
graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [7], we introduce the graphs
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G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
H(p, q) the unique subgroup of Z∗

p of order q. Define the graph G(2p, q) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order 2p
with p, q primes. Then, X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q

∣∣ (p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp ⋊ Zq)⋊ Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

The following proposition is about the prime-valent symmetric graphs of
order 6p with p a prime, which is deduced from [20, Theorem 1.2].

Proposition 2.3. Let p and q be two primes. If q > 7, then there is no q-valent
symmetric graph of order 6p admitting a solvable arc-transitive automorphism
group.

The following proposition is the famous “N/C-Theorem”, see for example
[16, Chapter I, Theorem 4.5]).

Proposition 2.4. The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

From [10, p.12-14], we can deduce the non-abelian simple groups whose
orders have at most three different prime divisors.

Proposition 2.5. Let G be a non-abelian simple group. If the order |G| has
at most three different prime divisors, then G is called K3-simple group and
isomorphic to one of the following groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
18p for each prime p. Let q be a prime. In what follows, we always denote
by X a connected q-valent one-regular graph of order 18p. Set A = Aut(X),
v ∈ V (X). Then, the vertex stabilizer Av ∼= Zq and hence |A| = 18pq.
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Now, we first deal with the case q ≤ 7. Clearly, any connected graph of order
18p and valency two is isomorphic to the cycle C18p. Thus, for q = 2, X ∼= C18p

and A ∼= D36p. Let q = 3. Then, by [17, Theorem 1.2] and [19, Theorem 3.4],
X ∼= CF18p is a Zp-cover of the Pappus graph and also a normal Cayley graph
of a generalized dihedral group (Z3p×Z3)⋊Z2 with p ≡ 1(mod 6). This implies
that A ∼= ((Z3p×Z3)⋊Z2)⋊Z3. If q = 5 or 7, then by [1, Theorem 4.1] for q = 5
and [13, Theorem 3.1] for q = 7, there is no q-valent one-regular graph of order
18p. Thus, in what follows we deal with the case q > 7. The next lemma is
about the case p = 2.

Lemma 3.1. Let X be a connected q-valent one-regular graph of order 36. Then,
X ∼= C36.

Proof. Since |V (X)| = 36, we have that p = 2. If q ≤ 7, then by the above
argument, the only possibility is q = 2 and X is isomorphic to the cycle C36.

Let q > 7. Then, |A| = 22·32·q. If A is non-solvable, then A has a composi-
tion factor isomorphic to a non-abelian simple group and hence this composition
factor has order dividing |A| = 22·32·q. This forces that this composition factor
is a K3-simple group. By Proposition 2.5, A has a composition factor isomor-
phic to A5 and q = 5, contrary to our assumption. Thus, A is solvable. Let N
be a minimal normal subgroup of A. Then, N ∼= Z2, Z2

2, Z3, Z2
3 or Zq. Clearly,

N is not transitive on V (X). By Proposition 2.1, XN is a q-valent symmetric
graph of order 36/|N |. Note that, q > 7 and there is no connected regular graph
of odd order and odd valency. Thus, N is not isomorphic to Z2

2 or Zq.
Suppose that N ∼= Z2. Then, XN has order 18 and valency q. Since q > 7 is

a prime, by [8], XN is isomorphic to Pappus graph with q = 3 or the complete
graphK18 with q = 17. For the former,X is a cubic symmetric graph of order 36.
However, by [9], there is no cubic symmetric graph of order 36, a contradiction.
For the latter, A/N ≲ Aut(K18) ∼= S18. Recall that |A| = 22·32·q. We have
|A/N | = 18·17. However, by Magma [4], S18 has no subgroup of order 18·17, a
contradiction.

Suppose that N ∼= Z3. Then, XN is a q-valent symmetric graph of order 12.
By [8], XN

∼= K12 with q = 11 because q > 7. It follows that A/N ≲ Aut(K12) ∼=
S12. However, |A/N | = 12·11 and by Magma [4], S12 has no subgroup of order
12·11, a contradiction.

Suppose that N ∼= Z2
3. Then, XN is a q-valent symmetric graph of order

4. Clearly, the only symmetric graphs of order 4 are C4 with valency 2 and K4

with valency 3. This is impossible because the valency q > 7.

Finally, we treat with the case p ≥ 3 and q > 7.

Lemma 3.2. Let p ≥ 3 and q > 7. Then, there is no new graph.

Proof. Since p ≥ 3 and q > 7, we have that |A| = 18pq = 2·32·p·q is twice
an odd integer. It follows that A has a normal subgroup of odd order and
index 2. By Feit-Thompson’s Theorem [12, Theorem], any group of odd order
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is solvable and so A is also solvable. Let N be a minimal normal subgroup of
A. Then, N is also solvable and hence N is isomorphic to Z2, Z3, Z2

3, Zp, Zq or
Z2
p with p = q. By Proposition 2.1, XN is a q-valent symmetric graph of order

9p, 6p, 2p or 18. Since there is no connected regular graph of odd order and
odd valency, we have that N ̸∼= Z2. If p ̸= q and N ∼= Zq, then XN has order
18p/q. This is impossible because q cannot divide 18p. If p = q and N ∼= Z2

p,
then Nv

∼= Zq = Zp. However, by Proposition 2.1, XN has order 18 and N is
semiregular on V (X). This forces that Nv = 1, a contradiction. Thus, N ∼= Z3,
Z2
3, Zp.
Let N ∼= Z3. Then, XN is a q-valent symmetric graph of order 6p and

A/N ≲ Aut(XN ). Recall that A is solvable. Thus, A/N is also solvable and
acts arc-transitively on XN . However, by Proposition 2.3, there is no q-valent
symmetric graph admitting a solvable arc-transitive automorphism group with
q > 7, a contradiction.

Let N ∼= Zp. Then, XN is a q-valent symmetric graph of order 18. By [8],
there is only one q-valent symmetric graph of order 18 with q > 7, that is, the
complete graph K18 and hence q = 17. It follows that A/N ≲ Aut(K18) ∼=
S18 and |A/N | = 2·32·17. However, S18 has no subgroup of order 2·32·17 by
Magma [4], a contradiction.

Let N ∼= Z2
3. Then, XN is a q-valent symmetric graph of order 2p. By

Proposition 2.2, XN is isomorphic to K2p with q = 2p − 1 a prime, Kp,p with
q = p or G(2p, q) with q

∣∣ (p− 1).

Suppose that XN
∼= K2p. Then, A/N has order 2·p·q and acts 2-transitively

on V (XN ). By Burnside’s Theorem [5, p.192, Theorem IX], any 2-transitive
permutation group is either almost simple or affine. Since A is solvable, A/N is
also solvable. It forces that A/N is affine and hence A/N has a normal subgroup
M/N ∼= Zp. Note that, N ∼= Z2

3. By Proposition 2.4, M/CM (N) ≲ Aut(N) ∼=
Aut(Z2

3)
∼= GL(2, 3). Since |GL(2, 3)| = 48 and q = 2p − 1 > 7, we have that

CM (N) = M and hence M ∼= Z2
3×Zp. It follows that M has a characteristic

subgroup K ∼= Zp. The normality ofM in A implies that K is also normal in A.
By Proposition 2.1, XK is a q-valent symmetric graph of order 18 with q > 7,
and by [8], XK

∼= K18 with q = 17. Recall that q = 2p − 1. This forces that
p = 9 is not a prime, a contradiction.

Suppose that XN
∼= Kp,p. Then, p = q and |A/N | = 2·p2. Since p > 7, we

have that A/N has a normal subgroup M/N of order p2. Note that, A/N ≲
Aut(Kp,p) ∼= Spwr S2. Thus, a Sylow p-subgroup of A/N is isomorphic to Z2

p

and so M/N ∼= Z2
p. By Proposition 2.4, M/CM (N) ≲ Aut(N) ∼= GL(2, 3).

Since |GL(2, 3)| = 48 and p > 7, we have that CM (N) = M . This forces that
M ∼= Z2

p×Z2
3 has a characteristic subgroup P ∼= Z2

p. By Proposition 2.1, XP

has order 18 and hence P is semiregular on V (X). Clearly, this is impossible
because q = p and Pv ∼= Zp.

Suppose that XN
∼= G(2p, q). Then, q

∣∣ (p − 1) and A/N ∼= (Zp⋊Zq)⋊Z2.
Similarly, by Proposition 2.4, we can easily deduce that A has a normal subgroup
P ∼= Zp. It follows that the quotient graph XP has order 18 and is isomorphic
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to K18. With a similar argument as the case “N ∼= Zp”, we have A/P has order
2·32·17 and cannot be embedded in Aut(K18) ∼= S18, a contradiction.

Combining the above arguments with the cases q = 2, 3, 5, 7, and Lem-
mas 3.1-3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular
graph of order 18p. Then, the only possibilities are q = 2, 3 and furthermore,

(1) for q = 2, X ∼= C18p and A ∼= D36p;

(2) for q = 3, X ∼= CF18p and A ∼= ((Z3p×Z3)⋊Z2)⋊ Z3 with p ≡ 1(mod 6).
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Abstract. The present paper aims to introduce and study the ω-continuity of the
group operation in the first (resp., second) variable and some basic properties and
relationships concerning left and right translation functions are obtained. Also, we have
shown that the group operation is ω-continuous at the first (resp., second) variable if
and only if it is ω-irresolute at the first (resp., second) variable.

Keywords: ω-open, ω-closed, ω-continuous, ω-irresolute.

1. Introduction

Topology is a special type of geometry and includes several fields of study and
it has many interesting applications in graph theory. Hdeib H. Z. [7] defined
and studied ω-closed sets and ω-open sets. He used ω-closed sets to define a
new type of mappings called ω-closed functions. He obtained many properties
and relationships concerning these concepts. Also, he used ω-open sets to de-
fine ω − continuous mappings [8] and he studied this new type of continuous

*. Corresponding author
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mapping and obtained certain properties and relationships concerning this type
of continuous mappings.

The notion of a topological group goes back to the second half of the nine-
teenth century. Topological groups are objects that combine two separate al-
gebraic structures with the topology structure and the requirement links them
that multiplication and inversion are continuous functions.

In this article, we study the ω-continuity of a group operation at the first
(resp., second) variable respectively and obtain some basic properties of this
kind of ω-continuity of groups.

2. Preliminaries

Let A be a subset of a topological space (X, τ), the interior and closure of
A are denoted by Int(A) and Cl(A), respectively. A point x of X is called
a condensation point of A [9] if G ∩ A is uncountable for each open set G
containing x. A is called ω-closed [7] if it contains all it is condensation points.
The complement of an ω-closed set is called an ω-open set. The intersection of
all ω-closed subsets of X which contain A is called ω-closure of A and is denoted
by ωClA [4] and [7]. A point x ∈ A is said to be an ω-interior point of A [8],
if there exists an ω-open set U containing x such that U ⊆ A. The set of all
ω-interior points of A is denoted by ωIntA.

The discrete topology is denoted by τdis, and the family of all ω-open subsets
of a space (X, τ), denoted by τω from a topology on X finer than τ ([4]). A
compact space is a topological space for which every covering of that space by
a collection of open sets has a finite subcover.

Definition 2.1 ([5]). A space (X, τ) is said to be ω − compact provided that
every ω-open cover of X has a finite subcover.

Definition 2.2 ([5]). A space (X, τ) is said to be ω − lindelof provided that
every ω-open cover of X has a countable subcover.

Definition 2.3 ([4]). A space (X, τ) is said to be locally countable if each point
of X has a countable open neighbourhood.

Theorem 2.1 ([3]). Let (X, τ) be a topological space, then τω = τdis if and only
if the space (X, τ) is locally-countable.

Theorem 2.2 ([4]). For any topological space (X, τ) and any subset A of X,
(τA)

ω = τωA .

The proof of the following lemma can be found in [15]. Also, we can find a
similar proof in [14], Lemma 3 and [16], Lemma 3.3].

Definition 2.4 ([8]). Let f : (X, τ) → (Y, ρ) be a mapping, f is said to be
ω-continuous at a point x ∈ X, if for each open subset V in Y containing f(x)
there exists an ω-open subset U of X contains x such that f(U) ⊆ V, and f is
called ω-continuous if it is ω-continuous at each point x of X.
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Definition 2.5 ([1]). Let f : (X, τ) → (Y, ρ) be a mapping. Then f is said to
be ω-irresolute, if f−1(F ) is an ω-closed in X for each ω-closed set F in Y.

Definition 2.6 ([10]). Let f : (X, τ) → (Y, ρ) be a mapping, then f is an
ω-homeomorphism if and only if f is bijective and f, f−1 are ω-irresolute.

Definition 2.7 ([11]). A space (X, τ) is said to be lindelof provided that every
open cover of X has a countable subcover.

Lemma 2.1 ([4]). Let (X, τ) be a topological space. Then X is ω-lindelof if and
only if it is lindelof.

Definition 2.8 ([12]). A topological space (X, τ) is called a normal space if
given any disjoint closed sets E and F, there are neighbourhoods U of E and V
of F with U ∩ V = ϕ.

Definition 2.9 ([13]). Let X be a nonempty set and µ : X → X be a binary
operation defined by µ(g1, g2) = g1∗g2. The pair (X, ∗) is a group if the following
three properties hold:

1. For all a, b, c ∈ X we have (a ∗ b) ∗ c = a ∗ (b ∗ c) (associative law);

2. There exists an e ∈ X such that for all a ∈ X we have a ∗ e = e ∗ a = a
(existence of identity element);

3. For all a ∈ X there exists a−1 ∈ X such that a ∗ a−1 = a−1 ∗ a = e (each
element has inverse).

Definition 2.10 ([13]). Let (X, ∗) be a group. If X has the property that a∗b =
b ∗ a for all a, b ∈ X, then we call X abelian.

Definition 2.11 ([17]). Let (X, ∗) be a group and H be a subset of X. We call
H a subgroup of X when the following hold:

1. H ̸= ϕ;

2. If x, y ∈ H, then x ∗ y ∈ H;

3. If x ∈ H, then x−1 ∈ H.

Definition 2.12 ([17]). Let X be a group, H a subgroup of H and g ∈ X. The
sets gH = {g ∗ h, h ∈ H} and Hg = {h ∗ g, h ∈ H} are called the left and right
cosets of H in X, respectivly.

3. The results

We introduce the following definition
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Definition 3.1. Let (X, ∗) be a group and τ be a topology on X. The multi-
plication map µ : X ∗ X → X is said to be ω-continuous at the first (second)
variable if, for any fixed point a ∈ X, any point b ∈ X and any open set G in
X which contains µ(b, a) = b ∗ a, (µ(a, b) = a ∗ b), there exists an ω-open set V
in X such that b ∈ V and V ∗ a ⊆ G, (a ∗ V ⊆ G).

In our first result, we prove that for abelian groups, the ω-continuity of
multiplication maps at the first and second variable are equivalent.

Theorem 3.1. If (X, ∗) is an abelian group and τ a topology on X. Then,
the multiplication map µ is ω-continuous at the first variable if and only if it is
ω-continuous at the second variable.

Proof. Let µ be ω-continuous at the first variable. Suppose a is any fixed
point of X and b is an arbitrary point of X. To show µ is ω-continuous at the
second variable. Let O be any open subset of X which contains a ∗ b. But,
since a ∗ b = b ∗ a, so, b ∗ a ∈ O, Since µ is ω-continuous at the first variable,
then by Definition 3.1, there is an ω-open subset V of X which contains b and
V ∗ a ⊆ O. But, V ∗ a = a ∗ V , so a ∗ V ⊆ O. Hence, µ is ω-continuous at the
second variable. The converse part is followed similarly.

Theorem 3.2. If (X, ∗) is any group and τ a topology on X such that (X, τ)
is locally countable, then the multiplication map of X is ω − continuous at the
first variable as well as at the second variable.

Proof. Since (X, τ) is locally countable, so, by Theorem 2.1, τω = τdis. For any
a, b ∈ X and any open subset G of X such that a∗b ∈ G, we have {a}, {b} ∈ τω,
a ∗ {b} = {a ∗ b} ⊆ G and {a} ∗ b = {a ∗ b} ⊆ G. Thus, µ is ω-continuous at the
first and second variables.

Remark 3.1. The following example shows that the ω-continuity of the multi-
plication map in the first and second variable does not imply that the group is
abelian and also does not imply that the group is semi-topological.

Example 3.1. Consider the symmetric group S3 of the set A = {1, 2, 3}. The
elements of this group are f1 = 1, f2 = (1, 2), f3 = (2, 3), f4 = (1, 3), f5 =
(1, 2, 3), f6 = (1, 3, 2), so, that S3={1,(1,2),(1,3),(2,3), (1,2,3), (132)} with the
usual composition of maps (S3, ◦) forms a non-commutative group, let τ =
{ϕ, S3, {f1}, {f2, f3, f4}, {f1, f2, f3, f4}, {f1, f5, f6}} be a topology on S3 then,
the multiplication map is not continuous neither in the first nor in the second
variable because for i = 2, 3, 4 we have fi ◦ fi=f1 and {f2, f3, f4} ◦ fi ⊈ {f1}.
Also, f1 ◦ f2, f3, f4 ⊆ f1 since S3 × S3 is finite, so, by (τ × τ)ω =τdis, S3 is finite
τω = τdis, and τ

ω × τω = τdis × τdis = (τ × τ)ω = τω × τω.

Theorem 3.3. Let (X, ∗) be a group and τ be a topology on X and the multipli-
cation map µ is ω-continuous at the second (first) variable. For any A,B ⊆ X
and a ∈ X, the following statements are true:
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1. a ∗ ω ClB ⊆ Cl(a ∗B)and ((ωClB) ∗ a ⊆ Cl(B ∗ a)).

2. ωCl(a ∗B) ⊆ a ∗ ClB and (ωCl(B ∗ a) ⊆ (ClB) ∗ a).

3. A ∗ ωClB ⊆ Cl(A ∗B) and ((ωClB) ∗A ⊆ Cl(B ∗A)).

Proof. 1. Let y ∈ a ∗ ωClB, and let G be an open subset of X, such that y
∈ G. Then, there is x ∈ ωClB such that y= a ∗ x. Since µ is ω − continuous
at the second variable, there exists an ω-open set V in X such that x ∈ V and
a ∗V ⊆ G. Since x ∈ V and x ∈ ωClB, then V ∩B ̸= ϕ, so, there is, s ∈ V ∩B.
Then, a∗ s ∈ a∗V and a∗ s ∈ a∗B, so, (a∗V )∩ (a∗B) ̸= ϕ. Hence, G∩ (a∗B)
̸= ϕ. This means that, y ∈ Cl(a ∗B). Thus, a ∗ ωClB ⊆ Cl(a ∗B).

2. By (1) we have a−1(ω(Cla∗B)) ⊆ Cl(a−1∗(a∗B)) = Cl(a−1∗a)∗B = ClB.
Therefore, a ∗ (a−1 ∗ (ωCl(a ∗B)) ⊆ a ∗ ClB. That is, ωCl(a ∗B) ⊆ a ∗ ClB.

3. By (1) A∗ωClB =
⋃
a∈A(a∗ωClB) ⊆

⋃
a∈ACl(a∗B) ⊆ Cl

⋃
a∈A(a∗B) =

Cl(A ∗B).

Theorem 3.4. Let (X, ∗) be a group and τ be a topology on X, in which the
multiplication map µ is ω-continuous at the second (first) variable. Then, for
each A,B ⊆ X and a ∈ X, the following statements hold:

1. Int(a ∗B) ⊆ a ∗ ωIntB and (Int(B ∗ a) ⊆ (ωIntB) ∗ a);

2. a ∗ IntB ⊆ ωInt(a ∗B) and ((IntB) ∗ a ⊆ ωInt(B ∗ a));

3. A ∗ IntB ⊆ ωInt(A ∗B) and ((IntB) ∗A ⊆ ωInt(B ∗A)).

Proof. 1. Let y ∈ Int(a ∗ B). Then, there is an open set O in X such that
y ∈ O ⊆ a ∗ B, then there is b ∈ B such that y = a ∗ b. By ω-continuity of µ
at the second variable, there exists an ω-open subset V of X such that b ∈ V
and a ∗ V ⊆ O, that is, a ∗ V ⊆ a ∗ B , so, a−1 ∗ (a ∗ V ) ⊆ a−1 ∗ (a ∗ B),
hence V ⊆ B. This means that, b ∈ ωIntB, so, y = a ∗ b ∈ a ∗ ωIntB. Hence,
Int(a ∗B) ⊆ a ∗ ωIntB.

2. a ∗ IntB = a ∗ Int(e ∗B) = a ∗ Int(a−1 ∗ (a ∗B)) ⊆ a ∗ (a−1ωInt(a ∗B))
= (a ∗ a−1) ∗ ωInt(a ∗B) = e ∗ ωInt(a ∗B) = ωInt(a ∗B).

3. A ∗ IntB =
⋃
a∈A(a ∗ IntB) ⊆

⋃
a∈A ωInt(a ∗ B) ⊆ ωInt

⋃
a∈A(a ∗ B) =

ωInt(A ∗B).

Theorem 3.5. Let (X, ∗) be a group and τ be a topology on X, then:

1. the multiplication map µ is ω-continuous at the second variable if and only
if the left translation function ιa : X → X is ω-continuous, for each a ∈ X;

2. the multiplication map µ is ω-continuous at the first variable if and only
if the right translation function ra : X → X is ω-continuous, for each
a ∈ X.
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Proof. We prove (1) and the proof of (2) is completely similar.
Let the multiplication map µ is ω − continuous at the second variable. To

show that ιa is ω − continuous, for each a ∈ X.
Let x ∈ X and O be any open subset of X such that ιa(x) ∈ O (That is,

a ∗ x ∈ O.) So, there is an ω− open set V in X such that x ∈ V and a ∗ V ⊆ O,
that is ιa(V ) ⊆ O, this means that, ιa is ω − continuous at x. But, since a and
x are arbitrary points of X, therefore, ιa is ω-continuous for each a ∈ X.

Suppose that ιa is ω-continuous, for each a ∈ X. Now, let a be a fixed point
of X, x ∈ X and O be an arbitrary open subset of X such that a ∗ x ∈ O. That
is, ιa ∈ O. By ω-continuity of ιa, there is an ω-open set V in X such that x ∈ V
and ιa(V ) ⊆ G. Hence, a ∗ V ⊆ O, so, that µ is ω − continuous at the second
variable.

Corollary 3.1. Let τ be any topology on a group (X, ∗), then:

1. the multiplication map µ is ω-continuous at the second variable if and only
if the left translation function ιa is ω-irresolute, for each a ∈ X;

2. the multiplication map µ is ω-continuous at the first variable if and only
if the right translation function ra is ω-irresolute, for each a ∈ X.

Proof. 1. Since µ is ω−continuous at the second variable, so, by Theorem 3.5,
the left translation function ιa is ω − continuous, for each a ∈ X. Since ιa is
bijective, ιa is ω-irresolute, for each a ∈ X.

Conversely, let ιa be ω−irresolute for each a ∈ X. Then, it is ω-continuous,
for each a ∈ X. By Theorem 3.5, µ is ω-continuous at the second variable.

2. The proof is similar to the proof of (1).

Proposition 3.1. Let τ be a topology on a group (X, ∗). Then, the left (right)
translation function ιa( ra) is ω-continuous if and only if it is ω-homeomorphism,
for each a ∈ X.

Proof. Let ιa (ra) be an ω-continuous function, for each a ∈ X. Then, ιa (ra)
respectively, is ω-irresolute for each a ∈ X. Since ιa (ra) is a bijective function
with (ιa)−1(V ) = ιa−1(V ) = V ∗ a−1, and a−1 ∈ X, then ι−1

a ( r−1
a )resp., is an

ω−irresolute function. Hence, ιa (ra) is ω-homeomorphism, for each a ∈ X.

Proposition 3.2. Let τ be a topology on a group (X, ∗). Then:
1. the multiplication map µ is ω-irresolute at the second variable if and only

if the left translation function ιa is ω-irresolute, for each a ∈ X.
2. the multiplication map µ is ω-irresolute at the first variable if and only if

the right translation function ra is ω-irresolute, for each a ∈ X.

Proof. The proof is completely similar to the proof of the Theorem 3.5.

Proposition 3.3. Let τ be a topology on a group (X, ∗). The multiplication
map µ is ω-irresolute at the second (resp., first) variable if and only if it is
ω − continuous at the second (first) variable.
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Proof. Let µ is ω − irresolute at the second (first) variable if and only if
ιa(resp., ra) is ω − irresolute, for each a ∈ X by Proposition 3.3 if and only if
µ is ω− continuous at the second (resp., second) variable by Corollary 3.1.

Proposition 3.4. Let τ be a topology on a group (X, ∗). Then, the multipli-
cation map µ is ω-irresolute at the second (first) variable if and only if it is
ω-continuous at the second (first) variable.

Proof. we can show that µ is ω − irresolute at the second (first) variable by
the same way as we have proved Theorem 3.5 and Corollary 3.1, we will get
the left translation ιa (right translation ra) function is ω − irresolute, for each
a ∈ X. If and only if µ is ω-continuous at the second (first) variable.

Theorem 3.6. If τ is a topology on a group (X, ∗) such that the multiplication
map µ is ω-continuous at the second variable, then for each A,B ⊆ X and
a ∈ X, we have:

1. a ∗ ωClB = ωCl(a ∗B).

2. a ∗ ωIntB = ωInt(a ∗B).

3. B is ω-open if and only if a ∗B isω − open.

4. B is ω-closed if and only if a ∗B isω − closed.

5. A ∗ ωClB ⊆ ωCl(A ∗B).

6. A ∗ ωIntB ⊆ ωInt(A ∗B).

7. ωIntA ∗ ωIntB ⊆ ωInt(A ∗B).

8. ωClA ∗ ωClB ⊆ ωCl(A ∗B).

9. If B is ω − open, then A ∗B is ω − open.

10. If B is ω-closed and A is finite, then A ∗B is ω-closed.

Proof. 1. Let y ∈ a ∗ωClB. Then, y = a ∗ b for some b ∈ ωClB. Let G be any
ω − open subset of X such that y = a ∗ b ∈ G. By Proposition 3.2 there exists
an ω-open subset V of X such that b ∈ V and a ∗ V ⊆ G. Since b ∈ ωClB, so,
V ∩B ̸= ϕ. Therefore, a ∗ V ∩ a ∗B ̸= ϕ. Since a ∗ V ⊆ G, so, G ∩ (a ∗B) ̸= ϕ.
This means that, y ∈ ωCl(a ∗ B). That is, a ∗ ωClB ⊆ ωCl(a ∗ B). Also,
a−1∗(ωCl(a∗B) ⊆ ωCl(a−1∗(a∗B)) = ωCl((a∗a−1)∗B) =ωCl(e∗B) = ωClB.
Then, a∗ (a−1 ∗ωCl(a∗B)) ⊆ a∗ωClB, so, that ωCl(a∗B) ⊆ a∗ωClB. Hence,
a ∗ ωClB = ωCl(a ∗B).

2. Let y ∈ ωInt(a ∗ B). Then, there exists x ∈ B and an ω − open set V
in X such that y = a ∗ x ∈ V ⊆ a ∗ B. By Proposition 3.2, there exists an
ω − open set U in X such that x ∈ U and a ∗ U ⊆ V . Thus, a ∗ U ⊆ a ∗ B,
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so, U ⊆ B. This means that, x ∈ ωIntB. Then, y = a ∗ x ∈ a ∗ ωIntB.
So, ωInt a ∗ B ⊆ aωIntB. Now, Since a−1 ∈ X and a ∗ B ⊆ X, we get
ωIntB = ωInt(e ∗ B) = ωInt(a−1 ∗ (a ∗ B)) ⊆ a−1 ∗ ωInt(a ∗ B). Therefore,
a∗ωIntB ⊆ (a∗a−1∗ωInt(a∗B) = ωInt(a∗B). Hence, a∗ωIntB = ωInt(a∗B).

3. Let B be ω− open in X. From Corollary 3.1, we have ι−1
a is ω-irresolute,

so, (ι−1
a )−1(B) is ω-open in X. Since (ι−1

a )−1 = ιa, so, ιa(B) is ω-open in X.
Thus, a ∗B is ω-open in X.

Conversely, Let a ∗ B be ω − open in X. From Corollary 3.1, we have ιa is
ω-irresolute, then ι−1

a (a ∗B) is ω-open in X. Since (ιa)
−1 = ι−1

a , so, ι−1
a (a ∗B)

is ω-open in X. Since ι−1
a (a ∗B) = a−1 ∗ (a ∗B) = B, so, B is ω − open in X.

4. Let B be ω− closed in X. Then, by (1), a ∗B = a ∗ωClB = ωCl(a ∗B),
so, a ∗B is ω-closed.

Conversely, suppose that a ∗ B is an ω-closed subset of X, so, a ∗ B =
ωCl(a∗B). But, from (1), we have ωCl(a∗B) = a∗ωClB, so a∗B = a∗ωClB.
This implies that a−1 ∗ (a ∗ B) = a−1 ∗ (a ∗ ωClB). Hence, B = ωClB. Thus,
B is ω − closed in X.

5. Let y = a ∗ b ∈ A ∗ ωClB, where a ∈ A and b ∈ ωClB. To show y
∈ ωCl(A ∗ B). Let G be any ω-open subset of X such that y = a ∗ b ∈ G.
By Proposition 3.2, there exists an ω-open subset V of X such that b ∈ V and
a ∗ V ⊆ G, since b ∈ V and b ∈ ωClB, so, V ∩B ̸= ϕ, so, (a ∗ V ) ∩ (a ∗B) ̸= ϕ.
Since a∗V ⊂ G, so, G∩ (a∗B) ̸= ϕ and since a∗B ⊆ A∗B, so, G∩ (A∗B) ̸= ϕ.
Hence, y ∈ ωCl(A ∗B). Thus, A ∗ ωClB ⊆ ωCl(A ∗B).

6. By (2), we have A ∗ ωIntB =
⋃
a∈A(a ∗ ωIntB) =

⋃
a∈A(ωInt(a ∗ B) ⊆

ωInt(
⋃
a∈A(a ∗B)) = ωInt(A ∗B).

7. Since ωIntA ⊆ A, so, ωIntA∗ωIntB ⊆ A∗ωIntB and since A∗ωIntB ⊆
ωInt(A ∗B). So, by (6) ωIntA ∗ ωIntB ⊆ ωInt(A ∗B).

8. Let y ∈ ωClA ∗ ωClB. Then, y = a ∗ b, for some a ∈ ωClA, b ∈ ωClB.
Let G be any ω − open subset of X such that y = a ∗ b ∈ G. By Proposition
3.2, there is an ω − open subset V of X such that b ∈ V and a ∗ V ⊆ G. Since
b ∈ ωClB, so, V ∩B = ϕ. Since a∗(V ∩B) = (a∗V )∩(a∗B), so, G∩(a∗B) = ϕ.
Since a ∗B ⊆ A ∗B, then G ∩ (A ∗B) = ϕ. Therefore, y∈ ωCl(A ∗B). Hence,
ωClA ∗ ωClB ⊆ ωCl(A ∗B).

9. Let B be ω − open in X. Then by (3) a ∗B is ω − open, for each a ∈ A.
Since, the union of any family of ω − open sets is ω-open, so,

⋃
a∈A(a ∗ B) is

ω − open. But, since A ∗B =
⋃
a∈A(a ∗B), so, A ∗B is ω − open.

10. Let B be ω-closed and A be a finite subset of X. Then, by (4) a ∗ B
is ω-closed, for each a ∈ A. Since A ∗ B =

⋃
a∈A(a ∗ B) and the finite union of

ω − closed is ω-closed, so, A ∗B is ω-closed.

Theorem 3.7. Let (H, ∗) be a subgroup of a group (X, ∗) and τ be any topology
on X.

1. If µ : X ∗ X → X is ω-continuous at the second variable, then µH :
H ∗H → H is ω-continuous at the second variable.
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2. If µ : X∗X → X is ω-continuous at the first variable, then µH : H∗H → H
is ω-continuous at the first variable.

Proof. We prove part (1) and the proof of the second part is almost similar.

Let a be a fixed point of H such that µH(a, b) = a ∗ b ∈ G. Then, there is
an open set O in X such that O = G ∩H and µ(a, b) = µH(a, b) = a ∗ b ∈ O.
Since µ is ω-continuous at the second variable, so, by Definition 3.1, there is an
ω-open subset V of X such that b ∈ V and a ∗ V ⊆ O. Then, by Theorem 2.2,
V ∩H is ω-open in H and a∗ (V ∩H) = a∗V ∩a∗H = a∗V ∩H ⊆ O∩H = G.
Hence, µH : H ∗H → H is ω-continuous at the second variable.

Theorem 3.8. Let τ be a topology on a group (X, ∗) such that the multiplication
map µ is ω-continuous at the second (first) variable. If S is a semigroup subset
of X for which ωIntS ̸= ϕ, then ωIntS is also a semigroup.

Proof. Without loss of generality, we assume that µ is ω-continuous at the
second variable. It is given that, ωIntS ̸= ϕ. Let a, b ∈ ωIntS, then, there is
an ω − open subset V of X such that b ∈ V ⊆ S. Since S is a semigroup, so,
a ∗ b ∈ a ∗ V ⊆ S. But, from (3) of Theorem 3.6 we have a ∗ V is ω − open in
X, so, a ∗ b ∈ ωIntS. Also, since ωIntS ⊆ S and µ is associative on S, so, µ is
associative on ωIntS. Hence, ωIntS is a semigroup.

Theorem 3.9. Let H be subgroup of a group X. Let τ be any topology on X
such that the multiplication map µ is ω-continuous at the second (first) variable
and ωInt(H) ̸= ϕ. If the function f : X → X give by f(x) = x−1 for each
x ∈ X is ω-continuous then ωInt(H) is a subgroup of X.

Proof. Without loss of generality, we assuming that µ is ω-continuous at the
second variable. By what we have done in the proof of Theorem 3.8 for any
a, b ∈ ωInt(H) we obtain that a ∗ b ∈ ωIntH. Also, for any a ∈ ωIntH,
we have an ω-open subset G of X such that a ∈ G ⊆ H, f : X → X is a
bijective function and it is ω-continuous function. Since V is ω-open in X, so,
f−1(V ) = {x : f(x) ∈ V } = {x : x−1 ∈ V } = V −1 so, V −1 is ω-open in X.
Since a ∈ V ⊆ H, so, a−1 ∈ V −1 ⊆ H−1 = H. Hence, a−1 ∈ ωIntH. Therefore,
a ∗ b−1 ∈ ωIntH. Hence, ωIntH is subgroup of G.

Theorem 3.10. Let τ be a topology on a group (X, ∗) such that the multipli-
cation map µ is ω-continuous at the second (first) variable. If S is a semigroup
subset of X, then ωClS is a semigroup subset of X.

Proof. We prove this result for the case that µ is ω-continuous at the second
variable, we left the other because it has a similar proof. Since ϕ ̸= S ⊆ ωClS.
So, ωClS ̸= ϕ. Let a, b be any two points of ωClS and V is any ω-open subset
of X which contains a ∗ b. Since µ is ω-continuous at the second variable, so,
by Corollary 3.1, the left translation function la is an ω-irresolute, for each
a ∈ X. Now, for a, b, c ∈ ωClS, we have a, (b ∗ c), (a ∗ b), c ∈ ωClS. Therefore,
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a ∗ (b ∗ c), (a ∗ b) ∗ c ∈ ωClS. Since (X, ∗) is a group and a, b, c ∈ X, so,
a∗ (b∗ c) = (a∗ b)∗ c. This means that a∗ (b∗ c) = (a∗ b)∗ c in ωClS. Therefore,
ωClS is a semigroup subset of X.

Theorem 3.11. Let H be a subgroup of a group (X, ∗). Let τ be a topology on
X such that the function f : X → X given by f(x) = x−1 is ω-continuous. If
the multiplication map µ is ω-continuous at either first or second variable, then
ωClH is a subgroup of X.

Proof. Since every subgroup of a group is a semigroup, so, by Theorem 3.10,
ωClH is a semigroup subset of X. For all a, b ∈ ωClH, we get a ∗ b ∈ ωClH.
Since f : X → X given by f(x) = x−1 is a bijective ω−continuous function, so,
f is ω-irresolute, for each a ∈ ωClH, and any ω− open subset V of X such that
a−1 ∈ V , we have f(a) ∈ V . So, by ω − irresolute of f , there exists an ω-open
subset U of X such that a ∈ U and f(U) ⊆ V. Since a ∈ U and a ∈ ωClH, so,
U ∩H ̸= ϕ. Thus, (U ∩H)−1 = ϕ. Since (U ∩H)−1 = U−1 ∩H−1 = U−1 ∩H,
so, U−1∩H ̸= ϕ, but U−1 ⊆ V , so, V ∩H ̸= ϕ. Hence, a−1 ∈ ωClH. Therefore,
for each a, b ∈ ωClH, we have a, b−1 ∈ ωClH, and so, a ∗ b−1 ∈ ωClH. This
means that ωClH is a subgroup of X.

Remark 3.2. It is easy to prove the same result for a topology on the group
(X, ∗) which makes the multiplication map µ as ω − continuous at the first
variable, but, we need only to replace a with b, a ∗ V with V ∗ a.

Theorem 3.12. Let (X, ∗) be a group and τ be any topology on X such that
the multiplication map µ is ω-continuous at each variable. If S is a normal set
of X such that ωIntS ̸= ϕ, then both ωInt(S) andωCl(S) are normal.

Proof. Let x ∈ X. Then, x−1 ∈ X. Since ωInt(S) is ω-open and µ is
ω-continuous at each variable, then by (3) of Theorem 3.6 and as µ is ω-
continuous at the first variable, we obtain that x ∗ ωInt(S)x−1 is ω-open in
X and ωInt(x ∗ ωInt(S) ∗ x−1) = x ∗ ωInt(S) ∗ x−1. Since S is a normal set,
so x ∗ ωInt(S)x−1 ⊆ x ∗ S ∗ X−1 ⊆ S, so ωInt(x ∗ ωInt(S)x−1) ⊆ ωInt(S).
Therefore, x ∗ωInt(S)x−1 ⊆ ωInt(S). Hence, ωInt(S) is a normal subset of X.

Now, we have to show ωCl(S) is also a normal subset of X. To make this
end, let y ∈ x ∗ ωCl(S) ∗ x−1 and G be any ω-open subset of X such that
y ∈ G. Then, there is s ∈ ωCl(S) such that y = x ∗ s ∗ x−1 by Proposition 3.2
there exists an ω-open subset V of X such that s ∗ x−1 ∈ V and x ∗ V ⊆ G.
Again by Proposition 3.2 there is an ω-open subset U in X such that s ∈ U and
U ∗x−1 ⊆ V . That is, x∗U ∗x−1 ⊆ x∗V ⊆ G. Now, since s ∈ U and s ∈ ωCl(S),
then U ∩ S ̸= ϕ, so, (x ∗ U ∗ x−1) ∩ (x ∗ S ∗ x−1) ̸= ϕ. Since (x ∗ U ∗ x−1) ⊆ G
and x ∗ S ∗ x−1 ⊆ S, so, G ∩ S ̸= ϕ. This implies that y ∈ ωCl(S). Thus,
x ∗ ωCl(S) ∗ x−1 ⊆ ωCl(S). Hence, ωCl(S) is a normal subset of X.

Corollary 3.2. Let τ be a topology on a group (X, ∗) such that the multiplication
map is ω-continuous at the first (second) variable. If H is a normal subgroup
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of X and the function f : X → X given by f(x) = x−1 for all x ∈ X, is
ω-continuous, then ωIntH ̸= ϕ and ωClH both are normal subgroup of X.

Proof. The proof follows from Theorem 3.9, Theorem 3.11 and Theorem 3.12.

Theorem 3.13. Let (X, ∗) be a group and τ be any topology on X. If the
multiplication map is ω-continuous in the second variable, then for any A ⊆ X,
we have A ∗B is ω − open for any open set B ⊆ X.

Proof. If B is open, then Int(B) = B. Let a ∈ A. Then, a ∗B = a ∗ Int(B) ⊆
ωInt(a ∗ B) by (1) of Theorem 3.4. Hence, A ∗ B = A ∗ Int(B) =

⋃
a∈A

a ∗ Int(B) ⊆
⋃
a∈A ωInt(a ∗ B), so,

⋃
a∈A ωInt(a ∗ B) ⊆ ωInt(

⋃
a∈A a ∗ B)

= ωInt(A ∗B), since ωInt(A)∪ ωInt(B) ⊆ ωInt(A ∗B), A ∗B ⊆ ωInt(A ∗B).
Hence, A ∗B = ωInt(A ∗B). Thus, A ∗B is ω − open.

Theorem 3.14. Let the multiplication map µ of a group Xwith a topology τ on
X is ω-continuous at the second (first) variable and H ⊆ X. Then:

1. If H is an ω-compact subset of X, then a ∗H (H ∗ a) is a compact subset
of X, for each a ∈ X.

2. If µ is ω-continuous at the second variable, then for each a ∈ X, where,
H is ω-compact in X if and only if a ∗H is ω-compact.

3. If µ is ω-continuous at the first variable, then for each a ∈ X, where, H
is ω-compact in X if and only if H ∗ a is ω-compact.

Proof. 1. Let H be an ω-compact subset of X and without loss of generality,
we suppose that µ is ω-continuous at the second variable, so, by Theorem 3.5,
ιa is ω-continuous for each a ∈ X. Now, to show a ∗ H is compact. Let
{{Vα}n;α ∈ n} be an open cover of a ∗ H. Then, (ιa)

−1(Vα) = a−1 ∗ Vα is
ω-open for each α ∈ Λ. Since H = (ιa)

−1)(a ∗ H) ⊆ (ιa)
−1)(

⋃
α∈Λ Vα) =⋃

α∈Λ(ιa)
−1)(Vα) =

⋃
α∈Λ a

−1 ∗ Vα, so, {a−1 ∗ (Vα);α ∈ Λ} is an ω-open cover
of H. So, by definition ω-compact, there exists a finite subset Λ0 of Λ, such
that H ⊆

⋃
α∈Λ0

(a−1 ∗ Vα). Hence, a ∗ H = ιa(H) ⊆ ιa(
⋃
α∈Λ0

(a−1 ∗ Vα) =
a ∗ (

⋃
α∈Λ0

a−1 ∗ Vα) = (a ∗ a−1) ∗ (
⋃
α∈Λ0

Vα =
⋃
α∈Λ0

Vα. Thus, a ∗ H is a
compact subset of X.

2. Let H be an ω-compact subset of X and {GN : N ∈ Λ} is an ω-open cover
of a∗H where a is an arbitrary point of X. Since µ is ω-continuous at the second
variable, so, by Corollary 3.1 ιa is an ω-irresolute function. Therefor (ιa)

−1(G)
is ω-open in X, for each N ∈ Λ. Since (ιa)

−1(G) = a−1 ∗ GN . So, a−1 ∗ GN is
ω-open in X for each N ∈ Λ. Since H = (ιa)

−1(a ∗H) ⊆ (ιa)
−1(

⋃
N∈ΛGN ) =⋃

N∈Λ(ιa)
−1(GN ) =

⋃
N∈Λ(a

−1 ∗ GN ). So, {a−1 ∗ GN : N ∈ Λ} is an ω-open
cover of H. Since H is ω-compact, so, there exists a finite subset Λ0 of Λ
such that H = UN∈Λ0(a

−1 ∗ GN ). So, aH = ιa(H) ⊆ ιa(
⋃
N∈Λ0

a−1 ∗ GN ) =⋃
N∈Λ0

ιa(a−1 ∗GN ) =
⋃
N∈ΛGN . Hence, a ∗H is ω-compact.
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Conversely, let a ∗H be an ω-compact subset of X where a ∈ X. To show
H is ω-compact.

Let {ON , N ∈ Λ} be any ω-open set in H. Then a ∗ H = ιa(H) =
(ιa)

−1)−1(H) = (ι−1
a )−1(

⋃
N∈ΛON ) = (

⋃
N∈Λ((ι

−1
a )−1(ON )) = (

⋃
N∈Λ ιa(ON ) =⋃

N∈Λ(a ∗ON ).
Since ON is ω− open for each N ∈ Λ and a ∈ X, so, by part (3) of Theorem

3.6, we have a ∗ON is ω-open in X, for each N ∈ Λ. Since a ∗H is ω-compact,
so, there exists a finite subset Λ0 of Λ such that a ∗ H ⊆

⋃
N∈Λ(a ∗ ON ). So,

H = a−1 ∗ (a ∗ H) = ι−1
a (a ∗ H) = (ιa)

−1(a ∗ H) ⊆ (ιa)
−1(

⋃
N∈Λ0

(a ∗ ON ))=
(
⋃
N∈Λ0

(ιa)
−1)(a ∗ ON )=

⋃
N∈Λ0

a−1 ∗ (a ∗ ON ) =
⋃
N∈Λ0

ON . Hence, H is ω-
compact.

3. The proof is similar to part 2 with only replacing ιa with ra.

Theorem 3.15. Let τ be a topology on a group (X, ∗) and a ∈ X, H ⊆ X.

1. If µ is ω − continuous at the second variable, then H is lindelof if and
only if a ∗H is lindelof.

2. If µ is ω − continuous at the first variable, then H is lindelof if and only
if H ∗ a is lindelof.

Proof. The Proof is almost similar to the proof of parts (2) and (3) of the
Theorem 3.14 by using Lemma 2.1.
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Abstract. Let m and n be two integers. It is shown that the set of all integer solutions
of the Diophantine equation x2 + mxy + ny2 = 1 has an Abelian group structure.
Furthermore, it is shown that this Abelian group is isomorphic to one of the groups Z2,
Z4, Z6 and Z2 × Z.
Keywords: Abelian group, commutative ring, Diophantine equation, Pell’s equation,
torsion subgroup.

1. Introduction

In mathematics, a Diophantine equation is a polynomial equation, usually in-
volving two or more unknowns, such that the only solutions of interest are the
integer ones (an integer solution is such that all the unknowns take integer
values).

Recall that an elliptic curve is a plane curve over a finite field (rather than
the real numbers) which consists of the points satisfying the equation y2 =
x3 + ax + b, along with a distinguished point at infinity. The coordinates here
are to be chosen from a fixed finite field of characteristic not equal to 2 or 3.
This set together with the group operation of elliptic curves is an Abelian group,
with the point at infinity as an identity element.

Pursuing this point of view further, in this paper we focused on the set of
the points satisfying the equation x2 + ηxy + ξy2 = 1R , where the coordinates
are to be chosen from a commutative ring R with the identity element 1R . We
prove that this set together with a suitable group operation is an Abelian group,
with e = (1R , 0R) as the identity element. Also, by using this result we study
the set of all integer solutions of the Diophantine equation x2 +mxy+ny2 = 1,
where m,n ∈ Z. Recall that one special case of these equations is the Pell’s
equation, which has a historical background.

We prove that in general the Abelian group of all integer solutions of the
Diophantine equation x2 + mxy + ny2 = 1 is isomorphic to one of the groups
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Z2, Z4, Z6 and Z2 ×Z. Also, we show that the set of all integer solutions of the
Pell’s equation as an Abelian group is isomorphic to Z2 × Z.

Throughout this paper, for each element g of a given group (G, ∗) we denote
the order of g by o(g). Also, for each subgroup H of G we denote the order of
H by |H|. For any unexplained notation and terminology, we refer to [1] and
[2].

2. The results

We start this section with the following theorem.

Theorem 2.1. Let (R,+, ·) be a commutative ring with the identity element 1R

and η, ξ be two arbitrary elements of R. Set

G(R, η, ξ) :=
{
(a, b) ∈ R×R : a2 + ηab+ ξb2 = 1R

}
.

Define the binary operation ∗ on G(R, η, ξ) as (a, b) ∗ (c, d) := (ac − ξbd, bc +
ad+ ηbd), for each (a, b), (c, d) ∈ G(R, η, ξ). Then, (G(R, η, ξ), ∗) is an Abelian
group with the identity element e = (1R , 0R) such that (a, b)−1 = (a + ηb,−b),
for each (a, b) ∈ G(R, η, ξ).

Proof. For each g = (a, b), g′ = (c, d) ∈ G(R, η, ξ), by the definition we have

a2 + ηab+ ξb2 = 1R = c2 + ηcd+ ξd2.

Therefore,

1R = (1R)(1R)

= (a2 + ηab+ ξb2)(c2 + ηcd+ ξd2)

= (ac− ξbd)2 + η(ac− ξbd)(bc+ ad+ ηbd) + ξ(bc+ ad+ ηbd)2,

which shows that g ∗ g′ = (ac− ξbd, bc+ ad+ ηbd) ∈ G(R, η, ξ).
We show that ∗ is associative. For each g = (a, b), g′ = (c, d), g′′ = (u, v) ∈

G(R, η, ξ), one sees that

(g ∗ g′) ∗ g′′ = (ac− ξbd, bc+ ad+ ηbd) ∗ (u, v)
= (r, s)

= (a, b) ∗ (cu− ξdv, du+ cv + ηdv)

= g ∗ (g′ ∗ g′′),

where

r = (ac− ξbd)u− ξ(bc+ ad+ ηbd)v

= acu− ξbdu− ξbcv − ξadv − ξηbdv

= acu− ξadv − ξbdu− ξbcv − ξηbdv

= a(cu− ξdv)− ξb(du+ cv + ηdv),
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and

s = (bc+ ad+ ηbd)u+ (ac− ξbd)v + η(bc+ ad+ ηbd)v

= bcu+ adu+ ηbdu+ acv − ξbdv + ηbcv + ηadv + η2bdv

= bcu− ξbdv + adu+ acv + ηadv + ηbdu+ ηbcv + η2bdv

= b(cu− ξdv) + a(du+ cv + ηdv) + ηb(du+ cv + ηdv).

Moreover, for each g = (a, b), g′ = (c, d) ∈ G(R, η, ξ), it is clear that

g ∗ g′ = (ac− ξbd, bc+ ad+ ηbd) = (ca− ξdb, cb+ da+ ηdb) = g′ ∗ g.

Hence, the binary operation ∗ is commutative.
Also, for each g = (a, b) ∈ G(R, η, ξ), we see that

e ∗ g = g = g ∗ e,

where e = (1R , 0R). So e is the identity element of G(R, η, ξ) with respect to
the binary operation ∗.

Let g = (a, b) ∈ G(R, η, ξ) and put h = (c, d) := (a + ηb,−b). By the
definition from the assumption g = (a, b) ∈ G(R, η, ξ) it follows that a2 + ηab+
ξb2 = 1R , and so

c2 + ηcd+ ξd2 = (a+ ηb)2 + η(−b)(a+ ηb) + ξ(−b)2

= a2 + 2ηab+ η2b2 − ηab− η2b2 + ξb2

= a2 + ηab+ ξb2 = 1R .

Therefore, h = (c, d) ∈ G(R, η, ξ). Also, we have

ac− ξbd = a(a+ ηb)− ξb(−b) = a2 + ηab+ ξb2 = 1R ,

and

bc+ ad+ ηbd = b(a+ ηb) + a(−b) + ηb(−b) = ab+ ηb2 − ab− ηb2 = 0R .

Thus, h = (c, d) = (a+ ηb,−b) is an element of G(R, η, ξ) such that

h ∗ g = g ∗ h = (ac− ξbd, bc+ ad+ ηbd) = (1R , 0R) = e.

Hence, every element g = (a, b) ∈ G(R, η, ξ) has an inverse in G(R, η, ξ) and
g−1 = (a+ ηb,−b)

Now, we are ready to deduce that (G(R, η, ξ), ∗) is an Abelian group with
the identity element e = (1R , 0R).

The following lemma is needed in the proof of Lemma 2.3.

Lemma 2.1. Let (R,+, ·) be a commutative ring with an identity element and
η, ξ be two arbitrary elements of R. Then, for each g = (a, b) ∈ G(R, η, ξ) and
each integer k ≥ 2, there are elements uk, vk ∈ R such that

gk = (ak + ukb
2, kbak−1 + vkb

2).
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Proof. We use induction on k. Since for k = 2 we have

g2 = g ∗ g = (a2 − ξb2, 2ab+ ηb2),

it is clear that the elements u2 = −ξ and v2 = η satisfy the desired condition.
Now, let k > 2 and assume that the result has been proved for k − 1. Then, by
inductive assumption there are elements uk−1, vk−1 ∈ R such that

gk−1 = (ak−1 + uk−1b
2, (k − 1)bak−2 + vk−1b

2).

Therefore,

gk = g ∗ gk−1

= (a, b) ∗ (ak−1 + uk−1b
2, (k − 1)bak−2 + vk−1b

2)

= (ak + ukb
2, kbak−1 + vkb

2),

where

uk = auk−1−ξbvk−1−ξ(k−1)ak−2, and vk = buk−1+(a+ηb)vk−1+η(k−1)ak−2.

This completes the inductive step.

In the sequel for each pair of integers m and n let (Bm,n, ∗) denote the
Abelian group (G(Z,m, n), ∗). The remainder of this section will be devoted to
a discussion about the basic properties of the Abelian groups (Bm,n, ∗), where
m,n ∈ Z.

Lemma 2.2. Let m and n be two integers. Then, the following statements hold:

i) Suppose that g = (a, b) ∈ Bm,n. Then, o(g) = 2 if and only if g = (−1, 0).

ii) Assume that g = (a, b) ∈ Bm,n is an element of finite order k for some
k ≥ 3. Then, b divides k.

iii) Let p be a prime integer. If there is an element g = (a, b) ∈ Bm,n of order
p, then either p = 2 or p = 3.

Proof. (i) If o(g) = 2, then it is clear that (a, b) = g = g−1 = (a + mb,−b).
Hence, b = 0 and g = (a, 0). Since

(1, 0) = e = g2 = (a, 0) ∗ (a, 0) = (a2, 0),

we see that a = ±1. Also, from the hypothesis o(g) = 2, we get g ̸= (1, 0),
which implies that a = −1 and g = (−1, 0). Conversely, if g = (−1, 0) ∈ Bm,n,
then we see that o(g) = 2. Thus, o(g) = 2 if and only if g = (−1, 0).

(ii) We claim that b ̸= 0. Assume the opposite. Then, g = (a, 0) and so

(1, 0) = e = gk = (ak, 0).
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Hence, a = ±1 and so g = e or g = (−1, 0). Thus, g2 = e and so k = o(g) ≤ 2,
which is a contradiction. By the definition we have gk = e = (1, 0) and by
Lemma 2.2 there are elements u, v ∈ Z such that

gk = (ak + ub2, kbak−1 + vb2).

Therefore, kbak−1+vb2 = 0. Since a2+mab+nb2 = 1, it is clear that the integers
a and b are relatively prime and so the integers ak−1 and b are relatively prime
as well. Also, from the assumption b ̸= 0 and the relation kbak−1 + vb2 = 0, we
can deduce that kak−1 = −vb. Therefore, b divides k.

(iii) Assume the opposite. Then, there is a prime integer p > 3 such that
o(g) = p for some element g = (a, b) ∈ Bm,n. We claim that b = ±1. Assume
the opposite. Then, we have b ̸= ±1. By (ii) we know that b divides p. Since
p is a prime integer and b ̸= ±1, it is concluded that b = ±p. Furthermore, by
Lemma 2.2 there are integers u′, v′ such that

(1, 0) = e = gp = (ap + u′b2, pbap−1 + v′b2) = (ap + p2u′,±p2ap−1 + p2v′).

From the relation ap + p2u′ = 1 it follows that ap is congruent to 1 (mod p).
Also, by Fermat’s Theorem we know that ap is congruent to a (mod p). Thus, a
is congruent to 1 (mod p) and hence 2a is congruent to 2 (mod p). Furthermore,
since p is an odd prime it can be seen that the following element

g2 = (a2 − nb2, 2ab+mb2) = (a2 − p2n,±2pa+ p2m),

is of order p as well. Now, if ±2pa + p2m ̸= ±1 then by the same argument it
follows that

±2pa+ p2m = ±p.

Consequently, ±2a + mp = ±1. Therefore, 2a is congruent to ±1 (mod p).
Thus, 2 is congruent to ±1 (mod p). Hence, we must have p = 3, which is a
contradiction. Therefore, ±2pa + p2m = ±1. So, we have p(±2a + pm) = ±1.
Hence, p = ±1, which is a contradiction. Therefore, g = (a, b) = (a,±1) and
b2 = 1. Moreover, since the element g2 = (a2 − nb2, 2ab+mb2) = (a2 − n, 2ab+
m) ∈ Bm,n is of order p, by the same argument we see that 2ab + m = ±1.
Hence, ab = −1−m

2 or ab = 1−m
2 . By using the assumption b = ±1, from these

relations we obtain

(a, b) ∈
{
(
−1−m

2
, 1), (

1 +m

2
,−1), (

1−m

2
, 1), (

−1 +m

2
,−1)

}
.

Hence, there are at most four elements g = (a, b) of order p in Bm,n. Clearly,
all of the p− 1 distinct elements g, g2, ..., gp−1 are of order p. This observation
shows that the only possible case is p = 5. Also, in this situation the set{
(−1−m

2 , 1), (1+m2 ,−1), (1−m2 , 1), (−1+m
2 ,−1)

}
is a subset of Bm,n and all of its

elements are of order p. Set h = (u, v) := (−1−m
2 , 1) and t := (−1, 0). Then,

we have h, t ∈ Bm,n and t ∗ h = (1+m2 ,−1). Therefore, o(h) = o(t ∗ h) = p.
Hence, tp = tp ∗ e = tp ∗ hp = (t ∗ h)p = e. Therefore, o(t) divides p, which is a
contradiction since o(t) = 2 and p > 3 is a prime integer.
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The following lemma and its corollary will be quite useful in this paper.

Lemma 2.3. Let m and n be two integers. If H is a finite subgroup of Bm,n,
then there are non-negative integers α and β such that |H| = 2α × 3β.

Proof. Assume the opposite. Then, there is a prime integer p > 3 such that p
divides |H|. So, in view of Cauchy’s Theorem, (see [3]), the group H contains
an element h of order p. But, by Lemma 2.3 this is a contradiction.

Corollary 2.1. Let m and n be two integers. If g ∈ Bm,n is an element of finite
order, then there are non-negative integers α and β such that o(g) = 2α × 3β.

Proof. Let H := ⟨g⟩. Then, H is a subgroup of Bm,n with |H| = o(g) < ∞.
Now the assertion follows from Lemma 2.4.

The following lemmas are of assistance in the proof of Theorem 2.14.

Lemma 2.4. Let m and n be two integers. Then, each finite 2-subgroup of
Bm,n is cyclic.

Proof. Assume the opposite. Then, there is a finite 2-subgroup H of Bm,n such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

H ≃
k∏
i=1

Z2ℓi ,

for some positive integers ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk with the property |H| = 2ℓ1+ℓ2+···+ℓk

and k ≥ 2. Furthermore, in this situation H has a subgroup K such that

K ≃
k∏
i=1

Z2.

Thus, K contains exactly 2k − 1 distinct elements of order 2. Since k ≥ 2
it follows that Bm,n contains at least 3 distinct elements of order 2. But, by
Lemma 2.3 there is precisely one element g = (a, b) ∈ Bm,n with o(g) = 2, which
is a contradiction.

Lemma 2.5. Let m and n be two integers. Then, each finite 3-subgroup of
Bm,n is cyclic.

Proof. Assume the opposite. Then, there is a finite 3-subgroup H of Bm,n such
that H is not cyclic. Therefore, by the Fundamental Theorem of Finite Abelian
Groups we have

H ≃
k∏
i=1

Z3ℓi ,
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for some positive integers ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓk with the property |H| = 3ℓ1+ℓ2+···+ℓk

and k ≥ 2. Furthermore, in this situation H has a subgroup K such that

K ≃
k∏
i=1

Z3.

Thus, K contains exactly 3k − 1 distinct elements of order 3. Since k ≥ 2
it follows that Bm,n has at least 8 distinct elements of order 3. Assume that
g = (a, b) ∈ Bm,n is an element of order 3. Then, by Lemma 2.3 we know that
b divides 3. Hence, b ∈ {±1,±3}. Moreover, from the relation o(g) = 3, we get
g2 = g−1. Thus, (a2 − nb2, 2ab+mb2) = (a+mb,−b). So, 2ab+mb2 = −b, and
by using the hypothesis b ̸= 0, we obtain a = −1−mb

2 . This observation shows
that there are at most 4 distinct elements g = (a, b) ∈ Bm,n with o(g) = 3,
which is a contradiction.

Lemma 2.6. Let m and n be two integers. Then, each finite subgroup of Bm,n

is cyclic.

Proof. Let H be a finite subgroup of Bm,n. Then, by Lemma 2.4 there are
non-negative integers α and β such that |H| = 2α × 3β. Let P and Q denote
the Sylow 2-subgroup and the Sylow 3-subgroup of H respectively. Then, by
Lemmas 2.6 and 2.7, P and Q are cyclic groups. Therefore, from the relations
H = P ⊕Q and (|P |, |Q|) = 1, it is concluded that H is a cyclic group.

Corollary 2.2. Let m,n ∈ Z and k ∈ N. Then, Hk := {g ∈ Bm,n : gk = e}
is a finite subgroup of Bm,n. In particular, Sk := {g ∈ Bm,n : o(g) = k} is a
finite set.

Proof. Assume the opposite. Then, we can find a finite subgroup K of Hk with
|K| > k. Therefore, by Lemma 2.8, K is a cyclic group. So, there exists an
element g ∈ K such that K = ⟨g⟩. By the hypothesis we have gk = e and hence
|K| = o(g) ≤ k, which is a contradiction. Since Sk ⊆ Hk, we see that Sk is a
finite set as well.

Lemma 2.7. Let m,n ∈ Z and k ∈ N. Then, for each b ∈ Z there is at most
one integer a such that (a, b) ∈ Bm,n and o((a, b)) = k.

Proof. Assume that g = (a, b) ∈ Bm,n and o(g) = k. Then, by the definition
we have

(1, 0) = gk = (P (a, b,m, n), Q(a, b,m, n)),

for some polynomials P (X1, X2, X3, X4), Q(X1, X2, X3, X4) ∈ Z[X1, X2, X3, X4].
Since a2 = 1−mab−nb2, we can write P (a, b,m, n) = H1(b,m, n)+aH2(b,m, n)
and Q(a, b,m, n) = H3(b,m, n)+aH4(b,m, n), for some H1(X1, X2, X3), H2(X1,
X2, X3), H3(X1, X2, X3), H4(X1, X2, X3) ∈ Z[X1, X2, X3].

By Corollary 2.9, there are only a finite number of elements g ∈ Bm,n with
o(g) = k. Therefore, for each element b ∈ Z, there are only a finite number of
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integers a such that (a, b) ∈ Bm,n and o((a, b)) = k. This observation implies
that for each b ∈ Z, H2(b,m, n) ̸= 0 or H4(b,m, n) ̸= 0. So, we can find at
most one integer a such that H1(b,m, n) + aH2(b,m, n) = 1 and H3(b,m, n) +
aH4(b,m, n) = 0. Thus, for each b ∈ Z, there is at most one integer a such that
(a, b) ∈ Bm,n and o((a, b)) = k.

Let m and n be two integers. In the sequel, we will denote the torsion
subgroup of Bm,n by Tm,n. We recall that the torsion subgroup of Bm,n is
defined as:

Tm,n := {g ∈ Bm,n : o(g) < ∞}.

Lemma 2.8. Let m and n be two integers. Then, the following statements hold:

i) Let g1 = (a1, b1) ∈ Tm,n be an element of order 4. Then, b1 divides 2.

ii) Suppose that g2 = (a2, b2) ∈ Tm,n is an element of order 8. Then, b2 divides
2.

iii) Assume that g3 = (a3, b3) ∈ Tm,n is an element of order 6. Then, b3 divides
3.

iv) Let g4 = (a4, b4) ∈ Tm,n be an element of order 12. Then, b4 divides 3.

Proof. (i) By Lemma 2.3, b1 divides 4 and so b1 ̸= 0. Since o(g1) = 4, it is
clear that o(g21) = 2. Thus, by Lemma 2.3 we have g21 = (−1, 0). Hence, (a21 −
nb21, 2a1b1+mb21) = (−1, 0). So, from the relations b1 ̸= 0 and b1(2a1+mb1) = 0,
it follows that 2a1 +mb1 = 0. Since a21 +ma1b1 + nb21 = 1, it is clear that the
integers a1 and b1 are relatively prime. Therefore, the relation 2a1 = −mb1
shows that b1 divides 2.

(ii) Since o(g2) = 8, it is clear that o(g22) = 4. Also, the relation g22 =
(a22 − nb22, 2a2b2 + mb22) together with (i) implies that 2a2b2 + mb22 divides 2.
Since b2 divides 2a2b2 +mb22, it follows that b2 divides 2.

(iii) Since o(g3) = 6, it follows that o(g33) = 2. Thus, by Lemma 2.3 we have
g33 = (−1, 0). Put t := (−1, 0). Since o(g3) = 6, it can be seen that

(nb23 − a23,−2a3b3 −mb23) = t ∗ g23
= g33 ∗ g23
= g53

= g−1
3

= (a3 +mb3,−b3),

which shows that −2a3b3 − mb23 = −b3. By Lemma 2.3, b3 divides 6 and so
b3 ̸= 0. Thus, mb3 = −2a3 + 1 and hence 2 doesn’t divide b3. Therefore, b3
divides 3.

(iv) Since o(g4) = 12, it is clear that o(g24) = 6. Also, the relation g24 =
(a24 − nb24, 2a4b4 + mb24) together with (iii) implies that 2a4b4 + mb24 divides 3.
Since b4 divides 2a4b4 +mb24, it is concluded that b4 divides 3.
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Lemma 2.9. Let m and n be two integers. Then, the following statements hold:

i) Assume that g ∈ Tm,n is an element of order 2k for some k ∈ N0. Then,
k ≤ 2.

ii) Suppose that h ∈ Tm,n is an element of order 3k for some k ∈ N0. Then,
k ≤ 2.

Proof. (i) Assume the opposite. Then, we have o(g) = 2k for some k ≥ 3.

Therefore, o(g2
k−3

) = 8. By replacing g with g2
k−3

, we may assume that o(g) =
8. Let g1 = (a, b) ∈ Tm,n be an element of order 8. Then, by Lemma 2.11 we
see that b divides 2. Thus, b ∈ {±1,±2}. Since o(g) = 8, one sees that there
are exactly 4 distinct elements of order 8 in the subgroup ⟨g⟩ of Tm,n. Thus, by
Lemma 2.10 for each b ∈ {±1,±2} there is a unique integer a such that g1 =
(a, b) ∈ ⟨g⟩ and o(g1) = 8. Let g2 = (c, d) be an element of ⟨g⟩ with o(g2) = 4.
Then, by Lemma 2.11 we see that d divides 2. Hence, d ∈ {±1,±2}. So, there is
a unique integer a such that g3 = (a, d) ∈ ⟨g⟩ and o(g3) = 8. From the relations
a2 +mad + nd2 = 1 and c2 +mcd + nd2 = 1, we get (a − c)(a + c +md) = 0.
Since o(g2) = 4 and o(g3) = 8, it follows that g2 ̸= g3 and so a ̸= c. Thus,
from the relations a − c ̸= 0 and (a − c)(a + c +md) = 0, it is concluded that
a+ c+md = 0. Therefore, g−1

3 = (a+md,−d) = (−c,−d) = (−1, 0) ∗ g2, which
implies that (g−1

3 )4 = (−1, 0)4 ∗ g42 = e. Hence, 8 = o(g3) = o(g−1
3 ) ≤ 4, which

is a contradiction.
(ii) Assume the opposite. So, we have o(h) = 3k for some k ≥ 3. Hence,

o(h3
k−3

) = 27. By replacing h with h3
k−3

, we my assume that o(h) = 27. Let
h1 = (r, s) ∈ Tm,n be an element of order 27. Then, by Lemma 2.3 we see
that s divides 27. Hence, s ∈ {±1,±3,±9,±27}. Therefore, by Lemma 2.10
there are at most 8 elements h1 = (r, s) ∈ Tm,n with the property o(h1) = 27.
Since o(h) = 27, one sees that there are exactly 18 elements of order 27 in the
subgroup ⟨h⟩ of Tm,n, which is a contradiction.

Lemma 2.10. Let m and n be two integers. Suppose that h ∈ Tm,n is an
element of order 3k for some k ∈ N0. Then, k ≤ 1.

Proof. Assume the opposite. Since by Lemma 2.12 we have k ≤ 2, it follows
that k = 2. Let h1 = (a, b) ∈ Tm,n be an element of order 9. Then, by Lemma
2.3 we see that b divides 9. Hence, b ∈ {±1,±3,±9}. Since o(h) = 9, one sees
that there are exactly 6 elements of order 9 in the subgroup ⟨h⟩ of Tm,n. Thus, by
Lemma 2.10 for each b ∈ {±1,±3,±9} there is a unique integer a such that h1 =
(a, b) ∈ ⟨h⟩ and o(h1) = 9. Let h2 = (c, d) be an element of ⟨h⟩ with o(h2) = 3.
Then, by Lemma 2.3 we see that d divides 3. Hence, d ∈ {±1,±3}. So, there is
a unique integer a such that h3 = (a, d) ∈ ⟨h⟩ and o(h3) = 9. From the relations
a2 +mad + nd2 = 1 and c2 +mcd + nd2 = 1, we get (a − c)(a + c +md) = 0.
Since o(h2) = 3 and o(h3) = 9, it follows that h2 ̸= h3 and so a ̸= c. Thus,
from the relations a − c ̸= 0 and (a − c)(a + c +md) = 0, it is concluded that
a+ c+md = 0. Therefore, h−1

3 = (a+md,−d) = (−c,−d) = (−1, 0)∗h2, which
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implies that (h−1
3 )6 = (−1, 0)6 ∗ h62 = e. Hence, 9 = o(h3) = o(h−1

3 ) ≤ 6, which
is a contradiction.

The following result plays a key role in the proof of our main theorem.

Theorem 2.2. Let m and n be two integers. Then, the Abelian group Tm,n is
isomorphic to Zk for some k ∈ {2, 4, 6}.

Proof. We claim that |Tm,n| ≤ 12. Assume the opposite. Then, we have
|Tm,n| > 12. Therefore, we can find a finite subgroup H of Tm,n with |H| > 12.
By Lemma 2.8, H is a cyclic group. Thus, there is an element g1 ∈ H with
H = ⟨g1⟩. In view of Corollary 2.5, there are integers α1, β1 ∈ N0 such that
o(g1) = 2α1 × 3β1 . Since 2α1 × 3β1 = o(g1) = |H| > 12 = 22 × 3, we can deduce
that α1 ≥ 3 or β1 ≥ 2. Moreover, it is clear that

o(g2
α1

1 ) = 3β1 and o(g3
β1

1 ) = 2α1 .

Therefore, by Lemma 2.12 and Lemma 2.13 we get α1 ≤ 2 and β1 ≤ 1, which is
a contradiction. So, we have |Tm,n| ≤ 12. Hence, by Lemma 2.8 it is concluded
that Tm,n is a cyclic subgroup of Bm,n. Therefore, there exists an element g2 ∈
Tm,n with Tm,n = ⟨g2⟩. In view of Corollary 2.5, there are integers α2, β2 ∈ N0

such that o(g2) = |Tm,n| = 2α2 × 3β2 . Since

o(g2
α2

2 ) = 3β2 and o(g3
β2

2 ) = 2α2 ,

by Lemma 2.12 and Lemma 2.13 we can deduce that α2 ≤ 2, β2 ≤ 1 and
so |Tm,n| divides 12. Since the element t = (−1, 0) ∈ Tm,n is of order 2, it
follows that 2 divides |Tm,n|. Therefore, |Tm,n| ∈ {2, 4, 6, 12}. We claim that
|Tm,n| ≠ 12. Assume the opposite. Then, there exists an element h ∈ Tm,n
such that Tm,n = ⟨h⟩ and o(h) = 12. Let h1 = (a, b) ∈ ⟨h⟩ be an element of
order 12. Then, by Lemma 2.11 we see that b divides 3. Hence, b ∈ {±1,±3}.
Since o(h) = 12, one sees that there are exactly 4 distinct elements of order
12 in the group ⟨h⟩ = Tm,n. Thus, by Lemma 2.10 for each b ∈ {±1,±3}
there is a unique integer a such that h1 = (a, b) ∈ ⟨h⟩ and o(h1) = 12. Let
h2 = (c, d) be an element of ⟨h⟩ with o(h2) = 6. Then, by Lemma 2.11 we see
that d divides 3. Hence, d ∈ {±1,±3}. So, there is a unique integer a such
that h3 = (a, d) ∈ ⟨h⟩ and o(h3) = 12. From the relations a2 +mad + nd2 = 1
and c2 + mcd + nd2 = 1, we get (a − c)(a + c + md) = 0. Since o(h2) = 6
and o(h3) = 12, it follows that h2 ̸= h3 and so a ̸= c. Thus, from the relations
a − c ̸= 0 and (a − c)(a + c + md) = 0, it is concluded that a + c + md = 0.
Therefore, h−1

3 = (a + md,−d) = (−c,−d) = (−1, 0) ∗ h2, which implies that
(h−1

3 )6 = (−1, 0)6 ∗ h62 = e. Hence, 12 = o(h3) = o(h−1
3 ) ≤ 6, which is a

contradiction. Therefore, Tm,n is a finite cyclic group with |Tm,n| ∈ {2, 4, 6}.
Consequently, Tm,n is isomorphic to Zk for some k ∈ {2, 4, 6}, as required.

The following auxiliary lemmas are needed in the proof of Theorem 2.20.
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Lemma 2.11. Let m and n be two integers and set δ := m2 − 4n. If δ < 0,
then the Abelian group Bm,n is isomorphic to Zk for some k ∈ {2, 4, 6}.

Proof. By Theorem 2.14 it is enough to prove that Bm,n = Tm,n. Also, in order
to prove this assertion, it suffices for us to prove that Bm,n is a finite group.
Assume that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+nb2 = 1.
Therefore, (2a+mb)2 − δb2 = 4(a2 +mab+ nb2) = 4. Hence,

0 ≤ (2a+mb)2 ≤ (2a+mb)2−δb2 = 4, and 0 ≤ b2 ≤ −δb2 ≤ (2a+mb)2−δb2 = 4.

Therefore, {2a+mb, b}⊆{0,±1,±2}. Thus, Bm,n is a finite group, as required.

Lemma 2.12. Let m and n be two integers and set δ := m2 − 4n. If δ = 0,
then the Abelian group Bm,n is isomorphic to Z2 × Z.

Proof. Assume that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+
nb2 = 1. Therefore, (2a +mb)2 = (2a +mb)2 − δb2 = 4(a2 +mab + nb2) = 4.
Hence, 2a+mb = ±2 and so (a, b) is a solution to one of the two-variable linear
Diophantine equations 2x +my = 2 or 2x +my = −2. By solving these linear
Diophantine equations we obtain, (a, b) = (±1 + mk

µ , −2k
µ ) ∈ Bm,n, where k ∈ Z

and µ is the greatest common divisor of the integers 2 and m.
Set t := (−1, 0) and g := (1 + m

µ ,
−2
µ ). Then, by using induction on k and

applying the relation m2 − 4n = 0, it can be seen that

gk = (1 +
mk

µ
,
−2k

µ
), and g−k = (1− mk

µ
,
2k

µ
),

for each k ∈ N. Therefore, gk = (1+ mk
µ , −2k

µ ) and t ∗ g−k = (−1+ mk
µ , −2k

µ ), for
each k ∈ Z. Hence,

Bm,n =

{
(±1 +

mk

µ
,
−2k

µ
) : k ∈ Z

}
=
{
tℓ ∗ gk : ℓ, k ∈ Z

}
= ⟨t⟩ ∗ ⟨g⟩.

Furthermore, from the relations o(g) = ∞ and o(t) = 2, we can deduce that
⟨t⟩ ∩ ⟨g⟩ = {e}. Therefore, Bm,n = ⟨t⟩ ⊕ ⟨g⟩ ≃ Z2 × Z, as required.

Lemma 2.13. Let m and n be two integers and set δ := m2 − 4n. If δ is a
positive perfect square integer, then the Abelian group Bm,n is isomorphic to Z2.

Proof. By assumption there is a positive integer λ such that m2−4n = δ = λ2.
Suppose that (a, b) ∈ Bm,n. Then, by the definition we have a2+mab+nb2 = 1.
Therefore,

(2a+mb+ λb)(2a+mb− λb) = (2a+mb)2 − δb2 = 4(a2 +mab+ nb2) = 4.

In fact, there are precisely six cases. In the following four cases:
Case 1. 2a+mb+ λb = 1 and 2a+mb− λb = 4.
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Case 2. 2a+mb+ λb = 4 and 2a+mb− λb = 1.
Case 3. 2a+mb+ λb = −1 and 2a+mb− λb = −4.
Case 4. 2a+mb+λb = −4 and 2a+mb−λb = −1, we see that 2a+mb = ±5

2 ,
contradicting the fact that 2a + mb is an integer. Also, in the following two
remainder cases,
Case 5. 2a +mb + λb = 2 and 2a +mb − λb = 2, Case 6. 2a +mb + λb = −2
and 2a + mb − λb = −2, we see that (a, b) = (±1, 0). Therefore, Bm,n =
{(1, 0), (−1, 0)} ≃ Z2, as required.

Recall that Pell’s equation, also called the Pell-Fermat equation, is any Dio-
phantine equation of the form x2−ny2 = 1, where n is a given positive nonsquare
integer. It is well-known that Pell’s equation has a infinite solutions. Also, this
equation has a solution (a1, b1) with a1 ≥ 1 and b1 ≥ 1 which has some special
properties and is called the fundamental solution. Furthermore, once the funda-
mental solution is found, all remaining solutions may be calculated algebraically
from

ak + bk
√
n = (a1 + b1

√
n)k,

expanding the right side, equating coefficients of
√
n on both sides, and equating

the other terms on both sides. This yields the recurrence relation

(ak+1, bk+1) = (a1ak + nb1bk, a1bk + b1ak).

In this situation, the set of all solutions of the equation x2−ny2 = 1 is equal to

{(±1, 0)} ∪ {(±ak,±bk) : k ∈ N}.

For more details see [1]. In order to establish our next lemma, we use a proof
similar to the proof of [1, p. 180, Theorem 7].

Lemma 2.14. Let m and n be two integers and set δ := m2 − 4n. If δ is a
positive nonsquare integer, then the Abelian group Bm,n is isomorphic to Z2×Z.

Proof. Let (u1, v1) denote the fundamental solution of the Pell’s equation x2−
δy2 = 1. Set (α, β) := (u1−mv1, 2v1). Then, it is easy to see that (α, β) ∈ Bm,n,

α+ mβ
2 = u1 > 0 and β

2 = v1 > 0. Set M := α+ mβ
2 + β

2

√
δ. If (α′, β′) ∈ Bm,n

is an element such that α′ + mβ′

2 > 0 and β′

2 > 0, then the condition

α′ +
mβ′

2
+

β′

2

√
δ ≤ M,

implies that α′+ mβ′

2 ≤ M and β′

2 ≤ M . Therefore, 1 ≤ β′ ≤ 2M and −|m|M ≤
α′ ≤ (1 + |m|)M . Thus, in particular, there are only finitely many choices for
the integers α′ and β′. Let us choose g = (a1, b1) ∈ Bm,n for which a1+

mb1
2 > 0,

b1
2 > 0 and a1+

mb1
2 + b1

2

√
δ is least. This is possible since there are only finitely

many elements (α′, β′) ∈ Bm,n such that α′ + mβ′

2 > 0 and β′

2 > 0, and

α′ +
mβ′

2
+

β′

2

√
δ ≤ M.
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For each positive integer k, define ak and bk by

(2.1) ak +
mbk
2

+
bk
2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)k
.

Indeed, since by the hypothesis δ is a positive nonsquare integer, we see that
√
δ

is an irrational number. Therefore, for each positive integer k, the elements ak
and bk can be calculated algebraically from (2.18.1), expanding the right side,
equating coefficients of

√
δ on both sides, and equating the other terms on both

sides.
By using induction on k, we prove that ak +

mbk
2 > 0, bk2 > 0 and (ak, bk) =

gk ∈ Bm,n, for each k ∈ N. For k = 1 the assertion holds by the hypoth-
esis. Now, let k > 1 and assume that the result has been proved for k − 1.
Then, by inductive assumption we know that ak−1 +

mbk−1

2 > 0,
bk−1

2 > 0 and

(ak−1, bk−1) = gk−1 ∈ Bm,n. By using the fact that
√
δ is an irrational number,

from the relations

ak +
mbk
2

+
bk
2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)k
=

(
a1 +

mb1
2

+
b1
2

√
δ

)(
a1 +

mb1
2

+
b1
2

√
δ

)k−1

=

(
a1 +

mb1
2

+
b1
2

√
δ

)(
ak−1 +

mbk−1

2
+

bk−1

2

√
δ

)
,

we obtain, bk = a1bk−1 + b1ak−1 +mb1bk−1 and

ak +
mbk
2

= a1ak−1 +
m(a1bk−1 + b1ak−1)

2
+

m2b1bk−1

4
+

δb1bk−1

4

= a1ak−1 +
m(a1bk−1 + b1ak−1)

2
+

m2b1bk−1

4
+

(m2 − 4n)b1bk−1

4

= a1ak−1 − nb1bk−1 +
m(a1bk−1 + b1ak−1 +mb1bk−1)

2

= a1ak−1 − nb1bk−1 +
mbk
2

,

which implies that ak = a1ak−1 − nb1bk−1. Thus,

(ak, bk) = (a1ak−1 − nb1bk−1, a1bk−1 + b1ak−1 +mb1bk−1) = g ∗ gk−1 = gk.

Also, the relations

bk
2

=

(
a1 +

mb1
2

)(
bk−1

2

)
+

(
ak−1 +

mbk−1

2

)(
b1
2

)
,

and

ak +
mbk
2

=

(
a1 +

mb1
2

)(
ak−1 +

mbk−1

2

)
+ δ

(
b1
2

)(
bk−1

2

)
,
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together with the hypothesis a1 +
mb1
2 > 0, ak−1 +

mbk−1

2 > 0, b12 > 0,
bk−1

2 > 0,

and δ > 0, imply that ak +
mbk
2 > 0 and bk

2 > 0. This completes the inductive
step.

We claim that o(g) = ∞. Assume the opposite and let o(g) = j < ∞. Then,
we see that gj = (aj , bj) = (1, 0). Therefore, bj = 0, which is impossible since
bj
2 > 0. Thus, o(g) = ∞ and so the cyclic subgroup ⟨g⟩ of Bm,n is isomorphic
to Z.

Let h = (a′, b′) ∈ (Bm,n \ Tm,n). Then, by the definition we have o(h) = ∞.
Set t = (−1, 0) ∈ Bm,n. Since o(t) = 2, it is clear that t ∈ Tm,n. Also, from the
assumption o(h) = ∞ it follows that b′ ̸= 0 and the elements h, h−1, t∗h, t∗h−1

are different. Therefore, the relation{
h, h−1, t ∗ h, t ∗ h−1

}
=
{
(a′, b′), (a′ +mb′,−b′), (−a′,−b′), (−a′ −mb′, b′)

}
,

implies that 2a′ +mb′ ̸= 0 and hence a′ + mb′

2 ̸= 0. Since{
(u+

mv

2
,
v

2
) : (u, v) ∈

{
h, h−1, t ∗ h, t ∗ h−1

}}
=

{
(±(a′ +

mb′

2
),±b′

2
)

}
,

we can find an element (a, b) ∈ {h, h−1, t ∗ h, t ∗ h−1} such that a+ mb
2 > 0 and

b
2 > 0. We show that (a, b) = gℓ for some ℓ ∈ N.

Since (a1, b1) was chosen as the element of Bm,n for which a1 +
mb1
2 > 0,

b1
2 > 0 and a1 +

mb1
2 + b1

2

√
δ is least, we see that

(2.2) a1 +
mb1
2

+
b1
2

√
δ ≤ a+

mb

2
+

b

2

√
δ.

We assert that there is a positive integer ℓ such that

(2.3)

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ
≤ a+

mb

2
+

b

2

√
δ <

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ+1

.

Since by the hypothesis δ is a positive nonsquare integer, it follows that δ ≥ 2.
Therefore, by using the hypothesis a1 +

mb1
2 > 0 and b1

2 > 0, one sees that

a1 +
mb1
2

+
b1
2

√
δ =

2a1 +mb1
2

+
b1
2

√
δ ≥ 1

2
+

1

2

√
δ ≥ 1

2
+

1

2

√
2 >

1

2
+

1

2
= 1.

Thus, a1 +
mb1
2 + b1

2

√
δ > 1 and hence the powers of a1 +

mb1
2 + b1

2

√
δ, became

arbitrary large. So, there is a largest value of ℓ for which(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ
≤ a+

mb

2
+

b

2

√
δ.

Furthermore, by the relation (2.18.2) we know that this largest value of ℓ is
at least 1. Moreover, it is clear that this largest value of ℓ forces (2.18.3) to
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hold. Let us multiply (2.18.3) by (a1 +
mb1
2 − b1

2

√
δ)ℓ, which is positive since

a1 +
mb1
2 + b1

2

√
δ > 0 and(

a1 +
mb1
2

− b1
2

√
δ

)(
a1 +

mb1
2

+
b1
2

√
δ

)
= a21 +ma1b1 + nb21 = 1.

Then, we see that

(2.4) 1 ≤
(
a+

mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
< a1 +

mb1
2

+
b1
2

√
δ.

Since g = (a1, b1), g
ℓ = (aℓ, bℓ) ∈ Bm,n, one sees that(

aℓ +
mbℓ
2

+
bℓ
2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
=

(
aℓ +

mbℓ
2

)2

− δ

(
bℓ
2

)2

= a2ℓ +maℓbℓ + nb2ℓ = 1,

and (
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
=

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
=

((
a1 +

mb1
2

+
b1
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

))ℓ
=

((
a1 +

mb1
2

)2

− δ

(
b1
2

)2
)ℓ

=
(
a21 +ma1b1 + nb21

)ℓ
= 1ℓ = 1.

Therefore, (
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
= 1

=

(
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
,

and so (
a1 +

mb1
2

− b1
2

√
δ

)ℓ
= aℓ +

mbℓ
2

− bℓ
2

√
δ.

Set c := aaℓ +mabℓ + nbbℓ, and d := baℓ − abℓ. Obviously, c, d ∈ Z. Also, it
is straightforward to see that

c+
md

2
=

(
a+

mb

2

)(
aℓ +

mbℓ
2

)
− δ

(
b

2

)(
bℓ
2

)
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and
d

2
=

(
b

2

)(
aℓ +

mbℓ
2

)
−
(
a+

mb

2

)(
bℓ
2

)
.

So, we have(
a+

mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
=

(
a+

mb

2
+

b

2

√
δ

)(
aℓ +

mbℓ
2

− bℓ
2

√
δ

)
= c+

md

2
+

d

2

√
δ.

Moreover, it is easy to see that(
a+

mb

2
− b

2

√
δ

)(
aℓ +

mbℓ
2

+
bℓ
2

√
δ

)
= c+

md

2
− d

2

√
δ.

By using these relations it can be seen that

c2 +mcd+ nd2 =

(
c+

md

2

)2

− δ

(
d

2

)2

=

((
a+

mb

2

)2

− δ

(
b

2

)2
)((

aℓ +
mbℓ
2

)2

− δ

(
bℓ
2

)2
)

=
(
a2 +mab+ nb2

) (
a2ℓ +maℓbℓ + nb2ℓ

)
= (1)(1) = 1.

Therefore, (c, d) ∈ Bm,n. Furthermore, (2.18.4) asserts that

(2.5) 1 ≤ c+
md

2
+

d

2

√
δ < a1 +

mb1
2

+
b1
2

√
δ.

We claim that (c, d) = (1, 0). Assume the opposite. If d = 0, then from the
relation c2 + mcd + nd2 = 1 we get c = ±1 and so, by (2.18.5) it follows that
c = 1. Thus, (c, d) = (1, 0) which is a contradiction. Also, if c + md

2 = 0, then
from the relation (

c+
md

2

)2

− δ

(
d

2

)2

= 1,

we can deduce −δ
(
d
2

)2
= 1 and so δ < 0, which is a contradiction. Hence, d ̸= 0

and c+ md
2 ̸= 0. In this situation we claim that c+ md

2 + d
2

√
δ ≤ 1. Assume the

opposite. Then, we have c+ md
2 + d

2

√
δ > 1. Let us consider the following three

cases:
Case 1. c+ md

2 < 0 and d
2 < 0. Then, c+ md

2 + d
2

√
δ < 0, which contradicts the

assumption that c+ md
2 + d

2

√
δ > 1.

Case 2. c+ md
2 < 0 and d

2 > 0. Then

−
(
c+

md

2

)
+

d

2

√
δ > c+

md

2
+

d

2

√
δ > 1,
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and so

− 1 = −(c2 +mcd+ nd2) = δ

(
d

2

)2

−
(
c+

md

2

)2

=

(
−
(
c+

md

2

)
+

d

2

√
δ

)(
c+

md

2
+

d

2

√
δ

)
> 1,

which is absurd.
Case 3. c+ md

2 > 0 and d
2 < 0. Then

c+
md

2
− d

2

√
δ > c+

md

2
+

d

2

√
δ > 1,

and so

1 = c2 +mcd+ nd2 =

(
c+

md

2

)2

− δ

(
d

2

)2

=

(
c+

md

2
− d

2

√
δ

)(
c+

md

2
+

d

2

√
δ

)
> 1,

which is also absurd. Thus, the only possible case is c + md
2 > 0 and d

2 > 0.
However, if this is the case, then (2.18.5) contradicts the way in which (a1, b1)
was chosen. Therefore, we must have

c+
md

2
+

d

2

√
δ ≤ 1.

Then, (2.18.5) implies that

c+
md

2
+

d

2

√
δ = 1.

So, by using the fact that
√
δ is an irrational number, we can deduce that

(c, d) = (1, 0), which is a contradiction. Thus, we have (c, d) = (1, 0) and hence
c+ md

2 + d
2

√
δ = 1. Therefore,(

a+
mb

2
+

b

2

√
δ

)(
a1 +

mb1
2

− b1
2

√
δ

)ℓ
= 1.

Multiplying both sides of this equation by
(
a1 +

mb1
2 + b1

2

√
δ
)ℓ

, we see that

a+
mb

2
+

b

2

√
δ =

(
a1 +

mb1
2

+
b1
2

√
δ

)ℓ
= aℓ +

mbℓ
2

+
bℓ
2

√
δ.

Thus, by using the fact that
√
δ is an irrational number, we get (a, b) = (aℓ, bℓ) =

gℓ. Therefore, gℓ = (a, b) ∈ {h, h−1, t∗h, t∗h−1} and so h = trgs for some integers
r and s. Since t ∈ Tm,n, we see that h ∈ Tm,n ∗ ⟨g⟩. So,

(Bm,n \ Tm,n) ⊆ Tm,n ∗ ⟨g⟩.
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Hence,

Bm,n = (Bm,n \ Tm,n) ∪ Tm,n ⊆ Tm,n ∗ ⟨g⟩ ⊆ Bm,n,

which means that Bm,n = Tm,n ∗ ⟨g⟩. Also, by using the assumption o(g) = ∞,
we can deduce that Tm,n∩⟨g⟩ = {e}. Therefore, Bm,n = Tm,n⊕⟨g⟩. By Theorem
2.14 there exists an element θ ∈ Tm,n such that Tm,n = ⟨θ⟩. Set h′ := θ ∗ g.
Since h′ ∈ (Bm,n \ Tm,n), by the same argument we can find integers r′, s′ ∈ Z
such that θ ∗ g = h′ = tr

′ ∗ gs′ . Since Bm,n = Tm,n ⊕ ⟨g⟩ and θ, t ∈ Tm,n it is
concluded that θ = tr

′ ∈ ⟨t⟩. Therefore, Tm,n = ⟨θ⟩ ⊆ ⟨t⟩ ⊆ Tm,n, which means
that Tm,n = ⟨t⟩ = {e, t}. Thus, Bm,n = Tm,n ⊕ ⟨g⟩ = ⟨t⟩ ⊕ ⟨g⟩ ≃ Z2 × Z.

Corollary 2.3. Assume that n is a given positive nonsquare integer. Then, the
Abelian group of all integer solutions of the Pell’s equatuion x2 − ny2 = 1 is
isomorphic to Z2 × Z.

Proof. The assertion follows from Lemma 2.18.

We are now in a position to use the previous results to produce a proof of
our main theorem.

Theorem 2.3. Let m and n be two integers. Then, the Abelian group Bm,n is
isomorphic to one of the groups Z2, Z4, Z6 and Z2 × Z.

Proof. The assertion follows from Lemmas 2.15, 2.16, 2.17 and 2.18.

Example 2.4. (i) Assume that n > 0 is a given perfect square integer. Then,
by Lemma 2.17 we see that B0,−n = T0,−n = {(1, 0), (−1, 0)} ≃ Z2.

(ii) Assume that n is a given positive nonsquare integer. Then, by Corollary
2.19 we have B0,−n ≃ Z2 × Z and so T0,−n = {(1, 0), (−1, 0)} ≃ Z2.

(iii) Let g = (0, 1) ∈ B0,1 = {(1, 0), (−1, 0), (0, 1), (0,−1)}. Then, one can
see that o(g) = 4 and B0,1 = T0,1 = ⟨g⟩ ≃ Z4.

(iv) Let g = (0,−1) ∈ B−1,1. Then, it is easy to see that o(g) = 6 and so, by
Theorem 2.14 and Lemma 2.15 we can deduce that B−1,1 = T−1,1 = ⟨g⟩ ≃ Z6.

Remark 2.5. Let (R,+, ·) be a commutative ring with the identity element
and η, ξ, ζ be three arbitrary elements of R. Set

S(R, η, ξ, ζ) := {(u, v) ∈ R×R : u2 + ηuv + ξv2 = ζ}.

Assume that S(R, η, ξ, ζ) ̸= ∅ and (u, v) ∈ S(R, η, ξ, ζ). Then, for each (a, b) ∈
G(R, η, ξ) the element

(a, b) · (u, v) := (au− ξbv, bu+ av + ηbv),

belongs to S(R, η, ξ, ζ). In fact, by this definition the group G(R, η, ξ) acts on
the set S(R, η, ξ, ζ), provided that S(R, η, ξ, ζ) ̸= ∅.
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Abstract. In an interior GE-algebra, the concept of prominent interior GE-filter of
type 1 was introduced to serve as a generalization of prominent interior GE-filters.
However, there are some work need to be done for this goal. For example, the extension
property for prominent interior GE-filter of type 1 still remains unproved so there is an
open question on the extension property of such GE-filters need to be proved that ’Let
(X, f) be an interior GE-algebra. Let F and G be interior GE-filters in (X, f). If F ⊆ G
and F is a prominent interior GE-filter of type 1 in (X, f), then is G also a prominent
interior GE-filter of type 1 in (X, f)?’ In this paper, we propose the condition for an
interior GE-filter to be a prominent interior GE-filter of type 1 , then we prove the
extension property for prominent interior GE-filter of type 1 in an interior GE-algebra,
and thus the open question is solved.

Keywords: GE-algebra, GE-filter, prominent interior GE-filter of type 1, extension
property, open question.

1. Introduction

Henkin and Scolem introduced Hilbert algebra in the implication investigation
inintuitionistic logics and other non classical logics [1, 2, 3, 4, 5, 6, 7, 8]. Bandaru
et al. introduced GE-algebra as a generalization of Hilbert algebra, and studied
its properties [9]. Later some scholars studied interior operators on different
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algebraic structures, such as bounded residuated lattices, GMV -algebras and
GE-algebras, and thus different kinds of interior GE-algebras were introduced
[10, 11, 12, 13].

Filters theory plays a vital role not only in studying of algebraic structure,
but also in non classical logic computer science and logical semantics From
the aspect of logical point, filters correspond to various provable formulae sets
[14, 15]. Song et al. introduced the notions of an interior GE-filter, a weak
interior GE-filter and a belligerent interior GE-filter, and investigate their rela-
tions and properties [16]. They provided relations between belligerent interior
GE-filter and interior GE-filter and conditions for an interior GE-filter to be a
belligerent interior GE-filter is considered. Given a subset and an element, they
established an interior GE-filter, and they considered conditions for a subset
to be a belligerent interior GE-filter. They studied the extensibility of the bel-
ligerent interior GE-filter and established relationships between a weak interior
GE-filter and a belligerent interior GE-filter of type 1, type 2 and type 3. Rezaei
et al. [12]studied prominent GE-filters in GE algebras.

Afterwards, Song et al. introduced the concept of a prominent interior GE-
filter (of type 1 and type 2), and investigated their properties. The relationship
between a prominent GE-filter and a prominent interior GE-filter and the re-
lationship between an interior GE-filter and a prominent interior GE-filter are
discussed. Also conditions for an interior GE-filter to be a prominent interior
GE-filter are given and conditions under which an internal GE-filter larger than
a given internal GE-filter can become a prominent internal GE-filter are consid-
ered. The relationship between a prominent interior GE-filter and a prominent
interior GE-filter of type 1 is discussed [17].

After that, because of the lack of some properties for prominent interior GE-
filters of type 1 and of type 2 to serve as a generalization of prominent interior
GE-filters, [17] proposed an open question of prominent interior GE-filters of
type 1 and of type 2 in GE-algebras that “Let (X, f) be an interior GE-algebra.
Let F and G be interior GE-filters in (X, f). If F ⊆ G and F is a prominent
interior GE-filter of type 1 in (X, f), then is G also a prominent interior GE-filter
of type 1 in (X, f)?”

The motivation of this paper is to further study the prominent interior GE-
filter and solve the open question. We prove that in an interior GE-algebra,
every prominent interior GE-filter of type 1 is a GE-filters as a complement
of [17]. We propose the condition for an interior GE-filter to be a prominent
interior GE-filter of type 1. Based on this, we prove the extension property for
prominent interior GE-filter of type 1, and thus an open question on such GE-
filters of type 1 is solved. As an application, the proof method of the extension
property for prominent interior GE-filter of two types can improve the extension
theory for other filters in GE-algebras and enrich the generalization theory for
filter generation in other logic algebras.
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2. Preliminaries

Definition 2.1 ([9]). A GE-algebra is a non-empty set X with a constant 1 and
a binary operation ∗ satisfying the following axioms for all u, v, w ∈ X:

(GE1) u ∗ u = 1;
(GE2) 1 ∗ u = u;
(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w)).

In a GE-algebra X, a binary relation ≤ is defined by (∀x, y ⊆ X)(x ≤ y ⇔
x ∗ y = 1).

Definition 2.2 ([9]). A GE-algebra X is said to be transitive if it satisfies:

(∀x, y, z ∈ X)(x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)).

Proposition 2.1 ([9]). Every GE-algebra X satisfies the following items for
∀u, v, w ∈ X:

(1) u ∗ 1 = 1;
(2) u ∗ (u ∗ v) = u ∗ v;
(3) u ≤ v ∗ u;
(4) u ∗ (v ∗ w) ≤ v ∗ (u ∗ w);
(5) 1 ≤ u ⇒ u = 1;
(6) u ≤ (v ∗ u) ∗ u;
(7) u ≤ (u ∗ v) ∗ v;
(8) u ≤ v ∗ w ⇔ v ≤ u ∗ w.
If X is transitive, then:
(9) u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w;
(10) u ∗ v ≤ (v ∗ w) ∗ (u ∗ w).

Lemma 2.1 ([9]). In a GE-algebra X, the following facts are equivalent for
∀x, y, z ∈ X:

(1) x ∗ y ≤ (z ∗ x) ∗ (z ∗ y);
(2) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

Definition 2.3 ([9]). A subset F of a GE-algebra X is called a GE-filter of X
if it satisfies for ∀x, y ∈ X:

(1) 1 ∈ F ;
(2) x ∗ y ∈ F, x ∈ F ⇒ y ∈ F .

Lemma 2.2 ([9]). In a GE-algebra X , every non-empty subset F of X is a filter
if and only if it satisfies:

(1) 1 ∈ F and (∀x, y ∈ X)(x ≤ y, x ∈ F ⇒ y ∈ F );
(2) (∀x, y ∈ F, z ∈ X)(x ≤ y ∗ z ⇒ z ∈ F ).

Definition 2.4 ([10]). A subset F of a GE-algebra X is called a prominent GE-
filter of X if it satisfies 1 ∈ F and (∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ F, x ∈ F ⇒
((z ∗ y) ∗ y) ∗ z ∈ F ).
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Note that every prominent GE-filter is a GE-filter in a GE-algebra (see [10]).

Definition 2.5 ([4]). By an interior GE-algebra we mean a pair (X, f) in which
X is a GE-algebra and f : X → X is a mapping such that for ∀x, y ∈ X:

(1) x ≤ f(x);

(2) (f ◦ f)(x) = f(x);

(3) (x ≤ y ⇒ f(x) ≤ f(y)).

Definition 2.6 ([11]). Let (X, f) be an interior GE-algebra. A GE-filter F of
X is said to be interior if it satisfies:

(∗) (∀x ∈ X)(f(x) ∈ F ⇒ x ∈ F ).

Definition 2.7 ([17]). Let (X, f) be an interior GE-algebra. Then a subset F of
X is called a prominent interior GE-filter in (X, f) if F is a prominent GE-filter
of X which satisfies the condition (∗).

Theorem 2.8 ([17]). In an interior GE-algebra, every prominent interior GE-
filter is an interior GE-filter.

Theorem 2.9 ([17]). Every interior GE-filter F in an interior GE-algebra
(X, f) is a prominent interior GE-filter if and only if it satisfies:

(∀x, y ∈ X)(x ∗ y ∈ F ⇒ ((y ∗ x) ∗ x) ∗ y ∈ F ).

3. Prominent interior GE-filters of type 1

Definition 3.1 ([17]). Let (X, f) be an interior GE-algebra and let F be a subset
of X which satisfies 1 ∈ F , then F is called a prominent interior GE-filter of
type 1 in (X, f) if it satisfies:

(∀x, y, z ∈ X)(x ∗ (y ∗ f(z)) ∈ F, f(x) ∈ F ⇒ ((f(z) ∗ y) ∗ y) ∗ f(z) ∈ F ).

By example [17] shows that interior GE-filter and prominent interior GE-
filter of type 1 are independent of each other.

Theorem 3.2 ([17]). In an interior GE-algebra, every prominent interior GE-
filter is of type 1, but the converse may not be true.

Proposition 3.1. In an interior GE-algebra, every prominent interior GE-filter
of type 1 is a GE-filters.

Proof. Let F be prominent interior GE-filter of type 1 of X and for any x, y ∈ X.
Let x∗y ∈ F , x ∈ F , if we let f be the identity mapping and z = 1, then we get
f(z) = 1 and f(x) ∈ F , by definition , we have (∀x, y, z = 1 ∈ X)x∗ (z ∗f(y)) =
x∗(1∗y) = x∗y ∈ F, f(x) = x ∈ F ⇒ (f(y)∗z)∗z)∗f(y) = (y∗1)∗1)∗y = y ∈ F .
It follows from F is a GE-filters.
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Theorem 3.3. An interior GE-filter F of X is a prominent interior GE-filter
of type 1 if and only if it satisfies:

y ∗ f(z) ∈ F implies ((f(z) ∗ y) ∗ y) ∗ f(z) ∈ F for all y, z ∈ X.

Proof. Assume that F is a prominent interior GE-filter of type 1 of X and let
y, z ∈ X be such that y ∗ f(z) ∈ F . Then 1 ∗ (y ∗ f(z)) = y ∗ f(z) ∈ F and
f(1) = 1 ∈ F . It follows from that ((f(z) ∗ y) ∗ y) ∗ f(z) ∈ F .

Conversely, let F be an interior GE-filter of X satisfying the above condition
and let x, y, z ∈ X be such that x ∗ (y ∗ f(z)) ∈ F and f(x) ∈ F . Then x ∈ F ,
y ∗ f(z) ∈ F and hence ((f(z) ∗ y) ∗ y) ∗ f(z) ∈ F . Therefore, F is a prominent
interior GE-filter of type 1 of X.

[17] proposed an open question of prominent interior GE-filters of type 1 and
of type 2 in GE-algebras: Let (X, f) be an interior GE-algebra. Let F and G be
interior GE-filters in (X, f). If F ⊆ G and F is a prominent interior GE-filter
of type 1 in (X, f), then is G also a prominent interior GE-filter of type 1 in
(X, f)?

For this open question for type 1, based on the previous work, we can solve
it in the following theorem.

Theorem 3.4 (Extension property for prominent interior GE-filter of type 1.).
Let F and G be prominent interior GE-filters of type 1 of X such that F ⊆ G.
If F is a prominent interior GE-filter of type 1, then so is G.

Proof. Let y, z ∈ X be such that y ∗ f(z) ∈ G. Then y ∗ ((y ∗ f(z)) ∗ f(z)) ≤
(y ∗ f(z)) ∗ (y ∗ f(z)) = 1 ∈ F . Since F is prominent interior of type 1, it
follows that ((((y ∗ f(z)) ∗ f(z)) ∗ y) ∗ y) ∗ ((y ∗ f(z)) ∗ f(z)) ∈ F so, that
(y ∗ f(z)) ∗ (((((y ∗ f(z)) ∗ f(z)) ∗ y) ∗ y) ∗ f(z)) ∈ F ⊆ G.

Since y ∗ f(z) ∈ G, therefore ((((y ∗ f(z)) ∗ f(z)) ∗ y) ∗ y) ∗ f(z) ⊆ G.
But 1 = (y ∗ f(z)) ∗ 1 = (y ∗ f(z)) ∗ (f(z) ∗ f(z)), ≤ f(z) ∗ ((y ∗ f(z)) ∗ f(z)),
≤ (((y∗f(z))∗f(z))∗y)∗(f(z)∗y), ≤ ((f(z)∗y)∗y)∗((((y∗f(z))∗f(z))∗y)∗y),
≤ (((((y ∗ f(z)) ∗ f(z)) ∗ y) ∗ y) ∗ f(z)) ∗ (((f(z) ∗ y) ∗ y) ∗ f(z)). Using Lemma
2.6. (2), we get (((((y ∗ f(z)) ∗ f(z)) ∗ y) ∗ y) ∗ f(z)) ∗ (((f(z) ∗ y) ∗ y) ∗ f(z)) = 1
and ((f(z) ∗ y) ∗ y) ∗ f(z) ∈ G.

Hence, by Theorem 3.4, G is a prominent interior GE-filter of type 1 of
X.

4. Conclusion

Filter theory is of great significance in the study of algebraic domain. Many
scholars introduced the concepts and relationships among a varieties of filters
from different aspects. Several open questions on this topic thus appeared. In
GE-algebras, an open question of prominent interior GE-filters of type 1 and of
type 2 is proposed.
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The purpose of the study is to solve the open question. On the basis of
previous work, in this paper, we prove that in an interior GE-algebra, every
prominent interior GE-filter of type 1 is a GE-filters as a complement. We also
propose the condition for an interior GE-filter to be a prominent interior GE-
filter of type 1. Based on this, we prove the extension property for prominent
interior GE-filter of type 1 is proved, and thus an open question on such GE-
filters of type 1 is solved. We hope that will bring us enlightment in the study
of this field.

For the future work, we will further study the prominent interior GE-filter
of type 2 and solve the open question of it completely. If the extension prop-
erty for prominent interior GE-filter of type 2 also holds, we will try to find a
generalization of the two types in an interior GE-algebra.
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Abstract. The aim of this paper is to introduce two new types of soft separation
axioms called soft pcregular and soft pc-normal spaces by using the concept of soft pc-
open sets in soft topological spaces. We explore several properties and relations of such
spaces. Also, we investigate hereditary and soft invariance properties by considering
certain soft mappings.
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1. Introduction

Molodtsov [18] initiated the concept of soft set theory in 1999 as a new math-
ematical tool to treat many complicated problems related to probability and
fuzzy set theory. After that many researchers presented applications of soft set
theory in many fields of mathematics such as operations researches, mathemat-
ical analysis and algebraic structures. Shabir and Naz [21] in 2011 applied the
notion of soft sets to introduce the concept of soft topological spaces which are
defined over an initial universe with a fixed set of parameters. They introduced
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almost all the essential classical notions in topology and defined the concept of
soft open sets, soft closed sets, soft interior point, soft closure and soft separation
axioms. Al-shami et al. [4] and [5], investigated several types of soft separation
axioms and studied studied their images ang pre-images under soft mappings.

Husain and Ahmed [13] in 2015 studied the properties of soft interior, soft
closure and soft boundary operators and they introduced separation axioms by
using ordinary points in the universal set also Georgiou et. al [9] in 2013, studied
some soft separation axioms, soft continuity in soft topological spaces using
ordinary points of a topological space X. Bayramov et al. in [7], defined the
notion of soft points and applied them to discuss the properties of soft interior,
soft closure and soft boundary operators. They also defined and introduced soft
neighborhoods and soft continuity in soft topological spaces using soft points.

It is noticed that a soft topological space gives a parametrized family of
topologies on the initial universe but the converse is not true i.e. if some topolo-
gies are given for each parameter, we cannot construct a soft topological space
from the given topologies. Consequently we can say that the soft topological
spaces are more generalized than the classical topological spaces for more details
we refer to [3] and [4].

Recently, Hamko and Ahmed [1] introduced the notion of soft pc-open sets.
They applied this notion to define and discuss the concept of soft pc-interior,
soft soft pc-closure and soft pc-boundary operators. Also, they introduced the
concept of soft continuity and almost soft continuity by employing soft points
and soft pc-open sets in a soft topological space.

The aim of this paper, is to introduce and discuss a study of soft separation
axioms which we call them soft pc-regular and soft pc-normal spaces which are
defined over an initial universe with a fixed set of parameters. We indicate the
relationships between them and present several of their properties.

Throughout the present paper, X will be a nonempty initial universal set
and E will be a set of parameters. A pair (F,E) is called a soft set over X,
where F is a mapping F : E → P (X). The collection of soft sets (F,E) over
a universal set X with a parameter set E is denoted by SP (X)E . Any logical
operation (λ) on soft sets in soft topological spaces are denoted by usual set
theoretical operations with symbol (s̃(λ)).

2. Preliminaries

In this section we present the main definitions and results which will be used
in the sequel. For some definitions or results which are not mentioned in this
section, we refer to [2], [3], [7], [12], [17] and [22].

Definition 2.1 ([21]). A soft set (F,E) over X is said to be null soft set denoted
by ϕ̃ if, for all e ∈ E, F (e) = ϕ and (F,E) over X is said to be absolute soft set
denoted by X̃ if, for all e ∈ E, F (e) = X.
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Definition 2.2 ([21]). The complement of a soft set (F,E) is denoted by (F,E)c

or X̃ \ (F,E) and is defined by (F,E)c = (F c, E) where F c : E → P (X) is a
mapping given by F c(e) = X \ F (e), for all e ∈ E.

It is clear that ((F,E)c)c = (F,E), ϕ̃c = X̃ and X̃c = ϕ̃.

Definition 2.3 ([21]). For two soft sets (F,E) and (G,B) over a common
universe X, we say that (F,E) is a soft subset of (G,B), if

1. E ⊆ B;

2. for all e ∈ E, F (e) ⊆ G(e).

We write (F,E) ⊑ (G,B).

Definition 2.4 ([21]). The union of two soft sets of (F,E) and (G,B) over the
common universe X is the soft set (H,C) = (F,E) ⊔ (G,B), where C = E ∪B
and for all e ∈ C,

H(e) =


F (e), if e ∈ E −B,

G(e), if e ∈ B − E,

F (e) ∪G(e), if e ∈ E ∩B.

In particular, (F,E) ⊔ (G,E) = F (e) ∪G(e), for all e ∈ E.

Definition 2.5 ([21]). The intersection (H,C) of two soft sets (F,E) and (G,B)
over a common universe X, denoted (F,E) ⊓ (G,B), is defined as C = E ∩ B,
and H(e) = F (e) ∩G(e), for all e ∈ C.

In particular, (F,E) ⊓ (G,E) = F (e) ∩G(e), for all e ∈ E.

Definition 2.6 ([7]). Let x ∈ X, then (x,E) denotes the soft set over X for
which x(e) = {x}, for all e ∈ E.

Let (F,E) be a soft set over X and x ∈ X. We say that x∈̃(F,E) read as x
belongs to the soft set (F,E) whenever x ∈ F (e), for all e ∈ E.

Definition 2.7 ([7]). The soft set (F,E) is called a soft point, denoted by (xe, E)
or xe, if for the element e ∈ E, F (e) = {x} and F (e) = ϕ, for all e ∈ E \ {e}.

We say that xe∈̃(G,E) if x ∈ G(e).

Two soft points xe and ye′ are distinct if either x ̸= y or e ̸= e′.

Remark 2.1. From Definition 2.6 and Definition 2.7, it is clear that:

1. (x,E) is the smallest soft set containing x;

2. if x∈̃(F,E) then xe∈̃(F,E);

3. (F,E) = ⊔{(xe, E) : e ∈ E}.
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Definition 2.8 ([21]). Let τ̃ be a collection of soft sets over a universe X with
a fixed set E of parameters. Then, τ̃ ⊆ SP (X)E is called a soft topology if

1. ϕ̃ and X̃ belongs to τ̃ .

2. The union of any number of soft sets in τ̃ belongs to τ̃ .

3. The intersection of any two soft sets in τ̃ belongs to τ̃ .

The triplet (X, τ̃ , E) is called a soft topological space over X. The members
of ˜̃τ are called soft open sets in X̃ and complements of them are called soft
closed sets in X̃ and they are denoted by SO(X̃) and SC(X̃), respectively. Soft
interior and soft closure are denoted by s̃int and s̃cl, respectively.

Definition 2.9 ([21]). Let (X, τ̃ , E) be a soft topological space and let (G,E)
be a soft set. Then:

1. The soft closure of (G,E) is the soft set s̃cl(G,E) = ⊓{(K,B)∈̃SC(X̃) :
(G,E) ⊑ (K,B)}

2. The soft interior of (G,E) is the soft set s̃int(G,E) = ⊔{(H,B)∈̃SO(X̃) :
(H,B) ⊑ (G,E)}.

Definition 2.10 ([12]). Let (X, τ̃ , E) be a soft topological space, (G,E) be a
soft set over X̃ and xe∈̃X̃. Then, (G,E) is said to be a soft neighborhood of xe
if there exists a soft open set (H,E) such that xe∈̃(H,E) ⊑ ((G,E).

Proposition 2.1 ([21]). Let (Y, τ̃Y , E) be a soft subspace of a soft topological
space (X, τ̃ , E) and (F,E)∈̃SP (X)E. Then:

1. If (F,E) is a soft open set in Ỹ and Ỹ ∈̃τ̃ , then (F,E)∈̃τ̃ .

2. (F,E) is a soft open set in Ỹ if and only if (F,E) = Ỹ ⊓(G,E) for some
(G,E)∈̃τ̃ .

3. (F,E) is a soft closed set in Ỹ if and only if (F,E) = Ỹ ⊓(H,E) for some
soft closed (H,E) in X̃.

Definition 2.11 ([14]). A soft subset (F,E) of a soft space X̃ is said to be soft
pre-open if (F,E) ⊑ s̃int(s̃cl(F,E)). The complement of a soft pre-open set is
said to be soft pre-closed. The family of soft pre-open (soft pre-closed) set is
denoted by s̃PO(X) ( s̃PC(X)).

Lemma 2.1 ([14]). Arbitrary union of soft pre-open sets is a soft pre-open set.

Lemma 2.2 ([2]). A subset (F,E) of a soft topological spaces (X, τ̃ , E) is soft
pre-open if and only if there exists a soft open set (G,E) such that

(F,E)⊑(G,E)⊑s̃cl(F,E).
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Lemma 2.3 ([2]). Let (F,E)⊑Ỹ⊑X̃, where (X, τ̃ , E) is a soft topological space
and Ỹ is a soft pre-open subspace of X̃. Then, (F,E)∈̃ s̃PO(X), if and only if
(F,E)∈̃ s̃PO(Y ).

Theorem 2.1 ([19]). If (U,E) is soft open and (F,E) is soft pre-open in
(X, τ̃ , E), then (U,E)⊓(F,E) is soft pre-open.

Lemma 2.4 ([1]). Let (F,E)⊑Ỹ⊑X̃, where (X, τ̃ , E) is a soft topological space
and Ỹ is a soft subspace of X̃. If (F,E)∈̃s̃PO(X), then (F,E)∈̃s̃PO(Y ).

Definition 2.12 ([1]). A soft pre-open set (F,E) in a soft topological space
(X, τ̃ , E) is called soft pc-open if for each xe∈̃(F,E), there exists a soft closed
set (K,E) such that xe∈̃(K,E)⊑(F,E). The soft complement of each soft pc-
open set is called soft pc-closed set.

The family of all soft pc-open (resp., soft pc-closed) sets in a soft topological
space (X, τ̃ , E) is denoted by s̃PcO(X, τ̃ , E) (resp., s̃PcC(X, τ̃ , E) ) or s̃PcO(X)
(resp., s̃PcC(X) ).

Definition 2.13 ([2]). Let (X, τ̃ , E) be a soft topological space and let (G,E)
be a soft set. Then:

1. The soft pre-closure of (G,E) is the soft set

s̃pcl(G,E) = ⊓{(K,B)∈̃s̃PC(X̃) : (G,E) ⊑ (K,B)}.

2. The soft pre-interior of (G,E) is the soft set

s̃pint(G,E) = ⊔{(H,B)∈̃s̃PO(X̃) : (H,B) ⊑ (G,E)}.

Definition 2.14 ([11]). Let (X, τ̃ , E) be a soft topological space and let (G,E)
be a soft set. Then:

1. A soft point xe∈̃X̃ is said to be a soft pc-limit soft point of a soft set (F,E)
if for every soft pc-open set (G,E) containing xe, (G,E)⊓ [(F,E)\{xe}] ̸=
ϕ̃.

The set of all soft pc-limit soft points of (F,E) is called the soft pc-derived
set of (F,E) and is denoted by s̃PcD(F,E).

2. The soft pc-closure of (G,E) is the soft set

s̃pccl(G,E) = ⊓{(K,B)∈̃s̃PcC(X̃) : (G,E) ⊑ (K,B)}.

3. The soft pc-interior of (G,E) is the soft set

s̃pcint(G,E) = ⊔{(H,B)∈̃s̃PcO(X̃) : (H,B) ⊑ (G,E)}.

Lemma 2.5 ([1]). If (F,E) ⊑ Ỹ ⊑ X̃ and Ỹ is soft clopen. Then, (F,E)∈̃s̃PcO(Y )
if and only if (F,E)∈̃s̃PcO(X).
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Lemma 2.6 ([1]). Let (F,E) ⊑ Ỹ ⊑ X̃ and Ỹ be soft clopen. If (F,E)∈̃s̃PcO(X),
then (F,E) ⊓ Ỹ ∈̃s̃PcO(Y ).

Lemma 2.7 ([11]). Let (F,E) ⊑ Ỹ ⊑ X̃. If Ỹ is soft clopen, then s̃pcclY (F,E) =
s̃pcclX(F,E) ⊓ Ỹ .

Definition 2.15 ([10]). A soft topological space (X, τ̃ , E) is said to be:

1. Soft T0, if for each pair of distinct soft points x, y∈̃X, there exist soft
open sets (F,E) and (G,E) such that either x∈̃(F,E) and y /̃∈(F,E) or

y∈̃(G,E) and x/̃∈(G,E).

2. Soft T1, if for each pair of distinct soft points x, y ∈ X, there exist two soft
open sets (F,E) and (G,E) such that x∈̃(F,E) but y /̃∈(F,E) and y∈̃(G,E)

but x/̃∈(G,E).

3. Soft T2, if for each pair of distinct soft points x, y ∈ X, there exist two
disjoint soft open sets (F,E) and (G,E) containing x and y, respectively.

In [7], S. Bayramov and C. G. Aras redefined soft Ti-spaces by replacing soft
points xe, ye′ instead of the ordinary points x, y in Definition 2.15.

Proposition 2.2 ([7]). 1. Every soft T2-space ⇒ soft T1-space ⇒ soft T0-space.
2. A soft topological space (X, τ̃ , E) is soft T1 if and only if each soft point

is soft closed.

In [21], a soft regular space is defined by using ordinary points as:

Definition 2.16 ([21]). If for every x ∈ X and every soft closed set (F,E)
not containing x, there exist two soft open sets (G,E) and (H,E) such that
x∈̃(G,E), (F,E) ⊑ (H,E) and (G,E)⊓(H,E) = ϕ̃ then X̃ is called soft regular.

In [12] a soft regular space is defined by by replacing soft points xe instead
of the ordinary point x in Definition 2.16.

Definition 2.17 ([15]). A soft topological space (X, τ̃ , E) is said to be

1. s̃pc-T0, if for each pair of distinct soft points xe, ye′∈̃SP (X)E, there exist

soft pc-open sets (F,E) and (G,E) such that xe∈̃(F,E) and ye′ /̃∈(F,E) or

ye′∈̃(G,E) and xe /̃∈(G,E).

2. s̃pc-T1, if for each pair of distinct soft points xe, ye′∈̃SP (X)E, there exist

two soft pc-open sets (F,E) and (G,E) such that xe∈̃(F,E) but ye′ /̃∈(F,E)

and ye′∈̃(G,E) but xe /̃∈(G,E).

3. s̃pcT2, if for each pair of distinct soft points xe, ye′∈̃SP (X)E, there exist
two disjoint soft pc-open sets (F,E) and (G,E) containing xe and ye′,
respectively.
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Definition 2.18 ([15]). A soft topological space (X, τ̃ , E) is said to be

1. s̃pcT
∗
0 , if for each pair of distinct points x, y ∈ X, there exist soft pc-open

sets (F,E) and (G,E) such that x∈̃(F,E) and y /̃∈(F,E) or y∈̃(G,E) and

x/̃∈(G,E).

2. s̃pc-T
∗
1 , if for each pair of distinct points x, y ∈ X, there exist two soft pc-

open sets (F,E) and (G,E) such that x∈̃(F,E) but y /̃∈(F,E) and y∈̃(G,E)

but x/̃∈(G,E).

3. s̃pc-T
∗
2 , if for each pair of distinct soft points x, y ∈ X, there exist two dis-

joint soft pc-open sets (F,E) and (G,E) containing x and y, respectively.

Proposition 2.3 ([15]). A space (X, τ̃ , E) is s̃pc − T0 if and only if every soft
points xe ̸= ye′ implies s̃pccl{xe} ≠ s̃pccl{ye′}.

Proposition 2.4 ([15]). A space (X, τ̃ , E) is s̃pc − T1 if and only if every soft
point of the space (X, τ̃ , E) is an soft pc-closed set.

Proposition 2.5 ([15]). If a soft topological space (X, τ̃ , E) is s̃pc− T1, then it
is soft s̃pc − T ∗

1 .

Definition 2.19 ([16]). Let SP (X)E and SP (Y )B be families of soft sets. Let
u : X → Y and p : E → B be mappings. Then, a mapping fpu : SP (X)E →
SP (Y )B is defined as:

1. Let (F,E) be a soft set in SP (X)E. The image of (F,E) under fpu, written
as fpu(F,E) = (fpu(F ), p(E)), is a soft set in SP (Y )B such that

fpu(F )(e′) =


⋃

e∈p−1(e′)∩E
u(F (e)), if p−1(e′) ∩ E ̸= ϕ

ϕ, if p−1(e′) ∩ E = ϕ,

for all e′ ∈ B.

2. Let (G,B) be a soft set in SP (Y )B. Then, the inverse image of (G,B) un-
der fpu, written as f−1

pu (G,B) = (f−1
pu (G), p−1(B)), is a soft set in SP (X)E

such that

f−1
pu (G)(e) =

{
u−1(G(p(e))), if p(e) ∈ B

ϕ, otherwise,

for all e ∈ E.

The soft function fpu is called surjective if p and u are surjective and it is
called injective if p and u are injective.

Definition 2.20 ([22]). Let (X, τ̃ , E) and (Y, µ̃, B) be two soft topological spaces.
A soft mapping fpu:(X, τ̃ , E)→(Y, µ̃, B) is called soft continuous if f−1

pu ((G,B))∈̃τ̃ ,
for all (G,B)∈̃µ̃.
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3. Soft pc-regular spaces

In this section, we introduce some types of soft regular spaces by using soft
pc-open sets. Many characterizations of these spaces are found. Also, some
hereditary properties and relations between these spaces are investigated.

Definition 3.1. A soft space X̃ is said to be s̃pc-regular (resp., s̃p∗c-regular ),
if for each xe∈̃X̃ and each soft closed (resp., s̃pc-closed) set (K,E) such that

xe /̃∈(K,E), there exist two disjoint soft pc-open sets (F,E) and (G,E) such that
xe∈̃(F,E) and (K,E) ⊑ (G,E).

Remark 3.1. In a finite soft space SP (X)E , if (F,E) is any soft pc-open set,
then by definition it is soft pre-open and a union of soft closed sets and hence
it is soft closed, so we obtain that (F,E) is both soft open and soft closed.

Equivalently, any soft pc-closed set is both open and closed.

From the above remark, we get the following result

Proposition 3.1. If SP (X)E is finite, then every s̃pc-regular space is both s̃p∗c-
regular and soft regular.

The following example shows that an s̃pc-regular space is not necessary s̃pc−
Ti for i = 0, 1, 2.

Example 3.1. Let X = {x, y}, E = {e1, e2} and X̃ = {(e1, X), (e2, X)} and let
τ̃ = {X̃, ϕ̃, (F1, E), (F2, E), (F3, E), (F4, E), (F5, E), (F6, E)}, where (F1, E) =
{(e1, {x}), (e2, ϕ)}, (F2, E) = {(e1, {x}), (e2, X)}, (F3, E) = {(e1, {y}), (e2, ϕ)},
(F4, E) = {(e1, {y}), (e2, X)}, (F5, E) = {(e1, X), (e2, ϕ)}, (F6, E) = {(e1, ϕ),
(e2, X)}. Then, it can be checked that s̃pcO(X) = τ̃ . Since xe2 ̸= ye2 and each
soft open set containing one of them contains the other, so it is not s̃pc − Ti
for i = 0, 1, 2. This space is s̃pc − T ∗

i for i = 0, 1 but it is not s̃pc − T ∗
2 . By

easy calculation it can be shown that this space is s̃pc-regular and hence by
Proposition 3.1 it is both s̃p∗c-regular and soft regular.

Example 3.2. Let X = {x, y}, E = {e1, e2} and X̃ = {(e1, X), (e2, X)} and let
τ̃ = {X̃, ϕ̃, (F1, E), (F2, E), (F3, E), (F4, E)}, where (F1, E) = {(e1, X), (e2, ϕ)},
(F2, E) = {(e1, ϕ), (e2, {x, y})}, (F3, E) = {(e1, {y}), (e2, X)} and (F4, E) =
{(e1, {y}), (e2, ϕ)}. Since ye1 /̃∈(F3, E)c but there are no disjoint soft pc-open
sets containing them. Hence, this space is not s̃pc-regular and not soft regular
but it can be checked that it is s̃p∗c-regular.

Recall that a soft space (X, τ̃ , E) is called soft-Alexandroff space [20] if any
arbitrary intersection of soft open sets is soft open. Equivalently, any arbitrary
union of soft closed sets is soft closed.

Proposition 3.2. Every soft-Alexandroff space is s̃p∗c-regular.
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Proof. Similar to Remark 3.1, in a soft-Alexandroff space (X, τ̃ , E). If (F,E) is
an s̃p∗c-open set, then it is soft closed and hence (F,E) and its complement are
both soft open and soft closed. Therefore, for each xe /̃∈(F,E), we have (F,E)
and (F,E)c are the required disjoint soft s̃p∗c-open sets.

If we take X = R with the usual topology and if E consists only one param-
eter, then R is both soft regular and s̃p∗c-regular but it is not soft-Alexandroff.

Theorem 3.1. The following statements about a space X̃ are equivalent:

1. X̃ is s̃p∗c-regular (resp., s̃pc-regular) space.

2. For each xe∈̃X̃ and each soft pc-open (resp., soft open) set (F,E) con-
taining xe, there exist soft pc-open set (G,E) containing xe such that
xe∈̃(G,E) ⊑ s̃pccl(G,E) ⊑ (F,E).

3. Each element of X has an s̃pc- neighborhood (resp., soft neighborhood) base
consisting of soft pc-closed sets.

4. Every soft pc-closed (resp., soft closed) set (K,E) is the intersection of all
soft pc-closed neighborhoods of (K,E).

5. For every non-empty soft subset (F,E) of X̃ and every soft pc-open (resp.,
soft open) subset (G,E) of X̃ such that (F, E) ⊓ (G, E) ̸= ϕ̃, there
exist s̃pc- open subset (W, E) of X̃ such that (F,E)⊓(W,E) ̸= ϕ̃, and
s̃pccl(W,E) ⊑ (G,E).

6. For every non-empty soft subset (F,E) of X̃ and every soft pc-closed (resp.,
soft closed) subset (K,E) of X̃ such that (F,E)⊓(K,E) = ϕ̃, there exist
two soft pc-open subset (G,E) and (W,E) such that (F,E)⊓(G,E) ̸= ϕ̃,
(W,E)⊓(G,E) = ϕ̃ and (K,E) ⊑ (W,E).

Proof. We only prove the s̃p∗c-regular case. Since the other case can be proved
similarly.
(1) → (2). Let (F,E) be soft pc-open set and xe∈̃(F,E). Then, X̃ \ (F,E)

is a soft pc-closed set such that xe /̃∈X̃ \ (F,E). By s̃p∗c-regularity of X, there
are soft pc-open sets (G,E), (H,E) such that xe∈̃(G,E), X̃ \ (F,E) ⊑ (H,E)
and (H,E)⊓(G,E) = ϕ̃. Therefore, xe∈̃(G,E) ⊑ X̃ \ (H,E) ⊑ (F,E), Hence,
xe∈̃(G,E) ⊑ s̃pccl(G,E) ⊑ s̃pccl(X̃ \ (H,E)) = X̃ \ (H,E) ⊑ (F,E). This gives
s̃pccl(G,E) ⊑ X̃ \ (H,E) ⊑ (F,E). Consequently, xe∈̃(G,E) and s̃pccl(G,E) ⊑
(F,E).

(2) → (3). Let ye′∈̃X̃. Then, for every soft pc-open set (G,E) such that
ye′∈̃(G,E), s̃pccl(G,E) ⊑ (F,E). Thus, for each ye′∈̃X̃, the sets s̃pccl(G,E)
form an s̃pc- neighborhood base consisting of soft pc-closed sets of X̃. This
proves (3).

(3) → (1). Let (K,E) be soft pc-closed set which does not contain xe. Then,
X̃ \ (K,E) is soft pc-open, so it is s̃pc- neighborhood of xe. By (3), there is
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soft pc-closed set (L,E) which contains xe and it is an s̃pc- neighborhood of
xe with (L,E) ⊑ X̃ \ (K,E). Consider the sets (L,E) and X̃ \ (L,E). Then,
xe∈̃(L,E), (K,E) ⊑ X̃ \ (L,E) = (G,E) and (K,E)⊓(L,E) = ϕ̃. Therefore, X̃
is s̃p∗c-regular.

(2) → (4). Let (K,E) be soft pc-closed and xe /̃∈(K,E). Then, xe∈̃X̃ \(K,E)
and X̃ \ (K,E) is s̃pc- open subset of X̃. Using the hypothesis, there exists an
soft pc-open set (F,E) such that xe∈̃(F,E) ⊑ s̃pccl(F,E) ⊑ X̃ \ (K,E). Hence,
(K,E) ⊑ X̃ \ s̃pccl(F,E) ⊑ X̃ \ (F,E). Consequently X̃ \ (F,E) is soft pc-closed
neighborhood of (K,E) to which xe does not belong. This proves (4).

(4) → (5). Let ϕ ̸= (F,E) ⊑ X̃ and (G,E) be a soft pc-open subset of X̃

such that (F,E)⊓(G,E) ̸= ϕ̃. Let xe∈̃(F, E) ⊓ (G, E) . Since xe /̃∈X̃ \ (G,E)
and X̃ \(G,E) is soft pc-closed, so there exists an soft pc-closed neighborhood of

X̃ \ (G,E) say (E,E), such that xe /̃∈(E,E). Let X̃ \ (G,E) ⊑ (D,E) ⊑ (E,E)
where (D,E) is soft pc-open set. Then, (W,E) = X̃ \ (E,E) is soft pc-open
set, xe∈̃(W, E) and (F,E)⊓(W,E) ̸= ϕ̃. Also, X̃ \ (D,E) being soft pc-closed.
s̃pccl(W,E) = s̃pccl(X̃ \ (E,E)) ⊑ X̃ \ (D,E) ⊑ (G,E).

(5) → (6). Let ϕ ̸= (F,E) ⊑ X̃ and (K,E) be soft pc-closed subset of X̃
such that (K,E)⊓(F,E) = ϕ̃, then X̃ \ (K,E)⊓(F,E) ̸= ϕ̃, and X̃ \ (K,E) is
soft pc-open. Using (5), there exists an soft pc-open subset G,E) of X̃ such
that (G,E)⊓(F,E) ̸= ϕ̃ and (G,E) ⊑ s̃pccl(G,E) ⊑ X̃ \ (K,E). Putting
(W,E) = X̃ \ s̃pccl(G,E), then (K,E) ⊑ (W,E) ⊑ X̃ \ (G,E), and (W,E) is
soft pc-open. Hence the proof.

(6) → (1). Let xe /̃∈(K,E), where (K,E) is soft pc-closed, and let (F,E) =
{xe} ≠ ϕ, Then, (K,E)⊓(F,E) = ϕ̃ and hence, using (6) there exist two soft pc-
open sets (G,E), and (W,E) such that (W,E)⊓(G,E) = ϕ̃, (G,E)⊓(F,E) ̸= ϕ̃
and (K,E) ⊑ (W,E), which implies that X̃ is s̃p∗c-regular.

Theorem 3.2. A topological space (X, τ̃ , E) is s̃p∗c-regular (resp., s̃pc-regular) if
and only if for each xe∈̃X̃ and soft pc-closed (resp., soft closed) set (K,E) such

that xe /̃∈(K,E), there exist soft pc-open sets (G,E), (H,E) such that xe∈̃(G,E),
(K,E) ⊑ (H,E) and s̃pccl(G,E) ⊓ s̃pccl(H,E) = ϕ̃.

Proof. We only prove the s̃p∗c- regular case because the other case can be proved
similarly.

Suppose that X̃ is s̃p∗c-regular, then for each xe∈̃X̃ and soft pc-closed set

(K,E) such that xe /̃∈(K,E), there exist two soft pc-open sets (U,E) and (V,E)
such that xe∈̃(U,E), (K,E) ⊑ (V,E) and (U,E) ⊓ (V,E) = ϕ. Which implies
that xe∈̃(U,E) ⊑ X̃ \ (V,E) ⊑ X̃ \ (K,E). That is xe∈̃(U,E) ⊑ s̃pccl(U,E) ⊑
X̃ \ (V,E) ⊑ X̃ \ (K,E). Using Theorem 3.1(2) and the fact that xe∈̃(U,E),
where (U,E) is soft pc-open set there exist soft pc-open (G,E) containing xe
such that xe∈̃(G,E) ⊑ s̃pccl(G,E) ⊑ (U,E)). Therefore, (K,E) ⊑ (V,E) ⊑ X̃ \
s̃pccl(U,E) ⊑ X̃ \ (U,E) ⊑ X̃ \ s̃pccl(G,E) and (K,E) ⊑ (V,E) ⊑ s̃pccl(V,E) ⊑
X̃ \ (U,E), Now take (H,E) = (V,E), we get xe∈̃(G,E), (K,E) ⊑ (H,E) and
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s̃pccl(G,E) ⊓ s̃pccl(H,E) = ϕ. This proves the necessity part. The proof of
sufficiency follows directly.

Lemma 3.1. Every soft clopen subspace of an s̃pc-regular space X̃ is s̃pc-regular.

Proof. Let Ỹ be a soft clopen subspace of s̃pc-regular space X̃. Suppose that
(H,E) is soft pc-closed set in Ỹ and ye′∈̃Ỹ such that ye′ /̃∈(H,E). Then, (H,E) =

(G,E) ⊓ Y , where (G,E) is soft pc-closed in X̃. Then, ye′ /̃∈(G,E). Since X̃ is
s̃pc-regular, there exist disjoint soft pc-open sets (U,E), (V,E) in X̃ such that
ye′∈̃(U,E), (H,E) ⊑ (V,E). Then, (U,E) ⊓ Y and (V,E) ⊓ Y are disjoint soft
pc-open sets in Ỹ containing ye′ and (H,E), respectively. This completes the
proof.

Remark 3.2. If the soft space X̃ is finite, then by Remark 3.1, every soft pc-
open set is both closed and open and hence we obtain that Lemma 3.1 is true foe
every subspace. Lemma 3.1 is true because the intersection of an soft pc-open
set in X̃ with a soft clopen subspace remains an soft pc-open set in the subspace
but still we ask the following question.

Every soft subspace of an s̃pc-regular space X̃ is s̃pc-regular or not ?.

Theorem 3.3. Every s̃pc-regular and s̃pc − T0 space X̃ is an s̃pc−T 2 space.

Proof. Let xe, ye′∈̃X̃ such that xe ̸= ye′ . Since X̃ is s̃pc − T0, then there
exists an soft pc-open set (U,E) containing xe but not ye′ . Using the hypoth-
esis that X̃ is s̃pc-regular and since xe∈̃(U,E), so there is an soft pc-open set

(V,E), such that xe∈̃(V,E) ⊑ s̃pccl(V,E) ⊑ (U,E). But ye′ /̃∈(U,E) implies that

ye′ /̃∈s̃pccl(V,E), then we get ye′∈̃X̃ \ s̃pccl(V,E). Therefore, we have (U,E) and
X̃ \ s̃pccl(V,E) are soft pc-open sets such that xe∈̃(U,E), ye′∈̃X̃ \ s̃pccl(V,E)
and X̃ \ s̃pccl(V,E) ⊓ (U,E) = ϕ̃. Hence, the result follows.

The proof of the following lemma is obvious.

Lemma 3.2. Let (X, τ̃ , E) be an s̃pc-regular (resp., an s̃p∗c-regular) space and let

(H,E) be a soft closed (resp., soft pc-closed) set such that xe /̃∈(H,E), then there
exists an soft pc-open set (F,E) such that xe∈̃(F,E) and (F,E) ⊓ (H,E) = ϕ̃.

Proposition 3.3. A soft topological space is s̃pc-regular (resp., an s̃p∗c-regular)
if and only if for each soft point xe∈̃SP (X)E and for each soft open (resp., soft
pc-open) set (F,E) containing xe, there exists an soft pc-open set (U,E) of xe
such that s̃pccl(U,E)⊑(F,E).

Proof. Let (X, τ̃ , E) be s̃pc-regular space. Let xe∈̃X̃ and (F,E) is an soft
pc-open set containing xe. Then, X \ (F,E) is an soft pc-closed set such that

xe /̃∈X̃ \ (F,E). Since (X, τ̃ , E) is an s̃pc-regular, so there exist soft pc-open sets
(V,E) and (U,E) such that xe∈̃(U,E),X\(F,E)⊑(V,E) and (U,E)⊓(V,E) = ϕ̃.
Thus, (U,E)⊑X \ (V,E) and hence s̃pccl(U,E)⊑X \ (V,E)⊑(F,E).
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Conversely, let xe∈̃X̃ and (H,E) be an soft pc-closed set such that xe /̃∈(H,E).
Then, X \ (H,E) is an soft pc-open set containing xe. So, by hypothesis there
exist an soft pc-open set (U,E) of xe such that s̃pccl(U,E)⊑X \ (H,E). Thus,
(H,E)⊑X \ s̃pccl(U,E) and (U,E)⊓X \ s̃pccl(U,E) = ϕ̃. Therefore, (X, τ̃ , E) is
s̃pc-regular.

The proof when (X, τ̃ , E) is s̃pc-regular is analogues.

Definition 3.2. A soft topological space (X, τ̃ , E) is said to be strongly s̃p∗c-
regular (resp., strongly s̃pc-regular), if for every soft pc-closed (resp., soft closed)

set (H,E) and every point x/̃∈(H,E), there exists disjoint soft pc-open sets (F,E)
and (G,E) such that x∈̃(F,E) and (H,E)⊑(G,E).

Example 3.3. Let X = {x, y}, E = {e1, e2} and X̃ = {(e1, X), (e2, X)} and let
τ̃ = {X̃, ϕ̃, (F1, E), (F2, E)}, where (F1, E) = {(e1, {x}), (e2, {x})}, (F2, E) =
{(e1, {y}), (e2, {y})}. Then, it is not difficult to check that (X, τ̃ , E) is both
strongly s̃p∗c-regular and strongly s̃pc-regular.

The following result is obvious.

Proposition 3.4. Every strongly s̃p∗c-regular (resp., strongly s̃pc-regular) space
is s̃p∗c-regular (resp., s̃pc-regular).

The converse of Proposition 3.4 is not true in general. The space in Example
3.1, is s̃p∗c-regular and s̃pc-regular but it is neither strongly s̃p∗c-regular nor
strongly s̃pc-regular.

We shall prove all the results related to strongly s̃p∗c-regular spaces and the
proof of the results related to strongly s̃pc-regular can be done in a similar way.

Lemma 3.3. If (X, τ̃ , E) is strongly s̃p∗c-regular (resp., strongly s̃pc-regular)

space and (H,E) is an soft pc-closed (resp., soft closed) set such that x/̃∈(H,E),
then there exists an soft pc-open set (F,E) such that x∈̃(F,E) and (F,E)⊓(H,E)
= ϕ̃.

Proposition 3.5. A soft topological space (X, τ̃ , E) is strongly s̃p∗c-regular (resp.,
strongly s̃pc-regular) if and only if for each point x∈X and for each soft pc-open
(resp., soft open) set (F,E) containing x, there exists an soft pc-open set (U,E)
containing x such that s̃pccl(U,E)⊑(F,E).

Proof. Let (X, τ̃ , E) be a strongly s̃p∗c-regular space. Let x∈X and (F,E) be an
soft pc-open set containing x. Then, X \ (F,E) is an soft pc-closed set such that

x/̃∈X̃ \ (F,E). Since (X, τ̃ , E) is s̃p∗c-regular, then there exist soft pc-open sets
(V,E) and (U,E) such that x∈̃(U,E), X \(F,E)⊑(V,E) and (U,E)⊓(V,E) = ϕ̃.
Thus, (U,E)⊑X \ (V,E) and hence s̃pccl(U,E)⊑X \ (V,E)⊑(F,E).

Conversely, let x∈X and (H,E) be an soft pc-closed set such that x/̃∈(H,E).
Then, X \ (H,E) is an soft pc-open set containing x. So, by hypothesis there
exists an soft pc-open set (U,E) containing x such that s̃pccl(U,E)⊑X \ (H,E).
Thus, (H,E)⊑X \ s̃pccl(U,E) and (U,E)⊓X \ s̃pccl(U,E) = ϕ̃. Therefore,
(X, τ̃ , E) is strongly s̃p∗c-regular.



ON SOFT pc-REGULAR AND SOFT pc-NORMAL SPACES 273

Proposition 3.6. Let (X, τ̃ , E) be a soft topological space and x∈X. If (X, τ̃ , E)
is a strongly s̃p∗c-regular (resp., strongly s̃pc-regular) space, then the following
statements are true:

1. x /̃∈(H,E) if and only if (x,E)⊓(H,E) = ϕ̃ for every soft pc-closed (resp.,
soft closed) set (H,E).

2. x/̃∈(F,E) if and only if (x,E)⊓(F,E) = ϕ̃ for every soft pc-open (resp.,
soft open) set (F,E).

Proof. (1) Let x/̃∈(H,E), then by Lemma 3.3, there exists an s̃pc- open set
(F,E) such that x∈̃(F,E) and (F,E)⊓(H,E) = ϕ̃. Since (x,E)⊑(F,E), we
have (x,E)⊓(H,E) = ϕ̃.

Conversely, straightforward.
(2) Let x/̃∈(F,E). Then, we have two cases:
(i) x /∈ F (α), for all e∈E, it is obvious that (x,E)⊓(F,E) = ϕ̃.
(ii) x /∈ F (α) and x∈F (β) for some α, β∈E, then we have x∈X \ F (α)

and x /̃∈X̃ \ F (β) for some α, β∈E and so X̃ \ (F,E) is an soft pc-closed set

such that x/̃∈X̃ \ (F,E), by (1), (x,E)⊓X̃ \ (F,E) = ϕ̃. So, (x,E)⊑(F,E)

but this contradicts that x /̃∈ F (α) for some α∈E. Consequently, we have
(x,E)⊓(F,E) = ϕ̃.

The converse part is obvious.

Proposition 3.7. Let (X, τ̃ , E) be a soft topological space and x∈X. Then, the
following statements are equivalent:

1. (X, τ̃ , E) is a strongly s̃p∗c-regular (resp., strongly s̃pc-regular) space,

2. For each soft pc-closed (resp., soft closed) set (H,E) such that (x,E)⊓(H,E)
= ϕ̃, there exist soft pc-open sets (F,E) and (G,E) such that such that
(x,E)⊑(F,E), (H,E)⊑(G,E) and (F,E)⊓(G,E) = ϕ̃.

Proof. Follows from Proposition 3.6(1) and Lemma 3.3.

Proposition 3.8. Let (X, τ̃ , E) be a soft topological space and x∈X. If (X, τ̃ , E)
is a strongly s̃p∗c-regular (resp., strongly s̃pc-regular), then the following state-
ments are true:

1. For an soft pc-open (resp., soft open) set (F,E), x∈̃(F,E) if and only if
x∈F (α) for some α∈E.

2. For an soft pc-open (resp., soft open) set (F,E), (F,E) = ⊔{(x,E) :
x∈F (α) for some α∈E}.

Proof. (1). Suppose that x∈F (α) and x/̃∈(F,E) for some α∈E. Then, by
Proposition 3.7(2), (x,E)⊓(F,E) = ϕ̃. By our assumption, this is a contradic-
tion and so x∈(F,E). The Converse is obvious.

(2). Follows from part (1) and Remark 2.1.
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Proposition 3.9. Let (X, τ̃ , E) be a soft topological space and x∈X. If (X, τ̃ , E)
is strongly s̃p∗c-regular, then the following statements are equivalent:

1. (X, τ̃ , E) is a s̃pc-T
∗
1 space,

2. For x, y∈X with x ̸= y, there exist soft pc-open sets (F,E) and (G,E) such
that (x,E)⊑(F,E) and (y,E)⊓(F,E) = ϕ̃, (y,E)⊑(G,E) and (x,E)⊓(G,E)
= ϕ̃.

Proof. It is clear that x∈̃(F,E) if and only if (x,E)⊑(F,E), and by Proposition

3.8(2), x/̃∈(F,E) if and only if (x,E)⊓(F,E) = ϕ̃. Hence, statements (1) and
(2) are equivalent.

4. Soft pc-normal spaces

In this section, we define s̃pc-normal spaces and derive many of its properties.
The relationship to other soft spaces and its image under s̃pc-continuous func-
tions are discussed.

Definition 4.1. A soft space X̃ is said to be s̃pc-normal (resp., s̃p∗c-normal)
space, if for any disjoint soft closed (resp., s̃p∗c-closed) sets (K,E) and (L,E)
of X̃, there exist soft pc-open sets (U,E), (V,E) such that (K,E) ⊑ (U,E),
(L,E) ⊑ (V,E) and (V,E) ⊓ (U,E) = ϕ̃.

Example 4.1. Let X = {x1, x2, x3}, E = {e1, e2} and let τ̃ = {X̃, ϕ̃, (F1, E),
(F2, E), (F3, E), (F4, E)}, where (F1, E) = {(e1, {x1, x2}), (e2, {x3})}, (F2, E) =
{(e1, {x3}), (e2, {x1, x2})}, (F3, E) = {(e1, {x1}), (e2, ϕ)}, (F4, E)={(e1, {x1, x3}),
(e2, {x1, x2})}. Then, this space is both s̃pc-normal and s̃p∗c-normal but it is
not s̃pc-regular.

Theorem 4.1. A space X̃ is an s̃p∗c-normal space, if for each pair of soft pc-
open sets (U,E) and (V,E) in X̃ such that X̃ = (U,E) ⊔ (V,E), there are
soft pc-closed sets (G,E) and (H,E) which are contained in (U,E) and (V,E),
respectively and X̃ = (G,E) ⊔ (H,E).

Proof. Straightforward.

Theorem 4.2. If X̃ is any soft space, then the following statements are equiv-
alent:

1. X̃ is s̃p∗c-normal,

2. For each s̃pc- closed set (F1, E) in X̃ and soft pc-open set (G,E) contains
(F1, E), there is an soft pc-open set (U,E) such that (F1, E) ⊑ (U,E) ⊑
s̃pccl(U,E) ⊑ (G,E),

3. For each s̃pc- closed set (F1, E) in X̃ and soft pc-open set (G,E) containing
(F1, E), there are soft pc-open sets (Un, E) for n ∈ N , such that (F1, E) ⊑⊔
n∈N (Un, E) and s̃pccl(Un, E) ⊑ (G,E), for each n ∈ N .
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Proof. (1) → (2). Since (G,E) is soft pc-open set containing (F1, E), then
X̃\(G,E) and (F1, E) are disjoint soft pc-closed sets in X̃. Since X̃ is s̃p∗c-normal,
so there exist soft pc-open sets (U,E) and (V,E) such that (F1, E) ⊑ (U,E),
X̃ \ (G,E) ⊑ (V,E) and (V,E) ⊓ (U,E) = ϕ̃. Hence, (F1, E) ⊑ (U,E) ⊑
s̃pccl(U,E) ⊑ s̃pccl(X̃ \ (V,E)) = X̃ \ (V,E) ⊑ (G,E), or (F1, E) ⊑ (U,E) ⊑
s̃pccl(U,E) ⊑ (G,E).

(2) → (3). Let (F1, E) be an soft pc-closed set and (G,E) be an soft pc-open
set in an s̃p∗c-normal space X̃ such that (F1, E) ⊑ (G,E). So, by hypothesis,
there is an soft pc-open set (U,E) such that (F1, E) ⊑ (U,E) ⊑ s̃pccl(U,E) ⊑
(G,E). If we put (Un, E) = (U,E), for all n ∈ N , the proof follows.

(3) → (1). Let (F1, E) and (F2, E) be a pair of disjoint soft pc-closed set in
the space X̃, then X̃ \ (F2, E) is an soft pc-open set in X̃ containing (F1, E).
So, by hypothesis, there are soft pc-open sets (Un, E) for n ∈ N such that

(F1, E) ⊑
⊔
n∈N

(Un, E)

and s̃pccl(Un, E) ⊑ X̃ \ (F2, E) for each n ∈ N . Since X̃ \ (F1, E) is an soft
pc-open subset of X̃ containing the soft pc-closed set (F2, E), then by applying
the condition of the theorem again, we get soft pc-open sets (Vn, E) for n ∈ N ,
such that

(F2, E) ⊑
⊔
n∈N

(Vn, E)

and s̃pccl(Vn, E) ⊑ X̃ \(F1, E) for each n ∈ N . Thus, s̃pccl(Un, E)⊓(F2, E) = ϕ̃
and s̃pccl(Vn, E) ⊓ (F1, E) = ϕ̃ for each n ∈ N . Setting

(Gn, E) = (Un, E) \
⊔
n∈N

s̃pccl(Vn, E)

and
(Hn, E) = (Vn, E) \

⊔
n∈N

s̃pccl(Un, E).

Then
(U,E) =

⊔
n∈N

(Gn, E)

and
(V,E) =

⊔
n∈N

(Hn, E)

are disjoint soft pc-open sets in X̃ containing (F1, E) and (F2, E), respectively.
Hence, X̃ is s̃p∗c-normal.

Theorem 4.3. A soft topological space X̃ is s̃pc-normal if and only if for each
soft closed set (F1, E) in X̃ and soft open set (G,E) contains (F1, E), there is
an soft pc-open set (U,E) such that (F1, E) ⊑ (U,E) ⊑ s̃pccl(U,E) ⊑ (G,E).
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Proof. Let (F1, E) be any soft close subset in an s̃pc-normal space X̃ and (G,E)
be any soft open subset of X̃ containing (F1, E). Then, X̃ \ (G,E) is closed
and X̃ \ (G,E)⊓ (F1, E) = ϕ̃. Hence, by hypothesis, there exist two disjoint soft
pc-open sets (U,E) and (V,E) such that (F1, E) ⊑ (U,E), X̃ \ (G,E) ⊑ (V,E)
and (V,E)⊓(U,E) = ϕ̃. Since (V,E)⊓(U,E) = ϕ̃, then (U,E) ⊑ X̃\(V,E). But
X̃ \(G,E) ⊑ (V,E), then X̃ \(V,E) ⊑ (G,E) and so (U,E) ⊑ (G,E). And since
(U,E) and (V,E) are soft pc-open sets, then X̃\(V,E) and X̃\(U,E) are soft pc-
closed sets and so s̃pccl(X̃\(V,E)) = X̃\(V,E) and s̃pccl(X̃\(U,E)) = X̃\(U,E)
and then (F1, E) ⊑ (U,E) ⊑ s̃pccl(U,E) ⊑ s̃pccl(X̃ \ (V,E)) = X̃ \ (V,E) ⊑
(G,E). Thus, (F1, E) ⊑ (U,E) ⊑ s̃pccl(U,E) ⊑ (G,E).

Conversely, let the condition be satisfied and let (F1, E), (F2, E) be two
disjoint soft closed subsets of X̃. Then, (F1, E) ⊑ X̃ \ (F2, E) and since (F2, E)
is soft closed then X̃ \ (F2, E) is a soft open subset containing (F1, E). So, by
hypothesis, there exist soft pc-open sets (U,E) such that (F1, E) ⊑ (U,E) ⊑
s̃pccl(U,E) ⊑ X̃ \ (F2, E). Putting (V,E) = X̃ \ s̃pccl(U,E), then there exist
two disjoint soft pc-open sets (U,E) and (V,E) such that (F1, E) ⊑ (U,E) and
(F2, E) ⊑ (V,E). Therefore, X̃ is s̃pc-normal.

Theorem 4.4. Every soft T1, s̃pc-normal space X̃ is s̃pc-regular.

Proof. Let (F1, E) be any soft closed subset in an s̃pc-normal space X̃ and

xe∈̃X̃ such that xe /̃∈(F1, E). Since X̃ is soft T1 space, then {xe} is soft closed
subset in X̃ with {xe} ⊓ (F1, E) = ϕ̃. By s̃pc-normality of X̃, there exist two
disjoint soft pc-open sets (U,E) and (V,E) of X̃ such that {xe} ⊑ (U,E), so
xe∈̃(U,E), (F1, E) ⊑ (V,E) and (U,E) ⊓ (V,E) = ϕ̃. Thus, X̃ is an s̃pc-regular
space.

Theorem 4.5. If Ỹ is a soft clopen subspace of an s̃pc-normal (resp., s̃p∗c-
normal) space X̃, then Ỹ is s̃pc-normal (resp., s̃p∗c-normal).

Proof. Let X̃ be an s̃p∗c-normal space and Ỹ be a soft clopen subspace of X̃. Let
(K1, E) and (K2, E) be two disjoint soft pc-closed subsets of Ỹ , then By Lemma
2.7, (K1, E) and (K2, E) are two disjoint soft pc-closed subsets of X̃. By s̃p∗c
-normality of X̃, there exist two soft pc-open sets (F1, E) and (F2, E) such that
(K1, E) ⊑ (F1, E), (K2, E) ⊑ (F2, E) and (F1, E)⊓ (F2, E) = ϕ, then (K1, E) ⊑
(F1, E) ⊓ Ỹ and (K2, E) ⊑ (F2, E) ⊓ Ỹ . It follows from, (F1, E) ⊓ (F2, E) = ϕ̃,
that ((F1, E)⊓ Ỹ )⊓ ((F2, E)⊓ Ỹ ) = ϕ̃ and By Lemma 2.5, we have ((F1, E)⊓ Ỹ )
and ((F2, E) ⊓ Ỹ ) are soft pc-open subsets of Ỹ . Hence, Ỹ is s̃p∗c -normal.

The following example shows that Theorem 4.5, is not true when Ỹ is soft
open or soft closed.

Example 4.2. Let X = {x, y, z}, E = {e1, e2} and X̃ = {(e1, X), (e2, X)}, let
τ̃ = {X̃, ϕ̃, (F1, E), (F2, E), (F3, E), (F4, E)}, where (F1, E) = {(e1, {x}), (e2, X)},
(F2, E) = {(e1, {y}), (e2, {y})}, (F3, E) = {(e1, ϕ), (e2, {y})}, (F4, E) =
{(e1, {x, y}), (e2, X)}. Then, (X, τ̃ , E) is both s̃p∗c-normal and s̃pc-normal space
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and the soft open set (F4, E) is not s̃pc-normal. Also, (X, τ̃ c, E) is both s̃p∗c-
normal and s̃pc-normal space and the soft closed set (F4, E) is not s̃pc-normal.

Theorem 4.6. Every s̃p∗c-normal s̃pc − T2 space X̃ is s̃p∗c-regular.

Proof. Suppose that (F1, E) is an soft pc-closed set and xe /̃∈(F1, E) for each
xe∈̃X̃. Since X̃ is an s̃pc − T2 space. Therefore, by Theorem 2.4, each {xe}
is soft pc-closed in X̃. Since X̃ is s̃p∗c-normal, so there exist soft pc-open sets
(U,E), (V,E) such that {xe} ⊑ (U,E), (F1, E) ⊑ (V,E) and (U,E)⊓(V,E) = ϕ̃,
this implies that X̃ is s̃p∗c-regular.

Definition 4.2. A soft mapping fpu : (X, τ̃ , E) → (Y, µ̃, B) is called an soft

pc-open mapping if and only if the image of every soft pc-open set in X̃ is an
soft pc-open in Ỹ .

Proposition 4.1. Let (X, τ̃ , E) and (Y, µ̃, B) be soft topological spaces and fpu :
SP (X)E → SP (Y )B be a soft bijective and soft pc-open mapping. If (X, τ̃ , E)
is s̃pc-Ti, then (Y, µ̃, B) is s̃pc-Ti spaces (i = 0, 1, 2).

Proof. We prove only the case for s̃pc-T0 space and the proof of the other
are similar. Let yβ1, yβ2∈̃SP (Y )B be two distinct soft points. Since fpu is

bijective, there exist distinct soft points xe1, xe2∈̃X̃ such that fpu(xe1) = yβ1,
fpu(xe2) = yβ2. Since (X, τ̃ , E) is an s̃pc-T0 space, there exist soft pc-open

sets (F,E), (G,E) such that xe1∈̃(F,E) and xe2 /̃∈(F,E) or xe2∈̃(G,E) and

xe1 /̃∈(G,E). As fpu is an soft pc-open mapping, then fpu(F,E), fpu(G,E) are

soft pc-open sets such that yβ1∈̃fpu(F,E) and yβ2 /̃∈fpu(F,E) or yβ2∈̃fpu(G,E)

and yβ1 /̃∈fpu(G,E). This implies that, (Y, µ̃, B) is s̃pc-T0.

Definition 4.3. A function fpu : (X, τ̃ , E) → (Y, µ̃, B) is injective soft point

s̃pc-closure if and only if for every xe, ye′∈̃X̃ such that s̃pccl({xe}) ̸= s̃pccl({ye′}),
then s̃pccl({f(xe)}) ̸= s̃pccl({f(ye′)}).

It is clear that the identity function from any soft topological space onto
itself is a function which satisfies Definition 4.3.

Theorem 4.7. If a function fpu : (X, τ̃ , E) → (Y, µ̃, B) is injective soft point

s̃pc-closure and X̃ is an s̃pc-T0 space, then fpu is soft injective.

Proof. Let xe, ye′∈̃X̃ with xe ̸= ye′ . Since X̃ is s̃pc-T0, therefore by Proposition
2.3, s̃pccl({xe}) ̸= s̃pccl({ye′}). But fpu is (1− 1) soft point s̃pc-closure, implies
that s̃pccl({f(xe)}) ̸= s̃pccl({f(ye′)}). Hence, fpu(xe)}) ̸= fpu(ye′). Thus, fpu
is soft injective.
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5. Conclusion

Many topological notions are extended to the soft topology after introducing the
concept of soft topological spaces. Several classes of soft sets are defined and
applied to present many notions in soft topology. In this paper, we employ the
notion of soft pc-open set to introduce some types of soft regular and soft normal
spaces and give many properties of these spaces. Also, we discuss relations
between these spaces, hereditary properties and their images under soft pc-
continuous mappings.
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Abstract. Let D be a bounded strongly pseudoconvex domain in Cn, δ(z) = d(z, ∂D)
the Euclidean distance from the point z to the boundary ∂D and H(D) the set of all
holomorphic functions on D. For given β ∈ R, the weighted Hilbert Bergman space on
D, denoted by A2(D,β), consists of all f ∈ H(D) such that

∥f∥2,β =
[ ∫

D

|f(z)|2δ(z)βdv(z)
] 1

2

< +∞,

where dv is the Lebesgue measure on D. The aim of the paper is to completely char-
acterize the Schatten class of weighted composition operators on A2(D,β) when δ(z)
satisfies certain integrable condition.

Keywords: weighted composition operator, strongly pseudoconvex domain, weighted
Hilbert Bergman space, Schatten class.

1. Introduction

Let Ω be a domain in Cn and H(Ω) the set of all holomorphic functions on Ω.
Let φ be a holomorphic self-map of Ω and u ∈ H(Ω). The well-known weighted
composition operator on some subspaces of H(Ω) is defined by

Wφ,uf(z) = u(z)f(φ(z)), z ∈ Ω.

When u(z) ≡ 1, it is reduced to the composition operator, usually denoted
by Cφ. While φ(z) = z, it is reduced to the multiplication operator, usually

*. Corresponding author
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denoted byMu. Weighted composition operators have been widely studied (see,
for example, [4, 5, 8, 9, 10, 15, 16, 17] and the related references therein).

Let D ⊆ Cn be a bounded strongly pseudoconvex domain, δ(z) = d(z, ∂D)
the Euclidean distance from the point z to the boundary ∂D and dv the Lebesgue
measure on D. The authors in [2] introduced the following weighted Bergman
space by considering the distance function δ(z) as a weight on D. For given
β ∈ R and p ∈ [1,+∞), the weighted Bergman space Ap(D,β) consists of all
f ∈ H(D) such that

∥f∥p,β =
[ ∫

D
|f(z)|pδ(z)βdv(z)

] 1
p
< +∞.

With the norm ∥ · ∥p,β, Ap(D,β) becomes a Banach space. If β = 0, then
Ap(D,β) is abbreviated to Ap(D), usually called the Bergman space. In this
paper, we consider the case of p = 2. For this case, it is a Hilbert space with
the inner product

⟨f, g⟩β =

∫
D
f(z)g(z)δ(z)βdv(z).

For a given separable Hilbert space H, the Schatten p-class of operators on
H, Sp(H), consists of those compact operators T on H with its sequence of
singular numbers λn belonging to ℓp, the p-summable sequence space. When
p = 1, it is usually called the trace class, and p = 2 is usually called the
Hilbert-Schmidt class (see [22]). The theory of Schatten p-class of operators
on the holomorphic function spaces has been widely studied (see, for example,
[18, 7, 19, 14, 23, 12, 13, 6, 20] and the references therein). In particular,
the authors in [20] characterized the Schatten p-class of weighted composition
operators on A2(D).

Motivated by previous mentioned studies (in especial [20]), it is natural
to consider how to characterize the Schatten p-class of weighted composition
operators on A2(D,β). After a long time of careful consideration, we find that
if the parameter β satisfies the condition∫

D
K(z, z)δ(z)βdv(z) = +∞,

then it is a difficult problem. However, if β satisfies the condition∫
D
K(z, z)δ(z)βdv(z) < +∞,

we can completely characterize the Schatten p-class of weighted composition
operators on A2(D,β) by borrowing the methods obtained in [2] and [21]. We
hope that this paper can attract people’s more attention to such problems.

Let K(z, w) : D ×D → C be the Bergman kernel of D. For every w ∈ D,
the normalized Bergman kernel of D, denoted by kw(z), is defined by

kw(z) =
K(z, w)√
K(w,w)

=
K(z, w)

∥K(·, w)∥2,β
.
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For µ a finite complex Borel measure on D, the Berezin transform µ̃(z) is defined
by

µ̃(z) =

∫
D
|kz(w)|2dµ(w).

Let β(z, w) be the Kobayashi distance function on D. For z ∈ D and r ∈ (0, 1),
let

B(z, r) = {w ∈ D : β(z, w) < r}
denote the Kobayashi ball with center z and radius 1

2 ln
1+r
1−r . We define vβ(B(z, r))

by

vβ(B(z, r)) =

∫
B(z,r)

δ(w)βdv(w).

The function µ̂r(z) on D is defined by

µ̂r(z) =
µ(B(z, r))

vβ(B(z, r))
.

For φ the holomorphic self-map of D and u ∈ H(D), we define dv2,β(z) =
|u(z)|2δ(z)βdv(z) and µ2,β = v2,β ◦ φ−1, respectively. In this paper, we will use
the Berezin transform µ̃2,β and the function µ̂r2,β to characterize the Schatten

p-class of weighted composition operators on A2(D,β).
In this paper, the positive constants are denoted by C which may differ from

one occurrence to the next.

2. Preliminary results

In this section, we present some results from [1] on the Kobayashi geometry of
bounded strongly pseudoconvex domain.

Lemma 2.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for z0 ∈ D and r ∈ (0, 1), there exists a positive constant C independent of
z ∈ B (z0, r) such that

1− r

C
δ (z0) ≤ δ(z) ≤ C

1− r
δ (z0) .

Lemma 2.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for β ∈ R and r ∈ (0, 1), there exist two positive constants C1 and C2 such that

C1δ(·)n+1+β ≤ vβ(B(·, r)) ≤ C2δ(·)n+1+β.

By using Lemma 2.1 and Lemma 2.2, we have the following result.

Corollary 2.1. For r, s, R ∈ (0, 1), there exists a positive constant C indepen-
dent of z1, z2 with β(z1, z2) ≤ R such that

C−1 ≤
vβ(B(z1, r))

vβ(B(z2, s))
≤ C.
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We also need the following result on the Bergman kernel obtained in [1] and
[11].

Lemma 2.3. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist positive constants C and δ such that, if z0 ∈ D satisfies
δ(z0) < δ, then

C

δ(z0)n+1
≤ |K(z, z0)| ≤

1

Cδ(z0)n+1

and

C

δ(z0)n+1
≤ |kz0(z)|2 ≤

1

Cδ(z0)n+1
,

for all z ∈ B(z0, r).

From Lemmas 2.2 and 2.3, the following result follows.

Corollary 2.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist positive constants C and δ such that, if z0 ∈ D satisfies
δ(z0) < δ, then

C

vβ(B(z0, r))
≤ |K(z, z0)| ≤

1

Cvβ(B(z0, r))

and

C

vβ(B(z0, r))
≤ |kz0(z)|2 ≤

1

Cvβ(B(z0, r))
,

for all z ∈ B(z0, r).

We also need the following cover of D (see [1]).

Lemma 2.4. Let D ⊆ Cn be a bounded strongly pseudoconvex domain. Then,
for r ∈ (0, 1), there exist an m ∈ N and a sequence {zi} ⊆ D such that D =⋃∞
i=1B(zi, r) and any point in D belongs to at most m balls of the form B(zi, R)

where R = 1
2(1 + r).

3. Main results and proofs

First, we have the following result.

Lemma 3.1. If T ∈ S1(A
2(D,β)), then

tr(T ) =

∫
D

〈
TK(·, z),K(·, z)

〉
β
δ(z)βdv(z).
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Proof. Let {ej(z)} be an orthonormal basis for A2(D,β). We have

K(z, w) =
∞∑
j=1

ej(z)ej(w).

Then, from this it follows that

tr(T ) =
∞∑
j=1

⟨Tej , ej⟩β =
∞∑
j=1

∫
D
Tej(z)ej(z)δ(z)

βdv(z)

=
∞∑
j=1

∫
D
⟨Tej ,K(·, z)⟩β ej(z)δ(z)

βdv(z)

=
∞∑
j=1

∫
D
⟨ej , T ∗K(·, z)⟩β ej(z)δ(z)

βdv(z)

=

∫
D
δ(z)β

∫
D

( ∞∑
j=1

ej(w)ej(z)
)
T ∗K(·, z)(w)δ(w)βdv(w)dv(z)

=

∫
D
δ(z)β

∫
D
K(w, z)T ∗K(·, z)(w)δ(w)βdv(w)dv(z)

=

∫
D
⟨K(·, z), T ∗K(·, z)⟩β δ(z)

βdv(z) =

∫
D
⟨TK(·, z),K(·, z)⟩β δ(z)

βdv(z).

From this, the desired result follows. This completes the proof.

In the following result, we give an estimate for the finite positive Borel
measure on D.

Lemma 3.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, there exists a positive
constant C depending on r such that

µ(B(a, r)) ≤ C

vβ(B(a, r))

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z).

Proof. For any a ∈ D, we have∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) =

∫
B(a,r)

δ(z)βdv(z)

∫
B(z,r)

dµ(w)

=

∫
B(a,r)

δ(z)βdv(z)

∫
D
χB(z,r)(w)dµ(w) =

∫
D
dµ(w)

∫
B(a,r)

χB(z,r)(w)δ(z)
βdv(z).

Noting that χB(w,r)(z) = χB(z,r)(w), for all w and z in D, we have∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) =

∫
D
dµ(w)

∫
B(a,r)

χB(w,r)(z)δ(z)
βdv(z)

=

∫
D
vβ(B(a, r) ∩B(w, r))dµ(w) ≥

∫
B(a,r)

vβ(B(a, r) ∩B(w, r))dµ(w),
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where χB(w,r)(z) is the characteristic function of the set B(w, r). Let α(t) (0 ≤
t < 1) be the geodesic (in the Bergman metric) from a to w and m(a,w) = α(12).
By using Lemma 3 in [21], we obtain∫

B(a,r)
µ(B(z, r))δ(z)βdv(z) ≥

∫
B(a,r)

vβ

(
B(m(a,w),

r

2
)
)
dµ(w).

From Corollary 2.1, it follows that there exists a positive constant C depending
only on r such that

Cvβ

(
B
(
m(a,w),

r

2

))
≥ vβ(B(a, r)),

for all w ∈ B(a, r). Therefore, we have

C

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z) ≥
∫
B(a,r)

vβ(B(a, r))dµ(w),

that is,

µ(B(a, r)) ≤ C

vβ(B(a, r))

∫
B(a,r)

µ(B(z, r))δ(z)βdv(z).

This completes the proof.

Corollary 3.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, there exists a positive
constant C depending on r such that

[µ2,β(B(zj , r))]
p
2 ≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[µ2,β(B(zj , r))]
p
2 δ(z)βdv(z).

Corollary 3.2. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, µ a
finite positive Borel measure on D and r ∈ (0, 1). Then, for every r,R ∈ (0, 1),
there exists a positive constant C depending on r and R such that[

µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

δ(z)βdv(z),

for all zj, z with β(zj , z) ≤ R.
As an application of Corollary 3.2, we can introduce the following complex

measure. For p ∈ [2,+∞), the complex measure µ2,β,ζ is defined by

µ2,β,ζ(z) =

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
ζ−1

χB(zj ,r)(z)µ2,β(z),

where ζ is a complex number with 0 ≤ Reζ ≤ 1 and χB(zj ,r)(z) is the charac-
teristic function of the set B(zj , r).

Lemma 3.3. Let ζ = 2
p . Then, it follows that

Tµ2,β ≤ Tµ
2,β, 2p

≤ mTµ2,β .
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Proof. Obviously, it follows that

µ2,β, 2
p
(z) =

∞∑
j=1

χB(zj ,r)(z)µ2,β(z) ≥ µ2,β(z).

Then, we have

Tµ
2,β, 2p

f(z)=

∫
D
f(w)K(w, z)dµ2,β, 2

p
(w)≥

∫
D
f(w)K(w, z)dµ2,β(w)=Tµ2,βf(z),

which shows Tµ
2,β, 2p

≥ Tµ2,β .

Conversely, it follows from Lemma 2.4 that µ2,β, 2
p
(z) ≤ mµ2,β(z). Similarly,

we can get Tµ
2,β, 2p

≤ mTµ2,β . This completes the proof.

Lemma 3.4. Let T1, T2 be two compact operators on Hilbert space H and
0 ≤ T1 ≤ T2. Then

∥T1∥Sp(H) ≤ ∥T2∥Sp(H).

Proof. By Lemma 14 in [21], we have sj(T1) ≤ sj(T2) for j ∈ N. Since

∥T∥Sp =

 ∞∑
j=1

(sj(T ))
p

 1
p

,

we have

∥T1∥Sp(H) =

 ∞∑
j=1

(sj(T1))
p

 1
p

≤

 ∞∑
j=1

(sj(T2))
p

 1
p

= ∥T2∥Sp(H).

This completes the proof.

Now, we prove the main result of this paper. We assume that β satisfies the
condition ∫

D
K(z, z)δ(z)βdv(z) < +∞.(1)

Remark 3.1. We consider the condition (1) for the special case D = {z ∈ C :
|z| < 1}, the open unit disk. For this case, we have (see, for example, [22])

K(z, w) =
1

(1− zw)2
.

For the case, it is easy to see that δ(z) = 1− |z|2. Then, we have∫
D
K(z, z)δ(z)βdv(z) =

∫
D
(1− |z|2)β−2dv(z) = 2π

∫ 1

0
(1− r2)β−2rdr.(2)
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From a direct calculation, it follows that (2) is finite if and only if β ∈ (1,+∞).
This shows that Theorem 3.1 excludes the result of the Bergman space (that is,
corresponding to β = 0). Maybe it is caused by the different definitions of the
weights. For example, in [21] the author defined the weighted Bergman space
on bounded symmetric domains by the weight K(z, z)λ.

Theorem 3.1. Let D ⊆ Cn be a bounded strongly pseudoconvex domain, p ∈
[2,+∞), φ a holomorphic self-map of D and u ∈ H(D). Then, the following
statements are equivalent:

(i) Wφ,u ∈ Sp(A
2(D,β));

(ii) µ̃2,β ∈ L
p
2 (D,K(z, z)δ(z)βdv(z));

(iii) µ̂r2,β ∈ L
p
2 (D,K(z, z)δ(z)βdv(z));

(iv)
∑∞

j=1

(
µ̂r2,β(zj)

) p
2
< +∞, where {zj} is the sequence in Lemma 2.4.

Proof. For f, g ∈ A2(D,β), we have

⟨(Wφ,u)
∗(Wφ,u)f, g⟩β= ⟨(Wφ,u)f, (Wφ,u)g⟩β =

∫
D
|u(z)|2f(φ(z))g(φ(z))δ(z)βdv(z)

=

∫
D
f(φ(z))g(φ(z))dv2,β(z) =

∫
D
f(w)g(w)dµ2,β(w).

Considering the Toeplitz operator on A2(D,β)

Tµ2,βf(z) =

∫
D
f(w)K(w, z)dµ2,β(w),

we have 〈
Tµ2,βf, g

〉
β
=

∫
D

∫
D
f(w)K(w, z)dµ2,β(w)g(z)δ(z)

βdv(z)

=

∫
D
f(w)

∫
D
K(z, w)g(z)δ(z)βdv(z)dµ2,β(w)

=

∫
D
f(w)g(w)dµ2,β(w),

which shows that

Tµ2,β = (Wφ,u)
∗(Wφ,u).

This implies that Tµ2,β is a positive operator on A2(D,β).
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(i) ⇒ (ii). From Theorem 1.4.6 in [22], we know that Wφ,u ∈ Sp(A
2(D,β))

if and only if Tµ2,β ∈ S p
2
(A2(D,β)). Since Tµ2,β is positive, by using Lemma 3.1,

we have

∥Tµ2,β∥
p
2
S p

2

= tr(T
p
2
µ2,β ) =

∫
D

〈
T

p
2
µ2,βK(·, z),K(·, z)

〉
β
δ(z)βdv(z)

=

∫
D
K(z, z)

〈
T

p
2
µ2,βk(·, z), k(·, z)

〉
β
δ(z)βdv(z).

Since p
2 ≥ 1 and each kz is a unit vector in A2(D,β), by Proposition 6.4 in [3]

we get

∥Tµ2,β∥
p
2

S p
2
(A2(D,)

¯
)
≥

∫
D
K(z, z)

[ 〈
Tµ2,βk(·, z), k(·, z)

〉
β

] p
2
δ(z)βdv(z)

=

∫
D
K(z, z)(µ̃2,β(z))

p
2 δ(z)βdv(z),

which shows that µ̃2,β ∈ L
p
2 (D,K(z, z)δ(z)βdv(z)).

(ii) ⇒ (iii). Form Corollary 2.2, there exists a positive constant C such that

Cµ̃2,β(z0) = C

∫
D
|kz0(z)|2dµ2,β(z) ≥ C

∫
B(z0,r)

|kz0(z)|2dµ2,β(z)

≥ 1

vβ(B(z0, r))

∫
B(z0,r)

dµ2,β(z) = µ̂r2,β(z0).

Thus∫
D
(µ̂r2,β(z))

p
2K(z, z)δ(z)βdv(z) ≤ C

∫
D
(µ̃2,β(z))

p
2K(z, z)δ(z)βdv(z) < +∞.

(iii) ⇒ (iv). Let {zj} be the sequence in Lemma 2.4. By Corollary 3.2, we
have[

µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

vβ(B(zj , r))

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

δ(z)βdv(z).

From Corollary 2.2, letting z0 = z, there exists a positive constant C such that[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ C

∫
B(zj ,r)

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

K(z, z)δ(z)βdv(z).

By Lemma 2.4, there exists an m ∈ N such that

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

≤ Cm

∫
D

[
µ2,β(B(z, r))

vβ(B(z, r))

] p
2

K(z, z)δ(z)βdv(z),
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that is,

∞∑
j=1

(
µ̂r2,β(zj)

) p
2 ≤ Cm

∫
D

(
µ̂r2,β(z)

) p
2 K(z, z)δ(z)βdv(z).

(iv) ⇒ (i). We use the complex interpolation method in [21] to prove this
statement. We want to show that Tµ2,β ∈ S p

2
(A2(D,β)) and

∥Tµ2,β∥
p
2

S p
2
(A2(D,)

¯
)
≤ C

∞∑
j=1

(
µ̂r2,β(zj)

) p
2 .

For p = 2, by Corollary 2.2, there exists a positive constant C such that

∥Tµ2,β∥S1(A2(D,β)) =

∫
D

〈
Tµ2,βK(·, z),K(·, z)

〉
β
δ(z)βdv(z)

=

∫
D
K(z, z)

〈
Tµ2,βkz(·), kz(·)

〉
β
δ(z)βdv(z) =

∫
D
K(z, z)(µ̃2,β(z))δ(z)

βdv(z)

=

∫
D
K(z, z)

∫
D
|kz(w)|2dµ2,β(w)δ(z)βdv(z)=

∫
D

∫
D
|K(w, z)|2dµ2,β(w)δ(z)βdv(z)

=

∫
D

∫
D
|K(w, z)|2δ(z)βdv(z)dµ2,β(w) =

∫
D
K(w,w)dµ2,β(w)

=

∫
D
K(z, z)dµ2,β(z) ≤

∞∑
j=1

∫
B(zj ,r)

|K(z, z)|dµ2,β(z) ≤ C
∞∑
j=1

µ2,β(B(zj , r))

vβ(B(zj , r))
,

for all zj ∈ B(z, r) and j ∈ N. For 1 < p
2 < +∞, since

∑∞
j=1

(
µ̂r2,β(zj)

) p
2
< +∞,

we can assume that

µ2,β(B(zj , r))

vβ(B(zj , r))
< 1,

for all j ∈ N. By Corollary 2.2 and Lemma 2.4, we have

|µ2,β,ζ |(D) ≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
Reζ−1

µ2,β(B(zj , r))

≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1

µ2,β(B(zj , r)) =
∞∑
j=1

vβ(B(zj , r))

≤ C

∞∑
j=1

∫
B(zj ,r))

K(z, z)δ(z)βdv(z) ≤ Cm

∫
D
K(z, z)δ(z)βdv(z) < +∞.

For every ζ with 0 ≤ Reζ ≤ 1, we consider the Toeplitz operator Tµ2,β,ζ on
A2(D,β) defined by

Tµ2,β,ζf(z) =

∫
D
K(z, w)f(w)dµ2,β,ζ(w).
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By Lemma 3.3 and Lemma 3.4, we have

∥Tµ2,β∥Sp(A2(D,β)) ≤ ∥Tµ
2,β, 2p

∥Sp(A2(D,β)) ≤ m∥Tµ2,β∥Sp(A2(D,β)).

Thus, Tµ2,β ∈ S p
2
(A2(D,β)) is equivalent to Tµ

2,β, 2p

∈ S p
2
(A2(D,β)). By complex

interpolation (see [21]), we have

∥Tµ
2,β, 2p

∥S p
2
(A2(D,β)) ≤M

1− 2
p

0 M
2
p

1 ,

where

M0 = sup
{
∥Tµ2,β,ζ∥ : Reζ = 0

}
and M1 = sup

{
∥Tµ2,β,ζ∥S1 : Reζ = 1

}
.

Now, we show that M0 and M1 are bounded. For Reζ = 0,

|µ2,β,ζ |(B(zk, r)) ≤
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1 ∫
B(zk,r)

χB(zj ,r)(z)dµ2,β(z)

=
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

]−1

µ2,β(B(zk, r) ∩B(zj , r)).

Since B(zk, r) ∩ B(zj , r) ̸= 0, by Lemma 2.4, for any fixed positive integer k,
there exists Nk ≤ N such that

|µ2,β,ζ |(B(zk, r)) ≤
Nk∑
i=1

[
µ2,β(B(zji , r))

vβ(B(zji , r))

]−1

µ2,β(B(zk, r) ∩B(zji , r))

≤
Nk∑
i=1

[
µ2,β(B(zji , r))

vβ(B(zji , r))

]−1

µ2,β(B(zji , r))

=

Nk∑
i=1

vβ(B(zji , r)).

Since B(zji , r) ∩ B(zk, r) ̸= 0, by Corollary 2.1 there exists a positive constant
C such that

vβ(B(zji , r)) ≤ Cvβ(B(zk, r)).

Thus, for all k ∈ N, we have

|µ2,β,ζ |(B(zk, r)) ≤ CNkvβ(B(zk, r)) ≤ CNvβ(B(zk, r)).

From Theorem 3.4 in [1], we know that |µ2,β,ζ | is a Carleson measure of A2(D,β).
By Corollary and Theorem 7 in [21], there exists a positive constant C such that∫

D
|f(z)|2d|µ2,β,ζ |(z) ≤ C

∫
D
|f(z)|2δ(z)βdv(z),
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for all f in A2(D,β). Therefore,∣∣⟨Tµ2,β,ζf, g⟩β∣∣ = ∣∣∣ ∫
D
f(z)g(z)d|µ2,β,ζ |(z)

∣∣∣
≤

[∫
D
|f(z)|2d|µ2,β,ζ |(z)

] 1
2
[∫

D
|g(z)|2d|µ2,β,ζ |(z)

] 1
2

≤ C

[∫
D
|f(z)|2δ(z)βdv(z)

] 1
2
[∫

D
|g(z)|2δ(z)βdv(z)

] 1
2

,

which implies that ∥Tµ2,β,ζ∥ ≤ C, for all ζ with Reζ = 0, that is, M0 is bounded.
For Reζ = 1, by Corollary 2.2, there exists a positive constant C such that∫
D
K(z, z)d|µ2,β,ζ |(z) ≤

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
−1 ∫

B(zj ,r)
K(z, z)dµ2,β(z)

≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2
−1 µ2,β(B(zj , r))

vβ(B(zj , r))

= C
∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

.

For any orthonormal bases {fj} and {gj} of A2(D,β) and Reζ = 1, we have

∞∑
j=1

∣∣⟨Tµ2,β,ζfj(z), gj(z)⟩β∣∣ ≤ ∫
D

∞∑
j=1

|fj(z)||gj(z)|d|µ2,β,ζ |(z)

≤
∫
D

 ∞∑
j=1

|fj(z)|2
 1

2
 ∞∑
j=1

|gj(z)|2
 1

2

d|µ2,β,ζ |(z)

=

∫
D
K(z, z)|d|µ2,β,ζ |(z)

≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

.

Therefore, for all Reζ = 1, we have

∥Tµ2,β,ζ∥S1(A2(D,β)) ≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

,

that is,

M1 ≤ C

∞∑
j=1

[
µ2,β(B(zj , r))

vβ(B(zj , r))

] p
2

= C

∞∑
j=1

(
µ̂r2,β(zj)

) p
2 .
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Hence,

∥Tµ2,β∥Sp(A2(D,β)) ≤M
1− 2

p

0 M
2
p

1 ≤ C

 ∞∑
j=1

(
µ̂r2,β(zj)

) p
2

 2
p

.

This completes the proof.
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Abstract. We derive integral inequalities of Hermite-Hadamard type for the functions
that have preinvex absolute values of third order derivatives. Moreover, we also discuss
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1. Introduction

For convex functions, several inequalities have been studied by many authors,
see [1], [2]-[9]. But the inequality obtained by Hadamard [8] is considered the
most significant and rich in applications. Let g : I ⊆ R → R be a convex

*. Corresponding author



HERMITE-HADAMARD INEQUALITY FOR PREINVEX FUNCTIONS 295

function on the interval I. The inequality in [8] is given by

(1) g

(
α+ β

2

)
≤ 1

β − α

∫ β

α
g(u)du ≤ g(α) + g(β)

2
, α, β ∈ I and α < β.

As mentioned in [8]: ”inequality (1) is known as the Hermite-Hadamard (H-H)
inequality for convex functions”. The inequalities will be reversed for a concave
function. Hadamard inequality refines the concept of convexity and various
classical inequalities can be derived from it.
Recently, several extensions, refinements and generalizations have been dis-
cussed by the many authors, see [2, 7, 9, 16, 18]. Dragomir et. al. [5] proved
the following lemma for the class of convex functions.

Lemma 1.1 ([5]). Suppose that g : Io ⊆ R → R be a differentiable mapping on
Io, α, β ∈ Io, such that α < β. If g′ ∈ L[α, β], then

(2)
g(α) + g(β)

2
− 1

β − α

∫ β

α
g(u)du =

β − α

2

∫ 1

0
(1− 2t)g′(tα+ (1− t)β)dt.

Hanson [10] introduced the concept of invexity which is a significant gener-
alization of covexity. The concept of preinvex functions was introduced by Weir
and Mond [17], later Jeyakumar et. al. [13] investigated some properties of these
functions. They [13] also studied the role of preinvex functions in optimization
and mathematical programming. Yuan et. al. [18] investigated some new char-
acterizations of preinvex and prequasi-invex function under some assumptions.
Noor [14] derived H-H inequality for preinvex and log-preinvex functions, later
Iqbal et. al. [11] investigated some refined integral inequalities and discussed
its applications to special means.

The objective of this work is to formulate some new refined inequalities of H-
H type for the functions that have preinvex absolute values of third derivatives.
We have considered various special means to show its applications. Our findings
extend the previously known results.

2. Preliminaries

The following definitions and known result will be used in the sequel.

Definition 2.1 ([10]). A set X ⊆ Rn is said to be invex with respect to η :
X ×X → Rn if

v + tη(u, v) ∈ X,∀ u, v ∈ X & t ∈ [0, 1].(3)

As discussed in [10], ”the definition says that there is a path starting from
v which is contained in X. It is not necessary that u should be one of the end
points of the path. However, if we require that u be an end point of the path
for every pair u, v ∈ X, then η(u, v) = u− v, reduces to convexity.”
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Define
Puy := {w : w = u+ tη(v, u) : t ∈ [0, 1]}.

It represents the η-path joining the points u and y := u + η(v, u) for every
u, v ∈ X.

Definition 2.2 ([17]). Let X ⊆ Rn be an invex set with respect to η : X×X →
Rn. Then, the function g : X → R is called preinvex with respect to η, if

(4) g(v + tη(u, v)) ≤ tg(u) + (1− t)g(v), ∀ u, v ∈ X & t ∈ [0, 1].

Preinvex function is the generalized class of convex functions. The function
f(u) = − | u | is preinvex with respect to η, where

η(u, v) :=

{
u− v, if u ≤ 0, v ≤ 0 and u ≥ 0, v ≥ 0,

v − u, otherwise.

But it is not convex. Recently, Barani et. al. [1] extended the Lemma 1.1
for invex sets as follows:

Lemma 2.1 ([1]). Suppose that A ⊆ R be an open invex subset with respect
to η : A × A → R and α, β ∈ A with η(α, β) ̸= 0 and that g : A → R be
differentiable function. If g′ is integrable on the η path Pβγ , γ = β + η(α, β),
then

− g(β) + g(β + η(α, β))

2
+

1

η(α, β)

∫ β+η(α,β)

β
g(u)du

=
η(α, β)

2

∫ 1

0
(1− 2t)g′(β + tη(α, β))dt.

Using Lemma 2.1, Barani et. al. [1] established H-H type inequalities for
preinvex functions.

3. Main results

We now extend the previous known results for the functions whose third deriva-
tives absolute values are preinvex. Consider the function η : A × A → R with
η(α, β) ̸= 0, for α, β ∈ A. Henceforth, we assume that A ⊆ R is an open invex
set with respect to η.

Lemma 3.1. Let g : A → R be three times differentiable function and g′′′ is
integrable on the η-path Pβγ , γ = β + η(α, β), then

η(α, β)

12
[g′(β+η(α, β))−g′(β)]−1

2
[g(β+η(α, β))+g(β)]+

1

η(α, β)

∫ β+η(α,β)

β
g(u)du

(5) =
η(α, β)3

12

∫ 1

0
t(1− t)(2t− 1)g′′′(β + tη(α, β))dt.



HERMITE-HADAMARD INEQUALITY FOR PREINVEX FUNCTIONS 297

Proof. Let α, β ∈ A. Since A is an invex set with respect to η, β+ tη(α, β) ∈ A
for every t ∈ [0, 1]. Integrating by parts, we get∫ 1

0
t(1− t)(2t− 1)g′′′(b+ tη(α, β))dt

=

[
t(1− t)(2t− 1)g′′(β + tη(α, β))

η(α, β)

]1
0

− 1

η(α, β)

∫ 1

0
(−6t2 + 6t− 1)g′′(β + tη(α, β))dt

=
1

η(α, β)

[
(6t2 − 6t+ 1)g′(β + tη(α, β))

η(α, β)

]1
0

− 1

η(α, β)2

∫ 1

0
(12t− 6)g′(β + tη(α, β))dt

=
1

η(α, β)2
[g′(β + η(α, β))− g′(β)]− 6

η(α, β)3
[g(β + η(α, β)) + g(β)]

+
12

(η(α, β)4

∫ β+η(α,β)

β
g(u)du.

Using above lemma, we prove some interesting results for the preinvex func-
tions.

Theorem 3.1. Let g : A → R be three times differentiable function and g′′′ is
integrable on the η-path Pβγ , γ = β + η(α, β). If |g′′′| is preinvex on A, then∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]

−1

2
[g(β + η(α, β)) + g(β)] +

1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

384

[
25

2
|g′′′(β)| − |g′′′(α)|

]
Proof. Applying Lemma 3.1 and using the preinvexity of |g′′′|, we get∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]− 1

2
[g(β + η(α, β)) + g(β)]

+
1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

12

∫ 1

0
t(1− t)|(2t− 1)||g′′′(β + tη(α, β))|dt

≤ |η(α, β)|3

12
[

∫ 1

0
t(1− t)|(2t− 1)|(t|g′′′(α)|+ (1− t)|g′′′(β)|)dt
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=
|η(α, β)|3

12
[|g′′′(α)|

∫ 1

0
t2(1− t)|(2t− 1)|dt+ |g′′′(β)|

∫ 1

0
t(1− t)2|(2t− 1)|dt

=
|η(α, β)|3

384

[
25

2
|g′′(β)| − |g′′(α)|

]
.

Theorem 3.2. Let g : A → R be three times differentiable function and g′′′ be
integrable on the η-path Pβγ , γ = β + η(α, β). If |g′′′|p/p−1 is preinvex on A for
p > 1, then∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]− 1

2
[g(β + η(α, β)) + g(β)]

+
1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

96

(
1

p+ 1

) 1
p (

|g′′′(α)|q + |g′′′(β)|q
) 1

q .

Proof. Using Lemma 3.1, preinvexity of |g′′′|p/p−1 and Holder’s integral in-
equality, we obtain∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]− 1

2
[f(β + η(α, β)) + g(β)]

+
1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

12

∫ 1

0
t(1− t)|(2t− 1)||g′′′(β + tη(α, β))|dt

≤ |η(α, β)|3

12

(∫ 1

0
tp(1− t)p|(2t− 1)|pdt

) 1
p
(∫ 1

0
|g′′′(β + tη(α, β))|qdt

) 1
q

≤ |η(α, β)|3

12

(
1

22p+1(p+ 1)

) 1
p
(∫ 1

0
t|g′′′(α)|q + (1− t)|g′′′(β)|qdt

) 1
q

≤ |η(α, β)|3

96

(
1

p+ 1

) 1
p (

|g′′′(α)|q + |g′′′(β)|q
) 1

q ,

where 1
p + 1

q = 1.

Theorem 3.3. Let g : A → R be three times differentiable function and g′′′ be
integrable on the η-path Pβγ , γ = β + η(α, β). If |g′′′|q is preinvex on A for
q > 1, then ∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]− 1

2
[g(β + η(α, β))
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+g(β)] +
1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

192

(
1

2

) 1
q
(
25

2
|g′′′(β)|q − |g′′′(α)|q

) 1
q

.

Proof. Since |g′′′|q is preinvex, using Lemma 3.1 and power-mean inequality,
we obtain∣∣∣∣η(α, β)12

[g′(β + η(α, β))− g′(β)]− 1

2
[f(β + η(α, β))

+g(β)] +
1

η(α, β)

∫ β+η(α,β)

β
g(u)du

∣∣∣∣∣
≤ |η(α, β)|3

12

∫ 1

0
t(1− t)|(2t− 1)||g′′′(β + tη(α, β))|dt

≤ |η(α, β)|3

12

(∫ 1

0
t(1− t)|(2t− 1)|dt

)1− 1
q

·
(∫ 1

0
t(1− t)|(2t− 1)||g′′′(β + tη(α, β))|qdt

) 1
q

≤ |η(α, β)|3

12

(
1

16

)1− 1
q
(∫ 1

0
t(1− t)|(2t− 1)|[t|g′′′(α)|q + (1− t)|g′′′(β)|q]dt

) 1
q

≤ |η(α, β)|3

12

(
1

16

)1− 1
q
(
|g′′(α)|q

∫ 1

0
t2(1− t)|(2t− 1)|dt

+|g′′(β)|q
∫ 1

0
t(1− t)2|(2t− 1)|dt

) 1
q

≤ |η(α, β)|3

12

(
1

16

)1− 1
q
[
|g′′′(α)|q(− 1

32
) + |g′′′(β)|q(25

64
)

] 1
q

=
|η(α, β)|3

192

(
1

2

) 1
q
(
25

2
|g′′′(β)|q − |g′′′(α)|q

) 1
q

.

4. Some applications

For distinct positive real numbers a1 and a2, we have:

Arithmetic mean: A(a1, a2) =
a1 + a2

2
,

Logarithmic mean: Lp(a1, a2) =
a1 − a2

ln a1 − ln a2
, and

generalized logarithmic mean: Lp(a1, a2) =

[
ap+1
1 − ap+1

2

(p+ 1)(a1 − a2)

]1/p
, p ̸= −1, 0.
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Let us suppose that

g(u) =
un+3

(n+ 1)(n+ 2)(n+ 3)

be a function and a3 = a2 + η(a1, a2), then

g(a3) + g(a2)

2
=

1

(n+ 1)(n+ 2)(n+ 3)
A(an+3

3 , an+3
2 ),

1

η(a1, a2)

∫ a3

a2

g(u)du =
1

η(a1, a2)

1

(n+ 1)(n+ 2)(n+ 3)

[
an+4
3 − an+4

2

n+ 4

]
.

For η(a1, a2) = a1 − a2, it becomes

1

a1 − a2

∫ a1

a2

g(u)du =
1

(n+ 1)(n+ 2)(n+ 3)
Ln+3
n+3(a1, a2),

g′(a2 + η(a1, a2)− g′(a2) =
(a2 + η(a1, a2))

n+2 − an+2
2

(n+ 1)(n+ 2)
.

For η(a1, a2) = a1 − a2, it becomes

g′(a1)− g′(a2) =
(a1 − a2)

(n+ 1)
Ln+1
n+1(a

n+2
1 , an+2

2 ).

Now, using the results of section 3, we discuss some applications to special
means of real numbers.

Proposition 4.1. For positive numbers a1 and a2 such that a1 > a2 and 0 <
n ≤ 1, we have∣∣(a1 − a2)

2(n+ 2)(n+ 3)Ln+1
n+1(a

n+2
1 , an+2

2 )

−12A(an+3
1 , an+3

2 ) + 12Ln+3
n+3(a

n+4
1 , an+4

2 )
∣∣

≤ |(a1 − a2)|3

32
(n+ 1)(n+ 2)(n+ 3)

[
25

2
|an2 | − |an1 |

]
.

Proof. The statement takes after from Theorem 3.3 connected to the function

g(u) =
un+3

(n+ 1)(n+ 2)(n+ 3)
,

for η(a1, a2) = a1 − a2.

Proposition 4.2. For positive numbers a1 and a2 such that a1 > a2 and 0 <
n ≤ 1, we have∣∣(a1−a2)

2(n+2)(n+3)Ln+1
n+1(a

n+2
1 , an+2

2 )−12A(an+3
1 , an+3

2 )+12Ln+3
n+3(a

n+4
1 , an+4

2 )
∣∣

≤ |(a1 − a2)|3

8

(
1

p+ 1

) 1
p

(n+ 1)(n+ 2)(n+ 3)(|an1 |q + |an2 |q)
1
q .
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Proof. The statement takes after from Theorem 3.3 connected to the function

g(u) =
un+3

(n+ 1)(n+ 2)(n+ 3)
,

for η(a1, a2) = a1 − a2.

Proposition 4.3. For positive numbers a1 and a2 such that a1 > a2 , 0 < n ≤ 1
and q > 1, we have∣∣(a1−a2)

2(n+2)(n+3)Ln+1
n+1(a

n+2
1 , an+2

2 )−12A(an+3
1 , an+3

2 )+12Ln+3
n+3(a

n+4
1 , an+4

2 )
∣∣

≤ |(a1 − a2)|3

16

(
1

2

)q

(n+ 1)(n+ 2)(n+ 3)

[
25

2
|an2 |q − |an1 |q

] 1
q

.

Proof. The statement takes after from Theorem 3.3 connected to the function

g(u) =
un+3

(n+ 1)(n+ 2)(n+ 3)
,

for η(a1, a2) = a1 − a2.

5. Conclusion

In this paper, we have extended the estimates of right hand side of Hermite-
Hadamard type inequality for the functions having pre-invex third derivative
absolute values. To show its application, we have considered several special
means for arbitrary real numbers. In the future, the results can be generalized
for higher order derivatives. Moreover, it can be studied in the context of q-
calculus, and various applications can be explored.
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Abstract. The main aim of this paper is to reform the Bernstein-Gelfand-Ponomarev
theory in order to characterize representations of some (non-basic) artinian algebras. All
non-isomorphic indecomposable projective and injective representations are constructed
via Coxeter functors for a generalized path algebra of acyclic quiver and then for an
artinian hereditary algebra of Gabriel-type with an admissible ideal. The methods
given via natural quivers and reformed modulations are helpful for one to study some
properties which are not Morita-invariant in representation theory.
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1. Introduction

Reflection functors were introduced into the representation theory of quivers by
Bernstein, Gelfand and Ponomarev in their work on the 4-subspace problem [13]
and on Gabriel’s Theorem, e.g. [5, 2, 3]. Due to the latter result, one obtains the
classifications of finite type and tame type of basic hereditary artinian algebras,
that is, acyclic quiver algebras, over an algebraically closed field. Furthermore,
there have been several generalizations, see [6, 11, 10, 4, 1, 9]. In [11, 10,
9], Bernstein-Gelfand-Ponomarev theory was generalized to hereditary tensor
algebras of quivers over division rings. In [6], the authors gave an extension of

*. Corresponding author
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the concept of reflection functors and some applications to quivers with relations
(equivalently say, to some special basic non-hereditary artinian algebras). A
special case of this theory has been developed by Marmaridis [25] and applied
to certain quivers with relations. In [1], a theory of partial Coxeter functors
was developed for a basic artin algebra with a simple projective noninjective
module.

The fact that each finite dimensional basic algebra over an algebraically
closed field is some quotient of path algebra plays an important role in alge-
braical representation theory, since it characterizes the structures of basic al-
gebras and provides a method to give various examples of basic algebras using
quivers. More importantly, it can be used to characterize finitely generated mod-
ules over an algebra. However, there are limitations to this approach. Firstly,
the ground field has to be an algebraically closed field. Secondly, the character-
ization of representations of a finite dimensional algebra must be based on its
corresponding basic algebra. But, some information of representations of the
original algebra will be lost via its basic algebra. To solve this problem, Coelho
and Liu[8] first introduced the concept of generalized path algebras, so as to have
a more direct and new understanding for the structures and representations of
algebras.

It is noted that artinian algebras having be studied in all former papers
are basic. Although the module category of an artinian algebra and that of
its corresponding basic algebra are equivalent which means the representation
types of these two algebras are coherent, in usual it is difficult to consider the
relation between the dimensions of their modules. It is the motivation for us to
use the method of reflection functors to study non-basic artinian algebras and
some data of their representations which are not Morita-invariant.

The main aim of this paper is to reform the Bernstein-Gelfand-Ponomarev
theory to characterize the representation categories of some (non-basic) ar-
tinian algebras and to give a method for constructing indecomposable projective
and injective representations via reflection functors and Coxeter functors. This
makes it possible to compute the dimensions of indecomposable representations
of a (non-basic) artinian algebra. The tool we use is the natural quiver of an
artinian algebra.

In the classical setting, mathematicians dealt with the module theory of the
path algebras of quivers. In this paper, we use the natural quivers of (non-
basic) hereditary algebras and the reformed modulations via generalized path
algebras which are isomorphic to hereditary algebras, see [15, 21, 8, 7], to solve
the corresponding problems in modules over the generalized path algebras.

The natural quiver will have fewer arrows than the Ext-quiver when the
algebra A is not basic. Natural quivers are not invariant under the Morita
equivalence and much closer to reflect the structure of the algebra, rather than
just its module category. There are numerous cases even in the representation
theory that one needs the structure of the algebras, for example, the character
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values of finite groups in a block cannot be preserved through Morita equiva-
lence.

We think natural quivers and generalized path algebras are valid to study
some properties which are not Mortia invariant in representation theory.

When an artinian algebra A is of Gabriel-type [18], that is, A is isomorphic to
some quotient of the generalized path algebra of its natural quiver ∆A, then any
representations of A can be induced directly from some representations of the
generalized path algebra of ∆A. From [18], we know that any artinian algebra
splitting over its radical must be of Gabriel-type. It is more straightforward
through representations of the generalized path algebra of ∆A to set up an
approach to representations of an artinian algebra.

Associated with any representation of a quiver is a dimension vector, and
the dimension vectors of indecomposable modules are the positive roots of the
quadratic form associated to the quiver (see e.g. [5, 11, 14]). Similar results
seem to hold for certain quivers with relations. Some applications of reflection
functors involve the study of the transformations of dimension vectors they
induce. It turns out in [6] that there are applications of our functors which
make use of the analogous transformations which is considered as a change of
basis for a fixed root-system - a tilting of the axes relative to the roots which
results in a different subset of roots lying in the positive cone.

For our need, for an artinian algebra, the dimension vectors of modules and
the Cartan matrix are introduced in Section 2. First, some properties of dimen-
sion vectors are given, which are generalizations of the corresponding properties
for a basic algebra. When the global dimension of an artinian algebra is finite,
its Cartan matrix is invertible and can be computed through an integer matrix
and two diagonal matrices. The Euler characteristic and the Euler quadratic
form of an artinian algebra is defined from the Cartan matrix. On the other
hand, the Euler form and quadratic form of a pre-modulation is defined. It was
shown in [2] that the quadratic form and the Euler quadratic form coincide for a
path algebra through the homological interpretation of the Euler characteristic.
However, for a generalized path algebra, it is difficult to get the similar relation
between its Euler quadratic form and the quadratic form from its corresponding
pre-modulation in the reason that in the general case the homological interpre-
tation of the Euler characteristic can not be computed via the inverse matrix of
its Cartan matrix. So, in this paper, the homological interpretation of the Euler
form, as well as the quadratic form, is characterized directly.

As analogue of the dimension vectors of indecomposable modules of quivers,
it is interesting for one to discuss the relationship between the dimension vectors
of indecomposable representations of artinian algebras and the positive roots of
the quadratic forms associated to pre-modulations. Since the dimension vector
and Cartan matrix of an artinian algebra are not invariant under the Morita
equivalence, the mentioned relation above has only been a conjecture. This
will be our further expectation for researching with this new method given via
natural quivers and generalized modulations.
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In Section 3, first, the reflection functors are given for the representation
category rep(M,Ω) of a pre-modulationM with acyclic connected valued quiver
and using of them as a pair of mutual invertible functors ∆−

i and ∆+
i , the

categorical equivalence is obtained between the full subcategories rep(i)(M,Ω)
and rep(i)(M,Ω) for i = 1, n.

Moreover, we get the construction of all non-isomorphic indecomposable
projective and injective representations of a generalized path algebra with acyclic
quiver and then of an artinian hereditary algebra of Gabriel-type with admissible
ideal.

At last, in Section 4, as application, we discuss the relationship between
representation-type of a generalized path algebra and its natural quiver.

2. Dimension vectors of representations

2.1 Dimension vectors of modules over an artinian algebra

One attaches to each module of a basic algebra a vector with integral coordi-
nates, called its dimension vector. This allows one to use methods of linear
algebra when studying modules over a basic algebra. For example, an impor-
tant application is in the famous Kac theorem which means the relation be-
tween dimension vectors of indecomposable modules and the so-called positive
root system of a basic (hereditary) algebra. However, as we have known, the
natural quiver is a tool to characterize an artinian (non-basic) algebra. In this
paper, we try to give directly, but not through the theory of basic algebras,
the description of the relationship between indecomposable modules of artinian
(non-hereditary) algebras and the generalization of dimension vectors via nat-
ural quivers. Note that the dimension as a linear space and dimension vector
defined below of a module are not Morita-invariant. This explains the validity
of our discussion here.

Throughout this paper, we will always use k to be an algebraically closed
field.

An artinian algebra A over k with Jacobson radical r = r(A) is called split-
ting over radical if the natural homomorphism A → A/r is a splitting algebra
homomorphism. In this case, A/r can be embedded into A as a subalgebra.

For two ringsA andB, a finitely generatedA-B-bimoduleM , define rkA,B(M)
to be the minimal number of generators of M as an A-B-bimodule among all
genarating sets. Then we call rkA,B(M) the rank of M as A-B-bimodule.

The concept of generalized path algebra was introduced early in [8]. Here
we review the different but equivalent definition which is given in [18].

Let Q = (Q0, Q1) be a quiver. Given a collection of k-algebras A = {Ai | i ∈
Q0} with the identity ei ∈ Ai. Let A0 =

∏
i∈Q0

Ai be the direct product
k-algebra. Clearly, each ei is an orthogonal central idempotent of A0. For
i, j ∈ Q0, let Ω(i, j) be the subset of arrows in Q1 from i to j. Write

iMj
def
= AiΩ(i, j)Aj
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be the free Ai-Aj-bimodule with basis Ω(i, j). This is the free Ai⊗kA
op
j -module

over the set Ω(i, j). Thus,

(1) M =
⊕

(i,j)∈Q0×Q0

AiΩ(i, j)Aj

is an A0-A0-bimodule. The generalized path algebra[8, 15, 18] is defined to the
tensor algebra

T (A0,M) =
∞⊕
n=0

M⊗A0
n.

Here M⊗A0
n = M ⊗A0 M ⊗A0 . . . ⊗A0 M and M⊗A0

0 = A0. We denote by
k(Q,A) the generalized path algebra. k(Q,A) is called (semi-)normal if all Ai
are (semi-)simple k-algebras.

Suppose that A is a left artinian k-algebra and r = r(A) is its Jacobson
radical. Write A/r = A1 ⊕ . . . ⊕ As, where Ai are two-sided simple ideals of
A/r. Such a decomposition of A/r is also called a block decomposition of the
algebra A/r. Then, r/r2 is an A/r-bimodule. Let iMj = Ai · r/r2 ·Aj , which is
finitely generated as an Ai-Aj-bimodule for each pair (i, j).

Now we introduce the concept of natural quiver and corresponding general-
ized path algebra of A.

Definition 2.1 ([18]). Suppose that A is a left artinian k-algebra and r = r(A)
is its Jacobson radical. Write A/r = A1 ⊕ . . . ⊕ As, where Ai are two-sided
simple ideals of A/r.

(i) The natural quiver of A is defined by ∆A = (∆0,∆1) with the vertex
set ∆0 to be the index set {1, 2, . . . , s} of the isomorphism classes of simple
A-modules corresponding to the set of blocks of A/r; with the arrow set ∆1

consisting of ti,j arrows from i to j for i, j ∈ ∆0 where ti,j = rkAj ,Ai(jMi).
Obviously, there is no arrow from i to j if jMi = 0.

(ii) Denote A = {Ai | i ∈ Q0}. The generalized path algebra k(∆A,A) is
called the corresponding generalized path algebra of A.

By Definition 2.1, the natural quiver of artinian algebra A is always finite.

In [18], we have known the following characterization of an artinian algebra
A splitting over radical via its generalized path algebra.

Theorem 2.1 ([18]). An artinian k-algebra A is splitting over radical if and
only if there is an ideal I of the corresponding generalized path algebra k(∆A,A)
of A and a positive integer s such that A ∼= k(∆A,A)/I with Js ⊂ I ⊂ J where
J is the ideal of k(∆A,A) generated by all A-paths of length 1.

This means that an artinian k-algebra splitting over radical is of Gabriel-
type.
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Definition 2.2. Suppose that A is an artinian algebra splitting over radical r
with ideal I satisfying A ∼= k(∆A,A)/I due to Theorem 2.1. Write (∆A)0 =
{1, 2, . . . , s}. Let A/r = A1 ⊕ . . .⊕As where Ai are simple ideals of A/r. For a
right A-module M , the dimension vector of M is defined to be the vector

dimM =


dimkMA1
dimkA1

...
dimkMAs

dimkAs


in Qs for the field of rational numbers Q, where Ai acts on M as subalgebras of
A.

The notion of dimension vectors of modules of a basic algebra in [2] is in the
special case of this definition. Clearly, dimension vector is not Morita-invariant.

Lemma 2.1. Let A be an artinian k-algebra splitting over radical r such A/r =
A1 ⊕ . . . ⊕ As where Ai are simple ideals of A/r, and M be a right A-module.
Embedding Ai into A, consider AiA and AiAAi through the multiplication of A.
Then, for any i = 1, . . . , s,

(i) the k-linear map

(2) θ
(i)
M : HomA(AiA,M) →MAi

defined by the formula φ 7→ φ(1Ai) = φ(1Ai)1Ai for φ ∈ HomA(AiA,M), is an
isomorphism of right AiAAi-modules, and it is functorial in M ;

(ii) the isomorphism θ
(i)
AiA

: End(AiA)
∼=→ AiAAi of right AiAAi-modules

induces an isomorphism of k-algebras.

Proof. (i) For any āixb̄i ∈ AiAAi,

θ
(i)
M (φāixb̄i) = (φāixb̄i)(1Ai) = φ(āixb̄i) = φ(1Ai)āixb̄i = (θ

(i)
M (φ))āixb̄i.

Then, θ
(i)
M is a homomorphism of right AiAAi-modules. And, θ

(i)
M is functorial

in M from the following commutative diagram:

HomA(AiA,M) MAi

HomA(AiA,N) NAi

-
θ
(i)
M

?
HomA(AiA, f)

?

fAi

-
θ
(i)
N

where f : M → N is an A-homomorphism and fAi is the restriction of f on
MAi.

In order to prove θ
(i)
M is invertible, define a map ζ

(i)
M : MAi → HomA(AiA,M)

by the formula ζ
(i)
M (māi)(b̄ix) = māib̄ix for āi, b̄i ∈ Ai, x ∈ A. It is easy to check

that ζ
(i)
M (māi) : AiA→M is well-defined and is an A-homomorphism.
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For any māi ∈MAi, b̄ixc̄i ∈ AiAAi, d̄ib ∈ AiA,

ζ
(i)
M (māib̄ixc̄i)(d̄ib) = māib̄ixc̄id̄ib = ζ

(i)
M (māi)(b̄ixc̄id̄ib) = (ζ

(i)
M (māi)b̄ixc̄i)(d̄ib),

then ζ
(i)
M (māib̄ixc̄i) = ζ

(i)
M (māi)b̄ixc̄i, which means ζ

(i)
M is a homomorphism of

AiAAi-modules.
Moreover, for f ∈ HomA(AiA,M), d̄ib ∈ AiA,

(ζ
(i)
M θ

(i)
M )(f)(d̄ib)=(ζ

(i)
M (θ

(i)
M (f)))(d̄ib)=θ

(i)
M (f)d̄ib=θ

(i)
M (fd̄ib)=(fd̄ib)(1Ai)=f(d̄ib)

then ζ
(i)
M θ

(i)
M = idHomA(AiA,M). Similarly, θ

(i)
M ζ

(i)
M = idMAi . Hence, θ

(i)
M is an

isomorphism.
(ii) This follows from (i) for M = AiA.

Lemma 2.2. Let A ∼= k(∆A,A)/I as in Definition 2.2. For each right A-module
and i ∈ ∆0, the k-linear map (2) induces functorial isomorphisms of k-vector
spaces

HomA(P (i),M)
∼=→MAi

∼=→ DHomA(M, I(i)).

where D is the standard duality Homk(−, k), P (i)=AiA and I(i)=Homk(AAi, k).

Proof. The first isomorphism follows directly from Lemma 2.1 (i). The second
isomorphism is the composition

DHomA(M, I(i)) = DHomA(M,D(AAi)) ∼= DHomA(D(D(M)), D(AAi))
∼= DHomAop(AAi, D(M))∼=D(AiD(M)) (by Lemma 2.1)
∼= Homk(AiD(M), k) ∼= Homk(D(M), k)Ai = D(D(M))Ai
∼= MAi.

This lemma yields dimM =


dimkHomA(P (1),M)

dimkA1
...

dimkHomA(P (s),M)
dimkAs

 =


dimkHomA(M,I(1))

dimkA1
...

dimkHomA(M,I(s))
dimkAs

.

When A is an artinian k-algebra splitting over radical r, i.e. A = r+A/r, we
have 1A = r0+1A/r for some r0 ∈ r. Then, 1A/r = 1A1A/r = r01A/r+1A/r, thus,
r01A/r = 0. Similarly, 1A/rr0 = 0. Then, 1A = 12A = (r0 + 1A/r)

2 = r20 + 1A/r.
Moreover, we can get 1A = rt0 + 1A/r for any natural number t. But, r is
nilpotent, so there is t such that rt0 = 0. Hence,

1A = 1A/r.

For A/r = A1 + . . .+As, we have A ⊇ A1A+ . . .+AsA ⊇ (A1 + . . .+As)A ⊇
1A/rA = 1AA = A. Therefore,

A = A1A+ . . .+AsA

which means that for all i = 1, . . . , s, P (i) = AiA are projective right A-modules.
It follows that HomA(P (i),−) are exact functors for i = 1, . . . , s.
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Proposition 2.1. Let A ∼= k(∆A,A)/I as in Definition 2.2 and 0 → L →
M → N → 0 be a short exact sequence of right A-modules. Then, dimM =
dimL+ dimN.

Proof. Using of the exact functor HomA(P (i),−) to the short exact sequence
0 → L→M → N → 0, we get the exact sequence of k-vector spaces:

0 → HomA(P (i), L) → HomA(P (i),M) → HomA(P (i), N) → 0.

By Lemma 2.2, this short exact sequence becomes to the following:

0 → LAi →MAi → NAi → 0.

Hence, for each i ∈ (∆A)0,

dimkMAi = dimkLAi + dimkNAi.

The statement follows from the definition of dimension vectors.

Since Ai is isomorphic to the matrix algebra of order ni over a division k-
algebra Di, in the sequel of this section we always let ni denote this notation of
the order of the matrix algebra. We know that there are primitive idempotents
ei1, ei2, . . . , eini of Ai such that P (i) = AiA = ei1A ⊕ ei2A ⊕ . . . ⊕ einiA but
ei1A ∼= ei2A ∼= . . . ∼= einiA as right A-modules. So, we can write P (i) ∼= ⊕niei1A.
Here, for i = 1, . . . , s, Pi = ei1A are all indecomposable projective right A-
modules. Moreover, Si = Pi/Pir, i = 1, . . . , s, are all simple A-modules.

It is easy to see that dimkSi = nidimkDi and dimkAi = n2i dimkDi.

Since AiAj = 0 for i ̸= j, we have SiAj =

{
Si, if i = j

0, if i ̸= j.
Therefore, for

i = 1, . . . , s,

(3) dimSi =



0
...
0

nidimkDi

n2
i dimkDi

0
...
0


=



0
...
0
1
ni

0
...
0


which we denote as Xi. For an artinian k-algebra A, denote by K0(A) the
Grothendieck group of A, [M ] the corresponding element in K0(A) for an A-
module M .

Proposition 2.2. Let A ∼= k(∆A,A)/I as in Definition 2.2 and let S1, . . . , Ss
be a complete set of the isomorphism classes of simple right A-modules. Then,
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the Grothendieck group K0(A) of A is a free abelian group having as a basis the
set {[S1], . . . , [Ss]}. Define dim[M ] = dimM as the dimension vector of [M ] for
each A-module M and moreover dim(−[M ]) = −dimM , then dim is a group
homomorphism from K0(A) to Qs and the set of dimension vectors is, i.e. the
image of dim,

dimK0(A) = {u1X1 + . . .+ usXs : u1, . . . , us ∈ Z}.

Proof. Let M be a module in modA and let 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M
be a composition series for M . By the definition of K0(A), we have

[M ] = [Mt/Mt−1] + [Mt−1] = [Mt/Mt−1] + [Mt−1/Mt−2] + [Mt−2] = . . .

=
t∑

j=1

[Mj/Mj−1] =
s∑
i=1

ci(M)[Si]

where ci(M) is the number of composition factors Mj/Mj−1 of M that are
isomorphic to Si. Hence, {[S1], . . . , [Ss]} generates the free abelian groupK0(A).

Thus, by the definition of dim on K0(A) and Proposition 2.1, we know dim
is a group homomorphism.

Since K0(A) of A is a free abelian group with rank s having as a basis the
set {[S1], . . . , [Ss]}, it is also isomorphic to Zs as groups, but not through dim.

As a consequence, we show the relation between the dimension vector of a
module M and the number of simple composition factors of M that are isomor-
phic to each simple modules Si.

Corollary 2.1. Let A ∼= k(∆A,A)/I as in Definition 2.2 and let S1, . . . , Ss be
a complete set of the isomorphism classes of simple right A-modules. For any
module M in modA, let ci(M) be the number of composition factors Mj/Mj−1

of M that are isomorphic to Si and let l(M) be the composition length of M .
Then,

ci(M) = (dimkMAi)/(nidimkDi)

and thus l(M) =
∑s

i=1(dimkMAi)/(nidimkDi), where Di is the division k-
algebra such that Ai is isomorphic to the matrix algebra of order ni over Di for
A/r = A1 ⊕ . . .⊕As where Ai are simple ideals of A/r.

Proof. In the proof of Proposition 2.2, we have [M ] =
∑s

i=1 ci(M)[Si]. Then,
dimM = dim[M ] =

∑s
i=1 ci(M)dim[Si] =

∑s
i=1 ci(M)dimSi. By (3), we get

dimkMAi = ci(M)nidimkDi.

Thus, l(M) =
∑s

i=1 ci(M) =
∑s

i=1(dimkMAi)/(nidimkDi).
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Definition 2.3. Let A be an artinian k-algebra splitting over radical r with
A/r = A1 ⊕ . . .⊕As. The Cartan matrix of A is the s× s matrix

CA =

c11 . . . c1s
...

. . .
...

cs1 . . . css

 ,

where cji = dimkAiAAj for i, j = 1, . . . , s.

Let e1, . . . , es be the complete set of primitive orthogonal idempotents. Then
AiA ∼= nieiA as right A-modules where nieiA means the direct sum of ni copies
of eiA, that is, P (i) = niPi for the indecomposable projective A-modules Pi =
eiA (i = 1, . . . , s).

By Lemma 2.2,

AiAAj ∼= HomA(P (j), AiA) ∼= HomA(AjA,AiA)
∼= HomA(njejA,nieiA) ∼= njniHomA(ejA, eiA).

Thus, dimkHomA(Pj , Pi) = cji/(njni) for i = 1, . . . , s.
On the other hand, by Lemma 2.2,

I(i) = Homk(AAi, k) ∼= Homk(niAei, k) ∼= niHomk(Aei, k) = niIi,

where Ii = Aei (i = 1, . . . , s) are the indecomposable injective A-modules.
Moreover, by Lemma 2.2,

HomA(P (j), P (i)) ∼= DHomA(P (i), I(j)) ∼= DDHomA(I(j), I(i))
∼= HomA(I(j), I(i)) ∼= ninjHomA(Ij , Ii).

Thus,

(4) AiAAj ∼= HomA(I(j), I(i))

and AiAAj ∼= ninjHomA(Ij , Ii). Hence, dimkHomA(Ij , Ii) = cji/(njni).
Therefore, through modulo ninj for each cij , the Cartan matrix of A records

the numbers of linearly independent homomorphisms between the indecompos-
able projective A-modules and the numbers of linearly independent homomor-
phisms between the indecomposable injective A-modules.

Below we discuss some elementary facts on the Cartan matrix.

Proposition 2.3. Let CA be the Cartan matrix of an artinian algebra A ∼=
k(∆A,A)/I as in Definition 2.3. Then,

(i) The i-th column of CA is

 n21dimkD1

. . .

n2sdimkDs

dimP (i) and

 n21dimkD1

. . .

n2sdimkDs

dimP (i) = niCAdimSi;
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(ii) The i-th row of CA is (dimI(i))t

 n21dimkD1

. . .

n2sdimkDs

 and

 n21dimkD1

. . .

n2sdimkDs

dimI(i) = niC
t
AdimSi.

Proof. (ii) (dimI(i))t = (dimkI(i)A1

dimkA1
, . . . , dimkI(i)As

dimkAs
). By Lemma 2.2, we have

I(i)Aj ∼= DHomA(I(i), I(j)). By (4), HomA(I(i), I(j)) ∼= AjAAi. But,

dimkDHomA(I(i), I(j)) = dimkHomA(I(i), I(j)).

Thus,
dimkI(i)Aj

dimkAj
=

dimkAjAAi

dimkAj
for j = 1, . . . , s, which means the first result.

From this and (3), the second result follows.

(i) Its proof is similar, since it is easy to be obtained from the definition of
dimP (i) and (3).

Proposition 2.4. Let A be an artinian algebra as in Definition 2.2 with A ∼=
k(∆A,A)/I. Suppose the global dimension of A is finite. Then, the Cartan
matrix CA is invertible and there exists B ∈ Ms(Z) such that

C−1
A =


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B

 n1
. . .

ns


where Ms(Z) denotes the s× s full matrix ring over the integer ring Z.

Proof. Here s =| ∆0 |. Since A is of finite global dimension, for any i ∈
{1, . . . , s} and the corresponding simple A-module Si there is a projective reso-
lution

0 → Qmi → . . .→ Q1 → Q0 → Si → 0

in modA for a positive integer mi.

From Proposition 2.1, it follows that dimSi =
∑mi

l=1(−1)ldimQl. Because
P1, . . . , Ps are the complete set of non-isomorphic indecomposable projective A-
modules, each Ql is a direct sum of finitely many copies of P1, . . . , Ps. Thus,
for each i, dimSi is a linear combination of the vectors dimP1, . . . ,dimPs with
integral coefficients. Thus, there exists B ∈ Ms(Z) such that n−1

1
. . .

n−1
s

 =
(
dimS1 . . . dimSs

)
=

(
dimP1 . . . dimPs

)
B.
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But, P (i) = niPi, so dimP (i) = nidimPi for i = 1, . . . , s. Hence,n
−1
1

. . .

n−1
s

 =
(
n−1
1 dimP (1) . . . n−1

s dimP (s)
)
B

=
(
CAdimS1 . . . CAdimSs

)
1

n2
1dimkD1

. . .
1

n2
sdimkDs

B

= CA


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B.

Thus,

C−1
A =


1

n3
1dimkD1

. . .
1

n3
sdimkDs

B

n1 . . .

ns

 .

Note that, when ni = 1 and dimkDi = 1 for all i, A is a basic algebra and
C−1
A = B is an integer matrix.

We use the Cartan matrix CA to define a nonsymmetric Z-bilinear form on
the Zs.

Definition 2.4. Let A be an artinian algebra with radical r of finite global
dimension such that A/r = A1 ⊕ . . .⊕As where each Ai is simple ideals of A/r
which is isomorphic to the matrix algebra of order ni over a division k-algebra
Di. Let CA be the Cartan matrix of A.

(i) The Euler characteristic of A is the Z-bilinear form ⟨−,−⟩A : Zs×Zs → Z
defined by

⟨x,y⟩A = xt

 n−1
1

. . .

n−1
s

 (C−1
A )t

 n31dimkD1

. . .

n3sdimkDs

y

for x,y ∈ Zs;
(ii) The Euler quadratic form of A is the quadratic form qA : Zs → Z defined

by qA(x) = ⟨x,x⟩A for x ∈ Zs.

This definition makes sense due to Proposition 2.4.
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2.2 Dimension vectors of representations of a pre-modulation

Given a valued quiver (G, D, Ω) and a vertex i ∈ G, define an operation, denoted
by δi, on the orientation Ω to get the orientation δiΩ as follows: we reverse all
arrows along edges containing i and leave all others unchanged in Ω.

With respect to the orientation Ω, call admissible sequence of sinks an or-
dering

(k1, k2, . . . , kn)

of all the vertices of G such that k1 is a sink with respect to Ω, k2 a sink with
respect to δk1Ω, and so on, that is, kt is a sink with respect to δkt−1 . . . δk1Ω
for 2 ≤ t ≤ n. Similarly, admissible sequence of sources can be defined. We
shall call an orientation admitting an admissible sequence of sinks admissible.
As known in [10], the orientation Ω is admissible if and only if the valued quiver
(G, D, Ω) has no oriented cycle. In general, there are many different admissible
sequences with respect to a given orientation.

Suppose that M = (Ai, iMj) is a k-pre-modulation of a valued quiver
(G,D,Ω) whose orientation Ω is admissible. Let k(Q,A) = T (M,A0) be the
constructed corresponding normal generalized path algebra in [16], where M =⊕

i,jAiΩ(i, j)Aj for AiΩ(i, j)Aj ∼= iMj and A0 = ⊕i∈Q0Ai. Then, Q0 = G =
{1, 2, . . . , s} and the arrow set Q1 =

⋃
i,j Ω(i, j) is decided by the number tij of

generators in the Ai-Aj-basis of iMj as free Ai-Aj-bimodule.
Denote A = k(Q,A). Q is a finite acyclic quiver since the orientation Ω is

admissible. Then, A is artinian. Due to [15], k(Q,A) is just the corresponding
generalized path algebra k(∆A,A), that is, the ideal I is zero in Theorem 2.1.

Let V = (Vi, jφi) be a representation of M. Then, V = ⊕i∈Q0Vi is a right
module over A = k(Q,A) with right Ai-module Vi such that V Ai = Vi but
ViAj = 0 for i, j ∈ Q0, i ̸= j. However, A/r ∼= A0 = ⊕i∈Q0Ai for the radical of
A. So, let Q0 = G = {1, 2, . . . , s}, the dimension vector of V

dimV =


dimkV A1
dimkA1

...
dimkV As

dimkAs

 =


dimkV1
dimkA1

...
dimkVs
dimkAs


in Qs. We call dimV the dimension vector of the representation V = (Vi, jφi)

of M, denoted as dimV =


dimkV1
dimkA1

...
dimkVs
dimkAs

.

For a k-pre-modulation M = (Ai, iMj) of a valued quiver (G,D,Ω), we
define the bilinear forms B(x,y) and (x,y) by

B(x,y) =
∑
i∈G

xiyidimkAi −
∑
i→j

dijxiyjdimkAj ,

(x,y) = B(x,y) +B(y,x),
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where x = (xi)i∈G and y = (yi)i∈G in Qs. We call B(−,−) the Euler form
and (−,−) the symmetric Euler form respectively. Moreover, we can define the
quadratic form qM : Qs → Qs by qM(x) = B(x, x) for x ∈ Qs, which is called
the quadratic form of the pre-modulation M.

In the trivial case that Ai = k for all i ∈ G, we can get a quiver Q with
Q0 = G and Q1 consisting of tij arrows from i to j by tij = dij/εi = dji/εj .
Then, the quadratic form qM is just that of the quiver Q defined in [2]. In this
trivial case, it was shown in Lemma VII4.1 of [2] that this quadratic form qM
and the Euler quadratic form qA coincide for A = kQ. The proof of this result in
[2] was dependent on the homological interpretation of the Euler characteristic.

However, for a general A = k(Q,A), it is difficult for us to try to get the
similar relation between the quadratic form qM and the Euler quadratic form qA
in the reason that the inverse matrix of the Cartan matrix CA is so complicated
for computing that we cannot give the homological interpretation of the Euler
characteristic ⟨−,−⟩A. Hence, on the other hand, we will give the homological
interpretation of the Euler form B(−,−) as follows.

Theorem 2.2. Assume that M = (Ai, iMj) is a pre-modulation over a field
k of a valued quiver (G,D,Ω). For two representations X = (Xi, iφj) and
Y = (Yi, iψj) in rep(M),

B(dimX ,dimY) = dimkHom(X ,Y)− dimkExt
1(X ,Y).

Proof. Firstly, define a map:

∆X , Y :
⊕
i∈G

HomAi(Xi, Yi) −→
⊕
j→i

HomAi(Xj ⊗Aj jMi, Yi)

with ∆X , Y((αi)i∈G) = ( iψj(αj ⊗ 1)− αi iφj)j→i, for any

(αi)i∈G ∈
⊕
i∈G

HomAi(Xi, Yi).

Due to the definition of morphisms between representations, it is easy to see
that Ker∆X ,Y = Hom(X ,Y).

Secondly, we can show that Coker∆X ,Y = Ext1(X ,Y) as follows.

Let Σ = (iσj) belong to
⊕

j→iHomAi(Xj ⊗ jMi, Yi). Then we can get

an extension E(Σ) = (Yj ⊕ Xj ,

(
iψj iσj
0 iφj

)
) of representations X and Y.

Conversely, any extension of X and Y can be denoted as this form. So, there
exists the one-one correspondence between all elements of

⊕
j→iHomAi(Xj ⊗

jMi, Yi) and all of extensions of representations X and Y.

Let Σ′ = (iσ
′
j) be another element in

⊕
j→iHomAi(Xj ⊗ jMi, Yi) with its

corresponding extension E(Σ′) = (Yj ⊕Xj ,

(
iψj iσ

′
j

0 iφj

)
).
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Then E(Σ) and E(Σ′) are equivalent if and only if there exists an invertible
morphism τ of rep(M) such that the diagram

0 −→ Y i−→ E(Σ)
p−→ X −→ 0

↓ id ↓ τ ↓ id
0 −→ Y i′−→ E(Σ′)

p′−→ X −→ 0

commutes where i and i′ are both embedding maps, p and p′ are both projectors.

It can be easily checked that τ must be the form of τ = {
(

1 τi
0 1

)
: i ∈ G}

where τi is an Ai-homomorphism from Xi to Yi, i ∈ G. And, obviously, for any
such τi, the given τ always makes this diagram to be commutative. Hence, E(Σ)

and E(Σ′) are equivalent if and only if there exists a morphism τ = {
(

1 τi
0 1

)
:

i ∈ G} of rep(M) for an Ai-homomorphism τi from Xi to Yi, i ∈ G.
Since the τ is admitted to be a morphism in rep(M), the following square

commutes:

(Yj ⊕Xj)⊗ jMi Yi ⊕Xi

(Yj ⊕Xj)⊗ jMi Yi ⊕Xi

?

 1 τj
0 1

⊗1

-

 iψj iσj
0 iφj



?

1 τi
0 1


-iψj iσ

′
j

0 iφj


Then (

iψj iσ
′
j

0 iφj

)
(

(
1 τj
0 1

)
⊗ 1) =

(
1 τi
0 1

)(
iψj iσj
0 iφj

)
.

It follows that iσj + τi iφj = iψj(τj ⊗ 1) + iσ
′
j , hence

iσj − iσ
′
j = iψj(τj ⊗ 1)− τi iφj .

It means that Σ− Σ′ ∈ Im(∆X ,Y) due to the definition of ∆X ,Y .
Hence, we get that E(Σ) and E(Σ′) are equivalent if and only if Σ − Σ′ ∈

Im(∆X ,Y), which implies that Cok(∆X ,Y) ∼= Ext1(X ,Y).
Next, we need the following lemma:

Lemma 2.3. Suppose A and B are simple algebras over a field k and X, Y
are both right A-modules, Z is a right B-module and M is a free B-A-bimodule.
Then,

dimkHomA(X,Y ) = (dimkX dimkY )/dimkA,(5)

dimkHomA(Z ⊗B M,Y ) = (rankAMdimkZdimkY )/dimkB.(6)
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Proof. Since A is a simple algebra, we have A ∼= Mn(D) for some positive
integer n and D a divisible k-algebra.

It is easy to see that for any simple A-modules X and Y , we have X ∼=
Y , then HomA(X,Y ) ∼= D and dimkHomA(X,Y ) = dimkD; simultaneously,
dimkX = ndimkD, dimkY = ndimkD and dimkA = n2dimkD. Therefore,

dimkHomA(X,Y ) = (dimkX dimkY )/dimkA = dimkD.

In general, let A-modules X and Y be any A-modules which are not nec-
essarily simple. Since A is simple, X and Y are semisimple A-modules. Let
X = X1 ⊕ · · · ⊕Xs and Y = Y1 ⊕ · · · ⊕ Yt.

Then, dimkHomA(X,Y ) = dimkHomA(X1 ⊕ · · · ⊕ Xs, Y1 ⊕ · · · ⊕ Yt) =
dimk ⊕i,j HomA(Xi, Yj) = ⊕i,jdimkHomA(Xi, Yj) = (st)dimkD.

On the other hand,

(dimkX dimkY )/dimkA = (dimk(X1 ⊕ · · · ⊕Xs) dimk(Y1 ⊕ · · · ⊕ Yt))/dimkA

= (⊕s
i=1dimkXi)(⊕t

i=1dimkYi)/dimkA

= ((sn)dimkD(tn)dimkD)/(n2dimkD) = (st)dimkD.

Therefore, we get dimkHomA(X,Y ) = (dimkX dimkY )/dimkA.
According to the adjoint-isomorphism theorem,

HomA(Z ⊗B M,Y ) ∼= HomB(Z,HomA(M,Y )).

Hence, due to (5), we have

dimkHomA(Z ⊗B M,Y ) = dimkHomB(Z,HomA(M,Y ))

= dimkZdimkHomA(M,Y )/dimkB

= dimkZ(dimkMdimkY/dimkA)/dimkB

= (rankAMdimkZdimkY )/dimkB.

Now, return to the proof of the proposition:
By the definition of B, we have

B(dimX ,dimY) =
∑
i∈G

dimkAi
dimkXi

dimkAi

dimkYi
dimkAi

−
∑
j→i

djidimkAi
dimkXj

dimkAj

dimkYi
dimkAi

=
∑
i∈G

(dimkXidimkYi)/dimkAi

−
∑
j→i

(rankAi(iMj)dimkXjdimkYi)/dimkAj

=
∑
i∈G

dimkHomAi(Xi, Yi)−
∑
j→i

dimkHomAi(Xj ⊗Aj jMi, Yi)
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= dimk

⊕
i∈G

HomAi(Xi, Yi)−dimk

⊕
j→i

HomAi(Xj ⊗Aj jMi, Yi)

= dimkKer∆X ,Y−dimkCoker∆X ,Y

= dimkHom(X ,Y)− dimkExt
1(X ,Y).

According to the discussion above before this theorem, we leave as a question
as follows.

Problem 2.1. Characterize the relationship between the Euler characteristic
and the Euler form and that between their corresponding quadratic forms.

3. Berstein-Gelfand-Ponomarev theory in category of
pre-modulations

3.1 Reflection functors of a pre-modulation

A k-pre-modulation M = (Ai, iMj) of a valued graph (G,D) is defined in [16]
as a set of artinian k-algebras {Ai}i∈G , together with a set {iMj}(i,j)∈G×G of
finitely generated free unital Ai-Aj-bimodules iMj such that rank(iMj)Aj = dij
and rankAi(iMj) = dji.

Assume that M = (Ai, iMj) is a k-pre-modulation over a connected val-
ued quiver (G,D,Ω) with the admissible sequence of sinks {1, 2, . . . , n}, that is,
(G,D,Ω) has no oriented cycles. Let dimkAi = fi which is finite by the defi-
nition for any i ∈ G, and let rank(iMj)Aj = dij and rankAi(iMj) = dji. Then
djifi = dimkiMj = dijfj .

Denote by Al the representation of rep(M) corresponding to the vertex l ∈ G

defined by Al = (Xi, iφj) where Xi =

{
Al, if i = l

0, if i ̸= l
and iφj = 0 for all i→ j.

All Al (l ∈ G) are called the elementary representations of rep(M).
Since Al (l ∈ G) is a simple algebra, let dimkAl = s2l for a positive integer

sl. As Al-module, Al can be decomposed into a direct sum of sl simple Al-
modules which are isomorphic each other, that is, every Al has a unique simple
Al-submodule under isomorphism. Equivalently, every Al can be decomposed
into a direct sum of some simple representations which are isomorphic each
other, that is, we have:

Fact 3.1. For any vertex l ∈ G, Al in the category rep(M) has a unique simple
direct summand under isomorphism.

Lemma 3.1. A1 is projective and An is injective in rep(M).

Proof. Since A1 is non-zero only in the first coordinate, suppose there is the
diagram:
where βi = 0 for any i ̸= 1 and the row sequence is exact. Thus, it follows that:
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A1

?

β = (βi)

X -π Y - 0

A1

?

β1

X1
-

π1
Y1 - 0

But, since A1 is a simple algebra, A1 is projective as A1-module. So, there
is γ1 such that the following diagram commutes:

A1

?

β1
)

)
)

)	

γ1

X1
-

π1
Y1 - 0

Hence, the first diagram can be completed by γ = (γi) with γi = 0 for i ̸= 1,
that is, the following diagram commutes:

Moreover, it is necessary to explain that γ is a morphism in rep(M). Indeed,
since 1 is a sink, there exists no arrow 1 → i for any i. If there is an arrow j → 1
for some j, the following diagram is always commutative:

0⊗Aj jM1 A1

Xj ⊗Aj jM1 X1

-0

?
0⊗id

?

γ1

-jψ1

From this diagram and Aj = 0, γj = 0 for any j ̸= 1, it follows that γ is a
morphism in rep(M).

Therefore A1 is projective in rep(M).

Dually, it can be proved similarly that An is injective in rep(M) since An is
injective as An-module.

Corollary 3.1. In the category rep(M), the unique simple direct summand S1
under isomorphism of A1 is projective and that of An is injective.
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A1

?

β = (βi)
)

)
)

)	

γ

X -π Y - 0

Corollary 3.2. For i, j ∈ G, dimkExt
1(Ai, Aj) = dijfj, dimkExt

1(Ai, Aj) =
djifi.

Proof. If i→ j, by the definition, we have

B(dimAi, dimAj) = −dijfj .

Since Hom(Ai, Aj) = 0, by the Theorem 2.2 we deduce that

dimkExt
1(Ai, Aj) = −B(dimAi, dimAj) = dijfj ,

and hence the first equality follows. On the other hand, if there is no arrow
i→ j, the first equality are trivial as 0 = 0.

The second equality is an immediate consequence of the fact that dijfj =
djifi.

Given any vertex k ∈ G of a valued quiver (G, D, Ω), we define a reflection
δk : QG → QG satisfying that if x = (xi)i∈G , then δkx = y = (yi)i∈G is given by:

yi = xi, ∀i ̸= k,

yk = −xk +
∑
i∈G

dikxi.

Corollary 3.3. (i) Let X be a representation with no direct summand isomor-
phic to the unique simple direct summand of A1, then

(δ1(dimX ))1 =
dimkExt

1(X , A1)

dimkA1
.

(ii) Let X be a representation with no direct summand isomorphic to An,
then

(δn(dimX ))n =
dimkExt

1(An, X )

dimkAn
.

Proof. (i) If X has no direct summand isomorphic to the unique simple direct
summand of A1, then Hom(X , A1) = 0. Hence

B(dimX , dim A1) = −dimkExt
1(X , A1).
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On the other hand,

B(dimX , dim A1) = f1
dimkX1

f1
−
∑
i→1

di1f1
dimkXi

fi

= −f1(−
dimkX1

f1
+
∑
i∈G

di1
dimkXi

fi
)

= −f1(δ1(dimX ))1,

where the second equality uses the fact that the vertex 1 is a sink.
(ii) can be proved dually.

Now, to any sink (respectively, source) k of the graph G, we shall associate a
functor ∆+

k (respectively, ∆−
k ) of rep(M, Ω) into rep(M, δkΩ), which are called

the reflection functors of the pre-modulation M = (Ai, iMj).
In accordance with our convention, 1 is a sink, and n a source of Ω, thus we

shall content ourselves with defining ∆+
1 and ∆−

n .
Let X = (Xi, iφj) be an object of rep(M, Ω), we recall that iφj : Xj ⊗Aj

jMi → Xi is an Ai-map. We can attach to it an Aj-map iφj : Xj → Xi⊗Ai iMj

in the following way.
By the adjoint isomorphism theorem, we have

HomAi(Xj ⊗Aj jMi, Xi) ∼= HomAj (Xj , HomAi(jMi, Xi)).

Lemma 3.2. Let A be a semisimple algebra and B another finite-dimensional
algebra over a field k, X be right an A-module and M a left-right free B-A-
bimodule with basis of a finite number of generators. Then, as right B-modules,

HomA(M,X) ∼= X ⊗A HomA(M,A).

Proof. Define π : X ⊗A HomA(M,A) → HomA(M,X) satisfying

π(
∑
i

xi ⊗ fi)(m) = xifi(m),

for all xi ∈ X, fi ∈ HomA(M,A) and m ∈M . Then, π is a right B-module ho-
momorphism. In fact, π((

∑
i xi⊗fi)b)(m) = π(

∑
i xi⊗fib)(m) =

∑
i xi(fib)(m) =∑

i xifi(bm) = π(
∑

i xi ⊗ fi)(bm) = (π(
∑

i xi ⊗ fi)b)(m),
it follows that π((

∑
i xi ⊗ fi)b) = π(

∑
i xi ⊗ fi)b.

Let {ε1, . . . , εs} be the basis of M as right A-module. Define fi be from

M to A satisfying fi(εj) =

{
1, if i ̸= j

0, otherwise
. Then fi can be expended into

a right A-homomorphism and {f1, . . . , fs} is the basis of HomA(M,A) as left
free A-module. For any g ∈ HomA(M,X), let χ =

∑s
i=1 g(εi) ⊗ fi, then χ ∈

X ⊗A HomA(M,A) satisfying π(χ) = g. Therefore, π is surjective.
Write MA

∼= ⊕λAA, thus, we get the following right A-isomorphisms:
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HomA(M,X) ∼= HomA(⊕λAA, X) ∼= ⊕λHomA(AA, X) ∼= ⊕λXA
∼= ⊕λXA⊗

A ∼= XA ⊗ (⊕λAA) ∼= XA ⊗Hom(⊕λAA, A) ∼= XA ⊗Hom(M,A).
Then, dimk(HomA(M,X)) = dimk(X ⊗A HomA(M,A)).

Hence from the fact that the surjective right B-module homomorphism π is
also a surjective k-linear map of spaces, we know that π is an isomorphism.

Dealing with finite-dimensional modules, by Lemma 3.2, we get that

HomAi(jMi, Xi) ∼= Xi ⊗Ai HomAi(jMi, Ai) ∼= Xi ⊗Ai iMj ,

giving a canonical isomorphism

(7) HomAi(Xj ⊗Aj jMi, Xi) ∼= HomAj (Xj , Xi ⊗Ai iMj).

Thus to iφj there corresponds iφj : Xj → Xi ⊗Ai iMj which will be referred to
as the adjoint of iφj . Now we can define ∆+

1 X = Y = (Yi, iψj) as follows:
If j ̸= 1, take Yj = Xj , and iψj = iφj .
If j = 1,for every i ∈ G such ∃ i→ 1, we have a mapping 1φi : Xi⊗Ai iM1 →

X1. Let φ1 =
⊕

j→1 1φj :
⊕

j→1Xj ⊗Aj jM1 → X1. Let Y1 = Kerφ1, κ1
the embedding map from Kerφ1 to

⊕
j→1Xj ⊗Aj jM1 and iκ1 = πiκ1 : Y1 →

Xi⊗Ai iM1 = Yi⊗Ai iM1 (where πi is the canonical projection if there exists an
arrow i→ 1):

Xi ⊗Ai iM1

0 Y1

⊕
j→1

(Xj ⊗Aj jM1) X1

Q
Q
Q

Q
Q
Qs

1φi

-
�
�

�
�

�
��3

iκ1

-κ1

6
πi

-φ1

According to (7), we put iψ1 = iκ1 : Y1 ⊗A1 1Mi → Xi = Yi. Thus we have
defined ∆+

1 X = Y in rep(M, δ1Ω).
If α : X → X ′ is a morphism of rep(M, Ω), β = ∆+

1 α is defined as follows:
if j ̸= 1, take βj = αj and β1 : Y1 → Y ′

1 is the restriction to Y1 of the mapping⊕
i→1

(αi ⊗ 1) :
⊕
i→1

Xi ⊗Ai iM1 →
⊕
i→1

X ′
i ⊗Ai iM1.

If ∃ arrow i→ 1 in Ω, then

0 Y1

⊕
j→1

Xj ⊗Aj jM1 X1

0 Y ′
1

⊕
j→1

X ′
j ⊗Aj jM1 X ′

1

-

?

β1

-κ1

?

⊕
j→1(αj⊗1)

-φ1

?

α1

- -
κ′1 -

φ′
1
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Thus,

Y1 Yi ⊗Ai iM1

Y ′
1 Y ′

i ⊗Ai iM1

-iκ1

?
β1

?
βi⊗1

-iκ
′
1

It follows that

Y1 ⊗A1 1Mi Yi

Y ′
1 ⊗A1 1Mi Y ′

i

-iψ1

?
β1⊗1

?
βi

-iψ
′
1

And, if i ̸= 1, βi = αi which are morphisms in rep(M, Ω).
Hence, all βi are morphisms in rep(M, δ1Ω). Thus, β is a morphism of

rep(M, δ1Ω).
In summary, ∆+

1 is a functor from rep(M, Ω) to rep(M, δ1Ω).
Dually, ∆−

nX = Y = (Yi, iψj) is the object of rep(M, δnΩ) defined as fol-
lows:
(i) If i ̸= n, take Yi = Xi, and iψj = iφj ; (ii) If i = n, let Yn be the cokernel
in the diagram:

Xn
-

(jφ̄n)

���
���

��*
jφ̄n 6

πj ιj
?

Xj ⊗Aj jMn

HHH
HHH

HHj

nηi

⊕n→j(Xj ⊗Aj jMn) ηn
-Yn

- 0

and nψj = nηj .
For a morphism α : X → X ′, we define β = ∆−

nα by letting βi = αi for
i ̸= n, while βn : Yn → Y ′

n is the mapping induced on the cokernels by⊕
n→j

(αj ⊗ 1) :
⊕
n→j

Xj ⊗Aj jMn →
⊕
n→j

X ′
j ⊗Aj jMn.

In summary, ∆−
n is a functor from rep(M, Ω) to rep(M, δnΩ).

As a direct consequence of the definition, ∆+
1 preserves monomorphisms,

while ∆−
n preserves epimorphisms, and both preserve finite direct sums.

3.2 Construction of indecomposable projectives/injective
representations

In this part, we use reflection functors to construct indecomposable projec-
tive/injective representations of a hereditary algebra.
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Lemma 3.3. Let (G, D, Ω) be a connected valued quiver with admissible ori-
entation Ω and M be a k-pre-modulation. Then for every representation X of
M:

(i) X ∼= ∆−
1 ∆

+
1 X ⊕ P, where P = (Pi, iπj) with Pi = 0 if i ̸= 1 and P1

is a (semisimple) A1-module. Thus if X is indecomposable, either (a) X ∼= P
(equivalently, ∆+

1 X = 0) in which case P is the unique simple direct summand of
A1 under isomorphism or (b) X ∼= ∆−

1 ∆
+
1 X (equivalently, ∆+

1 X ̸= 0) in which
case End(∆+

1 X ) ∼=End(X ) and thus ∆+
1 X is indecomposable and dim(∆+

1 X ) =
δ1(dimX );

(ii) X ∼= ∆+
n∆

−
nX ⊕ I, where I = (Ii, iτj) with Ii = 0, if i ̸= n and In

is a (semisimple) An-module. Thus, if X is indecomposable, either (a) X ∼= I
(equivalently, ∆−

nX = 0) in which case I is the unique simple direct summand of
An under isomorphism or (b) X ∼= ∆+

n∆
−
nX (equivalently, ∆−

nX ̸= 0) in which
case End(∆−

nX ) ∼=End(X ) and thus ∆−
nX is indecomposable and dim(∆−

nX ) =
δn(dimX ).

Proof. Firstly, We give the prove of (i).
Since X ∈ rep(M, Ω) and 1 is a sink in Ω, Y = ∆+

1 X ∈ rep(M, δ1Ω) and 1
is a source in δ1Ω. Then, by the definition of ∆−

1 , we have

(∆−
1 ∆

+
1 X )1 = cokY1 = cok(kerφ1) = Imφ1

µ1
↪→ X1.

Thus, we obtain the following diagram in the first coordinate from the construc-
tion of ∆−

1 ∆
+
1 X :

0 (∆+
1 X )1 ⊕j→1(Xj ⊗Aj jM1) X1

(∆−
1 ∆

+
1 X )1

0

- -κ1

?

-φ1

?

���
����*

µ1

Due to the above mention, (∆−
1 ∆

+
1 X )1 can be seen as an A1-submodule of

X1. But, since A1 is a simple algebra, all its modules are projective and then
(∆−

1 ∆
+
1 X )1 is a direct summand ofX1 as an A1-module. LetX1

∼= (∆−
1 ∆

+
1 X )1⊕

P1 where P1 is a semisimple A1-module. Thus, by the definition of ∆−
1 ∆

+
1 X ,

X ∼= ∆−
1 ∆

+
1 X ⊕ P, where P = (Pi, iπj) with Pi = 0 if i ̸= 1.

Hence, if X is indecomposable, we have either (a) X ∼= P, equivalently,
∆−

1 ∆
+
1 X = 0 or (b) X ∼= ∆−

1 ∆
+
1 X , equivalently, P = 0.

In the case (a), if ∆+
1 X = 0, clearly ∆−

1 ∆
+
1 X = 0; conversely, if ∆−

1 ∆
+
1 X = 0,

then in the above diagram all Xj = 0 (j ̸= 1) which means (∆+
1 X )1 = 0 and it

follows that ∆+
1 X = 0. Therefore, X ∼= P is equivalent to ∆+

1 X = 0.
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Moreover, in the case (b), X ∼= ∆−
1 ∆

+
1 X is equivalent to ∆+

1 X ̸= 0. Then,
∆+

1 ∆
−
1 ∆

+
1 X ∼= ∆+

1 X and φ1 is surjective.
From X1 to get (∆+

1 X )1, we have the following:

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 X1

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 X1

-

?

f̃1

-κ1

?

⊕
j→1(fj⊗1)

-φ1

?

f1

- -κ1 -φ1

From (∆+
1 X )1 to get (∆−

1 ∆
+
1 X )1, we have the following:

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 (∆−
1 ∆

+
1 X )1

0 (∆+
1 X )1

⊕
j→1

Xj ⊗Aj jM1 (∆−
1 ∆

+
1 X )1

-

?

f̃1

-κ1

?

⊕
j→1(fj⊗1)

-φ1

?

˜̃
f1

- -κ1 -φ1

where (∆−
1 ∆

+
1 X )1 = Imφ1 is embedded into X1 by µ1. But, φ1 is surjective

in the case (b), (∆−
1 ∆

+
1 X )1 = Imφ1 is isomorphic to X1. So, f1 and

˜̃
f1 are

one-one correspondence via ∆−
1 ∆

+
1 . Therefore, in the series of maps:

End(X )
∆+

1−→ End(∆+
1 X )

∆−
1−→ End(∆−

1 ∆
+
1 X )

∆+
1−→ End(∆+

1 ∆
−
1 ∆

+
1 X ),

we get End(X )
∆−

1 ∆+
1∼= End(∆−

1 ∆
+
1 X ) and similarly,

End(∆+
1 X )

∆+
1 ∆−

1∼= End(∆+
1 ∆

−
1 ∆

+
1 X ).

From them, it follows that End(∆+
1 X )

∆−
1∼= End(∆−

1 ∆
+
1 X ), and then End(X )

∆+
1∼=

End(∆+
1 X ). Naturally, the above isomorphisms still hold under the meaning of

the endomorphism algebras of these representations.
Now the indecomposability of X implies that End(X ) is local, hence so is

End(∆+
1 X ) through the isomorphism and then ∆+

1 X is indecomposable.
Lastly, we verify that dim(∆+

1 X ) = δ1(dimX ) in the case (b). By the

definitions of ∆+
1 X and δ1, it is enough to show that

dimk(∆
+
1 X )1

dimkA1
= (δ1(dimX ))1.
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On the one hand,

(δ1(dimX ))1 = −dimkX1

dimkA1
+
∑
i→1

di1
dimkXi

dimkAi
.

On the other hand, in this case, φ1 is surjective, then we have the short
exact sequence

0 −→ (∆+
1 X )1 −→

⊕
i→1

(Xi ⊗Ai iM1) −→ X1 −→ 0

which gives dimk(∆
+
1 X )1 =

∑
i→1 dimk(Xi ⊗Ai iM1)− dimkX1. Thus,

dimk(∆
+
1 X )1

dimkA1
= −dimkX1

dimkA1
+
∑
i→1

dimk(Xi ⊗Ai iM1)

dimkA1
.

Hence, it is enough for us to prove that for any arrow i→ 1, dimk(Xi⊗iM1)
dimkA1

=

di1
dimkXi
dimkAi

.

In fact, dimk(iM1) = di1dimkA1, so di1
dimkXi
dimkAi

= dimk(iM1)
dimkA1

dimkXi
dimkAi

. Since Ai
is a simple algebra over k and Xi is its right module, there is dimkAi = s2i for
some positive integer si, Xi =W1⊕. . .⊕Wt for some right Ai-simple submodules
W1, . . . , Wt and dimkWi = si for all i. And, iM1 is a left free Ai-module with
d1i the rank of a basis which we write d1i = rankAi(iM1). Then, iM1 = ⊕ d1iAi
and

Xi⊗Ai iM1 = (⊕t
j=1Wj)⊗Ai(⊕ d1iAi) = ⊕ d1i(⊕t

j=1Wj⊗AiAi) = ⊕ d1i(⊕t
j=1Wj).

Thus, dimk(Xi ⊗Ai iM1) = d1itsi.
On the other hand, (dimk(iM1)dimkXi)/dimkAi = rankAi(iM1)dimkXi =

d1itsi.

Hence, dimk(Xi⊗iM1)
dimkA1

= di1
dimkXi
dimkAi

, then
dimk(∆

+
1 X )1

dimkA1
= (δ1(dimX ))1. It

means that dim(∆+
1 X ) = δ1(dimX ).

The proof of (ii) can be given dually by considering the following diagram:

Xn ⊕n→i(Xi ⊗Ai iM1) (∆−
nX )n 0

(∆+
n∆

−
nX )n = ker(iφ̄n)

0

-
(iφ̄n) -ηn -

6

6

The direct sum X ∼= ∆+
n∆

−
nX⊕I is from the fact An is a simple algebra and then

Xn is projective as An-module. The further discussion is similar in dual.
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Theorem 3.2. (i) The full subcategory rep(1)(M, Ω) of all representations in
rep(M, Ω) with no direct summand isomorphic to the unique projective simple
direct summand (under isomorphism) of A1 is equivalent to the full subcategory
rep(1)(M, Ω) of all representations in rep(M, δ1Ω) with no direct summand
isomorphic to the unique injective simple direct summand (under isomorphism)
of A1.

(ii) The full subcategory rep(n)(M, Ω) of all representations in rep(M, Ω)
with no direct summand isomorphic to the unique injective simple direct sum-
mand (under isomorphism) of An is equivalent to the full subcategory
rep(n)(M, Ω) of all representations in rep(M, δnΩ) with no direct summand
isomorphic to the unique projective simple direct summand (under isomorphism)
of An.

Proof. By Lemma 3.1, A1 is projective and An is injective in rep(M, Ω). Then
by the definitions of δ1 and δn, in rep(M, δ1Ω) and rep(M, δnΩ) respectively,
A1 is injective and An is projective. Then, so are their direct summands respec-
tively.

Any X ∈ rep(M, Ω) can be written as X = P(1)+. . .+P(s)+X (1)+. . .+X (t)

where all P(i)are indecomposable and ∆+
1 P(i) = 0, all X (j)are indecomposable

and ∆+
1 X (j) ̸= 0. Then by Lemma 3.3, P(1), . . . ,P(s) are all the (possible)

direct summands of X isomorphic to the unique simple direct summand of A1,
and ∆−

1 ∆
+
1 X = ∆−

1 ∆
+
1 X (1) + . . . +∆−

1 ∆
+
1 X (t) = X (1) + . . . + X (t). Therefore,

X = ∆−
1 ∆

+
1 X if and only if X has no direct summands isomorphic to the

unique simple direct summand of A1. It means X ∈ rep(1)(M, Ω) if and only
if X = ∆−

1 ∆
+
1 X . Moreover, through the functors ∆−

1 , ∆
+
1 in rep(1)(M, Ω), for

any morphism α : X → X ′, we get also α = ∆−
1 ∆

+
1 α.

Similarly, Y = ∆−
1 ∆

+
1 Y for any object Y in rep(1)(M, Ω) and β = ∆+

1 ∆
−
1 β

for a morphism β in rep(1)(M, Ω). Thus, X ∈ rep(1)(M, Ω) means ∆+
1 X =

∆+
1 ∆

−
1 (∆

+
1 X ). So, ∆+

1 X is in rep(1)(M, Ω). Similarly, for any morphism

α in rep(1)(M, Ω), ∆+
1 α is in rep(1)(M, Ω). That is, ∆+

1 is a functor from

rep(1)(M, Ω) to rep(1)(M, Ω).

Similarly, ∆−
1 is a functor from rep(1)(M, Ω) to rep(1)(M, Ω).

Trivially, ∆−
1 and ∆+

1 are mutual invertible. Hence, ∆+
1 and ∆−

1 implement
the desired equivalence.

The part (ii) can be discussed similarly.

The following corollary can be got easily from the relations X = ∆−
1 ∆

+
1 X

and α = ∆−
1 ∆

+
1 α:

Corollary 3.4. (i) For two objects X , X ′ in rep(1)(M,Ω),

Ext1(X ,X ′) ∼= Ext1(∆+
1 X ,∆

+
1 X

′);

(ii) For two objects Y, Y ′ in Rep(1)(M,Ω),

Ext1(Y,Y ′) ∼= Ext1(∆−
1 Y,∆

−
1 Y

′).
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Now, define the functors:

∆+ = ∆+
n∆

+
n−1 . . .∆

+
2 ∆

+
1 : rep(M,Ω) → rep(M,Ω)

and

∆− = ∆−
1 ∆

−
2 . . .∆

−
n−1∆

−
n : rep(M,Ω) → rep(M,Ω).

These endofunctors are called the Coxter functors. For each u ∈ G, define
the representations P u = ∆−

1 ∆
−
2 . . .∆

−
u−1Au with Au ∈ rep(M, δuδu+1 . . . δnΩ),

Q
u
= ∆+

n∆
+
n−1 . . .∆

+
u+1Au with Au ∈ rep(M, δuδu−1 . . . δ1Ω).

Since Au is a simple algebra over k, let dimAu = s2u for a positive in-

teger su, then Au = W
(1)
u + . . . + W

(su)
u with the mutual-isomorphic simple

Au-modules W
(1)
u , . . . ,W

(su)
u , and Au = W

(1)
u + . . . +W

(su)
u where all mutual-

isomorphic simple representations W
(i)
u are defined by W

(i)
u = (Xj , jφl) for

Xj =

{
W

(i)
u , if j = u

0, if j ̸= u
and jφl = 0 for all j → l.

It is clear to understand that the set {W (1)
u }1≤u≤n consists of the set of

all mutual non-isomorphic simple representations in rep(M,Ω). Then, P u =

P(1)
u ⊕ . . . ⊕ P(su)

u and Q
u
= Q(1)

u ⊕ . . . ⊕ Q(su)
u with mutual-isomorphic inde-

composable representations P(i)
u = ∆−

1 ∆
−
2 . . .∆

−
u−1W

(i)
u for i = 1, . . . , su and

Q(i)
u = ∆+

n∆
+
n−1 . . .∆

+
u+1W

(i)
u for i = 1, . . . , su by Lemma 3.3.

For any distinct u, v, P(i)
u and P(j)

v are non-isomorphic each other for all i, j,

since W
(i)
u and W

(j)
v are so. Now, we can obtain:

Theorem 3.3. The set {P(1)
u }1≤u≤n (respectively, {Q(1)

u }1≤u≤n) consists of the
set of all non-isomorphic indecomposable projective (respectively, injective) rep-
resentations in rep(M,Ω) for a connected valued quiver (G,D,Ω) with the ad-
missible orientation Ω and the admissible sequence of sinks {1, 2, . . . , n}.

Proof. According to the one-one correspondence between simple representa-
tions and indecomposable projective representations via modulo the latter radi-

cal in rep(M,Ω) and the above fact all P(i)
u are indecomposable representations,

it suffices to prove all P(1)
u are projective, for this implies these indecomposable

representations are, indeed, all non-isomorphic indecomposable projective ones.

We use induction u. First, for u = 1, P(1)
1 is just the unique simple di-

rect summand under isomorphism of A1 which is projective by Corollary 3.1.

Next, assume that for all l < u, P(1)
l is projective for its corresponding admis-

sible orientation of the graph. Then, in particular, P̃(1)
u = ∆−

2 . . .∆
−
u−1W

(1)
u is

projective. We have P(1)
u = ∆−

1 P̃
(1)
u .

Firstly, since P̃(1)
u is indecomposable, we have

(8) ∆−
1 ∆

+
1 P

(1)
u = ∆−

1 (∆
+
1 ∆

−
1 P̃

(1)
u ) = ∆−

1 P̃
(1)
u = P(1)

u



330 WANWAN JIA and FANG LI

P(1)
u

?

β

X -α Y - 0

by Lemma 3.3, which means P(1)
u is indecomposable. In order to prove the

projectivity of P(1)
u , consider the diagram

whose row is exact. We show that it may be assumed that such a diagram is in
the category rep(1)(M,Ω) in Theorem 3.2.

Indeed, by Lemma 3.3, we have X ∼= ∆−
1 ∆

+
1 X ⊕P, where P = (Pi, iπj) with

Pi = 0 if i ̸= 1 and P1 is a (semisimple) A1-module. We claim that

α(∆−
1 ∆

+
1 X ) = ∆−

1 ∆
+
1 Y.

In fact, clearly ∆−
1 ∆

+
1 X ∈ rep(1)(M,Ω), then α(∆−

1 ∆
+
1 X ) ⊆ ∆−

1 ∆
+
1 Y. If this

inclusion is proper, the fact that α is an epimorphism implies that some copy of
the unique simple direct summand S1 of A1 lies in ∆−

1 ∆
+
1 Y. It is a contradiction.

Also, β(P(1)
u ) ⊆ ∆−

1 ∆
+
1 Y. Otherwise, there would exist a non-zero map

P(1)
u → S1. This map must be an epimorphism since S1 is simple and thus S1

is a direct summand of P(1)
u since S1 is projective by Corollary 3.1. But, due to

(8), P(1)
u is indecomposable and non-isomorphic to S1. This is a contradiction.

Thus, without loss of generality, assume that the above diagram lies in the

category rep(1)(M,Ω) in Theorem 3.2. Then, applying ∆+
1 , we have ∆+

1 P
(1)
u =

∆+
1 ∆

−
1 P̃

(1)
u

∼= P̃(1)
u and get the following diagram:

P̃(1)
u

?

∆+
1 β

)
)

)
)	

γ+

∆+
1 X -∆+

1 α∆+
1 Y - 0

where γ+ exists by the projectivity of P̃(1)
u which makes this diagram to be

commutative.

By Theorem 3.2, ∆−
1 and ∆+

1 are mutual invertible between rep(1)(M,Ω) and

rep(1)(M,Ω). So, ∆−
1 ∆

+
1 X ∼= X , ∆−

1 ∆
+
1 Y ∼= Y, ∆−

1 ∆
+
1 α

∼= α, ∆−
1 ∆

+
1 β

∼= β.

But, P(1)
u = ∆−

1 P̃
(1)
u . Thus, we get the following commutative diagram:

which means the projectivity of P(1)
u .

The statement on {Q(i)
u }1≤i≤su; 1≤u≤n can be shown in dual, according to

the one-one correspondence between simple representations and indecomposable
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P(1)
u

?

β
)

)
)

)	

∆−
1 γ

+

X -α Y - 0

injective representations via the frontal, as the socles, are embedded into the
latter in rep(M,Ω).

According to Theorem 3.3 and the mutual constructions between a normal
generalized path algebra and the corresponding pre-modulation in Section 2, we
can give all indecomposable projective or injective representations of a normal
generalized path algebra as follows:

Corollary 3.5. Let k(Q,A) be a normal A-path algebra over a field k with con-
nected acyclic quiver Q and the corresponding k-pre-modulation M = (Ai, iMj).

Denote by {1, 2, . . . , n} the admissible sequence of sinks in Q and {P(1)
u }1≤u≤n

(respectively, {Q(1)
u }1≤u≤n) the set of all mutual non-isomorphic indecompos-

able projective (respectively, injective) representations in rep(M,Ω) as in The-

orem 3.3. Write P(1)
u = (X

(u)
j , jφi)i,j∈Q0 and Q(1)

u = (Y
(u)
j , jψi)i,j∈Q0, let

Pu =
∑

j∈Q0
X

(u)
j and Qu =

∑
j∈Q0

Y
(u)
j for u = 1, . . . , n. Then, in the cate-

gory modk(Q,A), under isomorphism, {Pu}1≤u≤n (respectively, {Qu}1≤u≤n) is
the set of all indecomposable projective (respectively, injective) modules.

We have known in [18] that if an artinian algebra A of Gabriel-type with
admissible ideal is hereditary, then A is isomorphic to its related generalized path
algebra k(∆A,A). Therefore, we can construct all indecomposable projective
and injective modules over this kind of artinian hereditary algebras using of the
method given in Corollary 3.5.

Remark 3.4. In [11], V.Dlab and C.M.Ringel generalize the Bernstein-Gelfand-
Ponomarev theory in two directions. On one hand, they use valued graphs
instesd of graphs, and show the relationship between the dimension vectors of
indecomposable representations of elementary artinian algebras over skew-fields
and the positive roots of the quadratic forms which is a bijection. On the
other hand, they discuss the extended Dynkin diagrams and describe all there
indecomposable representations. Note when the skew-fields are fields then the
elementary artinian algebras are basic.

In our work, we use the natural quiver of a (non-basic) hereditary artinian
algebra and the reformed modulations via generalized path algebras isomorphic
to the hereditary algebras to construct all non-isomorphic indecomposable pro-
jective and injective representations of the generalized path algebras with acyclic
quivers.
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4. Representation-type of a generalized path algebra and its natural
quiver

As one knows, according to Gabriel theory, representation type of a classical
path algebra over an algebraically closed field or the modulation of a valued
quiver is decided by the type of the quiver. Naturally, it is motivated to consider
representation type of a generalized path algebra, equivalently, of a generalized
modulation through the type of the corresponding natural quiver. First let us
review the discussion given in [18].

We say a quiver to be of almost Dynkin-affine type provide that when one
looks upon all arrows with same direction between an ordered pair of vertices
as an arrow then the quiver becomes a quiver of either Dynkin or affine type;
moreover, if it is of neither Dynkin nor affine type, we call this proper almost
Dynkin-affine type. Respectively, we can give the definitions of (proper) almost
Dynkin type and (proper) almost affine type.

By the classical Gabriel theory, if A is a hereditary k-spitting artinian alge-
bra, A is of finite type if and only if ΓA is of Dynkin type, A is of tame type
if and only if ΓA is of affine type. About the natural quiver ∆A, it firstly was
given that:

Proposition 4.1 ([18]). For a hereditary k-splitting artinian algebra A, let mij

be the number of arrows from a vertex i to another vertex j in the Ext-quiver ΓA
of A. Then, the natural quiver ∆A = ΓA if mij ≤ 1 for any i, j ∈ ΓA. Moreover,
if A is of either finite type or tame type, then its natural quiver ∆A is of either
Dynkin type or affine type respectively.

By Drozd’s tame-and-wild Theorem, a finite-dimensional algebra A over an
algebraically closed field k, which is not of finite type, is of either tame type or
wild type. Then, the following holds:

Corollary 4.1 ([18]). A finite-dimensional hereditary algebra A over an alge-
braically closed field k is of wild type if its natural quiver ∆A is of neither Dynkin
type nor affine type.

The converse result is not true, that is, when A is of wild type, ∆A is also
possible to be of either Dynkin type or affine type.

Motivated by this discussion, it is asked how to characterize the kind of
finite-dimensional (more generally, artinian) hereditary algebras of wild type
whose natural quivers are of either Dynkin type or affine type?

As a part of this question, a class of wild algebras whose natural quivers are
of either Dynkin type or affine type was constructed as in the following:

Proposition 4.2 ([18]). For a normal generalized path algebra k(Q,A) over an
algebraically closed field k with Q a finite acyclic quiver, let A = {Ai : i ∈ Q0}
and ni =

√
dimkAi for any i ∈ Q0.

(i) If there is an arrow from i to j in Q with ninj > 1, then k(Q,A) is of
wild type;
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(ii) If the quiver Q is of either Dynkin or affine type and there is an arrow
from i to j in Q with ninj > 1, then the Ext-quiver of k(Q,A) is of proper
almost Dynkin-affine type.

Theorem 4.1. For a normal generalized path algebra k(Q,A) over an alge-
braically closed field k with Q a finite connected acyclic quiver, let A = {Ai :
i ∈ Q0} and ni =

√
dimkAi for any i ∈ Q0. If Q is of Dynkin type (resp. affine

type), then
(i) k(Q,A) is of finite type (resp. tame type) if and only if Ai ∼= k for each

vertex i ∈ Q0, or equivalently say, k(Q,A) ∼= kQ;
(ii) in the otherwise case, k(Q,A) is of wild type.

Proof. (i) “if”: It is trivial according to the classical Gabriel theory.
“only if”: As we have known in [17, 18], Q is just the natural quiver of

k(Q,A). Let Γ denote the Ext-quiver of k(Q,A). Then, the relation is given in
[21, 18] that gij = ninjtij for the numbers gij and tij arrows from i to j in Γ
and Q respectively.

Suppose there is one p ∈ Q0 such that Ap ̸∼= k, that is, np > 1. Since Q is
connected, p is either a head or a tail of some arrow in Q. No loss of generality,
let p be the head of an arrow α : p → q in Q. Then, gpq = npnqtpq > 1 due to
np > 1. Thus, Γ is neither of Dynkin type nor of affine type. By Gabriel theory,
k(Q,A) is neither of finite type nor of tame type.

(ii): It follows from the proof of “only if” above and Drozd’s tame-and-wild
Theorem.

In the case of basic hereditary algebras, Gabriel’s theorem tell us the heredi-
tary algebra KQ is representation-finite if and only if the underlying graph of Q
is one of the Dynkin diagrams. Theorem 4.1 discusses the representation type
of normal generalized path algebra k(Q,A), where Q is Dynkin quiver. It shows
that a normal generalized path algebra k(Q,A) to be representation-finite type
in the case the quiver is of Dynkin type if and only if all algebras at the vertices
are isomorphic to fields. As analogue for affine type, we also discuss the condi-
tion for a generalized path algebra to be of tame type in the case the quiver is
of affine type.

It is easy to see that in the case of Theorem 4.1 (ii), the Ext-quiver of k(Q,A)
is certainly of proper almost Dynkin-affine type.
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Abstract. Suppose that X be a nonempty set. Denote by T (X) the full transforma-
tion semigroup on X. For ∅ ≠ Z ⊆ Y ⊆ X, let T (X,Y, Z) = {α ∈ T (X) : Y α ⊆ Z}.
Then, T (X,Y, Z) is a subsemigroup of T (X). In this paper, we characterize the regular
elements of the semigroup T (X,Y, Z), and present a necessary and sufficient condition
under which T (X,Y, Z) is regular. Furthermore, we investigate the abundance of the
semigroup T (X,Y, Z) for the case Z ⊊ Y ⊊ X. In addition, we compute the cardinali-
ties of T (X,Y, Z), Reg(T (X,Y, Z)) and E(T (X,Y, Z)) when X is finite, respectively.

Keywords: transformation semigroup, restricted partial range, regular element, L∗-
relation, R∗-relation.

1. Introduction

An element x of semigroup S is called a regular element of S if x = xyx for
some y ∈ S, and S is said to be a regular semigroup if every element of S is
regular. The set of all regular elements of a semigroup S is denoted by Reg(S).
An element x of semigroup S is called an idempotent of S if x2 = x. The set of
all idempotents of a semigroup S is denoted by E(S). Regular element (resp.,
idempotent) is one of the most studied topics in semigroup theory due to its
nice algebraic properties and wide applications. There have been many research
works studying regularity of semigroups (see, [1, 11, 15, 16, 18, 19, 20, 21, 29]).

Let S be a semigroup and a, b ∈ S. We say that a and b are L-related (R-
related) in S if S1a = S1b (aS1 = bS1) where S1 denotes the monoid obtained
from S by adding an identity if S has no identity, otherwise, S1 = S. If a and b
are L-related (R-related), we can write (a, b) ∈ L ((a, b) ∈ R). Again, if (a, b) ∈

*. Corresponding author
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L in some oversemigroup of S, then a and b are called L∗-related and write
(a, b) ∈ L∗. The relation R∗ can be defined dually. Clearly, L ⊆ L∗, R ⊆ R∗,
and L∗ and R∗ are equivalence relations on S. Fountain [7] pointed out that a
semigroup S is said to be left abundant (right abundant) if every L∗-class (R∗-
class) contains an idempotent. Moreover, a semigroup S is called abundant if it
is both left abundant and right abundant. It is obvious that regular semigroups
are abundant, but the converse is not true. For example, Umar [27] shown that
the semigroup of order-decreasing finite full transformations is abundant but not
regular. Many papers have been written describing the abundance of various
semigroups.

For a nonempty set X, let T (X) be the full transformation semigroup on X
that is, the semigroup under composition of all maps from X into itself. It is well
known that T (X) is a regular semigroup (see [9]). Transformation semigroups
are ubiquitous in semigroup theory because of Cayley’s Theorem which states
that every semigroup S embeds in some transformation semigroup T (X) (see
[9, Theorem 1.1.2]).

Given a nonempty subset Y of X, let

T (X,Y ) = {α ∈ T (X) : Y α ⊆ Y }, T (X,Y ) = {α ∈ T (X) : Xα ⊆ Y }.

Then, T (X,Y ) is a subsemigroup of T (X) and T (X,Y ) is a subsemigroup of
T (X,Y ). In 1966, Magill [17] introduced and studied the semigroup T (X,Y ).
In 1975, Symons [25] introduced the semigroup T (X,Y ), and also described all
automorphisms of T (X,Y ). Recently, T (X,Y ) and T (X,Y ) have been studied
in a variety of contexts (see [10, 12, 13, 18, 20, 21, 22, 23, 24, 28]).

The study of the related combinatorial properties of subsemigroups of finite
full transformation semigroup has always been one of the most important topics
in the semigroup theory. Many scholars have obtained results (see [2, 3, 6, 8]).
Although they have studied semigroups T (X,Y ) and T (X,Y ) from different
perspectives, very little research has been found to deal with other literatures
have studied other related combinatorial properties of semigroups T (X,Y ) and
T (X,Y ) except that Nenthein, Youngkhong and Kemprasit [18] determined the
number of all regular elements in T (X,Y ) and T (X,Y ).

For X, Y and Z are all nonempty sets with Z ⊆ Y ⊆ X, the first author
[14] defined

T (X,Y, Z) = {α ∈ T (X) : Y α ⊆ Z}.

Clearly, for each α, β ∈ T (X,Y, Z), Y (αβ) = (Y α)β ⊆ Zβ ⊆ Y β ⊆ Z and so
αβ ∈ T (X,Y, Z). Therefore, we have T (X,Y, Z) is a subsemigroup of T (X),
and we call it the semigroup of transformations with restricted partial range on
X. The semigroup T (X,Y, Z) is a generalization of semigroups T (X), T (X,Y )
and T (X,Z), that is,

• if Z = Y , then T (X,Y, Z) = T (X,Y );
• if Y = X, then T (X,Y, Z) = T (X,Z);
• if Z = Y = X, then T (X,Y, Z) = T (X).
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For the case Z = Y = X, it is well known that T (X,Y, Z) = T (X) is a
regular semigroup and so T (X,Y, Z) is abundant.

For the case Z = Y ⊊ X, Sun [22] shown the following result.

Lemma 1.1. ([22, Theorem 4.2]) The semigroup T (X,Y ) is abundant.

For the case Z ⊊ Y = X. Then, T (X,Y, Z) = T (X,Z) contains exactly one
element if |Z| = 1. And if |Z| ≥ 2, Sun [23] presented the following result.

Lemma 1.2. ([23, Theorem 1]) The semigroup T (X,Z) is left abundant but
not right abundant.

The paper is organized as follows. In Section 2, we characterize the regular
elements of the semigroup T (X,Y, Z), and present a necessary and sufficient
condition under which T (X,Y, Z) is regular. In Section 3, we investigate the
abundance of the semigroup T (X,Y, Z) for the case Z ⊊ Y ⊊ X. In Section 4,
we compute the cardinalities of T (X,Y, Z), Reg(T (X,Y, Z)) and E(T (X,Y, Z))
when X is finite, respectively. All combinatorial formulas in T (X,Y, Z) also
apply to the semigroup T (X,Y ) (resp. T (X,Z) or T (X)).

Throughout this paper, we always write functions on the right; in particular,
this means that for a composition αβ, α is applied first. For any sets A and B,
we denote by |A| the cardinality of A, and write A \B = {a ∈ A : a /∈ B}. For
each α ∈ T (X,Y, Z), we denote by Xα the range of α. And if A is a nonempty
subset of X then the restriction of α to the set A is denoted by α|A. Moreover,
for the general background of Semigroup Theory and standard notation, we refer
the readers to Howie’s book [9].

2. Regularity

In this section, we characterize the regularity of the semigroup T (X,Y, Z). First,
we describe the regular elements of the semigroup T (X,Y, Z).

Theorem 2.1. Let α ∈ T (X,Y, Z). Then, the following conditions are equiva-
lent:

(i) α ∈ Reg(T (X,Y, Z));

(ii) Xα ∩ Y ⊆ Zα;

(iii) Xα ∩ Y = Zα.

Proof. (i) ⇒(ii). Let α ∈ Reg(T (X,Y, Z)). Then, exists β ∈ T (X,Y, Z) such
that α = αβα. For each x ∈ Xα ∩ Y , we have x ∈ Y and x = aα for some
a ∈ X. Consequently, x = aα = aαβα = xβα ∈ Y βα ⊆ Zα and so, (ii) holds.

(ii)⇒(iii). It is obvious that Zα ⊆ Y α ⊆ Xα ∩ Z ⊆ Xα ∩ Y , together with
condition (ii), we get (iii).

(iii)⇒(i). Suppose that Xα ∩ Y = Zα, and let

Xα ∩ Y = {y1, y2, . . . , ys}.
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Then, exist zi ∈ Z (i = 1, 2, . . . , s) such that ziα = yi. We consider two cases.
If Xα \ Y = ∅, we define a mapping β : X → X by

xβ =

{
zi, if x = yi for some i = 1, 2, . . . , s,

z1, otherwise.

If Xα\Y ̸= ∅. Then, for each x ∈ Xα\Y , choose and fix tx ∈ {k ∈ X : kα = x},
and define a mapping β : X → X by

xβ =


zi, if x = yi for some i = 1, 2, . . . , s,

tx, if x ∈ Xα \ Y
z1, otherwise.

For both cases, it is easy to verify that α = αβα and β ∈ T (X,Y, Z). Hence,
(i) holds.

In particular, we take Z = Y (resp., Y = X) in Theorem 2.1. Then, we get
the following Corollary 2.1 (resp., Corollary 2.2) which are proved by Nenthein,
Youngkhong and Kemprasit [18, Theorem 2.1] (resp., [18, Theorem 2.3]).

Corollary 2.1. Let α ∈ T (X,Y ). Then, the following conditions are equivalent:

(i) α ∈ Reg(T (X,Y )).

(ii) Xα ∩ Y ⊆ Y α.

(iii) Xα ∩ Y = Y α.

Corollary 2.2. Let α ∈ T (X,Z). Then, the following conditions are equivalent:

(i) α ∈ Reg(T (X,Z)).

(ii) Xα ⊆ Zα.

(iii) Xα = Zα.

Nenthein, Youngkhong and Kemprasit presented a necessary and sufficient
condition under which T (X,Z) (resp., T (X,Y )) is regular in [18] that is,

Lemma 2.1 ([18], Corollary 2.2). T (X,Z) is a regular semigroup if and only
if |Z| = 1 or X = Z.

Lemma 2.2 ([18], Corollary 2.4). T (X,Y ) is a regular semigroup if and only
if |Y | = 1 or X = Y .

Next, a necessary and sufficient condition for T (X,Y, Z) to be a regular
semigroup can be given as follows:
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Theorem 2.2. T (X,Y, Z) is a regular semigroup if and only if one of the
following statements holds:

(i) |Y | = 1.

(ii) X = Y and |Z| = 1.

(iii) Z = Y = X.

Proof. For |Y | = 1. It is note that Z be a nonempty subset of Y , then Y = Z
and so T (X,Y, Z) = T (X,Y ). According to Lemma 2.2, we have T (X,Y, Z) is
regular. For X = Y and |Z| = 1. It is easy to see that T (X,Y, Z) = T (X,Z)
and so from Lemma 2.1 it follows that T (X,Y, Z) is regular. For Z = Y = X,
we have T (X,Y, Z) = T (X) which is regular.

Conversely, suppose that T (X,Y, Z) is a regular semigroup, and let (i), (ii)
and (iii) be not established. Note that X, Y and Z are all nonempty sets with
Z ⊆ Y ⊆ X. To do this, we distinguish three cases:

Case 1. Z ⊊ Y ⊊ X. Let z be an element of Z, and choose y ∈ Y such that
y ̸= z. Since X \ Y ̸= ∅, we define a mapping α : X → X by

xα =

{
z, if x ∈ Y ,

y, if x ∈ X \ Y .

It is easy to verify that α ∈ T (X,Y, Z). However, Xα∩Y = {z, y} ⊋ {z} = Zα.
By Theorem 2.1, we immediately deduce that α is not a regular element of
T (X,Y, Z), which contradicts the fact that T (X,Y, Z) is regular.

Case 2. |Z| > 1 and Z = Y ⊊ X. Then, T (X,Y, Z) = T (X,Y ) with |Y | ≠ 1
and X ̸= Y . Also, we have T (X,Y, Z) is not regular by Lemma 2.2. This is a
contradiction.

Case 3. |Z| > 1 and Z ⊊ Y = X. Then, T (X,Y, Z) = T (X,Z) with |Z| ̸= 1
and X ̸= Z. Similar to the above, we have T (X,Y, Z) is not regular by Lemma
2.1. This is a contradiction.

3. Abundance

In this section, we investigate the abundance of the semigroup T (X,Y, Z) for
the case Z ⊊ Y ⊊ X. The following two lemmas give characterizations of L∗

and R∗ that can be found, for instance, in [7].

Lemma 3.1 ([7], Lemma 1.1). Let S be a semigroup and a, b ∈ S. Then, the
following statements are equivalent:

(i) (a, b) ∈ L∗.

(ii) For all x, y ∈ S1, ax = ay if and only if bx = by.

Dually, we have:
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Lemma 3.2. Let S be a semigroup and a, b ∈ S. Then, the following statements
are equivalent:

(i) (a, b) ∈ R∗.

(ii) For all x, y ∈ S1, xa = ya if and only if xb = yb.

To facilitate the description of the following lemma, we introduce a binary
relation Λ on T (X,Y, Z) as follows: For each α, β ∈ T (X,Y, Z), (α, β) ∈ Λ if
and only if one of the following statements holds:

(i) (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) = ∅.

(ii) (X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅.

Clearly, Λ is an equivalence relation on T (X,Y, Z).

Lemma 3.3. Let Z ⊊ Y ⊊ X and α, β ∈ T (X,Y, Z). Then, the following
statements hold:

(i) for |Z| = 1, (α, β) ∈ L∗ if and only if (α, β) ∈ Λ and Xα ∩ (X \ Y ) =
Xβ ∩ (X \ Y ).

(ii) for |Z| ≥ 2, (α, β) ∈ L∗ if and only if Xα = Xβ.

Proof. (i) Suppose that (α, β) ∈ Λ and Xα ∩ (X \ Y ) = Xβ ∩ (X \ Y ). By
|Z| = 1, we say that Z = {z0}. From (α, β) ∈ Λ, we distinguish two cases:
Case 1. (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) = ∅. Clearly,

Xα =Y α ∪ (X \ Y )α

={z0} ∪ {(X \ Y )α ∩ [Z ∪ (X \ Y )]}
={z0} ∪ {[(X \ Y )α ∩ Z] ∪ [(X \ Y )α ∩ (X \ Y )]}
={z0} ∪ [(X \ Y )α ∩ (X \ Y )]

={z0} ∪ [(X \ Y )α ∩ (X \ Y )] ∪ [Y α ∩ (X \ Y )] (By Y α ∩ (X \ Y ) ⊆
Z ∩ (X \ Y ) = ∅)

={z0} ∪ {[(X \ Y )α ∪ Y α] ∩ (X \ Y )}
={z0} ∪ [Xα ∩ (X \ Y )].

Similarly, we have Xβ = {z0} ∪ [Xβ ∩ (X \ Y )]. Since Xα ∩ (X \ Y ) = Xβ ∩
(X \Y ), we have Xα = Xβ. This implies that α and β are L-related in the full
transformation semigroup T (X) (see [9, page 63]). Hence, (α, β) ∈ L∗.
Case 2. (X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅. For each
η, θ ∈ T 1(X,Y, Z), we consider the following three subcases:
Case 2.1. η = 1 and θ = 1. Clearly, (α, β) ∈ L∗.
Case 2.2. η = 1 and θ ̸= 1. Then, θ ∈ T (X,Y, Z) and so Y θ ⊆ Z = {z0}. Let
γη = γθ (γ ∈ {α, β}). Then, γ = γθ and so xθ = x, for all x ∈ Xγ. This means
that (X \ Y )γ ∩ (Y \Z) = ∅ (If not, there exist bγ ∈ X \ Y and yγ ∈ Y \Z such



342 JIULIN JIN and TAIJIE YOU

that yγ = bγγ ∈ Xγ. Then, yγ = yγθ ∈ Z, this contradicts the condition that
yγ ∈ Y \ Z). This is a contradiction.
Case 2.3. η ̸= 1 and θ ̸= 1. That is, η, θ ∈ T (X,Y, Z). Then, Y η = {z0} = Y θ
and so η|Y = θ|Y . Therefore,

αη = αθ ⇔ η|Xα = θ|Xα
⇔ η|Xα∩Y = θ|Xα∩Y and η|Xα∩(X\Y ) = θ|Xα∩(X\Y )

⇔ η|Xβ∩Y = θ|Xβ∩Y and η|Xβ∩(X\Y ) = θ|Xβ∩(X\Y )

⇔ η|Xβ = θ|Xβ
⇔ βη = βθ.

By Lemma 3.1 we conclude that (α, β) ∈ L∗.
Conversely, suppose that (α, β) ∈ L∗ such that (α, β) /∈ Λ or Xα∩(X \Y ) ̸=

Xβ ∩ (X \ Y ). We distinguish two cases:
Case 1. (α, β) /∈ Λ. Then, we have ((X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩
(Y \ Z) ̸= ∅) or ((X \ Y )α ∩ (Y \ Z) ̸= ∅ and (X \ Y )β ∩ (Y \ Z) = ∅). By
symmetry, let (X \ Y )α ∩ (Y \ Z) = ∅ and (X \ Y )β ∩ (Y \ Z) ̸= ∅. Define two
mappings η : X → X and θ : X → X by η = 1 and

xθ =

{
x, if x ∈ Xα

z0, if x /∈ Xα.

Clearly, θ ∈ T (X,Y, Z) and αη = αθ. Howerver, βη ̸= βθ. This contradicts the
fact that (α, β) ∈ L∗.
Case 2. Xα ∩ (X \ Y ) ̸= Xβ ∩ (X \ Y ). Then, exists a ∈ Xβ ∩ (X \ Y ) such
that a /∈ Xα ∩ (X \ Y ) and so a0β = a for some a0 ∈ X and xα ̸= a, for all
x ∈ X. In fact, a0 ∈ X \ Y (If not, a = a0β ∈ Z, this contradicts the fact that
a ∈ X \Y ). We consider two cases. If |X \Y | = 1. It is clear that X \Y = {a}.
Define two mappings η : X → X and θ : X → X by Xη = z0 and

xθ =

{
z0, if x ∈ Y

a0, if x ∈ X \ Y .

If |X \ Y | ≥ 2. Define two mappings η : X → X and θ : X → X by

xη =

{
z0, if x ∈ Y ∪ {a}
a0, if x ∈ X \ (Y ∪ {a})

and xθ =

{
z0, if x ∈ Y

a0, if x ∈ X \ Y .

For both cases, we have η, θ ∈ T (X,Y, Z) and αη = αθ. However,

a0βη = aη = z0 ̸= a0 = aθ = a0βθ

and so βη ̸= βθ. This contradicts the fact that (α, β) ∈ L∗.
Hence, (α, β) ∈ Λ and Xα ∩ (X \ Y ) = Xβ ∩ (X \ Y ).
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(ii) Let Xα = Xβ. This implies that α, β are L-related in the full transfor-
mation semigroup T (X). Hence, (α, β) ∈ L∗.

Conversely, suppose that (α, β) ∈ L∗ and Xα ̸= Xβ. Then, exists a ∈ Xβ
such that a /∈ Xα and so a0β = a for some a0 ∈ X and xα ̸= a, for all x ∈ X.
Note that |Z| ≥ 2 and |X| ≥ 4. Then, we can take distinct z1, z2 ∈ Z, and
choose nonempty subsets X1, X2 of X with |Xi| ≥ 2 (i = 1, 2) such that X is a
disjoint union of X1 and X2. Define two mappings η : X → X and θ : X → X
by

xη =

{
z1, if x ∈ X1 ∪ {a}
z2, if x ∈ X2 \ {a}

and xθ =

{
z1, if x ∈ X1 \ {a}
z2, if x ∈ X2 ∪ {a}.

Clearly, η, θ ∈ T (X,Y, Z) and αη = αθ. However,

a0βη = aη = z1 ̸= z2 = aθ = a0βθ

and so βη ̸= βθ. This contradicts the fact that (α, β) ∈ L∗. Hence, Xα =
Xβ.

A necessary and sufficient condition for α ∈ T (X,Y, Z) to be an idempotent
can be given as follows:

Lemma 3.4. Let α ∈ T (X,Y, Z). Then, α is an idempotent if and only if the
following statements hold:

(i) Xα ⊆ Z ∪ (X \ Y ).

(ii) tα = t, for all t ∈ Xα.

Proof. Suppose that Xα ⊆ Z ∪ (X \ Y ) and tα = t, for all t ∈ Xα. For each
x ∈ X, there exists t ∈ Xα such that xα = t. Then, xα2 = (xα)α = tα = t =
xα. Hence, α is an idempotent.

Conversely, suppose that α is an idempotent, and let (i) or (ii) do not hold.
To do this, we distinguish two cases:
Case 1. (i) not holds and (ii) holds. Then, there exists y ∈ Xα such that
y ∈ Y \ Z and so yα = y /∈ Z. This is a contradiction.
Case 2. (ii) not holds. There exists t0 ∈ Xα such that t0α ̸= t0. Note that
x0α = t0 for some x0 ∈ X. Then, x0α

2 = (x0α)α = t0α ̸= t0 = x0α, which
contradicts the fact that α is an idempotent.

Lemma 3.5. Let Z ⊊ Y ⊊ X. Then, not each L∗-class of T (X,Y, Z) contains
an idempotent.

Proof. Let f ∈ T (X,Y, Z) such that (X \ Y )f ∩ (Y \ Z) ̸= ∅. Next, we prove
that the L∗-class L∗

f containing f has no idempotents. Assume that (f, e) ∈ L∗

for some idempotent e ∈ T (X,Y, Z), then two cases are considered as follows:
Case 1. |Z| = 1. Since Lemma 3.3 (1) it follows that (X \ Y )e ∩ (Y \ Z) ̸= ∅
and so Xe ∩ (Y \ Z) ̸= ∅.
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Case 2. |Z| ≥ 2. From Lemma 3.3 (2) it follows that Xe = Xf and so
Xe ∩ (Y \ Z) ̸= ∅.

However, we have Xe ⊆ Z ∪ (X \ Y ) since Lemma 3.4 (1). Note that
Z ⊊ Y ⊊ X, then Xe ∩ (Y \ Z) = ∅. This is a contradiction.

After that, we consider theR∗-relation. Let πα be the partition ofX induced
by α ∈ T (X,Y, Z), namely,

πα = {xα−1 : x ∈ Xα}.

Lemma 3.6. Let Z ⊊ Y ⊊ X and α, β ∈ T (X,Y, Z). Then, (α, β) ∈ R∗ if and
only if πα = πβ.

Proof. Let πα = πβ. This implies that α, β are R-related in the full transfor-
mation semigroup T (X) (see [9, page 63]). Hence, (α, β) ∈ R∗.

Conversely, suppose that (α, β) ∈ R∗ and x1α = x2α for some distinct
x1, x2 ∈ X. We show that x1β = x2β. There are three cases to be considered.
Case 1. x1, x2 ∈ Z. Define two mappings η : X → X and θ : X → X by

xη =

{
x1, if x ∈ Y

x, if x ∈ X \ Y
and xθ =

{
x2, if x ∈ Y

x, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = Y ηβ =
Y θβ = x2β.
Case 2. x1, x2 ∈ X\Z. Choose and fix z0 ∈ Z. Define two mappings η : X → X
and θ : X → X by

xη =

{
z0, if x ∈ Y

x1, if x ∈ X \ Y
and xθ =

{
z0, if x ∈ Y

x2, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = (X \
Y )ηβ = (X \ Y )θβ = x2β.
Case 3. x1 ∈ Z and x2 ∈ X\Z. Define two mappings η : X → X and
θ : X → X by Xη = x1 and

xθ =

{
x1, if x ∈ Y

x2, if x ∈ X \ Y .

Clearly, η, θ ∈ T (X,Y, Z) and ηα = θα. Then, ηβ = θβ and so x1β = (X \
Y )ηβ = (X \ Y )θβ = x2β.

For both cases, we have πα ⊆ πβ. Dually, we may show that πβ ⊆ πα.
Consequently, πα = πβ.

Lemma 3.7. Let Z ⊊ Y ⊊ X. Then, the following statements hold:

(i) for |Z| = 1, each R∗-class of T (X,Y, Z) contains an idempotent;

(ii) for |Z| ≥ 2, not each R∗-class of T (X,Y, Z) contains an idempotent.



SEMIGROUP OF TRANSFORMATIONS WITH RESTRICTED ... 345

Proof. (i) Let α ∈ T (X,Y, Z). Then, exists an index set I such that πα = {Ai :
i ∈ I}. Note that Y α ⊆ Z and |Z| = 1, there exists i ∈ I such that Y ⊆ Ai.
Take z0 ∈ Z and aj ∈ Aj , for all j ∈ I \ {i}. Define a mapping e : X → X by

xe =

{
z0, if x ∈ Ai

aj , if x ∈ Aj , for all j ∈ I \ {i}.

Clearly, e ∈ T (X,Y, Z) is an idempotent and πα = πe. By Lemma 3.6, we have
(α, e) ∈ R∗. Hence, each R∗-class of T (X,Y, Z) contains an idempotent.

(ii) By |Z| ≥ 2, we can take distinct z1, z2 ∈ Z. Define f ∈ T (X,Y, Z) such
that Zf = z1 and (Y \ Z)f = z2. Then, Z ⊆ Ai and (Y \ Z) ⊆ Aj for some
distinct Ai, Aj ∈ πf = {Aj : j ∈ J} where J be some index set. We assert that
the R∗-class R∗

f containing f has no idempotents. Indeed, if (f, e) ∈ R∗ for
some idempotent e ∈ T (X,Y, Z). Then, by Lemma 3.6 it follows that πe = πf .
According to Lemma 3.4, |Aje ∩ Aj | = 1 and so (Y \ Z)e = Aje ∈ Aj . Note
that Z ⊆ Ai and Ai ∩ Aj = ∅. Then, (Y \ Z)e ∩ Z = ∅. This contradicts the
fact that (Y \ Z)e ⊊ Y e ⊆ Z.

By Lemmas 3.5 and 3.7, we obtain the main result in this section.

Theorem 3.1. Let Z ⊊ Y ⊊ X. Then, the following statements hold:

(i) for |Z| = 1, the semigroup T (X,Y, Z) is right abundant;

(ii) for |Z| ≥ 2, the semigroup T (X,Y, Z) is neither left abundant nor right
abundant.

As a consequence of Lemma 1.1, Lemma 1.2 and Theorem 3.1, we have the
following conclusion.

Corollary 3.1. (I) for Z = Y = X, the semigroup T (X,Y, Z) = T (X) is
abundant.

(II) for Z ⊊ Y = X,
(i) |Z| = 1, the semigroup T (X,Y, Z) = T (X,Z) is abundant;
(ii) |Z| ≥ 2, the semigroup T (X,Y, Z) = T (X,Z) is left abundant but not

right abundant.

(III) for Z = Y ⊊ X, the semigroup T (X,Y, Z) = T (X,Y ) is abundant;

(IV) for Z ⊊ Y ⊊ X,
(i) |Z| = 1, the semigroup T (X,Y, Z) is right abundant;
(ii) |Z| ≥ 2, the semigroup T (X,Y, Z) is neither left abundant nor right

abundant.

4. Some combinatorial results

The Stirling number of the second kind S(n, r) counts the number of partitions
of a set of n elements into r indistinguishable boxes in which no box is empty.
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Recall that the number of ways that r objects can be chosen from n distinct
objects written

(
n
r

)
is given by(

n

r

)
=

n!

(n− r)!r!
.

It is shown in [4, Theorem 8.26] that

S(n, r) =
1

r!

r∑
i=0

(−1)i
(
r

i

)
(r − i)n.

for integers n and r with 0 ≤ r ≤ n. In particular, S(p, 0) = 0 (p ≥ 1) and
S(0, 0) = 1. Bóna [5] also presented a formula related Stirling number, that is,

Lemma 4.1. ([5, page 32]) Let m, k ∈ N such that 1 ≤ k ≤ m. Then:

k∑
r=1

(
k

r

)
r!S(m, r) = km.

Lemma 4.2. Let |X| = n, |Y | = m and |Z| = k. Then, for each r ∈ N with
1 ≤ r ≤ k,

(1) |{α ∈ T (X,Y, Z) : |Y α| = r}| =
(
k

r

)
r!S(m, r)nn−m.

Proof. Let Z ′ be a nonempty subset of Z with |Z ′| = r, we have 1 ≤ r ≤ k
since |Z| = k. It is easy to see that the number of mappings α : X → X such
that Y α = Z ′ and (X \ Y )α ⊆ X is r!S(m, r)nn−m, that is,

|{α ∈ T (X,Y, Z) : Y α = Z ′}| = r!S(m, r)nn−m.

Consequently, Equation (1) holds for each r ∈ N with 1 ≤ r ≤ k.

Theorem 4.1. Let |X| = n, |Y | = m and |Z| = k. Then:

(2) |T (X,Y, Z)| =
k∑
r=1

(
k

r

)
r!S(m, r)nn−m = kmnn−m.

Proof. According to Lemma 4.2, we have

|{α ∈ T (X,Y, Z) : |Y α| = r}| =
(
k

r

)
r!S(m, r)nn−m,

for each r ∈ N with 1 ≤ r ≤ k. Then, |T (X,Y, Z)| =
∑k

r=1

(
k
r

)
r!S(m, r)nn−m

by the summing up over all r. Moreover, from Lemma 4.1 it follows that∑k
r=1

(
k
r

)
r!S(m, r)nn−m = kmnn−m. Hence, Equation (2) as required.
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Since Theorem 4.1, we obtain the following corollary which appears in [18,
page 311].

Corollary 4.1. Let |X| = n, |Y | = m and |Z| = k. Then:

(i) |T (X,Y )| =
∑m

r=1

(
m
r

)
r!S(m, r)nn−m = mmnn−m;

(ii) |T (X,Z)| =
∑k

r=1

(
k
r

)
r!S(n, r) = kn;

(iii) |T (X)| =
∑n

r=1

(
n
r

)
r!S(n, r) = nn.

Next, we determine the number of all regular elements in the semigroup
T (X,Y, Z) when X is finite.

Theorem 4.2. Let |X| = n, |Y | = m and |Z| = k. Then:

(3) |Reg(T (X,Y, Z))| =
k∑
r=1

(
k

r

)
r!S(k, r)rm−k(n−m+ r)n−m.

Proof. For each α ∈ Reg(T (X,Y, Z)), we have Xα ∩ Y = Zα ⊆ Y α ⊆ Z by
Theorem 2.1. Then, exists a nonempty subset Z ′ of Z with |Z ′| = r such that
Zα = Xα ∩ Y = Z ′. Clearly, (Y \ Z)α ⊆ Y α ⊆ Xα ∩ Z ⊆ Xα ∩ Y = Z ′ and so

(4) (Y \ Z)α ⊆ Z ′.

We can also assert

(5) (X \ Y )α ⊆ Z ′ ∪ (X \ Y )

(If not, there exists some y ∈ X\Y such that yα ∈ Y \Z ′, then yα ∈ Xα∩Y = Z ′.
This is a contradiction). Conversely, if a mapping α ∈ T (X,Y, Z) satisfies
Zα = Z ′, formulas (4) and (5), it is easy to see that

Xα ∩ Y = [Z ∪ (Y \ Z) ∪ (X \ Y )]α ∩ Y ⊆ [Z ′ ∪ (X \ Y )] ∩ Y = Z ′ = Zα

since Z ′ ⊆ Z ⊆ Y ⊆ X. Then, by Theorem 2.1, we have α ∈ Reg(T (X,Y, Z))
and Zα = Z ′. Hence, for each nonempty set Z ′ ⊆ Z, we have

{α ∈ Reg(T (X,Y, Z)) : Zα = Z ′}
={α ∈ T (X,Y, Z) : α satisfies Zα = Z ′, formulas (4) and (5)}.

It follows that the number of maps α ∈ T (X,Y, Z) satisfying Zα = Z ′, formulas
(4) and (5) is r!S(k, r)rm−k(n−m+r)n−m since |Z ′∪(X \Y )| = |X \Y |+ |Z ′| =
n−m+ r, that is,

|{α ∈ Reg(T (X,Y, Z)) : Zα = Z ′}| = r!S(k, r)rm−k(n−m+ r)n−m.

Consequently, for each r ∈ N with 1 ≤ r ≤ k,

|{α ∈ Reg(T (X,Y, Z)) : |Zα| = r}| =
(
k

r

)
r!S(k, r)rm−k(n−m+ r)n−m

and so Equation (3) holds by the summing up over all r.
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Since Theorem 4.2, we obtain the following corollary which appears in [18,
Theorem 2.6 and Theorem 2.7].

Corollary 4.2. Let |X| = n, |Y | = m and |Z| = k. Then,

(i) |Reg(T (X,Y ))| =
∑m

r=1

(
m
r

)
r!S(m, r)(n−m+ r)n−m.

(ii) |Reg(T (X,Z))| =
∑k

r=1

(
k
r

)
r!S(k, r)rn−k.

Moreover, we compute the cardinality of E(T (X,Y, Z)).

Theorem 4.3. Let |X| = n, |Y | = m and |Z| = k. Then:

(6) |E(T (X,Y, Z))| =
n−m+k∑
r=1

min{k,r}∑
i=max{1,m−n+r}

(
k

i

)(
n−m

r − i

)
im−irn−m−r+i.

Proof. Define an idempotent α with |Xα| = r, we have to choose a r-element
set Xα, then exists i ∈ N such that |Xα ∩ Z| = i and |Xα ∩ (X \ Y )| = r − i
by Lemma 3.4 (There are

(
k
i

)(
n−m
r−i
)
different ways). Also, we have to define a

mapping φ : X \Xα→ Xα such that φ(Y \Xα) ⊆ Z and φ((X \Y )\Xα) ⊆ Xα
in an arbitrary way (This can be done in im−irn−m−r+i different ways). Note
that i meets 1 ≤ i ≤ k and 0 ≤ r − i ≤ n−m. Then, max{1,m− n+ r} ≤ i ≤
min{k, r}. Hence,

|{α ∈ E(T (X,Y, Z)) : |Xα| = r}| =
min{k,r}∑

i=max{1,m−n+r}

(
k

i

)(
n−m

r − i

)
im−irn−m−r+i

by summing up over all i. Note that

1 ≤ r = |Xα| ≤ |Y α|+ |(X \ Y )α| ≤ |Z|+ |X \ Y | = n−m+ k.

Therefore Equation (6) is now obtained by summing up over all r.

Since Theorem 4.3, we obtain the following corollary.

Corollary 4.3. Let |X| = n, |Y | = m and |Z| = k. Then:

(i) |E(T (X,Y ))| =
∑n

r=1

∑min{m,r}
i=max{1,m−n+r}

(
m
i

)(
n−m
r−i
)
im−irn−m−r+i.

(ii) |E(T (X,Z))| =
∑k

r=1

(
k
r

)
rn−r.

(iii) |E(T (X))| =
∑n

r=1

(
n
r

)
rn−r.
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[2] G. Ayık, H. Ayık, M. Koç, Combinatorial results for order-preserving
and order-decreasing transformations, Turkish Journal of Mathematics, 35
(2011), 1-9.
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Abstract. The purpose of this paper is to introduce the Nörlund ideal convergent
sequence spaces with respect to these spaces N f

I0(S)
, N f

I(S)
and N f

I∞(S)
. Also, we

studied the Nörlund ideal Cauchy criterion in neutrosophic normed space and its prop-
erties. Also, we define an open ball B(x, ϵ, γ) and closed ball B[x, ϵ, γ] in neutrosophic
norm space. Furthermore, we also look at some of these convergent sequence spaces’
topological and algebraic properties.

Keywords: ideal convergent, ideal Cauchy, Nörland mean, Nörlund matrix, sequence
space, Nörlund ideal convergent, Nörlund ideal Cauchy sequence and neutrosophic
normed space.

1. Introduction

The fuzzy set was first developed in 1965 by Zadeh [27], and they have since
been used in a variety of domains, including artificial intelligence, robotics, and
control theory. According to him, a fuzzy set assigns a membership value from
[0, 1] to each element of a given crisp universe set.

Atanassov K.T. in [14], [13] introduced the intuitionistic fuzzy set (IFS) on
a universe X as an extension of the fuzzy set. Coker [15] used this concept
to develop intuitionistic fuzzy topological spaces. Saadati and Park [20] inves-
tigated these spaces and their extension, resulting in the idea of intuitionistic
fuzzy normed space.

In 1998, Samarandache [3] presented the first philosophical point for neutro-
sophic set. The concept of classic set theory has been extended in the form of
the neutrosophic set by adding an intermediate membership function. Examples

*. Corresponding author
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of other generalizations are the Fuzzy set [27], and intuitionistic fuzzy set [14].
The actual definition of neutrosophic sets was given based on the independence
of membership, non-membership, and hesitation function.

In 2006, F. Samarandache and W.B. Vasantha Kanasamy in [26] introduced
the concept of neutrosophic algebraic structures.

Bera and Mahapatra [21] first introduced the neutrosophic soft linear space.
Neutrosophic soft norm linear space, convexity, metric [34], and Cauchy se-
quence were examined by Bera and Mahapatra [22]. The purpose of the current
paper is to change the intuitionistic fuzzy normed space of the structure into
neutrosophic normed space. The Cauchy sequence has been studied on neutro-
sophic normed space in an attempt to investigate some beautiful results in this
structure.

H. Fast [5] and I. J. Schoenberg [6] introduce the idea of statistical conver-
gence, whereas J. C̃erveñanský [28] and J.S. Connor [29, 30] develop it. R.C.
Buck [31, 32] and D.S. Mitrinović [33] include some examples of statistical con-
vergence in mathematical analysis and number theory. The idea of statistical
convergence with regard to the intuitionistic fuzzy norm was introduced by
Mursaleen [16]. In neutrosophic normed space, statistical convergence was first
investigated by Kirisci and Simsek [7]. The concept of ”ideal convergence” is
an extension of the notion of “statistical convergence”, and it is dependent on
the idea of the ideal of subsets of the set N. Śalát et al. [23], [24], Filipów and
Tryba [19], Khan and Nazreen [12], Khan et al. [11], Khan and Nazreen [12]
and several more writers further investigated the concept of I-convergent from
the perspective of sequence space and related it with the summability theory.
To better understand the I-convergence in neutrosophic normed space, we have
been inspired by this.

The purpose of this study is to define new neutrosophic sequence spaces
using the Nörlund matrix and the neutrosophic norm. Also, we will study
Nörlund I-convergent and Nörlund I-Cauchy in neutrosophic normed spaces,
and by using the Nörlund matrix N f and the notion of Nörlund I-convergent
of sequence in neutrosophic normed space, we introduce some new spaces of
Nörlund I-convergent sequence with regard to the neutrosophic norm (U ,V,W).
We also investigate at some of these convergent sequence spaces’ topological
and algebraic properties, as well as some interesting connections between these
spaces N f

I0(S)
, N f

I(S)
and N f

I∞(S)
.

2. Preliminaries

Definition 2.1 ([9]). Let I be the power set of any set Z, where Z is the set.
Then, I is called ideal, if:

(1) ∅ ∈ I;

(2) ϑ1, ϑ2 ∈ I ⇒ ϑ1 ∪ ϑ2 ∈ I, additive;

(3) ϑ1 ∈ I, ϑ2 ⊆ ϑ1 ⇒ ϑ2 ∈ I, hereditary.
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If I ̸= 2Z then I ⊆ 2Z is called nontrivial. If I contain every singleton subset
of X. then nontrivial ideal I ⊆ 2Z is called admissible. If there are no non-trivial
ideal K ̸= I then nontrivial ideal I is maximal such that I ⊂ K.

Definition 2.2 ([9]). Let F be the power set of any set Z, where Z is the set.
Then, F is said to be filter. If: (1) ∅ ̸∈ F ;

(2) For ϑ1, ϑ2 ∈ F ; ϑ1 ∩ ϑ2 ∈ F ;

(3) If ϑ1 ∈ F and ϑ2 ⊃ ϑ1 imply ϑ2 ∈ F .

F (I) is the filter associated with each idealI of Z such that F (I) =
{
A ⊂

Z : Ac ∈ I
}
is true for each ideal of Z. Then, using the article, we present I as

an admissible ideal.

Note. Class F (I) = {ϑ1 ⊂ Z : ϑ1 = Z/ϑ2, for some ϑ2 ∈ I} is a filter on Z,
where I ⊂ P (Z) is a non-trivial ideal. F (I) is described as the filter associated
with the ideal I.

Definition 2.3 ([8]). In any set Z, let I be a non trivial ideal subset of a power
set (P (Z)). So, it is said that a sequence x = (xk) is ideally convergent to α, iff
the set {k ∈ Z : |xk − α| ≥ ϵ} ∈ I and we write it as I − limx = α, for every
ϵ > 0.

Definition 2.4 ([8]). In any set Z, let I be a non trivial ideal subset of a power
set (P (Z)). So, it is said that a number sequence x = (xk) is ideally Cauchy. If,
for any ϵ > 0,∃ L = L(ϵ), the set {k ∈ Z : |xk − xL| ≥ ϵ} ∈ I.

The Nörlund matrix N f was initially used in the theory of sequence space by
Wang [25]. Remember that t = (tk) is a non negative sequence of real numbers
and An =

∑n
k=0 tk, ∀ n ∈ N with t0 > 0. Then, with regard to the sequence

t = (tk), the Norlund matrix N f = (atnm) is defined as follows:

(1) atnm =


tn−m
An

, if 0 ≤ m ≤ n

0, if m > n,

for all n,m ∈ N. It is known that the Nörlund matrix N f is regular iff tn/Tn →
0 as n→ ∞.

Let t0 = D0 = 1 and define Ln for n ∈ {1, 2, 3, ...} by

(2) Dn =



t1 1 0 0 ...0
t2 t1 1 0 ...0
t3 t2 t1 1 ...0
...

...
...

...
...

tn−1 tn−2 tn−3 tn−4 ...1
tn tn−1 tn−2 tn−3 ...t1
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Then, the inverse matrix Lt = (ltnm) of Nörland matrix N f = (atnm) was define
by Mears in [4], for all n ∈ N, as follows

lnm =

{
(−1)n−mDn−mTk, if (0 ≤ m ≤ n),

0, otherwise,

for all n,m ∈ N.
One can refer to [4, 2, 1] for more background about Norland space.
In this paper, the natural and real number sets, respectively, are denoted

by the letters N and R. ω also represents for the linear space having all real
sequences. The sequence spaces c0, c and l∞ represent the spaces of all null,
convergent, and bounded sequences, respectively. We now define the Nörlund
sequence space established by Wang in [25] as follows

N f =

{
x = (xk) ∈ ω =

∞∑
n=0

| 1

An

n∑
k=0

an−kxk|p <∞, 1 ≤ p <∞
}
,

where An =
∑n

k=0 ak. All sequences whose Norlund transformations are in the
spacel∞ and lp with 1 ≤ p <∞ are contained in the spaces l∞(N f ) and lp(N f ).

Motivated by [17], Khan [8] recently presented the sequence spaces cI0(N
f ),

cI(N f ), and lI∞(N f ) as the sets of all sequences whose N f transformations
are in spaces c0, c, and l∞, respectively. Khan did this by using the concept of
Nörlund I−convergence, Nörlund I− null and Nörlund I− bounded sequence
space,where I is an admissible ideal of subset of N. For more details on these
spaces, we refer to [18, 8]. Define

cI0(N
f ) :=

{
y = (yk) ∈ ω : {n ∈ N : |N f

n (y)| ≥ ϵ} ∈ I
}
,

cI(N f ) := {y=(yk)∈ω : {n∈N : |N f
n (y)−K|≥ϵ for some K ∈ R}∈I},

lI∞(N f ) :=
{
y = (yk) ∈ ω : ∃M > 0 s.t {n ∈ N : |N f

n (y)| ≥M} ∈ I
}
,

where

(3) N f
n (y) :=

1

Tn

n∑
k=0

tn−kyk, for all n ∈ N.

Definition 2.5 ([10, 7]). Given an binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1]
is said to be a continuous t-norm if:

(a) ∗ is commutative and associative;
(b) ∗ is continuous;
(c) ϑ ∗ 1 = ϑ ∀ ϑ ∈ [0, 1];
(d) ϑ1 ∗ ϑ2 ≤ ϑ3 ∗ ϑ4 whenever ϑ1 ≤ ϑ3 and ϑ2 ≤ ϑ4 for each ϑ1, ϑ2, ϑ3, ϑ4 ∈

[0, 1].

Example 2.1. For ϑ1, ϑ2 ∈ [0, 1], define ϑ1∗ϑ2 = ϑ1ϑ2 or ϑ1∗ϑ2 = min{ϑ1, ϑ2},
then ∗ is continuous t-norm.
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Definition 2.6 ([10, 7]). Given an binary operation ⋄ : [0, 1] × [0, 1] −→ [0, 1]
is said to be a continuous t-conorm if:

(a) ⋄ is commutative and associative;

(b) ⋄ is continuous;

(c) ϑ ⋄ 0 = ϑ ∀ σ ∈ [0, 1];

(d) ϑ1 ⋄ ϑ2 ≤ ϑ3 ⋄ ϑ4 whenever ϑ1 ≤ ϑ3 and ϑ2 ≤ ϑ4 for each ϑ1, ϑ2, ϑ3, ϑ4 ∈
[0, 1].

Example 2.2. Let ϑ1, ϑ2 ∈ [0, 1]. Define ϑ1 ⋄ϑ2 = min{ϑ1 +ϑ2, 1} or ϑ1 ⋄ϑ2 =
max{ϑ1, ϑ2}, then ⋄ is continuous t-conorm.

Definition 2.7 ([20]). Take Z as a linear space and S = {< x,U(x),V(x),
W(x) >: x ∈ Z} be a normed space such that S : Z × (0,∞) −→ [0, 1]. Assume
∗ is a continuous t-norm, ⋄ is a continuous t-conorm respectively. The four-tuple
V = (Z,S, ∗, ⋄) is said to be neutrosophic normed space (NNS) if the subsequent
conditions are hold, for all x, y,∈ Z and γ, δ > 0:

(1) 0 ≤ U(x, γ) ≤ 1, 0 ≤ V(x, γ) ≤ 1, 0 ≤ W(x, γ) ≤ 1, γ ∈ R+;

(2) U(x, γ) + V(x, γ) +W(x, γ) ≤ 3, for γ ∈ R+;

(3) U(x, γ) = 1 for γ > 0 iff x = 0;

(4) U(αx, γ) = U (x, γ
|α|);

(5) U(x, γ) ∗ U(y, δ) ≤ U(x+ y, γ + δ);

(6) U(x, ∗) is continuous nondecreasing function;

(7) limγ→∞ U(x, γ) = 1;

(8) V(x, γ) = 0 for γ > 0 iff x = 0;

(9) V(αx, γ) = V(x, γ
|α|);

(10) V(x, γ) ⋄ V(y, δ) ≥ V(x+ y, γ + δ);

(11) V(x, ⋄) is continuous nonincreasing function;

(12) limγ→∞ V(x, γ) = 0;

(13) W(x, γ) = 0 for γ > 0 iff x = 0;

(14) W(αx, γ) = W(x, γ
|α|);

(15) W(x, γ) ⋄W(y, δ) ≥ W(x+ y, γ + δ);

(16) W(x, ⋄) is continuous nonincreasing function;

(17) limγ→∞W(x, γ) = 0;

(18) if γ ≤ 0, then U(x, γ) = 0,V(x, γ) = 1,W(x, γ) = 1.

In such case, S = (U ,V,W) is said to be neutrosophoic norm (NN).

Example 2.3 ([10]). Suppose (Z, ∥.∥) be a normed space. Using the ∗ and ⋄
operations, as t-norm x ∗ y = x.y and t-conorm x ⋄ y = x+ y − xy, for γ > ||x||
and γ > 0

U(x, γ) = γ

γ + ∥µ∥
, V(x, γ) = ∥x∥

γ + ∥x∥
and W(x, γ) =

∥x∥
γ
,

for all x, y ∈ Z. If we take γ ≤ ∥x∥, then U(x, γ)=0,V(x, γ) = 1 andW (x, γ)=1.
Then, (Z,S, ∗, ⋄) is NNS in such a way that S : Z × R+ → [0, 1].
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Example 2.4. Suppose (Z = R, ∥.∥) be a normed space, where ∥a∥ = |a|,∀ a ∈
R. Using the ∗ and ⋄ operations, as t-norm x ∗ y = min{x, y} and t-conorm
x ⋄ y = max{x, y}, ∀x, y ∈ [0, 1] and define

U(x, γ) = γ

γ + r∥x∥
, V(x, γ) = r∥x∥

γ + ∥x∥
and W(x, γ) =

r∥x∥
γ

,

where r > 0 Then, S = {(x, γ),U(x, γ),V(x, γ),W(x, γ) : (x, γ) ∈ Z × R+} is a
NN on Z.

Definition 2.8 ([7]). Let V be an NNS. A sequence x = {xk} is said to be
convergent to α with respect to S = (U ,V,W), if for every 0 < ϵ < 1 and
γ > 0, there exists k ∈ N, such that U(xk − α, γ) > 1− ϵ, V(xk − α, γ) < ϵ and
W(xk − α, γ) < ϵ. That is, for all γ > 0, we have

lim
k→∞

U(xk − α, γ) = 1, lim
k→∞

V(xk − α, γ) = 0 and lim
k→∞

W(xk − α, γ) = 0.

The convergent in NNS V = (Z,S, ∗, ⋄) is denoted by S − limxk = α.

Definition 2.9 ([7]). Let V be an NNS. A sequence x = {xk} is Cauchy se-
quence with respect to S = (U ,V,W), if for every 0 < ϵ < 1 and γ > 0,
there exists K ∈ N, such that U(xn − xk, γ) > 1 − ϵ, V(xn − xk, γ) < ϵ and
W(xn − xk, γ) < ϵ, for all n, k ∈ K.

Definition 2.10 ([7]). Let V be an NNS. Then, open ball with center x and
radius ϵ is defined as, for 0 < ϵ < 1 , x ∈ Z and γ > 0,

B(x, ϵ, γ) = {y ∈ Z : U(x− y, γ) > 1− ϵ, V(x− y, γ) < ϵ, W(x− y, γ) < ϵ}.

Definition 2.11 ([7]). Let V be an NNS and Y ⊆ Z. Then, Y is said to be
open if for each y ∈ Y , there exist γ > 0, 0 < ϵ < 1 such that B(y, ϵ, γ) ⊆ Y.

3. Main results (on the Nörlund sequence)

Throughout the article, we assume that the sequences x = {xk} ∈ ω and N f
n (x)

are connected as shown in (3) and I is an admissible ideal of a subset of N. In
this section, by using a domain of the Nörlund matrix which is used in [8] and
I−convergence w.r.t. neutrosophic norm S = (U ,V,W). As shown below, we
define new Norlund sequence spaces:

N f
I0(S) :=

{
x = {xn} ∈ ω : {n ∈ N : U

(
N f
n (x), γ

)
≤ 1− ϵ

or V
(
N f
n (x), γ

)
≥ ϵ,W

(
N f
n (x), γ

)
≥ ϵ} ∈ I

}
(4)

N f
I(S) :=

{
x={xn}∈ω : {n∈N : for some γ ∈ R , U

(
N f
n (x)− α, γ

)
≤1− ϵ

or V
(
N f
n (x)− α, γ

)
≥ ϵ,W

(
N f
n (x)− α, γ

)
≥ ϵ} ∈ I

}
(5)
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N f
I∞(S) :=

{
x={xn}∈ω : {n∈N, ∃ϵ∈(0, 1) s.t U

(
N f
n (x), γ

)
≤1− ϵ

or V
(
N f
n (x), γ

)
≥ ϵ,W

(
N f
n (x), γ

)
≥ ϵ} ∈ I

}
.(6)

We describe an open ball and a closed ball with a center at x and a radius γ >
0 with regard to the neutrosophic ϵ ∈ (0, 1) parameter, indicated by B(x, ϵ, γ)
and B[x, ϵ, γ], as follows:

B(x, ϵ, γ)=
{
z={zk}∈ω : {n ∈ N : U

(
N f
n (x)− N f

n (z), γ
)
≤1−ϵ

or V
(
N f
n (x)− N f

n (z), γ
)
≥ ϵ,W

(
N f
n (x)− N f

n (z), γ
)
≥ ϵ} ∈ I

}
(7)

and

B[x, ϵ, γ]=
{
z={zk}∈ω : {n∈N : U

(
N f
n (x)−N f

n (z), γ
)
<1− ϵ

or V
(
N f
n (x)− N f

n (z), γ
)
> ϵ,W

(
N f
n (x)− N f

n (z), γ
)
> ϵ} ∈ I

}
.(8)

In this case, we write I(S)– lim(x) = α since {xn} converges to some α ∈ C

represented by xn
I(S)−−→ α if {xn} ∈ N t

I(S).

Theorem 3.1. The inclusion relation N f
I0(S) ⊂ N f

I(S) ⊂ N f
I∞(S) holds.

Proof. We know that N f
I0(S) ⊂ N f

I(S). Then, we only show that N f
I(S) ⊂

N f
I∞(S). Consider x = {xn} ∈ N f

I(S). Then, there exists α ∈ C, such that

I(S)– lim(xk) = α. Thus, for any 0 < ϵ < 1 and γ > 0 the set

P =
{
n ∈ N : U

(
N f
n (x)− α,

γ

2

)
> 1− ϵ and V

(
N f
n (x)− α,

γ

2

)
< ϵ,

W
(

N f
n (x)− α,

γ

2

)
< ϵ

}
∈ F (I).

Suppose U
(
α, γ2

)
= u , V

(
α, γ2

)
= v and W

(
α, γ2

)
= w, for all γ > 0. Since

u, v, w ∈ (0, 1) and 0 < ϵ < 1, there exists r1, r2, r3 ∈ (0, 1), such that (1−ϵ)∗u >
1− r1 , ϵ ⋄ v < r2 and ϵ ⋄ w < r3, we have

U
(
N f
n (x), γ

)
=U

(
N f
n (x)− α+ α, γ

)
≥U

(
N f
n (x)− α,

γ

2

)
∗ U

(
α,
γ

2

)
>(1− ϵ) ∗ u
>1− r1,

V
(
N f
n (x), γ

)
=V

(
N f
n (x)− α+ α, γ

)
≤V

(
N f
n (x)− α,

γ

2

)
⋄ V

(
α,
γ

2

)
<ϵ ⋄ v
<r2
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and

W
(
N f
n (x), γ

)
=W

(
N f
n (x)− α+ α, γ

)
≤W

(
N f
n (x)− α,

γ

2

)
⋄W

(
α,
γ

2

)
<ϵ ⋄ w
<r3.

Taking r = max{r1, r2, r3}, then
{
n ∈ N,∃ r ∈ (0, 1) : U

(
N f
n (x), γ

)
> 1− r

and V
(
N f
n (x), γ

)
< r,W

(
N f
n (x), γ

)
< r

}
∈ F (I) =⇒ x = {xk} ∈ N f

I∞(S)

implies N f
I(S) ⊂ N f

I∞(S).

The contrary of an inclusion relation does not hold. To defend our claim,
consider the following examples.

Example 3.1. Suppose (R, ∥.∥) be a normed space such that ∥x∥ = supk |xk|,
and ϑ1 ∗ ϑ2 = min{ϑ1, ϑ2} and ϑ1 ⋄ ϑ2 = max{ϑ1, ϑ2}, ∀ϑ1, ϑ2 ∈ (0, 1). Now,
define norms S = (U ,V,W) on R2 × (0,∞) as follows

U
(
x, γ) =

γ

γ + ∥x∥
, V

(
x, γ) =

∥x∥
γ + ∥x∥

and W
(
x, γ) =

∥x∥
γ
.

Then, (R,S, ∗, ⋄) is a NNS. Consider the sequence (xk)={1}. It can be easily

seen that (xk) ∈ N f
I(S) and xk

I(S)−−→ 1, but xk /∈ N f
I0(S).

Theorem 3.2. The spaces N f
I0(S) and N f

I(S) are linear spaces.

Proof. We know that N f
I0(S) ⊂ N f

I(S). Then, we’ll illustrate the outcome for

N f
I(S) The proof of linearity of the space N f

I0(S) follows similarly. Suppose

sequences x = {xk}, y = {yk} ∈ N f
I(S). Then, there exist α1, α2 ∈ C, such that

{xk} and {yk} I–converge to α1 and α2 respectively.
We will show that the sequence µxk + νyk I–converges to µα1+ να2 for any

scalars µ and ν. Consider the following sets for c and d

P1 =

{
n ∈ N : U

(
N f
n (x)− α1,

γ

2|µ|

)
≤ 1− ϵ or V

(
N f
n (x)− α1,

γ

2|µ|

)
≥ ϵ,

W
(

N f
n (x)− α1,

γ

2|µ|

)
≥ ϵ

}
∈ I,

P2 =

{
n ∈ N : U

(
N f
n (y)− α2,

γ

2|ν|

)
≤ 1− ϵ or V

(
N f
n (y)− α2,

γ

2|ν|

)
≥ ϵ,

W
(

N f
n (y)− α2,

γ

2|ν|

)
≥ ϵ

}
∈ I.
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Now, we take the complement of P1 and P2

Pc
1 =

{
n ∈ N : U

(
N f
n (x)− α1,

γ

2|µ|

)
> 1− ϵ and V

(
N f
n (x)− α1,

γ

2|µ|

)
< ϵ,

W
(

N f
n (x)− α1,

γ

2|µ|

)
< ϵ

}
∈ F (I),

Pc
2 =

{
n ∈ N : U

(
N f
n (y)− α2,

γ

2|ν|

)
> 1− ϵ and V

(
N f
n (y)− α2,

γ

2|ν|

)
< ϵ,

W
(

N f
n (y)− α2,

γ

2|ν|

)
< ϵ

}
∈ F (I).

Consequently, set P = P1 ∪P2 produces P ∈ I. Thus, Pc is a set that is
not empty in F(I). We’ll illustrate this for each {xk}, {yk} ∈ N f

I(S)

Pc ⊂
{
n ∈ N : U

(
N f
n (µx+ νy)− (µα1 + να2), γ

)
> 1− ϵ

and V
(

N f
n (µx+ νy)− (µα1 + να2), γ

)
< ϵ,

W
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
< ϵ

}
.

Let i ∈ Pc. In this case,

U
(

N f
i (x)− α1,

γ

2|µ|

)
> 1− ϵ and V

(
N f
i (x)− α1,

γ

2|µ|

)
< ϵ,

W
(

N f
i (x)− α1,

γ

2|µ|

)
< ϵ,

U
(

N f
i (y)− α2,

γ

2|ν|

)
> 1− ϵ and V

(
N f
i (y)− α2,

γ

2|ν|

)
< ϵ,

W
(

N f
i (y)− α2,

γ

2|ν|

)
< ϵ.

Consider

U
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
≥ U

(
µN f

i (x)− µα1,
γ

2

)
∗ U

(
νN f

i (y)− να2,
γ

2

)
= U

(
N f
i (x)− α1,

γ

2|µ|

)
∗ U

(
N f
i (y)− α2,

γ

2|ν|

)
> (1− ϵ) ∗ (1− ϵ)

> 1− ϵ.
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=⇒ U
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
> 1− ϵ

V
(

N f
i (µx+νy)−(µα1+να2), γ

)
≤V

(
µN f

i (x)−µα1,
γ

2

)
⋄ V

(
νNi(y)−να2,

γ

2

)
=V

(
N f
i (x)−α1,

γ

2|µ|

)
⋄V

(
N f
i (y)−α2,

γ

2|ν|

)
< ϵ ⋄ ϵ
< ϵ.

=⇒ V
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
< ϵ and

W
(

N f
i (µx+ νy)− (µα1 + να2), γ

)
≤ W

(
µN f

i (x)− µα1,
γ

2

)
⋄W

(
µNi(y)− να2,

γ

2

)
= W

(
N f
i (x)− α1,

γ

2|µ|

)
⋄W

(
N f
i (y)− α2,

γ

2|ν|

)
< ϵ ⋄ ϵ
< ϵ.

=⇒ W(N f
i (µx + νy) − (µα1 + να2), γ) < ϵ. Thus, Pc ⊂ {n ∈ N :

U(N f
n (µx+νy)−(µα1+να2), γ) > 1−ϵ and V(N f

n (µx+νy)−(µα1+να2), γ) <

ϵ,W(N f
n (µx+ νy)− (µα1 + να2), γ) < ϵ}. Since Pc ∈ F (I).

By the properties of F (I), we have {n ∈ N : U(N f
n (µx + νy) − (µα1 +

να2), γ) > 1 − ϵ and V(N f
n (µx + νy) − (µα1 + να2), γ) < ϵ,W(N f

n (µx +
νy)− (µα1 + να2), γ) < ϵ} ∈ F (I). It indicates that the sequence (µxk + νyk)

I–converge to µα1+να2. Therefore, (µxk+νyk) ∈ N f
I(S). Hence, N f

I(S) is linear
space.

Theorem 3.3. Each open ball in neutrosophic 0 < ϵ < 1 with centre at x and
radius 0 < ȷ < 1, i.e., B(x, γ, ϵ) is an open set in N f

I(S), where S = (U ,V,W) is
a neutrosophic norm.

Proof. Suppose that B(x, γ, ϵ) is an open ball with a radius of γ > 0 and a

neutrosophic 0 < ϵ < 1 parameter, with its centre at x = (xk) ∈ N f
I(S)

B(x, γ, ϵ) =
{
y = (yk) ∈ ω : {n ∈ N : U

(
N f
n (x)− N f

n (y), γ
)
≤ 1− ϵ

or V
(
N f
n (x)− N f

n (y), γ
)
≥ ϵ,W

(
N f
n (x)− N f

n (y), γ
)
≥ ϵ} ∈ I

}
.

Then

Bc(x, γ, ϵ) =
{
y = (yk) ∈ ω : {n ∈ N : U

(
N f
n (x)− N f

n (y), γ
)
> 1− ϵ and

V
(
N f
n (x)− N f

n (y), γ
)
< ϵ,W

(
N f
n (x)− N f

n (y), γ
)
< ϵ} ∈ F (I)

}
.
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Suppose y = (yk) ∈ Bc(x, γ, ϵ). Then, for U
(
N f
n (x) − N f

n (y), γ
)
> 1 − ϵ,

V
(
N f
n (x) − N f

n (y), γ
)
< ϵ and W

(
N f
n (x) − N f

n (y), γ
)
< ϵ so, there exists

γ0 ∈ (0, γ) such that U
(
N f
n (x)−N f

n (y), γ0
)
> 1−ϵ , V

(
N f
n (x)−N f

n (y), γ0
)
< ϵ

and W
(
N f
n (x)− N f

n (y), γ0
)
< ϵ.

Putting ϵ0 = U
(
N f
n (x)−N f

n (y), γ0
)
, we have ϵ0 > 1− ϵ. Then, ∃ p ∈ (0, 1)

such that ϵ0 > 1− p > 1− ϵ. For ϵ0 > 1− p, we can have ϵ1, ϵ2, ϵ3 ∈ (0, 1), such
that ϵ0 ∗ ϵ1 > 1 − p , (1 − ϵ0) ⋄ (1 − ϵ2) < p. and (1 − ϵ0) ⋄ (1 − ϵ3) < p. Let
ϵ4 = max{ϵ1, ϵ2, ϵ3}.

Now, consider the open ball Bc(y, γ−γ0, 1−ϵ4).We shall show that Bc(y, γ−
γ0, 1− ϵ4) ⊂ Bc(x, γ, ϵ).

Let z = {zk} ∈ Bc(y, γ − γ0, 1− ϵ4), then U
(
N f
n (y)− N f

n (z), γ − γ0
)
> ϵ4

and V
(
N f
n (y)−N f

n (z), γ− γ0
)
< 1− ϵ4, W

(
N f
n (y)−N f

n (z), γ− γ0
)
< 1− ϵ4.

Therefore,

U
(
N f
n (x)− N f

n (z), γ
)
≥U

(
N f
n (x)−N f

n (y), γ0
)
∗ U

(
N f
n (y)−N f

n (z), γ − γ0
)

≥ ϵ0 ∗ ϵ4 ≥ ϵ0 ∗ ϵ1
> (1− p)

> (1− ϵ)

V
(
N f
n (x)−N f

n (z), γ
)
≤V

(
N f
n (x)−N f

n (y), γ0
)
⋄ V

(
N f
n (y)−N f

n (z), γ − γ0
)

≤ (1− ϵ0) ⋄ (1− ϵ4) ≤ ϵ0 ⋄ ϵ2
< p

< ϵ

and

W
(
N f
n (x)−N f

n (z), γ
)
≤W

(
N f
n (x)−N f

n (y), γ0
)
⋄W

(
N f
n (y)−N f

n (z), γ−γ0
)

≤ ϵ0 ⋄ ϵ4 ≤ ϵ0 ⋄ ϵ3
< p

< ϵ

Therefore, the set
{
n ∈ N : U

(
N f
n (x) − N f

n (z), γ
)
> 1 − ϵ and V

(
N f
n (x) −

N f
n (z), γ

)
< ϵ , W

(
N f
n (x)− N f

n (z), γ
)
< ϵ

}
∈ F (I).

=⇒ z = (zk) ∈ Bc(x, γ, ϵ),
=⇒ Bc

(
y, γ − γ0, 1− ϵ4

)
⊂ Bc

(
x, γ, ϵ

)
.

Remark 3.1. The spaces N f
I(S) and N f

I0(S) are Nörland I-convergent and

Nörland I-null in NNS with respect to neutrosophic norms S = (U ,V,W).

Now, define a collection τN f

I(S) of a subset of N f
I(S) as follows: τ

N f

I(S) = {P ⊂
N f
I(S) : for every x = (xk) ∈ P ∃ γ > 0 and ϵ ∈ (0, 1) s.t B(x, γ, ϵ) ⊂ P}. Then,

τN f

I(S) constructs a topology on sequence space N f
I(S). The collection described
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by B =
{
B(x, γ, ϵ) : b ∈ N f

I(S), r > 0 and ϵ ∈ (0, 1)
}
is the topology’s base τN f

I(S)

on the space N f
I(S).

Theorem 3.4. The topology τN f

I(S) on the space N f
I0(S) is first countable.

Proof. For every x = {xk} ∈ N f
I(S), consider the set B = {B(x, 1n ,

1
n)} : n =

1, 2, 3, 4, ...
}
, which is a local countable basis at x = (xk). As a result, the

topology τN f

I(S) on the space N f
I0(S) is first countable.

Theorem 3.5. The spaces N f
I(S) and N f

I0(S) are Hausdorff spaces.

Proof. We know that N f
I0(S) ⊂ N f

I(S).

We will only show the solution for N f
I(S). Suppose x = (xk), y = (yk) ∈ N f

I(S)

as well as x ̸= y. Then, for any n ∈ N and γ > 0, implies 0 < U(N f
n (x) −

N f
n (y), γ) < 1, 0 < V(N f

n (x)−N f
n (y), γ) < 1 and 0<W(N f

n (x)−N f
n (y), γ)<1.

Putting ϵ1 = U
(
N f
n (x) − N f

n (y), γ
)
, ϵ2 = V

(
N f
n (x) − N f

n (y), γ
)
, ϵ3 =

W
(
N f
n (x)−N f

n (y), γ
)
and ϵ = max{ϵ1, 1−ϵ2, 1−ϵ3}. Then, for each ϵ0 ∈ (ϵ, 1)

there exist ϵ4, ϵ5, ϵ6 ∈ (0, 1), such that ϵ4∗ϵ4 ≥ ϵ0 , (1−ϵ5)⋄(1−ϵ5) ≤ (1−ϵ0) and
(1−ϵ6)⋄(1−ϵ6) ≤ (1−ϵ0). Once again putting ϵ7 = max{ϵ4, 1−ϵ5, 1−ϵ6, }, think
about the open balls. B(x, 1− ϵ7, γ2

)
and B(y, 1− ϵ7, γ2

)
respectively centred at

x and y. Then, it is obvious that Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
= ϕ.

If possible let x = {xk} ∈ Bc(x, 1− ϵ7,
γ
2

)
∩ Bc(y, 1− ϵ7,

γ
2

)
. Then, we have

ϵ1 = U
(
N f
n (x)− N f

n (y), γ
)

≥ U(N f
n (x)− N f

n (z),
γ

2
) ∗ U(N f

n (z)− N f
n (y),

γ

2
)

> ϵ7 ∗ ϵ7
≥ ϵ4 ∗ ϵ4
≥ ϵ0

> ϵ1,

(9)

ϵ2 = V
(
N f
n (x)− N f

n (y), γ
)

≤ V(N f
n (x)− N f

n (z),
γ

2
) ⋄ V(N f

n (z)− N f
n (y),

γ

2
)

< (1− ϵ7) ⋄ (1− ϵ7)

≤ (1− ϵ5) ⋄ (1− ϵ5)

≤ (1− ϵ0)

< ϵ2

(10)
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and

ϵ3 = W
(
N f
n (x)− N f (y), γ

)
≤ W(N f

n (x)− N f
n (z),

γ

2
) ⋄W(N f

n (z)− N f
n (y),

γ

2
)

< (1− ϵ7) ⋄ (1− ϵ7)

≤ (1− ϵ6) ⋄ (1− ϵ6)

≤ (1− ϵ0)

< ϵ3.

(11)

We have a contradiction from equations (9), (10) and (11). Therefore,

Bc(x, 1 − ϵ7,
γ
2

)
∩ Bc(y, 1 − ϵ7,

γ
2

)
= ϕ. Hence, the space N f

I(S) is a Hausdorff
space.

Theorem 3.6. Suppose τN f

I(S) be a topology on a neutrosophic norm spaces

N f
I(S), then a sequence x = {xk} ∈ N f

I(S), such that (xk) −→ α, iff U(N f
n (x)−

α) −→ 1,V(N f
n (x)− α) −→ 0 and W(N f

n (x)− α) −→ 0 as n −→ ∞.

Proof. Consider a sequence {xk} → α, and Fix γ0 > 0, then for γ ∈ (0, 1), ∃
n0 ∈ N s.t. {xk} ∈ B(x, γ, ϵ), ∀ k ≥ n0, then for a γ > 0, B(x, γ, ϵ) = {x =

(xk) ∈ ω : U(N f
n (x)−α, γ) ≤ 1−ϵ or V(N f

n (x)−α, γ) ≥ ϵ , W(N f
n (x)−α, γ) ≥

ϵ} ∈ I, such that Bc(x, γ, ϵ) ∈ F (I) then

1− U(N f
n (x)− α, γ) < ϵ,V (N f

n (x)− α, γ) < ϵ,W(N f
n (x)− α, γ) < ϵ.

Hence, U(N f
n (x)− α, γ) → 1,V(N f

n (x)− α, γ) → 0, and W(N f
n (x)− α, γ) →

0 as n→ ∞. Conversely, if ∀ γ > 0, U(N f
n (x)− α, γ) → 1,V(N f

n (x)− α, γ) →
0, and W(N f

n (x)−α, γ) → 0 as n→ ∞. Then, for each ϵ ∈ (0, 1), ∃ n0 ∈ N s.t.

1−U(N f
n (x)−α, γ) < ϵ,V(N f

n (x)−α, γ) < ϵ,W(N f
n (x)−α, γ) < ϵ ∀ n ≥ n0.

Hence, we have

U(N f
n (x)−α, γ) > 1− ϵ,V(N f

n (x)−α, γ) < ϵ,W(N f
n (x)−α, γ) < ϵ,∀ n ≥ n0.

Thus, {xk} ∈ Bc(x, γ, ϵ), ∀ k ≥ n0 and hence {xk} → α.

Now, we establish results about the relationship between Nörlund I-conver-
gent and Nörlund I-Cauchy sequence in NNS.

Definition 3.1. In an NNS V . A sequence x = {xn} ∈ V is said to be Nörlund
I-convergent to α ∈ C with regard to neutrosophic norms S = (U ,V,W), de-
noted by xn → α, if for every ϵ ∈ (0, 1) and γ > 0, where

N1 =
{
n ∈ N : U

(
N f
n (x)− α, γ

)
≤ 1− ϵ

or V
(
N f
n (x)− α, γ

)
≥ ϵ,W

(
N f
n (x)− α, γ

)
≥ ϵ

}
∈ I

and we write IS– lim(xn) = α.
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Definition 3.2. A sequence x = {xn} ∈ V is said to Nörlund I-Cauchy with
respect to neutrosophic norms S = (U ,V,W), if for every ϵ ∈ (0, 1) and γ > 0,
∃ k ∈ N, such that

N2 =

{
n ∈ N : U

(
N f
n (x)− N f

k (x), γ
)
≤ 1− ϵ

or V
(
N f
n (x)− N f

k (x), γ
)
≥ ϵ,W

(
N f
n (x)− N f

k (x), γ
)
≥ ϵ

}
∈ I.

Theorem 3.7. Let N f
I(S) be an NNS. If a sequence x = {xk} ∈ is Nörlund

I–convergent w.r.t NN S, then the I(S)–lim(x) is unique.

Proof. Let x = {xk} is Nörlund I–convergent in NNS. Let on contrary that α1

and α2 are two distinct elements, thus I(S)– lim(xk) = α1 and I(S)– lim(xk) = α2.
For a given ϵ > 0, choose p > 0 such that (1− p) ∗ (1− p) > 1− ϵ, p ⋄ p < ϵ and
p ⋄ p < ϵ, for γ > 0.

We show that α1 = α2. We define P1 = {n ∈ N : U(N f
n (x)−α1, γ) ≤ 1− ϵ},

P2 = {n ∈ N : V(N f
n (x)− α1, γ) ≥ ϵ}, P3 = {n ∈ N : W(N f

n (x)− α1, γ) ≥ ϵ},
Q1 = {n ∈ N : U(N f

n (x)−α2, γ) ≤ 1−ϵ}, Q2 = {n ∈ N : V(N f
n (x)−α2, γ) ≥ ϵ},

Q3 = {n ∈ N : W(N f
n (x)−α2, γ) ≥ ϵ}, where A = (P1∪Q1)∩ (P2∪Q2)∩ (P3∪

Q3) sets P1, P2, P3, Q1, Q2, Q3 and A must be belongs to I, since {xk} has two
distinct I-limits with regard to neutrosophic norm S = (U ,V,W), i.e. α1, α2.
As a result, Ac ∈ F (I) implies that Ac is not empty. Let us write some n0 ∈ Ac

then either n0 ∈ P c1 ∩Qc1 or n0 ∈ P c2 ∩Qc2 or n0 ∈ P c3 ∩Qc3.
If n0 ∈ P c1 ∩Qc1, it follows that

U
(

N f
n0
(x)− α1,

γ

2

)
> 1− p and U

(
N f
n0
(x)− α2,

γ

2

)
> 1− p.

Hence,

U
(
α1 − α2, γ

)
≥ U

(
N f
n0
(x)− α1,

γ

2

)
∗ U

(
N f
n0
(x)− α2,

γ

2

)
> (1− p) ∗ (1− p)

> (1− ϵ).

Because ϵ > 0 was arbitrary, U(α1 − α2, γ) = 1 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

If n0 ∈ P c2 ∩Qc2, it follows that

V
(

N f
n0
(x)− α1,

γ

2

)
< p and V

(
N f
n0
(x)− α2,

γ

2

)
< p.
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Hence,

V
(
α1 − α2, γ

)
≤ V

(
N f
n0
(x)− α1,

γ

2

)
⋄ V

(
N f
n0
(x)− α2,

γ

2

)
< p ⋄ p
< ϵ.

Because ϵ > 0 was arbitrary, V(α1 − α2, γ) = 0 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

If n0 ∈ P c3 ∩Qc3, it follows that

W
(

N f
n0
(x)− α1,

γ

2

)
< p and W

(
N f
n0
(x)− α2,

γ

2

)
< p.

Hence,

W
(
α1 − α2, γ

)
≤ W

(
N f
n0
(x)− α1,

γ

2

)
⋄W

(
N f
n0
(x)− α2,

γ

2

)
< p ⋄ p
< ϵ.

Because ϵ > 0 was arbitrary, W(α1 − α2, γ) = 0 was given to all γ > 0. Thus,
we have α1 = α2, which is a contradiction.

As an outcome, in all cases, α1=α2, implying that the I(S)–limit is unique.

Now, we establish results about the relationship between Nörlund I-convergent
and Nörlund I-Cauchy sequence in NNS.

Theorem 3.8. A sequence x = {xk} ∈ N f
I(S) is I–convergent with regard to

neutrosophic norms S = (U ,V,W) if and olny if it is I–Cauchy with respect to
the same norms.

Proof. Let x = (xk) is Nörlund I–convergent with regard to neutrosophic
norms (S) such that I(S)– lim(xk) = α. For given ϵ ∈ (0, 1) there exists
p1 ∈ (0, 1), such that (1 − p1) ∗ (1 − p1) > 1 − ϵ and p1 ⋄ p1 < ϵ. Since

I(S)– lim(xk) = α therefore, for all γ > 0, A1 =
{
n ∈ N : U

(
N f
n (x) − α, γ

)
≤

1 − p1 or V
(
N f
n (x) − α, γ

)
≥ p1,W

(
N f
n (x) − α, γ

)
≥ p1

}
∈ I, that im-

plies Ac1 =
{
n ∈ N : U

(
N f
n (x) − α, γ

)
> 1 − p1 and V

(
N f
n (x) − α, γ

)
<

p1,W
(
N f
n (x) − α, γ

)
< p1

}
∈ F (I). Let a natural number J ∈ Ac1, we have

U
(
N f
J (x)− α, γ

)
> 1− p1 and V

(
N f
J (x)− α, γ

)
< p1,W

(
N f
J (x)− α, γ

)
< p1.

Now, we show that for x ∈ N f
I(S) ∃ a natural number J = J(x, ϵ, γ) s.t. the

set A2 =
{
n ∈ N : U

(
N f
n (x)− N f

J (x), γ
)
≤ 1− ϵ or V

(
N f
n (x)− N f

J (x), γ
)
≥

ϵ,W
(
N f
n (x)−N f

J (ϑ), γ
)
≥ ϵ

}
∈ I. For this, we need prove that A2 ⊂ A1., Let
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on contrary that A2 ⊈ A1. Then, ∃ l ∈ A2, but not in A1 we have U
(
N f
l (x)−

N f
J (x), γ

)
≤ 1− ϵ. Then, U

(
N f
l (x)− α, γ2

)
> 1− p1.

In particular, U
(
N f
l (x)− α, γ2

)
> 1− p1. Then

1− ϵ ≥ U
(
N f
l (x)− N f

J (x), γ
)

≥ U
(
N f
l (x)− α,

γ

2

)
∗ U

(
N f
J (x)− α,

γ

2

)
> (1− p1) ∗ (1− p1)

> (1− ϵ)

which is a contradiction.

=⇒ U
(
N f
l (x)− α, γ2

)
≤ 1− p1.

Similarly, consider V
(
N f
l (x)− N f

J (x), γ
)
≥ ϵ. Then, V

(
N f
l (x)− α, γ2

)
< p1.

In particular, V
(
N f
n (x)− α, γ2

)
< p1. Then

ϵ ≤ V
(
N f
l (x)− N f

J (x), γ
)

≤ V
(
N f
l (x)− α,

γ

2

)
⋄ V

(
N f
J (x)− α,

γ

2

)
< p1 ⋄ p1
< ϵ

which is a contradiction.

=⇒ V
(
N f
l (x)−α, γ2

)
≥ p1 and similarly considerW

(
N f
l (x)−N f

J (x), γ
)
≥

ϵ. Then, W
(
N f
l (x)− α, γ2

)
< p1.

In particular W
(
N f
l (x)− α, γ2

)
< p1. Then

ϵ ≤ W
(
N f
l (x)− N f

J (x), γ
)

≤ W
(
N f
l (x)− α,

γ

2

)
⋄W

(
N f
J (x)− α,

γ

2

)
< p1 ⋄ p1
< ϵ

which is again a contradiction.

=⇒ W
(
N f
l (x)− α, γ2

)
≥ p1.

Therefore, for l ∈ A2, we have U
(
N f
l (x) − α, γ

)
≤ 1 − p1 or V

(
N f
l (x) −

α, γ
)
≥ p1,W

(
N f
l (x)− α, γ

)
≥ p1.

=⇒ l ∈ A1. Hence, A2 ⊂ A1. Since A1 ∈ I, so A2 ∈ I. Consequently, the
sequence x = {xk} is Nörlund I–Cauchy with regard to norms S = (U ,V,W).

Conversely, suppose the sequence x = {xk} is Nörlund I–Cauchy with regard

to the norms S = (U ,V,W). Then, ∃ j ∈ N such that B1 =
{
n ∈ N : U

(
N f
n (x)−

N f
j (x), γ

)
≤ 1−ϵ or V

(
N f
n (x)−N f

j (x), γ
)
≥ ϵ,W

(
N f
n (x)−N f

j (x), γ
)
≥ ϵ

}
∈

I. But, on the other hand, the sequence x = (xk) is not Nörlund I–convergent



368 VAKEEL A. KHAN and MOHAMMAD ARSHAD

denoted by B2,

B2 =

{
n ∈ N : U

(
N f
n (x)− α,

γ

2

)
> 1− p1 or V

(
N f
n (x)− α,

γ

2

)
< p1,

W
(

N f
n (x)− α,

γ

2

)
< p1

}
∈ I,

=⇒

1− ϵ ≥ U
(

N f
n (x)− N f

j (x), γ

)
≥ U

(
N f
n (x)− α,

γ

2

)
∗ U

(
N f
j (x)− α,

γ

2

)
> (1− p1) ∗ (1− p1)

> 1− ϵ

which is a contradiction. Now,

ϵ ≤ V
(

N f
n (x)− N f

j (x), γ

)
≤ V

(
N f
n (x)− α,

γ

2

)
⋄ V

(
N f
j (x)− α,

γ

2

)
< p1 ⋄ p1
< ϵ

which is again a contradiction and

ϵ ≤ W
(

N f
n (x)− N f

j (x), γ

)
≤ W

(
N f
n (x)− α,

γ

2

)
⋄W

(
N f
j (x)− α,

γ

2

)
< p1 ⋄ p1
< ϵ.

This again contradicts it. Therefore, B2 ∈ F (I), and hence x = {xk} is Nörlund
I–convergent.

The following theorems are easy to prove.

Theorem 3.9. In NNS V , a sequence x = {xk} ∈ V is Nörlund Cauchy with

regard to NN S. and N f
I(S) cluster to α in Z then {xk} is Nörlund I-convergent

to α with regard to same NN S.

Theorem 3.10. In NNS V , a sequence x = {xk} ∈ V is Nörlund Cauchy with
regard to NN S then it is Nórlund I-Cauchy with regard to NN S.
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Now, follows the notations:

The space of all sequences whose Nf− transform is neutrosophic bounded
sequence is denoted as l∞

(S)
(N f ).

N f
I∞
(S)

indicates the space containing all sequences with neutrosophic bounded

Nf− transforms and neutrosophic Norland ideal convergent sequences.

Theorem 3.11. Space N f
I∞
(S)

is closed linear space of l∞
(S)

(N f ).

Proof. The given space is a subspace of l∞
(S)

(N f ), as we are aware. Now, that

N f
I∞
(S)

must be proved to be closed, we demonstrate that N f
I∞
(S)

=N f
I∞
(S)

. (where

N f
I∞
(S)

denoted the closure of N f
I∞
(S)

).

It is clear that N f
I∞
(S)

⊂ N f
I∞
(S)

.

Conversely, we show that N f
I∞
(S)

⊂ N f
I∞
(S)

.

Let x ∈ N f
I∞
(S)

then , B(x, γ, ϵ) ∩ N f
I∞
(S)

̸= ϕ, for evey open ball B(x, γ, ϵ) of

any radius γ > 0 and ϵ > 0 centred at x. So, let x ∈ B(x, γ, ϵ) ∩ N f
I∞
(S)

and

0 < p < 1 and γ > 0, choose ϵ ∈ (0, 1) s.t. (1− p) ∗ (1− p) > 1− ϵ and p ⋄ p < ϵ.

Since y ∈ B(x, γ, ϵ)∩N f
I∞
(S)

so, there exits a subset A of N s.t A ∈ F (I) and

∀n ∈ A, we have U(N f
n (x)−N f

n (y), γ2 ) > 1−p and V(N f
n (x)−N f

n (y), γ2 ) < p ,

W(N f
n (x)−N f

n (y), γ2 ) < p and U(N f
n (y)−α, γ2 ) > 1−p and V(N f

n (y)−α, γ2 ) <
p , W(N f

n (y)− α, γ2 ) < p.

Hence, ∀n ∈ A, we obtain

U(N f
n (x)− α,

γ

2
) = U(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≥ U(N f
n (x)− N f

n (y),
γ

2
) ∗ U(N f

n (y)− α,
γ

2
)

> (1− p) ∗ (1− p)

> 1− ϵ,

V(N f
n (x)− α,

γ

2
) = V(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≤ U(N f
n (x)− N f

n (y),
γ

2
) ⋄ V(N f

n (y)− α,
γ

2
)

< p ⋄ p
< ϵ
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and

W(N f
n (x)− α,

γ

2
) = W(N f

n (x)− N f
n (y) + N f

n (y)− α, γ)

≤ W(N f
n (x)− N f

n (y),
γ

2
) ⋄W(N f

n (y)− α,
γ

2
)

< p ⋄ p
< ϵ.

Thus, A ⊂ {n ∈ N : U(N f
n (x) − α, γ) > 1 − ϵ and V(N f

n (x) − α, γ) <

ϵ , W(N f
n (x)− α, γ) < ϵ}.

As A ∈ F (I), which implies that {n ∈ N : U(N f
n (x) − α, γ) > 1 −

ϵ and V(N f
n (x) − α, γ) < ϵ , W(N f

n (x) − α, γ) < ϵ} ∈ F (I). Therefore,

x ∈ N f
I∞
(S)

. Hence, N f
I∞
(S)

⊂ N f
I∞
(S)

.

Theorem 3.12. Let x = {xk} ∈ ω be a sequence. If ∃ a sequence y = {yk} ∈
N f
I(S), such that N f

n (x) = N f
n (y) for almost all n relative to neutrosophic I,

then x ∈ N f
I(S).

Proof. Consider N f
n (x) = N f

n (y) for almost all n relative to I. Then
{
n ∈

N : N f
n (x) ̸= N f

n (y)
}
∈ I. This implies

{
n ∈ N : N f

n (x) = N f
n (y)

}
∈ F (I).

Therefore, for n ∈ F (I) ∀ γ > 0, U
(
N f
n (x) − N f

n (y), γ2
)
= 1, V

(
N f
n (x) −

N f
n (y), γ2

)
= 0 and W

(
N f
n (x) − N f

n (y), γ2
)

= 0. Since {yk} ∈ N f
I(S), let

I(S)– lim(yk) = α. Then, for any ϵ ∈ (0, 1) and γ > 0,

A1 =
{
n ∈ N : U

(
N f
n (y)− α,

γ

2

)
> 1− ϵ and V

(
N f
n (y)− α,

γ

2

)
< ϵ,

W
(
N f
n (y)− α,

γ

2

)
< ϵ

}
∈ F (I).

Consider the set A2 =
{
n ∈ N : U

(
N f
n (x)−α, γ

)
> 1−ϵ and V

(
N f
n (x)−α, γ

)
<

ϵ,W
(
N f
n (x)− α, γ

)
< ϵ

}
.

We show that A1 ⊂ A2. So, for n ∈ A1 we have

U
(
N f
n (x)− α, γ

)
≥ U

(
N f
n (x)−N f

n (y),
γ

2

)
∗ U

(
N f
n (y)− α,

γ

2

)
> 1 ∗ (1− ϵ)

= 1− ϵ,

V
(
N f
n (x)− α, γ

)
≤ V

(
N f
n (x)− N f

n (y),
γ

2

)
⋄ V

(
N f
n (y)− α,

γ

2

)
< 0 ⋄ ϵ
= ϵ
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and

W
(
N f
n (x)− α, γ

)
≤ W

(
N f
n (x)− N f

n (y),
γ

2

)
⋄W

(
N f
n (y)− α,

γ

2

)
< 0 ⋄ ϵ
= ϵ.

This implies that n ∈ A2 and hence A1 ⊂ A2. Since A1 ∈ F (I), therefore

A2 ∈ F (I). Hence, x = {xk} ∈ N f
I(S).

Conclusion

In this research, we investigated the ideal convergence of extended Nörlund
sequences in NNS and defined a new type of sequence space N f

I0(S)
, N f

I(S)

and N f
I∞(S)

utilising the previously studied Nörlund matrix N f . In NNS, the
concepts of Nörlund ideal convergence and Nörlund ideal Cauchy sequence are
examined, and significant findings are established. We may also investigate the
topological properties of these spaces, which will give a better technique for deal-
ing with ambiguity and inexactness in numerous fields of science, engineering,
and economics.
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[1] B. C. Tripathy, P. J. Dowari, Nórlund, and Riesz mean of a sequence of
complex uncertain variables, Filomat, 32 (2018), 2875-2881.
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Abstract. The vertex-order graph of the finite cyclic group G is based on its compo-
nents Cd of the vertex-order graph ℑ(G), whose vertices are of order ′d′ as the divisors
of the order of the group G. The important properties of the vertex-order graph and its
complements namely girth, radius, diameter, clique number, independence number and
rank are derived. Further, the complement ℑ(G) of the vertex-order graph is proved as
a complete t-partite graph and shown with an example. Later, we compute the first,
second and third Zagreb indices of the graph ℑ(G), ℑ(Zp) and ℑ(Zpq).

Keywords: vertex-order graph, complete t-partite, Zagreb index.

1. Introduction

Group theoretical facts with disconnected graph will yield the finest application
in the real world problems like protein-protein interaction, genetically disorders,
existence of new virus with pandemic potential, handling drug discovery situa-
tion etc., in the medical science field. Over the past four decades, researchers
developed enormous amount of applications in the area of algebraic graph the-
ory, especially algebraic facts with connected graphs [2, 3, 13].

A graph H is said to be connected if there exists a path between every pair
of vertices; Otherwise, the graph is disconnected. A disconnected graph consists
of two or more connected subgraphs of H. Each of these connected subgraphs
are called component of H.

A clique C of H is a subgraph of a graph H such that all vertices in the
subgraph are completely connected with each other. The clique number of the
graph H, denoted by Clique(H), is the number of vertices in the maximal clique
of H. An independent set or stable set in a graph H is a set of pairwise non

*. Corresponding author
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adjacent vertices of H. The independence number of a graph H, denoted by
α(H), is the maximum size of an independent set of vertices. The girth of a
graph H with a cycle is the length of the shortest cycle. The eccentricity of a
vertex u, denoted by e(u), is the greatest distance from u to all other vertices
in the graph H. That is,

e(u) = max
x∈V (G)

d(u, x).

The radius of the graph H, denoted by rad(H), is the value of smallest
eccentricity. The diameter of the graph H, denoted by diam(H), is the value of
greatest eccentricity.

The eigenvalues of a graph H are defined to be the eigenvalues of its ad-
jacency matrix. The rank of the graph H, denoted by ρ(H), is defined as the
number of non zero eigenvalues of its adjacency matrix.

Kiruthika and Kalamani [15] found generalization of the vertex partition
and edge partition of the power graph of the finite abelian group of an order
pq if p < q, where p and q are distinct primes. They found some types of
topological indices of graphs related to the groups. Jahandideh, Sarmin and
Omer computed the various types of indices like Szeged index, edge Wiener
index, first Zagreb index and the second Zagreb index for the non commuting
graph [5]. Ramanae, Gundloor and Jummannaver [18] investigated the third
Zagreb index, forgotten index and coindices of cluster graphs. Veylaki, Nikmehr
and Tavalla [19] explained some basic mathematical properties for the third and
hyper Zagreb coindices of graph operations.

Topological descriptors are based on the graph impression of the molecule
and can also encode chemical information concerning atom type and bond mul-
tiplicity. It plays a vital role in the area of Quantitative Structure Activity
Relation(QSAR), Quantitative Structure Property Relation(QSPR) and Fuzzy
Lattice Neural Network(FLNN) [14]. One of the classical topological index is
the familiar Zagreb index that was first introduced in [11] where Gutman and
Trinajstic[10] examined the dependence of total-electron energy on molecular
structure and this was elaborated in [8, 9].

The first and second Zagreb indices of a graph H, are defined as

M1(H) =
∑

uv∈E(H)

[d(u) + d(v)],

M2(H) =
∑

uv∈E(H)

[d(u)d(v)],

respectively.
Another Zagreb index called the third Zagreb index of a graph H, denoted

by M3(H), is defined by Fath-Tabar [4] as

M3(H) =
∑

uv∈E(H)

|d(u)− d(v)|.
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The Zagreb indices [8, 12, 16, 17] play a very important key role in the past,
present and future research developments.

In this research, we newly defined the vertex-order graph ℑ(G) of the finite
cyclic group G. The study of certain properties of the vertex-order graph of the
finite cyclic group G is the main outcome and is presented in this research. The
complement of the vertex-order graph is also defined with simple proofs.

Throughout this paper, we follow the terminologies and notations of [6] for
groups and [20, 7] for graphs.

2. Some theoretical properties of the vertex-order graph

In this section, some simple characteristics of the graph ℑ(G) are studied with
theorems and examples.

Definition 2.1. A vertex-order graph of a finite cyclic group G is a simple
graph whose vertices are elements of the group G and there is an edge between
any two distinct vertices iff its orders are equal and is denoted by ℑ(G).

Example 2.1. The vertex-order graph ℑ(Z9) of the finite cyclic group G is
shown in Figure 1.

Figure 1: The vertex-order graph ℑ(Z9).

Theorem 2.1. The girth gr(ℑ(G)) of the vertex-order graph ℑ(G) is given by

gr(ℑ(G)) =

{
3, if ϕ(n) ≥ 3

∞, otherwise.

where ϕ is the euler totient function.

Proof. Let ℑ(G) be the vertex-order graph of the finite cyclic group G of or-
der n.

It is noted that the length of the shortest cycle of ℑ(G) is the minimum length
of the cycles of all the components Cd where d is the divisor of n. The graph
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ℑ(G) is disconnected and the components Cd are all complete. The complete
subgraph is denoted by Km where m = ϕ(d) and each Km is (m− 1) regular.

If ϕ(n) ≥ 3 then the vertex-order graph contains the complete graph Km

and m ≥ 3. In this case, the length of the shortest cycle is 3.
In all other cases, the graph does not contain any cycle.
Hence,

gr(ℑ(G)) =

{
3, if ϕ(n) ≥ 3

∞, otherwise.

Theorem 2.2. For any vertex-order graph ℑ(G), the eccentricity of the vertex
v is e(v) = ∞

Proof. Let e(v) be the eccentricity of the vertex v of the vertex-order graph
ℑ(G).

The distance between the any two vertices vi, vj is∞, if vi, vj are the vertices
of two different components Cd of the vertex order graph. Since each component
Cd is complete, the distance between vi and vj is 1 if vi, vj are vertices of the
same component. Thus, e(v) = maxj d(v, vj) = ∞. Therefore, the eccentricity
of the vertex v of the vertex-order graph is ∞.

Lemma 2.1. Let G be the finite cyclic group of order n. Then, the following
holds:

(i) diam(ℑ(G)) = ∞.

(ii) rad(ℑ(G)) = ∞.

Theorem 2.3. The independence number of the vertex-order graph denoted by
α(ℑ(G)) is always t where t is the number of components of the graph.

Proof. Let α(ℑ(G)) be the independence number of the vertex-order graph. It
is clear to see that the independence number of a complete graph is 1. Since
each component Cd is a clique, the independence number of complete graph is
one i.e., α(Cd) = 1 and is denoted by Id. Also the the vertex-order graph is the
disjoint union of its components Cd. Thus

α(ℑ(G)) =
∑
d

α(Cd)

= Number of components of the vertex order graph = t.

∴ Independence number of the vertex-order graph is t.

Corollary 2.1. The independence number α(ℑ(Zn)) of the vertex-order graph
is four if n = pq, where p and q are any two distinct primes.

Example 2.2. The independence number of the vertex-order graph ℑ(Z15) is
four, α[ℑ(Z15)] = 4 which is shown in Figure 3.
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Theorem 2.4. Let ℑ(G) be the vertex-order graph of the finite cyclic group G.
Then

ρ(ℑ(G)) =

{
n− 1, if n is odd,

n− 2, if n is even,

where ρ(ℑ(G)) is the rank of the vertex-order graph.

Proof. Let λ1, λ2, λ3,...λn be the eigenvalues of the vertex-order graph of the
finite cyclic group G order n.

If λi, i = 1, 2, ...m are the eigenvalues of the complete graph Km where
m = ϕ(d) and d is the divisor of n, then for m ̸= 1,

λi =

{
−1, if i = 1, 2, 3....m− 1,

m− 1, if i = m.

If m = 1, the eigenvalue of Km is zero.
The set of eigenvalues of the vertex-order graph ℑ(G) is the union of all the

eigenvalues of the complete graph Km for all m.
So, the number of non-zero eigenvalues value of the vertex-order graph is

n− 1 if n is odd and n− 2 if n is even, since the number of isolated vertices is
1 if n is odd and 2 if n is even.

Hence, the rank of the vertex-order graph

ρ(ℑ(G)) =

{
n− 1, if n is odd ,

n− 2, if n is even.

3. Properties of the complement of the vertex-order graph

Let ℑ(G) be the complement of the vertex-order graph of the finite cyclic group
G. In this section, some important properties of the complement of the vertex-
order graph are discussed.

Theorem 3.1. The complement ℑ(G) of the vertex-order graph is a complete
t-partite graph.

Proof. Let t be the number of connected component of the vertex-order graph
ℑ(G) of the finite cyclic group G of order n.

Each component Cd of the vertex-order graph is a complete subgraph Km

and the vertex-order graph ℑ(G) is the disjoint union of the complete subgraphs
Km where m = ϕ(d) and d is the divisors of n.

It is clear that no two vertices in the same component Cd of the vertices
are adjacent in their complements. This implies that each component Cd of
ℑ(G) is independent in their complement ℑ(G). Hence, the complement graph
ℑ(G) is the complete t-partite graph where t is the number of components of
the vertex-order graph.
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Example 3.1. Let ℑ(Z555) be the complement of the the vertex-order graph of
the group Z555. Let C1, C3, C5, C15, C37, C111, C185, C555 are the 8 components
of the graph ℑ(Z555) where 1, 3, 5, 15, 37, 111, 185, 555 are the divisors of
555. Then, the number of vertices in the each component Cd of the vertex-order
graph ℑ(Z555) is given below:

|C1| = ϕ(1) = 1,

|C3| = ϕ(3) = 2,

|C5| = ϕ(5) = 4,

|C15| = ϕ(15) = 8,

|C37| = ϕ(37) = 36,

|C111| = ϕ(111) = 72,

|C185| = ϕ(185) = 144,

|C555| = ϕ(555) = 288.

Hence, K1, K2, K4, K8, K36, K72, K144, K288 are the complete subgraphs of
ℑ(Z555). The set of vertices in Km are independent in their complement ℑ(Z555)
for any m. Thus, ℑ(Z555) is the complete 8-partite graph and is denoted by
K1,2,4,8,36,72,144,288 which is shown in Figure 2.

Figure 2: The edge adjacency of the complement of the Vertex-order graph
ℑ(Z555).
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Lemma 3.1. The complement ℑ(G|e) of the vertex-order graph is complete
bi-partite if n is the square of the prime number.

Proof. Let Cd be the component of the vertex-order graph. If n = p2, then
ℑ(G) has exactly three distinct components namely C1, Cp, Cp2 where p is a
prime. Each of these are complete which is shown in Figure 1. By omitting
the identity element, there are only two components Cp and Cp2 which are

independent in their complement. Hence, ℑ(G|e) is a complete bi-partite graph.

Theorem 3.2. The complement ℑ(G) of the vertex-order graph has a clique as
the number of independent set.

Proof. Let ℑ(G) be the complement of the vertex-order graph of the finite
cyclic group G of order n.

Let Clique(ℑ(G)) be the clique number of the complement of the vertex-
order graph. From Theorem 3.1, the complement of the vertex-order graph
ℑ(G) is the complete t-partite graph. From this it is clear that the largest
complete subgraph ℑ(G) contains t vertices

∴ Clique(ℑ(G)) = t.

Corollary 3.1. The independence number of the complement of the vertex-
order graph ℑ(G) is the number of the generators of the finite cyclic group G,
i.e., α(ℑ(G)) = ϕ(n).

Theorem 3.3. The girth of the complement of the vertex order graph ℑ(G) is
given by

gr(ℑ(G)) =

{
∞, if n = p,

3, if n ̸= p.

Proof. Let ℑ(G) be the vertex-order graph of order n. Let gr(ℑ(G)) be the
girth of the complement of the vertex-order graph ℑ(G).

If n = p, a prime, then the complement graph does not contain cycle since
ℑ(G) is a star graph.

In this case, the girth of the complement of the vertex-order graph is ∞.
If n ̸= p where p is a prime, then ℑ(G) is the complete t-partite graph for

every t ≥ 3 and the complement graph contains the cycle of length 3.
In this case, the girth of the complement of the graph ℑ(G) is 3. Thus,

gr(ℑ(G)) =

{
∞, if n = p,

3, if n ̸= p.

Theorem 3.4. Let ℑ(G) be the complement of the vertex-order graph of the
finite cyclic group G. Then, the following holds:



SOME ASPECTS OF THE VERTEX-ORDER GRAPH 381

(i) rad(ℑ(G)) = 1;

(ii) diam(ℑ(G)) = 2.

Proof. Let ℑ(G) be the vertex-order graph associated with finite cyclic group
G of order n. It is noticed that ℑ(G) is connected, since ℑ(G) is disconnected.
The minimum and maximum eccentricities are 1 and 2 respectively.

Henceforth, the proof follows diam(ℑ(G)) = 2 and rad(ℑ(G)) = 1.

Figure 3: The vertex-order graph ℑ(Z15) with its four components.

Corollary 3.2. The edge set of the complement of the vertex-order graph ℑ(G)
is partitioned into tC2 edge sets which is equal to the number of independent set
of the graph ℑ(G).

Example 3.2. The number of independent set of the graph ℑ(Z15) is 4 which
is shown in Figure 3. From Corollary 3.2, the number of edge sets of the com-
plement of the vertex-order graph ℑ(G) is 6 which is shown in Figure 4.

Then, the number of edges

|E(ℑ(Z15))| = |E1|+ |E2|+ |E3|+ |E4|+ |E5|+ |E6|
= 4 + 2 + 8 + 8 + 32 + 16

= 70.

Lemma 3.2. The complement ℑ(G|e) of the vertex-order graph is a null graph
iff n is prime.

Proof. If n = p, a prime, then ℑ(G) is the star graph in which identity element
e is an universal vertex. By omitting the identity element e, the star graph
K1,n−1 becomes null graph. Hence, ℑ(G|e) is the null graph.
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Figure 4: The complement of the Vertex-order graph ℑ(Z15) with its four inde-
pendent sets.

Corollary 3.3. The complement ℑ(G|iv) of the vertex-order graph is uni-cyclic
if n is 6 where iv is the isolated vertices of the graph ℑ(G).

Theorem 3.5. For any vertex-order graph ℑ(G), the rank of the complement
of the vertex-order graph ℑ(G) is ρ(ℑ(G)) = t.

Proof. Let ρ(ℑ(G)) be the rank of the complement of the vertex-order graph.
From [1] the vertex-order graph ℑ(G) of rank t has clique number at most t;
equality holds if and only if ℑ(G) is a complete t-partite graph. Thus, it is found
that the rank of the complement of the vertex-order graph ℑ(G) is the maximum
clique of the graph ℑ(G), since the every component Cd of ℑ(G) contain clique
which is complete.

Rank of the complement of the vertex-order graph is the clique number of
the complement of the vertex-order graph. From Theorem 3.2, the rank of
the complement ℑ(G) of the vertex-order graph is the number of connected
components t ρ(ℑ(G)) = Clique(ℑ(G)) = t.

Example 3.3. The rank of the complement of the vertex-order graph ℑ(Z8) is
four which is shown in Figure 5. ρ(ℑ(Z8)) = 4.
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Figure 5: The vertex-order graph ℑ(Z8) with its four components and transfor-
mation of its complement.

4. Computation of Zagreb indices of the vertex-order graph

In this section, we derive some Zagreb indices of the vertex-order graph.

Theorem 4.1. The first Zagreb index of the vertex-order graph M1(ℑ(G)) is∑
mm(m− 1)2, where m = ϕ(d) .

Proof. Let ℑ(G) be the vertex-order graph of the finite cyclic group G. Since
ℑ(G) is a disconnected graph, there are finite number of connected components
Cd, each of which is a complete graph Km where m = ϕ(d) and d is the divisor
of the order of the group G. Then, the number of edges and vertices in Km for
m ̸= 1 are mC2 and m respectively. If m = 1, there is no edge. Thus, the first
Zagreb index

M1(ℑ(G)) =
∑

uv∈E(G)

[d(u) + d(v)]

=
∑
m

mC2[(m− 1) + (m− 1)]

=
∑
m

m(m− 1)2.

Example 4.1. The first Zagreb index of the vertex-order graph M1(ℑ(Z15)) is
430.

By the definition of vertex-order graph ℑ(Z15), the connected components
are given by K1,K2,K4,K8 which is shown in Figure 3. Then, the first Zagreb
index

M1(ℑ(Z15) =
∑
m

m(m− 1)2 = 430.
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Theorem 4.2. The second Zagreb index of the vertex-order graph M2(ℑ(G)) is∑
m
m(m−1)3

2 where m = ϕ(d).

Proof. Let ℑ(G) be the vertex-order graph of the finite cyclic group G. Since
ℑ(G) is a disconnected graph, there are finite number of connected components
Cd, each of which is a complete graph Km where m = ϕ(d) and d is the divisor
of the order of the group G. Then, the number of edges and vertices in Km for
m ̸= 1 are mC2 and m respectively. If m = 1 there is no edge. Thus, the second
Zagreb index

M2(ℑ(G)) =
∑

uv∈E(G)

d(u)d(v)

=
∑
m

mC2[(m− 1)(m− 1)]

=
∑
m

m(m− 1)3

2
.

Example 4.2. The second Zagreb index of the vertex-order graph M2(ℑ(Z18))
is 752.

By the definition of vertex-order graph ℑ(Z18), the connected components
are given byK1,K1,K2,K2,K6,K6. Then, the second Zagreb indexM2(ℑ(Z18))
is given by

M2(ℑ(Z18)) =
∑
m

m(m− 1)3

2
= 752.

Lemma 4.1. Let ℑ(G) be the vertex-order graph of the finite cyclic group G.
Then, the third Zagreb index of the vertex-order graph M3(ℑ(G)) is zero, since
the order of the vertices of all the components Cd are equal.

5. Computation of Zagreb indices of the complement of the
vertex-order graph

In this section, some Zagreb indices of the complement of the vertex-order graph
are derived with its generalizations.

Theorem 5.1. Let ℑ(G) be the complement of the vertex-order graph of the
finite cyclic group G of order pq where p and q are any distinct primes. Then,
its Zagreb indices are given by

(1) M1(ℑ(G)) = p2q2(p+ q + 1)− pq(p2 + q2 + p+ q − 1);

(2) M3(ℑ(G)) = p2q2(p+ q− 5)− pq[3(p2 + q2 + 5)− 9p− 11q] + p+ q− 1) +
2(p3 + q3)− 4p(p− 1)− 6q(q − 1).
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Figure 6: The edge adjacency of the complement of the vertex-order graph
ℑ(Zpq).

Proof. Consider the complement of the vertex-order graph ℑ(G) of order n
where n = pq, p and q are any two distinct primes. The total number of vertices
and edges of ℑ(G) is given by pq and p2q + pq2 − p2 − q2 − 2pq + 2p + 2q − 2
respectively. Then, the vertex set can be divided into 1 vertex of degree pq− 1,
p − 1 vertices of degree pq − p + 1, q − 1 vertices of degree pq − q + 1 and
pq − p− q + 1 vertices of degree p+ q − 1. Let dℑ(Zpq)

(u) and dℑ(Zpq)
(v) be the

degrees of the end vertices u and v respectively.

The edge set E(ℑ(G)) can be divided into two edge partitions based on the
degrees of end vertices. These can easily done by using the four independent
sets which is shown in Figure 6.

The first partition of edges E1(ℑ(Zpq)) contains p − 1 edges uv, where
dℑ(Zpq)

(u) = pq − 1, dℑ(Zpq)
(v) = pq − p + 1, the second partition of edges

E2(ℑ(Zpq)) contains q − 1 edges uv, where dℑ(Zpq)
(u) = pq − 1, dℑ(Zpq)

(v) =

pq− q+1, the third partition of edges E3(ℑ(Zpq)) contains pq− p− q+1 edges
uv, where dℑ(Zpq)

(u) = pq − 1, dℑ(Zpq)
(v) = p+ q − 1.

The fourth partition of edges E4(ℑ(Zpq)) contains pq − p − q + 1 edges uv,
where dℑ(Zpq)

(u) = pq − p+ 1, dℑ(Zpq)
(v) = pq − q + 1.

The fifth partition of the edges E5(ℑ(Zpq)) contains (p− 1)(pq − p− q + 1)
edges uv, where dℑ(Zpq)

(u) = pq − p+ 1, dℑ(Zpq)
(v) = p+ q − 1.

The sixth partition of the edges E6(ℑ(Zpq)) contains (q− 1)(pq− p− q+ 1)
edges uv, where dℑ(Zpq)

(u) = pq − q + 1, dℑ(Zpq)
(v) = p + q − 1. Then, the
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required results for the graph ℑ(Zpq) by using the number of its edge partition
as follows:

(1) The first Zagreb index

M1(ℑ(Zpq)) =
∑

uv∈E(ℑ(Zpq))

[d(u) + d(v)]

= (p− 1)[pq − 1 + pq − p+ 1] + (q − 1)[pq − 1 + pq − q + 1]

+ (pq − p− q + 1)[pq − 1 + p+ q − 1]

+ (pq − p− q + 1)[pq − p+ 1 + pq − q + 1]

+ (p− 1)(pq − p− q + 1)[pq − p+ 1 + p+ q − 1]

+ (q − 1)(pq − p− q + 1)[pq − p+ 1 + p+ q − 1]

= p2q2(p+ q + 1)− pq(p2 + q2 + p+ q − 1).

(2) The third Zagreb index

M3(ℑ(Zpq)) =
∑

uv∈E(ℑ(Zpq))

|d(u)− d(v)|

= (p− 1)[pq − 1− pq + p− 1] + (q − 1)[pq − 1− pq + q − 1]

+ (pq − p− q + 1)[pq − 1− p− q + 1]

+ (pq − p− q + 1)[pq − p+ 1− pq + q − 1]

+ (p− 1)(pq − p− q + 1)[pq − p+ 1− p− q + 1]

+ (q − 1)(pq − p− q + 1)[pq − p+ 1− p− q + 1]

= p2q2(p+ q − 5)− pq[3(p2 + q2 + 5)− 9p− 11q]

+ 2(p3 + q3)− 4p(p− 1)− 6q(q − 1).

Similarly, we can generalize the second Zagreb index of the graph ℑ(Zpq).

Example 5.1. Let ℑ(Z15) be the complement of the vertex-order graph of the
finite cyclic group Z15. Then, its Zagreb indices are given by

(1) M1(ℑ(Z15)) = 1410;

(2) M3(ℑ(Z15)) = 310.

Using Theorem 5.1 the results obtained for ℑ(Z15) are as follows:

(1) The first Zagreb index

M1(ℑ(Z15)) = p2q2(p+ q + 1)− pq(p2 + q2 + p+ q − 1)

= 3252(3 + 5 + 1)− 3.5(32 + 52 + 3 + 5− 1)

= 225(9)− 15(41)

= 1410.
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(2) The third Zagreb index

M3(ℑ(Z15)) = p2q2(p+ q − 5)− pq[3(p2 + q2 + 5)− 9p− 11q]

+ 2(p3 + q3)− 4p(p− 1)− 6q(q − 1)

= 310.

Similarly, we can enumerate the second Zagreb index of the graph ℑ(Z15).

Theorem 5.2. Let ℑ(G) be the complement of the vertex-order graph of the
finite cyclic group G of prime order p. Then, its Zagreb indices are given by

(1) M1(ℑ(G)) = p(p− 1);

(2) M2(ℑ(G)) = (p− 1)2;

(3) M3(ℑ(G)) = (p− 1)(p− 2).

Proof. Let ℑ(Zp) be the complement of the vertex-order graph of the finite
cyclic group G. Since ℑ(G) is a disconnected graph of complete graphsK1,Kp−1,

the total number of vertices and edges of ℑ(Zp) (or) K1,p−1 are given by p and
p − 1 respectively. Then, the vertex set can be partitioned into 1 vertices of
degree p− 1, and p− 1 vertices of degree 1. Thus, the only one edge set which
is given by E1,p−1 = p− 1. (1) The first Zagreb index

M1(ℑ(Zp)) =
∑

uv∈E(ℑ(Zp))

[d(u) + d(v)] = p(p− 1).

(2) The second Zagreb index

M2(ℑ(Zp)) =
∑

uv∈E(ℑ(Zp))

d(u)d(v)

= (p− 1)[(p− 1)(1)]

= (p− 1)2.

(3) The third Zagreb index

M3(ℑ(Zp)) =
∑

uv∈E(ℑ(Zp))

|d(u)− d(v)| = (p− 1)(p− 2).

Example 5.2. The first, second and third Zagreb indices of the complement of
the vertex-order graph ℑ(Z19) of the finite cyclic group Z19 are 342, 324, 306
respectively.

6. Conclusion

In this paper, the graph theoretical properties of the vertex-order graph and its
complements are interpreted with their proofs. Also the some Zagreb indices
of the vertex-order graph ℑ(G) and the complement of the vertex-order graph
ℑ(Zpq), ℑ(Zp) are derived with their examples.
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Abstract. In this paper, within framework uncertain theory, we investigate Lebesgue’s
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1. Introduction

Uncertainty theory was initiated by Liu [2] in 2007 and advanced by Liu [3] in
2011 which based on an uncertain measure which supplies normality, duality,
subadditivity, and product axioms. Recently, uncertainty theory has effectively
been applied to uncertain programming (see, e,g., Liu [4], Liu and Chen [5]),
uncertain risk analysis (see, e.g., Liu [6]), uncertain calculus (see, e.g., Liu [7])
and uncertain statistics (see, e.g., Tripathy and Nath [8]), etc.

Peng [9] proposed the notions of complex uncertain variables that are mea-
surable functions from uncertainty spaces to the set of complex numbers. As
convergence of sequences plays an essential role in the basic theory of mathe-
matics, there are many mathematicians who have worked these in the field of
uncertain measure. Liu [2] presented convergence in measure, convergence in
mean, convergence almost surely (a.s.) and convergence in distribution in 2007.
You [12] gave a kind type of convergence called convergence uniformly almost
surely (u.a.s.) and proved the relationships among the convergence notions.
Based on these concepts, the convergence of complex uncertain sequences was
first worked by Chen, Ning and Wang [13]. Tripathy and Nath [8] investigated
the statistical convergence concepts of complex uncertain sequences.
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Several kinds of convergence were investigated for sequence of measurable
functions on a measure space, and fundamental relations between these types
were examined [14]. Fuzzy measure theory is a generalisation of classical measure
theory. This generalisation is acquired by exchanging the additivity axiom of
classical measures with weak axioms of monotonicity and continuity [15]. As
detailed in [16, 17, 18], several generalizations of Lebesgue’s theorem, Egoroff’s
theorem and Riesz’s theorem for sequence of measurable functions on classical
measure spaces hold for fuzzy measures with the autocontinuity and finiteness.

This paper is devoted to presenting classical theorems such as Lebesgue’s the-
orem, Egoroff’s theorem and Riesz’s theorem for complex uncertain sequences
in uncertain theory.

2. Preliminaries

First, some basic notions and theorems in uncertainty theory are given, which
are utilized in this paper.

Definition 2.1. Assume that L be a σ-algebra on a non-empty set Γ. A set
function M is named an uncertain measure if it supplies the subsequent axioms:

(i) M{Γ} = 1;

(ii) M{Λ}+M{Λc} = 1 for any Λ ∈ Γ

(iii) For all countable sequence of {Λp} ⊂ L, we obtain

M


∞⋃
p=1

Λp

 ≤
∞∑
p=1

M{Λp} .

The triplet (Γ,L,M) is named an uncertainty space, and every element Λ in L
is known as an event.

Definition 2.2. A complex uncertain variable is a measurable function from
the space (Γ,L,M) to the set of complex numbers, namely, for any Borel set of
T of complex numbers, the set

{ζ ∈ T} = {γ ∈ Γ : ζ (γ) ∈ T}

is an event.

Definition 2.3. The sequence {ζw} is named to be convergent a.s. to ζ provided
that there is an event Λ with M{Λ} = 1 such that

lim
w→∞

∥ζw(γ)− ζ(γ)∥ = 0,

for every γ ∈ Λ.
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Definition 2.4. The sequence {ζw} is named to be convergent u.a.s. to ζ pro-
vided that there is a {Rk}, M{Rk} → 0 such that {ζw} converges uniformly to
ζ in Rck = Γ−Rk, for any fixed k ∈ N.

Let T be an abstract space. F a σ-algebra of subsets of T , X a real normed
space with the origin 0, P0 (X) the family of all nonvoid subsets of X; Pf (X)
the family of closed, nonvoid sets of X and h the Hausdorff pseudometric on
Pf (X) given by:

h(M ;N) = max {e (M,N) ; e (N,M)} , for every M,N ∈ Pf (X) ,

where e (M,N) = supx∈X d (x,N) is the excess of M over N .

Definition 2.5 ([1, 10, 11]). A set multifunction µ : F → Pf (X) is said to be:

(i) continuous from below if limn→∞ h (µ (An) , A) = 0, for each increasing
sequence of sets (An)n ⊂ F , with An ↗ A.

(ii) continuous from above if limn→∞ h (µ (An) , A) = 0, for each decreasing
sequence of sets (An)n ⊂ F , with An ↘ A.

(iii) order continuous if limn→∞ |µ (An)| = 0, for every sequence of sets (An)n ⊂
F , with An ↘ ∅.

(iv) strongly order continuous if limn→∞ |µ (An)| = 0, for every sequence of
sets (An)n ⊂ F , with An ↘ A and µ (An) = {0} .

3. Main results

The aim of this study is to examine Lebesgue’s theorem, Egoroff’s theorem and
Riesz’s theorem in uncertain measure theory. Throughout the study, assume
(Γ,L,M) be an uncertainty space, Λw and Λ are both events in L. Now, we
give two notions of uncertain measure M.

Definition 3.1. M is named strongly order continuous, if it supplies that
limw→∞M (Λw) = 0 whenever Λw ↘ Λ and M (Λ) = 0.

Definition 3.2. M is named strongly continuous at Γ, if it supplies that

lim
w→∞

M (Λw) = 1

whenever Λw ↗ Λ and M (Λ) = 1.

Theorem 3.1 (Lebesgue’s theorem). Assume that {ζw} be a complex uncertain
sequence and ζ be a complex uncertain variable in (Γ,L,M), which supply the
subsequent condition that {ζw} converges almost surely (a.s.) to ζ. Then, {ζw}
converges in measure to ζ iff M is strongly order continuous.



LEBESGUE’S THEOREM AND EGOROFF’S THEOREM ... 393

Proof. Presume that the sequence {ζw} converges to ζ a.s., and take H as the
set of these points γ ∈ Γ at which ζw (γ) does not convergence to ζ (γ), hen

H =
∞⋃
p=1

∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
and M (H) = 0. In addition, we get

M

( ∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

})
= 0

for any p ≥ 1. If we accept

Λ(p)
w =

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
and

Λ(p) =
∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
for any p ≥ 1, then

∞⋃
r≥w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
↘

∞⋂
w=1

∞⋃
r=w

{
γ : ∥ζr (γ)− ζ (γ)∥ ≥ 1

p

}
, (w → ∞)

and M(Λ(p)) = 0. According to strongly order continuity of M, we can acquire

limw→∞M(Λ
(p)
w ) = 0 for any p ≥ 1 and, so

lim
w→∞

M
({

γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

p

})
≤ lim

w→∞
M
(
Λ(p)
w

)
= 0, ∀p ≥ 1.

This demonstrates that {ζr} converges in measure to ζ. For any sequence {Λw}w
of events with Λw ↘ Λ and M (Λ) = 0, we determine a complex uncertain
sequence {ζw} by

ζw (γ) =

{
0, if γ ∈ Γ− Λw,

1, if γ ∈ Λw

for any w ≥ 1. It is easy to understand that {ζw} converges to 0 a.s. If {ζw}
converges to 0 in measure, then we can acquire

lim
w→∞

M (Λw) ≤ lim
n→∞

M
({

γ : ζw (γ) ≥ 1

2

})
= 0.

As a result, M is strongly order continuous.

Now, we generalize Egoroff’s theorem in classical measure theory to uncer-
tain measure theory.
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Definition 3.3. M is called to have feature (S), if for any sequence {Λw}w of
events with limw→∞M (Λw) = 0, there is a subsequence {Λwi}i of {Λw}w such
that M (lim supΛwi) = 0.

Theorem 3.2 (Egoroff’s theorem). Assume that {ζw} be a complex uncertain
sequence and ζ be a complex uncertain variable in (Γ,L,M). If M is strongly
order continuous and has feature (S), then

ζw → ζ(a.s.) ⇒ ζw → ζ(u.a.s.)

Proof. Presume that M is strongly order continuous and has feature (S ). Take
H as the set of points γ ∈ Γ whenever {ζw} does not convergence to ζ. Then,
M (H) = 0 and {ζw} converges a.s. to ζ on Γ−H. If we indicate

H(r)
w =

∞⋂
i=w

{
γ ∈ Γ : ∥ζi (γ)− ζ (γ)∥ < 1

r

}

for any r ≥ 1, then H
(r)
w is increasing in w for all fixed r, and we obtain

Γ−H =

∞⋂
r=1

∞⋃
w=1

H(r)
w .

As for any fixed r ≥ 1, Γ−H ⊆
⋃∞
w=1H

(r)
w , we get

Γ−H(r)
w ↘

∞⋂
w=1

(
Γ−H(r)

w

)
.

Noting that
⋂∞
w=1(Γ−H

(r)
w ) ⊂ H for any fixed r ≥ 1, so M(

⋂∞
w=1(Γ−H

(r)
w )) = 0

(r = 1, 2, ...). By utilizing the strong order continuity of M, we get

lim
w→∞

M
(
Γ−H(r)

w

)
= 0, ∀r ≥ 1.

So, there is a subsequence {Γ−H
(r)
w(r)}r of {Γ−H

(r)
w : w, r ≥ 1} supplying

M
(
Γ−H

(r)
w(r)

)
≤ 1

r
, ∀r ≥ 1

and so
lim
w→∞

M
(
Γ−H

(r)
w(r)

)
= 0.

By applying the feature (S ) of M to the sequence {Γ−H
(r)
w(r)}r, then there is a

subsequence of {Γ−H
(ri)
w(ri)

}i of {Γ−H
(r)
w(r)}r such that

M
(
lim
i→∞

(
Γ−H

(ri)
w(ri)

))
= 0
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and r1 < r2 < ....
At the same time, since(∞⋃

i=t

(
Γ−H

(ri)
w(ri)

))
↘ lim

i→∞

(
Γ−H

(ri)
w(ri)

)
so, by utilizing the strong order continuity of M, we get

lim
t→∞

M

(∞⋃
i=t

(
Γ−H

(ri)
w(ri)

))
= 0.

For any ρ > 0, we take t0 such that M(
⋃∞
i=t0

(Γ−H
(ri)
w(ri)

)) < ρ, namely, M(Γ−⋂∞
i=t0

H
(ri)
w(ri)

) < ρ.

Take Hρ =
⋂∞
i=t0

H
(ri)
w(ri)

, then M(Γ−Hρ) < ρ. Now, we need to demonstrate

that {ζw} converges to ζ on Hρ uniformly a.s. Since

Hρ =

∞⋂
i=t0

∞⋂
j=w(ri)

{
γ ∈ Γ : ∥ζi (γ)− ζ (γ)∥ < 1

ri

}
,

therefore, for any fixed i ≥ k0,

Hρ ⊂
∞⋂

j=w(ri)

{
γ ∈ Γ : ∥ζj (γ)− ζ (γ)∥ < 1

ri

}
.

For any given σ > 0, we take i0 (≥ t0) such that 1
ri0

< σ. Thus, as j > w (ri0),

for any γ ∈ Hρ, ∥ζj (γ)− ζ (γ)∥ < 1
ri0

< σ. This denotes that {ζw} converges to

ζ on Γρ uniformly a.s. The proof of the theorem is finalized.

Definition 3.4. M is named order continuous if it supplies that limw→∞M(Λw)
= 0 whenever Λw ↘ ∅.

Theorem 3.3. Let M be an uncertain measure, assume that {ζw} be a complex
uncertain sequence and ζ be a complex uncertain variable in (Γ,L,M). ζw →
ζ(a.s.) implies ζw → ζ(u.a.s.), then M is strongly order continuous and hence
order continuous.

Proof. For any decreasing sequence {Λw}w of events with Λw ↘ Λ andM (Λ) =
0, we consider a complex uncertain sequence {ζw} as

ζw (γ) =

{
0, if γ ∈ Γ− Λw,

1, if γ ∈ Λw

for any w ≥ 1. It is easy to obtain that ζw → 0 (a.s.). If ζw → 0 (u.a.s.), then
we can acquire for any σ > 0,

lim
w→∞

M{γ : ∥ζw (γ)∥ ≥ σ} = 0.
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As a result

lim
w→∞

M (Λw) = lim
w→∞

M
{
γ : ζw (γ) ≥ 1

2

}
= 0.

This gives M is strongly order continuous and hence order continuous.

Theorem 3.4 (Riesz’s theorem). Assume that M be an uncertain measure with
the feature (S). If {ζw} converges to ζ in measure, then there is a subsequence
{ζwr}r of {ζw}w such that ζwr → ζ(a.s.).

Proof. Let {ζw} converges to ζ in measure. Then

lim
w→∞

M
{
γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

r

}
= 0, ∀r ≥ 1.

If we take Λ
(r)
w =

{
γ : ∥ζw (γ)− ζ (γ)∥ ≥ 1

r

}
, then there is a subsequence {wr}r

such that M(Λ
(r)
wr ) ≤ 1

r for any r ≥ 1. Since M has the feature (S ), there is a

subsequence {Λ(ri)
wri

} of {Λ(r)
wr} such that M(limi→∞Λ

(ri)
wri

) = 0. This gives that
ζwri

→ ζ(a.s.).
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Abstract. Today, fuzzy graphs have a variety of applications in other fields of study,
including medicine, engineering, and psychology, and for this reason many researchers
around the world are trying to identify their properties and use them in computer science
as well as finding the shortest problem in a network. So, in this paper, some new fuzzy
graphs are introduced and some properties of them are investigated. As a consequence
of our results, some well-known assertions in the graph theory are obtained.

Keywords: fuzzy set, fuzzy graph, fuzzy line graph, fuzzy common neighborhood
graph.

1. Introduction

The concept of graph theory was first introduced by Euler. In 1965, L. A. Zadeh
discussed the fuzzy set [37]. Graphs are basically the bonding of objects. To
emphasis on a real life problem, the objects are being bonded by some relations,
such as friendship is the bonding of people. But when the ambiguousness or
uncertainty in bonding exists, then the corresponding graph can be modeled as
fuzzy graph model.

The first definition of a fuzzy graph was given by Kaufmann, which was
based on Zadeh’s fuzzy relations in 1973. A fuzzy graph has good capabilities in
dealing with problems that cannot be explained by weight graphs. They have
been able to have wide applications even in fields such as psychology and identi-
fying people based on cancerous behaviors. One of the advantages of fuzzy graph
is its flexibility in reducing time and costs in economic issues, which has been
welcomed by all managers of institutions and companies. Fuzzy graph models
are advantageous mathematical tools for dealing with combinatorial problems
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of various domains including operations research, optimization, social science,
algebra, computer science, and topology. They are obviously better than graph-
ical models due to natural existence of vagueness and ambiguity. Mordeson
studied fuzzy line graphs and developed its basic properties, in 1993 [14]. The
theory of fuzzy graph is growing rapidly, with numerous applications in many
domains, including networking, communication, data mining, clustering, image
capturing, image segmentation, planning, and scheduling. Rashmanlou et al.
[21, 22, 25, 26, 27, 28] defined bipolar fuzzy graphs with categorical proper-
ties, product vague graphs, and shortest path problem in vague graphs. Akram
et al. [1, 2] introduced certain types of vague graphs and strong intuitionistic
fuzzy graphs. Borzooei et al. [4, 5, 6, 7, 8, 9, 10] investigated new concepts
on vague graphs. Parvathi et al. [16, 17] introduced intuitionistic fuzzy graphs
and domination in intuitionistic fuzzy graphs. Kou et al. [11] given novel de-
scription on vague graph with application in transportation systems. Samanta
et al. [18, 19, 20, 23, 24]presented new definitions on fuzzy graphs. Kosari et
al. [12] introduced vague graph structure with application in medical diagnosis.
Talebi et al. [34, 35, 36] studied interval-valued intuitionistic fuzzy competition
graph, and new concept of an intuitionistic fuzzy graph with applications. Rao
et al. [29, 30, 31, 32] defined domination and equitable domination in vague
graphs. Zeng et al. [38] investigated certain properties of single-valued neu-
trosophic graphs. In this paper, we introduce many basic notions concerning a
fuzzy graph and investigate a few related properties.

First we go through some basic definitions from [14, 15]

Definition 1.1. A fuzzy subset of a non-empty set S is a map σ : S → [0, 1]
which assigns to each element x in S a degree of membership σ(x) in [0, 1] such
that 0 ≤ σ(x) ≤ 1.

If S represents a set, a fuzzy relation µ on S is a fuzzy subset of S × S. In
symbols, µ : S × S → [0, 1] such that 0 ≤ µ(x, y) ≤ 1 for all (x, y) ∈ S × S.

Definition 1.2. Let σ be a fuzzy subset of a set S and µ a fuzzy relation on S.
Then µ is called a fuzzy relation on σ if µ(x, y) ≤ σ(x) ∧ σ(y) for all x, y ∈ S
where ∧ denote minimum.

Let V be a nonempty set. Define the relation ∼ on V × V by for all
(x, y), (u, v) ∈ V × V , (x, y) ∼ (u, v) if and only if x = u and y = v or x = v
and y = u. Then it is easily shown that ∼ is an equivalence relation on V × V .
For all x, y ∈ V , let [(x, y)] denote the equivalence class of (x, y) with respect
to ∼. Then [(x, y)] = {(x, y), (y, x)}. Let EV = {[(x, y)]|x, y ∈ V, x ̸= y}. For
simplicity, we often write E for EV when V is understood. Let E ⊆ E . A graph
is a pair (V,E). The elements of V are thought of as vertices of the graph and
the elements of E as the edges. For x, y ∈ V , we let xy denote [(x, y)]. Then
clearly xy = yx. We note that graph (V,E) has no loops or parallel edges.
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Definition 1.3. A fuzzy graph G = (V, σG, µG) is a triple consisting of a
nonempty set V together with a pair of functions σ := σG : V → [0, 1] and
µ := µG : E → [0, 1] such that for all x, y ∈ V , µ(xy) ≤ σ(x) ∧ σ(y).

The fuzzy set σ is called the fuzzy vertex set of G and µ the fuzzy edge set
of G. Clearly µ is a fuzzy relation on σ.

Definition 1.4. A path P in a fuzzy graph G = (V, σ, µ) is a sequence of distinct
vertices x0, x1, · · · , xn (except possibly x0 and xn) such that µ(xi−1xi) > 0 for
i = 1, · · · , n. Here n is called the length of the path. We call P a cycle if x0 = xn
and n ≥ 3. Two vertices that are joined by a path are called connected.

Definition 1.5. Let G = (V, σ, µ) be a fuzzy graph. The degree x ∈ V is denoted
by dG(x) and defined as dG(x) =

∑
y∈V

µ(xy).

2. Introducing some new fuzzy graphs

In this section after introducing some new fuzzy graphs, we study some prop-
erties of them. These new fuzzy graphs and their properties are important not
only as fuzzy graphs, but also for the crisp graph in the special case.

Definition 2.1. Let G = (V, σ, µ) be a fuzzy graph. We define the complement
of G by G = (V , σ, µ) such that

a) V = V and σ(v) = σ(v) for all v ∈ V ;

b) µ(uv) = σ(u) ∧ σ(v)− µ(uv), for all u, v ∈ V .

It is easy to show that G is a fuzzy graph on V .

Example 2.1. Let V = {a, b, c, d} and σ : V → [0, 1] be a map such that
σ(a) = 0.9, σ(b) = 0.7, σ(c) = 0.4 and σ(d) = 0.5. Also, let µ : V × V → [0, 1]
be a map such that µ(ab) = 0.6, µ(bc) = 0.4, µ(bd) = 0.4 and µ(dc) = 0.3. We
have the following diagram for the fuzzy graph G = (V, σ, µ).

σ(a)=0.9

σ(b)=0.7

σ(d)=0.5

σ(c)=0.4

µ(ab) = 0.6

µ(bc) = 0.4

µ(bd) = 0.4 µ(dc) = 0.3
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Also, the diagram of the fuzzy graph G = (V , σ, µ) is as follows:

σ(a)=0.9

σ(b)=0.7

σ(d)=0.5

σ(c)=0.4

µ(ab) = 0.1

µ(ad) = 0.5

µ(bc) = 0.4

µ(bd) = 0.1 µ(dc) = 0.1

Lemma 2.1. Let G = (V, σ, µ) be a fuzzy graph. Then G = G.

Proof. Suppose that G = (V , σ, µ) and G = (V , σ, µ). By the definition of the

complement fuzzy graph, we have V = V = V and σ = σ = σ. It suffices to
prove that µ(uv) = µ(uv) for all u, v ∈ V . We have

µ(uv) = σ(u) ∧ σ(v)− µ(uv)

= σ(u) ∧ σ(v)− µ(uv) = σ(u) ∧ σ(v)− (σ(u) ∧ σ(v)− µ(uv)) = µ(uv).

Definition 2.2. Let G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) be two fuzzy graphs
such that V1 ∩ V2 = ∅. Union of two fuzzy graphs G1 and G2 is denoted by
G1 ∪G2 = (V, σ, µ) such that V = V1 ∪ V2,

σ(v) =

{
σ1(v), v ∈ V1

σ2(v), v ∈ V2
and µ(uv) =


µ1(uv), u, v ∈ V1

µ2(uv), u, v ∈ V2

0, o.w

It is easy to see G1 ∪G2 is a fuzzy graph.

Definition 2.3. Let G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) be two fuzzy graphs
such that V1 ∩ V2 = ϕ. Sum of two fuzzy graphs G1 and G2 is denoted by
G1 +G2 = (V, σ, µ) such that V = V1 ∪ V2,

σ(v) =

{
σ1(v), v ∈ V1

σ2(v), v ∈ V2
and µ(uv) =


µ1(uv), u, v ∈ V1

µ2(uv), u, v ∈ V2

σ1(u) ∧ σ2(v), u ∈ V1, v ∈ V2

.

Example 2.2. Let G1 = (V1, σ1, µ1) be a fuzzy graph such that V1 = {a, b, c}
and σ1 : V1 → [0, 1] and µ1 : V1 × V1 → [0, 1] be maps such that σ1(a) = 0.9,
σ1(b) = 0.7, σ1(c) = 0.4, µ1(ab) = 0.4 and µ1(bc) = 0.5. Also, let G2 =
(V2, σ2, µ2) be a fuzzy graph such that V2 = {d, e} and σ2 : V2 → [0, 1] and
µ2 : V2 × V2 → [0, 1] be maps such that σ2(d) = 0.8, σ2(e) = 0.6, µ2(de) = 0.3.
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The fuzzy graphs G1 and G2 are drawn as follows, respectively:

σ1(a)=0.9

σ1(b)=0.7 σ1(c)=0.4

σ2(d)=0.8

σ2(e)=0.6

µ(ab) = 0.4

µ(bc) = 0.5

µ(de) = 0.3

By the definition of the sum of two graphs, µ(ab) = 0.4, µ(ad) = 0.8, µ(ae) =
0.6, µ(de) = 0.3, µ(be) = 0.6, µ(bc) = 0.5, µ(bd) = 0.7, µ(ce) = 0.4, µ(dc) = 0.4
and the diagram of the fuzzy graph G1 +G2 is as follows:

σ(a)=0.9

σ(b)=0.7

σ(c)=0.4

σ(d)=0.8

σ(e)=0.6

0.4 0.8

0.6

0.3

0.4

0.60.5

0.7

0.4

Lemma 2.2. Let G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) be two fuzzy graphs.
Then

a) G1 ∪G2 = G1+ G2;

b) G1 +G2 = G1 ∪G2.

Proof. Suppose thatG1∪G2 = (V, σ, µ) , G1 ∪G2 = (V , σ, µ), G1 = (V1, σ1, µ1),
G2 = (V2, σ2, µ2) and G1 +G2 = (V ′, σ′, µ′). By the definition of the union and
sum of two graphs, we have V = V = V1 ∪ V2 = V1 ∪ V2 = V ′ and σ(v) = σ(v)
for all v ∈ V . It suffices to prove that µG1∪G2

(uv) = µ′
G1+G2

(uv) for all uv ∈ E .
We have

µG1∪G2
(uv) = σ(u) ∧ σ(v)− µ(uv) = σ(u) ∧ σ(v)−


µ1(uv), u, v ∈ V1

µ2(uv), u, v ∈ V2

0, o.w
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=


σ1(u) ∧ σ1(v)− µ1(uv), u, v ∈ V1

σ2(u) ∧ σ2(v)− µ2(uv), u, v ∈ V2

σ1(u) ∧ σ2(v), u ∈ V1, v ∈ V2

=


µ1(uv), u, v ∈ V1

µ2(uv), u, v ∈ V2

σ1(u) ∧ σ2(v), u ∈ V1, v ∈ V2

= µ′
G1+G2

(uv).

The other conclusion is proved similarly.

Definition 2.4. Let G1 = (V1, σ1, µ1) and G2 = (V2, σ2, µ2) be two fuzzy graphs.
The Cartesian product of graphs G1 and G2 is denoted by G1 × G2 = (V, σ, µ)
is a fuzzy graph such that V = V1 × V2,

σ((u, v)) = σ1(u) ∨ σ2(v),

where ∨ is denoted maximum and

µ((u, v)(u′, v′)) =


µ2(vv

′), if u = u′

µ1(uu
′), if v = v′

0, o.w

.

It is easy to show that dG1×G2((u, v)) = dG1(u) + dG2(v).

Example 2.3. Let G1 and G2 be the fuzzy graphs of Example 2.2. We have
the following diagram for the fuzzy graph G1 ×G2.

σ((a,d))=0.9

σ((a,e))=0.7

σ((b,d))=0.4

σ((b,e))=0.5

σ((c,d))=0.4

σ((c,e))=0.5

0.4

0.5

0.5

0.5

0.4 0.5

0.5

Let G = (V, σ, µ) be a fuzzy graph the neighbor of vertex v is denoted by
NG(v) and is defined as follows:

NG(v) = {u ∈ V | µ(uv) > 0}.

Definition 2.5. The fuzzy common neighborhood graph or briefly fuzzy congraph
of G = (V, σ, µ) is a fuzzy graph as con(G) = (V, ω, λ) such that ω(x) = σ(x)
and

λ(uv) = min
x∈H

{µ(ux).µ(vx)},

where H = NG(u) ∩NG(v).
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Example 2.4. Let V = {a, b, c} and σ : V → [0, 1] be a map such that σ(a) =
0.5, σ(b) = 0.7, σ(c) = 0.8. Also, let µ : V × V → [0, 1] be a map such that
µ(ab) = 0.4 and µ(bc) = 0.6. We have the following diagram for the fuzzy graph
G = (V, σ, µ).

σ(a)=0.5

σ(b)=0.7

σ(c)=0.8

µ(ab) = 0.4

µ(bc) = 0.6

By using the definition of the fuzzy congraph, we have λ(ab) = 0, λ(bc) = 0,
λ(ac) = 0.24 and con(G) = (V, ω, λ) is as follows:

ω(a)=0.5

ω(b)=0.7

ω(c)=0.8

λ(ac) = 0.24

Definition 2.6. Let G = (V, σ, µ) be a fuzzy graph. The fuzzy line graph of G
is a fuzzy graph as L(G) = (E , ω, λ) such that ω(e) = µ(uv) for all e = uv ∈ E
and λ(e1e2) = ω(e1).ω(e2) for all e1 = uv1, e2 = uv2 in E.

Example 2.5. Let V = {a, b, c, d} and σ : V → [0, 1] be a map such that σ(a) =
0.5, σ(b) = 0.7, σ(c) = 0.8 and σ(d) = 0.6. Also, let µ : V ×V → [0, 1] be a map
such that µ(e1) = µ(ab) = 0.4, µ(e2) = µ(bc) = 0.6 and µ(e3) = µ(ad) = 0.3.
We have the following diagram for the fuzzy graph G = (V, σ, µ).

σ(a)=0.5

σ(b)=0.7

σ(c)=0.8

σ(d)=0.6

µ(ab) = 0.4

µ(bc) = 0.6

µ(ad) = 0.3

By using the definition of the fuzzy line graph, we have ω(e1) = 0.4, ω(e2) = 0.6,
ω(e3) = 0.3, λ(e1e2) = 0.24, λ(e2e3) = 0.12 and the diagram of L(G) = (E , ω, λ)
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is as follows:

ω(e1)=0.4ω(e2)=0.6 ω(e3)=0.3

λ(e1e2) = 0.24 λ(e2e3) = 0.12

Let G = (V, σ, µ) be a fuzzy graph and V = {v1, v2, ..., vp}, E = {e1, e2, ..., eq}
the vertex set and the edge set of G, respectively.

The adjacency matrix of fuzzy graph G is the p × p matrix AF = AF (G)
whose (i, j) entry denoted by aij , is defined by aij = µ(vivj).

The (vertex-edge) incidence matrix of fuzzy graph G is the p×q matrixMF ,
with rows indexed by the vertices and columns indexed by the edges, whose (i, j)
entry denoted by mij , is defined as follows:

mij =

{
µ(ej), if vi is an endpoint of edge ej

0, o. w

The fuzzy degree matrix of G is the p × p matrix DF whose (i, j) entry
denoted by dij , is defined as follows:

dij =


∑
vk∈V

µ2(vivk), if i = j

0, o. w

The edge matrix of fuzzy graph G is the q × q matrix EF whose (i, j) entry
denoted by eij , is defined as follows:

eij =

{
µ(ei), if i = j

0, o. w

Definition 2.7. Let A = [aij ] and B = [bij ] be two matrix of size m× n. Then
we define C = A⊙B is the m×n matrix whose (i, j) entry denoted by aij × bij.

Theorem 2.1. Let G = (V, σ, µ) be a fuzzy graph such that AF , MF and DF

are the adjacency, incidence and fuzzy degree matrices of G, respectively. Then

MF ×MT
F = AF ⊙AF +DF .

Proof. Let AF = [aij ]p×p, MF = [mij ]p×q, DF = [dij ]p×p, AF ⊙ AF = [tij ]p×p
and MF ×MT

F = [bij ]p×p. First, let i ̸= j. Then we get

bij =

q∑
k=1

mik.m
T
kj =

q∑
k=1

mik.mjk

=

{
mik′ .mjk′ , if vi and vj are endpoints of edge ek′

0, o. w
,
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for some 1 ≤ k′ ≤ q. It follows that

bij =

{
µ2(ek′), if vi and vj are endpoints of edge ek′

0, o. w

= aij .aij = tij = tij + 0 = tij + dij ,

which proves our assertion.

If i = j, then

bii =

q∑
k=1

mik.m
T
ki =

q∑
k=1

mik.mik =
∑

ek=vivt∈E
µ2(ek) =

∑
vt∈V

µ2(vivt) = dii.

Then bii = 0 + dii = aii.aii + dii, which completes the proof.

Example 2.6. Let G = (V, σ, µ) be the following fuzzy graph:

σ(b)=0.4

σ(a)=0.6 σ(c)=0.8

µ(ab) = 0.3

µ(bc) = 0.5

By the definitions of the adjacency, incidence, and fuzzy degree matrix in the
fuzzy graph, we have:

AF =

 0 0.3 0.5
0.3 0 0
0.5 0 0

 ,MF =

 0.3 0.5
0.3 0
0 0.5

 , DF =

 0.34 0 0
0 0.09 0
0 0 0.25

 .
It is easy to see that MF ×MT

F = AF ⊙AF +DF .

In the fuzzy graph G = (V, σ, µ), if for every v ∈ V set σ(v) = 1 and for
every edge e set µ(e) = 1, then we can assume that every crisp graph is a fuzzy
graph. Therefore, we can obtain similar results for crisp graphs. So, we have
the following result which is well-known in the graph theory [3].

Corollary 2.1. Let G be a graph and A, M and D be the adjacency, incidence
and degree matrix of G, respectively. Then

M ×MT = A+D.

The next theorem characterized the degree of every vertex in the fuzzy con-
graph.
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Theorem 2.2. Let G = (V, σ, µ) be a fuzzy graph and con(G) = (V, ω, λ) the
fuzzy congraph of G. If G has no cycles of size 4, then

dcon(G)(v) =
∑
u∈V

µ(uv)× dG(u)−
∑
u∈V

µ2(uv), v ∈ V.

Proof.

dcon(G)(v) =
∑
u∈V

λ(uv) =
∑
u∈V

min
x∈H

{µ(vx)× µ(xu)},

where H = NG(u) ∩ NG(v). Since G has no cycle of size 4, it follows that
H ⊆ {w} for some w ∈ V . Therefore,

dcon(G)(v) =
∑

vw,wu∈E(G)

µ(vw)× µ(wu)

=
∑

vw∈E(G)

µ(vw)×
∑
u∈V

µ(uw)−
∑
w∈V

µ2(vw)

=
∑
w∈V

µ(vw)× dG(w)−
∑
w∈V

µ2(vw)

=
∑
u∈V

µ(vu)× dG(u)−
∑
u∈V

µ2(vu).

From the above theorem, one can immediately deduce the following corollary,
which has proved in [13].

Corollary 2.2. Let G = (V,E) be a graph. If G has no cycles of size 4, then

dcon(G)(v) =
∑

u∈NG(v)

dG(u)− dG(v), v ∈ V.

The next theorem characterize the degree of every vertex in the fuzzy line
graph.

Theorem 2.3. Let G = (V, σ, µ) be a fuzzy graph and L(G) = (E , ω, λ) its fuzzy
line graph. Then

dL(G)(e) = µ(vivj)(dG(vi) + dG(vj)− 2µ(vivj)), e = vivj ∈ E(G).

Proof. For an arbitrary edge e = vivj ∈ E(G), set e′ = vsvt, where s ̸= i and
t ̸= j. We have

dL(G)(e) =
∑
e̸=e′

λ(ee′) =
∑

e ̸=e′=vivt∈E(G)

λ(ee′) +
∑

e ̸=e′=vjvs∈E(G)

λ(ee′)
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=
∑

vt ̸=vi,t ̸=j
µ(vivj)µ(vivt) +

∑
vs ̸=vj ,s ̸=i

µ(vivj)µ(vjvs)

= µ(vivj)
∑

vt ̸=vi,t̸=j
µ(vivt) + µ(vivj)

∑
vs ̸=vj ,s ̸=i

µ(vjvs)

= µ(vivj)(
∑
vt∈V

µ(vivt)− µ(vivj)) + µ(vivj)(
∑
vs∈V

µ(vjvs)− µ(vivj))

= µ(vivj)(dG(vi) + dG(vj)− 2µ(vivj)).

From the above theorem, we can conclude the following result, which is
trivial in the line graph.

Corollary 2.3. Let G = (V,E) be a graph and L(G) = (E,W ) the line graph
of G. Then

dL(G)(e) = dG(u) + dG(v)− 2, e ∈ E.

Theorem 2.4. Let G = (V, σ, µ) be a fuzzy graph with the incidence and edge
matrix MF and EF , respectively. Suppose that L(G) = (E , ω, λ) is the fuzzy line
graph of G with the adjacency matrix LF . Then

MT
F ×MF = LF + 2EF ⊙ EF .

Proof. Let MF = [mij ]p×q, LF = [lij ]q×q, EF = [eij ]q×q and MT
F × MF =

[bij ]q×q. For i ̸= j, we get

bij =

p∑
k=1

mT
ik.mkj =

p∑
k=1

mki.mkj

=

{
mk′i.mk′j , if vk′ is an endpoint of edges ei and ej

0, otherwise
,

for some 1 ≤ k′ ≤ p. Hence

bij =

{
µ(ei).µ(ej), if vk′ is an endpoint of edges ei and ej

0, otherwise;

thus

bij =

{
λ(eiej), if vk′ is an endpoint of edges ei and ej

0, otherwise

= lij = lij + 0 = lij + 2eij .eij .

which proves our assertion.
Now, suppose that i = j and ei = vtvs. We have

bii =

p∑
k=1

mT
ik.mkj =

p∑
k=1

mki.mki = m2
ti+m2

si = 2µ2(ei) = 2eii.eii = lii+2eii.eii.

Therefore, the proof is complete.
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Example 2.7. Let G be the fuzzy graph of example 2.5. By the definitions of
the incidence, edge matrix, and the adjacency matrix of the line graph of G, we
have the following matrices:

MF =


0.4 0 0.3
0.4 0.6 0
0 0.6 0
0 0 0.3

 , LF =

 0 0.24 0.12
0.24 0 0
0.12 0 0

 , EF =

0.4 0 0
0 0.6 0
0 0 0.3

 .
It is easy to check that MT

F ×MF = LF + 2EF ⊙ EF .

From the above theorem, we deduce the following result, which has proved
in [33].

Corollary 2.4. Let G be a graph with the incidence matrixM and the adjacency
matrix line graph L. Then

MT ×M = L+ 2Iq×q.

Theorem 2.5. Let G = (V, σ, µ) be a fuzzy graph with the adjacency and fuzzy
degree matrix AF and DF , respectively. Suppose that con(G) = (V, ω, λ) is the
fuzzy congraph of G with the adjacency matrix BF . If G has no cycles of size
4, then

A2
F = BF +DF .

Proof. Let AF = [aij ]p×p, BF = [bij ]p×p, DF = [dij ]p×p and A2
F = [cij ]p×p. For

i ̸= j, we have

cij =

p∑
k=1

aik.akj =

{
ait.atj , if the vertices vi and vj are connected to vt

0, o. w

for some 1 ≤ t ̸= i, j ≤ p. It follows that

cij =

{
µ(vivt).µ(vtvj), if the vertices vi and vj are connected to vt

0, o. w.

Since G has no cycles of size 4, then

cij =

{
λ(vivj), if the vertices vi and vj are connected to vt

0, o. w.

Thus, cij = bij + 0 = bij + dij , which proves our assertion in this case.
If i = j, then

cii =

p∑
k=1

aik.aki =

p∑
k=1

a2ik =
∑
vk∈V

µ2(vivk) = dii = bii + dii.

This completes the proof of the theorem.
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Example 2.8. Let G be the fuzzy graph of Example 2.4. By the definitions of
the adjacency matrix of G, con(G) and the fuzzy degree matrix of G, we have
the following matrices:

AF =

 0 0.4 0
0.4 0 0.6
0 0.6 0

 , BF =

 0 0 0.24
0 0 0

0.24 0. 0

 , DF =

0.16 0 0.24
0 0.52 0
0 0. 0.36

 .
It is easy to see that A2

F = BF +DF .

Corollary 2.5. Let G be a graph such that A and B are the adjacency matrices
of G and con(G), respectively. If G has no cycles of size 4, then A2 = B +D,
where D is the degree matrix of G.

3. Conclusion

It is well known that fuzzy graphs are among the most ubiquitous models of
both natural and humman-made structures. They can be used to model many
types of relations and process dynamics in computer science, biological, social
systems and physical. Theoretical concepts of fuzzy graphs are highly utilized
by computer science applications. Especially in research areas of computer
science such as data mining, image segmentation, clustering, image capturing
and networking. So, in this paper, some new fuzzy graphs are presented and
some properties of them are studied. As a consequence of our results, some
well-known assertions in the graph theory are given. in our future work, we will
introduce cubic vague fuzzy graphs and define new operations such as strong
product, direct product, lexicographic product, union, and composition on it.
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Abstract. This study addresses a new family of functions, to be named as the sub-η-
n-polynomial convex functions, which is defined as a general form of the n-polynomial
convex functions and the sub-η-convex functions, and some of their significant proper-
ties are presented as well. In addition, by means of the sub-η-n-polynomial convexity,
certain Hermite–Hadamard-type inequalities are established here. The sufficient con-
ditions regarding optimality for sub-η-n-polynomial convex programming are discussed
as applications.

Keywords: n-polynomial convex functions, sub-η-n-polynomial convex programming,
optimality conditions.

1. Introduction

Convexity, as well as generalized convexity, provide forceful principles and ap-
proaches in both mathematics and certain areas of engineering, in particular,
in optimization theory, see [13, 29, 15, 31, 33] and the references therein cited
in them. With regard to generalizations and extensions of classical convexity, a
variety of interesting articles have been published by plenty of mathematicians.
For example, Bector and Singh [5] considered a type of B-vex functions. Long
and Peng [24] discussed a family of functions, which is a general form of the B-

*. Corresponding author
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vex mappings, called semi-B-preinvex mappings. Chao et al. [8] investigated a
group of extented sub-b-convex mappings, as well as demonstrated the sufficient
optimality criteria regarding sub-b-convex programming within unconstrained
and inequality constrained conditions. Ahmad et al. [2] proposed the concept
of geodesic sub-b-s-convex mappings, as well as gave certain properties on Rie-
mannian manifolds. Liao and Du considered two groups of mappings in [21]
and [22], named as the sub-b-s-convex mappings and sub-(b,m)-convex map-
pings, respectively, from which certain significant properties were studied, and
optimality conditions for the introduced families of generalized convex program-
ming were reported.

On the other hand, convexity acts on a crucial role in the area of inequal-
ities by its significance of mathematics definition. Recently, a large number of
researchers, including mathematicians, engineers and scientists, have tried to
conduct an in-depth research regarding properties and inequalities in associa-
tion with convexity from distinct directions. For instance, Toplu et al. [32]
found a class of non-negative mappings, called n-polynomial convex mappings,
as well as several related Hermite–Hadamard-type inequalities have been dis-
cussed. Deng et al. [10] constructed an integral identity, as well as received
certain error bounds involving integral inequalities with regard to a family of
strongly convex mappings, which is named as strongly n-polynomial preinvex
mappings. By virtue of n-polynomial s-type preinvexity, Butt et al. [7] studied
certain refinements of Hermite–Hadamard-type integral inequalities. For more
significant findings in connection with n-polynomial convex mappings, we rec-
ommend the minded readers to consult [6, 27] and the bibliographies quoted in
them.

Trying to get the further discussion, let us consider to the subsequent ex-
traordinary Hermite–Hadamard’s inequality in association with convexity.

Suppose that ψ : Ω ⊆ R → R is a convex mapping defined on the interval
Ω, for each ζ1, ζ2 ∈ Ω together with ζ1 ̸= ζ2. The subsequent inequalities, to
be named as Hermite–Hadamard’s inequalities, are frequently put into use in
engineering mathematical and applied analysis

(1) ψ

(
ζ1 + ζ2

2

)
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ ≤ ψ(ζ1) + ψ(ζ2)

2
.

The distinguished integral inequalities, which have given rise to considerable
attention from plenty of authors, provide error bounds for the mean value re-
garding a continuous convex mapping ψ : [ζ1, ζ2] → R. There have been a large
amount of studies, with regard to the Hermite–Hadamard-type inequalities in-
volving other diverse types of convex mappings, such as N -quasiconvex map-
pings [1], s-convex mappings [20], (α,m)-convex mappings [30], strongly expo-
nentially generalized preinvex mappings [17], h-convex mappings [9], γ-preinvex
mappings [4] and so on. For more vital outcomes pertaining to the Hermite–
Hadamard-type inequalities, the reader may refer to [3, 11, 16, 23, 28, 25, 34]
and the bibliographies quoted in them.
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Enlightened by the above-mentioned research works, in particular, those cre-
ated in [18, 8, 32], we study a new group of generalized convex sets, as well as
generalized convex functions, to be called as sub-η-n-polynomial convex sets
and sub-η-n-polynomial convex functions, respectively. And we explore certain
fascinating properties of such group of sets and functions. Moreover, we in-
vestigate quite a few Hermite–Hadamard’s type inequalities in relation to the
sub-η-n-polynomial convex functions. As applications, we pursue the sufficient
optimality conditions for unconstrained, as well as inequality constrained pro-
gramming, which are under the sub-η-n-polynomial convexity.

Through out the paper, let us suppose that Λ is a nonempty convex set in Rn.
To this end, this section retrospects certain conceptions regarding generalized
convexity, and related momentous results.

Definition 1.1 ([8]). The real function ψ: Λ → R is named as a sub-η-convex
mapping defined on the interval Λ with regard to the mapping η : Λ×Λ× [0, 1] →
R, if the successive inequality

ψ
(
νγ + (1− ν)ϱ

)
≤ νψ(γ) + (1− ν)ψ(ϱ) + η(γ, ϱ, ν)

holds true for all γ, ϱ ∈ Λ and ν ∈ [0, 1].

Definition 1.2 ([32]). Assume that n ∈ N, the nonnegative mapping ψ: Ω ⊆
R → R is named as an n-polynomial convex mapping if the subsequent inequality

ψ
(
νγ + (1− ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ϱ)

holds true for all γ, ϱ ∈ Ω and ν ∈ [0, 1].

In the published article [14], the author proposed a refinement version with
regard to the extraordinary Hölder’s integral inequality, called as Hölder–İşcan’s
integral inequality as below.

Theorem 1.1 ([14]). Suppose that p > 1 and 1
p + 1

q = 1. If ψ and ρ are two
real mappings defined on the interval [ζ1, ζ2], as well as if |ψ|p, |ρ|q are both
integrable mappings on the interval [ζ1, ζ2], then we have the coming inequality

∫ ζ2

ζ1

|ψ(x)ρ(x)|dγ≤ 1

ζ2−ζ1

(∫ ζ2

ζ1

(ζ2−γ)|ψ(γ)|pdγ
) 1

p
(∫ ζ2

ζ1

(ζ2 − γ)|ρ(γ)|qdγ
) 1

q

+

(∫ ζ2

ζ1

(γ − ζ1)|ψ(γ)|pdγ
) 1

p
(∫ ζ2

ζ1

(γ − ζ1)|ρ(γ)|qdγ
) 1

q

 .
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2. Sub-η-n-polynomial convex functions and their properties

The fact that the convexity, n-polynomial convexity, and sub-η-convexity have
almost the analogous structures impels us to generalize these distinct fami-
lies of convex functions. Now, let us consider to introduce the conception of
the sub-η-n-polynomial convex functions and sub-η-n-polynomial convex sets as
below. Then certain basic characterization theorems are proposed, as well as
preservation of the sub-η-n-polynomial convexity with regard to some functional
operations such as composition, sum and maximum are studied. In particular,
two property theorems with regard to differentiable sub-η-n-polynomial convex
functions are investigated in this section.

Definition 2.1. Assume that n ∈ N, the non-negative function ψ: Λ → R is
named as sub-η-n-polynomial convex defined on the interval Λ with regard to the
mapping η : Λ× Λ× [0, 1] → R, if the subsequent inequality

(2) ψ
(
νγ+(1−ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(ϱ)+η(γ, ϱ, ν)

holds true for each γ, ϱ ∈ Λ and ν ∈ [0, 1]. On the other hand, if the successive
inequality

(3) ψ
(
νγ+(1−ν)ϱ

)
≥ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(ϱ)+η(γ, ϱ, ν)

holds true for each γ, ϱ ∈ Λ and ν ∈ [0, 1], then the function ψ is named as sub-
η-n-polynomial concave. If the inequality notations in the above-mentioned in-
equalities are strict, then the function ψ is named as strictly sub-η-n-polynomial
convex, as well as strictly sub-η-n-polynomial concave, respectively.

Remark 2.1. If we consider to take n = 1, then the sub-η-n-polynomial convex
function reduces to the sub-η convex functions. Moreover, when we attempt to
put n = 1 and claim η(γ, ϱ, ν) ≤ 0, the sub-η-n-polynomial convex function
transforms to convex functions.

Remark 2.2. In accordance with Remark 3 in Ref. [32], we know that each
nonnegative convex function is an n-polynomial convex function. When the
mapping η(γ, ϱ, ν) ≥ 0, each nonnegative convex function is also a sub-η-n-
polynomial convex function. In the same way, when we claim η(γ, ϱ, ν) ≥ 0, it
is obvious that each n-polynomial convex function is also a sub-η-n-polynomial
convex function.

Now, we try to study certain operations that preserve the sub-η-n-polynomial
convexity with regard to positive linear combination and securing pointwise
maximum. Because the proofs of these properties are simplified, they are omit-
ted.



418 LEI XU and TINGSONG DU

Proposition 2.1. If the functions ψ, ρ: Λ → R are both sub-η-n-polynomial
convex with regard to the same mapping η, then ψ + ρ is sub-η-n-polynomial
convex with regard to the mapping 2η, and αψ(α > 0) is sub-η-n-polynomial
convex with regard to the mapping αη.

Corollary 2.1. If ψκ: Λ → R (κ = 1, 2, . . . , δ) are a series of sub-η-n-polynomial
convex functions regarding the mappings ηκ : Λ×Λ× [0, 1] → R (κ = 1, 2, . . . , δ),
correspondingly, then the function

(4) ψ =
δ∑

κ=1

aκψκ, aκ ≥ 0, (κ = 1, 2, . . . , δ)

is sub-η-n-polynomial convex with regard to η =
∑δ

κ=1 aκηκ.

Proposition 2.2. If ψκ: Λ → R (κ = 1, 2, . . . , δ) are a series of sub-η-n-
polynomial convex functions with respect to the mappings ηκ : Λ × Λ × [0, 1] →
R (κ=1, 2, . . . , δ), correspondingly, then the function ψ=max{ψκ, i=1, 2, . . . , δ}
is a sub-η-n-polynomial convex function with regard to the mapping η = max{ηκ,
κ = 1, 2, . . . , δ}.

Theorem 2.1. Assume that ψ: Λ → R is a sub-η-n-polynomial convex function
with regard to the mapping η : Λ × Λ × [0, 1] → R, as well as ρ: R → R is an
increasing function. If ρ meets the coming conditions:

(i) ρ(αγ) = αρ(γ),∀γ ∈ R, α > 0,(5)

(ii) ρ(γ + ϱ) = ρ(γ) + ρ(ϱ),∀γ, ϱ ∈ R,(6)

then the function ψ△ = ρ ◦ ψ is sub-η-n-polynomial convex with regard to η△ =
ρ ◦ η.

Proof. Since the function ψ is sub-η-n-polynomial convex regarding the map-
ping η and the function ρ is increasing, it follows that

(ρ ◦ ψ)
(
νγ + (1− ν)ϱ

)
= ρ
(
ψ
(
νγ + (1− ν)ϱ

))
≤ ρ

(
1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ϱ) + η(γ, ϱ, ν)

)
.

By virtue of the provided conditions in (5) and (6), it readily yields that

(ρ ◦ ψ)
(
νγ + (1− ν)ϱ

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ρ
(
ψ(γ)

)
+

1

n

n∑
κ=1

[
1− νκ

]
ρ
(
ψ(ϱ)

)
+ ρ
(
η(γ, ϱ, ν)

)
=

1

n

n∑
κ=1

[
1− (1− ν)κ

]
(ρ ◦ ψ)(γ) + 1

n

n∑
κ=1

[
1− νκ

]
(ρ ◦ ψ)(ϱ) + (ρ ◦ η)(γ, ϱ, ν).
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That is, the function ψ△ = ρ ◦ ψ is sub-η-n-polynomial convex with regard to
η△ = ρ ◦ η. This ends the proof. □

Theorem 2.2. Assume that η1 : Λ×Λ×[0, 1] → R and η2 : [0, 1]×[0, 1]×[0, 1] →
R are two mappings along with η1(γ, ϱ, ν) ≤ η2(ζ1, ζ2, ν). If ψ : Λ ⊂ Rn → R
is a sub-η1-n-polynomial convex function on Λ with regard to η1, then for all
γ, ϱ ∈ Λ, the function Φ : [0, 1] → R, Φ(t) = ψ(νγ + (1 − ν)ϱ) is sub-η2-n-
polynomial convex on [0, 1] with regard to the mapping η2.

Proof. Assume that ψ is a sub-η1-n-polynomial convex function on Λ regarding
the mapping η1. Let γ, ϱ ∈ Λ, ν ∈ [0, 1] and ζ1, ζ2 ∈ [0, 1]. Then, we know that

0 ≤ νζ1 + (1− ν)ζ2 ≤ 1,

and

Φ(νζ1 + (1− ν)ζ2)

= ψ
[(
νζ1 + (1− ν)ζ2

)
γ +

(
1− νζ1 − (1− ν)ζ2

)
ϱ
]

= ψ
[
ν(ζ1γ + (1− ζ1)ϱ) + (1− ν)(ζ2γ + (1− ζ2)ϱ)

]
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(ζ1γ + (1− ζ1)ϱ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ζ2γ + (1− ζ2)ϱ)

+ η1(ζ1γ + (1− ζ1)ϱ, ζ2γ + (1− ζ2)ϱ, ν)

=
1

n

n∑
κ=1

[
1− (1− ν)κ

]
Φ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
Φ(ζ2)

+ η1(ζ1γ + (1− ζ1)ϱ, ζ2γ + (1− ζ2)ϱ, ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
Φ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
Φ(ζ2) + η2(ζ1, ζ2, ν).

Hence, the function Φ is sub-η2-n-polynomial convex on [0, 1] with regard to η2.
The proof of Theorem 2.2 is completed. □

In what following, let us consider a novel concept regarding sub-η-n-poly-
nomial convex set.

Definition 2.2. Assume that the set X ⊆ Rn+1 is a nonempty set. A set
X is named as a sub-η-n-polynomial convex set with regard to the mapping
η : Rn × Rn × [0, 1] → R, if the subsequent inclusion relation

(7)

(
νγ + (1− ν)ϱ,

1

n

n∑
κ=1

[
1− (1− ν)κ

]
α+

1

n

n∑
κ=1

[
1− νκ

]
β + η(γ, ϱ, ν)

)
∈ X

holds true for ∀ (γ, α), (ϱ, β) ∈ X, γ, ϱ ∈ Rn and ν ∈ [0, 1].

Here, let us take into account a characterization of sub-η-n-polynomial con-
vex function ψ: Λ → R, by means of its epigraph E(ψ), which is described
by

(8) E(ψ) = {(γ, α)|γ ∈ Λ, α ∈ R;ψ(γ) ≤ α}.
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Theorem 2.3. A function ψ: Λ → R is a sub-η-n-polynomial convex function
regarding the mapping η : Λ × Λ × [0, 1] → R when, and only when E(ψ) is a
sub-η-n-polynomial convex set regarding the same mapping η.

Proof. Suppose that the function ψ is sub-η-n-polynomial convex regarding
the mapping η. Let (γ1, α1), (γ2, α2) ∈ E(ψ). Then ψ(γ1) ≤ α1, ψ(γ2) ≤ α2, we
know that

ψ
(
νγ1 + (1− ν)γ2

)
≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ1) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(γ2) + η(γ1, γ2, ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
α1 +

1

n

n∑
κ=1

[
1− νκ

]
α2 + η(γ1, γ2, ν)

holds true for ∀γ1, γ2 ∈ Λ, ν ∈ [0, 1].
Hence, it is not difficult to check that

(
νγ1+(1−ν)γ2,

1

n

n∑
κ=1

[
1−(1−ν)κ

]
α1+

1

n

n∑
κ=1

[
1−νκ

]
α2+η(γ1, γ2, ν)

)
∈ E(ψ).

Therefore, the set E(ψ) is a sub-η-n-polynomial convex set regarding the map-
ping η.

In turn, let us assume that E(ψ) is a sub-η-n-polynomial convex set regarding
the mapping η. Let γ1, γ2 ∈ Λ, we have (γ1, α1), (γ2, α2) ∈ E(ψ). Thus, for
ν ∈ [0, 1], we find that(
νγ1+(1−ν)γ2,

1

n

n∑
κ=1

[
1−(1−ν)κ

]
α1+

1

n

n∑
κ=1

[
1−νκ

]
α2+η(γ1, γ2, ν

)
∈ E(ψ).

It suffices to show that

ψ
(
νγ1+(1−ν)γ2

)
≤ 1

n

n∑
κ=1

[
1−(1−ν)κ

]
ψ(γ1)+

1

n

n∑
κ=1

[
1−νκ

]
ψ(γ2)+η(γ1, γ2, ν).

That is, the function ψ is a sub-η-n-polynomial convex regarding the mapping
η. This finishes the proof. □

We have the succedent propositions without proof.

Proposition 2.3. If Xκ(κ ∈ Ω) is a series of sub-η-n-polynomial convex sets
regarding the same mapping η(γ, ϱ, ν), then

⋂
κ∈ΩXκ is a sub-η-n-polynomial

convex set with regard to the same mapping η(γ, ϱ, ν).

Proposition 2.4. If {ψκ|κ ∈ Ω} is a group of numerical functions, as well
as any ψκ is a sub-η-n-polynomial convex function regarding the same mapping
η(γ, ϱ, ν), then the numerical function ψ = supκ∈Ω ψκ(γ) is a sub-η-n-polynomial
convex function regarding the same mapping η(γ, ϱ, ν).
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To explore the optimal conditions regarding sub-η-n-polynomial convex pro-
gramming, we next discuss certain properties in relation to a family of the
differentiable sub-η-n-polynomial convex functions. Further, we assume that
the limit limν→0+

η(γ,ϱ,ν)
ν exists for certain fixed γ, ϱ ∈ Λ.

Theorem 2.4. Suppose that the function ψ: Λ → R is differentiable and sub-
η-n-polynomial convex regarding the mapping η. Then we have

(9) ∇ψ(γ∗)T (γ − γ∗) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
.

Proof. By virtue of Taylor expansion and the sub-η-n-polynomial convexity of
ψ defined on Λ, we find that

ψ
(
νγ + (1− ν)γ∗

)
= ψ(γ∗) + ν∇ψ(γ∗)T (γ − γ∗) + o(ν)

≤ 1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(γ) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(γ∗) + η(γ, γ∗, ν).

This implies that

ν∇ψ(γ∗)T (γ − γ∗) + o(ν)

≤ 1

n

[ n∑
κ=1

[1− (1− ν)κ]ψ(γ)−
n∑
κ=1

νκψ(γ∗)
]
+ η(γ, γ∗, ν).(10)

Dividing the above inequality (10) by ν and taking ν → 0+, it yields that

∇ψ(γ∗)T (γ − γ∗) ≤ lim
ν→0+

1
n

∑n
κ=1

[
1− (1− ν)κ

]
ν

ψ(γ)

− lim
ν→0+

1
n

∑n
κ=1 ν

κ

ν
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
.

(11)

Employing the L’Hospital’s rule, we can figure out that

lim
ν→0+

1
n

∑n
κ=1

[
1− (1− ν)κ

]
ν

=
n+ 1

2
,

and

lim
ν→0+

1
n

∑n
κ=1 ν

κ

ν
=

1

n
.

Making use of the inequality (11), we deduce that

∇ψ(γ∗)T (γ − γ∗) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) + lim

ν→0+

η(γ, γ∗, ν)

ν
,

which proves the required inequality in (9). This concludes the proof. □
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Remark 2.3. If one attempts to pick up n = 1, in Theorem 2.4, then one
receives Theorem 1.3 proven by Chao et al. in [8].

Theorem 2.5. With the same hypotheses considered in Theorem 2.4, we have(
∇ψ(ϱ)−∇ψ(γ)

)T
(γ − ϱ)

≤ (n− 1)(n+ 2)

2n

[
ψ(ϱ) + ψ(γ)

]
+ lim
ν→0+

η(γ, ϱ, ν)

ν
+ lim
ν→0+

η(ϱ, γ, ν)

ν
.

(12)

Proof. In accordance with Theorem 2.4, it follows that

∇ψ(ϱ)T (γ − ϱ) ≤ n+ 1

2
ψ(γ)− 1

n
ψ(ϱ) + lim

ν→0+

η(γ, ϱ, ν)

ν
,(13)

and

∇ψ(γ)T (ϱ− γ) ≤ n+ 1

2
ψ(ϱ)− 1

n
ψ(γ) + lim

ν→0+

η(ϱ, γ, ν)

ν
.(14)

Adding the above two inequalities, we obtain that(
∇ψ(ϱ)−∇ψ(γ)

)T
(γ − ϱ)

≤ (n− 1)(n+ 2)

2n

[
ψ(ϱ) + ψ(γ)

]
+ lim
ν→0+

η(γ, ϱ, ν)

ν
+ lim
ν→0+

η(ϱ, γ, ν)

ν
.

This ends the proof. □

Remark 2.4. If one attempts to pick up n = 1, in Theorem 2.5, then one
captures Theorem 1.4 presented by Chao et al. in [8].

3. Inequalities in connection with sub-η-n-polynomial convexity

In this part, we construct the successive Hermite–Hadamard-type inequalities
under sub-η-n-polynomial convexity.

Theorem 3.1. Assume that the function ψ: [ζ1, ζ2] → R is sub-η-n-polynomial
convex with ζ1 < ζ2, and the mapping η: [ζ1, ζ2]× [ζ1, ζ2]× [0, 1] → R is continu-
ous. If the function ψ ∈ L([ζ1, ζ2]), then the subsequent Hermite–Hadamard-type
inequalities

(15)

1

2

(
n

n+2−n−1

)[
ψ

(
ζ1+ζ2

2

)
−η
(
ξ0ζ1+(1−ξ0)ζ2, (1−ξ0)ζ1+ξ0ζ2,

1

2

)]
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ ≤
(
ψ(ζ1) + ψ(ζ2)

n

) n∑
κ=1

κ

κ+ 1
+ η(ζ1, ζ2, ξ0)

hold true for certain fixed ξ0 ∈ (0, 1).
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Proof. On account of the sub-η-n-polynomial convexity of ψ defined over the
interval [ζ1, ζ2], we can figure out that

ψ

(
ζ1 + ζ2

2

)
= ψ

(
[νζ1 + (1− ν)ζ2] + [(1− ν)ζ1 + νζ2]

2

)
≤ 1

n

n∑
κ=1

[
1−

(
1− 1

2

)κ]
ψ
(
νζ1 + (1− ν)ζ2

)
+

1

n

n∑
κ=1

[
1−

(
1

2

)κ]
ψ
(
(1− ν)ζ1 + νζ2

)
+ η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
=

1

n

n∑
κ=1

[
1−

(
1

2

)κ] [
ψ
(
νζ1 + (1− ν)ζ2

)
+ ψ

(
(1− ν)ζ1 + νζ2

)]
+ η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
.

Integrating the resulting inequality above regarding the variate ν over [0, 1], it
follows that

ψ

(
ζ1 + ζ2

2

)
≤ 1

n

n∑
κ=1

[
1−

(
1

2

)κ] [∫ 1

0
f
(
νζ1 + (1− ν)ζ2

)
dν +

∫ 1

0
ψ
(
(1− ν)ζ1 + νζ2

)
dν

]
+

∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν

=
2

ζ2 − ζ1

(
n+ 2−n − 1

n

)∫ ζ2

ζ1

ψ(γ)dγ

+

∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν.

According to the mean value theorem of integrals, it yields that∫ 1

0
η

(
νζ1 + (1− ν)ζ2, (1− ν)ζ1 + νζ2,

1

2

)
dν

= η

(
ξ0ζ1 + (1− ξ0)ζ2, (1− ξ0)ζ1 + ξ0ζ2,

1

2

)
, ξ0 ∈ (0, 1).

This finishes the proof of the first inequality in (15).
In the same way, by taking advantage of the sub-η-n-polynomial convexity

of ψ on the interval [ζ1, ζ2], as well as the mean value theorem of integrals, if
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the variable is changed as γ = νζ1 + (1− ν)ζ2, then we know that

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

=

∫ 1

0
ψ
(
νζ1 + (1− ν)ζ2

)
dν

≤
∫ 1

0

[
1

n

n∑
κ=1

[
1− (1− ν)κ

]
ψ(ζ1) +

1

n

n∑
κ=1

[
1− νκ

]
ψ(ζ2) + η(ζ1, ζ2, ν)

]
dν

=
ψ(ζ1)

n

∫ 1

0

n∑
κ=1

[
1− (1− ν)κ

]
dν +

ψ(ζ2)

n

∫ 1

0

n∑
κ=1

[
1− νκ

]
dν +

∫ 1

0
η(ζ1, ζ2, ν)dν

=
ψ(ζ1)

n

n∑
κ=1

∫ 1

0

[
1− (1− ν)κ

]
dν +

ψ(ζ2)

n

n∑
κ=1

∫ 1

0

[
1− νκ

]
dν

+ η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Also, we observe that

∫ 1

0

[
1− (1− ν)κ

]
dν =

∫ 1

0

[
1− νκ

]
dν =

κ

κ+ 1
.

This finishes the proof. □

Remark 3.1. If one attempts to pick up the mapping η = 0 in Theorem 3.1,
then one receives Theorem 4 deduced by Toplu et al. in [32]. In particular, if
one considers to pick up η = 0 and n = 1, then the inequalities (15) coincides
with the extraordinary Hermite–Hadamard’s inequalities (1).

Theorem 3.2. Suppose that ψ: Ω ⊆ R → R is a differentiable mapping on the
interval Ω◦ with ζ1 < ζ2. If ψ is a sub-η-n-polynomial convex function regarding
continuous mapping η: Ω× Ω× [0, 1] → R, then the successive inequalities

(16)

1

2

(
n

n+2−n−1

)[
ψ

(
ζ1+ζ2

2

)
−η
(
ξ0ζ1+(1−ξ0)ζ2, (1− ξ0)ζ1 + ξ0ζ2,

1

2

)]
≤ 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

≤
(
n+ 2−n−1

n

)ψ(ζ1+ζ2
2

)
+

ψ
(
3ζ1−ζ2

2

)
+ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1

+η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)]
+ η

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
,
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and

(17)

∣∣∣∣[ 1

ζ2−ζ1

∫ ζ2

ζ1

ψ(γ)dγ−η
(
ξ1,

ζ1+ζ2
2

,
1

2

)]
−
(
n+ 2−n − 1

n

)
ψ

(
ζ1+ζ2

2

)∣∣∣∣
≤

∣∣∣∣∣∣
(
n+ 2−n − 1

n

)ψ
(
3ζ1−ζ2

2

)
+ ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1

+η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)]∣∣∣∣
hold true for certain fixed ξ0 ∈ (0, 1) and ξ1 ∈

(
3ζ1−ζ2

2 , 3ζ2−ζ12

)
.

Proof. Applying the mean value theorem of integrals, as well as by substituting
the variables γ = 3

4ν +
ζ1+ζ2

4 , ν ∈ [3ζ1−ζ23 , 3ζ2−ζ13 ], we deduce that

(18)

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

=
3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

ψ

(
3

4
ν +

ζ1 + ζ2
4

)
dν

=
3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

ψ

(
1

2

(
3

2
ν

)
+

1

2

(
ζ1 + ζ2

2

))
dν

≤ 3

4(ζ2 − ζ1)

∫ 3ζ2−ζ1
3

3ζ1−ζ2
3

(
1

n

n∑
κ=1

[
1−

(
1

2

)κ] [
ψ

(
3

2
ν

)
+ ψ

(
ζ1 + ζ2

2

)]
+η

(
3

2
ν,
ζ1 + ζ2

2
,
1

2

))
dν

=

(
n+ 2−n − 1

n

)[
ψ

(
ζ1 + ζ2

2

)
+

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

]

+ η

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
.

According to the right hand side of outcome (15), we find that

(19)

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

f(ν)dν

≤

ψ
(
3ζ1−ζ2

2

)
+ ψ

(
3ζ2−ζ1

2

)
n

 n∑
κ=1

κ

κ+ 1
+ η

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ0

)
.

Combining the above-mentioned inequalities (18) and (19), one achieves the
findings (16) and (17). This ends the proof. □
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Remark 3.2. Under the assumptions mentioned in Theorem 3.2 with η = 0
and n = 1, we receive Lemma 3 presented by Mehrez in [25].

For mappings whose derivatives in absolute value are sub-η-n-polynomial
convex, we will try to develop a series of Hermite–Hadamard-type integral in-
equalities. To achieve this object, we need the successive lemmas.

Lemma 3.1 ([12]). Assume that the mapping ψ: Ω ⊆ R → R is differentiable
defined over the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2. If the mapping ψ′ ∈
L([ζ1, ζ2]), then we have the subsequent identity

ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ =
ζ2 − ζ1

2

∫ 1

0
(1− 2ν)ψ′(νζ1+(1− ν)ζ2)dν.

Lemma 3.2 ([19]). Assume that f : Ω ⊆ R → R is a differentiable mapping
defined over the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2. If the mapping ψ′ ∈
L([ζ1, ζ2]), then we have the coming identity

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ − ψ

(
ζ1 + ζ2

2

)
= (ζ2 − ζ1)

[∫ 1
2

0
νψ′(ζ2 + (ζ1 − ζ2)ν

)
dν +

∫ 1

1
2

(ν − 1)ψ′(ζ2 + (ζ1 − ζ2)ν
)
dν

]
.

Theorem 3.3. Assume that ψ: Ω ⊆ R → R is a differentiable function defined
on the interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and let the function ψ′ ∈ L([ζ1, ζ2]).
If the function |ψ′| is sub-η-n-polynomial convex defined over the interval [ζ1, ζ2]
and the mapping η: Ω×Ω×[0, 1] → R+ is continuous, then the coming inequality

(20)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2−ζ1

2n

(
n∑
κ=1

[
(κ2+κ+2)2κ−2

(κ+1)(κ+2)2κ+1

] (
|ψ′(ζ1)|+|ψ′(ζ2)|

)
+
n

2
η(ζ1, ζ2, ξ0)

)
holds true for some fixed ξ0 ∈ (0, 1).

Proof. Taking advantage of Lemma 3.1, as well as the sub-η-n-polynomial
convexity of |ψ′| defined on the interval [ζ1, ζ2], it yields that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

∫ 1

0
|1− 2ν|

(
1

n

n∑
κ=1

[
1− (1− ν)κ

]
|ψ′(ζ1)|

+
1

n

n∑
κ=1

[
1− νκ

]
|ψ′(ζ2)|+ η(ζ1, ζ2, ν)

)
dν
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=
ζ2 − ζ1
2n

(
|ψ′(ζ1)|

∫ 1

0
|1− 2ν|

n∑
κ=1

[
1− (1− ν)κ

]
dν

+|ψ′(ζ2)|
∫ 1

0
|1− 2ν|

n∑
κ=1

[
1− νκ

]
dν

)
+
ζ2 − ζ1

2

∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν

=
ζ2 − ζ1
2n

(
|ψ′(ζ1)|

n∑
κ=1

∫ 1

0
|1− 2ν|

[
1− (1− ν)κ

]
dν

+|ψ′(ζ2)|
n∑
κ=1

∫ 1

0
|1− 2ν|

[
1− νκ

]
dν

)
+
ζ2 − ζ1

2

∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν.

According to the mean value theorem of generalized integrals, we derive that∫ 1

0
|1− 2ν|η(ζ1, ζ2, ν)dν =

1

2
η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Also, we observe that ∫ 1

0
|1− 2ν|dν =

1

2
,

and∫ 1

0
|1− 2ν|

[
1− (1− ν)κ

]
dν =

∫ 1

0
|1− 2ν|

[
1− νκ

]
dν =

(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1
.

Therefore, the proof of Theorem 3.3 is completed. □

Remark 3.3. If one considers to pick up η = 0 in Theorem 3.3, then one receives
Theorem 5 established by Toplu et al. in [32]. In particular, if we attempt to
take η = 0 and n = 1, then we gain Theorem 2.2 provided by Dragomir et al.
in [12].

Theorem 3.4. Assume that ψ: Ω ⊆ R → R is a differentiable function on Ω◦,
ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and ψ′ ∈ L([ζ1, ζ2]). If the function |ψ′|q is sub-η-
n-polynomial convex on the interval [ζ1, ζ2] for q > 1 with 1

p + 1
q = 1, and the

mapping η: Ω× Ω× [0, 1] → R+ is continuous, then the succedent inequality

(21)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

(
1

p+ 1

) 1
p

[
1

n

n∑
κ=1

κ

κ+ 1

(
|ψ′(ζ1)|q + |ψ′(ζ2)|q

)
+ η(ζ1, ζ2, ξ0)

] 1
q

holds true for some fixed ξ0 ∈ (0, 1).
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Proof. By means of Lemma 3.1, Hölder’s integral inequality, and the sub-η-n-
polynomial convexity of |ψ′|q defined on the interval [ζ1, ζ2], it follows that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

(∫ 1

0
|1− 2ν|pdν

) 1
p
(∫ 1

0
|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

≤ ζ2 − ζ1
2

(
1

p+ 1

) 1
p

(
|ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
[1− (1− ν)κ]dν

+
|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
[1− νκ]dν +

∫ 1

0
η(ζ1, ζ2, ν)dν

) 1
q

.

According to the mean value theorem of integrals, we obtain that∫ 1

0
η(ζ1, ζ2, ν)dν = η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Direct computation yields that,∫ 1

0
|1− 2ν|pdν =

1

p+ 1
,

and ∫ 1

0
[1− (1− ν)κ]dν =

∫ 1

0
[1− νκ]dν =

κ

κ+ 1
.

This finishes the proof. □

Remark 3.4. If one attempts to pick up the mapping η = 0 in Theorem 3.4,
then one acquires Theorem 6 derived by Toplu et al. in [32]. In particular, if
we consider to take η = 0 and n = 1, we capture Theorem 2.3 provided by
Dragomir et al. in [12].

Theorem 3.5. Assume that ψ: Ω ⊆ R → R is a differentiable function on the
interval Ω◦, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and ψ

′ ∈ L([ζ1, ζ2]). If |ψ′|q is a sub-η-n-
polynomial convex function on [ζ1, ζ2] for q > 1 with 1

p+
1
q = 1, and the mapping

η: Ω× Ω× [0, 1] → R+ is continuous, then the succeding inequality

(22)

∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

(
1

2(p+ 1)

) 1
p

×

( |ψ′(ζ1)|q

n

n∑
κ=1

κ

2(κ+2)
+
|ψ′(ζ2)|q

n

n∑
κ=1

κ(κ+3)

2(κ+1)(κ+2)
+
1

2
η(ζ1, ζ2, ξ0)

) 1
q
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+

(
|ψ′(ζ1)|q

n

n∑
κ=1

κ(κ+ 3)

2(κ+ 1)(κ+ 2)
+

|ψ′(ζ2)|q

n

n∑
κ=1

κ

2(κ+ 2)
+

1

2
η(ζ1, ζ2, ξ0)

) 1
q


holds true for certain fixed ξ0 ∈ (0, 1).

Proof. By taking advantage of Lemma 3.1, as well as the Hölder–İşcan’s integral
inequality, it yields that∣∣∣∣ψ(ζ1) + ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

∣∣∣∣
≤ ζ2 − ζ1

2

∫ 1

0
|1− 2ν||ψ′(νζ1 + (1− ν)ζ2)|dν

≤ ζ2 − ζ1
2

[(∫ 1

0
(1− ν)|1− 2ν|pdν

) 1
p
(∫ 1

0
(1− ν)|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

+

(∫ 1

0
ν|1− 2ν|pdν

) 1
p
(∫ 1

0
ν|ψ′(νζ1 + (1− ν)ζ2)|qdν

) 1
q

]
.

Making use of the sub-η-n-polynomial convexity of |ψ′|q, it follows that∫ 1

0
(1− ν)|ψ′(νζ1 + (1− ν)ζ2)|qdν

≤ |ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
(1− ν)[1− (1− ν)κ]dν +

|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
(1− ν)[1− νκ]dν

+

∫ 1

0
(1− ν)η(ζ1, ζ2, ν)dν,

and ∫ 1

0
ν|ψ′(νζ1 + (1− ν)ζ2)|qdν

≤ |ψ′(ζ1)|q

n

n∑
κ=1

∫ 1

0
ν[1− (1− ν)κ]dν +

|ψ′(ζ2)|q

n

n∑
κ=1

∫ 1

0
ν[1− νκ]dν

+

∫ 1

0
νη(ζ1, ζ2, ν)dν.

According to the mean value theorem of generalized integrals, we know that∫ 1

0
(1− ν)η(ζ1, ζ2, ν)dν =

∫ 1

0
νη(ζ1, ζ2, ν)dν =

1

2
η(ζ1, ζ2, ξ0), ξ0 ∈ (0, 1).

Direct computation yields that∫ 1

0
(1− ν)|1− 2ν|pdν =

∫ 1

0
ν|1− 2ν|pdν =

1

2(p+ 1)
,
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∫ 1

0
(1− ν)[1− (1− ν)κ]dν =

∫ 1

0
ν[1− νκ]dν =

κ

2(κ+ 2)
,

and ∫ 1

0
ν[1− (1− ν)κ]dν =

∫ 1

0
(1− ν)[1− νκ]dν =

κ(κ+ 3)

2(κ+ 1)(κ+ 2)
.

Thus, this concludes the proof. □

Remark 3.5. If one attempts to pick up the mapping η = 0, in Theorem 3.5,
then one receives Theorem 8 constructed by Toplu et al. in [32]. In particular,
if we consider to take η = 0 and n = 1, we capture Theorem 8 presented by
İşcan in [14].

Theorem 3.6. Suppose that the mapping η1: Λ × Λ × [0, 1] → R+ and the
mapping η2 : [0, 1] × [0, 1] × [0, 1] → R+ are two continuous mappings together
with η1(γ, ϱ, ν) ≤ η2(ζ1, ζ2, ν), and the function ψ: Λ ⊆ Rn → R+ is sub-
η1-n-polynomial convex on Λ with regard to η1. Then for any γ, ϱ ∈ Λ and
ζ1, ζ2 ∈ [0, 1] with ζ1 < ζ2, the subsequent inequality

(23)

∣∣∣∣12
∫ ζ1

0
ψ(sγ + (1− s)ϱ)ds+

1

2

∫ ζ2

0
ψ(sγ + (1− s)ϱ)ds

− 1

ζ2 − ζ1

∫ ζ2

ζ1

(∫ θ

0
ψ(sγ + (1− s)ϱ)ds

)
dθ

∣∣∣∣
≤ ζ2 − ζ1

2n

[
n∑
κ=1

(
(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1

)(
ψ(ζ1γ + (1− ζ1)ϱ)

+ ψ(ζ2γ + (1− ζ2)ϱ)
)
+
n

2
η2(ζ1, ζ2, ξ0)

]
holds true for certain fixed ξ0 ∈ (0, 1).

Proof. Assume that γ, ϱ ∈ Λ and ζ1, ζ2 ∈ [0, 1] with ζ1 < ζ2. Since ψ is a sub-
η1-n-polynomial convex function, by Theorem 2.2, it yields that the function

Φ : [0, 1] → R, Φ(ν) = ψ(νγ + (1− ν)ϱ)

is a sub-η2-n-polynomial convex function on [0, 1] with regard to η2.
Define Ψ: [0, 1] → R

Ψ(ν) =

∫ ν

0
Φ(s)ds =

∫ ν

0
ψ(sγ + (1− s)ϱ)ds.

Evidently, Ψ′(ν) = Φ(ν) for ∀ ν ∈ (0, 1).
Owing to ψ(Λ) ⊆ R+, it shows that Φ ≥ 0 on [0, 1]. Thus, Ψ′ ≥ 0 on [0, 1].

If one employs Theorem 3.3 to the function Ψ, then one knows that∣∣∣∣Ψ(ζ1) + Ψ(ζ2)

2
− 1

ζ2 − ζ1

∫ ζ2

ζ1

Ψ(θ)dθ

∣∣∣∣
≤ ζ2 − ζ1

2n

(
n∑
κ=1

[
(κ2 + κ+ 2)2κ − 2

(κ+ 1)(κ+ 2)2κ+1

] (
|Ψ′(ζ1)|+ |Ψ′(ζ2)|

)
+
n

2
η2(ζ1, ζ2, ξ0)

)
,
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and we conclude that the desired outcome (23) holds true. □

Theorem 3.7. Suppose that the function ψ: Ω ⊆ R → R has differentiable
sub-η1-n-polynomial convexity on Ω◦ regarding continuous mapping η1: Ω×Ω×
[0, 1] → R+, ζ1, ζ2 ∈ Ω◦ with ζ1 < ζ2, and its derivative ψ′: [3ζ1−ζ22 , 3ζ2−ζ12 ] → R
is a continuous function on [3ζ1−ζ22 , 3ζ2−ζ12 ]. For q ≥ 1, if the function |ψ′|q is

sub-η2-n-polynomial convex on [3ζ1−ζ22 , 3ζ2−ζ12 ] regarding continuous mapping η2:

[3ζ1−ζ22 , 3ζ2−ζ12 ]× [3ζ1−ζ22 , 3ζ2−ζ12 ]× [0, 1] → R+, then the successive inequality

(24)

∣∣∣∣12
(

n

n+ 2−n − 1

)[
1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

−η1
(
ξ1,

ζ1 + ζ2
2

,
1

2

)]
− ψ

(
ζ1 + ζ2

2

)∣∣∣∣ ≤ (ζ2 − ζ1)

(
1

8

)1− 1
q

×

( |ψ′(3ζ1−ζ22 )|q

n
K1+

|ψ′(3ζ2−ζ12 )|q

n
K2+

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ2

)) 1
q

+

(
|ψ′(3ζ1−ζ22 )|q

n
K2+

|ψ′(3ζ2−ζ12 )|q

n
K1+

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ3

)) 1
q


holds for certain fixed ξ1 ∈ (3ζ1−ζ22 , 3ζ2−ζ12 ), ξ2 ∈ (0, 12), and ξ3 ∈ (12 , 1), where

K1 =

n∑
κ=1

[
1

8
+

κ+ 3− 2κ+2

(κ+ 1)(κ+ 2)2κ+2

]
,

and

K2 =
n∑
κ=1

[
1

8
− 1

(κ+ 2)2κ+2

]
.

Proof. Making use of inequality (18), we know that

(25)

1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

≤
(
n+ 2−n − 1

n

)[
ψ

(
ζ1 + ζ2

2

)
+

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

]

+ η1

(
ξ1,

ζ1 + ζ2
2

,
1

2

)
.
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Taking advantage of Lemma 3.2, we derive that

(26)

1

2(ζ2 − ζ1)

∫ 3ζ2−ζ1
2

3ζ1−ζ2
2

ψ(ν)dν

= ψ

(
ζ1 + ζ2

2

)
+ 2(ζ2 − ζ1)

[∫ 1
2

0
νψ′

(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
dν

+

∫ 1

1
2

(ν − 1)ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
dν

]
.

By putting (26) into (25), and by virtue of the properties of modulus, it yields
that

(27)

∣∣∣∣12
(

n

n+ 2−n − 1

)[
1

ζ2 − ζ1

∫ ζ2

ζ1

ψ(γ)dγ

−η1
(
ξ1,

ζ1 + ζ2
2

,
1

2

)]
− ψ

(
ζ1 + ζ2

2

)∣∣∣∣
≤ (ζ2 − ζ1)

[∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
+

∫ 1

1
2

(1− ν)

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
]
.

Let us take into account the coming two cases. Suppose that q = 1. We observe
that

ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)
= ψ′

(
ν

(
3ζ1 − ζ2

2

)
+ (1− ν)

(
3ζ2 − ζ1

2

))
.

Since the function |ψ′| is a sub-η2-n-polynomial convex on [3ζ1−ζ22 , 3ζ2−ζ12 ], we
know that for any ν ∈ [0, 1]

(28)

∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤

∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣
n

n∑
κ=1

∫ 1
2

0
ν
[
1− (1− ν)κ

]
dν

+

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣
n

n∑
κ=1

∫ 1
2

0
ν
[
1− νκ

]
dν

+

∫ 1
2

0
νη2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ν

)
dν.
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Similarly, it follows that

(29)

∫ 1

1
2

(1− ν)

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤

∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣
n

n∑
κ=1

∫ 1

1
2

(1− ν)
[
1− (1− ν)κ

]
dν

+

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣
n

n∑
κ=1

∫ 1

1
2

(1− ν)
[
1− νκ

]
dν

+

∫ 1

1
2

(1− ν)η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ν

)
dν.

According to the mean value theorem of generalized integrals, we derive that∫ 1
2

0
νη2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ν

)
dν=

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ2

)
, ξ2∈

(
0,

1

2

)
,

and∫ 1

1
2

(1−ν)η2
(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ν

)
dν=

1

8
η2

(
3ζ1−ζ2

2
,
3ζ2−ζ1

2
, ξ3

)
, ξ3∈

(
1

2
, 1

)
.

Direct computation yields that
n∑
κ=1

∫ 1
2

0
ν[1−(1−ν)κ]dν=

n∑
κ=1

∫ 1

1
2

(1−ν)[1−νκ]dν=
n∑
κ=1

[
1

8
+

κ+3−2κ+2

(κ+ 1)(κ+ 2)2κ+2

]
,

and
n∑
κ=1

∫ 1
2

0
ν[1− νκ]dν =

n∑
κ=1

∫ 1

1
2

(1− ν)[1− (1− ν)κ]dν =

n∑
κ=1

[
1

8
− 1

(κ+ 2)2κ+2

]
.

Consequently, this concludes the proof for this case.
Assume that q > 1. On account of the power–mean inequality, as well as

the sub-η2-n-polynomial convexity of |ψ′|q, we deduce that

(30)

∫ 1
2

0
ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
=

∫ 1
2

0
ν

∣∣∣∣ψ′
(
ν

(
3ζ1 − ζ2

2

)
+ (1− ν)

(
3ζ2 − ζ1

2

))∣∣∣∣ dν
≤

(∫ 1
2

0
νdν

)1− 1
q
(∫ 1

2

0
ν

∣∣∣∣ψ′
(
ν

(
3ζ1−ζ2

2

)
+(1−ν)

(
3ζ2−ζ1

2

))∣∣∣∣q dν
) 1

q

≤
(
1

8

)1− 1
q

(
|ψ′(3ζ1−ζ22 )|q

n
K1 +

|ψ′(3ζ2−ζ12 )|q

n
K2

+
1

8
η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ2

)) 1
q

.
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In the same way, it yields that

(31)

∫ 1

1
2

ν

∣∣∣∣ψ′
(
3ζ2 − ζ1

2
+ 2(ζ1 − ζ2)ν

)∣∣∣∣ dν
≤
(
1

8

)1− 1
q


∣∣∣ψ′
(
3ζ1−ζ2

2

)∣∣∣q
n

K2 +

∣∣∣ψ′
(
3ζ2−ζ1

2

)∣∣∣q
n

K1

+
1

8
η2

(
3ζ1 − ζ2

2
,
3ζ2 − ζ1

2
, ξ3

)) 1
q

.

Employing (30) and (31) in (27), one achieves the desired outcome (24), which
concludes the proof. □

Remark 3.6. Under the same assumptions considered in Theorem 3.7 with
η1 = η2 = 0 and n = 1, we successfully gain Theorem 1 presented by Mehrez
in [25].

4. Applications

In order to identify the applications of the outcomes derived in the study, the
unconstraint nonlinear programming is considered as below:

(32) (P ) min
{
ψ(γ)|γ ∈ Λ ⊂ Rn

}
,

where ψ : Λ → R is a differentiable sub-η-n-polynomial convex function on Λ.

Theorem 4.1. Assume that the function ψ: Λ → R has differentiable sub-η-
n-polynomial convexity with regard to the mapping η : Λ × Λ × [0, 1] → R. If
γ∗ ∈ Λ and the successive condition

(33) ∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

holds true for each γ ∈ Λ, ν ∈ [0, 1], then γ∗ is the optimal solution of ψ on Λ.

Proof. For any γ ∈ Λ, by Theorem 2.4, we find that

∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≤ n+ 1

2
ψ(γ)− 1

n
ψ(γ∗).

In combination with the condition (33), it readily yields that

n+ 1

2
ψ(γ)− 1

n
ψ(γ∗) ≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

i.e., ψ(γ) − ψ(γ∗) ≥ 0. Therefore, γ∗ is an optimal solution of ψ on Λ. This
concludes the proof. □
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Remark 4.1. If one considers to pick up n = 1, in Theorem 4.1, then one
successfully receives Theorem 2.1 deduced by Chao et al. in [8].

Now, let us apply the outcomes investigated in this study to the nonlinear
programming along with the subsequent inequality constraints:

(34)

min ψ(γ)

(Pg) s.t. ωi(γ) ≤ 0, i ∈ U = {1, 2, . . . ,m},
γ ∈ Rn,

where ψ and ωi are all differentiable defined on the set D =
{
γ ∈ Rn|ωi(γ)

≤ 0, i ∈ U
}
, which is assumed to be a nonempty feasible set of (Pg). In addition,

for γ∗ ∈ D, we define U∗ =
{
γ ∈ Rn|ωi(γ∗) = 0, i ∈ U

}
, λi = (λ1, . . . , λm)

T .

The successive theorem displays the Karush–Kuhn–Tucker (KKT) sufficient
conditions.

Theorem 4.2. (KKT sufficient conditions) Assume that ψ(γ) : Rn → R is a
differentiable and sub-η-n-polynomial convex function with regard to the mapping
η : Rn × Rn × [0, 1] → R, and the functions ωi : Rn → R (i ∈ U) are a
series of differentiable sub-η-n-polynomial convex with regard to the mappings
ηi : Rn×Rn×[0, 1] → R (i ∈ U). Assume that γ∗ ∈ D is a KKT point regarding
(Pg), that is, there exist multipliers λi ≥ 0 (i ∈ U) satisfying that

∇ψ(γ∗) +
∑
i∈U

λi∇ωi(γ∗) = 0,

λiωi(γ
∗) = 0.

(35)

If the subsequent condition

n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ) + lim

ν→0+

η(γ, γ∗, ν)

ν

≤ −
∑
i∈U

λi lim
ν→0+

ηi(γ, γ
∗, ν)

ν
,∀ γ ∈ D,

(36)

also holds true, then γ∗ is an optimal solution regarding the problem (Pg).

Proof. For each γ ∈ D, one observes that

ωi(γ) ≤ 0 = ωi(γ
∗), i ∈ U∗ = {i ∈ U |ωi(γ∗) = 0}.

Making use of the sub-η-n-polynomial convexity of ωi and Theorem 2.4, for
i ∈ U∗, we find that

(37) ∇ωi(γ∗)T (γ − γ∗)− lim
ν→0+

ηi(γ, γ
∗, ν)

ν
≤ n+ 1

2
ωi(γ)−

1

n
ωi(γ

∗) ≤ 0.
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According to the conditions (35), we know that

(38) ∇ψ(γ∗)T (γ−γ∗)=−
∑
i∈U

λi∇ωi(γ∗)T (γ−γ∗)=−
∑
i∈U∗

λi∇ωi(γ∗)T (γ − γ∗).

By virtue of the inequality (36), we can figure out that

∇ψ(γ∗)T (γ − γ∗)− n− 1

n
ψ(γ∗)− n− 1

2
ψ(γ)− lim

ν→0+

η(γ, γ∗, ν)

ν

≥ −
∑
i∈U∗

λi∇ωi(γ∗)T (γ − γ∗) +
∑
i∈U∗

λi lim
ν→0+

ηi(γ, γ
∗, ν)

ν

≥ −
∑
i∈U∗

λi

[
∇ωi(γ∗)T (γ − γ∗)− lim

ν→0+

ηi(γ, γ
∗, ν)

ν

]
.

(39)

Here, we use (37) and (39) to derive the coming inequality

∇ψ(γ∗)T (γ − γ∗)− n− 1

n
ψ(γ∗)− n− 1

2
ψ(γ)− lim

ν→0+

η(γ, γ∗, ν)

ν
≥ 0,

that is,

∇ψ(γ∗)T (γ − γ∗)− lim
ν→0+

η(γ, γ∗, ν)

ν
≥ n− 1

n
ψ(γ∗) +

n− 1

2
ψ(γ),

and in accordance with Theorem 4.1 , it yields that

ψ(γ) ≥ ψ(γ∗), ∀ γ ∈ D.

Therefore, γ∗ is an optimal solution regarding the problem (Pg). This concludes
the proof. □

5. Conclusions

Sub-η-n-polynomial convexity, as well as sub-η-n-polynomial convex sets, are
introduced in the present paper. Because of their significance, a series of
interesting properties for newly defined functions and sets are discussed, re-
spectively. Certain Hermite–Hadamard-type integral inequalities, in connection
with sub-η-n-polynomial convex functions, are also presented. We conclude
the article by showing that the derived inequalities also hold for convex func-
tions and n-polynomial convex functions. As applications, under the sub-η-
n-polynomial convexity, the KKT sufficient optimality conditions, under the
sub-η-n-polynomial convex programming with unconstrained and constrained
inequalities, are deduced in the present paper, respectively. We have reason to
confirm that it is an interesting and innovative problem, for forthcoming re-
searchers who will enable them to establish analogous integral inequalities for
other diverse types of sub-η-convexity, and corresponding KKT optimality con-
ditions for the generalized sub-η-convex programming in their future work.



ON THE SUB-η-n-POLYNOMIAL CONVEXITY AND ITS APPLICATIONS 437

Acknowledgements

The authors would like to thank the reviewer for his/her valuable comments
and suggestions.

References

[1] S. Abramovich, L. E. Persson, Fejér and Hermite-Hadamard type inequali-
ties for N -quasiconvex functions, Math. Notes, 102 (2017), 599-609.

[2] I. Ahmad, A. Jayswal, B. Kumari, Characterizations of geodesic sub-b-s-
convex functions on Riemannian manifolds, J. Nonlinear Sci. Appl., 11
(2018), 189-197.

[3] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard,
Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequal-
ities for convex functions via new fractional integrals, J. Comput. Appl.
Math., 353 (2019), 120-129.

[4] M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, On γ-preinvex functions,
Filomat, 34 (2020), 4137-4159.

[5] C. R. Bector, C. Singh, B-vex functions, J. Optim. Theory Appl., 71 (1991),
237-253.

[6] S. I. Butt, S. Rashid, M. Tariq, M. K. Wang, Novel refinements via n-
polynomial harmonically s-type convex functions and application in special
functions, J. Funct. Spaces, 2021 (2021) Article ID 6615948, 17 pages.

[7] S. I. Butt, H. Budak, M. Tariq, M. Nadeem, Integral inequalities for
n-polynomial s-type preinvex functions with applications, Math. Methods
Appl. Sci., 44 (2021), 11006-11021.

[8] M. T. Chao, J. B. Jian, D. Y. Liang, Sub-b-convex functions and sub-
b-convex programming, J. Operations Research Transactions (China), 16
(2012), 1-8.

[9] M. R. Delavar, M. De La Sen, A mapping associated to h-convex version of
the Hermite-Hadamard inequality with applications, J. Math. Inequal., 14
(2020), 329-335.

[10] Y. P. Deng, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, P. O. Mo-
hammed, S. H. Wu, Inequalities for estimations of integrals related to
higher-order strongly n-polynomial preinvex functions, Journal of Mathe-
matics, 2020 (2020), Article ID 8841356, 12 pages.

[11] T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities
considering generalized m-convexity on fractal sets and their applications,
Fractals, 27 (2019), Article ID 1950117, 17 pages.



438 LEI XU and TINGSONG DU

[12] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable map-
pings and applications to special means of real numbers and to trapezoidal
formula, Appl. Math. Lett., 11 (1998), 91-95.

[13] S. Dragomir, M. Jleli, B. Samet, Generalized convexity and in-
tegral inequalities, Math. Methods Appl. Sci., 2020, 1-15, Online:
https://doi.org/10.1002/mma.6293.

[14] İ. İşcan, New refinements for integral and sum forms of Hölder inequality,
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[18] A. Kiliçman, W. Saleh, Generalized preinvex functions and their applica-
tions, Symmetry, 2018 (2018), Article ID 493, 13 pages.
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Abstract. By applying the notion of the efficient Banzhaf value, any additional fixed
utility should be distributed equally among the players who are concerned. However,
in several applications, this notion seems unrealistic for the situation being modeled.
Therefore, we adopt weights to introduce a modification of the efficient Banzhaf value,
which we name the weighted Banzhaf value. To present the rationality, we adopt
some reasonable properties to characterize this weighted value. Based on different
viewpoints, we further define excess functions to propose alternative formulations and
related dynamic processes for this weighted value.

Keywords: the weighted Banzhaf value, excess function, dynamic process.

1. Introduction

In the framework of transferable-utility (TU) games, the power indices have
been defined to measure the political power of each member of a voting system.
A member in a voting system can be a party in a parliament or a country in a
confederation. Each member will have a certain number of votes, and so their
power indices will differ. The power index results may be found in Algaba et
al. [1], Alonso et al. [2], Alonso and Fiestras [3], van den Brink and van der
Laan [5], Dubey and Shapley [7], Haller [8], Lehrer [12], Ruiz [18], etc. Banzhaf
[4] defined a power index in the framework of voting games that was essentially
identical to that given by Coleman [6], and later extended it to arbitrary games
by Owen [15, 16], who introduced two formulas. The Banzhaf value defined by
Banzhaf [4] does not necessarily distribute the entire utility over all players in a
grand coalition. Therefore, the efficient Banzhaf value and related results were
proposed by Hwang and Liao [11] and Liao et al. [13], respectively.

In real-world situations, players might represent constituencies of different
sizes or have different bargaining abilities. In addition, a lack of symmetry may
arise when different bargaining abilities for different players are modeled. In
various applications of TU games, it seems to be natural to assume that the
players are given some a priori measures of importance, called weights. The
study of weighted Banzhaf values was introduced by Radzik et al. [17]. Consid-
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ering that there are exogenously given some positive weights between players,
Radzik et al. [17] proposed an axiomatization of weighted Banzhaf values for
a given vector of positive weights of players. Further, the family of all possible
weighted Banzhaf values is described axiomatically. However, these weighted
Banzhaf values introduced by Radzik et al. [17] are not efficient.

Based on the notion of the efficient Banzhaf value due to Hwang and Liao
[11], all players first receive their marginal contributions from all coalitions in
which they have participated; the remaining utilities are allocated equally. That
is, any additional fixed utility (e.g., the cost of a common facility) is distributed
equally among the players who are concerned. However, in several applications,
the efficient Banzhaf value seems unrealistic for the situation being modeled.
Therefore, we desire that any additional fixed utility could be distributed among
players in proportion to their weights.

To modify relative discrimination among players under various situations,
we adopt weights to propose different results as follows.

1. In Section 2, we adopt weights to propose the weighted Banzhaf value.
Further, we present an alternative formulation of the weighted Banzhaf
value in terms of excess functions. The excess of a coalition could be
treated as the variation between the productivity and total payoff of the
coalition.

2. In Section 3, we adopt the efficiency-sum-reduced game to characterize the
weighted Banzhaf value. In Section 4, we propose dynamic processes to
illustrate that the weighted Banzhaf value can be approached by players
who start from an arbitrary efficient payoff vector. In Section 5, more
discussions and interpretations are presented in detail.

2. The weighted Banzhaf value

A coalitional game with transferable-utility (TU game) is a pair (N, v) where N
is the grand coalition and v is a mapping such that v : 2N −→ IR and v(∅) = 0.
Denote the class of all TU games by G. A solution on G is a function ψ which
associates with each game (N, v) ∈ G an element ψ(N, v) of IRN .

Definition 2.1. The efficient Banzhaf value (Hwang and Liao [10]), η, is the
solution on G which associates with (N, v) ∈ G and each player i ∈ N the value

(1) ηi(N, v) = ηi(N, v) +
1

|N |
·
[
v(N)−

∑
k∈N

ηk(N, v)
]
,

where ηi(N, v) =
∑

S⊆N

i∈S

[
v(S)−v(S \{i})

]
is the Banzhaf value (Owen [15, 16])

of i. It is known that the Banzhaf value violates EFF, and the efficient Banzhaf
value satisfies EFF.
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Let (N, v) ∈ G. A function w : N → R+ is called a weight function if w is
a non-negative function. In different situations, players in N could be assigned
different weights by weight functions. These weights could be interpreted as
a-priori measures of importance; they are taken to reflect considerations not
captured by the characteristic function. For example, we may be dealing with a
problem of cost allocation among investment projects. Then the weights could
be associated to the profitability of the different projects. In a problem of
allocating travel costs among various institutions visited (cf. Shapley [20]), the
weights may be the number of days spent at each one.

Given (N, v) ∈ G and a weight function w, we define |S|w =
∑

i∈S w(i), for
all S ⊆ N . The weighted Banzhaf value is defined as follows.

Definition 2.2. Let w be a weight function. The weighted Banzhaf value ηw,
is the solution on G which associates with (N, v) ∈ G and all players i ∈ N the
value

(2) ηwi (N, v) = ηi(N, v) +
w(i)

|N |w
·
[
v(N)−

∑
k∈N

ηk(N, v)
]
.

By the definition of ηw, all players firstly receive their marginal contributions
from all coalitions, and further allocate the remaining utilities proportionally by
applying weights.

Here, we provide a brief application of TU games and the weighted Banzhaf
value in the setting of “utility distribution for management systems,” such as
Microsoft and NBA. In an organization, each department may consider man-
agement operation strategies. Besides competing in merchandising, all depart-
ments, such as the research department, purchasing department, and logis-
tics department, should develop to increase the utility of the entire organi-
zation. Such a utility distribution problem could be formulated as follows. Let
N = {1, 2, . . . , n} be a collection of all departments of an organization that
could be provided jointly by some coalitions S ⊆ N and let v(S) be the profit of
providing the cooperative coalition S ⊆ N jointly. Each coalition S ⊆ N could
be formed by considering a specific operational aim. The function v could be
treated as a utility function that assigns to each cooperative coalition S ⊆ N the
worth that the coalition S can obtain. Modeled in this notion, the utility distri-
bution management system of an organization could be considered a cooperative
TU game, with v being its characteristic function. However, as mentioned in
the Introduction, it may be inappropriate in many situations if any additional
fixed utility should be distributed equally among the players who are concerned.
Thus, it is reasonable that weights are assigned to players and any fixed utility
should be divided according to these weights. In the following sections, some
more results will be proposed to show that the weighted Banzhaf value could be
applied in the setting of utility distribution.
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A solution ψ satisfies efficiency (EFF) if
∑

i∈N ψi(N, v) = v(N), for all
(N, v) ∈ G. Property EFF asserts that all players distribute all the utility
completely.

Lemma 2.1. The weighted Banzhaf value ηw satisfies EFF.

Proof of Lemma 2.1. Let (N, v) ∈ G. By Definition 2.2,∑
i∈N

ηwi (N, v) =
∑
i∈N

ηi(N, v) +
∑
i∈N

w(i)

|N |w
·
[
v(N)−

∑
k∈N

ηk(N, v)
]

=
∑
i∈N

ηi(N, v) +
|N |w
|N |w

·
[
v(N)−

∑
k∈N

ηk(N, v)
]

= v(N).

Hence, the weighted Banzhaf value ηw satisfies EFF.

Next, we present an alternative formulation for the weighted Banzhaf value
in terms of excess functions. If x ∈ RN and S ⊆ N , write xS for the restriction of
x to S and write x(S) =

∑
i∈S xi. Denote that X(N, v) = {x ∈ IRN :

∑
i∈N xi =

v(N)}, for all (N, v) ∈ G. The excess of a coalition S ⊆ N at x is the real
number e(S, v, x) = v(S)− x(S).

Lemma 2.2. Let (N, v) ∈ G, x ∈ X(N, v) and w be a weight function. Then

w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]
∀i, j ∈ N

⇐⇒ x = ηw(N, v).

Proof of Lemma 2.2. Let (N, v) ∈ G, x ∈ X(N, v) and w be a weight function.
For all i, j ∈ N ,

w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

⇐⇒ w(j)
∑

S⊆N\{i}

[
v(S)− x

2|N |−1
(S) +

x

2|N |−1
(S ∪ {i})− v(S ∪ {i})

]
= w(i)

∑
S⊆N\{j}

[
v(S)− x

2|N |−1
(S) +

x

2|N |−1
(S ∪ {j})− v(S ∪ {j})

]
⇐⇒ w(j)

∑
S⊆N\{i}

[ xi

2|N |−1
− v(S ∪ {i}) + v(S)

]
(3)
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= w(i)
∑

S⊆N\{j}

[ xj

2|N |−1
− v(S ∪ {j}) + v(S)

]
⇐⇒ w(j)

[
xi −

∑
S⊆N\{i}

[v(S ∪ {i})− v(S)]
]

= w(i)
[
xj −

∑
S⊆N\{j}

[v(S ∪ {j})− v(S)]
]

⇐⇒ w(j) ·
[
xi − ηi(N, v)

]
= w(i) ·

[
xj − ηj(N, v)

]
.

By Definition 2.2,

(4) w(j) ·
[
ηwi (N, v)− ηi(N, v)

]
= w(i) ·

[
ηwj (N, v)− ηj(N, v)

]
.

By equations (3) and (4),[
xi − ηwi (N, v)

]∑
j∈N

w(j) = w(i)
∑
j∈N

[
xj − ηwj (N, v)

]
.

Since x ∈ X(N, v) and ηw satisfies EFF,[
xi − ηwi (N, v)

]
· |N |w = w(i) ·

[
v(N)− v(N)

]
= 0.

Therefore, xi = ηwi (N, v), for all i ∈ N .

3. Axiomatic results

In this section, we adopt reductions and excess functions to introduce some
axiomatic results and dynamic processes of the weighted Banzhaf value.

Subsequently, we adopt the efficiency-average-reduced game to characterize
the weighted Banzhaf value.

Definition 3.1 (Liao et al. [13]). Let (N, v) ∈ G, S ⊆ N and ψ be a solution.
The efficiency-sum-reduced game (S, vS,ψ) with respect to ψ and S is defined by

vS,ψ(T ) =



0, T = ∅,
v(N)−

∑
i∈N\S

ψi(N, v), T = S,∑
Q⊆N\S

[
v(T ∪Q)−

∑
i∈Q

ψi(N, v)
]
, T ⊊ S.

The efficiency-sum-reduction asserts that given a proposed payoff vector
ψ(N, v), the worth of a coalition T in (S, vS,ψ) is computed under the assumption
that T can secure the cooperation of any subgroup Q of N \ S, provided each
member of Q receives his component of ψ(N, v). After these payments are made,
what remains for T is the value v(T ∪Q)−

∑
i∈Q ψi(N, v). Summing behavior on

the part of T involves finding the sum of the values v(T ∪Q)−
∑

i∈Q ψi(N, v),
for all Q ⊆ N \ S. A solution ψ satisfies bilateral efficiency-sum-consistency
(BESCON) if ψi(S, vS,ψ) = ψi(N, v), for all (N, v) ∈ G with |N | ≥ 2, for all
S ⊆ N with |S| = 2 and, for all i ∈ S.
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Lemma 3.1. The weighted Banzhaf value ηw satisfies BESCON.

Proof of Lemma 3.1. Let (N, v) ∈ G, S ⊆ N with |S| = 2 and w be a weight
function. Let x = ηw(N, v). Suppose S = {i, j} then

∑
T⊆S\{i}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {i}, vS,ηw ,
xS

2|S|−1
)
]

=
[
e({j}, vS,ηw ,

xS
2
)−e(S, vS,ηw ,

xS
2
)
]
+
[
e(∅, vS,ηw ,

xS
2
)−e({i}, vS,ηw ,

xS
2
)
]

=
(
vS,ηw({j})−

xj
2

)
−
(
vS,ηw(S)−

xS
2
(S)
)
+ 0−

(
vS,ηw({i})−

xi
2

)
=
(
vS,ηw({j})−

xj
2

)
− 0 + 0−

(
vS,ηw({i})−

xi
2

)
=
([ ∑

Q⊆N\S

[
v({j} ∪Q)−

∑
k∈Q

xk
2

]]
− xj

2

)
−
([ ∑

Q⊆N\S

[
v({i} ∪Q)−

∑
k∈Q

xk
2

]]
− xi

2

)
(5)

=
∑

Q⊆N\S

([
v({j} ∪Q)− xj

2|N |−1

]
−
[
v({i} ∪Q)− xi

2|N |−1

])
=

∑
Q⊆N\S

([
v({j} ∪Q)−

∑
k∈Q

xk
2|N |−1

− xj

2|N |−1

]
−
[
v({i} ∪Q)−

∑
k∈Q

xk
2|N |−1

− xi

2|N |−1

])
=

∑
Q⊆N\S

([
v({j} ∪Q)−

∑
k∈{j}∪Q

xk
2|N |−1

]
−
[
v({i} ∪Q)−

∑
k∈{j}∪Q

xk
2|N |−1

])
=

∑
Q⊆N\S

[
(e({j} ∪Q, v, x

2|N |−1
)− (e({i} ∪Q, v, x

2|N |−1
)
]

=
∑

Q⊆N\{i,j}

[
(e({j} ∪Q, v, x

2|N |−1
)− (e({i} ∪Q, v, x

2|N |−1
)
]

=
∑

Q⊆N\{i}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {i}, v, x

2|N |−1
)
]
.

Similar to equation (5),

∑
T⊆S\{j}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {j}, vS,ηw ,
xS

2|S|−1
)
]

=
∑

Q⊆N\{j}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {j}, v, x

2|N |−1
)
]
.
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By EFF of ηw and the definition of efficiency-sum-reduced game, xS ∈ X(S, vS,ηw).
Therefore, by Lemma 2.2,

w(j) ·
∑

T⊆S\{i}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {i}, vS,ηw ,
xS

2|S|−1
)
]

= w(j) ·
∑

Q⊆N\{i}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {i}, v, x

2|N |−1
)
]

(by equation (5))

= w(i) ·
∑

Q⊆N\{j}

[
(e(Q, v,

x

2|N |−1
)− (e(Q ∪ {j}, v, x

2|N |−1
)
]

(by Lemma 2.2)

= w(i) ·
∑

T⊆S\{j}

[
e(T, vS,ηw ,

xS
2|S|−1

)− e(T ∪ {j}, vS,ηw ,
xS

2|S|−1
)
]

(similar to equation (5)).

By Lemma 2 and xS ∈ X(S, vS,ηw), we have that xS = ηw(S, vS,ηw). Hence, η
w

satisfies BESCON.

Inspired by Hart and Mas-Colell [9], we provide an axiomatic result of the
weighted Banzhaf value as follows. A solution ψ satisfies weighted Banzhaf
standard for games (WBSFG) if ψ(N, v) = ηw(N, v), for all (N, v) ∈ G with
|N | ≤ 2. Property WBSFG is a generalization of the two-person standardness
axiom of Hart and Mas-Colell [9].

Lemma 3.2. If a solution ψ satisfies WBSFG and BESCON, then it satisfies
EFF.

Proof of Lemma 3.2. Suppose ψ satisfies WBSFG and BESCON. Let (N, v) ∈
G. If |N | ≤ 2, then ψ satisfies EFF by BESCON of ψ. Suppose |N | > 2, i, j ∈ N
and S = {i, j}. Since ψ satisfies EFF in two-person games,

(6) ψi(S, vS,ψ) + ψj(S, vS,ψ) = vS,ψ(S) = v(N)−
∑
k ̸=i,j

ψk(N, v).

By BESCON of ψ,

(7) ψt(S, vS,ψ) = ψt(N, v), for all t ∈ S.

By equations (6) and (7), v(N) =
∑

k∈N ψk(N, v), i.e., ψ satisfies EFF.

Theorem 3.1. A solution ψ satisfies WBSFG and BESCON if and only if
ψ = ηw.

Proof of Theorem 3.1. By Lemma 3.1, ηw satisfies BESCON. Clearly, ηw

satisfies WBSFG.
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To prove uniqueness, suppose ψ satisfies WBSFG and BESCON. By Lemma
3.2, ψ satisfies EFF. Let (N, v) ∈ G. If |N | ≤ 2, it is trivial that ψ(N, v) =
ηw(N, v) by SFG. Assume that |N | > 2. Let i ∈ N and S = {i, j} for some
j ∈ N \ {i}. Then

ψi(N, v)− ηwi (N, v)

= ψi(S, vS,ψ)− ηwi (S, vS,ηw) (by BESCON of ψ, ηw)

= ηwi (S, vS,ψ)− ηwi (S, vS,ηw) (by WBSFG of ψ, ηw)

= ηwi (S, vS,ψ) +
w(i)

|S|w
·
[
vS,ψ(S)−

[
ηwi (S, vS,ψ) + ηwj (S, vS,ψ)

]]
(8)

− ηwi (S, vS,ηw)−
w(i)

|S|w
·
[
vS,ηw(S)−

[
ηwi (S, vS,ηw) + ηwj (S, vS,ηw)

]]
=
[
vS,ψ(S) + vS,ψ({i})− vS,ψ({j})

]
+
w(i)

|S|w
·
[
− vS,ψ(S)

]
−
[
vS,ηw(S) + vS,ηw({i})− vS,ηw({j})

]
− w(i)

|S|w
·
[
− vS,ηw(S)

]
.

By definitions of vS,ψ and vS,ηw ,

vS,ψ({i})− vS,ψ({j}) =
∑

Q⊆N\S

[
v({i} ∪Q)− v({j} ∪Q)

]
= vS,ηw({i})− vS,ηw({j}).(9)

By equations (8) and (9),

ψi(N, v)− ηwi (N, v) =
[
1− w(i)

|S|w

]
·
[
vS,ψ(S)− vS,ηw(S)

]
=
w(j)

|S|w
·
[
ψi(N, v) + ψj(N, v)− ηwi (N, v)− ηwj (N, v)

]
.

That is,

w(i) ·
[
ψi(N, v)− ηwi (N, v)

]
= w(j) ·

[
ψj(N, v)− ηwj (N, v)

]
.

By EFF of ψ and ηw,

0 = v(N)− v(N)

=
∑
j∈N

[
ψj(N, v)− ηwj (N, v)

]
= w(i) ·

[
ψi(N, v)− ηwi (N, v)

]∑
j∈N

1

w(j)
.

Hence, ψi(N, v) = ηwi (N, v), for all i ∈ N .
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The following examples are to show that each of the axioms used in Theorem
3.1 is logically independent of the remaining axioms.

Example 3.1. Define a solution ψ by, for all (N, v) ∈ G and, for all i ∈ N ,

ψi(N, v) =
v(N)

|N |
.

Clearly, ψ satisfies BESCON, but it violates WBSFG.

Example 3.2. Define a solution ψ by for all (N, v) ∈ G and, for all i ∈ N ,

ψi(N, v) =

{
ηwi (N, v), if |N | ≤ 2,

0, otherwise.

Clearly, ψ satisfies WBSFG, but it violates BESCON.

4. Dynamic results

In this section, we introduce two dynamic processes of the weighted Banzhaf
value by applying excess functions and reductions.

In the following, we adopt excess functions to propose a correction function
and related dynamic process for the weighted Banzhaf value.

Definition 4.1. Let (N, v) ∈ G, i ∈ N and w be a weight function. The

e-correction function fη
w

i : X(N, v) → R is defined by

fη
w

i (x) = xi + t
∑

j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])
,

where t ∈ (0,∞), which reflects the assumption that player i does not ask for
full correction (when t = 1) but only (usually) a fraction of it.

When a player withdraws from the coalitions he/she/it joined, some of the
other players may complain. The e-correction function is based on the idea
that, each agent shortens the weighted excess relating to his own and others’
non-participation in all coalitions, and adopts these regulations to correct the
original payoff.

The following lemma shows that the e-correction function is well-defined,
i.e., the efficiency is preserved under the e-correction function.

Lemma 4.1. Let (N, v) ∈ G, w be a weight function and fη
w
= (fη

w

i )i∈N . If

x ∈ X(N, v), then fη
w
(x) ∈ X(N, v).
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Proof of Lemma 4.1. Let (N, v) ∈ G, i, j ∈ N , x ∈ X(N, v) and w be a
weight function. Similar to the equation (3),

w(i)
∑

S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
]

= w(i)
[
xj − ηwj (N, v)

]
− w(j)

[
xi − ηwi (N, v)

]
.(10)

By equation (10),∑
j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])

= w(i)
∑

j∈N\{i}

[
xj − ηwj (N, v)

]
−
[
xi − ηwi (N, v)

] ∑
j∈N\{i}

w(j)(11)

= w(i) ·
[
v(N)− v(N)

]
−
[
xi − ηwi (N, v)

]
· |N |w

(by EFF of ηw, x ∈ X(N, v))

= |N |w ·
(
ηwi (N, v)− xi

)
.

Moreover∑
i∈N

|N |w ·
(
ηwi (N, v)− xi

)
= |N |w ·

(
v(N)− v(N)

)
(by EFF of ηw, x ∈ X(N, v))(12)

= 0.

So, we have that∑
i∈N

fη
w

i (x)

=
∑
i∈N

[
xi + t

∑
j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])]

= v(N) + t · 0
(
by equations (11), (12) and x ∈ X(N, v)

)
= v(N).

Hence, fη
w
(x) ∈ X(N, v) if x ∈ X(N, v).
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Based on Lemma 4.1, we can define x0 = x, x1 = fη
w
(x0), . . . , xq =

fη
w
(xq−1), for all (N, v) ∈ G, for all x ∈ X(N, v) and, for all q ∈ N. Next,

we adopt the correction function to propose a dynamic process.

Theorem 4.1. Let (N, v) ∈ G and w be a weight function. If 0 < t < 2
|N |w ,

then {xq}∞q=1 converges geometrically to ηw(N, v), for all x ∈ X(N, v).

Proof of Theorem 4.1. Let (N, v) ∈ G, i ∈ N , x ∈ X(N, v) and w be a weight
function. By equation (11) and definition of fη

w
,

fη
w

i (x)− xi = t
∑

j∈N\{i}

(
w(i)

∑
S⊆N\{j}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {j}, v, x

2|N |−1
)
]

− w(j)
∑

S⊆N\{i}

[
e(S, v,

x

2|N |−1
)− e(S ∪ {i}, v, x

2|N |−1
)
])

= t · |N |w
(
ηwi (N, v)− xi

)
.

Hence,

ηwi (N, v)− fη
w

i (x) = ηwi (N, v)− xi + xi − fη
w

i (x)

= ηwi (N, v)− xi − t · |N |w · (ηwi (N, v)− xi)

=
(
1− t · |N |w

)[
ηwi (N, v)− xi

]
.

For all q ∈ N,

ηw(N, v)− xq =
(
1− t · |N |w

)q[
ηw(N, v)− x

]
.

If 0 < t < 2
|N |w , then −1 < (1−t·|N |w) < 1 and {xq}∞q=1 converges geometrically

to ηw(N, v).

By applying a specific reduction, Maschler and Owen [14] defined a correction
function to introduce a dynamic process for the Shapley value [19]. In the
following, we propose a dynamic process by applying the notion due to Maschler
and Owen [14].

Definition 4.2. Let ψ be a solution, (N, v) ∈ G, S ⊆ N and x ∈ X(N, v). The
(x, ψ)-reduced game1 (S, vrψ,S,x) is defined by for all T ⊆ S,

vrψ,S,x(T ) =


v(N)−

∑
i∈N\S

xi, T = S,

vS,ψ(T ), otherwise.

1. For the discussion of x-dependent reduction, please see Maschler and Owen [14].
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Inspired by Maschler and Owen [14], we define a correction function as follow.
Let (N, v) ∈ G and w be a weight function. The R-correction function to be
g = (gi)i∈N and gi : X(N, v) → R is define by

gi(x) = xi + t
∑

k∈N\{i}

(
ηwi
(
{i, k}, vrηw,{i,k},x

)
− xi

)
,

where t ∈ (0,∞), which reflects the assumption that player i does not ask
for full correction (when t = 1) but only (usually) a fraction of it. Define
x0 = x, x1 = g(x0), . . . , xq = g(xq−1), for all q ∈ N.
Lemma 4.2. g(x) ∈ X(N, v), for all (N, v) ∈ G and, for all x ∈ X(N, v).

Proof of Lemma 4.2. Let (N, v) ∈ G, w be a weight function, i, k ∈ N and
x ∈ X(N, v). Let S = {i, k}, by EFF of ηw and Definition 5,

ηwi (S, v
r
ηw,S,x) + ηwk (S, v

r
ηw,S,x) = xi + xk.

By Definition 4.2 and BESCON and WBSFG of β,

ηwi (S, v
r
ηw,S,x

)− ηwk (S, v
r
ηw,S,x

) = ηwi (S, vS,ηw)− ηwk (S, vS,ηw)

= ηwi (N, v)− ηwk (N, v).

Therefore,

(13) 2 ·
[
ηwi (S, v

r
ηw,S,x)− xi

]
= ηwi (N, v)− ηwk (N, v)− xi + xk.

By definition of g and equation (13),

gi(x) = xi +
t

2
·
[ ∑
k∈N\{i}

ηwi (N, v)−
∑

k∈N\{i}

xi

−
∑

k∈N\{i}

ηwk (N, v) +
∑

k∈N\{i}

xk

]
= xi +

w

2
·
[(
|N | − 1

)
ηwi (N, v)−

(
|N | − 1

)
xi(14)

−
(
v(N)− ηwi (N, v)

)
+
(
v(N)− xi

)]
= xi +

|N | · t
2

·
[
ηwi (N, v)− xi

]
.

So, we have that∑
i∈N

gi(x) =
∑
i∈N

[
xi +

|N | · t
2

·
[
ηwi (N, v)− xi

]]
=
∑
i∈N

xi +
|N | · t

2
·
[∑
i∈N

ηwi (N, v)−
∑
i∈N

xi
]

= v(N) +
|N | · t

2
·
[
v(N)− v(N)

]
= v(N).

Thus, g
(
x
)
∈ X(N, v), for all x ∈ X(N, v).
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Theorem 4.2. Let (N, v) ∈ G and w be a weight function. If 0 < α < 4
|N | ,

then {xq}∞q=1 converges to ηw(N, v) for each x ∈ X(N, v).

Proof of Theorem 4.2. Let (N, v) ∈ G, w be a weight function and x ∈
X(N, v). By equation (14), gi(x) = xi +

|N |·t
2 · [ηwi (N, v) − xi], for all i ∈ N .

Therefore,

(
1− |N | · t

2

)
·
[
ηwi (N, v)− xi

]
=
[
ηwi (N, v)− gi(x)

]
So, for all q ∈ N,

ηw(N, v)− xq =
(
1− |N | · t

2

)q[
ηw(N, v)− x

]
.

If 0 < t < 4
|N | , then −1 < (1− |N |·t

2 ) < 1 and {xq}∞q=1 converges to ηw(N, v), for

all (N, v) ∈ G, for all weight function w and for all i ∈ N .

5. Conclusions

Weights come up naturally in the framework of utility allocation. For example,
we may face the problem of utility allocation among investment projects. Then,
the weights could be associated with the profitability of the different projects.
Weights are also included in contracts signed by the owners of a condominium
and used to divide the cost of building or maintaining common facilities. An-
other example is data or patent pooling among firms where the firms’ sizes,
measured for instance by their market shares, are natural weights. Therefore,
we adopt weight functions to propose the weighted Banzhaf value. To present
the rationality of the weighted Banzhaf value, we employ the efficiency-sum-
reduction characterization. Based on excess functions, an alternative formula-
tion is proposed to provide an alternative viewpoint for the weighted Banzhaf
value. By applying excess functions and reductions, we also define correction
functions to propose dynamic processes for the weighted Banzhaf value. Below
are the comparisons of our results with related pre-existing results.

� The weighted Banzhaf value and related results are introduced initially in
the framework of standard TU games.

� Inspired by Maschler and Owen [14], we propose dynamic processes for
the weighted Banzhaf value. The major difference is that our e-correction
function (Definition 4.1) is based on “excess functions,” and Maschler and
Owen’s [14] correction function is based on “reductions”.

Our results proposed raise two issues.

� Whether there exist weighted modifications and related results for some
more solutions.
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� Whether there exist different formulations and related results for some
more solutions.

These issues are left to the readers.
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Abstract. We introduce the notion of a composition of square matrices. We recall
the notion of poset matrix, a square (0, 1)-matrix, to represent posets. We show that
this composition of poset matrices gives generalizations of the ordinal product as well
as the direct sum and ordinal sum of poset matrices. We give an interpretation of
the composition of poset matrices in posets. We show that the composition of poset
matrices is also a poset matrix, and it represents a decomposable poset. This result
gives, consequently, a matrix recognition of the decomposable posets.

Keywords: decomposable poset, composite poset, matrix recognition, poset matrix,
composition, ordinal product.

1. Introduction

To maximize efficiency, methods for solving many optimization problems on the
structure theory begin with some decomposition techniques. These techniques
are used to reduce a bigger structure into smaller ones of the same kind, like
posets into autonomous sets [3], graphs into clumps [1], comparability graphs
into stable sets [10], schedules into job-modules [4], and networks into simplifi-
able subnetworks [9]. As a result, due to the computational tractability property
of the decomposable posets, various methods for the recognition of this type of
posets are considered by numerous authors. Khamis [3] recalled the notion of

*. Corresponding author
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composition of posets and described an algorithmic method for the recognition
of prime (indecomposable) posets. In this article, we give a matrix recogni-
tion of the decomposable posets by using the poset matrix, an incidence matrix
introduced by Mohammad and Talukder [6] to represent posets.

Since the incidence matrices have many computational aspects, these are
chosen repeatedly in recognizing different classes of posets [6, 11] and graphs [5,
12]. As a result, special operations on incidence matrices, due to the classical
applications in the adjacent fields, are considered in the literature [5, 7, 8]. In
this paper, we introduce the notion of a composition of square matrices and give
an interpretation of this composition of poset matrices in posets. Tucker [12]
recognized the circular-arc graphs and proper circular-arc graphs by using the
properties of perfect 0s, circular 1s, and circularly compatible 1s defined on an
augmented adjacency matrix. These results give us the idea of defining the
property of transitive blocks of 1s on a block poset matrix and giving a matrix
recognition of the decomposable posets.

In Section 2, we recall some basic terminologies related to the ordinal prod-
uct and composition of posets. We also recall the common operations in the
poset matrices and their interpretations in posets. In Section 3, we define the
aforesaid composition of square matrices. Here, we mainly show that the compo-
sition of poset matrices is also a poset matrix, and it represents a decomposable
poset. We also show that this composition of poset matrices generalizes the
ordinal product of poset matrices, and every composite poset is decomposable.
In Section 4, we define the property of transitive blocks of 1s in a block poset
matrix and give a matrix recognition of the decomposable posets.

2. Preliminaries

A poset (partially ordered set) is a structure A = ⟨A,⩽⟩ consisting of the
nonempty set A with the order relation ⩽ on A, that is, the relation ⩽ is
reflexive, antisymmetric, and transitive on A. A poset A is called finite if the
underlying set A is finite. Here, we assume that every poset is finite. Let
A = ⟨A,⩽A⟩ and B = ⟨B,⩽B⟩ be two posets. A bijective map ϕ : A → B is
called an order isomorphism if for all x, y ∈ A, we have x ⩽A y if and only if
ϕ(x) ⩽B ϕ(y). We write A ∼= B whenever A and B are order isomorphic. For
further essentials of posets, readers are referred to the classical book by Davey
and Priestley [2].

We use the notation 1 for the singleton poset, Cn(n ≥ 1) for the n-element
chain posets, In(n ≥ 1) for the n-element antichain posets, Dn(n ≥ 4) for
the n-element diamond posets, Zn(n ≥ 4) for the n-element zigzag posets, and
Bm,n(m ≥ 1, n ≥ 1) for the complete bipartite posets with m minimal elements
and n maximal elements.

We also use the notation A + B and A ⊕ B to denote the direct sum and
ordinal sum, respectively, of the posets A and B. For any poset A, we write
shortly nA for A+A+ · · ·+A and ⊕nA for A⊕A⊕ · · · ⊕A. In general, for
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any posets Bi, 1 ≤ i ≤ n, we write shortly
∑n

i=1Bi for B1 +B2 + · · ·+Bn and⊕n
i=1Bi for B1 ⊕B2 ⊕ · · · ⊕Bn.

A poset G is called a P -graph if there exist the singleton or antichain posets
Ai, 1 ≤ i ≤ n such that G ∼=

⊕n
i=1Ai. A poset S is called a P -series if there

exist the P -graphs Gi, 1 ≤ i ≤ n such that S ∼=
∑n

i=1Gi. Every P -graph is
trivially a P -series. A poset is called series-parallel if it can be expressed as the
sum of the singleton posets using only the direct sum and ordinal sum. Every
P -series, as well as every P -graph, is trivially series-parallel.

The ordinal product of the posets A and B, denoted by A ⊗ B, is defined
as the poset ⟨A × B,⩽⊗⟩ such that for all (x, y), (x

′
, y

′
) ∈ A × B, we have

(x, y) ⩽⊗ (x
′
, y

′
) if either (i) x ⩽A x

′
or (ii) x = x

′
and y ⩽B y

′
. Here, the

posets A and B are called the ordinal factors of A⊗B. In Figure 1, the ordinal
product B1,2 ⊗B2,1 along with the direct sum B1,2 +B2,1 and the ordinal sum
B1,2⊕B2,1 are shown by using the Hasse diagrams. In general, A⊗B ≇ B⊗A.

B1,2 +B2,1 B1,2 ⊕B2,1 B1,2 ⊗B2,1

Figure 1: Hasse diagrams of B1,2 +B2,1, B1,2 ⊕B2,1, and B1,2 ⊗B2,1.

A poset C is said to be composite if and only if their exist nonsingleton
posets A and B such that C ∼= A ⊗ B. For example, the poset B1,2 ⊗ B2,1

(Figure 1) is composite. Also, for any poset B, the poset nB and ⊕nB are
composite, because nB ∼= In ⊗ B and ⊕nB ∼= Cn ⊗ B. A proof by using the
poset matrix of the result relating the ordinal sum was given by Mohammad
and Talukder [7].

We now recall the definition of the composition of posets. Let A = ⟨A,⩽A⟩
with A = {x1, x2, ..., xm} and Br = ⟨Br,⩽Br⟩, 1 ≤ r ≤ m with Br = {yt+i :
1 ≤ i ≤ nr} where t =

∑r−1
k=1 nk, be posets on the disjoint sets A and Br,

1 ≤ r ≤ m. Then the composition of the posets A and Br, 1 ≤ r ≤ m, denoted
by A [B1, B2, ..., Bm], is defined as the poset ⟨

⋃m
k=1Bk,⩽c⟩ such that for all

yi, yj ∈
⋃m
r=1Br, we have yi ⩽c yj if and only if one of the following conditions

is satisfied.

1. yt+i′ , yl+j′ ∈ Br for some r (when t = l =
∑r−1

k=1 nk, i
′
= i−t and j′ = j−l)

and yt+i′ ⩽Br yl+j′ ,

2. yt+i′ ∈ Br and yl+j′ ∈ Bs for some r < s (when
∑r−1

k=1 nk = t < l =∑s−1
k=1 nk, i

′
= i− t and j

′
= j − l) and xr ⩽A xs.
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Here, A is called the outer poset or quotient poset, and Br, 1 ≤ r ≤ m are called
the inner posets and their ground sets are called autonomous sets. An example
of the composition of posets is shown in Figure 2 by using the Hasse diagrams.
Obviously, for any posets Bi, 1 ≤ i ≤ n, we have

∑n
i=1Bi

∼= In[B1,B2, ...,Bn]
and

⊕n
i=1Bi

∼= Cn[B1,B2, ...,Bn]. In particular, for any poset A with |A| = n,
we have A ∼= A[1,1, ...,1︸ ︷︷ ︸

n times

].

B2,1 C2

,
Z4

,
B1,2

=

B2,1[C2,Z4,B1,2]

Figure 2: Hasse diagrams giving the composition B2,1[C2,Z4,B1,2].

A poset D is called decomposable if and only if D is isomorphic to some
posets obtained as the composition of two or more inner posets where at least
one inner poset is nonsingleton. Thus, a poset D is decomposable if and only
if there exist the poset A and the posets B1,B2, ...,Bn, n ≥ 2, where at least
one Bi is nonsingleton, such that D ∼= A[B1,B2, ...,Bn]. For example, the
posets D4 and Z4⊕1 are decomposable because D4

∼= C2[1,B2,1] ∼= C2[B1,2,1]
∼= C3[1, I2,1] and Z4⊕1 ∼= C2[Z4,1]. Here, we see that the posets 1, I2, and C2

are not decomposable. We assume that these posets are trivially decomposable.
On the other hand, a poset is called prime or indecomposable if and only if it
is not decomposable. For example, the poset Z4 is a prime poset with the least
number of elements.

Note that for any nontrivial P -graph G, we have G ∼= Cn[Im1 , Im2 , ..., Imn ]
for some mi, 1 ≤ i ≤ n. Also, for any nontrivial P -series S, we have S ∼=
In[G1,G2, ...,Gn] for some P -graphs Gi, 1 ≤ i ≤ n. These show that every
P -series as well as every P -graph is decomposable. Similarly, we can show that
every series-parallel poset is decomposable. Note also that, since Z4 is not a
P -graph, Z4 ⊕ 1 is not series-parallel. Thus, a decomposable poset may not
be series-parallel. However, we will show by using the poset matrix that every
composite poset is decomposable (Corollary 3.2).

Mohammad and Talukder [6] introduced the notion of poset matrix, where
they gave matrix recognitions of some subclasses of series-parallel posets. A
square (0, 1)-matrix M = [aij ], 1 ≤ i, j ≤ m is called a poset matrix if and only
if the following conditions hold.

1. aii = 1 for all 1 ≤ i ≤ m i.e. M is reflexive,

2. aij = 1 and aji = 1 imply i = j i.e. M is antisymmetric,
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3. aij = 1 and ajk = 1 imply aik = 1 i.e. M is transitive.

Both the matrices M and M ′ in the following example are poset matrices

Example 2.1.

M =

 1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 , M
′
=

 1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1


Throughout this paper, we use the notationMm,n for an m-by-n matrix and

Mm for a square matrix of order m. In particular, we use the notation In, On,
and Zn for the n-th order identity matrix, the matrix with all entries 1s, and
the matrix with all entries 0s, respectively. We also use the notation Cn for the
matrix [cij ], 1 ≤ i, j ≤ n defined as cij = 1 for all i ≤ j and cij = 0 otherwise.
For every n ≥ 1, both the matrices In and Cn are trivially poset matrices.

To each poset matrix Mm = [aij ], 1 ≤ i, j ≤ m, a poset A = ⟨A,⩽⟩, where
A = {x1, x2, . . . , xm} and xi corresponds the i-th row (or column) of Mm, is
associated by defining the order relation ⩽ on A such that for all 1 ≤ i, j ≤ m,
we have xi ⩽ xj if and only if aij = 1. Then it is said that the poset matrix
Mm represents the poset A and vice versa. For example, the poset matrix In
represents the poset In and the poset matrix Cn represents the poset Cn. Also,
the poset matrices M and M

′
, as given in Example 2.1, represent the posets D4

and Z4, respectively.

Let Mm be a poset matrix. Then for some 1 ≤ i, j ≤ m, interchanges
of i-th and j-th rows along with the interchanges of i-th and j-th columns in
Mm is called the (i,j)-relabeling of Mm. The following results are obtained by
Mohammad and Talukder [6] where the authors gave some interpretations of
the relabeling of poset matrices in posets.

Theorem 2.1. Any relabeling of a poset matrix is a poset matrix, and it repre-
sents the same poset up to isomorphism.

Theorem 2.2. Every poset matrix can be relabeled to an upper (or lower) tri-
angular matrix with 1s in the main diagonal by a finite number of relabeling.

From now on, by a poset matrix we mean a poset matrix in the upper
triangular form.

3. Composition of poset matrices

In this section, we give the construction of the composition of square matrices.
We show that the composition of poset matrices generalizes the ordinal prod-
uct of poset matrices. We also show that the composition of poset matrices
represents a decomposable poset.
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Definition 3.1. The composition of the square matrices Mm = [aij ], 1 ≤ i, j ≤
m and Nnr , 1 ≤ r ≤ m, denoted by Mm[Nn1 , Nn2 , ..., Nnm ], is a block matrix
defined as follows:

Mm[Nn1 , ..., Nnm ] =


a11Nn1 a12On1,n2 · · · a1mOn1,nm

a21On2,n1 a22Nn2 · · · a2mOn2,nm

...
...

. . .
...

am1Onm,n1 am1Onm,n2 · · · ammNnm

 .

Let Mm = [aij ], 1 ≤ i, j ≤ m and Nnr , 1 ≤ r ≤ m be poset matri-
ces. Since Mm is a (0,1)-matrix, the (i, j)-th block Qij of the block matrix
Mm[Nn1 , Nn2 , ..., Nnm ] = [Qij ], 1 ≤ i, j ≤ m can be expressed as follows:

(1) Qij =



Nni , if i = j,

Oni,nj , if i < j and aij = 1,

Zni,nj , if i < j and aij = 0,

Onj ,ni , if i > j and aij = 1,

Znj ,ni , if i > j and aij = 0.

Example 3.1.

 1 0 1
0 1 1
0 0 1


[ 1 1

0 1

]
,

 1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 1

 ,
 1 1 1

0 1 0
0 0 1




=



1 1 | 0 0 0 0 | 1 1 1
0 1 | 0 0 0 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


.

In the above example, we give the composition B[C2,M
′, B′] of the poset

matrices B, C2, M
′ (Example 2.1), and B′, where the matrices B and B′ rep-

resent the posets B2,1 and B1,2, respectively.

Mohammad and Talukder [7] introduced the notion of the ordinal product
of matrices. The ordinal product Mm ⊠ Nn of the poset matrices Mm = [aij ],
1 ≤ i, j ≤ m and Nn is a block matrix where the (i, j)-th block Pij of the matrix
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Mm ⊠Nn = [Pij ], 1 ≤ i, j ≤ m is expressed as follows:

(2) Pij =


Nn, if i = j,

On, if i ̸= j and aij = 1,

Zn, otherwise.

The authors [7] then gave an interpretation of the ordinal product of poset
matrices in posets as follows:

Theorem 3.1. Let Mm represent the poset A and Nn represent the poset B.
Then the matrix Mm ⊠Nn is a poset matrix and it represents the poset A⊗B.

Corollary 3.1. Let B be any poset. Then Cn ⊗B ∼= ⊕nB.

The result in Corollary 3.1 was proved by using the fact that the ordinal
product of poset matrices gives a generalization of the ordinal sum of poset
matrices. Below, we show that the composition of poset matrices generalizes
the ordinal product of poset matrices.

Lemma 3.1. Let Mm and Nn be poset matrices. Then

(3) Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸
m times

] =Mm ⊠Nn.

Proof. Substitute ni = n, 1 ≤ i ≤ m in the expression for Qij in equation (1).
Then (i, j)-th block Qij of Mm[Nn1 , Nn2 , ..., Nnm ] = [Qij ], 1 ≤ i, j ≤ m takes
the following form.

Qij =



Nn, if i = j,

On,n, if i < j and aij = 1,

Zn,n, if i < j and aij = 0,

On,n, if i > j and aij = 1,

Zn,n, if i > j and aij = 0.

This implies

Qij =


Nn, if i = j,

On, if i ̸= j and aij = 1,

Zn, otherwise

which equals the expression for Pij in equation (2). Thus, for all 1 ≤ i, j ≤ m,
the (i, j)-th block of the poset matrix Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸

m times

] equals the (i, j)-th

block of the poset matrixMm⊠Nn. Hence the equality in equation (3) holds.

The following result gives an interpretation of the composition of poset ma-
trices in posets.
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Theorem 3.2. Let Mm represent the poset A and Nni represent the poset Bi,
1 ≤ i ≤ m. Then the matrix Mm[Nn1 , Nn2 , ..., Nnm ] is a poset matrix and it
represents the poset A[B1,B2, ...,Bm].

Proof. Let Mm = [aij ], 1 ≤ i, j ≤ m, Nnr = [bij ], 1 ≤ i, j ≤ nr and 1 ≤ r ≤ m.
Also let Mm[Nn1 , Nn2 , ..., Nnm ] = QT = [qij ], 1 ≤ i, j ≤ T , where T =

∑m
r=1 nr,

with block representation [Qij ], 1 ≤ i, j ≤ m. Since Mm and Nnr , 1 ≤ r ≤ m are
all upper triangular matrices with 1s in the main diagonal, Qij = Zni,nj for all
i > j. Thus QT is upper triangular with elements 1s in the main diagonal and
hence QT is reflexive and antisymmetric. For transitivity of QT , let qij = qjk = 1
for some 1 ≤ i ≤ j ≤ k ≤ T . Then, we have the following cases:

1. qij , qjk ∈ Qrr = Nnr for some 1 ≤ r ≤ m. Then there exist bi′j′ , bj′k′ ,
bi′k′ ∈ Nnr such that bi′j′ = qij = 1, bj′k′ = qjk = 1 and bi′k′ = qik. Since
Nnr is transitive, qik = bi′k′ = 1.

2. qij ∈ Qrs = Onr,ns and qjk ∈ Qss = Nns for some 1 ≤ r < s ≤ m. Then
qik ∈ Qrs = Onr,ns and clearly, qik = 1.

3. qij ∈ Qrs = Onr,ns and qjk ∈ Qst = Ons,nt for some 1 ≤ r < s < t ≤ m.
Then qik ∈ Qrt. Then by the definition of composition of poset matrices,
ars, ast ∈ Mm; and ars = ast = 1. Since Mm is transitive, art = 1.
Therefore, Qrt = Onr,nt and clearly, qik = 1.

Thus, QT is transitive and hence a poset matrix.

Now, we show that QT represents the poset A[B1, B2, . . ., Bm]. Let A
= {x1, x2, ..., xm} and Br = {yt+i : 1 ≤ i ≤ nr} where t =

∑r−1
k=1 nk. Let

qij = 1 in QT for some 1 ≤ i ≤ j ≤ T . Then qij ∈ Qrs for some 1 ≤ r ≤ s ≤ m,
and we have the following two cases.

1. r = s. Then Qrs = Nnr and bi′j′ = qij ∈ Qkl = Nnr for t =
∑r−1

k=1 nk,

i
′
= i − t and j

′
= j − t. Since bi′j′ = 1 and Nnr represents Br, we have

yt+i′ ⩽Br yt+j′ . Then, by the definition of composition of posets, yi ⩽c yj .

2. r < s. Then Qrs = Onr,ns for
∑r−1

k=1 nk = t < l =
∑s−1

k=1 nk. Then
yt+i′ ∈ Br and yl+j′ ∈ Bs. Then by the definition of composition of poset
matrices, 1 = ars ∈Mm. SineMm represents A, we have xr ⩽A xs. Then,
by the definition of composition of posets, yi ⩽c yj .

For the converse, similarly, we show that yi ⩽c yj implies 1 = qij ∈ QT for all
1 ≤ i, j ≤ T . Hence the matrix QT represents the poset A[B1, B2, . . ., Bm].

Below we prove the result that every composite poset is decomposable as an
immediate corollary of Theorem 3.2.

Corollary 3.2. Every composite poset is decomposable.
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Proof. Let C be any composite poset. Then there exist the nonsingleton posets
A and B such that C ∼= A⊗B. Let |A| = m. To show that C is decomposable,
we now show that the following isomorphism holds

(4) A⊗B ∼= A[B,B, . . . ,B︸ ︷︷ ︸
m times

].

Let Mm represent the poset A and Nn represent the poset B. Then, by The-
orem 3.1, Mm ⊠ Nn is a poset matrix and it represents the poset A ⊗ B, and
by Theorem 3.2, Mm[Nn, Nn, ..., Nn︸ ︷︷ ︸

m times

] is a poset matrix and it represents the

poset A[B,B, . . . ,B︸ ︷︷ ︸
m times

]. Therefore, the isomorphism in equation (4) holds by the

equality in equation (3), as established in Lemma 3.1.

4. Recognition of decomposable posets

We now define the property of transitive blocks of 1s in a poset matrix.

Definition 4.1. A poset matrix Q is said to have the property of transitive
blocks of 1s of length {m, {n1, n2, . . . , nm}} if and only if there exists a block
representation Q = [Mij ], 1 ≤ i, j ≤ m such that for all 1 ≤ i, j, k ≤ m, the
following conditions hold:

1. Mii = Nni, a poset matrix,

2. Mij = Zni,nj or Oni,nj for i < j; and Mij = Znj ,ni for i > j,

3. Mij = Oni,nj and Mjk = Onj ,nk
implies Mik = Oni,nk

.

Note that if n1 = n2 = · · · = nm = n (say) then we write shortly {m,n} for
the length {m, {n1, n2, . . . , nm}}.

We see that although the poset matrix N in the following example seems
not to satisfy the property of the transitive blocks of 1s, the poset matrix N

′′

(Example 4.1), obtained by (3, 4)-relabeling of N and then (2, 3)-relabeling of
N

′
, satisfies the property of transitive blocks of 1s of length {3, {2, 4, 3}}.

Example 4.1.

N =



1 0 | 0 1 0 0 | 1 1 1
0 1 | 0 0 1 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 1 | 1 1 1
0 0 | 0 1 0 0 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1
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(3,4)-relabeling−−−−−−−−−→



1 0 | 1 0 0 0 | 1 1 1
0 1 | 0 0 1 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 0 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


= N

′

(2,3)-relabeling−−−−−−−−−→



1 1 | 0 0 0 0 | 1 1 1
0 1 | 0 0 0 0 | 1 1 1
− − . − − − − . − − −
0 0 | 1 0 1 0 | 1 1 1
0 0 | 0 1 1 1 | 1 1 1
0 0 | 0 0 1 0 | 1 1 1
0 0 | 0 0 0 1 | 1 1 1
− − . − − − − . − − −
0 0 | 0 0 0 0 | 1 1 1
0 0 | 0 0 0 0 | 0 1 0
0 0 | 0 0 0 0 | 0 0 1


= N

′′
.

Theorem 4.1. A matrix satisfies the property of transitive blocks of 1s if and
only if it is obtained as the composition of some poset matrices.

Proof. Let the matrix Q be obtained as the composition of the poset matrices
Mm and Nni , 1 ≤ i ≤ m. Then, by the definition of the composition of poset
matrices, we have Q =Mm[Nn1 , Nn2 , ..., Nnm ], and by Theorem 3.2, Q is a block
poset matrix. This shows that Q is upper triangular having the poset matrices
Nni , 1 ≤ i ≤ m as diagonal blocks satisfying the first two cases in Definition 4.1.
Let Mm = [aij ] and Q = [Qij ], 1 ≤ i, j ≤ m with Qij = Oni,nj and Qjk = Onj ,nk

for some 1 ≤ i < j ≤ m. Then, again by the definition of the composition of
poset matrices, we have aij = ajk = 1. Since Mm is transitive, aik = 1. Thus,
Qik = Oni,nk

which satisfies the last case in Definition 4.1. This shows that Q
satisfies the property of transitive blocks of 1s of length {m, {n1, n2, . . . , nm}}.

Conversely, we suppose that the matrix Q satisfies the property of transitive
blocks of 1s of length {m, {n1, n2, . . . , nm}} and show similarly that Q can be
obtained as the composition of some poset matricesMm and Nni , 1 ≤ i ≤ m.

We observe that the poset matrix N
′′
, as given in Example 4.1, represents

the decomposable poset B2,1[ C2, Z4, B1,2] shown in Figure 2. In the following,
we establish this result in general where we give a matrix recognition of the
decomposable posets.
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Theorem 4.2. Let the matrix Q represent the poset D. Then D is decomposable
if and only if Q can be relabeled in such a form that it satisfies the property of
transitive blocks of 1s.

Proof. Let D be a decomposable poset. There exist the posets A and Bi,
1 ≤ i ≤ m, where m ≥ 2 and at least one Bi is nonsingleton, such that D
∼= A[B1,B2, . . . ,Bm]. Let Mm represent the poset A and Nni represent the
poset Bi for every 1 ≤ i ≤ m. Then, by Theorem 3.2, Mm[Nn1 , Nn2 , . . . , Nnm ]
is a poset matrix and it represents the poset A[B1,B2, . . . ,Bm] ∼= D. This
shows that Q can be relabeled in such a form that Q =Mm[Nn1 , Nn2 , . . . , Nnm ].
By Theorem 4.1, Q satisfies the property of transitive blocks of 1s of length
{m, {n1, n2, . . . , nm}}.

Conversely, we suppose that the poset matrix Q can be relabeled in such a
form that it satisfies the property of transitive blocks of 1s and show similarly
that the poset D is decomposable.
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Abstract. The N -soft Set as a generalization of the Soft Sets was introduced in 2018
by Fatimah et al. The concept of the N -soft Sets combined with the hesitant fuzzy
sets is called hesitant fuzzy N -soft sets. On the other hand, the concept of fuzzy soft
sets as a combination of soft sets and fuzzy sets was generalized by Majumdar and
Samanta in 2010, called Generalized fuzzy soft sets, where many scholars have stud-
ied their properties and characteristics. This paper aims to extend the hesitant fuzzy
N -soft set to a generalized hesitant fuzzy N -soft set that incorporates some character-
istics of generalized fuzzy soft sets. Definition of the generalized hesitant fuzzy N -soft
set, complements, and some of their operations are defined. Moreover, some of their
properties, such as associative and distributive related to binary operations, are stud-
ied. Finally, we propose two algorithms for decision-making problems by extending the
TOPSIS method to apply under generalized hesitant fuzzy N -soft set information.

Keywords: N -soft sets, hesitant fuzzy N -soft sets, generalized hesitant fuzzy soft
sets, TOPSIS method.

1. Introduction

In real life, many uncertainty or ambiguity problems cannot be expressed by
a crisp set, while decision-making is needed to obtain a possible result on a
problem. In 1965, Zadeh [23] introduced a theory to solve this problem called
the fuzzy set (FS). The FS theory is usually used to facilitate decision-making
on uncertain or unclear problems by defining the degree of each object under

*. Corresponding author
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consideration, called the membership value, in the interval [0,1]. In an FS,
only one parameter is considered. In 1999 Molodtsov [16] introduced soft sets
that associate objects with more than one parameter. A soft set (SS) is a set
of ordered pairs of each parameter or attribute with related objects. Studies
on Soft Sets have developed rapidly. Mostafa et al. [17], constructed codes
by soft sets PU-valued functions. Zhan and Alcantud [24] reviewed some dif-
ferent algorithms of parameter reduction based on some types of (fuzzy) soft
sets and compared these algorithms to emphasize their respective advantages
and disadvantages. The methodologies and applications of soft set theory in
Multi-attribute decision-making (MADM) have been studied by Khameneh and
Kilicman [12] from 71 research papers published in 30 academic journals.

Based on the definition of the fuzzy set and the soft set, researchers have
introduced hybrid models, their generalization, and their decision-making appli-
cations. Maji et al. [14] defined fuzzy soft sets (FSSs). Then, Roy and Maji [18]
studied FSSs in a theoretic approach to decision making-problems. Majumdar
and Samanta [15] have further generalized the concept of fuzzy soft sets intro-
duced by Maji et al. [14] and have shown their application in decision-making
and medical diagnosis problems. Wang et al. [20] extended the classical soft
sets to hesitant fuzzy soft sets (HFSS) which are combined by the soft sets and
hesitant fuzzy sets. In 2019, Wang and Qin [22] proposed an algorithm of fuzzy
soft sets based on decision-making problems under incomplete information. Li
et al. [13] proposed generalized hesitant fuzzy soft sets (GHFSS) by integrating
generalized fuzzy soft sets with hesitant fuzzy sets and provided an effective
approach to decision making. Recently, Karaaslan and Karamaz [11] defined
the concept of hesitant fuzzy parameterized hesitant fuzzy soft (HFPHFSs) sets
and set-theoretical operations of them and then developed two decision-making
algorithms based on the proposed distance measure methods. An FSS is the
collection of pairs between a parameter with an FS. However, a generalized
fuzzy soft sets (GFSS) is an FSS, along with the degree of importance of each
parameter. An HFSS is similar to the FSS, but the membership value of each
object is some values in [0,1].

The definition of the SS was generalized to a new set called the N -soft set
(NSS), which was introduced by Fatimah et al. [7]. In the same year, Akram
et al. [1] introduced the fuzzy N -soft set (FNSS), and then in 2019, Akram et
al. [2] generalized the definition of NSS or FNSS into a Hesitant fuzzy N -soft
set (HFNSS) and developed new approaches to decision-making such as TOP-
SIS, choose value, L-choose value, etc. The Research related to decision-making
using the approach of the N -soft set continues to grow. Akram et al. [3] ex-
tended the notion of parameter reduction to N -soft set theory and developed its
application. On the other hand, Alcantud et al. [5] offered a fresh insight into
rough set theory from the perspective of N -soft sets, and the applicability of
the theoretical results is highlighted with a case study using real data regarding
hotel rating. Fatimah and Alcantud [8] introduced a novel hybrid model called
a multi-fuzzy N -soft set and designed an adjustable decision-making method-
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ology for solving problems. Kamaci and Petchimuthu [10] proposed a bipolar
extension of the N -soft set and set forth two outstanding algorithms to handle
the decision-making problems under bipolar N -soft set environments. In 2021,
Akram et al. [4] presented a new framework called bipolar fuzzy N -soft set as an
extended model of [10] and proposed three algorithms to handle MADM prob-
lems. Newly, Alcantud [6] presented the first detailed analysis of the semantics
of N -soft sets and designed three-way decision models with both a qualitative
and a quantitative character. Another sophisticated hybrid model proposed re-
cently is defined by Zhang et al. [25], where they proposed a q-rung orthopair
fuzzy N -soft set (q-ROFNSS) and established two kinds of multiple-attribute
group decision-making (MAGDM) methods.

In real life, a decision-maker sometimes needs to consider that the degree or
contribution of each parameter in a decision-making problem is not necessarily
the same. However, this problem cannot be solved using the HFNSS concept
[2]. Therefore, it should be considered a new model in which the degree of each
parameter is not the same. This degree is called the degree of preference.

This article constructs a new definition to generalize an HFNSS, called
the generalized hesitant fuzzy N -soft set (GHFNSS). On the other hand, the
GHFNSS is also a new hybrid model between the generalized fuzzy soft set
(GFSS), HFSS and NSS. With this definition, the GHFNSS does not consider
only the membership degrees (not necessarily unique for each object) and grades
of objects but also the preference degree (the importance degree) of parameters.
Furthermore, we can define some operations on GHFNSSs and prove the related
properties. Finally, we apply the new TOPSIS algorithms for decision-making
problems based on GHFNSS information.

We organize this paper as follows. Section 2 recalls the definitions and oper-
ations of SSs, FSs, FSSs, GFSSs, HFSSs, NSSs, FNSSs, and HFNSSs. Section
3 introduces a new model GHFNSS, some of its complements and examples.
Then we propose some operations on GHFNSSs, and related to the operations,
we derive some properties, such as associative and distributive, in Section 4.
Section 5 proposes two algorithms by extending the TOPSIS method to apply
under GHFNSS information and give a numerical example. Section 6 concludes
the paper.

2. Preliminaries

In this section, the definitions introduced by previous scholars, such as soft sets,
fuzzy sets, hesitant fuzzy sets, fuzzy soft sets, hesitant fuzzy soft sets, and N -soft
sets, are recalled.

Definition 2.1 ([16]). Suppose that U is a set of objects, P (U) is the power set
of U , and E is the set of parameters, A ⊆ E. A soft set (SS) FA over U is a
set, defined by a function fA, that is represented as

FA = {(e, fA(e)) | e ∈ A, fA(e) ∈ P (U)}
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Table 1: The soft set FA

U

∖
A e2 e3 e4

u1 0 1 1
u2 1 1 0
u3 0 1 0
u4 1 1 0
u5 1 0 1
u6 0 0 1

where fA : A→ P (U).

Example 2.1. Let U = {u1, u2, u3, u4, u5, u6} be a set of job applicants and
E = {e1, e2, e3, e4} be the set of parameters. Given the parameters ”appear-
ance” (e1), ”courtesy” (e2), ”public speaking” (e3), ”innovative” (e4) and A =
{e2, e3, e4}. By a decision-maker, based on his/her monitoring, a relation be-
tween each parameter with objects is represented as f(e2) = {u2, u4, u5}, f(e3) =
{u1, u2, u3, u4} and f(e4) = {u1, u5, u6}. By definition, it is obtained an SS FA

as follows.
FA = {(e2, {u2, u4, u5}), (e3, {u1, u2, u3, u4}), (e4, {u1, u5, u6})}.
The SS FA can be represented as in Table 1.

Definition 2.2 ([23]). Suppose that U is a set of objects. A Fuzzy Set (FS) F
over U is defined as

F = {(u, µ(u)) | u ∈ U}
where µ : U → [0, 1] is called the membership function of F over U and µ(u) is
the membership value of u.

A membership value of u represents the degree of the trust of an object u
over a valuation of a decision-maker. Membership values of objects in an FS
over U represent membership in a vaguely defined set.

Definition 2.3 ([19]). Suppose that U is a set of objects. A Hesitant Fuzzy Set
(HFS) H over U is defined as

H = {(u, µ(u)) | u ∈ U},

where µ : U → int[0, 1] is called the membership function of H over U and
µ(u) is the set of membership values of u. Here, int[0, 1] is the collection of all
subsets of [0, 1].

The concept of the HFS is almost the same as the FS, but an object u may
have more than one membership value. This happens because a decision-maker
hesitates to valuation for an object or more than one decision-maker evaluates
objects.
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Definition 2.4 ([18]). Suppose that U is a set of objects, E is the set of param-
eters and A ⊆ E. A Fuzzy Soft Set (FSS) GA over U is a set

GA = {(e, gA(e)) | e ∈ A, gA(e) ∈ IU},

where gA : A→ IU and IU is the collection of all FSs over U .

An FSS is the ordered pair of each parameter or attribute with an FS over
U. This set provides more explanation than FSs and SSs to give more meaning
to the assessment of objects.

Definition 2.5 ([15]). Suppose that U is a set of objects, E is the set of param-
eters and IU is the collection of all FSs over U . A Generalized Fuzzy Soft Set
(GFSS) Fµ over U is defined as

Fµ = {(e, Fµ(e)) | e ∈ E} = {(e, (F (e), µ(e))) | e ∈ E}

where Fµ : E −→ IU × [0, 1], F : E −→ IU is an FSS over U, µ : E −→ [0, 1] is
an FS over E, and µ(e) is called the degree of preference of e ∈ E in Fµ .

Example 2.2. Suppose that a decision-maker interviews three candidates for
agricultural extension workers, which are expressed in the set of objects U =
{c1, c2, c3}. Competencies (parameters) interviewed are e1=Development of
Farmer Participation and e2=Development of Extension Programs. The candi-
date’s ability to explain all the competencies tested will be assessed from the
interview test. The results of this assessment are expressed as real numbers
in [0,1], which are the membership values of each candidate for each parame-
ter. Assume that a decision-maker defines the degrees of importance for each
parameter as follows.

µ(e1) = 0.6;µ(e2) = 0.4.

Following are the results of the assessment of all candidates, which can be stated
in the GFSS Fµ.

Fµ = {(e1, (F (e1), µ(e1))), (e2, (F (e2), µ(e2)))}
= {(e1, ({(c1, 0.4), (c2, 0.5), (c3, 0.8)}, 0.6)),

(e2, ({(c1, 0.6), (c2, 0.5), (c3, 0.4)}, 0.4))}.

Definition 2.6 ([21]). Suppose that U is a set of objects, E is the set of pa-
rameters and A ⊆ E. A Hesitant Fuzzy Soft Set (HFSS) HA over U is defined
as

HA = {(e, hA(e)) | e ∈ A},

where hA : A→ HU and HU is the collection of all HFSs over U .

As illustrated in Example 2.1, the SS can be represented as a matrix; their
entries consist of 0 or 1. Fatimah et al. [7] generalized the concept of SSs called
N -soft set as in the following definition.
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Definition 2.7 ([7]). Suppose that U is a set of objects, E is the set of parame-
ters or attributes, and A ⊆ E. R = {0, 1, 2, ..., N − 1} is the set of grades where
N ∈ {2, 3, ...}. An N -soft set (NSS) (F,A,N) over U is defined as

(F,A,N) = {(a, F (a)) | a ∈ A},

where F : A→ 2U×R such that F (a) = {(u, rau) | u ∈ U, rau ∈ R}. Here we also
write rau = F (u)(a) as the grade of the object u related to the parameter a, and
for each a ∈ A and u ∈ U , there exists a unique rau ∈ R.

Example 2.3. Let U = {u1, u2, u3, u4, u5} be a set of cinemas and E = {e1, e2,
e3, e4, e5, e6} be the set of medias that making valuation. Suppose that A =
{e1, e3, e5}. For N = 4, R = {0, 1, 2, 3}, suppose that

F (e1) = {(u1, 3), (u2, 1), (u3, 0), (u4, 2), (u5, 2)}
F (e3) = {(u1, 2), (u2, 1), (u3, 3), (u4, 1), (u5, 3)}
F (e5) = {(u1, 0), (u2, 3), (u3, 1), (u4, 2), (u5, 3)}.

Then, by definition, we obtain the NSS (F,A,N) as follows.

(F,A,N) ={(e1, {(u1, 3), (u2, 1), (u3, 0), (u4, 2), (u5, 2)}),
(e3, {(u1, 2), (u2, 1), (u3, 3), (u4, 1), (u5, 3)}),
(e5, {(u1, 0), (u2, 3), (u3, 1), (u4, 2), (u5, 3)})}.

The NSS (F,A,N) can be represented as in Table 2.

Table 2: The Representation Table
of the NSS (F,A,N)

U

∖
A e1 e3 e5

u1 3 2 0
u2 1 1 3
u3 0 3 1
u4 2 1 2
u5 2 3 3

Definition 2.8 ([7]). Suppose that U is a set of objects, E is the set of para-
meters or attributes, A ⊆ E, B ⊆ E and A∩B ̸= ∅. Let R1 = {0, 1, 2, ..., N1−1}
and R2 = {0, 1, 2, ..., N2−1} be the sets of grades where N1, N2 ∈ {2, 3, ...}. The
restricted intersection of (F,A,N1) and (G,B,N2) is defined as

(F,A,N1) ∩ℜ (G,B,N2) = (J,A ∩B,min(N1, N2))
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where, for e ∈ A ∩B, u ∈ U , (u, reu) ∈ J(e) if and only if reu = min(r
(1)
eu , r

(2)
eu ),

with (u, r
(1)
eu ) ∈ F (e) and (u, r

(2)
eu ) ∈ G(e).

Definition 2.9 ([7]). Suppose that U is a set of objects, E is the set of pa-
rameters or attributes, A ⊆ E and B ⊆ E. Let R1 = {0, 1, 2, ..., N1 − 1} and
R2 = {0, 1, 2, ..., N2 − 1} be the sets of grades where N1, N2 ∈ {2, 3, ...}. The
extended intersection of (F,A,N1) and (G,B,N2) is defined as

(F,A,N1) ∩E (G,B,N2) = (J,A ∪B,max(N1, N2))

where, for e ∈ A ∪B, u ∈ U ,

J(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

{(u, reu) | u ∈ U}, if e ∈ A ∩B,

with reu = min(r
(1)
eu , r

(2)
eu ), for (u, r

(1)
eu ) ∈ F (e) and (u, r

(2)
eu ) ∈ G(e).

Definition 2.10 ([7]). Suppose that U is a set of objects, E is the set of param-
eters or attributes, A ⊆ E, B ⊆ E and A∩B ̸= ∅. Let R1 = {0, 1, 2, ..., N1 − 1}
and R2 = {0, 1, 2, ..., N2−1} be the sets of grades where N1, N2 ∈ {2, 3, ...}. The
restricted union of (F,A,N1) and (G,B,N2) is defined as

(F,A,N1) ∪ℜ (G,B,N2) = (J,A ∩B,max(N1, N2))

where, for e ∈ A∩B, u ∈ U , (u, reu) ∈ J(e) if and only if reu = max(r
(1)
eu , r

(2)
eu ),

with (u, r
(1)
eu ) ∈ F (e) and (u, r

(2)
eu ) ∈ G(e).

Definition 2.11 ([7]). Suppose that U is a set of objects, E is the set of pa-
rameters or attributes, A ⊆ E and B ⊆ E. Let R1 = {0, 1, 2, ..., N1 − 1} and
R2 = {0, 1, 2, ..., N2 − 1} be the sets of grades where N1, N2 ∈ {2, 3, ...}. The
extended union of (F,A,N1) and (G,B,N2) is defined as

(F,A,N1) ∪E (G,B,N2) = (J,A ∪B,max(N1, N2))

where, for e ∈ A ∪B, u ∈ U ,

J(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

{(u, reu) | u ∈ U}, if e ∈ A ∩B,

with reu = max(r
(1)
eu , r

(2)
eu ) for (u, r

(1)
eu ) ∈ F (e) and (u, r

(2)
eu ) ∈ G(e).

Akram et al. [1] constructed a new hybrid model called fuzzy N -soft set as
a suitable combination of FS theory with NSS.
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Definition 2.12 ([1]). Suppose that U is a set of objects, E is the set of pa-
rameters or attributes, A ⊆ E. A pair (µ,K), called a fuzzy N -soft set (FNSS)
over U , with K = (F,A,N) is an NSS over U , is defined as

(µ,K) = {(a, µ(a)) | a ∈ A} =

{(
a,

{
(u, rau)

mau

∣∣∣∣u ∈ U

}) ∣∣∣∣a ∈ A

}
,

where µ : A →
⋃

a∈AF(F (a)) with F(F (a)) is the collection of all fuzzy sets
over F (a), (u, rau) ∈ F (a) and mau ∈ [0, 1] is the membership value of (u, rau).

In 2019, Akram et al. [2] again introduced a novel model called hesitant
fuzzy N -soft set as a hybrid of HFS and NSS.

Definition 2.13 ([2]). Suppose that U is a set of objects, E is the set of pa-
rameters or attributes, A ⊆ E and N ∈ {2, 3, ...}. A hesitant fuzzy N -soft set
(HFNSS) (h̃f , A,N) over U is defined as

(h̃f , A,N) = {((u, a), h̃f (u, a)) | a ∈ A, u ∈ U},

where h̃f : U ×A→ R×P∗([0, 1]), with P∗([0, 1]) denotes the set of non-empty
subsets of real numbers in [0, 1]. Here h̃f (u, a) = (rau,mau) with mau and rau
denote the possible membership degrees and the grade of the element u related to
parameter a, respectively, and for each a ∈ A and u ∈ U , there exists a unique
rau ∈ R.

The HFNSS over U can also be represented by

(ℏf , A,N) = {(a, ℏf (a)) | a ∈ A} =

{(
a,

{
(u, rau)

mau

∣∣∣∣u ∈ U

}) ∣∣∣∣a ∈ A

}
,(1)

with ℏf : A −→
⋃

a∈AH(F (a)), where H(F (a)) is the collection of all HFSs over
F (a). Related to mau, we defined m+

au = max{γ | γ ∈ mau} and m−
au = min{γ |

γ ∈ mau}.
The following definitions (Definitions 2.14-2.16) recall some complements of

an HFNSS.

Definition 2.14 ([2]). Given an HFNSS (ℏf , A,N) over U as in the equation
(1). The Hesitant Fuzzy Complement of (ℏf , A,N) is defined as

(ℏcf , A,N) =

{(
a,

{
(u, rau)

mc
au

∣∣∣∣u ∈ U

}) ∣∣∣∣a ∈ A

}
,

with

mc
au =

⋃
λ∈mau

{1− λ}.
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Definition 2.15 ([2]). Given an HFNSS (h̃f , A,N) over U . The Top Weak
Hesitant Fuzzy Complement (h̃Tf , A,N) of (h̃f , A,N) is defined as

h̃Tf (u, a) =

{
(N − 1,

⋃
λ∈mau

{1− λ}), if rau < N − 1,

(0,
⋃

λ∈mau
{1− λ}), if rau = N − 1,

where h̃f (u, a) = (rau,mau).

Definition 2.16 ([2]). Given an HFNSS (h̃f , A,N) over U . The Bottom Weak
Hesitant Fuzzy Complement (h̃Bf , A,N) of (h̃f , A,N) is defined as

h̃Bf (u, a) =

{
(0,

⋃
λ∈mau

{1− λ}), if rau > 0,

(N − 1,
⋃

λ∈mau
{1− λ}), if rau = 0,

where h̃f (u, a) = (rau,mau).

Now, we review the fundamental set-theoretic operations on HFNSSs.

Definition 2.17 ([2]). Given two HFNSSs over U (h̃f1 , A,N1) and (h̃f2 , B,N2).
The restricted intersection (h̃f , C,N) of them is defined as

(h̃f , C,N) = (h̃f1 , A,N1) ∩ℜ (h̃f2 , B,N2) = (h̃f , A ∩B,min(N1, N2))

where, for c ∈ A ∩ B ̸= ∅ and u ∈ U , (rcu,mcu) = h̃f (u, c) if and only if

rcu = min(r
(1)
cu , r

(2)
cu ) and mcu = {λ ∈ m

(1)
cu ∪m(2)

cu | λ ≤ min(m
(1)
cu

+
,m

(2)
cu

+
} with

(r
(1)
cu ,m

(1)
cu ) = h̃f1(u, c), (r

(2)
cu ,m

(2)
cu ) = h̃f2(u, c).

Definition 2.18 ([2]). Given two HFNSSs over U (ℏf1 , A,N1) and (ℏf2 , B,N2).
The extended intersection (ℏf , C,N) of them is defined as

(ℏf , C,N) = (ℏf1 , A,N1) ∩E (ℏf2 , B,N2) = (ℏf , A ∪B,max(N1, N2))

where, for c ∈ A ∪B

ℏf (c) =


ℏf1(c), if c ∈ A−B,

ℏf2(c), if c ∈ B −A,{
(u,rcu)
mcu

∣∣∣∣u ∈ U

}
, if c ∈ A ∩B,

with rcu = min(r
(1)
cu , r

(2)
cu ), mcu = {λ ∈ m

(1)
cu ∪ m(2)

cu | λ ≤ min(m
(1)
cu

+
,m

(2)
cu

+
)},

(u,r
(1)
cu )

m
(1)
cu

∈ ℏf1(c) and
(u,r

(2)
cu )

m
(2)
cu

∈ ℏf2(c).

Definition 2.19 ([2]). Let U be a set of objects. Suppose that (h̃f1 , A,N1) and
(h̃f2 , B,N2) are two HFNSSs over U . The restricted union (h̃f , C,N) of them
is defined as

(h̃f , C,N) = (h̃f1 , A,N1) ∪ℜ (h̃f2 , B,N2) = (h̃f , A ∩B,max(N1, N2))
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where, for c ∈ A ∩ B ̸= ∅ and u ∈ U , (rcu,mcu) = h̃f (u, c) if and only if

rcu = max(r
(1)
cu , r

(2)
cu ) and mcu = {λ ∈ m

(1)
cu ∪ m

(2)
cu | λ ≥ max(m

(1)
cu

−
,m

(2)
cu

−
)}

with (r
(1)
cu ,m

(1)
au ) = h̃f1(u, c), (r

(2)
cu ,m

(2)
cu ) = h̃f2(u, c).

Definition 2.20 ([2]). Let U be a set of objects. Suppose that (ℏf1 , A,N1) and
(ℏf2 , B,N2) are two HFNSSs over U . The extended union (ℏf , C,N) of them is
defined as

(ℏf , C,N) = (ℏf1 , A,N1) ∪E (ℏf2 , B,N2) = (ℏf , A ∪B,max(N1, N2))

where, for c ∈ A ∪B

ℏf (c) =


ℏf1(c), if c ∈ A−B,

ℏf2(c), if c ∈ B −A,{
(u,rcu)
mcu

∣∣∣∣u ∈ U

}
, if c ∈ A ∩B,

with rcu = max(r
(1)
cu , r

(2)
cu ), mcu = {λ ∈ m

(1)
cu ∪m(2)

cu | λ ≥ max(m
(1)
cu

−
,m

(2)
cu

−
)},

(u,r
(1)
cu )

m
(1)
cu

∈ ℏf1(c) and
(u,r

(2)
cu )

m
(2)
cu

∈ ℏf2(c).

3. Generalized Hesitant Fuzzy N-Soft Sets, their complements and
some further set-theoretic operations

This section will introduce a novel hybrid model called generalized hesitant fuzzy
N -soft set as a hybrid model of HFNSS and GFSS. Furthermore, we construct
some complements and operations related to the new model.

Definition 3.1. Suppose that U is a set of objects and E is the set of parameters.
Let A ⊆ E, N ∈ {2, 3, ...} and R = {0, 1, 2, . . . , N − 1}. Let H = (ℏf , A,N) be
an HFNSS over U . A Generalized Hesitant Fuzzy N -Soft Set (GHFNSS) (H, µ)
over U is defined by

(H, µ) : = ((ℏf , A,N), µ) = {(a, ℏf (a), µ(a)) | a ∈ A}

=

{(
a,

{(
(u, rau)

mau

) ∣∣∣∣u ∈ U

}
, µ(a)

) ∣∣∣∣a ∈ A

}
,

(2)

where ℏf : A →
⋃

a∈AH(F (a)) and µ : A → [0, 1]. For all a ∈ A, u ∈ U ,
rau ∈ R, mau is a set of some values in [0,1] and µ(a) is a degree of preference
of the parameter a ∈ A.

A GHFNSS over U can be represented by a representation form.

Definition 3.2. Suppose that U is a set of objects and E is the set of parameters.
Let A ⊆ E, N ∈ {2, 3, ...} and R = {0, 1, 2, . . . , N − 1}. A representation form
of a GHFNSS (H, µ) over U is defined by

(3) (H, µ) = {((ui, aj), h̃f (ui, aj)) | aj ∈ A, ui ∈ U},



GENERALIZED HESITANT FUZZY N-SOFT SETS AND THEIR APPLICATIONS 477

where h̃f : U ×A −→ R×P∗[0, 1]× [0, 1] with h̃f (ui, aj) := (rajui ,majui , µ(aj)).

To simplify, we may write h̃f (ui, aj) := (
rajui
majui

, µ(aj)).

The representation form of a GHFNSS can be presented by a table as in
Table 3. Here rij = F (ui)(aj) = rajui , and mij = majui .

Table 3: The table of a representation form of a GHFNSS (H, µ) over U .

ui

∖
aj a1 . . . aj . . . am

u1 (r11,m11, µ(a1)) . . . (r1j ,m1j , µ(aj)) . . . (r1m,m1m, µ(am))
u2 (r21,m21, µ(a1)) . . . (r2j ,m2j , µ(aj)) . . . (r2m,m2m, µ(am))
u3 (r31,m31, µ(a1)) . . . (r3j ,m3j , µ(aj)) . . . (r3m,m3m, µ(am))
...

...
...

...
...

...
ui (ri1,mi1, µ(a1)) . . . (rij ,mij , µ(aj)) . . . (rim,mim, µ(am))
...

...
...

...
...

...
un (rn1,mn1, µ(a1)) . . . (rnj ,mnj , µ(aj)) . . . (rnm,mnm, µ(am))

Example 3.1. Suppose that U = {u1, u2, u3}, E = {e1, e2, e3, e4, e5, e6} and
the degrees of preference of parameters in A, µ(e1) = 0.5, µ(e2) = 0.6, µ(e3) =
0.5, µ(e4) = 0.7, µ(e5) = 0.6 and µ(e6) = 0.8. Suppose that A,B,C ⊆ E with
A = {e1, e2, e4}, B = {e2, e4, e5} and C = {e1, e5, e6}. Given three GHFNSSs
over U , (H1, µ) = ((ℏf1 , A, 5), µ), (H2, µ) = ((ℏf2 , B, 4), µ) and (H3, µ) =
((ℏf3 , C, 6), µ) as follows

a. (H1, µ) =

{(
e1,

{
(u1, 4)

{0.7, 0.8, 0.85}
,

(u2, 2)

{0.4, 0.55, 0.6}
,

(u3, 3)

{0.5, 0.55, 0.65}

}
, 0.5

)
,(

e2,

{
(u1, 1)

{0.3, 0.4, 0.45}
,

(u2, 2)

{0.5, 0.55, 0.65}
,

(u3, 3)

{0.5, 0.6, 0.65}

}
, 0.6

)
,(

e4,

{
(u1, 2)

{0.55, 0.6}
,

(u2, 4)

{0.75, 0.8, 0.85}
,

(u3, 2)

{0.45, 0.5, 0.6}

}
, 0.7

)}
b. (H2, µ) =

{(
e2,

{
(u1, 1)

{0.3, 0.35, 0.45}
,

(u2, 3)

{0.5, 0.6, 0.65}
,

(u3, 2)

{0.45, 0.5, 0.6}

}
, 0.6

)
,(

e4,

{
(u1, 3)

{0.6, 0.65, 0.7}
,

(u2, 2)

{0.5, 0.6, 0.75}
,

(u3, 2)

{0.45, 0.5, 0.55}

}
, 0.7

)
,(

e5,

{
(u1, 2)

{0.55, 0.6}
,

(u2, 3)

{0.65, 0.7, 0.75}
,

(u3, 3)

{0.7, 0.75, 0.8}

}
, 0.6

)}
c. (H3, µ) =

{(
e1,

{
(u1, 4)

{0.6, 0.65}
,

(u2, 3)

{0.5, 0.55, 0.6}
,

(u3, 5)

{0.7, 0.75, 0.8}

}
, 0.5

)
,(

e5,

{
(u1, 4)

{0.65, 0.7, 0.75}
,

(u2, 5)

{0.8, 0.85}
,

(u3, 3)

{0.6, 0.65, 0.75}

}
, 0.6

)
,(

e6,

{
(u1, 3)

{0.55, 0.6, 0.7}
,

(u2, 2)

{0.45, 0.55, 0.65}
,

(u3, 4)

{0.6, 0.7, 0.75}

}
, 0.8

)}
.



478 A. NAZRA, JENIZON, A.K. CHAN, G. C. WICAKSONO, Y. S. SARI and ZULVERA

The GHFNSSs as in Example 3.1 can be presented as representation forms
as in Table 4, Table 5 and Table 6 respectively.

Table 4: The repesentation form of the GHFNSS (H1, µ) over U

ui

∖
aj e1 e2 e4

u1 (4, {0.7, 0.8, 0.85}, 0.5) (1, {0.3, 0.4, 0.45}, 0.6) (2, {0.55, 0.6}, 0.7)
u2 (2, {0.4, 0.55, 0.6}, 0.5) (2, {0.5, 0.55, 0.65}, 0.6) (4, {0.75, 0.8, 0.85}, 0.7)
u3 (3, {0.5, 0.55, 0.65}, 0.5) (3, {0.5, 0.6, 0.65}, 0.6) (2, {0.45, 0.5, 0.6}, 0.7)

Table 5: The repesentation form of the GHFNSS (H2, µ) over U

ui

∖
aj e2 e4 e5

u1 (1, {0.3, 0.35, 0.45}, 0.6) (3, {0.6, 0.65, 0.7}, 0.7) (2, {0.55, 0.6}, 0.6)
u2 (3, {0.5, 0.6, 0.65}, 0.6) (2, {0.5, 0.6, 0.75}, 0.7) (3, {0.65, 0.7, 0.75}, 0.6)
u3 (2, {0.45, 0.5, 0.6}, 0.6) (2, {0.45, 0.5, 0.55}, 0.7) (3, {0.7, 0.75, 0.8}, 0.6)

Table 6: The repesentation form of the GHFNSS (H3, µ) over U

ui

∖
aj e1 e5 e6

u1 (4, {0.6, 0.65}, 0.5) (4, {0.65, 0.7, 0.75}, 0.6) (3, {0.55, 0.6, 0.7}, 0.8)
u2 (3, {0.5, 0.55, 0.6}, 0.5) (5, {0.8, 0.85}, 0.6) (2, {0.45, 0.55, 0.65}, 0.8)
u3 (5, {0.7, 0.75, 0.8}, 0.5) (3, {0.6, 0.65, 0.75}, 0.6) (4, {0.6, 0.7, 0.75}, 0.8)

Now, we introduce some definitions of the complement of a GHFNSS (Defi-
nitions 3.3-3.5).

Definition 3.3. Suppose that (H, µ) is a GHFNSS over U . We define some
complements of such (H, µ) as follows.

a. A Weak Complement of (H, µ) is

(4) (Hw, µ) =

{(
a,

{(
(u, rcau)

mau

) ∣∣∣∣u ∈ U

}
, µ(a)

) ∣∣∣∣a ∈ A

}
,

where rcau ̸= rau.

b. The Hesitant Fuzzy Complement of (H, µ) is

(5) (Hf , µ) =

{(
a,

{(
(u, rau)

mc
au

) ∣∣∣∣u ∈ U

}
, µ(a)

) ∣∣∣∣a ∈ A

}
,

where mc
au =

⋃
λ∈mau

{1− λ}.
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c. The Preference Complement of (H, µ) is

(6) (H, µc) =
{(

a,

{(
(u, rau)

mau

) ∣∣∣∣u ∈ U

}
, µc(a)

) ∣∣∣∣a ∈ A

}
,

where µc(a) = 1− µ(a).

d. A Weak Hesitant Fuzzy Complement of (H, µ) is

(Hc, µ) =

{(
a,

{(
(u, rcau)

mc
au

) ∣∣∣∣u ∈ U

}
, µ(a)

) ∣∣∣∣a ∈ A

}
,

where rcau and mc
au are in equations (4) and (5) respectively.

e. A Weak Preference Complement of (H, µ) is

(Hw, µc) =

{(
a,

{(
(u, rcau)

mau

) ∣∣∣∣u ∈ U

}
, µc(a)

) ∣∣∣∣a ∈ A

}
,

where rcau and µc(a) are in equations (4) and (6) respectively.

f. The Hesitant Preference Fuzzy Complement of (H, µ) is

(Hf , µc) =

{(
a,

{(
(u, rau)

mc
au

) ∣∣∣∣u ∈ U

}
, µc(a)

) ∣∣∣∣a ∈ A

}
,

where mc
au and µc(a) are in equations (5) and (6) respectively.

g. A Weak Generalized Hesitant Fuzzy Complement of (H, µ) is

(Hc, µc) =

{(
a,

{(
(u, rcau)

mc
au

) ∣∣∣∣u ∈ U

}
, µc(a)

) ∣∣∣∣a ∈ A

}
,

where rcau, m
c
au and µc(a) are in equations (4), (5) and (6) respectively.

It is clear that the complements b., c. and f. above are unique respectively,
because of the definition of mc

ac and µ
c(a).

Example 3.2. Based on Example 3.1, the Weak Generalized Hesitant Fuzzy
Complement of (H3, µ) is presented in Table 7.

Table 7: The representation form of the Weak Generalized Hesitant Fuzzy Com-
plement of (H3, µ).

(H3
c, µc) e1 e5 e6
u1 (3, {0.35, 0.4}, 0.5) (3, {0.25, 0.3, 0.35}, 0.4) (2, {0.3, 0.4, 0.45}, 0.2)
u2 (2, {0.45, 0.4, 0.5}, 0.5) (4, {0.15, 0.2}, 0.4) (1, {0.35, 0.45, 0.55}, 0.2)
u3 (4, {0.2, 0.25, 0.3}, 0.5) (2, {0.25, 0.35, 0.4}, 0.4) (3, {0.25, 0.3, 0.4}, 0.2)
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Definition 3.4. Given a GHFNSS (H, µ) over U . The following defines some
special complements of such (H, µ).

a. The Top Weak Complement of (H, µ) is defined by

(HT , µ) = {(a, ℏf (a)T , µ(a)) | a ∈ A}, with

ℏf (a)T =


{

(u,N−1)
mau

∣∣∣u ∈ U
}
, if rau < N − 1{

(u,0)
mau

∣∣∣u ∈ U
}
, if rau = N − 1.

(7)

b. The Top Weak Hesitant Fuzzy Complement of (H, µ) is defined by

(HT c
, µ) = {(a, ℏf (a)T

c
, µ(a)) | a ∈ A}, with

ℏf (a)T
c
=


{

(u,N−1)⋃
λ∈mau

{1−λ}

∣∣∣u ∈ U
}
, if rau < N − 1,{

(u,0)⋃
λ∈mau

{1−λ}

∣∣∣u ∈ U
}
, if rau = N − 1.

(8)

c. The Top Weak Preference Complement of (H, µ) is defined by

(HT , µc) = {a, ℏf (a)T , µc(a) | a ∈ A},

where ℏf (a)T is in equation (7), and µc(a) = 1− µ(a).

d. The Top Weak Generalized Hesitant Fuzzy Complement of (H, µ) is defined
by

(HT c
, µc) = {a, ℏf (a)T

c
, µc(a) | a ∈ A}.

where ℏf (a)T
c
is in equation (8).

Example 3.3. Based on Example 3.1, the Top Weak Generalized Hesitant
Fuzzy Complement of (H3, µ) is in Table 8.

Table 8: The representation form of the Top Weak Generalized Hesitant Fuzzy
Complement of (H3, µ).

(H3
T c

, µ3
c) e1 e5 e6

u1 (5, {0.35, 0.4}, 0.5) (5, {0.25, 0.3, 0.35}, 0.4) (5, {0.3, 0.4, 0.45}, 0.2)
u2 (5, {0.45, 0.4, 0.5}, 0.5) (0, {0.15, 0.2}, 0.4) (5, {0.35, 0.45, 0.55}, 0.2)
u3 (0, {0.2, 0.25, 0.3}, 0.5) (5, {0.25, 0.35, 0.4}, 0.4) (5, {0.25, 0.3, 0.4}, 0.2)

Definition 3.5. Given a GHFNSS (H, µ) over U . The following defines the
other special complements of such (H, µ).
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a. The Bottom Weak Complement of (H, µ) is defined by

(HB, µ) = {(a, ℏf (a)B, µ(a)) | a ∈ A}, with

ℏf (a)B =


{

(u,0)
mau

∣∣∣u ∈ U
}
, if rau > 0,{

(u,N−1)
mau

∣∣∣u ∈ U
}
, if rau = 0.

(9)

b. The Bottom Weak Hesitant Fuzzy Complement of (H, µ) is defined by

(HBc
, µ) = {(a, ℏf (a)B

c
, µ(a)) | a ∈ A}, with

ℏf (a)B
c
=


{

(u,0)⋃
λ∈mau

{1−λ}

∣∣∣u ∈ U
}
, if rau > 0,{

(u,N−1)⋃
λ∈mau

{1−λ}

∣∣∣u ∈ U
}
, if rau = 0.

(10)

c. The Bottom Weak Preference Complement of (H, µ) is defined by

(HB, µc) = {(a, ℏf (a)B, µc(a)) | a ∈ A},

where ℏf (a)B is in equation (9) and µc(a) = 1− µ(a).

d. The Bottom Weak Generalized Hesitant Fuzzy Complement of (H, µ) is
defined by

(HBc
, µc) = {(a, ℏf (a)B

c
, µc(a)) | a ∈ A}.

where ℏf (a)B
c
is in equation (10).

Note that each complement in Definition 3.4 and Definition 3.5, is unique.

Example 3.4. Based on Example 3.1, the Bottom Weak Generalized Hesitant
Fuzzy Complement of (H3, µ) is in Table 9.

Table 9: The representation form of the Bottom Weak Generalized Hesitant
Fuzzy Complement of (H3, µ).

(H3
Bc

, µc) e1 e5 e6
u1 (0, {0.35, 0.4}, 0.5) (0, {0.25, 0.3, 0.35}, 0.4) (0, {0.3, 0.4, 0.45}, 0.2)
u2 (0, {0.45, 0.4, 0.5}, 0.5) (0, {0.15, 0.2}, 0.4) (0, {0.35, 0.45, 0.55}, 0.2)
u3 (0, {0.2, 0.25, 0.3}, 0.5) (0, {0.25, 0.35, 0.4}, 0.4) (0, {0.25, 0.3, 0.4}, 0.2)

Now, we propose some further set-theoretic operations in GHFNSSs.
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Definition 3.6. Suppose that U is a set of objects, E is the set of parameters,
A,B ⊆ E and N1, N2 ∈ {2, 3, ...}. Given two GHFNSSs (H1, µ1) and (H2, µ2)
over U , as follows,

(H1, µ1) =((ℏf1 , A,N1), µ1) =
{
((u, a), h̃f1(u, a))|a ∈ A, u ∈ U

}
(H2, µ2) =((ℏf2 , B,N2), µ2) =

{
((u, b), h̃f2(u, b))|b ∈ B, u ∈ U

}
.

(11)

Then, the restricted intersection (H, µ) of such GHFNSSs is defined by

(H, µ) =(H1, µ1) ∩ℜ (H2, µ2) = ((ℏf , A ∩B,min(N1, N2)), µ)

=
{
((u, c), h̃f (u, c))|c ∈ C, u ∈ U

}
where ∀ c ∈ C = A ∩B ̸= ∅, and ∀u ∈ U , (rcu,mcu, µ(c)) = h̃f (u, c) if and only
if

rcu =min(r(1)cu , r
(2)
cu ),mcu = {λ ∈ m(1)

cu ∪m(2)
cu | λ ≤ min(m(1)

cu

+
,m(2)

cu

+
)}

µ(c) =min(µ1(c), µ2(c))

withm
(1)
cu

+
= max(m

(1)
cu ) andm

(2)
cu

+
= max(m

(2)
cu ) for (r

(1)
cu ,m

(1)
cu , µ1(c))=h̃f1(u, c)

and (r
(2)
cu ,m

(2)
cu , µ2(c)) = h̃f2(u, c).

Definition 3.7. Suppose that U is a set of objects, E is the set of parame-
ters, A,B ⊆ E and N1, N2 ∈ {2, 3, ...}. Given two GHFNSSs (H1, µ1) and
(H2, µ2) over U as in equation (11). Then the extended intersection (H, µ) of
such GHFNSSs is defined by

(H, µ) =(H1, µ1) ∩E (H2, µ2) = ((ℏf , A ∪B,max(N1, N2)), µ)

=
{
((u, c), h̃f (u, c))|c ∈ C, u ∈ U

}
where ∀ c ∈ C = A ∪B and ∀u ∈ U

h̃f (u, c) =


h̃f1(u, c), if c ∈ A−B,

h̃f2(u, c), if c ∈ B −A,

(rcu,mcu, µ(c)) , if c ∈ A ∩B,

where rcu = min(r
(1)
cu , r

(2)
cu ), mcu = {λ ∈ m

(1)
cu ∪m(2)

cu | λ ≤ min(m
(1)
cu

+
,m

(2)
cu

+
)}

and µ(c) = min(µ1(c), µ2(c)) with (r
(1)
cu ,m

(1)
cu , µ1(c)) = h̃f1(u, c) and (r

(2)
cu ,m

(2)
cu ,

µ2(c)) = h̃f2(u, c).

Definition 3.8. Suppose that U is a set of objects, E is the set of parameters,
A,B ⊆ E and N1, N2 ∈ {2, 3, ...}. Given two GHFNSSs (H1, µ1) and (H2, µ2)
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over U as in equation (11). Then the restricted union (H, µ) of such GHFNSSs
is defined by

(H, µ) =(H1, µ1) ∪ℜ (H2, µ2) = ((ℏf , A ∩B,max(N1, N2)), µ)

=
{
((u, c), h̃f (u, c))|c ∈ C, u ∈ U

}
where ∀ c ∈ C = A ∩B ̸= ∅, ∀u ∈ U , (rcu,mcu, µ(c)) = h̃f (u, c) if and only if

rcu =max(r(1)cu , r
(2)
cu )mcu = {λ ∈ m(1)

cu ∪m(2)
cu | λ ≥ max(m(1)

cu

−
,m(2)

cu

−
)}

µ(c) =max(µ1(c), µ2(c))

withm
(1)
cu

−
= min(m

(1)
cu ) andm

(2)
cu

−
= min(m

(2)
cu ) for (r

(1)
cu ,m

(1)
cu , µ1(c)) = h̃f1(u, c)

and (r
(2)
cu ,m

(2)
cu , µ2(c)) = h̃f2(u, c).

Definition 3.9. Suppose that U is a set of objects, E is the set of parameters,
A,B ⊆ E and N1, N2 ∈ {2, 3, ...}. Given two GHFNSSs (H1, µ1) and (H2, µ2)
over U as in equation (11). Then the extended union (H, µ) of such GHFNSSs
is defined by

(H, µ) =(H1, µ1) ∪E (H2, µ2) = ((ℏf , A ∪B,max(N1, N2)), µ)

=
{
((u, c), h̃f (u, c))|c ∈ C, u ∈ U

}
,

where ∀ c ∈ C = A ∪B, ∀u ∈ U , (rcu,mcu, µ(c)) ∈ h̃f (u, c) if and only if

h̃f (u, c) =


h̃f1(u, c), if c ∈ A−B,

h̃f2(u, c), if c ∈ B −A,

(rcu,mcu, µ(c)) , if c ∈ A ∩B,

where rcu = max(r
(1)
cu , r

(2)
cu ), mcu = {λ ∈ m

(1)
cu ∪m(2)

cu | λ ≥ max(m
(1)
cu

−
,m

(2)
cu

−
)}

and µ(c) = max(µ1(c), µ2(c)) with (r
(1)
cu ,m

(1)
cu , µ1(c)) = h̃f1(u, c) and (r

(2)
cu , m

(2)
cu ,

µ2(c)) = h̃f2(u, c).

4. Some properties of GHFNSSs

Referring to the operations in the previous section, we derive the following prop-
erties, such as associative and distributive. However, the commutative property
of GHFNSSs is trivial.

Theorem 4.1 (Associative). Given three GHFNSSs (H1, µ1), (H2, µ2) and
(H3, µ3) over U , with H1 = (ℏf1 , A,N1), H2 = (ℏf2 , B,N2) and H3 = (ℏf3 , C,N3)
are HFNSSs over U . Then

1. (H1, µ1) ∩ℜ ((H2, µ2) ∩ℜ (H3, µ3)) = ((H1, µ1) ∩ℜ (H2, µ2)) ∩ℜ (H3, µ3).
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2. (H1, µ1) ∩E ((H2, µ2) ∩E (H3, µ3)) = ((H1, µ1) ∩E (H2, µ2)) ∩E (H3, µ3).

3. (H1, µ1) ∪ℜ ((H2, µ2) ∪ℜ (H3, µ3)) = ((H1, µ1) ∪ℜ (H2, µ2)) ∪ℜ (H3, µ3).

4. (H1, µ1) ∪E ((H2, µ2) ∪E (H3, µ3)) = ((H1, µ1) ∪E (H2, µ2)) ∪E (H3, µ3).

Proof. We only give the proof of 2 . The others are similar. Suppose that
(H4, µ4) = (H2, µ2) ∩E (H3, µ3) and D = B ∪ C. By using Definition 3.7

(H4, µ4) = ((ℏf4 , B ∪ C,max(N2, N3)), µ4). =
{
((u, d), h̃f4(u, d))|d ∈ D,u ∈ U

}
,

where any d ∈ D = B ∪ C, ∀u ∈ U ,

h̃f4(u, d) =


h̃f2(u, d), if d ∈ B − C,

h̃f3(u, d), if d ∈ C −B,

(rcu,mcu, µ(c)) , if d ∈ B ∩ C,

where rdu = min(r
(2)
du , r

(3)
du ), mdu = {λ4 ∈ m

(2)
du ∪m(3)

du | λ4 ≤ min(m
(2)
du

+
,m

(3)
du

+
)}

and µ4(d) = min(µ2(d), µ3(d)) with (r
(2)
du ,m

(2)
du , µ2(d)) = h̃f2(u, d) and (r

(3)
du ,m

(3)
du ,

µ3(d)) = h̃f3(u, d).
Suppose that (H, µ) = (H1, µ1) ∩E (H4, µ4) and G = A ∪D.

Based on Definition 3.7,

(H, µ) =((ℏf , A ∪D,min(N1, N4)), µ)

=((ℏf , A ∪ (B ∪ C),min(N1,min(N2, N3))), µ)

=((ℏf , (A ∪B) ∪ C,min(min(N1, N2), N3))), µ)

=
{
((u, d), h̃f (u, d))|d ∈ G, u ∈ U

}
,

where any d ∈ A ∪D, ∀u ∈ U ,

h̃f (u, d) =


h̃f1(u, d), if d ∈ A−D,

h̃f4(u, d), if d ∈ D −A,

(rdu,mdu, µ(d)) , if d ∈ A ∩D,

where rdu = min(r
(1)
du , r

(4)
du ), mdu = {λ ∈ m

(1)
du ∪m(4)

du |, λ ≤ min(m
(1)
du

+
,m

(4)
du

+
)}

and µ(d) = min(µ1(d), µ4(d)) with (r
(1)
du ,m

(1)
du , µ1(d)) = h̃f1(u, d) and (r

(4)
du ,m

(4)
du ,

µ4(d)) = h̃f4(u, d).
Since

rdu =min(r
(1)
du ,min(r

(2)
du , r

(3)
du )) = min(min(r

(1)
du , r

(2)
du ), r

(3)
du )

mdu ={λ ∈ m
(1)
du ∪ (m

(2)
du ∪m(3)

du ) | λ ≤ min(m
(1)
du

+
,min(m

(2)
du

+
,m

(3)
du

+
))}

={λ ∈ (m
(1)
du ∪ (m

(2)
du ) ∪m

(3)
du | λ ≤ min(min(m

(1)
du

+
,m

(2)
du

+
),m

(3)
du

+
)} and

µ(d) =min(µ1(d),min(µ2(d), µ3(d)) = min(min(µ1(d), µ2(d)), µ3(d)),

then it is proved that (H1, µ1)∩E ((H2, µ2)∩E (H3, µ3)) = ((H1, µ1)∩E (H2, µ2))∩E
(H3, µ3).
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Theorem 4.2. (Distributive) Given three GHFNSSs (H1, µ1), (H2, µ2) and
(H3, µ3) over U , with H1 = (ℏf1 , A,N1), H2 = (ℏf2 , B,N2) and
H3 = (ℏf3 , C,N3) are HFNSSs over U . Then

1. (H1, µ1) ∩ℜ ((H2, µ2) ∪ℜ (H3, µ3)) =
((H1, µ1) ∩ℜ (H2, µ2)) ∪ℜ ((H1, µ1) ∩ℜ (H3, µ3)).

2. (H1, µ1) ∪ℜ ((H2, µ2) ∩ℜ (H3, µ3)) =
((H1, µ1) ∪ℜ (H2, µ2)) ∩ℜ ((H1, µ1) ∪ℜ (H3, µ3)).

3. (H1, µ1) ∩E ((H2, µ2) ∪E (H3, µ3)) =
((H1, µ1) ∩E (H2, µ2)) ∪E ((H1, µ1) ∩E (H3, µ3)).

4. (H1, µ1) ∪E ((H2, µ2) ∩E (H3, µ3)) =
((H1, µ1) ∪E (H2, µ2)) ∩E ((H1, µ1) ∪E (H3, µ3)).

Proof. Here, we give the proof of 1 . The others are similar. Suppose that
(H4, µ4) = (H2, µ2) ∪ℜ (H3, µ3), D = B ∩ C and N4 = max(N2, N3). Based on
Definition 3.8,

(H4, µ4) = ((ℏf4 , B ∩ C,max(N2, N3)), µ4) =
{
((u, d), h̃f4(u, d))|d ∈ D,u ∈ U

}
,

where, for any d ∈ D = B ∩ C, ∀u ∈ U , (rdu,mdu, µ(d)) = h̃f4(u, d) if and only
if

rdu =max(r
(2)
du , r

(3)
du ),mdu = {λ4 ∈ m

(2)
du ∪m(3)

du | λ4 ≥ max(m
(2)
du

−
,m

(3)
du

−
)}

µ4(d) =max(µ2(d), µ3(d))

for (r
(2)
du ,m

(2)
du , µ2(d)) = h̃f2(u, d) and (r

(3)
du ,m

(3)
du , µ3(d)) = h̃f3(u, d).

Suppose that (H, µ) = (H1, µ1) ∩ℜ (H4, µ4) and G = A ∩ D. By using
Definition 3.6,

(H, µ) =((ℏf , A ∩D,min(N1, N4)), µ)

=((ℏf , A ∩ (B ∩ C),min(N1,max(N2, N3))), µ).

=
{
((u, g), h̃f (u, g))|g ∈ G, u ∈ U

}
.

where, for any g ∈ G = A∩D, ∀u ∈ U , (rgu,mgu, µ(g)) = h̃f (u, g) if and only if

rgu =min(r(1)gu , r
(4)
gu ) = min(r(1)gu ,max(r(2)gu , r

(3)
gu ))

mgu ={λ ∈ m(1)
gu ∪m(4)

gu | λ ≤ min(m(1)
gu

+
,m(4)

gu

+
)}

µ(g) =min(µ1(g), µ4(g)) = min(µ1(g),max(µ2(g), µ3(g)))

for (r
(1)
gu ,m

(1)
gu , µ1(g)) = h̃f1(u, g) and (r

(4)
gu ,m

(4)
gu , µ4(g)) = h̃f4(u, g).
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Suppose that (H5, µ5) = (H1, µ1) ∩ℜ (H2, µ2), P = A ∩ B and N5 =
min(N1, N2). Based on Definition 3.6

(H5, µ5) =((ℏf5 , A ∩B,min(N1, N2)), µ5)

=
{
((u, p), h̃f5(u, p))|p ∈ P, u ∈ U

}
where, for any p ∈ A ∩B, ∀u ∈ U , (rpu,mpu, µ(p)) = h̃f5(u, p) if and only if

rpu =min(r(1)pu , r
(2)
pu )

mpu ={λ5 ∈ m(1)
pu ∪m(2)

pu | λ5 ≤ min(m(1)
pu

+
,m(2)

pu

+
)}

µ5(p) =min(µ1(p), µ2(p)).

for (r
(1)
pu ,m

(1)
pu , µ1(p)) = h̃f1(u, p) and (r

(2)
pu ,m

(2)
pu , µ2(p)) = h̃f2(u, p).

Suppose that (H6, µ6) = (H1, µ1) ∩ℜ (H3, µ3), Q = A ∩ C and N6 =
min(N1, N3). Based on Definition 3.6

(H6, µ6) =((ℏf6 , A ∩ C,min(N1, N3)), µ6)

=
{
((u, q), h̃f6(u, q))|q ∈ Q, u ∈ U

}
where, for any q ∈ Q = A ∩ C, ∀u ∈ U , (rqu,mqu, µ(q)) = h̃f6(u, q) if and only
if

rqu =min(r(1)qu , r
(3)
qu ),

mqu ={λ6 ∈ m(1)
qu ∪m(3)

qu | λ6 ≤ min(m(1)
qu

+
,m(3)

cu

+
)},

µ6(q) =min(µ1(q), µ3(q))

for (r
(1)
qu ,m

(1)
qu , µ1(q)) = h̃f1(u, q) and (r

(3)
qu ,m

(3)
qu , µ3(q)) = h̃f3(u, q).

Suppose that (H7, µ7) = (H5, µ5) ∪ℜ (H6, µ6), S = P ∩ Q and N7 =
max(N5, N6). Based on Definition 3.8

(H7, µ7) =((ℏf7 , P ∩Q,max(N5, N6)), µ7)

=
{
((u, s), h̃f7(u, s))|s ∈ S, u ∈ U

}
,

where, for any s ∈ P ∩Q, ∀u ∈ U , (rsu,msu, µ(s)) = h̃f7(u, s) if and only if

rsu =max(r(5)su , r
(6)
su ),

msu ={λ7 ∈ m(5)
su ∪m(6)

su | λ7 ≥ max(m(5)
su

−
,m(6)

su

−
)},

µ7(s) =max(µ5(s), µ6(s)),

for (r
(5)
su ,m

(5)
su , µ5(s)) = h̃f5(u, s) and (r

(6)
su ,m

(6)
su , µ6(s)) = h̃f6(u, s).
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Now, we will prove (H, µ) = (H7, µ7). Consider that

(H7, µ7) =((ℏf7 , P ∩Q,max(N5, N6)), µ7)

=((ℏf7 , (A ∩B) ∩ (A ∩ C),max(min(N1, N2),min(N1, N3)), µ7)

=((ℏf7 , A ∩ (B ∩ C),min(N1,max(N2, N3)), µ7) = (H, µ),

where, for any s ∈ A ∩ (B ∩ C), ∀u ∈ U , (r
(7)
su ,m

(7)
su , µ7(s)) = h̃f7(u, s) if and

only if

r(7)su =max(r(5)su , r
(6)
su ) = max(min(r(1)su , r

(2)
su ),min(r(1)su , r

(3)
su ))

=min(r(1)su ,max(r(2)su , r
(3)
su )) = rsu,

m(7)
su ={λ7 ∈ m(5)

su ∪m(6)
su | λ7 ≥ max(m(5)

su

−
,m(6)

su

−
)}

={λ7 ∈ m(1)
su ∪ (m(2)

su ∪m(3)
su ) | λ7 ≤ min(m(1)

su

+
,m(4)

su

+
)} = msu

µ7(s) =max(µ5(s), µ6(s)) = max(min(µ1(s), µ2(s)),min(µ1(s), µ3(s)))

=min(µ1(s),max(µ2(s), µ3(s))) = µ(s).

Therefore (H1, µ1)∩ℜ((H2, µ2)∪ℜ(H3, µ3)) = ((H1, µ1)∩ℜ(H2, µ2))∪ℜ((H1, µ1)
∩ℜ (H3, µ3)).

5. Application of GHFNSSs

Hwang and Yoon, in 1981 [9] introduced an algorithm for decision-making prob-
lems concerning parameters or attributes. This algorithm is called TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution). Under HFNSS
information, Akram et al. [2] have extended this method. When a decision-
maker wants to rank objects to obtain the best performance, the chosen alter-
native has the shortest distance from the positive ideal solution (PIS) and the
longest distance from the negative ideal solution (NIS).

We propose the two following algorithms by extending the TOPSIS method
to apply under GHFNSS information. Algorithm 1 could apply for a condition
that the number of elements of mij is not necessary the same for all i and j,
while in Algorithm 2, that is the same. Algorithm 2 is a new extended method
based on GHFNSSs as a generalization of the method introduced by Akram et
al. [2]. In our method, we use the information on the preference degree of pa-
rameters. The sum of all the preference degrees does not need equal to one as in
the definition of the weight of the parameters. On the other hand, in determin-
ing the ranking order of objects in choosing the best one, Akram et al. [2] refer
to pairs of values called relative adjacency to ideal solution. It is impossible to
determine the ranking order of a collection of pairs of values (ai, aj) for i, j ∈ N,
except in the condition that ai > aj and bi > bj for i ̸= j. Because of this, in
Algorithm 2, we give a modification of the Akram’s method.
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Algorithm 1

1. Input a subset A of a parameter set E. Given a set of objects U =
{u1, u2, . . . , up} and the set of parameters or attributesA = {a1, a2, . . . , aq}.

2. Represent a GHFNSS in the representation form.

3. The matrix of the representation form of the corresponding GHFNSS over
U is

D =



b11 b12 · · · b1j · · · b1q
b21 b22 · · · b2j · · · b2q
...

... · · ·
... · · ·

...
bi1 bi2 · · · bij · · · biq
...

... · · ·
... · · ·

...
bp1 bp2 · · · bpj · · · bpq


= [bij ],

where bij = (
rij
mij

, µ(aj)), with rij is the grade, mij = {λ1ij , λ2ij , . . . , λ
kij
ij } is

the set of membership values of ui with respect to the parameter aj , and
µ(aj) is the degree of preference of the parameter aj .

4. Transform the matrix D = [bij ] to be the matrix D′ = [b′ij ] where b
′
ij =

(
rij
m′

ij
, µ(aj)), with m

′
ij =

1
kij

∑kij
l=1 λ

l
ij , i = 1, 2, . . . , p and j = 1, 2, . . . , q.

5. Transform matrix D′ to be normalized decision matrix V = [(
Vij

vij
, σj)] by

using

Vij =
rij√∑p
i=1 rij

2
, vij =

m′
ij√∑p

i=1m
′
ij
2
and σj =

µ(ej)∑q
j=1 µ(ej)

.

6. Define matrix W = [
Wij

wij
] by Wij = Vijσj and wij = vijσj .

7. Find the positive ideal solution D+ and the negative ideal solution D−

defined by

D+ ={(maxi(Wij)

maxi(wij)
| j ∈ J), (

mini(Wij)

mini(wij)
| j ∈ J ′)}

={Wj
+

wj
+

| j = 1, 2, . . . , q}

D− ={(mini(Wij)

mini(wij)
| j ∈ J), (

maxi(Wij)

maxi(wij)
| j ∈ J ′)}

={Wj
−

wj
− | j = 1, 2, . . . , q},

where J = {j | j is a supporting parameter}, J ′ = {j | j is not a supporting
parameter}, and | J | + | J ′ |= q.
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8. Calculate separation measures (Si
+, si

+) and (Si
−, si

−)

(Si
+, si

+) =

√√√√ q∑
j=1

(Wij −Wj
+)

2
,

√√√√ q∑
j=1

(wij − wj
+)2

 ,

i = 1, 2, . . . , p

(Si
−, si

−) =

√√√√ q∑
j=1

(Wij −Wj
−)

2
,

√√√√ q∑
j=1

(wij − wj
−)2

 ,

i = 1, 2, . . . , p.

(12)

9. Calculate relative adjacency to ideal solution

(Ci, ci) =

(
Si

−

Si
+ + Si

− ,
si

−

si+ + si−

)
0 < Ci < 1, 0 < ci < 1, i = 1, 2, . . . , p.

(13)

10. Form matrix E = [Ei] with Ei =
Ci+ci

2 , i = 1, 2, . . . , p.

11. The best choice is an object ut such that Et ≥ Ej for all j ̸= t.

Algorithm 2.

1. Repeat steps 1-3 of Algorithm 1.

2. Using matrix D in Algorithm 1, determine positive ideal solution B+ and
negative ideal solution B−

B+ ={(rj+, {(λj1)+, (λj2)+, . . . , (λjk)+}) j = 1, 2, . . . , q},
B− ={(rj−, {(λj1)−, (λj2)−, . . . , (λjk)−}) j = 1, 2, . . . , q}

where,

rj
+ = max

i
(rij), rj

− = min
i
(rij), λ

1
ij ≤ λ2ij ≤ · · · ≤ λkij ,

and for each i, j

(λj
1)+ = max

i
(λij

1), (λj
1)− = min

i
(λij

1),

(λj
2)+ = max

i
(λij

2), (λj
2)− = min

i
(λij

2),

...
...

(λj
k)+ = max

i
(λij

k), (λj
k)− = min

i
(λij

k).
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3. Calculate separation measures Si
+ and Si

−,

Si
+ =(Ri

+,Mi
+), i = 1, 2, . . . , p

where

Ri
+ =

q∑
j=1

σj | rij − r+j |, Mi
+ =

q∑
j=1

σj

√√√√1

k

k∑
l=1

| λij l − (λj
l)+ |2, and

Si
− =(Ri

−,Mi
−), j = 1, 2, . . . , p

where

Ri
− =

q∑
j=1

σj | rij − r−j |, Mi
− =

q∑
j=1

σj

√√√√1

k

k∑
l=1

| λij l − (λj
l)− |2, and

σj =
µ(ej)∑q
j=1 µ(ej)

.

4. Calculate relative adjacency to ideal solution

(Ci, ci) =

(
Ri

−

Ri
+ +Ri

− ,
Mi

−

Mi
+ +Mi

−

)
,

0 < Ci < 1, 0 < ci < 1, i = 1, 2, . . . , p.

5. Form matrix E = [Ei] with Ei =
Ci+ci

2 , i = 1, 2, . . . , p.

6. The best choice is an object ut such that Et ≥ Ej , for all j ̸= t..

Example 5.1. An Educational institution assesses several universities in order
to choose the best university. Let U = {u1, u2, u3, u4} be a set of universities
and A = {e1, e2, e3, e4, e5} is the set of assessment criteria, namely, e1=Teacher
Credibility, e2=facility, e3=accreditation, e4=research and e5 = alumni. The
assessment was carried out by two trusted teams and provided an assessment of
the university in terms of 5 parameters. The assessment is expressed in the form
of membership values. On the other hand, the assessment is also carried out
by members of the university who concern about conditions in the university
and the assessment is expressed in the form of grades. On the other hand, the
Educational institution assumes that degree of important of parameters are 0.8,
0.6, 0.7, 0.7, and 0.6 for e1, e2, e3, e4 and e5 respectively. The evaluation results
by evaluators is given in Table 10.

We use Algorithm 1 to determine the best university by the following steps.
1. Input the evaluation result in matrix D below (or see Table 10).

D =



(
3

{0.7,0.8} , 0.8
� (

3
{0.7,0.75} , 0.6

� (
2

{0.6,0.7} , 0.7
� (

2
{0.55,0.65} , 0.7

� (
3

{0.7,0.75} , 0.6
�

(
2

{0.65,0.75} , 0.8
� (

2
{0.6,0.75} , 0.6

� (
2

{0.6,0.7} , 0.7
� (

3
{0.75,0.8} , 0.7

� (
2

{0.6,0.75} , 0.6
�

(
2

{0.65,0.75} , 0.8
� (

1
{0.55,0.65} , 0.6

� (
2

{0.65,0.8} , 0.7
� (

3
{0.7,0.75} , 0.7

� (
3

{0.7,0.85} , 0.6
�

(
3

{0.65,0.75} , 0.8
� (

2
{0.6,0.7} , 0.6

� (
1

{0.55,0.7} , 0.7
� (

2
{0.6,0.75} , 0.7

� (
3

{0.7,0.85} , 0.6
�


.
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Table 10: Assessment data from several universities

Ui

∖
ej e1 e2 e3 e4 e5

u1

(
3

{0.7,0.8} , 0.8
) (

3
{0.7,0.75} , 0.6

) (
2

{0.6,0.7} , 0.7
) (

2
{0.55,0.65} , 0.7

) (
3

{0.7,0.75} , 0.6
)

u2

(
2

{0.65,0.75} , 0.8
) (

2
{0.6,0.75} , 0.6

) (
2

{0.6,0.7} , 0.7
) (

3
{0.75,0.8} , 0.7

) (
2

{0.6,0.75} , 0.6
)

u3

(
2

{0.65,0.75} , 0.8
) (

1
{0.55,0.65} , 0.6

) (
2

{0.65,0.8} , 0.7
) (

3
{0.7,0.75} , 0.7

) (
3

{0.7,0.85} , 0.6
)

u4

(
3

{0.65,0.75} , 0.8
) (

2
{0.6,0.7} , 0.6

) (
1

{0.55,0.7} , 0.7
) (

2
{0.6,0.75} , 0.7

) (
3

{0.7,0.85} , 0.6
)

2. Transform the matrix D to be the matrix D′

D
′
=


(

3
0.75 , 0.8

) (
3

0.725 , 0.6
) (

2
0.65 , 0.7

) (
2
0.6 , 0.7

) (
3

0.725 , 0.6
)(

2
0.7 , 0.8

) (
2

0.675 , 0.6
) (

2
0.65 , 0.7

) (
3

0.775 , 0.7
) (

2
0.675 , 0.6

)(
2
0.7 , 0.8

) (
1
0.6 , 0.6

) (
2

0.725 , 0.7
) (

3
0.725 , 0.7

) (
3

0.775 , 0.6
)(

3
0.7 , 0.8

) (
2

0.65 , 0.6
) (

1
0.625 , 0.7

) (
2

0.625 , 0.7
) (

3
0.775 , 0.6

)
 .

3. Transform matrix D′ to be normalized decision matrix V .

V =


(
0.5882
0.5245 , 0.24

) (
0.7143
0.5451 , 0.18

) (
0.5556
0.4887 , 0.2

) (
0.3922
0.4380 , 0.2

) (
0.5357
0.4899 , 0.18

)(
0.3922
0.4895 , 0.24

) (
0.4762
0.5075 , 0.18

) (
0.5556
0.4887 , 0.2

) (
0.5882
0.5657 , 0.2

) (
0.3571
0.4561 , 0.18

)(
0.3922
0.4895 , 0.24

) (
0.2381
0.4511 , 0.18

) (
0.5556
0.5451 , 0.2

) (
0.5882
0.5292 , 0.2

) (
0.5357
0.5237 , 0.18

)(
0.5882
0.4895 , 0.24

) (
0.4762
0.4887 , 0.18

) (
0.2778
0.4699 , 0.2

) (
0.3922
0.4562 , 0.2

) (
0.5357
0.5237 , 0.18

)
 .

4. Calculate matrix W

W =


)
0.1412
0.1259

) )
0.1286
0.0981

) )
0.1111
0.0977

) )
0.0784
0.0876

) )
0.0964
0.0882

))
0.0941
0.1175

) )
0.0857
0.0914

) )
0.1111
0.0977

) )
0.1176
0.1131

) )
0.0643
0.0821

))
0.0941
0.1175

) )
0.0429
0.0812

) )
0.1111
0.1090

) )
0.1176
0.1058

) )
0.0964
0.0943

))
0.1412
0.1175

) )
0.0857
0.0880

) )
0.0556
0.0940

) )
0.0784
0.0912

) )
0.0964
0.0943

)

 .

5. Find the positive ideal solution D+ and the negative ideal solution D−

D+ =
))

0.1412
0.1259

) )
0.1286
0.0981

) )
0.1111
0.1090

) )
0.1176
0.1131

) )
0.0964
0.0943

))
D− =

))
0.0941
0.1175

) )
0.0429
0.0812

) )
0.0556
0.0940

) )
0.0784
0.0876

) )
0.0643
0.0821

))
.

Here, we assume that all parameters are supporting ones.
6. Calculate separation measures

(S1
+, s1

+) =(0.0387, 0.0030), (S2
+, s2

+) = (0.0707, 0.0224),

(S3
+, s3

+) =(0.0975, 0.0224), (S4
+, s4

+) = (0.0800, 0.0300),

(S1
−, s1

−) =(0.1131, 0.0220), (S2
−, s2

−) = (0.0800, 0.0283),

(S3
−, s3

−) =(0.0748, 0.0265), (S4
−, s4

−) = (0.0640, 0.0173).

7. Calculate relative adjacency to ideal solution

(C1, c1) =(0.7451, 0.4231), (C2, c2) = (0.5309, 0.5582),

(C3, c3) =(0.4341, 0.5419), (C4, c4) = (0.4444, 0.3658).
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8. Find Ei, E1 = 0.5841, E2 = 0.5445, E3 = 0.4880, E4 = 0.4051. We obtain
E4 < E3 < E2 < E1.

9. The order of universities from the best is u1, u2, u3 and u4.

If we apply Algorithm 2, for Example 5.1, we will get separation measures
as follows ( see Table 11).

Table 11: Separation measures
Ui R+

i M+
i R−

i M−
i Ei

u1 0.2 0.012 0.98 0.011 0.64
u2 0.6 0.011 0.58 0.011 0.49
u3 0.6 0.009 0.58 0.012 0.53
u4 0.4 0.014 0.78 0.008 0.51

Based on Table 11, we obtain that the ranking order of Ei is E1 > E3 >
E4 > E2. Hence the best university is u1.

We see that when the problem in Example 5.1 was solved by the two al-
gorithms above, we obtained a different conclusion. This clearly can happen
because the two algorithms use different approaches, especially in using mem-
bership values in the calculation and formulation of the Separation Measures.

6. Conclusion

In this article, we proposed the concept of Generalized Hesitant Fuzzy N-Soft
sets (GHFNSSs) and defined some of their complements and operations, such
as restricted and extended intersections and restricted and extended unions
of two GHFNSSs. Based on the operations, we prove some properties, such
as associative and distributive laws. Lastly, we propose two algorithms for
decision-making problems by extending the TOPSIS method to apply under
GHFNSS information. Since the GHFNSS is a generalization of Generalized
Hesitant Fuzzy Soft sets, there are many further studies for scholars on the
issue of studying NSSs, such as a generalization of Hesitant Intuitionistic Fuzzy
Soft Sets and Interval-valued Hesitant Intuitionistic Fuzzy Soft Sets.
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Abstract. The main object of this paper is to study and characterize the connect-
edness, diameter, dominating sets and domination number of the k-zero-divisor hyper-
graph Hk(R) of a finite direct product of integral domains and a class of commutative
Artinian rings R, respectively. We will show that the k-zero-divisor hypergraph asso-
ciated to the direct product of k ≥ 3 integral domains (resp., commutative Artinian
rings which are the direct product of k ≥ 3 local rings) are connected with diameter
at most 3 and domination number at most 2 (resp., connected with diameter at most
4 and domination number at most 2k). We will also provide some examples related to
these results.
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1. Introduction and definitions

The main goal of this paper is to study and characterize the connectedness,
diameter, dominating sets and domination number of the k-zero-divisor hyper-
graphsHk(R) of two well-known classes of commutative rings R; namely, a finite
direct product of integral domains and a class of commutative Artinian rings,
respectively. Through out this work, all rings are commutative with identity
1 ̸= 0, J(R) denotes the Jacobson radical of R, and a local ring is a ring with
only one maximal ideal.

In this section we recall some definitions together with some references and
will discuss the main results in the next section. We will show (Theorem 2.1)
that the k-zero-divisor hypergraph associated to k ≥ 3 direct product of integral
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domains (e.g., R/J(R) of a semilocal ring (Corollary 2.1), finite reduced rings
(Corollary 2.2)), respectively commutative Artinian rings which are the direct
product of k ≥ 3 local rings (Theorem 2.2), e.g., ring of integers modulo n
Corollary 2.3 are connected with diameter at most 3 and domination number
at most 2 (resp., connected with diameter at most 4 and domination number at
most 2k).

The concept of the zero-divisor graph of a commutative ring has been studied
extensively by many authors, and the k-zero-divisor hypergraph of a commuta-
tive ring R, denoted by Hk(R), is a nice abstraction of this concept which
was first introduced by Eslahchi and Rahimi [6]. In their work, they studied
some ring-theoretic properties of the k-zero-divisors of R and graph-theoretic
properties of Hk(R) and investigated the interplay between the ring-theoretic
properties of R and the graph-theoretic properties of its associated k-uniform
hypergraph Hk(R). Specially, in Section 3, they discussed the connectedness and
completeness of H3(R) and showed that its (diameter, girth) is bounded above
by (4, 9) and also found a lower bound for its clique number. Furthermore, the
research on this subject continued and extended by other authors as well (e.g.,
[14], [15], [16]).

We now define the zero-divisor graph of a commutative ring.

The zero-divisor graph of a commutative ring R, denoted Γ(R), is an undi-
rected graph whose vertices are the nonzero zero-divisors of R and two distinct
vertices x and y are adjacent if and only if xy = 0. Thus Γ(R) is an empty graph
if and only if R is an integral domain. Beck in [4] introduced the concept of a
zero-divisor graph of a commutative ring, but this work was mostly connected
with colorings of zero-divisor of rings. The above definition first appeared in
the work of D.F. Anderson and Livingston [2], which contains several funda-
mental results concerning Γ(R). This definition, unlike the earlier work of D.D.
Anderson and Naseer [1] and Beck [4], does not take zero to be a vertex of Γ(R).

We now recall the following two definitions, i.e., the k-zero-divisor and k-
zero-divisor hypergraph of a ring, respectively from [6].

Definition 1.1. Let R be a commutative ring and k ≥ 2 a fixed integer. A
nonzero non unit element a1 in R is said to be a k-zero-divisor in R if there
exist k − 1 distinct non unit elements a2, a3, . . . , ak in R different from a1 such
that a1a2a3 · · · ak = 0 and the product of no elements of any proper non-singleton
subset of A = {a1, a2, . . . , ak} is zero.

Definition 1.2. Let R be a commutative ring (with 1 ̸= 0) and let Z(R, k) be
the set of all k-zero-divisors in R. We associate a k-uniform hypergraph Hk(R)
to R with vertex set Z(R, k), and for distinct elements x1, x2, . . . , xk in Z(R, k),
the set {x1, x2, . . . , xk} is an edge of Hk(R) if and only if x1x2 · · ·xk = 0 and
the product of elements of no (k − 1)-subset of {x1, x2, . . . , xk} is zero.

Remark 1.1. It is not difficult to show that the statement “the product of
no elements of any proper (nonsingleton) subset of A is zero” or the statement
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“the product of no elements of any (k − 1)-subset of A is zero” can be used in
Definition 1.1 equivalently. Clearly, from Definition 1.1, every element of the
set {a2, a3, . . . , ak} is a k-zero-divisor in R. It is clear that every k-zero-divisor
in R is also a zero-divisor in R, but, the converse is not true in general. For
example, the element 2 is a zero-divisor, but not a 3-zero-divisor in Z10 and 2
in Z4 is a zero-divisor but not a 2-zero-divisor.

We now review some basic graph-theoretic definitions and notions used
throughout to keep this paper as self contained as possible; and for the nec-
essary definitions and notations of graphs and hypergraphs, we refer the reader
to standard texts of graph theory such as [17] and [5].

A hypergraph is a pair (V,E) of disjoint sets, where the elements of E
are non-empty subsets (of any cardinality) of V . The elements of V are the
vertices, and the elements of E are the edges of the hypergraph. The hypergraph
H = (V,E) is called k-uniform whenever every edge e of H consists of k vertices.
A k-uniform hypergraph H is called complete if every k-subset of the vertices
is an edge of H. An r-coloring of a hypergraph H = (V,E) is a map c : V →
{1, 2, · · · , r} such that for every edge e of H, there exist at least two vertices
x and y in e with c(x) ̸= c(y). The smallest integer r such that H has an
r-coloring is called the chromatic number of H and is denoted by χ(H). A path
in a hypergraph H is an alternating sequence of distinct vertices and edges of
the form v1, e1, v2, e2, . . . , vk such that vi, vi+1 is in ei for all 1 ≤ i ≤ k − 1.
The number of edges of a path is its length. The distance between two vertices
x and y of H, denoted by dH(x, y), is the length of the shortest path from
x to y. If no such path between x and y exists, we set dH(x, y) = ∞. The
greatest distance between any two vertices in H is called the diameter of H and
is denoted by diam(H). The hypergraph H is said to be connected whenever
diam(H) <∞. A cycle in a hypergraph H is an alternating sequence of distinct
vertices and edges of the form v1, e1, v2, e2, . . . , vk, ek, v1 such that vi, vi+1 is in
ei for all 1 ≤ i ≤ k−1 with vk, v1 ∈ ek. The girth of a hypergraph H containing
a cycle, denoted by gr(H), is the smallest size of the length of cycles of H.

We now define the notion of the dominating set and domination number of
a hypergraph and for a detailed study of the dominating sets and domination
number of the zero-divisor graph of a commutative ring (resp., with respect to
an ideal), see [13] and [10], respectively (see, also, [7]).

Definition 1.3. Let H = (V,E) be a hypergraph with vertex setV and edge set
E. A nonempty set S ⊆ V is a dominating set of H if every vertex in V is either
in S or is adjacent to a vertex in S. That is, for every v ∈ V \ S, there exists
an edge e ∈ E such that v ∈ e and the intersection of e and S is nonempty. The
domination number of H, denoted by γ(H), is the minimum cardinality among
all dominating sets of H.

We end this section with a brief general overview related to graphs associated
to some algebras.
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The area of research on assigning a graph to an algebra (algebraic structure)
has been very active (specially) since last two decades and there are many pa-
pers which apply combinatorial methods (using graph-theoretic properties and
parameters such as connectedness, planarity, clique number, chromatic number,
independence number, domination number, and so on) to obtain algebraic results
and vice versa. For instance, there are many papers on this interdisciplinary sub-
ject and for a short list of them, see for example [11] and [12] (covering many
different cases using commutator theory) and also see the work of Mehdi-Nezhad
and Rahimi in [9] for some other references and a brief historical note on some
graphs associated to some algebraic structures.

2. Main results

We begin this section with a lemma using for Theorem 2.1 and provide some
examples and corollaries as an application to this theorem (e.g., R/J(R) of
a semilocal ring (Corollary 2.1), finite reduced rings (Corollary 2.2) to show
that their corresponding k-zero-divisor hypergraphs are connected with diameter
(resp., domination number) at most 3 (resp., 2). Then, we continue to show that
Hk(R) is connected with diameter at most 4 and domination number at most
2k (Theorem 2.2), where R is an Artinian ring which is the direct product of
k ≥ 3 local rings (see also Corollary 2.3 as an application to this theorem).

Lemma 2.1. Let k ≥ 3 be a fixed integer and R = R1×R2×· · ·×Rk the direct
product of k integral domains. Then, (a1, a2, . . . , ak) ∈ R is a vertex in Hk(R)
if and only if exactly one of its components is zero. That is,

Z(R, k) = {(a1, a2, . . . , ak) ∈ R | exactly one of the ai′s is zero for 1 ≤ i ≤ k}.

Proof. The sufficient part follows directly from definition. For example, let
x1 = (a1, a2, . . . , ak) ∈ R such that exactly one and only one of the com-
ponents is zero. Without loss of generality, assume that a1 = 0. Let xi =
(1, 1, . . . , 1, 0, 1, 1, . . . , 1), where the ith component is the only zero component
of xi for each 2 ≤ i ≤ k. Now, it is obvious that {x1, x2, . . . , xk} ∈ E(Hk(R)).

For the necessary part, it is obvious that any k-zero-divisor of R must have
at least one zero component. Now, let x1 = (a11, a12, . . . , a1k) be a k-zero-divisor
(vertex in Hk(R)) with at least two zero components. Without loss of generality,
assume that a11 = a12 = 0. Consequently, there exist x2, x3, . . . , xk ∈ V (Hk(R))
such that {x1, x2, . . . , xk} ∈ E(Hk(R)), where xi = (ai1, ai2, . . . , aik) for all
1 ≤ i ≤ k. Thus,

∏
i≥1 aij = 0 for each j ≥ 3. Now, since Rj is an integral

domain, then for each fixed j ≥ 3, there exists at least one ij with 1 ≤ i ≤ k
such that aijj = 0. Let I be the set of all ij ’s such that aijj = 0 for the smallest
i in the set {1, 2, . . . , k}. Thus, we have x1

∏
i∈I xi = 0 and since |I| ≤ k− 2, we

have a contradiction and the proof is complete.
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Theorem 2.1. For any fixed integer k ≥ 3, there exists a ring R whose k-zero-
divisor hypergraph is connected with diameter at most 3 and domination number
at most 2.

Proof. Let R = R1×R2×· · ·×Rk be the direct product of k integral domains.
Now, the proof is straight forward by using the above lemma. For instance,
D = {x1, x2} is a dominating set in Hk(R), where x1 = (0, 1, 1, . . . , 1) and x2 =
(1, 0, 1, . . . , 1). Note that e = {x1, x2, . . . , xk} is an edge in Hk(R), where xi is a
k-tuple with ith component 0 and jth component 1 for each 1 ≤ i ̸= j ≤ k.

We now provide some examples as an application to the above theorem.

Example 2.1. For any fixed integer k ≥ 3, we have the following:

(a) Let R be the direct product of k factors of the ring Z2. Clearly, Hk(R)
has only one edge and hence is connected and its domination number is 1
since the singleton set of each vertex is a dominating set. Note that the
chromatic number of this hypergraph is 2.

(b) Let R be the direct product of k factors of the ring Zp for some prime
p ≥ 2. Then, by the above theorem, Hk(R) is a connected k-zero-divisor
hypergraph with diameter at most 3 and domination number at most 2.

(c) let n = p1 · · · pk for distinct primes p1, . . . , pk. Then, Hk(Zn) is a connected
k-zero-divisor hypergraph with diameter at most 3 and domination number
at most 2. The proof follows directly from the above theorem and the fact
that Zn ∼= Zp1 × · · · × Zpk .

We now apply the above theorem to a semilocal ring.

Corollary 2.1. For a semilocal ring R with k≥3 maximal idealsM1,M2, . . . ,Mk,
there exists a connected k-zero-divisor hypergraph associated to R/J(R) whose
diameter is bounded above by 3 and its domination number is at most 2, where
J(R) is the Jacobson radical of R.

Proof. The proof is an immediate consequence of the above theorem since (by
Chinese Remainder Theorem) R/J(R) ∼= F1 × F2 × . . .× Fk, where Fi = R/Mi

for each 1 ≤ i ≤ k.

We next apply the above theorem when R is a reduced or finite reduced ring,
i.e., a direct product of finitely many finite fields.

Corollary 2.2. Let R be a reduced (resp., finite reduced) commutative ring
(which is not an integral domain) with at least k ≥ 3 minimal prime ideals and
nil(R) the ideal of nilpotent elements of R. Then, there exists a ring whose
k-zero-divisor hypergraph is connected with diameter at most 3 and domination
number at most 2 (resp., Hk(R) satisfies the mentioned properties).
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Proof. Let P1, . . . , Pk be the minimal prime ideals of R. Then, P1 ∩ · · · ∩Pk =
nil(R) = {0} since R is reduced. Thus there is a monomorphism from R to
T = R/P1 × · · · × R/Pk. Now, the proof follows from the above theorem and
for the finite case, R is isomorphic to T , by Chinese Remainder Theorem, since
prime ideals are maximal in a finite ring.

We next discuss the results of Theorem 2.1 for commutative Artinian rings
which are the direct product of k ≥ 3 local rings. Recall that any commutative
Artinian ring is a finite direct product of Artinian local rings ([3, Theorem 8.7]).

Theorem 2.2. Let R be a commutative Artinian ring (in particular, R could
be a finite commutative ring) which is the direct product of k ≥ 3 Artinian local
rings, where k is a fixed integer. Then, Hk(R), the k-zero-divisor hypergraph of
R, is connected with diameter at most 4 and domination number at most 2k.

Proof. Let R = R1 × R2 × · · · × Rk, where Ri is an Artinian local ring
with maximal ideal Mi and assume Mi ̸= 0 for each i = 1, 2, . . . , k. By [8,
Theorem 82], suppose Mi = ann(mi) for some nonzero mi ∈ Mi and each
i = 1, 2, . . . , k. We now construct a dominating set S of size 2k for Hk(R).
Let S = {x1, x2, . . . , xk, y1, y2, . . . , yk}, where for each 1 ≤ i ≤ k, yi is a k-
tuple whose ith component is 0 and other components are 1’s; and for each
1 ≤ i ≤ (k−1), xi is a k-tuple whose ith component is mi, its kth component is
0, and the other components are all 1’s, and xk = (1, 1, . . . , 1, 0,mk). Further,
we take mi = 1 whenever Mi = (0) for any 1 ≤ i ≤ k. Note that a nonzero
element (a1, a2, . . . , ak) is a vertex in Hk(R) (k-zero-divisor in R) provided that
at most one of its components can be 0 and at least one of its components; must
belong to its corresponding maximal ideal.

We now end the paper by applying the above theorem to Zn , the ring of
integers modulo n.

Corollary 2.3. For any fixed integer k ≥ 3, let n = pt11 · · · ptkk for distinct
primes p1, . . . , pk and positive integers t1, . . . , tk. Then, Hk(Zn) is a connected
k-zero-divisor hypergraph with diameter at most 4 and domination number at
most 2k.

Proof. The proof follows directly from Theorem 2.2 and the fact that Zn ∼=
Z
p
t1
1
× · · · ×Z

p
tk
k

. Note that for any prime p ≥ 2 and integer t ≥ 2, Ztp is a local

ring.

Acknowledgement

The research of the second author was in part supported by grant no. 1400130011
from IPM.



A NOTE ON k-ZERO-DIVISOR HYPERGRAPHS OF SOME COMMUTATIVE RINGS 501

References

[1] D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring, J. Alge-
bra, 159 (1993), 500-514.

[2] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra, 217 (1999), 434-447.

[3] M.F. Atiyah, I.G. MacDonald, Introduction to commutative algebra,
Addison-Wesley, Reading, MA, 1969.

[4] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.

[5] C. Berge, Graphs and hypergraphs, North-Holland Publishing Company,
London, 2003.

[6] Ch. Eslahchi, A.M. Rahimi, The k-zero-divisor hypergraph of a commutative
ring, Int. J. Math. Math. Sci. 2007, Art. ID 50875, 15 pp.

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination
in graphs, Marcel Dekker, New York, 1998.

[8] I. Kaplansky, Commutative rings, The University of Chicago Press,
Chicago, Ill.-London, 1974.

[9] E. Mehdi-Nezhad, A. M Rahimi, Comaximal submodule graphs of unitary
modules, Lib. Math., 38 (2018), 75-98.

[10] E. Mehdi-Nezhad, A. M Rahimi, Dominating sets of the comaximal and
ideal-based zero-divisor graphs of commutative rings, Quaestiones Mathe-
maticae, 38 (2015), 17pages.

[11] E. Mehdi-Nezhad, A. M Rahimi, The annihilation graphs of commutator
posets and lattices with respect to an element, Journal of Algebra and Its
Applications, Volume 16, Issue 06, (2017), 20 pages.

[12] E. Mehdi-Nezhad, A. M Rahimi, The annihilation graphs of commutator
posets and lattices with respect to an ideal, Journal of Algebra and its ap-
plications, J. Algebra Appl. 17, Issue 06, (2018), 23 pages.

[13] D. A. Mojdeh, A. M. Rahimi, Dominating sets of some graphs associated
to commutative rings, Communications in Algebra, 40 (2012), 3389-3396

[14] K. Selvakumar, V. Ramanathan, On the genus of the k-annihilating-ideal
hypergraph of commutative rings, Indian Journal of Pure and Applied Math-
ematics, (2019), 461-475

[15] K. Selvakumar, V. Ramanathan, Classification of nonlocal rings with genus
one 3-zero-divisor hypergraphs, Comm. Algebra, 45 (2016), 275-284.



502 ELHAM MEHDI-NEZHAD and AMIR M. RAHIMI

[16] T. Tamizh Chelvam, K. Selvakumar, V. Ramanathan, On the planarity of
the k-zero-divisor hypergraphs, AKCE Inter. J. Graphs and Combin., 12
(2015), 169-179.

[17] D.B. West, Introduction to graph theory, (Second Edition), Prentice Hall,
USA, 2001.

Accepted: March 18, 2022



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 50–2023 (503–513) 503

Relative averaging operators and trialgebras

Li Qiao
School of Mathematics and Statistics
Southwest University
Chongqing 400715
China
qiaoliswu@swu.edu.cn

Jun Pei∗

School of Mathematics and Statistics

Southwest University

Chongqing 400715

China

peitsun@swu.edu.cn

Abstract. In this paper, the relative averaging operator is introduced as a relative
generalization of the averaging operator. We explicitly determine all averaging operators
on the 2-dimensional complex associative algebra. The results show that not every
dialgebra can be derived from an averaging algebra. We then generalize the construction
of dialgebras and trialgebras from averaging operators to a construction from relative
averaging operators. It is shown that this construction from relative averaging operators
gives all dialgebras and trialgebras.
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1. Introduction

There are two seemingly unrelated objects, namely averaging operators (resp.,
of weight λ) and dialgebras (resp., trialgebras). This paper shows that there is a
close tie between them, generalizing and strengthening a previously established
connection from averaging algebras to dialgebras [1, 12, 13].

Let k be a unitary commutative ring and A a k-algebra. If a k-linear map
P : A→ A satisfies the averaging relations:

P (x · P (y)) = P (x) · P (y) = P (P (x) · y), ∀x, y ∈ A,(1)

then P is called an averaging operator and (A,P ) is called an averaging algebra.
Averaging operator was implicitly studied in the famous paper of O. Reynolds

[15] in connection with the theory of turbulence and explicitly defined by Kol-
mogoroff and Kampé de Fériet [7]. It later attracted the attentions of other
well-known mathematicians including G. Birkhoff [4] and Rota with motivation
from quantum physics and combinatorics. It has found diverse applications in

*. Corresponding author
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many areas of pure and applied mathematics, such as the theory of turbulence,
probability, function analysis, and information theory [8, 15, 16, 17, 18, 19].

Recently, averaging operators have been studied for many algebraic struc-
tures [1, 6, 12, 13]. In [14], we studied the averaging operators from an algebraic
point of view and built a connection between averaging operators and large
Schröder numbers. We also defined a related new operator, called averaging
operator of weight λ in [13]. For a fixed λ ∈ k. An averaging operator of weight
λ on A is a k-linear map P : A −→ A such that Eq. (1) holds and

P (x) · P (y) = λP (x · y), ∀x, y ∈ A.(2)

By definition, if P is an averaging operator of weight 1, then λP is an
averaging operator of weight λ. We note that an averaging operator of weight
zero is not an averaging operator. So we can’t give a uniform definition for the
averaging operator as in the case of Rota-Baxter operators of weight λ.

On the other hand, motivated by the study of the periodicity in algebraic
K-theory, J.-L. Loday [9] introduced the concept of Leibniz algebra thirty years
ago as a non-skew-symmetric generalization of Lie algebra. He then defined
dialgebra [10] as the enveloping algebra of Leibniz algebra by analogy with
associative algebra as the enveloping algebra of Lie algebra.

Definition 1.1. A dialgebra is a k-module D with two associative bilinear
operations ⊣ and ⊢ such that

x ⊣ (y ⊣ z) = x ⊣ (y ⊢ z),(3)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),(4)

(x ⊣ y) ⊢ z = (x ⊢ y) ⊢ z,(5)

for all x, y, z ∈ D.

M. Aguiar showed the following connection from averaging algebras to dial-
gebras.

Theorem 1.1 ([1]). Let (A,P ) be an averaging k-algebra. Define two new
operations on A by

(6) x ⊣ y = xP (y), x ⊢ y = P (x)y, ∀x, y ∈ A.

Then (A,⊣,⊢) is a dialgebra.

Theorem 1.1 gives a functor from the category of averaging algebras to the
category of dialgebras. The relationship between averaging algebras and dialge-
bras is generalized in [13] in two directions. In one direction, the relationship is
generalized from associative algebras to other algebraic structures. In the other
direction, the averaging operator of weight λ is introduced to give trialgebra.

The former studies told us that there is a close tie between averaging algebra
(resp., of weight λ) and dialgebra (resp., trialgebra). Then it is natural to ask



RELATIVE AVERAGING OPERATORS AND TRIALGEBRAS 505

whether every dialgebra (resp., trialgebra) could be derived from an averaging
algebra (resp., of weight λ) by a construction like Eq. (6). As Section 2 shows,
the answer is no.

Interestingly, there is an analogous phenomenon that a Rota-Baxter alge-
bra gives a dendriform or tridendriform algebra, depending on the weight. The
problem that whether every dendriform algebra and tridendriform algebra could
be derived from a Rota-Baxter algebra was solved by C. Bai, L. Guo and X.
Ni [3]. They found there is a generalization of the concept of a Rota-Baxter
operator that could derive all the dendriform algebras and tridendriform alge-
bras. In this paper, we turn to consider the recovering problem for dialgebras
from averaging algebras. Inspired by their observation, we define the concept of
relative averaging operator (resp., of weight λ) as a generalization of averaging
operator (resp., of weight λ) and show that every dialgebra (resp., trialgebra)
can be recovered from a relative averaging operator (resp., of weight λ).

This paper is organized as follows. In the next section, we first determine
all averaging operators on the 2-dimensional complex associative algebra and
then list the dialgebras induced by these averaging operators. In Section 3 ,
the definitions of relative averaging operator and relative averaging operator of
weight λ are given. Finally, we prove that every dialgebra (resp., trialgebra) can
be derived from relative averaging algebra (resp., of weight λ).

2. Averaging operators on the complex 2-dimensional associative
algebra

In this section, we determine all averaging operators on 2-dimensional complex
associative algebras. Then we find all dialgebras induced by averaging operators
on the 2-dimensional complex associative algebra. The results show that not
every dialgebra can be derived from an averaging algebra.

There are six associative algebras structures on the 2-dimensional vector
space V = Ce1 ⊕ Ce2 except the trivial one, two of them are non-commutative
and the other four are commutative [2, 5]. We list their characteristic matrices
in the following and denote the corresponding algebra by (Ai, •i), 1 ≤ i ≤ 6,
respectively:

•1 e1 e2
e1 0 e1
e2 0 e2

•2 e1 e2
e1 0 0
e2 e1 e2

•3 e1 e2
e1 e1 0
e2 0 0

•4 e1 e2
e1 e2 0
e2 0 0

•5 e1 e2
e1 e1 0
e2 0 e2

•6 e1 e2
e1 0 e1
e2 e1 e2

.

A linear operator P : Ai → Ai is determined by

(7)

(
P (e1)
P (e2)

)
=

(
a11 a12
a21 a22

)(
e1
e2

)
,
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where aij ∈ C, 1 ≤ i, j ≤ 2. P is an averaging operator on Ai if the above matrix
(aij)2×2 satisfies Eq. (1) for x, y ∈ {e1, e2}.

In order to show P is an averaging operator, we only need to check

(8) P (ei)P (ej) = P (eiP (ej)) = P (P (ei)ej), 1 ≤ i, j ≤ 2.

It is clear that the zero operator is an averaging operator on Ai. Furthermore,
it follows from a direct check that P is an averaging operator if and only if λP
is an averaging operator for 0 ̸= λ ∈ C. Thus, the set AV (Ai) of averaging
operators on Ai carries an action of C∗ := C\{0} by scalar multiplication. To
determine all the averaging operators on Ai, we only need to give a complete
set of representatives of AV (Ai) under this action.

We only give the sketch of process for determining averaging operators on
A1 here. The others discussions are the same as A1.

By direct computation, we have

P (e1)P (e1) = a11a12e1 + a212e2, P (e1P (e1)) = a11a12e1 + a212e2,

P (P (e1)e1) = 0, P (e1)P (e2) = a11a22e1,

P (e1P (e2)) = a11a22e1, P (P (e1)e2) = a211e1,

P (e2)P (e1) = 0, P (e2P (e1)) = 0, P (P (e2)e1) = 0,

P (e2)P (e2) = a21a22e1 + a222e2, P (e2P (e2)) = a21a22e1 + a222e2,

P (P (e2)e2) = (a11a21 + a21a22)e1 + a222e2.

By Eq. (8) and comparing the corresponding coefficients of e1 and e2, we have

a11a12 = 0, a212 = 0, a211 = a11a22, a11a21 = 0.

Hence, the averaging operators on A1 are given by a complete set of represen-
tatives of AV (A1) under the action of C∗ by scalar product consists of the 5
averaging operators whose linear transformation matrices with respect to the
basis e1, e2 are listed below, where a are non-zero complex numbers:(

0 0
0 0

) (
0 0
1 0

) (
0 0
0 1

) (
0 0
a 1

) (
1 0
0 1

)
.

Theorem 2.1. 1. The non-zero averaging operators on A1 and A2 are given by(
0 0
1 0

) (
0 0
0 1

) (
0 0
a 1

) (
1 0
0 1

)
, a ̸= 0.

2. The non-zero averaging operators on A3 are given by(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 1
0 a

)
,

(
1 0
0 0

)
,

(
1 0
0 a

)
, a ̸= 0.
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The non-zero averaging operators on A4 are given by(
0 1
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 a

)
,

(
1 0
0 1

)
,

(
1 a
0 1

)
, a ̸= 0.

3. The non-zero averaging operators on A5 are given by, a ̸= 0,(
0 0
0 1

)
,

(
0 0
1 1

)
,

(
1 0
0 0

)
,

(
1 0
0 a

)
,

(
1 1
0 0

)
,

(
1 1
a a

)
.

4. The non-zero averaging operators on A6 are given by, a ̸= 0,(
0 0
0 1

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
0 a
0 1

)
,

(
1 0
0 1

)
,

(
1 0
a 1

)
.

By Theorem 1.1 and Theorem 2.1, after a direct computation, we have

Corollary 2.1. Let V = Ce1⊕Ce2 and (V,⊣,⊢) be a dialgebra which is induced
by the averaging operators on A1—A6 and the trivial 2-dimensional complex
associative algebra A0. Then either (V,⊣) ∼= Ai, (V,⊢) ∼= Ai, 0 ≤ i ≤ 6, or one
of the following items holds:

(1) (V,⊣) ∼= A0, (V,⊢) ∼= A4;

(2) (V,⊣) ∼= A1, (V,⊢) ∼= A3;

(3) (V,⊣) ∼= A3, (V,⊢) ∼= A2;

(4) (V,⊣) ∼= A1, (V,⊢) ∼= A2;

(5) (V,⊣) ∼= A5, (V,⊢) ∼= A2.

Remark 2.1. Let ⊣ be the zero multiplication and ⊢= •i, i = 1, 2, 3, 5, 6. For
each i, the multiplications ⊣ and ⊢ give a dialgebra structure on V = Ce1⊕Ce2.
By Corollary 2.1, the above dialgebras can’t be derived from a 2-dimensional
complex averaging algebra.

3. Relative averaging operators, dialgebras and trialgebras

In this section we study the relationship between relative averaging operators
(resp., of weight λ) and dialgebras (resp., trialgebras) on the domains of these
operators. First, we give some related concepts. Then we show that relative
averaging operators recover all dialgebras and trialgebras on the domains of the
operators.
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3.1 A-bimodule k-algebras and relative averaging operators

First, we recall a generalization of the well-known concept of bimodules in [3].

Definition 3.1. Let (A, ∗) be a k-algebra with multiplication ∗ and (R, ◦) be
a k-algebra with multiplication ◦. Let ℓ, r : A −→ Endk(R) be two linear
maps. We call (R, ◦, ℓ, r) or simply R an A-bimodule k-algebra if (R, ℓ, r) is an
A-bimodule that is compatible with the multiplication ◦ on R. More precisely,
forall x, y ∈ A, v, w ∈ R, we have

ℓ(x ∗ y)v = ℓ(x)(ℓ(y)v), ℓ(x)(v ◦ w) = (ℓ(x)v) ◦ w,(9)

vr(x ∗ y) = (vr(x))r(y), (v ◦ w)r(x) = v ◦ (wr(x)),(10)

(ℓ(x)v)r(y) = ℓ(x)(vr(y)), (vr(x)) ◦ w = v ◦ (ℓ(x)w).(11)

Note that an A-bimodule (V, ℓ, r) becomes an A-bimodule k-algebra if V
is regarded as an algebra with the zero multiplication. For a k-algebra (A, ∗)
and x ∈ A, define the left and right actions L(x) : A −→ A, L(x)y = x ∗ y;
R(x) : A −→ A, yR(x) = y ∗ x, y ∈ A. For x ∈ A, define

L = LA : A −→ Endk(A), x 7−→ L(x);R = RA : A −→ Endk(A), x 7−→ R(x).

Then (A,L,R) is an A-bimodule and (A, ∗, L,R) is an A-bimodule k-algebra.

Now, we can define our generalization of the averaging operator .

Definition 3.2. Let (A, ∗) be a k-algebra.

1. Let V be an A-bimodule. A linear map Q : V −→ A is called a relative
averaging operator on the module V if Q satisfies

(12) Q(u) ∗Q(v) = Q(ℓ(Q(u)v)) = Q(ur(Q(v))), u, v ∈ V.

2. Let (R, ◦, ℓ, r) be an A-bimodule k-algebra and λ ∈ k. A linear map
Q : R −→ A is called a relative averaging operator of weight λ on the
algebra R if Q satisfies

(13) Q(u) ∗Q(v) = Q(ℓ(Q(u))v) = Q(ur(Q(v))) = λQ(u ◦ v), u, v ∈ R.

When V is taken to be the A-bimodule (A,L,R) associated to the algebra
A, a relative averaging operator (resp., of weight λ) on the module is just an
averaging operator (resp., of weight λ).

3.2 Averaging algebras, dialgebras and trialgebras

The concept of a trialgebra was introduced by Loday and Ronco as a general-
ization of a dialgebra.
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Definition 3.3 ([11]). A trialgebra is a k-module T with three associative bi-
linear operations ⊣, ⊢ and ⊥ such that

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),(14)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊣ y) ⊣ z = x ⊣ (y ⊥ z),(15)

(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (x ⊣ y) ⊥ z = x ⊥ (y ⊣ z),(16)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (x ⊥ y) ⊢ z = x ⊢ (y ⊢ z),(17)

for all x, y, z ∈ T .

The Corollary 4.9 in [13] generalized Theorem 1.1 and showed that if (A, ◦, P )
is an averaging algebra of weight λ ̸= 0, then the multiplications

(18) x ⊣P y := x◦P (y), x ⊢P y := P (x)◦y, x ⊥P y := λx◦y, ∀x, y ∈ A,

define a trialgebra (A,⊣P ,⊢P ,⊥P ).

For a given k-module V , define AV(V ) (resp., AVλ(V )) to be the set of all
averaging algebras (resp., of weight λ) on V . Let AD(V ) (resp., AT (V )) be the
set of all dialgebras (resp., trialgebras) on V .

Then Eqs. (6) and (18) induce two maps

Φ : AV(V ) −→ AD(V ),(19)

Φλ : AVλ(V ) −→ AT (V ).(20)

Thus deriving all dialgebras (resp., trialgebras) on V from averaging operators
(resp., of weight λ) on V amounts to the surjectivity of Φ (resp., Φλ). Unfor-
tunately, by Remark 2.1, these maps are not surjective. Next, we will consider
the case of relative averaging operators.

3.3 From relative averaging operators to dialgebras and trialgebras

Theorem 3.1. Let (A, ∗) be an associative algebra.

(a) Let (R, ◦, ℓ, r) be an A-bimodule k-algebra. Let Q : R −→ A be a relative
averaging operator of weight λ on the algebra R. Then the multiplications
(21)
u ⊣Q v := ur(Q(v)), u ⊢Q v := ℓ(Q(u))v, u ⊥Q v := λu ◦ v, ∀u, v ∈ R,

define a trialgebra (R,⊣Q,⊢Q,⊥Q).

(b) Let (V, ℓ, r) be an A-bimodule. Let Q : V −→ A be a relative averaging
operator on the module V . Then the multiplications

(22) u ⊣Q v := ur(Q(v)), u ⊢Q v := ℓ(Q(u))v, ∀u, v ∈ V,

define a dialgebra (V,⊣Q,⊢Q).
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Proof. (a) For any x, y, z ∈ R, by the definitions of ⊣Q, ⊢Q and ⊥Q and
A-bimodule k-algebra, we have

(x ⊣Q y) ⊣Q z =
(
xr(Q(y))

)
r(Q(z)) = xr(Q(y) ∗Q(z)).

Since Q(y) ∗Q(z) = Q(ℓ(Q(y))z) = Q(yr(Q(z))) = λQ(y ◦ z), we have

(x ⊣Q y) ⊣Q z = x ⊣Q (y ⊢Q z) = x ⊣Q (y ⊣Q z) = x ⊣Q (y ⊥Q z).

It follows from x ⊢Q (y ⊢Q z) = ℓ(Q(x))
(
ℓ(Q(y))z

)
= ℓ(Q(x) ∗ Q(y))z and

Q(x) ∗Q(y) = Q(ℓ(Q(x))y) = Q(xr(Q(y))) = λQ(x ◦ y) that

x ⊢Q (y ⊢Q z) = (x ⊢Q y) ⊢Q z = (x ⊣Q y) ⊢Q z = (x ⊥Q y) ⊢Q z.

We also, have

(x ⊢Q y) ⊣Q z =
(
ℓ(Q(x))y

)
r(Q(z)) = ℓ(Q(x))(yr(Q(z))) = x ⊢Q (y ⊣Q z),

(x ⊥Q y) ⊣Q z = (λx ◦ y)r(Q(z)) = λx ◦ (yr(Q(z))) = x ⊥Q (y ⊣Q z),

(x ⊣Q y) ⊥Q z = λ(xr(Q(y)) ◦ z = x ◦
(
ℓ(Q(y))z

)
= x ⊥Q (y ⊣Q z),

(x ⊢Q y) ⊥Q z = λ(ℓ(Q(x))y) ◦ z = ℓ(Q(x))(λy ◦ z) = x ⊢Q (y ⊥Q z),

(x ⊥Q y) ⊥Q z = λ(λx ◦ y) ◦ z = λ(x ◦ (λy ◦ z)) = x ⊥Q (y ⊥Q z).

The above relations for ⊣Q, ⊢Q and ⊥Q coincide with the axioms of trialgebra
in Definition 3.3.
(b) By the definitions of ⊣Q, ⊢Q and bimodule, similar to the proof of (a),
(V,⊣Q,⊢Q) is a dialgebra.

For a k-algebra A and an A-bimodule k-algebra (R, ◦), denote

RAalg
λ (R,A)

:= {Q : R→ A|Q is a relative averaging operator of weight λ on algebra R}.

By (a) of Theorem 3.1, we obtain a map

(23) Φalg
λ,R,A : RAalg

λ (R,A) −→ AT (Rmod),

where Rmod denotes the underlying k-module of R.
Now let V be a k-module. Let AVλ(V,−) be the set of relative averaging

operators of weight λ on algebra (V, ◦) , where ◦ is an associative product on
V . In other words,

(24) AVλ(V,−) :=
∐
R,A

AValg
λ (R,A),

where the disjoint union runs through all pairs (R,A) where A is a k-algebra
and R is an A-bimodule k-algebra such that Rmod = V . Then from the map
Φalg
λ,V,A in Eq. (23), we have

(25) Φalg
λ,V :=

∐
R,A

Φalg
λ,V,A : AValg

λ (V,−) −→ AT (V ).
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Similarly, for a k-module V and k-algebra A, denote

RAmod(V,A)

:= {Q : V → A|Q is a relative averaging operator on the module V },

By (b) of Theorem 3.1, we obtain a map

(26) Φalg
V,A : AVmod(V,A) −→ AD(V )

Let AVmod(V,−) be the set of relative averaging operators on the module
V . In other words, AVmod(V,−) :=

∐
AAVmod(V,A), where A runs through all

the k-algebras. Then we have

(27) Φmod
V :=

∐
A

Φmod
V,A : AVmod(V,−) −→ AD(V ).

Theorem 3.2. Let V be a k-module. The maps Φalg
1,V and Φmod

V are surjective.

Proof. We first prove the surjectivity of Φalg
1,V . Let (V,⊣,⊢,⊥) be a trialgebra.

Define two linear maps

(28) L⊢, R⊣ : V −→ Endk(V ), L⊢(x)(y) = x ⊢ y,R⊣(x)(y) = y ⊣ x,∀x, y ∈ V.

Let I be the ideal generated by the set {u ⊣ v − u ⊢ v | u, v ∈ V } ∪ {u ⊣
v− u ⊥ v | u, v ∈ V }. Let Ṽ := V/I, then we have ⊣=⊢=⊥ in Ṽ . Furthermore,
Ṽ can be regarded as an associative algebra with an operation ∗ :=⊣=⊢=⊥.

By comparing the trialgebra axioms and the axioms of (V, ∗)-bimodule k-
algebra, we have that if we replace the operation ∗ in Eq. (9) and (10), by any
of ⊣,⊢,⊥, the equations still hold. Hence, (V,⊥, L⊢, R⊣) is a (Ṽ , ∗)-bimodule
k-algebra.

Let Q be the natural projection from V to Ṽ . Then we have

Q(x) = x, Q(x ⊣ y) = Q(x ⊢ y) = Q(x ⊥ y) = Q(x) ∗Q(y).

Hence,

Q(x) ∗Q(y) = Q(Q(x) ⊢ y) = Q(x ⊣ Q(y)) = Q(x ⊥ y),

and then

Q(x) ∗Q(y) = Q(L⊢(Q(x))y) = Q(xR⊣(Q(y))) = Q(x ⊥ y).

That is Q is a relative averaging operator of weight 1 on the algebra (V,⊥).

To prove the surjective of Φmod
V , let (V,⊣,⊢) be a dialgebra. Let I be the

ideal generated by the set {u ⊣ v − u ⊢ v | u, v ∈ V }. Define Q be the natural

projection from V to V/I. Similar to the proof for Φalg
1,V , we get Q is a relative

averaging operator on bimodule (V,L⊢, R⊣).
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Abstract. There are many researches about converting n job m machine problem
to a n job 2 machine one, and finally using Johnson’s rule for minimizing makespan.
In one case, this converting leads to the inner product of processing times by Pascal
numbers. In this paper, it is shown that there are other suitable numerical sequences
with a triangle pattern or without it, producing better makespans in several cases. The
quality of results is checked by the benchmark of Taillard in permutation flow shop
scheduling problem.

Keywords: flow shop, scheduling, NEH algorithm, stirling numbers, Fibonacci num-
bers, Bell’s numbers, Pascal numbers.

1. Introduction

In flow shop scheduling, the issue is to determine the best sequence of n jobs that
are processed on m machines in the same order. Let tij denote deterministic
processing time of job j at machine i, which is a positive integer. It is assumed
that all jobs process on every single machine. Makespan or Cmax refers to the
total time for complete processing of all jobs.

It is usually supposed that all jobs are independent and available. No mat-
ter when, each machine processes at most one job and each job is processed
only by one machine. No preemption is allowed. Set up times are included in
the processing times. Infinite storage buffer between machines is also assumed
and machines are available. There are job permutations, which change from
machine to machine. Therefore, (n!)m schedules can be obtained. Having the
same permutation for all machines is supposed; hence, n! schedules are possi-
ble. The resulting problem is known as the permutation flow shop scheduling
problem (PFSP), denoted by Fm/prmu/ Cmax Graham et al. [7]. Only the
F2/prmu/Cmax problem is polynomially, solvable and proposed by Johnson [8];
for m ≥ 3, the problem is NP-complete Garey et al. [6].

It seems that after several papers in 1950s and then the widespread concern
about expansion complexity theory by Karp [9], the great numerical growth
of papers was stopped in 1990s. Now, there are few papers about adequate
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heuristic algorithm for solving deterministic flow shop scheduling problems by
minimizing makespan criterion.

For the reason that Johnson’s algorithm is exact, authors have hardly tried
to convert each arbitrary n×m PFSP to a 2-machine problem.

Bonney et al. [4] expressed a job in terms of the slopes of the comulative
start and times. It converted the original n jab m machine to a n jab 2 machine
problem.

Semanco et al. [11] employed Johnson’s rule to present a good initial solution
for improving heuristic and the proposed algorithm called MOD. Wei Jia et al.
[13] proposed a new algorithm. Firstly, the proposed algorithm normalized
the matrix A of processing times. Then it transformed the original problem
containing m machines into a 2 machine one that is solved by Johnson’s rule.
Fernandez- Viagas et al. [5] presented two constructive heuristics based on
Johnson’s algorithm. Belabid et al. [2] studied the resolution of PFSP that
their first method was based on Johnson’s rule.

2. The extended Johnson’s algorithm

Before explaining the presented algorithm, it is better to make an example about
the process of reducing m machine problem into a 2 machine one.

An illustration of this is that m = 6 and one job must be processed in m = 6
machines with processing times t1 to t6. By adding the first two processing
times, it is assigned to the first hypothetical machine. It is also continued in a
similar way for all jobs and finally the problem was transformed into a m = 2
machine, Baskar et al. [1].

It is observed that for m number of machines, the coefficients are the mem-
bers of Pascal’s Triangle for

(
m−2
k

)
; k = 0, 1, 2, . . . , n. Indeed, the dot products

of these numbers with the original times are obtained. Also at the end, the terms
including last and first processing times i.e t6 , t1 are respectively omitted.
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3. The presented algorithm

In general, suppose the deterministic times for PFSP are tij ; 1 ≤ i ≤ n and
1 ≤ j ≤ m. This problem is transformed to a two machine one. The job order
obtained from Johnson’s algorithm is used to find initial order and calculate the
makespan.

Let the time martrix of the initial problem be M = [tij ]n×m and the time
matrix after using Johnson’s algorithm be N = [Tpq]n×2. Then, the following
relations can be given

q=1 ⇒ Tp1=(tp1, tp2, tp3, . . . , tpm) •
((

m−2

0

)
,

(
m−2

1

)
,

(
m−2

2

)
, . . . , 0

)

=
m∑
k=1

(
m− 2

k − 1

)
tpk

q=2 ⇒ Tp2=(tp1, tp2, tp3, . . . , tpm) •
(
0,

(
m− 2

0

)
,

(
m− 2

1

)
, . . . ,

(
m− 2

m− 2

))

=
m∑
k=1

(
m− 2

k − 2

)
tpk.

The optimal permutation is resulted from Johnson’s algorithm on N . This
permutation is applied to M . Utilizing Belman et al.’s theorem [3] leads to the
minimum makespan.

As was mentioned, inner products of tpks by Pascal’s triangle elements are
equal to Tp1 and Tp2. The algorithm is executed on Taillard’s problems [12] by
Pascal numbers. The triangular neutrality of Pascal’s numbers draws attention
to the scalar products of the times of Taillard’s problems by first and second
kind Stirling numbers, Bell’s numbers and Fibonacci numbers. These sequences
of numbers have triangular pattern du to the next equations.

1) sn+1,k = snk−1 − nsn,k, sn,k is a number of first kind Stirling numbers (St
1) that is in n’th row and k’th column in the triangle;

2) Sn+1,k = Sn,k−1 + kSn,k, second kind of Stirling numbers (St 2);

3) fn+1 =
(
n
0

)
+
(
n−1
1

)
+
(
n−2
2

)
+ . . .+

(
n−k
k

)
, k =

[
n
2

]
, fn+1 is n+ 1’th term

in Fibonacci sequence (Fibo);

4)
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, k ≥ 1, Pascal numbers (Pasc);

5) Bn+1 =
∑n

k=0

(
n
k

)
Bk, B0 = 1, Bn+1 is n + 1’th term in Bell’s sequence

(Bell).

Now, the presented algorithm is divided into three simple steps:
1. Select the first m (m is the number of machines) elements of the above

numerical sequences i.e.
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i) sm−1,k, k = 0, 1, 2, . . . ,m− 1 (St 1);

ii) Sm−1,k, k = 0, 1, 2, . . . ,m− 1 (St 2);

iii) fm−1 (Fibo);

iv)
(
m−1
k

)
, k = 0, 1, 2, . . . ,m− 1 (Pasc);

v) Bk, k = 0, 1, 2, . . . ,m− 1 (Bell).

For each stage, inner products of the above elements with the times of orig-
inal problem are obtained. First, the term concluding tpm, and then the term
concluding tp1 are clearly omitted.

2. Johnson’s algorithm is applied to give job order from artificial n job and
two machine problems with (i),(ii),. . . ,(v) sequences.

3. The job order obtained in previous step is used to find initial order and
compute the makespan in original problem.

The algorithm implemented in Visual Basic and carried out all tests on
Pentium IV computer at 3.2 GHz with 2 GBytes of RAM memory.

For the statistical analysis, the well known standard benchmark set of Tail-
lard [12] was used. This set includes 120 instances divided into 12 groups with
10 replicates each. The sizes range from 20 jobs, 5 machines to 500 jobs, 20
machines. In the flowshop scheduling literature, this benchmark has been ex-
tensively used in the past years. For each instance, a very tight lower bound and
upper bound are known. All 10 instances in the 50×20 set , nine in 100×20, six
in 200×20 and three in 500×20 are open. For all other instances, the optimum
solution is already known.

The applied performance measure that was used, is the Relative parcentage
Deviation (RPD) over the optimum or the best solution (upper bound ) for each
instance:

Relative Perentage Deviation (RPD) =
Heusol −Bestsol

Bestsol
× 100,

where Heusol is the solution given by any of the tested heuristic for a given
instance and Bestsol is the optimum solution or the lowest known upper bound
for Taillard’s instances.

The solutions of presented algorithm are compared with the results of NEH
and Taillard’s benchmark. NEH was made-up by Nawas et. al. [10], that is the
best heuristic that have ever been proposed for solving PFSP [5].

In the following tables, the summary of these comparisons and the results
of Talllard’s problems are shown. The tables also display the results of NEH.
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Table 1. The least RPD for Heuristic Algorithm

Size of Least RPD Obtained With NEH Taillard Upper
Problems Prob.No Sequence Best Makespan RPD reaults Bounds

20× 5 2 St 2 1422 4.6 1365 1359
20× 10 9 St 2 1848 16 1639 1593
20× 20 8 St 2 2473 12.4 2249 2200
50× 5 6 Fibo 3093 9.3 2835 2829
50× 10 6 Pasc 3728 24 3148 3006
50× 20 1 St 2 4762 26.2 4006 3771
100× 5 6 Pasc 5740 11.7 5154 5135
100× 10 9 St 1 6973 18.7 6016 5871
100× 20 10 St 2 7994 24.8 6680 6434
200× 10 4 St 2 12880 18.2 11057 10889
200× 20 8 St 2 14327 21.1 11824 11334

500× 20 5 Pasc 31706 20.3 26928 26334

Table 2. The greatest RPD for Heuristic Algorithm

Size of Greatest RPD Obtained With NEH Taillard Upper
Problems Prob.No Sequence Best Makespan RPD results Bounds

20× 5 3 St 2 1349 24.7 1132 1081
20× 10 4 Fibo 1856 34.7 1416 1377
20× 20 4 Pasc 2749 23.6 2257 2223
50× 5 3 St 2 3209 22.4 2650 2621
50× 10 3 Pasc 3878 36.5 2994 2839
50× 20 4 Pasc 4874 34 3953 3723
100× 5 2 Pasc 6171 17.1 5284 5268
100× 10 2 Pasc 6795 27 5466 5349
100× 20 7 St 1 8135 31.5 6578 6268
200× 10 2 St 2 13142 25.4 10677 10480
200× 20 3 Pasc 14693 30.2 11724 11281

500× 20 10 Pasc 32782 23.9 27103 26457

It is seen that the least RPD is 4.6 which is obtained in Taillard’s 20× 5− 2
problem after the inner product of second kind Stirling numbers. The greatest
RPD is 36.5 that is resulted in 50 × 10 − 3 problem after the dot product of
Pascal numbers.

The best makespan in each instance is shown in the table 1 after the dot
product of sequences and comparing with each other. For example in the first
section, 7 times second kind Strirling numbers, 1 time Fibonacci numbers, and
only 3 times Pascal numbers are resulted the best makespan! In this research,
Bell numbers are not resulted this.

The best solutions in the light of quality are those obtained from the inner
product of seoond kind Stirling numbers.

For more researches, the Bank of numerical sequences is chosen. This Bank
i.e oeis.org includes “The On-Line Encyclopedia Of Integer Sequences” found
by N.J.A. Sloane. He has worked the sustainable collection of these sequences
since 1964.

At another time, the algorithm implemented in Python and carried out all
tests on a Quad-Core Intel Core i7 computer at 2.6 GHz with 16 GBytes of RAM
memory. In 10 hours, first 100000 sequences were chosen and scalar products
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of them were determined. Then Johnson’s algorithm found initial order of jobs.
The average of ten obtaining makespans in each package of Taillard instances
was calculated, afterward 100000 solutions in them were collected in following
figures.

In these figures, l is the average of lower bounds or the average of solution;
and u is the average of upper bounds in each package of Taillard’s instances.

Additionally, X-axis shows the number of sequences, and the result of each
correspondent sequence is a point in the direction of Y -axis. It is regarded that
the specified average points have not good situation with respect to l and u.

Figure 1. average results of 20× 5 Figure 2. average results of 20× 10

Figure 3. average results of 20× 20 Figure 4. average results of 50× 5

Figure 5. average results of 50× 10 Figure 6. average results of 50× 20



520 SHAHRIAR FARAHMAND RAD

Figure 7. average results of 100× 5 Figure 8. average results of 100× 10

Figure 9. average results of 100×20 Figure 10. average results of 200×10

Figure 11. average results of 200×20 Figure 12. average results of 500×20

In all 120 instances of Taillard’s and 120 × 100000 cases, there is only one
result that is the same of Taillard’s solution after fixing all steps and running
Johnson’s algorithm.

This is 100×5−1 problem and the solution is 5493. The result is consequent
of the inner product of the original processing times by the sequence A088661
with the general term:

an =
8∑

k=1

[
Pn,k
Pn−1,k

]
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when

Pn,k =

n∑
i=1

log i

n−
[

n

4k

]∑
i=n−

[
3n

4k

] log i

namely “A log based cantor self similar sequence” (bracket is floor). The
author is Roger L. Bagula, Nov 21 2003. For n = 3, 4, . . . , 107 the terms
of this sequence are 8, 8, 7, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 5, 7, 8, 8, 7, 6, 8, 8,
7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 5, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8,
7, 7, 8, 8, 6, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8, 4, 7, 8, 8, 7, 6, 8, 8, 7, 7, 8, 8, 7, 7, 8, 8,
6, 7, 8, 8, 7, 5.

A brief research is denoted that after each 4-term section, four numbers 7,
8, 8, 7 are repeated.

For the intuitive perception of sequence’s behaviour, its pin plot and scatter
plot are designed in the following.

Figure 13. Pin plot of A088661(n)

4. Conclusions

In this paper, it was tried to transform the n×m problem to a 2×m problem
after obtaining the inner product of proessing times in PFSP by the most fa-
mous numerical sequences. Johnson’s algorithm was used and the results were
compared with those of the Taillard’s 120 problem solutions. The least rela-
tive percentage deviation was obtained in 20 × 5 − 2 Taillard’s problem with
the dot product of Stirling second kind numbers. Moreover, the greatest RPD
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Figure 14. Scatterplot of A088661(n)

was resulted in 50× 10− 3 Taillard’s problem. All these arguments lead to the
conclusion that Baskar’s ideas [1] about good solutions of the inner product of
Pascal numbers have been invalidated.

After obtaining the dot product of 100000 different numerical sequences
in processing times for 100 × 5 − 1 instance, Johnson’s rule results optimum
solutions.
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[11] P. Semančo, V. Modrák, A comparison of constructive heuristics with the
objective of minimizing makespan in the flow-shop scheduling problem, Acta
Polytechnica Hungarica, 9 (2012), 177-190.

[12] E. Taillard, Benchmarks for basic scheduling problems, European Journal
of Operational Research, 64 (1993), 278-285.

[13] J.Y. Wei, Y.B. Qin, D.Y. Xu, DRPFSP algorithm for solving permutation
flow shop scheduling problem, Computer Science, 2015.

Accepted: February 10, 2021



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 50–2023 (524–539) 524

Approximate solution of Fredholm type fractional
integro-differential equations using Bernstein polynomials

Azhaar H. Sallo
Department of Mathematics
College of Science
University of Duhok
Kurdistan Region
Iraq
azhaar.sallo@uod.ac

Alias B. Khalaf∗

Department of Mathematics
College of Science
University of Duhok
Kurdistan Region
Iraq
aliasbkhalaf@uod.ac

Shazad S. Ahmed
Department of Mathematics

College of Science

University of Sulaimani

Kurdistan Region

Iraq

shazad.ahmed@suluniv.edu.krd
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1. Introduction

Fractional differential equations have been implemented to model various prob-
lems in several fields, [2], [3], [4], [6] and [10]. Any system containing fractional
derivatives is more practical than the regular system because of the non-locality
of the fractional derivative. Recently, mathematicians have shown a lot of inter-
est in studying new types of equations having non-local fractional derivatives.
The study of any type of fractional integro-differential equation depends on the

*. Corresponding author
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type of the fractional derivative. Therefore, many researchers have shown great
interest in studying new types of the Caputo fractional differential equations and
their applications, see [12] and [13]. Fractional integro-differential equations of
Fredholm type have been studied by many researchers to find their approximate
solutions using many types of methods and polynomials, see [1], [5], [12], [14],
[18] and [19]. The Bernstein polynomials [7] is one of the methods for comput-
ing the approximate solution of fractional equation, see [13], [14], [17]. In [8],
a solution of a special type of fractional integro-differential equations using Ja-
cobi wavelet operational matrix of fractional integration presented and the same
authors in [9], discussed numerical Solution of a Fredholm Fractional Integro-
differential equation. Recently, Mansouri and Azimzadeh in [11], introduced
an approximate solution of fractional delay Volterra integro-differential equa-
tions by Bernstein polynomials . Also, in [16], numerical solution method for
multi-term variable order fractional differential equations by shifted Chebyshev
polynomials of the third kind is given.

In this article, we study how to find approximate solutions to a class of Fred-
holm fractional integro-differential equations that contains the Caputo fractional
derivative of order n−1 < α ≤ n. Finally, some examples are given to find their
approximate solutions.

2. Preliminaries

In this section, we present some necessary definitions and results which will be
used in other sections. We start with the definition and main properties of the
fractional derivative. For more details on the subject see [15] and [4].

Definition 2.1 ([15]). Let y = f(x) be a function, then the fractional derivative
of y in Caputo sense of order α > 0 is defined as:

c
aD

α
xf(x) =


1

Γ(n− α)

∫ x
a

f (n)(t)
(x−t)α+1+ndt, n− 1 < α < n, n ∈ N,

dn

dxn
f(x), α = n ∈ N.

If f(x) is a constant function, then c
aD

α
xf(x) = 0.

The Caputo derivative of f(x) = (x− a)j is defined as: (see [15])

c
aD

α
x (x− a)j =


0, for j ∈ N ∪ {0} and j < ⌈α⌉,

Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α, for j ∈ N and j ≥ ⌈α⌉

or j /∈ N and j > ⌊α⌋.

Here, ⌈α⌉ is denoted to be the smallest integer greater than or equal to α
and ⌊α⌋ is the largest integer less than or equal to α.
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Lemma 2.1 ([15]). The Caputo fractional differentiation is a linear operation,
that is for any two constants a1, a2 and any two functions y1, y2, we have

c
aD

α
x (a1y1 + a2y2) = a1(

c
aD

α
x (y1)) + a2(

c
aD

α
x (y2)).

Definition 2.2 ([7]). The Bernstein polynomials of degree n are denoted by
Bi,n(x) and defined as:

(1) Bi,n(x) =

(
n
i

)
(x− a)i(b− x)n−i

(b− a)n
, x ∈ [a, b] ⊆ R, i = 0, 1, 2, ..., n.

Particularly, if x ∈ [0, 1] then Bi,n(x) are defined as:

Bi,n(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, 2, ..., n.

Since (b− x)n−i = [(b− a)− (x− a)](n−i), equation (1) can be written as:

(2) Bi,n(x) =

n∑
j=i

(−1)j−i

(b− a)j

(
n

i

)(
n− i

j − i

)
(x− a)j .

Hence,

(3) Bi,n(x) =
n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j .

Lemma 2.2 ([7]). The derivatives of Bernstein polynomials of degree n can be
written as a linear combination of Bernstein polynomials of degree n− 1 which
is given by:

(4)
d

dx
Bi,n(x) = n(Bi−1,n−1(x)−Bi,n−1(x)).

Lemma 2.3. The fractional derivative of order 0 < α ∈ R \N of the Bernstein
polynomials of degree n in the Caputo sense is given by:

(5) c
aD

α
xBi,n(x) =

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
c
aD

α
x (x− a)j .

Since c
aD

α
x (x− a)j = 0 for each j < α , we have

(6) c
aD

α
xBi,n(x) =

n∑
j=⌈α⌉

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α.

Proof. Follows from applying Definition 2.1 to equation (3).
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3. Approximation method

In this section, we propose the following fractional integro-differential equation
and provide approximate solutions to this equation:

c
aD

α
xy(x) +

n∑
k=2

gk(x)
c
aD

(α
k
)

x y(x) + g0(x)y(x)

= f(x) +

n∑
m=1

∫ b

a
Km(x, t)

c
aD

β
m
t y(t)dt,(7)

where n − 1 < α ≤ n, β ≤ α and a ≤ t, x ≤ b. Subject to the conditions
y(i)(a) = λi, i = 0, 1, 2, ..., n− 1.

The solution of equation (7) is the function y(x) which is a continuous func-
tion and its approximate solution can be expressed in terms of nth-degree of
Bernstein polynomial

(8) yn(x) =
n∑
i=0

ciBi,n(x).

From the initial condition, we have λ0 = yn(a) =
∑n

i=0 ciBi,n(a), which
implies that

(9) c0 = λ0.

Again, from equation (3), we have

y′n(x) =
n∑
i=0

ciB
′
i,n(a) =

n∑
i=0

ci

n−i∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
j(x− a)j−1.

This implies that all the terms are zero at x = a except when j = 1. Hence, we
obtain that

λ1 = y′n(a) =

n∑
i=0

ci
(−1)1−i

(b− a)

(
n

1

)(
1

i

)
.

Therefore,

λ1 =
−n
b− a

c0 +
n

b− a
c1.

Hence,

(10) c1 = λ0 +
(b− a)λ1

n
.

Thus, in general, if n ≥ m ∈ N we have

y(m)
n (x) =

n∑
i=0

ciB
m
i,n(x) =

n∑
i=0

ci

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
m!

(
j

m

)
(x− a)j−m,
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when x = a all the terms are zero except j = m. Hence,

(11) λm = y(m)
n (a) =

m∑
i=0

ci
(−1)m−im!

(b− a)m

(
n

m

)(
m

i

)
.

From equation (11) and solving for the coefficients ci, i = 0, 1, ...,m, we
obtain that:

(12) ci =
i∑

k=0

(
i
k

)(
n
k

) × (b− a)i y(i)(a)

k!
.

Now, by substituting equations (2), (4), (12) in equation (7), we get an algebraic
equation with unknown constants ci, i = m + 1,m + 2, ..., n and by a suitable
way we can find a matrix equation of the form AC = B, where A ia an (n−m)×
(n −m) matrix and CT = [cm+1, cm+2, ..., cn]. Then C = A−1B. Substituting
the ci’s in equation (8) we get the approximate solution of equation (7).

4. Illustrative examples

In this section, we discuss the approximate solution of some examples for distinct
fractional derivatives α and β, where n − 1 < α ≤ n and β ≤ α and compare
them with their exact solutions. We start with the following example:

Example 4.1. Consider the integro-differential equation

(13) c
1D

α
xy(x) = f(x) + 3

∫ 2

1
(xt) c

1D
β
t y(t)dt,

where f(x)= 2
Γ(3−α)(x− 1)2−α−6x(β−3)(2β−9)

Γ(5−β) , 1<α≤2, β ≤ α and 1 ≤ t, x ≤ 2.

Subject to the conditions y(1) = y′(1) = 2.

Using Bernstein polynomials of degree n = 3, we approximate the solution
as:

(14) y(x) =
3∑
i=0

ciBi,3(x).

From equations (9), (10), we obtain that c0 = 2 and c1 =
8
3 .

Applying equation (6) on y(x) and substituting in equation (13), we get

(15) c
1D

α
x

3∑
i=0

ciBi,3(x) = f(x) + 3

∫ 2

1
(xt) c

1D
β
t

3∑
i=0

ciBi,3(t)dt.

Hence

(16)

3∑
i=0

ci{c1Dα
xBi,3(x)− 3

∫ 2

1
(xt) c

1D
β
t Bi,3(t)dt} = f(x).



APPROXIMATE SOLUTION OF FREDHOLM TYPE FRACTIONAL ... 529

Applying equation (6) , we get

3∑
i=0

ci{
3∑

j=⌈α⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− 1)j−α

− 3

∫ 2

1
(xt)

3∑
j=⌈β⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β)
(x− 1)j−βdt} = f(x).

As a particular case, if we take α = 2 and β = 1 the exact solution of equation
(13) is y(x) = x2 + 1. After integrating and simplifying the above equation, we
get the following equation:

(17)

c0

[
12− 6x

]
+ c1

[
− 30 + 18x

]
+ c2

[
24− 18x

]
+ c3

[
− 6 + 6x

]
−3x

∫ 2

1
{c0
[
− 12t+ 12t2 − 3t3

]
+ 3c1

[
8t− 10t2 + 3t3

]
−3c2

[
− 5t+ 8t2 − 3t3

]
+ c3

[
3t− 6t2 + 3t3

]
}dt = 2− 14x.

Integrating the last equation and substituting for c0 and c1 and simplifying,
we get

c2[24−
69

4
x] + c3[−6 +

3

4
x] = 58− 119

2
x.

Solving for c2 and c3, we obtain that c2 = 3.666 and c3 = 4.997. The
approximate solution of equation (13) is

y(x) ≈ 2(2− x)3 + 8(x− 1)(2− x)2 + 3× (3.66)(x− 1)2(2− x) + 4.997(x− 1)3.

The following table describes the relation between the exact and approximate
solution of some selected values of x, where n = 3, α = 2 and β = 1.

Table 1: Exact and approximate solution when α = 2 and β = 1
x yApprox yExact
1.1 2.20998 2.21

1.2 2.43991 2.44

1.3 2.68979 2.69

1,4 2.95962 2.95999999999999

1.5 3.24938 3.25

1.6 3.55906 3.55999999999999

1.7 3.88868 3.88999999999999

1.8 4.23821 4.24

1.9 4.60765 4.60999999999999

2 4.9971 4.99999999999999
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Now, if we take α = 3
2 and β = 0.5, we have

3∑
i=0

ci{
3∑

j=⌈α⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j − 1
2)
(x− 1)j−

3
2

− 3

∫ 2

1
(xt)

3∑
j=⌈β⌉

(−1)j−i

(b− a)j

(
3

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1
2)
(x− 1)j−

1
2dt}

=
4√
π
(
√
x− 1−64x

7
).

Substituting and simplifying, we get

c2

[
6

Γ(32)
(x− 1)

1
2 − 18

Γ(52)
(x− 1)

3
2 − 64x

35
√
π

]
+ c3

[
6

Γ(52)
(x− 1)

3
2 − 64x

7Γ(72)

]
= − 320x

21
√
π
+

256x

105
√
π
+

24

Γ(32)
(x− 1)

1
2 − 36

Γ(52)
(x− 1)

3
2 − 48

Γ(32)
(x− 1)

1
2

− 48

Γ(52)
(x− 1)

3
2 +

4√
π
(
√
x− 1− 64x

7
).

We get 1.0316c2 + 2.7511c3 = 9.2489 and 8.8335c2 − 0.98876c3 = −2.4978.
Solving for c2 and c3, we get c2 = 0.0897 and c3 = 3.3283.

The following table describes the approximate solution of equation (13) for
some selected values of n, α and β. Here, y1, y2 and y3 represent the approximate
solution when n = 3, (α = 1.8, β = 0.8), (α = 1.6, β = 0.6) and (α = 1.2,
β = 0.2), respectively. While y4, y5 and y6 represent the approximate solution
when n = 7, (α = 1.8, β = 0.8), (α = 1.6, β = 0.6) and (α = 1.2, β = 0.2).

Table 2: Approximate solution when (n = 3) and(n = 7)
x y1 y2 y3 y4 y5 y6
1.1 2.215946531 2.227593549 2.284126883 2.216914203 2.233433219 2.337681516

1.2 2.464096576 2.509845878 2.724168086 2.466686882 2.524408268 2.836704064

1.3 2.744915811 2.84596451 3.301614439 2.748712324 2.865521894 3.420408092

1.4 3.058869912 3.235156969 3.997956773 3.063062995 3.254315643 4.07293886

1.5 3.406424555 3.676630777 4.794685919 3.410119352 3.690280056 4.793196618

1.6 3.788045417 4.169593457 5.673292706 3.790382296 4.173485633 5.579198956

1.7 4.204198174 4.713252534 6.615267966 4.204405053 4.704224102 6.429009677

1.8 4.655348502 5.306815529 7.602102528 4.652781212 5.283043554 7.344388516

1.9 5.141962077 5.949489967 8.615287224 5.136125705 5.910560971 8.323316056

2 5.664504577 6.640483371 9.636312884 5.654985475 6.586435719 9.327548172

The following graphs represents the approximate solution of equation (13), for
n = 3 and some selective α and β.
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Graphs of approximate solutions for equation (13)

y1, α = 1.8, β = 0.8
y2, α = 1.6, β = 0.6
y3, α = 1.2, β = 0.2

Example 4.2. Consider the following integro-differential equation:

(18)

c
2D

α
xy(x) + g1(x)

c
2D

α
2
x y(x) + g2(x)

c
2D

α
3
x y(x) =

f(x) +

∫ 4

2
K(x, t) c

2D
β
t y(t)dtm,

where g1(x) = −Γ(4− α
2 )(x−2)

α
2 , g2(x) = Γ(4− α

3 )(x−2)
α
3 , f(x) = 72(x−2)3−α

Γ(4−α) +

16(x − 2) − 6α(x − 2)2 − x[10 − 6
2−β ], K(x, t) = Γ(2−β)

16 x(t − 2)β, 2 < α ≤ 3,

β ≤ α and 2 ≤ t, x ≤ 4. Subject to the conditions y(2) = 0, y′(2) = 8, and
y′′(2) = −36.

By using Bernstein polynomials of degree n = 5, we approximate the solution
as:

(19) y(x) =

5∑
i=0

ciBi,5(x).

From equations (9), (10), we obtain that c0 = 0, c1 = 3.2 and c2 = −0.8.
For a particular case, if we take α = 3 and β = 1, the exact solution of

equation (18) is y(x) = 12x3 − 90x2 + 224x − 184. Applying equation (6) on
y(x) and substituting in equation (18), we obtain a system of equations and
solving for ci‘s we obtain that c3 = −2.4, c4 = 8 and c5 = 40. The approximate
solution of equation (18) is

y(x) ≈ 3.2× 5(x− 2)(4− x)4 − 0.8× 10(x− 2)2(4− x)3

−2.4× 10(x− 2)3(4− x)2 + 8× 5(x− 2)4(4− x) + 40(x− 2)5.



532 A.H. SALLO, A.B. KHALAF and S.S. AHMED

Table 3: Exact and approximate solution of equation (18) when α = 3 and
β = 1

x yExact yApprox
2 0 0

2.2 0.976 0.976

2.4 1.088 1.088

2.6 0.912 0.912000000000003

2.8 1.024 1.024

3 2 2.00000000000001

3.2 4.416 4.41600000000002

3.4 8.848 8.84800000000002

3.6 15.872 15.872

3.8 26.064 26.064

4 40 40

Table (3), describes the relation between the exact and approximate solution of
some selected values of x when n = 5, α = 3 and β = 1.

In Table 4, the approximate solution of equation (18) for some selected values
of n, α and β is given. Where (y1, y2, y3 and y4) represent the approximate
solution when n = 5, (α = 2.2, β = 0.8), (α = 2.4, β = 0.6), (α = 2.8, β = 0.8)
and (α = 2.8, β = 0.2) respectively.

Table 4: Approximate solution of equation (18) when (n = 5)
x y1 y2 y3 y4
2 0 0 0 0

2.2 0.935068639 0.940240031 0.964551823 0.952827794

2.4 0.783006127 0.815156792 0.996094846 0.902813899

2.6 -0.04904965 0.03156834 0.600239489 0.286683772

2.8 -1.109884972 -0.977248379 0.280076751 -0.461247938

3 -1.920849711 -1.761022338 0.535063774 -0.91120986

3.2 -1.992496767 -1.86195325 1.859909408 -0.640106363

3.4 -0.841221493 -0.824176374 4.743459784 0.766349975

3.6 1.994098875 1.796772669 9.667583876 3.711505903

3.8 6.93546579 6.424493083 17.10605907 8.58563503

4 14.34911996 13.45225408 27.52345674 15.76380536
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Graphs of approximate solutions for equation (18)

y1, α = 2.2, β = 0.8
y2, α = 2.4, β = 0.6
y3, α = 2.8, β = 0.8
y4, α = 2.8, β = 0.2

Example 4.3. Consider the integro differential equation

(20) c
0D

α
xy(x)−c

0 D
α
2
x y(x) = f(x) +

∫ 1

0
ex y(t)dt,

where f(x) = ex(1− e), 1 < α ≤ 2, and 0 ≤ t, x ≤ 1.
Subject to the conditions y(0) = y′(0) = 1.

By using Bernstein polynomials of degree n = 5, we approximate the solution
as:

(21) y(x) =
5∑
i=0

ciBi,5(x).

From equations (9), (10), we obtain that c0 = 1 and c1 = 1.2.
For a particular case, if we take α = 1.5, the exact solution of equation (20)

is y(x) = ex. Applying equation (6) on y(x) and substituting in equation (20),
we obtain a system of equations and solving for ci‘s we obtain that c2 = 1.4499,
c3 = 1.766749, c4 = 2.1746 and c5 = 2.71818. The approximate solution of
equation (18) is

y(x) ≈ (1− x)5 + 1.2× 5x(1− x)4 + 1.4499× 10x2(1− x)3

+1.766749× 10x3(1− x)2 + 2.1746× 5x4(1− x) + 2.71818x5.

Table 5, describes the relation between the exact and approximate solution
of some selected values of x when n = 5 and α = 1.5.
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Table 5: Exact and approximate solution of equation (20) when α = 1.5
x yExact yApprox Error

0 1 1 0

0.1 1.105170918 1.10516730537358 0.36127E-07

0.2 1.221402758 1.22139337801439 0.938015E-07

0.3 1.349858808 1.34984418528478 0.146223E-06

0.4 1.491824698 1.49180461512623 0.200825E-06

0.5 1.648721271 1.64869423914596 0.270316E-06

0.6 1.8221188 1.82208307570373 0.357247E-06

0.7 2.013752707 2.01370735299845 0.453545E-06

0.8 2.225540928 2.22548527215494 0.556563E-06

0.9 2.459603111 2.45953277031058 0.703408E-06

1 2.718281828459050 2.71817928370205 0.102545E-03

The following table describes the approximate solution of equation (20) when
n = 5 and for some selected values of α. Where y1, y2, y3 and y4 represent the
approximate solution when (α = 1.8), (α = 1.6), (α = 1.4) and (α = 1.2)
respectively.

Table 6: Approximate solution of equation (20) when (n = 5)
x y1 y2 y3 y4
0 1 1 1 1

0.1 1.10240044295794 1.1038346323492 1.10747314761792 1.12496938543169

0.2 1.21058024191943 1.21626456566409 1.2300657682098 1.29333323551814

0.3 1.32590023707549 1.33863237800476 1.36843578414082 1.49945853949894

0.4 1.44961437376952 1.47225158750577 1.52372197489588 1.74235948212542

0.5 1.58291419217209 1.61844778803726 1.69748145554922 2.02453402379607

0.6 1.72697331695556 1.77859978486614 1.891627155234 2.35080048069196

0.7 1.88299194696886 1.95418073031716 2.10836529561194 2.72713410491211

0.8 2.05224134491214 2.14679925943408 2.35013286934289 3.15950366460895

0.9 2.23610832701151 2.35824062564082 2.61953511855447 3.65270802412371

1 2.43613975269372 2.59050783640254 2.91928301331163 4.20921272412183
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Graphs of approximate solutions for equation (20)

y1, α = 1.8
y2, α = 1.6
y3, α = 1.4
y4, α = 1.2

Example 4.4. Consider the integro-differential equation:

c
2D

α
xy(x) +

1

6

n∑
k=2

gk(x)
c
2D

α
k
x y(x) + g0(x) y(x)

= f(x) +
1

64

∫ 6

2

2∑
m=1

Km(x, t)
c
2D

β
m
t y(t)dt,(22)

where g0(x) = −5, gk(x) = Γ(4− α
k )(x− 2)

α
k , k = 2, 3, 4, 5, 6,

Km(x, t) = 6Γ

(
4− β

m

)
(x− 2)2(t− 2)

β
m ,m = 1, 2,

f(x) =

(
6− 12β +

57α

30

)
(x− 2)2 +

(
(12− α)(18− α)

24
− 45

)
(x− 2)− 10,

5 < α ≤ 6, β ≤ α and 2 ≤ t, x ≤ 6.
Subject to the conditions y(2) = 2, y′(2) = 9, y′′(2) = −12, y′′′(2) = 6,

y(4)(2) = y(5)(2) = 0.

By using Bernstein polynomials of degree n = 8, the approximate solution
is:

(23) y(x) =

8∑
i=0

ciBi,8(x).

From equations (9), (10), we obtain that c0 = 2, c1 = 6.5, c2 = 7.571428571,
c3 = 6.357142857, c4 = 4, c5 = 1.642857143.
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Applying equation (6) on y(x) and substituting in equation (22). For a
particular case, if we take α = 6 and β = 3, then the exact solution is y(x) =
x3 − 12x2 + 45x − 48. After simplifying, we obtain a system of equations and
solving for c′is we obtain that c6 = 0.428571429, c7 = 1.5 and c8 = 6.

In the following table, we clarify the relation between the exact and approx-
imate solution of some selected values of x when n = 6, α = 6 and β = 3.

Table 7: Exact and approximate solution of equation (22) when n = 6, α = 6
and β = 3

x yExact yApprox
2 2 2

2.2 3.568 3.568

2.4 4.704 4.704

2.6 5.456 5.45599999999999

2.8 5.872 5.872

3.2 5.888 5.88799999999999

3.6 5.136 5.13599999999999

3.8 4.592 4.59199999999999

4.2 3.408 3.40799999999999

4.6 2.416 2.416

4.8 2.112 2.112

5 2 2

5.2 2.128 2.128

5.4 2.544 2.544

5.6 3.296 3.296

5.8 4.432 4.43200000000001

6 6 6.00000000000002

Table 8 describes the approximate solution of equation (22) for some selected
values of n, α and β. y1, y2, y3 and y4 represent the approximate solution when
n = 8, (α = 5.2, β = 2.2), (α = 5.2, β = 2.4), (α = 5.2, β = 0.6) and (α = 5.2,
β = 2.8) respectively.



APPROXIMATE SOLUTION OF FREDHOLM TYPE FRACTIONAL ... 537

Table 8: Approximate solution for equation (22) when (n = 8)
x y1 y2 y3 y4
2.2 3.567999399 3.567999659 3.567999826 3.567999935

2.6 5.455632344 5.455789229 5.455890186 5.455956281

2.8 5.870120127 5.870916513 5.871428998 5.871764511

3.2 5.870551725 5.877816333 5.882491207 5.885551739

3.6 5.058221496 5.08987522 5.110244822 5.12358033

3.8 4.45331972 4.50895321 4.54475412 4.568192147

4 3.772873431 3.862434539 3.920068334 3.957799846

4.2 3.06214361 3.195683913 3.28161892 3.33787858

4.8 1.275625972 1.565429718 1.751922382 1.874014815

5.2 1.044082921 1.356223109 1.557089579 1.688592209

5.4 1.475720031 1.718932302 1.875442716 1.977906463

5.8 3.992755454 3.797248767 3.671437547 3.589071852

6 6.335131668 5.704188236 5.298167531 5.032355169

In the following graphs, the approximate solution of equation (22) is drawn
with distinct given β.
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Graphs of approximate solutions for equation (22) when n = 8 and α = 5.2

y1, β = 2.2
y2, β = 2.4
y3, β = 2.6
y4, β = 2.8

5. Conclusion

In this paper, an approximate solution of certain types of Fredholm integro-
differential equations of fractional order α ∈ R+ \N is given by using the general
form of Bernstein polynomials of various degrees. It is noted that the approxi-
mate solution of such equations is very close to the exact one.
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Abstract. In this paper, we establish the validity of the β-open sets. We introduce
and study topological properties of β-limit point, β-derived set, β-interior points, β-
border, β-frontier and β-exterior. The existence of their relation is also investigated
with examples and counter examples.

Keywords: β-open sets, β-interior points, β-derived set, β-boundary, β-frontier and
β-exterior.

1. Introduction

Generalized open sets play a vital role in General Topology and are now the
research topics of many topologists worldwide. N. Levine [6] in 1863, intro-
duced the notion of semi-open sets and T.M. Nour [10] in 1998 presented the
concept of semi-closure, semi-interior, semi-frontier and semi-exterior. Njastad
[9] presented the notion of α-open sets and Caldas [4] further developed the
topological properties of α-open sets [11]. One of the generalized forms of open
sets is the pre-open set which is given by Mashhour et. al. [8] in 1983. It gave
an inspiration to Youngbae Jun et. al. [5] to further generalized the properties
of pre-open set. Abd El-Monsef et. al. [1] gave the concept of β-open sets
and β-continuity in topological spaces. The concept of nearly open set played a

*. Corresponding author
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significant role in expansions of some advance theories of topological structures
such as fuzzy set theory, soft rough set theory, probability theory and are widely
research these days due to its wide application.

In this paper, we investigate the fundamental properties of β-limit points,
β-derived sets, β-closure of a set, β-interior points, β-border, β-frontier and β-
exterior with numerous examples. Moreover, the relation between the properties
and existing properties are studied.

2. Preliminaries

Throughout this paper, (X, τ) (or simply X) means topological space. For A ⊆
X, closure of A is denoted by Cl(A) and interior of A is denoted Int(A).

Definition 2.1. Let X be a topological space, then A ⊆ X is called:

(a) semi-open [6] if A ⊆ Cl(Int(A));

(b) α-open [9] if A ⊆ Int(Cl(Int(A)));

(c) pre-open [8] if A ⊆ Int(Cl(A));

(d) β-open [1] if A ⊆ Cl(Int(Cl(A))).

The complement of β-open(resp.α-open, semi-open, pre-open) set is called
β-closed set(resp.α-closed set, semi-closed set, pre-closed set). The intersection
of all β-closed sets(resp.α-closed sets, semi-closed sets, pre-closed sets) in X
containing a subset A in X is called β-closure(resp. α-closure, semi-closure,
pre-closure) and is denoted by Clβ(A)(resp.Clα(A), sCl(A), Clp(A)). It is well
known fact that the set B ⊆ X is β-closed iff B = Clβ(A).

We denote the family of β-open(resp. α-open, pre-open) sets by τβ(resp.
τα, τp). But τβ need not be a topology which is explained in Example 3.3.

Example 2.1. (a) Consider a topology τ = {X, ∅, {a}, {b}, {a, b}, {b, c}} on set
X = {a, b, c}. Then the family of β-open sets, α-open sets and pre-open sets
are equal with topology τ on X i.e. τβ = τα = τ = τp.

(b) Consider a topology τ = {X, ∅, {a}, {b}, {a, b}} on a set X = {a, b, c}.
Then, τβ = {X, ∅, {a}, {b}, {a, b}, {a, c}, {b, c}} and τα = τ = τp.

3. Applications of β-open sets

Definition 3.1. Let B be a subset of a topological space (X, τ). A point b ∈ B
is said to be β-limit point of B if ∀A ∈ τβ containing b, A ∩B \ {b} ≠ ∅.

The set of β-limit points of B is called β-derived set of B and is denoted
by Dβ(B). Note that Dp(B) [5], Dα(B) [4] and D(B) denotes derived set of
pre-open set, α-open set and derived set of B respectively.

Example 3.1. (a) Let (X, τ) be the topological space which is described in
Example 2.1[a]. Let A = {a, b}. Then, Dβ(A) = {c} = Dp(A) = Dα(A) =
D(A).
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(b) Let (X, τ) be the topological space which is described in Example 2.1[b].
Let A = {a, b}. Then, Dp(A) = Dα(A) = D(A) = {c} = Dβ(A).

Theorem 3.1. Let B be a subset of X and b ∈ X. Then the following are
equivalent:

(i) For b ∈ A and ∀A ∈ τβ, B ∩A ̸= ∅.
(ii) b ∈ Clβ(B).

Proof. If b /∈ Clβ(B), then there exist β-closed set C such that B ⊆ C and
b /∈ C. Hence, X \C is β-open set containing b and B ∩X \C ⊆ B ∩X \B = ∅,
which is a contradiction to (i). Hence, (i) ⇒ (ii).

(ii) ⇒ (i) is straightforward.

Corollary 3.1. For any subset B of X, we have Dβ(B) ⊆ Clβ(B).

Proof. Suppose b ∈ Dβ(B), then there exists a β-open set A such that A∩B \
{b} ≠ ∅ which implies A ∩B ̸= ∅. Hence, b ∈ Clβ(B).

Theorem 3.2. For any subset B of X, Clβ(B) = B ∪Dβ(B).

Proof. Let b ∈ Clβ(B). Assume that b /∈ B and let G ∈ τβ with b ∈ G. Then
G∩B \{b} ≠ ∅ and so b ∈ Dβ(B). Hence, Clβ(B) ⊆ B∪Dβ(B). For the reverse
inclusion, B ⊆ Clβ(B) and by Corollary 3.1, B ∪Dβ(B) ⊆ Clβ(B). Hence, the
proof.

Corollary 3.2. A subset B is β-closed set iff it contains the set of β-limit
points.

Lemma 3.1. If {Ai : i ∈ ∆} is a family of β-open sets in X, then
⋃
i∈∆Ai is

a β-open set in X, where ∆ is any index set.

Proof. Straightforward

Example 3.2. Let X = {a, b, c, d} with topology τ = {X, ∅, {a}, {b} {a, b}}.
Then, τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}.

So, {a, d} ∩ {b, d} = {d} /∈ τβ which means that the intersection of two
β-open set is not β-open in general.

Remark 3.1. For any topology τ on a set X, τβ may not be topology on X.

Example 3.3. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {a}, {b},
{a, b}, {a, b, d}, {a, b, c}}. Then, τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, c, d},
{b, c, d}}. Clearly τβ is not a topology as {b, c}, {a, c} ∈ τβ but {b, c} ∩ {a, c} =
{c} /∈ τβ. Another reason for τβ not being topology is explained in Example 3.5.

Theorem 3.3. Let B1 and B2 be subsets of X. If B1 ∈ τβ and τβ is a topology
on X, then B1 ∩ Clβ(B2) ⊆ Clβ(B1 ∩B2).



APPLICATIONS OF β-OPEN SETS 543

Proof. Let b ∈ B1 ∩ Clβ(B2). Then, b ∈ B1 and b ∈ Clβ(B2) = B2 ∪Dβ(B2).
If b ∈ B2, then b ∈ B1 ∩B2 ⊆ Clβ(B1 ∩B2). If b /∈ B2, then b ∈ Dβ(B2) and for
all β-open set G containing b, G ∩ B2 ̸= ∅. Since B1 ∈ τβ, so G ∩ B1 is also a
β-open set containing b.

Hence, G∩(B1∩B2) = (G∩B1)∩B2 ̸= ∅ and consequently b ∈ Dβ(B1∩B2) ⊆
Clβ(B1 ∩B2). Therefore, B1 ∩ Clβ(B2) ⊆ Clβ(B1 ∩B2).

The converse of the above theorem is not true in general as seen in the
following example.

Example 3.4. Let X = {a, b, c, d} and τ = {X, ∅, {c}, {c, d}, {a, b, c}} be a
topology on X and τβ = τ ∪{{a, c}, {b, c}, {b, c, d}, {a, c, d}} is a topology on X.
Let B1 = {c, d}, B2 = {b, c} ∈ τβ and B1 ∩ B2 = {c}. Then, B1 ∩ Clβ(B2) =
{c, d} ∩X = {c, d} and Clβ(B1 ∩ B2) = X. Therefore, converse is not true in
general.

Example 3.5. Let (X, τ) be the topological space and τβ be same as described
in Example 3.3. Let B1 = {b, c, d}, B2 = {a, b, c} and B1 ∩ B2 = {b, c}. Then,
B1 ∩Clβ(B2) = {b, c, d} and Clβ(B1 ∩B2) = {b, c}. Therefore, B1 ∩Clβ(B2) =
{b, c, d} ⊈ {c, d} = Clβ(B1 ∩B2), which implies τβ is not a topology.

Corollary 3.3. If B1 is β-closed in Theorem 3.3, then equality holds i.e. B1 ∩
Clβ(B2) = Clβ(B1 ∩B2).

Proof. The first implication B1 ∩Clβ(B2) ⊆ Clβ(B1 ∩B2) is same as in Theo-
rem 3.3. For the other way, Clβ(B1) = B1 since B1 is β-closed so, Clβ(B1∩B2) ⊆
Clβ(B1) ∩ Clβ(B2) = B1 ∩ Clβ(B2), which is the desired result.

Theorem 3.4 (Properties of β-Derived set). For any subset B1 and B2 of
topological space (X, τ), the following assertions hold:

1. If B1 ⊆ B2, then Dβ(B1) ⊆ Dβ(B2).

2. Dβ(B1) ∪Dβ(B2) ⊆ Dβ(B1 ∪B2) and Dβ(B1 ∩B2) ⊆ Dβ(B1) ∩Dβ(B2).

3. Dβ(Dβ(B)) \B ⊆ Dβ(B).

4. Dβ(B ∪Dβ(B)) ⊆ B ∪Dβ(B).

Proof. 1. Let b ∈ Dβ(B1). Then U ∩ B1 \ {b} ≠ ∅, for any β-open set U
containing b. Since B1 ⊆ B2, U ∩B2 \ {b} ≠ ∅, which implies b ∈ Dβ(B2).

2. Follows directly from (1).
3. Let b ∈ Dβ(Dβ(B)) \ B, then U ∩ Dβ(B) \ {b} ̸= ∅, for any β-open set

U containing b. Let c ∈ U ∩Dβ(B) \ {b}. Then, c ∈ U and c ∈ Dβ(B) which
implies U ∩B \ {c} ≠ ∅. Let d ∈ U ∩B \ {c}. Thus, d ̸= b, for d ∈ B and b /∈ B.
Hence, U ∩B \ {b} ≠ ∅. Hence, b ∈ Dβ(B).

4. Let b ∈ Dβ(B ∪Dβ(B)). If b ∈ B, the result is obvious. Suppose b /∈ B,
then G∩(B∪Dβ(B))\{b} ≠ ∅, for all G ∈ τβ with b ∈ G. Hence, G∩B\{b} ≠ ∅
or G ∩Dβ(B) \ {b} ≠ ∅. This implies b ∈ Dβ(B) for the first case.
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If G ∩Dβ(B) \ {b} ̸= ∅, then b ∈ Dβ(Dβ(B)). Since, b /∈ B, it follows from
(3) that b ∈ Dβ(Dβ(B)) \B ⊆ Dβ(B). Hence, the proof.

Example 3.6. Let X = {a, b, c, d, e} with

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Then, τβ = {X, ∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e}, {d, e},
{a, b, c}, {a, c, d}, {a, d, e}, {a, b, d}, {a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},
{a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, d, e}, {b, c, d, e}}. Consider B1 = {a, c}
and B2 = {d, e}. Then, Dβ(B1) = ∅ = Dβ(B2) and so Dβ(B1) ∪Dβ(B2) = ∅ ⊂
Dβ(B1∪B2) = {b, e}. Hence, converse is not true in the case of Theorem 3.4(2).

Example 3.7. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {c}, {c, d},
{a, b, c}}. Then, τβ = {X, ∅, {c}, {a, c}, {b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, c, d}}.
Let B = {a, b, c} be a subset of X. Then, Dβ(B) = {a, b, d} and so Dβ(Dβ(B)) =
∅, which implies converse of part (3) of the Theorem 3.4 need not be true in
general. Similarly, B ∪Dβ(B) = {a, b, c, d} and so Dβ(B ∪Dβ(B)) = {a, b, d}.
Hence, B ∪Dβ(B) ⊈ Dβ(B ∪Dβ(B)) which implies the converse of part (4) of
the above theorem is not true in general.

Definition 3.2. Let A be a subset of a topological space X. A point p ∈ A is
called pre-interior point [5] of A if there exists a pre-open set P containing p
such that P ⊆ A. The set of all pre-interior points of A is known as pre-interior
points of A and it is denoted by Intp(B)

Definition 3.3. Let B be a subset of a topological space X. A point b ∈ B is
called β-interior point of B if there exists a β-open set G containing b such that
G ⊆ B. The set of all β-interior points of B is called β-interior points of B and
is denoted by Intβ(B).

Theorem 3.5. Let B be a subset of X. Then, every pre-interior point of B is
β-interior point of B, i.e. Intp(B) ⊆ Intβ(B).

Proof. Let b ∈ Intp(B). Then, there exist pre-open set P containing b such
that P ⊆ B. Every pre-open set is β-open, thus we get a β-open set P containing
b such that P ⊆ B. It follows that b ∈ Intβ(B).

The converse of this theorem is not true in general given by following exam-
ple.

Example 3.8. LetX={a, b, c, d, e} with topology τ={X, ∅, {b}, {d, e}, {b, d, e}}.
Then, τp=τ∪{{d}, {e}, {b, d}, {b, e}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e}, {a, b, c, d},
{a, b, c, e}, {a, b, d, e}, {b, c, d, e}} and τβ = τp∪{{a, b}, {a, d}, {a, e}, {b, c}, {c, d},
{c, e}, {d, e}, {a, b, c}, {a, c, d}, {a, d, e}, {a, c, e}, {c, d, e}, {a, c, d, e}}.

(i) Consider a subset B = {a, c, d}. Then, we have Intp(B) = {d} and
Intβ(B) = {a, c, d}.
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(ii) Consider a subset B = {a, c, d, e}. Then, we have Intp(B) = {d, e} and
Intβ(B) = {a, c, d, e}.

(iii) Consider a subset B = {a, b}. Then, we have Intp(B) = {b} and
Intβ(B) = {a, b}.

Theorem 3.6 (Properties of β-interior). For subsets B, B1, B2 of a topological
space X, the following hold:

(1) Intβ(B) is the largest β-open set contained in B.
(2) B is β-open iff B = Intβ(B).
(3) Intβ(Intβ(B)) = Intβ(B).
(4) Intβ(B) = B \Dβ(X \B).
(5) X \ Intβ(B) = Clβ(X \B).
(6) Intβ(X \B) = X \ Clβ(B).
(7) If B1 ⊆ B2, then Intβ(B1) ⊆ Intβ(B2).
(8) Intβ(B1) ∪ Intβ(B2) ⊆ Intβ(B1 ∪B2).
(9) Intβ(B1 ∩B2) ⊆ Intβ(B1) ∩ Intβ(B2).

Proof. (1), (2) are straightforward.
(3) Trivially by (1) and (2).
(4) If b ∈ B \ Dβ(X \ B), then b /∈ Dβ(X \ B) which implies there exists

β-open set U containing b such that U ∩ (X \ B) = ∅. Hence, b ∈ U ⊆ B
and b ∈ Intβ(B). On the other hand, if b ∈ Intβ(B) ⊆ B and Intβ(B) is
β-open set and Intβ(B) ∩ (X \ B) = ∅. Hence, b /∈ Dβ(X \ B). Therefore,
Intβ(B) = B \Dβ(X \B).

(5) Using Theorem 3.2 and above part,

X \ Intβ(B) = X \ (B \Dβ(X \B))

= (X \B) ∪Dβ(X \B)

= Clβ(X \B).

Hence, the proof.
(6) We have,

Intβ(X \B) = (X \B) \Dβ(B)

= (X \B) ∩ (Dβ(B))c

= (X \B) ∩ (X \Dβ(B))

= X \ (B ∪Dβ(B))

= X \ Clβ(B).

Hence, the proof.
(7) Let b ∈ Intβ(B1). Then, by definition, there exists β-open set U such

that b ∈ U ⊆ B1. Since B1 ⊆ B2 implies b ∈ U ⊆ B2. Hence, b ∈ Intβ(B2).
Hence, the proof.

(8) Since B1 ⊆ B1 ∪ B2 therefore, Intβ(B1) ⊆ B1 ⊆ B1 ∪ B2. Similarly,
Intβ(B2) ⊆ B2 ⊆ B1 ∪ B2. We have, Intβ(B1) ∪ Intβ(B2) ⊆ B1 ∪ B2. Now,
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Intβ(B1) ∪ Intβ(B2) is β-open subset of B1 ∪ B2. As Intβ(B1 ∪ B2) is largest
β-open subset of B1∪B2, we have Intβ(B1)∪Intβ(B2) ⊆ Intβ(B1∪B2). Hence,
the proof.

(9) is same as in (8).
Converse of (7), (8) and (9) is not true in general as seen in the following

example.

Example 3.9. 1. Consider a set X = {a, b, c, d, e} with same topology τ =
{∅, X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} and τβ as in Example 3.6. Let B1 =
{a, b, e} and B2 = {a, c, e} be a subset of X. Then Intβ(B1) = {a} and
Intβ(B2) = {a, c, e} which implies Intβ(B1) ⊆ Intβ(B2) while B1 ⊈ B2.
Again, let B1 = {b, e} and B2 = {c, d} be a subset ofX, then Intβ(B1) = ∅
and Intβ(B2) = {c, d}. Hence Intβ(B1 ∪ B2) = {b, c, d, e} ⊈ {c, d} =
Intβ(B1) ∪ Intβ(B2).

2. LetX = {a, b, c, d} be a set with topology τ={X, ∅, {a}, {b}, {a, b}, {a, b, d},
{a, b, c}}. Then τβ = τ ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {a, c, d}, {b, c, d}} as
in Example 3.3. Consider a subset B1 = {b, c} and B2 = {a, c, d} of X.
Then Intβ(B1) ∩ Intβ(B2) = {c} while Intβ(B1 ∩ B2) = ∅ which proves
that Intβ(B1) ∩ Intβ(B2) ⊈ Intβ(B1 ∩B2).

Definition 3.4 ([5]). For any subset A of X, the set

bp(A) = A \ Intp(A)

is called the pre-border of A, and the set

Frp(A) = Clp(A) \ Intp(A)

is called the pre-frontier of A.

Definition 3.5. For any subset B of X, the set,

bβ(B) = B \ Intβ(B)

is called the β-border of B, and the set

Frβ(B) = Clβ(B) \ Intβ(B)

is called the β-frontier of B.

Theorem 3.7 (Properties of β-Boundary). For any subset B of X, the following
statements hold:

(1) bβ(B) ⊆ bp(B).
(2) B = Intβ(B) ∪ bβ(B) and Intβ(B) ∩ bβ(B) ̸= ∅.
(3) B is β-open set ⇔ bβ(B) = ∅.
(4) bβ(Intβ(B)) = ∅.
(5) Intβ(bβ(B)) = ∅.
(6) bβ(bβ(B)) = bβ(B).
(7) bβ(B) = B ∩ Clβ(X \B).
(8) bβ(B) = B ∩Dβ(X \B).
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Proof. (1) Since Intp(B) ⊆ Intβ(B), we have bβ(B) = B \ Intβ(B) ⊆ B \
Intp(B), which implies bβ(B) ⊆ bp(B).

Converse of above is not true which is explained in Example 3.10.
(2) Straightforward.
(3) Since Intβ(B) ⊆ B and B is β-open ⇔ B = Intβ(B) ⇔ bβ(B) =

B \ Intβ(B) ⇔ bβ(B) = ∅.
(4) Since Intβ(B) is β-open implies directly from (3) that bβ(Intβ(B)) = ∅.
(5) Let b ∈ Intβ(bβ(B)), then b ∈ bβ(B) ⊆ B and so b ∈ Intβ(B) since

Intβ(bβ(B)) ⊆ Intβ(B). Thus, b ∈ Intβ(B) ∩ bβ(B), which is a contradiction
as per (2) of Theorem 3.7. Hence, Intβ(bβ(B)) = ∅.

(6) Since bβ(bβ(B)) = bβ(B)\ Intβ(bβ(B)) = bβ(B), using part (5) Theorem
3.7. Hence, the proof.

(7) Since bβ(B) = B \ Intβ(B) = B \ (X \Clβ(X \B)) = B ∩ (X \Clβ(X \
B))c =B ∩ Clβ(X \B), using part(6) of Theorem 3.6.

(8) By using Theorem 3.2 and above part,

bβ(B) = B ∩ Clβ(X \B)

= B ∩ ((X \B) ∪Dβ(X \B))

= (B ∩X \B) ∪ (B ∩Dβ(X \B))

= ∅ ∪ (B ∩Dβ(X \B))

= B ∩Dβ(X \B).

Hence, the proof.

Example 3.10. LetX = {a, b, c, d, e} be a set with topology τ = {X, ∅, {b}, {d, e},
{b, d, e}}. Then τp = τ∪{{d}, {e}, {b, d}, {b, e}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e},
{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}} and τβ = τp ∪ {{a, b}, {a, d}, {a, e},
{b, c}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, c, d}, {a, d, e}, {a, c, e}, {c, d, e}, {a, c, d, e}.
Consider a subset B = {a, c, d}. Then bp(B) = {a, c} and bβ(B) = ∅ which im-
plies that the converse of Theorem 3.7(1) is not true in general.

Lemma 3.2. Let B be a subset of topological space X, then B is β-closed if and
only if Frβ(B) ⊆ B.

Proof. Let B be β-closed. Then, Frβ(B) = Clβ(B)\Intβ(B) = B \Intβ(B) ⊆
B. Conversely, suppose Frβ(B) ⊆ B. Then, Clβ(B) \ Intβ(B) ⊆ B and so
Clβ(B) ⊆ B. Hence, B = Clβ(B) and so B is β-closed, which completes the
proof.

Theorem 3.8 (Properties of β-Frontier). Let B be a subset of X, then the
following assertions hold:

(1) Frβ(B) ⊆ Frp(B).
(2) Clβ(B) = Intβ(B) ∪ Frβ(B) and Intβ(B) ∪ Frβ(B) = ∅.
(3) bβ(B) ⊆ Frβ(B).
(4) Frβ(B) = bβ(B) ∪ (Dβ(B) \ Intβ(B)).
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(5) B is β-open ⇔ Frβ(B) = bβ(X \B).

(6) Frβ(B) = Clβ(B) ∩ Clβ(X \B).

(7) Frβ(B) = Frβ(X \B).

(8) Frβ(B) is β-closed.

(9) Intβ(B) = B \ Frβ(B).

(10) Frβ(Frβ(B)) ⊆ Frβ(B).

(11) Frβ(Intβ(B)) ⊆ Frβ(B).

(12) Frβ(Clβ(B)) ⊆ Frβ(B).

Proof. (1) Since Frβ(B) = Clβ(B) \ Intβ(B) ⊆ Clp(B) \ Intβ(B) ⊆ Clp(B) \
Intp(B) = Frp(B).

(2) The first part is direct. For the next, we have Intβ(B) ∪ Fβ(B) =
Intβ(B) ∪ (Clβ(B) \ Intβ(B)) = ∅ (Obviously).

(3) Since B ⊆ Clβ(B) and bβ(B) = B \ Intβ(B) ⊆ Clβ(B) \ Intβ(B) =
Frβ(B).

(4) By using the definition of β-boundary of B and Theorem 3.2, we have

Frβ(B) = Clβ(B) \ Intβ(B)

= (B ∪Dβ(B)) \ Intβ(B)

= (B ∪Dβ(B)) ∩ (X \ Intβ(B))

= (B ∩ (X \ Intβ(B)) ∪ (Dβ(B) ∩ (X \ Intβ(B))

= (B \ Intβ(B)) ∪ (Dβ(B) \ Intβ(B))

= bβ(B) ∪ (Dβ(B) \ Intβ(B)),

which completes the proof.

(5) Suppose B is β-open. Then,

Frβ(B) = bβ(B) ∪ (Dβ(B) \ Intβ(B))

= ∅ ∪ (Dβ(B) \B)

= Dβ(B) \B
= Dβ(B) ∩ (X \B)

= bβ(X \B),

using part (3) and (8) of Theorem 3.7.

Conversely, suppose Frβ(B) = bβ(X \B). Then

∅ = Frβ(B) \ bβ(X \B)

= (Clβ(B) \ Intβ(B)) \ (X \B \ Intβ(B))

= B \ Intβ(B),

which implies B ⊆ Intβ(B). In general, Intβ(B) ⊆ B. Hence, Intβ(B) = B.
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(6) Using the part (5) of Theorem 3.6, we have

Clβ(B) ∩ Clβ(X \B) = Clβ(B) ∩ (X \ Intβ(B))

= Clβ(B) ∩ (Intβ(B))c

= Clβ(B) \ Intβ(B)

= Frβ(B),

which complete the proof.

(7)Same as (6).

(8) We need to show that Clβ(Frβ(B)) = Frβ(B). Clearly, Frβ(B) ⊆
Clβ(Frβ(B)). Next, we shall show that Clβ(Frβ(B) ⊆ Frβ(B). We have,

Clβ(Frβ(B)) = Clβ(Clβ(B) ∩ Clβ(X \B))

⊆ Clβ(Clβ(B)) ∩ Clβ(Clβ(X \B))

= Clβ(B) ∩ Clβ(X \B)

= Frβ(B),

which implies Frβ(B) is closed set.

(9) Using the definition of β-frontier of B and basic property of set theory,
we have

B \ Frβ(B) = B \ (Clβ(B) \ Intβ(B))

= (B \ Clβ(B)) ∪ (B ∩ Clβ(B) ∩ Intβ(B))

= (B \ Clβ(B)) ∪ Intβ(B)

= ∅ ∪ Intβ(B)

= Intβ(B).

This completes the proof.

(10) Since Frβ(B) is β-closed and so by Lemma 3.2, Frβ(Frβ(B)) ⊆ Frβ(B).

(11) We have,

Frβ(Intβ(B)) = Clβ(Intβ(B)) \ Intβ(Intβ(B))

⊆ Clβ(B) \ Intβ(B)

= Frβ(B).

(12)We have,

Frβ(Clβ(B)) = Clβ(Clβ(B)) \ Intβ(Clβ(B))

⊆ Clβ(B) \ Intβ(B)

= Frβ(B).

Hence, the proof.
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Example 3.11. Let X = {a, b, c, d} be a set with topology τ = {X, ∅, {a}, {b},
{a, b}, {a, b, d}, {a, b, c}}. Then τp = τ and τβ = τp ∪ {{a, c}, {a, d}, {b, c},
{b, d}, {b, c, d} {a, c, d}}.

Consider a subset A = {c, d} and B = {a, c} of X, then Frβ(A) = {c, d} =
Frp(A). Also, Frβ(B) = ∅ while Frp(B) = {c, d} which implies equality in
Theorem 3.8(1) may not hold.

Example 3.12. Consider X = {a, b, c, d} with same topology τ and τβ as in
Example 3.2. Let B = {a, b, c}, then bβ(B) = ∅ while Frβ(B) = {d}, which
shows that the converse of Theorem 3.8(3) is not true in general.

Definition 3.6. Let B be a subset of X, Extβ(B) = Intβ(X \ B) is said to be
β-exterior of B.

We denote Extp(B) to be pre-exterior [5] of B.

Example 3.13. Let X = {a, b, c, d, e} with

τ = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}}.

Then, τβ = {X, ∅, {a}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {c, e}, {d, e},
{a, b, c}, {a, c, d}, {a, d, e}, {a, b, d}, {a, c, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e},
{a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {a, b, d, e}, {b, c, d, e}}. Consider a subset A =
{b, c, d} and B = {a, c, d, e} of set X , then Extβ(A) = Intβ(X \ A) = {a}and
Extβ(B) = Intβ(X \B) = ∅.

Theorem 3.9. For a subset B,B1, B2 of X, the following assertion are valid.
(1) Extp(B) ⊆ Extβ(B).
(2) Extβ(B) is a β-open.
(3) Extβ(B) = X \ Clβ(B).
(4) Extβ(Extβ(B)) = Intβ(Clβ(B)) ⊇ Intβ(B).
(5) If B1 ⊆ B2, then Extβ(B1) ⊆ Extβ(B2).
(6) Extβ(B1 ∪B2) ⊆ Extβ(B1) ∩ Extβ(B2).
(7) Extβ(B1) ∪ Extβ(B2) ⊆ Extβ(B1 ∩B2).
(8) Extβ(X) = ∅, Extβ(∅) = X.
(9) Extβ(B) = Extβ(X \ Extβ(B)).
(10) B = Intβ(B) ∪ Extβ(B) ∪ Frβ(B).

Proof. (1) Clearly by Theorem 3.5, Intp(B) ⊆ Intβ(B), we have Extp(B) =
Intβ(X \B) ⊆ Intβ(X \B) = Extβ(B).

(2) Straightforward.
(3) By part(6) of Theorem 3.6, X \ Clβ(B) = Intβ(X \B) = Extβ(X \B).
(4) By Theorem 3.5 and part (5) of Theorem 3.6,

Extβ(Extβ(B)) = Extβ(Intβ(X \B))

= Intβ(X \ Intβ(X \B))

= Intβ(Clβ(X \ (X \B)))

= Intβ(Clβ(B)) ⊇ Intβ(B).
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(5) Let B1 ⊆ B2. Then, Extβ(B2) = Intβ(X \B2) ⊆ Intβ(X \B1) = Extβ(B1).

(6) By using part (9) of Theorem 3.6, we have

Extβ(B1 ∪B2) = Intβ(X \ (B1 ∪B2))

= Intβ((X \B1) ∩ (X \B2))

⊆ Intβ(X \B1) ∩ Intβ(X \B2)

= Extβ(B1) ∩ Extβ(B2),

which completes the proof.

(7) By using part (8) of Theorem 3.6, we have

Extβ(B1) ∪ Extβ(B2) = Intβ(X \B1) ∪ Intβ(X \B2)

⊆ Intβ((X \B1) ∪ (X \B2))

= Intβ(X \ (B1 ∩B2))

= Extβ(B1 ∩B2),

hence the proof.

(8) Straightforward.

(9) By using the definition of β-exterior of B, we have

Extβ(X \ Extβ(B)) = Extβ(X \ Intβ(X \B))

= Intβ(Intβ(X \B))

= Intβ(X \B)

= Extβ(B).

Hence, the proof.

(10) Trivial.

Example 3.14. Let (X, τ) be a topological space same as given in Example 3.13.
Consider B1 = {b, c, d} and B2 = {b, c, e}, then Extβ(B1) = Intβ(X \B1) = {a}
and Extβ(B2) = Intβ(X \ B2) = {a, d}, which implies Extβ(B1) ⊆ Extβ(B2)
but B1 ⊈ B2. This shows that the converse of Theorem 3.9(5) is not true.

Example 3.15. Let (X, τ) be a topological space same as given in Example
3.13. Let B1 = {d, e} and B2 = {c}. Then, Extβ(B1 ∪ B2) = {a} ≠ {a, b} =
{a, b, c}∩ {a, b, d, e} = Extβ(B1)∩Extβ(B2), which implies that the equality in
the Theorem 3.9(6) is not true.

Example 3.16. Let (X, τ) be a topological space same as given in Example
3.13. Let B1 = {a, c, d} and B2 = {b, e}. Then, Intβ(X \B1) = ∅ and Intβ(X \
B2) = {a, c, d}. Hence, Extβ(B1) ∪ Extβ(B2) = ∅ ∪ {a, c, d} = {a, c, d} ⊆
Extβ(B1 ∩ B2) = X which shows that the equality in Theorem 3.9(7) is not
valid.
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4. Conclusion

This paper begins with a brief survey of the notion of β-open sets and β-
continuity introduced by Abd El-Monsef et al. [1]. We also recall some other
generalized open sets in topological spaces, like semi-open sets [6], pre-open sets
[8] and α-open sets [9] so as to compare these sets to β-open sets.

The authors studied β-limit points and β-derived sets in topological spaces
and proved many results on β-derived sets. Some characteristics of β-interiors
and β-closures of sets are also investigated.

Moreover, β-exterior, β-frontier and β-boundary of sets are also studied.
Several examples are given to indicate the connections among these concepts.
Some properties of these concepts are also discussed which will open the way for
more applications of β-open sets in real-life problems. Also, all these properties
of β-open sets in topological spaces can be very handy for studying compactness,
connectedness, separation axioms via β-open sets.
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Abstract. In this paper, we establish a unified generalization of three refinements
of Jensen’s inequality by introducing several parameters. As applications, we illustrate
that the improved Jensen’s inequality can generate some new inequalities for special
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1. Introduction and main result

Let f be a convex function on [a, b] ⊂ R. The classical Jensen’s inequality reads
as

(1) f

(
a+ b

2

)
≤ f(a) + f(b)

2
.

The Jensen’s inequality, which was first proposed by Jensen in 1905, is one
of the most important inequalities in pure and applied mathematics (see [1, 2]).
For over 100 years, this celebrated inequality has generated lots of extensions
and applications, see [3, 4, 5, 6, 7, 8, 9] and references cited therein. Besides
these, there are some papers dealing with refinements of Jensen’s inequality, the
most famous of which is the Hermite-Hadamard inequality below:

(2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

*. Corresponding author
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In [10], Wu provided two refinements of Jensen’s inequality, as follows:

(3) f

(
a+ b

2

)
≤ 8

(b− a)2

[
F (a) + F (b)

2
− F

(
a+ b

2

)]
≤ f(a) + f(b)

2
,

f

(
a+ b

2

)
≤ 2

(b− a)

∫ b

a
f(x)dx

− 8

(b− a)2

[
F (a) + F (b)

2
− F

(
a+ b

2

)]
≤ f(a) + f(b)

2
,(4)

where f is a convex function and F is a differentiable function such that F ′′(x) =
f(x) on [a, b].

Inspired by inequalities (2), (3) and (4) above, a natural and interesting
problem is whether we can establish a unified generalization of these refined
Jensen’s inequalities. In this paper we address this issue. Specifically, we shall
construct a new inequality by introducing several parameters. Moreover, we will
apply the inequality obtained to establish some inequalities for special means
involving arithmetic mean, geometric mean, logarithmic mean and generalized
logarithmic mean.

Our main result is stated in the following theorem.

Theorem 1.1. Let f : [a, b] → R be a convex function on [a, b], and let F
be a differentiable function such that F ′′(x) = f(x) on [a, b]. Then, for µ ≥
max{0, λ} and λ ∈ R, we have

f

(
a+ b

2

)
≤ 2µ− 2λ

(2µ− λ)(b− a)

∫ b

a
f(x)dx

+
8λ

(2µ− λ)(b− a)2

[
F (a) + F (b)

2
− F

(
a+ b

2

)]
≤ f(a) + f(b)

2
.(5)

Remark 1.1. As a direct consequence of Theorem 1.1, if we put λ = 0, µ = 1
in (5), we acquire the Hermite-Hadamard inequality; if we take λ = 1, µ = 1
in (5), we obtain inequality (3); if we choose λ = −1, µ = 0 in (5), we get
inequality (4).

2. Proof of Theorem 1.1

Let us first transcribe a lemma that we will need in the proof of Theorem 1.1.

Lemma 2.1 ([10]). Let f : [a, b] → R be a convex function on [a, b], let g be a
nonnegative, integrable function on [a, b] and let

η =
( ∫ b

a
(b− x)g(a+ b− x)dx

)
/
( ∫ b

a
(b− x)g(x)dx

)
.

Then

(6) f

(
a+ ηb

1 + η

)
≤
∫ b
a f(x)g(x)dx∫ b

a g(x)dx
≤ f(a) + ηf(b)

1 + η
.
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Proof of Theorem 1.1. Choosing a function g : [a, b] → R defined by

g(x) := (µ− λ) |2x− a− b|+ µ(b− a− |2x− a− b|)

=


(µ− λ)(a+ b− 2x) + 2µ(x− a), a ≤ x ≤ a+ b

2

(µ− λ)(2x− a− b) + 2µ(b− x),
a+ b

2
< x ≤ b.

In view of the assumption µ ≥ max{0, λ}, it is easy to verify that g(x) is
nonnegative and integrable on [a, b]. Then, one has

η =

∫ b
a (b− x)g(a+ b− x)dx∫ b

a (b− x)g(x)dx

=

∫ b
a (b− x)[(µ− λ) |a+ b− 2x|+ µ(b− a− |a+ b− 2x|)]dx∫ b
a (b− x)[(µ− λ) |2x− a− b|+ µ(b− a− |2x− a− b|)]dx

= 1(7)

and∫ b
a f(x)g(x)dx∫ b

a g(x)dx
=

∫ b
a f(x)[(µ− λ) |2x− a− b|+ µ(b− a− |2x− a− b|)]dx∫ b

a [(µ− λ) |2x− a− b|+ µ(b− a− |2x− a− b|)]dx

=

∫ b
a f(x)[µ(b− a)− λ |2x− a− b|]dx∫ b

a [µ(b− a)− λ |2x− a− b|]dx

=
µ(b− a)

∫ b
a f(x)dx− λ

∫ b
a f(x) |2x− a− b| dx

µ(b− a)2 − λ
∫ b
a |2x− a− b| dx

.(8)

Note that

∫ b

a
|2x− a− b| dx =

∫ a+b
2

a
(a+ b− 2x)dx+

∫ b

a+b
2

(2x− a− b)dx

=
(b− a)2

2
(9)

and

∫ b

a
f(x) |2x− a− b| dx =

∫ a+b
2

a
f(x)(a+ b− 2x)dx+

∫ b

a+b
2

f(x)(2x− a− b)dx

=

∫ a+b
2

a
(a+ b− 2x)dF ′(x) +

∫ b

a+b
2

(2x− a− b)dF ′(x)
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= −(b− a)F ′(a) + 2

∫ a+b
2

a
F ′(x)dx+ (b− a)F ′(b)− 2

∫ b

a+b
2

F ′(x)dx

= (b− a)[F ′(b)− F ′(a)] + 2

∫ a+b
2

a
dF (x)− 2

∫ b

a+b
2

dF (x)

= (b− a)[F ′(b)− F ′(a)] + 2F (
a+ b

2
)− 2F (a)− 2F (b) + 2F (

a+ b

2
)

= (b− a)

∫ b

a
f(x)dx+ 4F (

a+ b

2
)− 2[F (a) + F (b)].(10)

Applying equalities (9) and (10) to (8), we obtain

∫ b
a f(x)g(x)dx∫ b

a g(x)dx
=

2µ− 2λ

(2µ− λ)(b− a)

∫ b

a
f(x)dx

+
8λ

(2µ− λ)(b− a)2

[
F (a) + F (b)

2
− F

(
a+ b

2

)]
.(11)

Combining (6), (7) and (11) leads to the desired inequality (5). The proof
of Theorem 1.1 is complete. □

3. Some applications

A growing number of inequalities for special means have been found significant
applications in theory and practice (see [11, 12, 13, 14, 15, 16, 17, 18, 19]). To
demonstrate usefulness of Theorem 1.1, in this section, we derive some inequal-
ities for special means via the inequalities of Theorem 1.1.

Let us recall the arithmetic mean, geometric mean, logarithmic mean and
generalized logarithmic mean for positive numbers α and β which are defined
as follows:

A(α, β) =
α+ β

2
, arithmetic mean,

G(α, β) =
√

αβ geometric mean,

L(α, β) =
β − α

lnβ − lnα
, logarithmic mean,

Lp(α, β) =

[
βp+1 − αp+1

(p+ 1)(β − α)

] 1
p

, p ̸= −1, 0, generalized logarithmic mean.

We have the following results:
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Theorem 3.1. Let a, b be positive real numbers, µ ≥ max{0, λ} and λ ∈ R.
Then, for p ≥ 1 or p < 0 (p ̸= −1,−2), the following inequalities hold

(A(a, b))p −
(2µ− 2λ

2µ− λ

)
(Lp(a, b))

p

≤ 8λ

(2µ− λ)(p+ 1)(p+ 2)(b− a)2
[
A(ap+2, bp+2)− (A(a, b))p+2

]
≤ A(ap, bp)−

(2µ− 2λ

2µ− λ

)
(Lp(a, b))

p.(12)

Furthermore, inequality (12) is reversed for 0 < p < 1.

Proof of Theorem 3.1. It is clear that inequality (12) is symmetric with
respect to variable a and b . Without loss of generality we assume that b > a >
0. Note that the function f(x) = xp is convex on (0,+∞) for p ≥ 1 or p < 0,
and the function f(x) = −xp is convex on (0,+∞) for 0 < p < 1. We obtain
immediately inequality (12) and its reverse version by applying these functions
to Theorem 1.1. This completes the proof of Theorem 3.1. □

As a consequence of Theorem 3.1, taking λ = 0, µ = 1; λ = 1, µ = 1 and
λ = −1, µ = 0 respectively in (12), we obtain the following inequalities.

Corollary 3.1. If a, b are positive real numbers, p ≥ 1 or p < 0 (p ̸= −1,−2),
then we have

(13) (A(a, b))p ≤ (Lp(a, b))
p ≤ A(ap, bp),

(A(a, b))p ≤ 8

(p+ 1)(p+ 2)(b− a)2
[
A(ap+2, bp+2)− (A(a, b))p+2

]
≤ A(ap, bp),(14)

(A(a, b))p − 2(Lp(a, b))
p ≤ 8

(p+ 1)(p+ 2)(b− a)2
[
(A(a, b))p+2 −A(ap+2, bp+2)

]
≤ A(ap, bp)− 2(Lp(a, b))

p.(15)

All of the above inequalities are reversed for 0 < p < 1.

Theorem 3.2. Let a, b be positive real numbers, µ ≥ max{0, λ} and λ ∈ R.
Then the following inequalities hold

G(a, b)−
(2µ− 2λ

2µ− λ

)
L(a, b) ≤

( 8λ

2µ− λ

)(L(a, b)
b− a

)2
[A(a, b)−G(a, b)]

≤ A(a, b)−
(2µ− 2λ

2µ− λ

)
L(a, b).(16)
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Proof of Theorem 3.2. Without loss of generality we assume that b > a > 0.
Note that f(x) = ex is convex on [ln a, ln b]. Using Theorem 1.1 with f(x) =
ex, x ∈ [ln a, ln b], we acquire inequality (16) described in Theorem 3.2. □

As a consequence of Theorem 3.2, putting λ = 0, µ = 1; λ = 1, µ = 1 and
λ = −1, µ = 0 respectively in (16), we get the following inequalities.

Corollary 3.2. If a, b are positive real numbers, then we have

G(a, b) ≤ L(a, b) ≤ A(a, b),(17)

G(a, b) ≤ 8
(L(a, b)

b− a

)2
[A(a, b)−G(a, b)] ≤ A(a, b),(18)

G(a, b)− 2L(a, b) ≤ 8
(L(a, b)

b− a

)2
[G(a, b)−A(a, b)] ≤ A(a, b)− 2L(a, b).(19)
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1. Introduction and main results

The discrete Hölder inequality states that if ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n,
p > 1, 1

p +
1
q = 1, then

n∑
k=1

akbk ≤
( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q
.(1)

Correspondingly, the integral version of Hölder’s inequality can be formu-
lated as ∫ b

a
f(x)g(x)dx ≤

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q
,(2)

where f(x) and g(x) are nonnegative integrable on [a, b], p > 1, 1
p +

1
q = 1.

Hölder’s inequality is one of the most important foundational inequality in
analysis, it also plays a key role in dealing with various problems of pure and
applied mathematics, see [1] for background information on Hölder’s inequality.
In the past more than 100 years, this classical inequality has been paid consid-
erable attention, there have been a large number of literature focusing on its
improvements, extensions and applications. For example, some refinements and
generalizations of Hölder’s inequality were established by Yang in the references
[2] and [3], respectively. A sharpened version was given by Hu [4]. A comple-
mentary version of sharpening Hölder’s inequality related to the work [4] was
provided by Wu [5]. A generalization of the result of Hu [4] was obtained by Wu
[6]. A further generalization and refinement of Hölder’s inequality was proposed
by Qiang and Hu in [7]. For more results regarding different improvements of
Hölder’s inequality can be found in monograph [8] and references therein.

In recent years, application of Schur convexity and majorization properties
to establish and improve various inequalities has been a hot research topic. For
details about the applications of Schur convexity of functions, we refer the reader
to the references [9-13].

In this paper, we provide a novel method to study the improvements and
variants of Hölder’s inequality. More specifically, we will construct some func-
tions associated with Hölder’s inequality, and then we use Schur convexity of
these functions to derive the refined versions of Hölder’s inequality under certain
specified conditions.

We denote the n-dimensional real vector by V = (v1, v2, . . . , vn), and let

Rn = {(v1, v2, . . . , vn) : vi ∈ R, i = 1, 2, . . . , n},

Rn+ = {(v1, v2, . . . , vn) : vi ≥ 0, i = 1, 2, . . . , n}.

Our main results are as follows:
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Theorem 1.1. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn+, and let p, q
be two non-zero real numbers

H1(a) =
( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q
.

If p ≥ 1, then for fixed b, H1(a) is Schur-convex on Rn+. If p ≤ 1, then for fixed
b, H1(a) is Schur-concave on Rn+.

Theorem 1.2. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn+, and let p, q
be two non-zero real numbers, An(a) =

1
n

∑n
k=1 ak,

H2(b) = n
1
p

( n∑
k=1

bqk

) 1
q
An(a).

If q ≥ 1, then for fixed a, H2(b) is Schur-convex on Rn+. If q ≤ 1, then for fixed
a, H2(b) is Schur-concave on Rn+.

Theorem 1.3. Let f(x), g(x) be two nonnegative and continuous functions on

I, let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0, for any a, b ∈ I
(a ̸= b), p, q ∈ R, and let

(3) H3(a, b) =


( ∫ b

a (g(x))
qdx∫ b

a f(x)g(x)dx

)p( ∫ b
a (f(x))

pdx∫ b
a f(x)g(x)dx

)q
, a ̸= b,

[f(a)g(a)]pq−p−q, a = b.

Then, H3(a, b) is Schur-convex (Schur-concave) on I2 if and only if

q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

≥ (≤)
(f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx
.(4)

2. Preliminaries

In this section, we introduce some essential definitions and lemmas.

Definition 2.1 ([14]). Let U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) ∈ Rn.

(i) The vector U is said to be majorized by the vector V , symbolized as U ≺
V , if

∑ℓ
i=1 u[i] ≤

∑ℓ
i=1 v[i] for ℓ = 1, 2, . . . , n− 1 and

∑n
i=1 ui =

∑n
i=1 vi,

where u[1] ≥ u[2] · · · ≥ u[n] and v[1] ≥ v[2] · · · ≥ v[n] are rearrangements of
U and V in a descending order.

(ii) Let Ω ⊂ Rn, Ψ: Ω → R is said to be Schur-convex function on Ω if
U ≺ V on Ω implies Ψ(U) ≤ Ψ(V ), while Ψ is said to be Schur-
concave function on Ω if and only if −Ψ is Schur-convex function.
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Lemma 2.1 ([14]). Suppose that Ω ⊂ Rn is a convex set and has a nonempty
interior set Ω◦, suppose also that Ψ : Ω → R is continuous on Ω and differen-
tiable in Ω◦. Then Ψ is the Schur-convex (or Schur-concave) function, if and
only if it is symmetric on Ω and

(v1 − v2)

(
∂Ψ

∂v1
− ∂Ψ

∂v2

)
≥ 0 (or ≤ 0)

holds, for any V = (v1, v2, . . . , vn) ∈ Ω◦.

Lemma 2.2 ([15], Chebyshev inequality). Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n.

(i) If {ak} and {bk} (k = 1, 2, . . . , n) have opposite monotonicity, then

n∑
k=1

ak

n∑
k=1

bk ≥ n
n∑
k=1

akbk(5)

(ii) If {ak} and {bk} (k = 1, 2, . . . , n) have same monotonicity, then

n∑
k=1

ak

n∑
k=1

bk ≤ n

n∑
k=1

akbk(6)

Lemma 2.3 ([15], Hermite-Hadamard inequality). If f(x) is a convex function
on [a, b], then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
(7)

If f(x) is a concave function on [a, b], then inequality (7) is reversed.

Lemma 2.4 ([16]). If a ≤ b, u(t) = tb+ (1− t)a, v(t) = ta+ (1− t)b, 0 ≤ t1 ≤
t2 ≤ 1

2 or 1
2 ≤ t2 ≤ t1 ≤ 1, then(a+ b

2
,
a+ b

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b)(8)

Lemma 2.5 ([16]). Let a = (a1, a2, · · · , an) ∈ Rn+, An(a) = 1
n

∑n
i=1 ai. Then

(9) u =
(
An(a), An(a), · · · , An(a)︸ ︷︷ ︸

n

)
≺ (a1, a2, · · · , an) = a.

3. Proof of main results

Proof of Theorem 1.1. It is obvious that H1(a) is symmetric about a1, a2, . . . , an
on Rn+, without loss of generality, we may assume that a1 ≥ a2.

Differentiating H1(a) with respect to a1 and a2 respectively, we obtain

∂H1

∂a1
=
( n∑
k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
ap−1
1 ,

∂H1

∂a2
=
( n∑
k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
ap−1
2 .
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Hence, we have

∆1 := (a1 − a2)
(∂H1

∂a1
− ∂H1

∂a2

)
= (a1 − a2)

( n∑
k=1

apk

) 1
p
−1( n∑

k=1

bqk

) 1
q
(ap−1

1 − ap−1
2 ).

It is easy to see that ∆1 ≥ 0 for p ≥ 1, and ∆1 ≤ 0 for p ≤ 1. By Lemma
2.1, it follows that H1(a) is Schur-convex on Rn+ for p ≥ 1, and H1(a) is Schur-
concave on Rn+ for p ≤ 1. The proof of Theorem 1.1 is complete. □

Proof of Theorem 1.2. Using the same arguments as that described in the proof
of Theorem 1.1, we can easily carry out the proof of Theorem 1.2. □

Proof of Theorem 1.3. Note that

H3(a, b) =
( ∫ b

a (g(x))
qdx∫ b

a f(x)g(x)dx

)p( ∫ b
a (f(x))

pdx∫ b
a f(x)g(x)dx

)q
=

( ∫ b
a f

p(x)dx
)q( ∫ b

a g
q(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q .

Since H3(a, b) is symmetric about a, b on R2
+, we may assume that b ≥ a.

Differentiating H3(a) with respect to b and a respectively gives

∂H3

∂b
=
q
( ∫ b

a f
p(x)dx

)q−1
fp(b)

( ∫ b
a g

q(x)dx
)p( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

+
p
( ∫ b

a g
q(x)dx

)p−1
gq(b)

( ∫ b
a f

p(x)dx
)q( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

−
(p+ q)

( ∫ b
a f(x)g(x)dx

)p+q−1
f(b)g(b)

( ∫ b
a f

p(x)dx
)q( ∫ b

a g
q(x)dx

)p( ∫ b
a f(x)g(x)dx

)2(p+q) ,

∂H3

∂a
=−

q
( ∫ b

a f
p(x)dx

)q−1
fp(a)

( ∫ b
a g

q(x)dx
)p( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

−
p
( ∫ b

a g
q(x)dx

)p−1
gq(a)

( ∫ b
a f

p(x)dx
)q( ∫ b

a f(x)g(x)dx
)p+q( ∫ b

a f(x)g(x)dx
)2(p+q)

+
(p+ q)

( ∫ b
a f(x)g(x)dx

)p+q−1
f(a)g(a)

( ∫ b
a f

p(x)dx
)q( ∫ b

a g
q(x)dx

)p( ∫ b
a f(x)g(x)dx

)2(p+q) .

Thus, we have

∆2 :=(b− a)
(∂H3

∂b
− ∂H3

∂a

)
=

b− a( ∫ b
a f(x)g(x)dx

)2(p+q)
[
q
( ∫ b

a
fp(x)dx

)q−1( ∫ b

a
gq(x)dx

)p
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×
( ∫ b

a
f(x)g(x)dx

)p+q(
fp(b) + fp(a)

)
+ p
( ∫ b

a
gq(x)dx

)p−1

×
( ∫ b

a
fp(x)dx

)q( ∫ b

a
f(x)g(x)dx

)p+q(
gq(b) + gq(a)

)
− (p+ q)

×
( ∫ b

a
f(x)g(x)dx

)p+q−1( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p(
f(b)g(b) + f(a)g(a)

)]

=
b− a( ∫ b

a f(x)g(x)dx
)2(p+q)(∫ b

a
f(x)g(x)dx

)p+q−1(∫ b

a
fp(x)dx

)q−1

×
( ∫ b

a
gq(x)dx

)p−1
[( ∫ b

a
f(x)g(x)dx

)(
q

∫ b

a
gq(x)dx(fp(b) + fp(a))

+ p

∫ b

a
fp(x)dx(gq(b) + gq(a))

)
− (p+ q)

( ∫ b

a
fp(x)dx

∫ b

a
gq(x)dx

)
(f(b)g(b) + f(a)g(a))

]
.

Using the assumption condition of Theorem 1.3 and the non-negativity of

b− a( ∫ b
a f(x)g(x)dx

)2(p+q) ( ∫ b

a
f(x)g(x)dx

)p+q−1( ∫ b

a
fp(x)dx

)q−1( ∫ b

a
gq(x)dx

)p−1
,

we deduce that ∆2 ≥ (≤) 0 if and only if

( ∫ b

a
f(x)g(x)dx

)[
q

∫ b

a
gq(x)dx(fp(b) + fp(a)) + p

∫ b

a
fp(x)dx(gq(b) + gq(a))

]
≥ (≤)

( ∫ b

a
fp(x)dx

∫ b

a
gq(x)dx

)
(f(b)g(b) + f(a)g(a))(p+ q)

⇐⇒ q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

≥ (≤)
(f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx
.

Hence, H3(a, b) is Schur-convex (Schur-concave) on I2 if and only if

q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

≥ (≤)
(f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx
.

This completes the proof of Theorem 1.3. □

4. Some corollaries

In this section, we give some consequences of Theorem 1.3.

Corollary 4.1. Let f(x), g(x) be two nonnegative convex functions on I, f ′′g+

g′′f + 2f ′g′ ≤ 0, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0,
for any a, b ∈ I (a ̸= b). If p ≥ 1, q ≥ 1, then H3(a, b) is Schur-convex on I2.
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Proof. Direct computation gives

(fp)′′ = pfp−2[(p− 1)(f ′)2 + ff ′′], (gq)′′ = qgq−2[(q − 1)(g′)2 + gg′′],

(fg)′′ = f ′′g + g′′f + 2f ′g′.

Since f(x), g(x) are convex function on I, p ≥ 1, q ≥ 1, we have (fp(x))′′ ≥ 0,
(gq(x))′′ ≥ 0 for x ∈ I, so fp(x), gq(x) are convex functions on I. In addition,
form the assumption f ′′g+g′′f+2f ′g′ ≤ 0, we conclude that f(x)g(x) is concave
function on I.

By using Lemma 2.3 (Hermite-Hadamard inequality), we obtain

q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

− (f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

≥ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≥ 0.

We deduce from Theorem 1.3 that H3(a, b) is Schur-convex on I2. The proof
of Corollary 4.1 is complete.

Corollary 4.2. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, q < 0, then H3(a, b) is Schur-concave on
I2.

Proof. In light of

(fp)′′ = p[(p− 1)(f ′)2 + ff ′′]fp−2, (gq)′′ = q[(q − 1)(g′)2 + gg′′]gq−2,

(fg)′′ = f ′′g + g′′f + 2f ′g′,

we conclude that (fp(x))′′ ≥ 0, (gq(x))′′ ≥ 0, so fp(x) and gq(x) are convex
functions on I. Since f(x), g(x) are opposite monotonicity concave functions,
which implies that f(x)g(x) is concave function on I. By Hermite-Hadamard
inequality, we have

q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

− (f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

≤ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≤ 0.

It follows from Theorem 1.3 that H3(a, b) is Schur-concave on I2. Corollary 4.2
is proved.
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Corollary 4.3. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, 0 < q ≤ 1 and p+ q ≥ 0, then H3(a, b) is
Schur-convex on I2.

Proof. In view of

(fp)′′ = p[(p− 1)(f ′)2 + ff ′′]fp−2, (gq)′′ = q[(q − 1)(g′)2 + gg′′]gq−2,

(fg)′′ = f ′′g + g′′f + 2f ′g′,

we deduce that fp(x) is convex function for p < 0, gq(x) is concave function
for 0 < q ≤ 1, f(x)g(x) is concave function on I. By using Hermite-Hadamard
inequality, we obtain

q(fp(b) + fp(a))∫ b
a f

p(x)dx
+
p(gq(b) + gq(a))∫ b

a g
q(x)dx

− (f(b)g(b) + f(a)g(a))(p+ q)∫ b
a f(x)g(x)dx

≥ 2q

b− a
+

2p

b− a
− (f(b)g(b) + f(a)g(a))(p+ q)∫ b

a f(x)g(x)dx

= (p+ q)
[ 2

b− a
− (f(b)g(b) + f(a)g(a))∫ b

a f(x)g(x)dx

]
≥ 0.

We deduce from Theorem 1.3 that H3(a, b) is Schur-convex on I2. Corollary 4.3
is proved.

5. Applications to inequalities of Hölder type

Firstly, we establish two discrete Hölder-type inequality involving power mean
and arithmetic mean.

Theorem 5.1. Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n, and let p, q be two non-zero
real numbers.

(i) If p ≥ 1, q ≥ 1, then( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b);(10)

(ii) If p ≤ 1, q ≤ 1, then( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≤ n

1
p
+ 1

qAn(a)An(b),(11)

where An(a) =
1
n

∑n
k=1 ak, An(b) =

1
n

∑n
k=1 bk.

Proof. (i) By Lemma 2.5, one has the majorization relationship

(a1, a2, · · · , an) ≻ (An(a), An(a), · · · , (An(a)) .
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From Theorem 1.1, we know that, for p ≥ 1, H1(a) is Schur-convex on Rn+.
It follows from Definition 2.1 that H1(a) ≥ H1(An(a)) for p ≥ 1.
Hence( n∑

k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ (n(An(a))

p)
1
p

( n∑
k=1

bqk

) 1
q
= n

1
pAn(a)

( n∑
k=1

bqk

) 1
q
.

On the other hand, by Theorem 1.2, we obtain that, for q ≥ 1, H2(b) is
Schur-convex on Rn+. Now, from the majorization relation

(b1, b2, · · · , bn) ≻
(
An(b), An(b), · · · , An(b)

)
,

we have H2(b) ≥ H2(An(b)) for q ≥ 1, that is

n
1
p

( n∑
k=1

bqk

) 1
q
An(a) ≥ n

1
pAn(a)(n(An(b))

q)
1
q = n

1
p
+ 1

qAn(a)An(b).

Hence, we get( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ n

1
pAn(a)

( n∑
k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b),

which implies the required inequality (10).
(ii) By the same way as the proof of inequality (10), we can prove the in-

equality (11). This completes the proof of Theorem 5.1.

Nextly, we provide two refined versions of discrete Hölder-type inequality
under certain specified conditions.

Theorem 5.2. Let ak ≥ 0, bk ≥ 0, k = 1, 2, . . . , n, p, q be two non-zero real
numbers.

(i) If p > 1, 1
p + 1

q = 1 and {ak}, {bk} (k = 1, 2, . . . , n) have opposite
monotonicity, then( n∑

k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ nAn(a)An(b) ≥

n∑
k=1

akbk;(12)

(ii) If 0 < p < 1, 1
p + 1

q = 1 and {ak}, {bk} (k = 1, 2, . . . , n) have same
monotonicity, then( n∑

k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≤ nAn(a)An(b) ≤

n∑
k=1

akbk.(13)

Proof. (i) For p > 1 and 1
p +

1
q = 1, by utilizing Theorem 1.1, we have( n∑

k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ n

1
p
+ 1

qAn(a)An(b) = nAn(a)An(b).

Moreover, using Lemma 2.2 (Chebyshev inequality) gives
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nAn(a)An(b) =
∑n

k=1 ak
∑n

k=1 bk
n ≥

∑n
k=1 akbk.

Hence, we have( n∑
k=1

apk

) 1
p
( n∑
k=1

bqk

) 1
q ≥ nAn(a)An(b) ≥

n∑
k=1

akbk,

which implies the required inequality (12).
(ii) In the same way as the proof of inequality (12), we can verify the validity

of inequality (13). The proof of Theorem 5.2 is complete.

In Theorems 5.3, 5.4 and 5.5 below, we will give some refined versions of
integral Hölder-type inequality under certain specified conditions.

Theorem 5.3. Let f(x), g(x) be two integrable and nonnegative functions on
[a, b], and let p, q be two non-zero real numbers.

(i) If p > 1, 1
p +

1
q = 1 and f(x), g(x) have opposite monotonicity, then

( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q

≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥

∫ b

a
f(x)g(x)dx.(14)

(ii) If 0 < p < 1, 1
p +

1
q = 1 and f(x), g(x) have same monotonicity, then

( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q

≤ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx.(15)

Proof. (i) If p > 1, 1
p +

1
q = 1, ak ≥ 0, bk ≥ 0 and {ak}, {bk} (k = 1, 2, . . . , n)

have opposite monotonicity, then by Theorem 5.2, we obtain(b− a

n

n∑
k=1

fp
(
a+

k(b− a)

n

)) 1
p
(b− a

n

n∑
k=1

gq
(
a+

k(b− a)

n

)) 1
q

≥ 1

b− a

(
b− a

n

n∑
k=1

f
(
a+

k(b− a)

n

))(b− a

n

n∑
k=1

g
(
a+

k(b− a)

n

))

≥ b− a

n

n∑
k=1

f
(
a+

k(b− a)

n

)
g
(
a+

k(b− a)

n

)
.

Letting n→ ∞ in both sides of the above inequalities, we obtain( ∫ b

a
fp(x)dx

) 1
p
( ∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥

∫ b

a
f(x)g(x)dx,

which is the desired inequality (14).
(ii) By the same way as the proof of inequality (14), one can prove the

inequality (15). This completes the proof of Theorem 5.3.
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Obviously, inequalities (12), (13), (14), (15) are the sharpened versions of
Hölder’s inequality under some specified conditions.

Theorem 5.4. Let f(x), g(x) be two nonnegative convex functions on I, f ′′g+

g′′f + 2f ′g′ ≤ 0, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸= 0,
for any a, b ∈ I (a ̸= b). If p > 1, 1

p +
1
q = 1, then

(i)

∫ b

a
f(x)g(x)dx ≤

∫ v(t)
u(t) f(x)g(x)dx( ∫ v(t)

u(t) f
p(x)dx

) 1
p
( ∫ v(t)

u(t) g
q(x)dx

) 1
q

×
(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≤

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q
,(16)

where u(t) = tb+ (1− t)a, v(t) = ta+ (1− t)b, 0 ≤ t ≤ 1, t ̸= 1
2 .

(ii)
(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx

≥ f
(a+ b

2

)
g
(a+ b

2

)
(b− a) ≥

∫ b

a
f(x)g(x)dx.(17)

Proof. (i) Since p > 1 and 1
p + 1

q = 1, f(x), g(x) are nonnegative convex

functions with f ′′g + g′′f + 2f ′g′ ≤ 0 on I, it follows from Corollary 4.1 that
H3(a, b) is Schur-convex on I2. Additionally, from Lemma 2.4, one has, for
0 ≤ t ≤ 1, t ̸= 1

2 , the relation
(
a+b
2 , a+b2

)
≺ (u(t), v(t)) ≺ (a, b). Hence, we obtain

H3(a, b) ≥ H3(u(t), v(t)) ≥ H3

(a+ b

2
,
a+ b

2

)
=
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q
= 1,

which implies that( ∫ b
a f

p(x)dx
)q( ∫ b

a g
q(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q ≥

( ∫ v(t)
u(t) f

p(x)dx
)q( ∫ v(t)

u(t) g
q(x)dx

)p( ∫ v(t)
u(t) f(x)g(x)dx

)p+q ≥ 1

⇐⇒

( ∫ b

a
f(x)g(x)dx

)p+q
≤

( ∫ v(t)
u(t) f(x)g(x)dx

)p+q( ∫ v(t)
u(t) f

p(x)dx
)q( ∫ v(t)

u(t) g
q(x)dx

)p ( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p
≤
( ∫ b

a
fp(x)dx

)q( ∫ b

a
gq(x)dx

)p
.
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It follows from 1
p +

1
q = 1 that p+ q = pq, taking the 1

pq power of two sides
in the above inequalities, we derive the desired inequality (16).

(ii) Using Hölder’s inequality (2) gives(
b− a

) 1
q

( ∫ b
a f

p(x)dx
) 1

p ≥
∫ b
a f(x)dx,

(
b− a

) 1
p

( ∫ b
a g

q(x)dx
) 1

q ≥
∫ b
a g(x)dx.

Hence, we have

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q ≥ 1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx.

In addition, from the assumption conditions, we find that f(x), g(x) are convex
on I, f(x)g(x) is concave on I, thus we deduce from the Hermite-Hadamard
inequality that

1

b− a

∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥ f

(a+ b

2

)
g
(a+ b

2

)
(b− a) ≥

∫ b

a
f(x)g(x)dx.

The proof of Theorem 5.4 is complete.

It is worth noting that inequalities (16) and (17) are the refined versions of
Hölder’s inequality under a specified condition.

Theorem 5.5. Let f(x), g(x) be two nonnegative and opposite monotonicity

concave functions, and let
∫ b
a f(x)g(x)dx ̸= 0,

∫ b
a (f(x))

pdx ̸= 0,
∫ b
a (g(x))

qdx ̸=
0, for any a, b ∈ I (a ̸= b). If p < 0, q < 0, then

(∫ b

a
fp(x)dx

) 1
p
(∫ b

a
gq(x)dx

) 1
q

≤
(
f
(a+ b

2

)
g
(a+ b

2

))1− 1
p
− 1

q
(∫ b

a
f(x)g(x)dx

) 1
p
+ 1

q
.(18)

Proof. By the aid of Corollary 4.2, we observe that H3(a, b) is Schur-concave
on I2, in addition, from Lemma 2.5, one has

(
a+b
2 , a+b2

)
≺ (a, b). We thus have

H3(a, b) ≤ H3

(a+ b

2
,
a+ b

2

)
=
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q
⇐⇒( ∫ b
a f

p(x)dx
)q( ∫ b

a g
q(x)dx

)p( ∫ b
a f(x)g(x)dx

)p+q ≤
(
f
(a+ b

2

)
g
(a+ b

2

))pq−p−q
,

taking the 1
pq power of the two-sides inequality above, we obtain the required

inequality (18). Theorem 5.5
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6. Applications to inequalities for special means

Let b > a > 0, the Stolarsky mean is defined as follows (see [12])

Lp(a, b) =

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ̸= −1, 0.

The arithmetic mean, geometric mean and logarithmic mean are respectively
defined by

A(a, b) =
a+ b

2
, G(a, b) =

√
ab, L(a, b) =

b− a

log b− log a
.

Theorem 6.1. Let b > a > 0, 1
p +

1
q = 1.

(i) If p > 1, then

Lp(a, b) ≥ A(a, b)L(a, b)L−q(a, b) ≥ L−q(a, b).(19)

(ii) If 0 < p < 1, then

Lp(a, b) ≤ (A(a, b))2(Lq(a, b))
−1 ≤ (L2(a, b))

2(Lq(a, b))
−1.(20)

Proof. Note that( 1

b− a

∫ b

a
xpdx

) 1
p
=
( bp+1 − ap+1

(p+ 1)(b− a)

) 1
p
= Lp(a, b),

( 1

b− a

∫ b

a
x−qdx

) 1
q
=
( b−q+1 − a−q+1

(−q + 1)(b− a)

) 1
q
= (L−q(a, b))

−1.

(i) For p > 1, by Theorem 5.3, we have( 1

b− a

∫ b

a
fp(x)

) 1
p
( 1

b− a

∫ b

a
gq(x)dx

) 1
q

≥
( 1

b− a

)2 ∫ b

a
f(x)dx

∫ b

a
g(x)dx ≥ 1

b− a

∫ b

a
f(x)g(x)dx.

Taking f(x) = x, g(x) = x−1 in the above inequality, it follows that

Lp(a, b)(L−q(a, b))
−1 ≥ 1

(b− a)2

∫ b

a
xdx

∫ b

a
x−1dx ≥ 1

b− a

∫ b

a
dx,

that is
Lp(a, b) ≥ A(a, b)L(a, b)L−q(a, b) ≥ L−q(a, b).

(ii) For 0 < p < 1, by Theorem 5.3, we have( 1

b− a

∫ b

a
fp(x)

) 1
p
( 1

b− a

∫ b

a
gq(x)dx

) 1
q

≤
( 1

b− a

)2 ∫ b

a
f(x)dx

∫ b

a
g(x)dx ≤ 1

b− a

∫ b

a
f(x)g(x)dx.
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Taking f(x) = x, g(x) = x, we obtain

Lp(a, b) ≤ (A(a, b))2(Lq(a, b))
−1 ≤ (L2(a, b))

2(Lq(a, b))
−1.

The proof of Theorem 6.1 is complete.

Theorem 6.2. Let b > a > 0, u(t) = tb + (1 − t)a, v(t) = ta + (1 − t)b,
0 ≤ t ≤ 1, t ̸= 1

2 . If p > 1, 1
p +

1
q = 1, then

L−q(a, b) ≤
L−q(u(t), v(t))

Lp(u(t), v(t))
Lp(a, b) ≤ Lp(a, b).(21)

Proof. Using Theorem 5.4 with a substitution of f(x) = x, g(x) = x−1 in
inequality (16), we obtain∫ b

a
dx ≤

∫ v(t)
u(t) dx( ∫ v(t)

u(t) x
pdx
) 1

p
( ∫ v(t)

u(t) (x
−1)qdx

) 1
q

(∫ b

a
xpdx

) 1
p
(∫ b

a
(x−1)qdx

) 1
q

≤
(∫ b

a
xpdx

) 1
p
(∫ b

a
(x−1)qdx

) 1
q
,

that is

(b− a) ≤ (v(t)− u(t))(b− a)
1
p
+ 1

qLp(a, b)(L−q(a, b))
−1

(v(t)− u(t))
1
p
+ 1

qLp(u(t), v(t))(L−q(u(t), v(t)))−1

≤ (b− a)
1
p
+ 1

qLp(a, b)(L−q(a, b))
−1,

which leads to the desired inequality

L−q(a, b) ≤
L−q(u(t), v(t))

Lp(u(t), v(t))
Lp(a, b) ≤ Lp(a, b).

This completes the proof of Theorem 6.2.

7. Conclusion

In this work, we provided a new approach to refine Hölder’s inequality. Firstly,
we constructed some functions associated with Hölder’s inequality and verified
their Schur convexities, meanwhile, in Theorems 1.1 and 1.2, we proved the
Schur convexity of functions associated with discrete Hölder’s inequality, we de-
rived the Schur convexity of function connected to integral Hölder’s inequality
in Theorem 1.3. Nextly, with the help of the Schur convexity of functions, in
Theorem 5.1 we acquired two discrete Hölder-type inequality involving power
mean and arithmetic mean; in Theorem 5.2 we provided two refined versions of
discrete Hölder-type inequality; in Theorems 5.3, 5.4 and 5.5, we offered some
refined versions of integral Hölder-type inequality. Finally, we illustrated the
applications of the obtained Hölder-type inequalities, some novel comparison
inequalities for Stolarsky mean, arithmetic mean, geometric mean and logarith-
mic mean are derived respectively in Theorems 6.1 and 6.2.
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Abstract. In this article, we mainly focus on a new kind of filter on EQ-algebras. At
first, we introduce some new concepts of seminodes, nodes and nodal filters (n-filters,
for short) on EQ-algebras and investigate the relationships among them and some other
elements. Also, we investigate their lattice structures and obtain that the set SN (E) of
all seminodes on an EQ-algebra is a Hertz-algebra and a Heyting-algebra under some
conditions. Then, we discuss the properties of n-filters and show that there is a one-to-
one correspondence between nodal principle filter and node element in an idempotent
EQ-algebra. Furthermore, the relationships among it and other filters are presented.
It is proved that each obstinate filter or each (positive) implicative filter is an n-filter
under some conditions. At last, we introduce the algebraic structures and topological
structures of the set of all n-filters on EQ-algebras and prove that (NP (E), τ) is a
compact T0 space. Moreover, we set up the connections from the set NF (E) of all n-
filters on an EQ-algebra to other algebraic structures, like BCK-algebras, Hertz algebras
and so on.

Keywords: EQ-algebra, seminode, node, nodal filter, topological space.

1. Introduction

As we all know, logic is not only an important tool in mathematics and in-
formation science, but also a basic technology. Non-classical logic consists of
fuzzy logic and multi-valued logic, they deal with uncertain information such as

*. Corresponding author
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fuzziness and randomness. Therefore, all kinds of fuzzy logic algebras are widely
introduced and studied, such as residuated lattices, BL-algebras, MV-algebras,
which play a very important role in fuzzy logic algebra system. In [11], Goguen
put forward a new point of view, which is that the algebraic structure of many-
valued logic may be a residuated lattice satisfying some additional conditions.
This view has been widely recognized by scholars at home and abroad. However,
since the publication of Hájek’s book [12] in 1998, fuzzy logic has been developed
into different formal systems, and each one is based on a residuated lattice. With
the passage of time, propositional logic and first-order logic have been widely
developed. For this reason, in order to develop the higher-order fuzzy logic as
a correspondence of the classical higher-order logic. Novák and De Bates [17]
came out with a new algebra, which is called an EQ-algebra, for the first time.
An EQ-algebra has three operations, which are fuzzy equality, multiplication
and meet. By replacing the basic conjunction fuzzy equality with implication,
EQ-algebras open up a new filed for another development of many-valued fuzzy
logic and a possibility for developing a fuzzy logic with non commutative con-
nection but only one implication. Since then, EQ-algebras have been widely
concerned and many significant properties and conclusions have been proved
[1], [10], [14][17], [21], [26].

Filter theory is of great significance to study the completeness of differ-
ent logical systems and their matching logical algebras. Start with a logical
viewpoint, we can use the filters to represent the provable formula sets in rele-
vant reasoning systems. Also, the characters of filters is closely related to the
structure properties of algebras. Hence, there are numerous researches on filter
theory. In [17], Novák and De Bates introduced filters on EQ-algebra for the
first time. In [10], M. El-Zekey and V. Novák proposed the concepts of (prime)
prefilters on EQ-algebras. Moreover, their related properties were stated and
proved. And then, in [14], implicative and positive implicative prefilters (fil-
ters) in EQ-algebra were proposed by Liu and Zhang and they also represented
some related conclusions of them. Also, they discussed the properties of quo-
tient algebras, which is induced by the positive implicative filters. Furthermore,
they discussed the relationships between these two prefilters and concluded that
in good IEQ-algebras positive implicative prefilters and implicative prefilters
coincided.

Now, in this paper, we introduce a new kind of filter to EQ-algebras, which is
said to be a nodal filter. Originally, Balbes and Horn [2] put forward the concept
of nodes in a lattice. In [22], the definition of a nodal filter was introduced by
Varlet in the (implicative) semilattice. Afterward, T. Khorami and B. Saeid
[13] presented the concepts of nodes and nodal filters on BL-algebra and the
congruence relations induced by nodal filters on BL-algebra is stated and proved.
In [6], Bakhshi presented the concept of nodal filters in residuated lattices and
obtained that the set of all nodal filters forms a Heyting algebra. Namdar and
Borzooei [18] researched nodal filters theory in hoop algebras. Next, X. Xun
and X.L. Xin [24] introduced it in equality algebras. Now, we introduce this
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concept to EQ-algebras, here is the outline of this paper: In the next Section, we
recollect some basic definitions and properties of EQ-algebras. In Section 3, we
introduce the concepts of seminodes and nodes on EQ-algebras and investigate
the related properties of them. We obtain that the set SN (E) of all seminodes
is a Hertz-algebra and a Heyting-algebra under some conditions. Moreover, we
consider the relationships among seminodes, nodes and some other elements on
an EQ-algebra. In Section 4, we present the notion of nodal filter (for short, n-
filter) in an EQ-algebra and investigate their related properties. Furthermore,
we discuss the relationships between nodal filters and node elements, as well
as their relationships with other filters. In Section 5, we study the algebraic
structures of NF (E) and topological structures of NP (E) on EQ-algebras.

2. Preliminaries

In this section, we present some basic concepts and conclusions relevant to EQ-
algebras.

Definition 2.1 ([17]). An algebra E = (E,∧,⊗,∼, 1) of type (2, 2, 2, 0) is said
to be an EQ-algebra, if for all x, y, p, q ∈ E, it satisfies the following axioms:

(EQ1) < E,∧, 1 > is a commutative idempotent monoid.

(EQ2) < E,⊗, 1 > is a monoid and ⊗ is isotone w.r.t. ” ≤ ”, where x ≤ y is
defined as x ∧ y = x.

(EQ3) x ∼ x = 1.

(EQ4) ((x ∧ y) ∼ p)⊗ (q ∼ x) ≤ p ∼ (q ∧ y).

(EQ5) (x ∼ y)⊗ (p ∼ q) ≤ (x ∼ p) ∼ (y ∼ q).

(EQ6) (x ∧ y ∧ p) ∼ x ≤ (x ∧ y) ∼ x.

(EQ7) x⊗ y ≤ x ∼ y.

An EQ-algebra E is bounded if there exists an element 0 ∈ E such that
0 ≤ x, for all x ∈ E. And we define the unary operation: x′ = x → 0, for all
x ∈ E. If x2 = x, for all x ∈ E, then E is called an idempotent EQ-algebra. For
any x ∈ E, x is called:

(1) dense if x′ = 0.

(2) atom if x is the minimal element in E \ {0}.

(3) co-atom if x is the maximal element in E \ {1}.

(4) involutive if x′′ = x.

Definition 2.2 ([17]). Let E be an EQ-algebra and x, y, z ∈ E. Then, it is
called
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(1) good if x ∼ 1 = x for each x ∈ E.

(2) prelinear if 1 is the unique upper bound of the set {x→ y, y → x} in E, for
all x, y ∈ E.

(3) residuated if for each x, y, z ∈ E, (x ⊙ y) ∧ z = (x ⊙ y) if and only if
x ∧ ((y ∧ z) ∼ y) = x.

(4) lattice-ordered if it has a lattice reduct.

(5) distributively lattice-ordered if the lattice reduct is distributive.

Proposition 2.3 ([9, 10, 17]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra, and
let x→ y := (x ∧ y) ∼ x and x̄ = x ∼ 1. Then, for all x, y, w ∈ E the following
properties hold:

(1) x⊗ y ≤ x, y, x⊗ y ≤ x ∧ y.

(2) x ∼ y ≤ x→ y, x ∼ y = y ∼ x.

(3) x ≤ x̄ ≤ y → x, 1̄ = 1.

(4) x→ y ≤ (w → x) → (w → y), x→ y ≤ (y → w) → (x→ w).

(5) x→ x ∧ y = x→ y.

(6) if x ≤ y, then x ∼ y = y → x, w → x ≤ w → y and y → w ≤ x→ w.

(7) x→ y ≤ (x ∧ w) → (y ∧ w), w → (x ∧ y) ≤ (w → x) ∧ (w → y).

(8) if x ∨ y exists, then (x ∨ y) → w = (x→ w) ∧ (y → w).

Proposition 2.4 ([9]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, E is
residuated iff E is good and x→ y ≤ (x⊗ z) → (y ⊗ z), for all x, y, z ∈ E.

Definition 2.5 ([17]). Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then, a subset
H of E is called a prefilter provided that, for all x, y, z ∈ E, the following
conditions hold:

(F1) 1 ∈ H.

(F2) If x, y ∈ H, then x⊗ y ∈ H.

(F3) If x, x→ y ∈ H, then y ∈ H.

A prefilter H is called a filter provided that, for all x, y, z ∈ E, the following
condition holds:

(F4) If x→ y ∈ H, then (x⊗ z) → (y ⊗ z) ∈ H.

The set of all filters of E is denoted by F(E).
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Theorem 2.6 ([16]). Let E be an EQ-algebra.

(1) For any ∅ ≠ X ⊆ E, the prefilter generated by X is written as ⟨X⟩ = {x ∈
E | x1 → (x2 → (x3 → · · · (xn → x) · · · )) = 1 for some xi ∈ X and n ≥ 1}.
If X = {a}, then the prefilter ⟨a⟩ generated by {a} is called a principal
prefilter.

(2) If E is residuated, then ⟨X⟩ is a filter.

(3) ⟨x⟩∩ ⟨y⟩ = ⟨x∨ y⟩, for all x, y ∈ E, where ⟨x⟩ denotes the principal prefilter
generated by x.

Definition 2.7 ([14]). Let H be a filter of an EQ-algebra. Then:

(1) H is called an implicative filter if z → ((x→ y) → x) ∈ H and z ∈ H imply
x ∈ H for any x, y, z ∈ E.

(2) H is called a positive implicative filter if x→ (y → z) ∈ H and x→ y ∈ H,
then x→ z ∈ H for any x, y, z ∈ E.

(3) H is called an obstinate filter of E if, for all x, y ∈ E, x, y /∈ H implies
x→ y ∈ H and y → x ∈ H.

For any filter H of an EQ-algebra and x, y ∈ E, we define a relation ≈H on
E as follows:

x ≈H y iff x ∼ y ∈ H

In [17], we know that ≈H is a congruence relation on E. Define the factor algebra
E/H = (E/H,∧,⊙,∼H , 1) as follows: E/H = {[x] | x ∈ E}, the operation ∧ is
defined by [x]∧ [y] = [x∧y], and similarly for the other operations. The ordering
in E/H is defined by:

[x] ≤ [y] iff [x] ∧ [y] = [x] iff x ∧ y ≈H x iff x ∧ y ∼ x = x→ y ∈ H

Definition 2.8 ([4]). An algebra (E,∧,→, 1) of type (2, 2, 0) is called a Hertz-
algebra provided that, for all x, y, w ∈ E, the following axioms hold:

(HE1) x→ x = 1.

(HE2) y ∧ (x→ y) = y.

(HE3) x ∧ (x→ y) = x ∧ y.

(HE4) x→ (y ∧ w) = (x→ y) ∧ (x→ w).

Definition 2.9 ([15]). A BCK-algebra (A,→, 1) is an algebra of type (2, 0),
which satisfies the following conditions for any x, y, w ∈ E:

(B1) (y → w) → ((w → x) → (y → x)) = 1.
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(B2) y → ((y → x) → x) = 1.

(B3) x→ x = 1.

(B4) x→ 1 = 1.

(B5) If x→ y = 1, y → x = 1, then x = y.

Definition 2.10 ([8]). An algebra (H,→, 1) of type (2, 0) is said to be a Hilbert
algebra, if for all x, y, w ∈ E, we have:

(HL1) x→ (y → x) = 1.

(HL2) (x→ (y → w)) → ((x→ y) → (x→ w)) = 1.

(HL3) If x→ y = y → x = 1, then x = y.

Definition 2.11 ([3]). If (E,∨,∧, 1) is a lattice, which satisfies x ≤ y → z iff
x ∧ y ≤ z for any x, y, z ∈ E, then the algebra (E,∨,∧,→, 1) is said to be a
Heyting-algebra.

Definition 2.12 ([19, 20]). If (L,∨,∧, 0, 1) is a distributive lattice satisfying
0′ = 1, 1′ = 0, and (x ∧ y)′′ = x′′ ∧ y′′, (x ∨ y)′ = x′ ∧ y′ and x′′′

= x′ hold for
any x, y ∈ L. Then, the algebra (L,∨,∧,′ , 0, 1) of type (2, 2, 1, 0, 0) is said to be
a semi-De Morgan algebra.

3. Seminodes and nodes on EQ-algebras

In this section, we present the concepts of seminodes and nodes on EQ-algebras
and study their related properties. Moreover, we consider the relationships
among seminodes, nodes and some other elements on an EQ-algebra.

Definition 3.1. Let E be an EQ-algebra and x ∈ E. Then, x is called a:

(1) seminode, if the set {x → y, y → x} has a unique upper bound 1, for all
y ∈ E;

(2) node, if either x ≤ y or y ≤ x for any y ∈ E.

Let us denote the set of all seminodes of an EQ-algebra by SN (E) and the
set of all nodes of an EQ-algebra by ND(E). Since 1 ∈ SN (E) and 1 ∈ ND(E),
it readily follows that SN (E) and ND(E) are nonempty.

Example 3.2 ([5]). (1) Assume that E = {0, u, v, w, 1} with 0 < u < v < w <
1. Then, one can check that (E,∧,⊗,∼, 1) is an EQ-algebra, where the two
operations ⊗ and ∼ are given by:
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⊗ 0 u v w 1
0 0 0 0 0 0
u 0 0 0 0 u
v 0 0 0 0 v
w 0 0 u u w
1 0 u v w 1

∼ 0 u v w 1
0 1 w v v 0
u w 1 w w u
v v w 1 w v
w v w w 1 w
1 0 u v w 1

Obviously, SN (E) = ND(E) = {0, u, v, w, 1}. But the element u is not a
co-atom and dense element, w is not a dense element and a atom and v is not
a dense element. Moreover, the involutive elements are {0, v, 1}.

(2) Suppose that E = {0, u, v, p, q, 1} with 0 < u < v < p, q < 1. Then,
(E,∧,⊗,∼, 1) is an EQ-algebra, where the operations ⊗ and ∼ are given by the
next tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 u 0 u
v 0 0 v v v v
p 0 u v p v p
q 0 0 v v q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 q u 0 0 0
u q 1 u u u u
v u u 1 q p v
p 0 u q 1 v p
q 0 u p v 1 q
1 0 u v p q 1

One can check that SN (E) = {0, u, v, p, q, 1} and ND(E) = {0, u, v, 1}.
Although p and q are not node elements, they are dense elements and co-atoms.
In addition, the involutive elements are {0, 1}.

(3) Let E = {0, u, v, p, q, 1} satisfies 0 < u, v < p < q < 1. Then, (E,∧,⊗,∼
, 1) is an EQ-algebra with respect to the following operations ⊗ and ∼:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 0 u u
v 0 0 0 0 v v
p 0 0 0 0 p p
q 0 u v p q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 p p p 0 0
u p 1 p p u u
v p p 1 p v v
p p p p 1 p p
q 0 u v p 1 1
1 0 u v p 1 1

It is apparent that SN (E) = {0, u, v, p, q, 1} and ND(E) = {0, p, q, 1}. Al-
though u and v are atoms, they are not dense elements and nodes. Moreover, 0
and p are involutive elements, but they are not atoms and dense elements.

According to the above example, we see immediately that seminodes and
nodes are different from dense elements, (co-)atoms and involutive elements in
an EQ-algebra. In addition, they have the following properties:

Remark 3.3. Suppose (E,∧,⊗,∼, 1) is an EQ-algebra.

(1) If E is a chain, then each element of E is a node.
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(2) If E has at most one node u, then u = 1. Therefore, it is neither an atom
nor a co-atom.

(3) Each node of E is a seminode of E. But the converse is not true. In
fact, by definitions of nodes and seminodes, we can easily check that each
node is a seminode. Also, by Example 3.2 (3), we know that u and v
are seminodes, but not nodes. Therefore, we conclude that a seminode
element is more general than a node.

In general EQ-algebra, we can only obtain that (q1 ∧ q2) → q3 ≥ (q1 →
q3) ∨ (q2 → q3) and q1 → (q2 ∧ q3) ≤ (q1 → q2) ∧ (q1 → q3) hold. But when we
define q1, q2, q3 in the set SN (E), we shall prove the equations hold.

Proposition 3.4. Let E be a lattice-ordered EQ-algebra. Then, the following
hold, for all q1, q2 ∈ SN (E) and q3 ∈ E:

(1) (q1 ∧ q2) → q3 = (q1 → q3) ∨ (q2 → q3).

(2) q1 → (q2 ∧ q3) = (q1 → q2) ∧ (q1 → q3).

Proof. (1) From the Proposition 2.3 (5) and (4), we get q1 → q2 = q1 →
(q1 ∧ q2) ≤ ((q1 ∧ q2) → q3) → (q1 → q3) ≤ ((q1 ∧ q2) → q3) → ((q1 →
q3)∨ (q2 → q3)). Similarly, we obtain that q2 → q1 ≤ ((q1 ∧ q2) → q3) → ((q1 →
q3) ∨ (q2 → q3)). Since q1 ∈ SN (E), it implies that (q1 → q2) ∨ (q2 → q1) = 1,
and so ((q1 ∧ q2) → q3) → ((q1 → q3) ∨ (q2 → q3)) = 1. Thus, we obtain
((q1 ∧ q2) → q3) ≤ ((q1 → q3)∨ (q2 → q3)). In addition, because q1 ∧ q2 ≤ q1, q2,
we have q1 → q3, q2 → q3 ≤ (q1 ∧ q2) → q3. Thus, it readily follows that
(q1 → q3) ∨ (q2 → q3) ≤ (q1 ∧ q2) → q3. Therefore, we see immediately that
(q1 ∧ q2) → q3 = (q1 → q3) ∨ (q2 → q3).

(2) By Proposition 2.3 (5) and (4), we obtain q2 → q3 = q2 → (q2 ∧ q3) ≤
(q1 → q2) → (q1 → (q2 ∧ q3)) ≤ ((q1 → q2) ∧ (q1 → q3)) → (q1 → (q2 ∧ q3)).
Analogously, q3 → q2 ≤ ((q1 → q2) ∧ (q1 → q3)) → (q1 → (q2 ∧ q3)) holds.
Since q2 ∈ SN (E), we obtain (q2 → q3) ∨ (q3 → q2) = 1, and then ((q1 →
q2)∧ (q1 → q3)) → (q1 → (q2 ∧ q3)) = 1. Thus, it follows that (q1 → q2)∧ (q1 →
q3) ≤ q1 → (q2 ∧ q3). In addition, since q2 ∧ q3 ≤ q2, q3, it readily implies
q1 → (q2∧q3) ≤ q1 → q2, q1 → q3, and so q1 → (q2∧q3) ≤ (q1 → q2)∧ (q1 → q3).
Therefore, it readily follows q1 → (q2 ∧ q3) = (q1 → q2) ∧ (q1 → q3).

Theorem 3.5. Let E be a lattice-latticed EQ-algebra. Then, the following con-
clusions hold:

(1) Denote BL(E) = {u ∈ E | u∨m = 1, u∧m = 0 for some m ∈ E}. Then,
ND(E) ∩BL(E) = {0, 1}.

(2) If E is distributive, then (SN (E),∧,∨) is a distributive lattice.

(3) (ND(E),∨,∧) is a distributive lattice, too.
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Proof. (1) It is clear that {0, 1} ⊆ ND(E) ∩ BL(E). Conversely, for any
u ∈ ND(E)∩BL(E), we have u ∈ ND(E) and u ∈ BL(E). From u ∈ ND(E),
we know that either u ≤ m or m ≤ u for any m ∈ E. Moreover, it follows from
u ∈ BL(E) that u ∨m = 1 and u ∧m = 0 for some m ∈ E, which implies that
u ∨m = m, u ∧m = u or u ∨m = u, u ∧m = m. Hence, u = 0 or u = 1, and
so u ∈ {0, 1}. Therefore, we obtain ND(E) ∩BL(E) = {0, 1}.

(2) Firstly, we prove ((u ∧m) → w) ∨ (w → (u ∧m)) = 1 for any w ∈ E
and u,m ∈ SN (E). In fact, by Proposition 3.4, we have ((u∧m) → w)∨ (w →
(u ∧m)) = ((u → w) ∨ (m → w)) ∨ ((w → u) ∧ (w → m)) = [(u → w) ∨ (m →
w)∨(w → u)]∧ [(u→ w)∨(m→ w)∨(w → m)] ≥ [(u→ w)∨(w → u)]∧ [(m→
w) ∨ (w → m)] = 1. Thus, it readily follows that u ∧m ∈ SN (E).

Now, we shall prove that ((u∨m) → w)∨ (w → (u∨m)) = 1 for any w ∈ E.
Indeed, by Proposition 2.3 (8), we obtain ((u ∨ m) → w) ∨ (w → (u ∨ m))
= ((u→ w)∧ (m→ w))∨ (w → (u∨m)) = ((u→ w)∨ (w → (u∨m)))∧ ((m→
w) ∨ (w → (u ∨ m))) ≥ [(u → w) ∨ (w → u)] ∧ [(m → w) ∨ (w → m)] = 1
Therefore, we get that u ∨m ∈ SN (E), and so (SN (E),∧,∨) is a distributive
lattice.

(3) Let u,m ∈ ND(E). It suffices to show that u ∨ m, u ∧ m ∈ ND(E).
Assume that w ∈ E. If w ≤ u,m, then w ≤ u ∧ m. And, if u ≤ w ≤ m or
m ≤ w ≤ u, then u ∧m ≤ u ≤ w or u ∧m ≤ m ≤ w. Thus u ∧m ∈ ND(E).
Analogously, u ∨ m ∈ ND(E) also holds. Therefore, (ND(E),∨,∧, 0, 1) is a
lattice. By definition of ND(E), we see immediately that it is a distributive
lattice.

Theorem 3.6. Let E be an EQ-algebra. If for any x, y ∈ SN (E), x∧(x→ y) =
x∧y holds and SN (E) is closed with the operator →. Then, (SN (E),∧,∨,→, 1)
is a Hertz-algebra and a Heyting-algebra.

Proof. Firstly, we prove that it is a Hertz-algebra. Obviously, (HE1) holds. By
Proposition 2.3 (3), we know that (HE2) holds. By hypothesis, the (HE3) is
valid. Moreover, from Proposition 3.4 (2), it implies that (HE4) holds. Hence,
(SN (E),∧,∨,→, 1) is a Hertz-algebra.

Now, we show that it is a Heyting-algebra. For any x, y, w ∈ SN (E), if
x ≤ y → w, then x∧y ≤ y∧ (y → w) = y∧w ≤ w, i.e. x∧y ≤ w. Conversely, if
x∧ y ≤ w, then it follows that x ≤ y → x = 1∧ (y → x) = (y → y)∧ (y → x) =
y → (y∧x) ≤ y → w by Proposition 2.3 (3) and Proposition 3.4 (2). Therefore,
the conclusion holds.

4. Nodal filters on EQ-algebras

In this section, we introduce the notion of an nodal filter on EQ-algebras and give
the equivalent characterization of it. Furthermore, the relationships between
nodal filters and node elements, as well as between nodal filters and other filters
are discussed.
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Definition 4.1. Let H be a filter of an EQ-algebra. If H is a node in poset
(F(E),⊆), then it is said to be an nodal filter (for short, n-filter).

Let us denote the set of all n-filters of E by NF (E) in the sequel.

Example 4.2 ([16]). Let E = {0, u, v, p, q, 1} such that 0 < u, v < p < 1,
0 < v < q < 1. Then, (E,∧,⊗,∼, 1) is an EQ-algebra, where the operations ⊗
and ∼ are given by the following tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 u 0 u 0 u
v 0 0 0 0 v v
p 0 u 0 u v p
q 0 0 v v q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 q p v u 0
u q 1 v p 0 u
v p v 1 q p v
p v p q 1 v p
q u 0 p v 1 q
1 0 u v p q 1

It is easy for us to check that F(E) = {{1}, {q, 1}, {u, p, 1}, {u, v, p, q, 1}, E},
but NF(E) = {{1}, {u, v, p, q, 1}, E}.

Example 4.3 ([7]). Suppose that E = {0, u, v, p, q, 1} with 0 < u < v, p <
q < 1. Then, we can verify that (E,∧,⊗,∼, 1) is an EQ-algebra, where the
operations ⊗ and ∼ are given by the next tables:

⊗ 0 u v p q 1
0 0 0 0 0 0 0
u 0 0 0 0 0 u
v 0 0 0 0 0 v
p 0 0 0 0 0 p
q 0 0 0 0 q q
1 0 u v p q 1

∼ 0 u v p q 1
0 1 1 u u u u
u 1 1 u u u u
v u u 1 p p p
p u u p 1 p p
q u u p p 1 q
1 u u p p q 1

Obviously, F(E) = {{1}, {q, 1}, {v, q, 1}, {u, p, q, 1}, {u, v, p, q, 1}, E}, butNF (E)
= {{1}, {q, 1}, {u, v, p, q, 1}, E}.

From the above Examples, we see immediately that n−filters are distinct
from filters of EQ-algebras.

Theorem 4.4. Let H be a filter of an idempotent and good EQ-algebra. Then,
H is an n-filter if and only if u ∈ H and v /∈ H imply v < u for any u, v ∈ E.

Proof. (⇒) Assume that u ∈ H and v /∈ H for any u, v ∈ E. Then, it follows
from H is an n-filter that ⟨u⟩ ⊆ H and H ⊆ ⟨v⟩, which implies u ∈ ⟨v⟩. Hence,
vn ≤ u for some n ∈ N . Moreover, by assumption, we get v = vn. If v = u,
then v ∈ H, which is a contradiction. Hence, it readily follows that v < u.

(⇐) Suppose that v < u, for all u ∈ H and v /∈ H. If there exists a filter J
such that H and J are incomparable. Then, u ∈ H \ J and v ∈ J \H for some
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u, v ∈ E. Now, since J is a filter and v < u, it implies that u ∈ J , which is
impossible. Hence, either H ⊆ J or J ⊆ H for any filter J of E . Therefore, we
obtain that H is an n-filter.

Corollary 4.5. If E is linearly ordered, then each filter is an n-filter.

Proof. For any filter H such that u ∈ H and v /∈ H. Since u ∈ ND(E), we get
v < u. Indeed, if u ≤ v, then v ∈ H as H is a filter. Hence, by the Theorem
above, we obtain that H is an n-filter.

Proposition 4.6. Let H be a filter of a good EQ-algebra. If u ∈ H is a node,
then H is an n-filter. Especially, the filter ⟨u⟩ generated by u is also an n-filter.

Proof. Assume H is a filter of E and v /∈ H. If u ∈ ND(E), then either u ≤ v
or v ≤ u. If u ≤ v, then v ∈ H, which is a contradiction. Thus, it readily follows
that v < u. By Theorem 4.4, we obtain that H is an n-filter.

Remark 4.7. In Example 4.2, we obtain that {u, v, p, q, 1} is an n-filter of E ,
but v /∈ ND(E), which implies that the converse of Proposition 4.6 may not
hold, in general.

Proposition 4.8. Let E be an idempotent and good EQ-algebra.

(1) If ⟨u⟩ ∈ NF (E), then u ∈ ND(E).

(2) If E has n node elements, then it has at least n n-filters.

Proof. (1) For any v ∈ E, then either v ∈ ⟨u⟩ or v /∈ ⟨u⟩. If v /∈ ⟨u⟩, then we
obtain that v < u by Theorem 4.4. If v ∈ ⟨u⟩, then un = u ≤ v for some n ∈ N .
Hence, u is a node element.

(2) Let u ∈ ND(E). Then, it follows that ⟨u⟩ is a nodal filter by Proposition
4.6. Now, assume u and v are two nodes of E. If ⟨u⟩ = ⟨v⟩, then u ∈ ⟨v⟩ and
v ∈ ⟨u⟩. Since u2 = u and v2 = v, we obtain u ≥ v and v ≥ u, which implies
that u = v. Therefore, we see immediately that it has at least n n-filters.

Combining Proposition 4.6 and Proposition 4.8, we know that there is a
one-to-one correspondence between nodal principle filters and node elements in
an idempotent EQ-algebra.

Proposition 4.9. Suppose that H is an n-filter of a residuated EQ-algebra.
Then, for any u ∈ ND(E), H(u) = ⟨H ∪ {u}⟩ is an n-filter.

Proof. If u ∈ H, then H(u) = H. Thus, it readily implies that H(u) is an
n-filter of E . By the above Proposition, we obtain that ⟨u⟩ is an n-filter. Now,
suppose that J ∈ F(E) and J ⊈ H(u). Note that if J ⊆ H or J ⊆ ⟨u⟩, then
J ⊆ H(u), which is contradiction. Hence, we get H, ⟨u⟩ ⊆ J . If v ∈ H(u), then
u →n v ∈ H ⊆ J for some n ∈ N . Thus, we know that v ∈ J as J is a filter.
Hence, H(u) ⊆ J , which readily follows that H(u) is an n-filter.
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Example 4.10. In Example 4.2, we know that H = {1} is an n-filter. And,
one can check that p /∈ ND(E) and H(p) = {u, p, 1} /∈ NF (E). Moreover,
J = {q, 1} /∈ NF (E) but J(v) = H(v) = E ∈ NF (E). That is to say, the
converse of Proposition 4.9 may not hold, in general.

Proposition 4.11. Assume that E1 and E2 are two idempotent and good EQ-
algebras and g : E1 → E2 is a homomorphism.

(1) If g is injective and H ∈ NF (E2), then g
−1(H) = {a ∈ E1 | g(a) ∈ H} ∈

NF (E1).

(2) If g is surjective and H ∈ NF (E1), then g(H) ∈ NF (E2).

Proof. (1) Firstly, we show that g−1(H) is a filter. Since g(1E1) = 1E2 ∈ H,
we get 1E1 ∈ g−1(H), i.e. (F1) holds. For any a, b ∈ g−1(H), it implies that
g(a), g(b) ∈ H. And, becauseH ∈ NF (E2), we obtain g(a⊗b) = g(a)⊗g(b) ∈ H,
which implies (a ⊗ b) ∈ g−1(H), i.e. (F2) holds. For any a, b ∈ E1, assume
a, a → b ∈ g−1(H). Then, g(a), g(a → b) ∈ H, i.e. g(a), g(a) → g(b) ∈ H.
Thus, g(b) ∈ H and so b ∈ g−1(H), i.e. (F3) holds. Let a → b ∈ g−1(H).
Then, g(a) → g(b) = g(a → b) ∈ H, which readily follows that (g(a)⊗ g(c)) →
(g(b) ⊗ g(c)) ∈ H, where c ∈ E1 and g(c) ∈ H, i.e. g((a ⊗ c) → (b ⊗ c)) ∈ H.
Hence (a⊗c) → (b⊗c) ∈ g−1(H), i.e. (F4) holds. Therefore, we see immediately
that g−1(H) is a filter.

Now, we shall prove that g−1(H) is an n-filter. Let a ∈ g−1(H) and b /∈
g−1(H). Then, g(a) ∈ H and g(b) /∈ H. Since H is an n-filter and a2 = a
holds, for all a ∈ E1, we have g(b) < g(a) by Theorem 4.4, which implies
that g(b → a) = g(b) → g(a) = 1E2 . Moreover, since g(1E1) = 1E2 and g is
injective, we obtain that b → a = 1E1 and so b ≤ a. If b = a, then g(b) = g(a),
which generates a contradiction, and so b < a. Now, by Theorem 4.4, we see
immediately that g−1(H) is an n-filter.

(2) Analogously, we show that g(H) is a filter firstly. Since 1E2 = g(1E1) ∈
g(H), it implies that (F1) holds. Let a, b ∈ g(H). Since g is surjective, there
exist a1, b1 ∈ H such that g(a1) = a, g(b1) = b. Hence a ⊗ b = g(a1) ⊗ g(b1) =
g(a1 ⊗ b1) ∈ g(H), i.e. (F2) holds. Now, let a, a → b ∈ g(H), i.e. g(a1),
g(a1) → g(b1) = g(a1 → b1) ∈ g(H). Thus, we get a1, a1 → b1 ∈ H, and so
b1 ∈ H. Hence, we obtain that b = g(b1) ∈ g(H), i.e. (F3) holds. Moreover, let
a → b ∈ g(H). Then, g(a1) → g(b1) = g(a1 → b1) ∈ g(H), i.e. a1 → b1 ∈ H.
Hence, (a1 ⊗ c1) → (b1 ⊗ c1) ∈ H, where c1 ∈ E1, and so (g(a1) ⊗ g(c1)) →
(g(b1) ⊗ g(c1)) = g((a1 ⊗ c1) → (b1 ⊗ c1)) ∈ H, i.e. (F4) holds. Therefore, we
see immediately that g(H) is a filter.

Now, we prove g(H) is an n-filter. Let a ∈ g(H) and b /∈ g(H). Since g is
surjective, there exists a1 ∈ H such that g(a1) = a. But there is no b1 ∈ H
such that g(b1) = b. Moreover, because b1 /∈ H, then we get b1 < a1 and
so b1 → a1 = 1. Thus, it implies g(b1) → g(a1) = 1, i.e. g(b1) ≤ g(a1). If
g(b1) = g(a1), i.e. a = b, which is a contradiction. Hence, g(b1) < g(a1), i.e.



ON NODAL FILTER THEORY OF EQ-ALGEBRAS 589

b < a. Therefore, we see immediately that g(H) is an n-filter by Theorem
4.4.

In what follows, we will prove the relationships among n-filters, (positive)
implicative filters, prime filters and obstinate filters, in genaral. Futhermore, we
discuss the relationships among them.

Definition 4.12 ([10]). Let H be a proper filter of an EQ-algebra. Then, H is
called prime if x→ y ∈ H or y → x ∈ H for any x, y ∈ E.

Example 4.13. (1) In Example 4.2, we obtain that H1 = {1} is an n-filter.
Now, since p ∨ q = 1 ∈ {1}, but p, q /∈ {1}, we obtain that it is not a prime
filter. Moreover, H2 = {u, p, 1} /∈ NF (E), but it is a implicative filter and a
prime filter. Furthermore, H3 = {q, 1} is a obstinate filter, but H3 /∈ NF (E).

(2) In Example 4.3, although H3 = {1} ∈ NF (E), it is not a positive
implicative filter as p → (1 → v) = 1 ∈ {1}, p → 1 = 1 ∈ {1}, but p → v = u ∈
{1}. Also, H2 = {u, p, q, 1} is a positive implicative and obstinate filter, but it
is not an n-filter.

Lemma 4.14. Let H be a filter of a prelinear and lattice-orderd EQ-algebra.
Then, H is a prime filter iff for any x, y ∈ E, x ∨ y ∈ H implies x ∈ H or
y ∈ H.

Proof. (⇒) Let x → y ∈ H and x ∨ y ∈ H. Since (x ∨ y) ≤ (x → y) → y, we
have (x→ y) → y ∈ H, and so y ∈ H. As to another case, we can immediately
obtain that x ∈ H.

(⇐) Let x, y ∈ E. Since (x → y) ∨ (y → x) = 1 ∈ H, we have x → y ∈ H
or y → x ∈ H by assumption. Therefore, it readily follows that H is a prime
filter.

Proposition 4.15. Each non principal n-filter H is a prime filter of a prelinear
EQ-algebra.

Proof. Suppose there are x, y ∈ E satisfying x ∨ y ∈ H but x /∈ H, y /∈ H.
Then, we know that ⟨x ∨ y⟩ ⊆ H, ⟨x⟩ ⊈ H and ⟨y⟩ ⊈ H. And, by the fact that
H is a nodal filter, it follows that H ⊆ ⟨x⟩ and H ⊆ ⟨y⟩. Thus, by Theorem 2.6
(3), we obtain H ⊆ ⟨x⟩∩⟨y⟩ = ⟨x∨y⟩. For this reason, we get that H = ⟨x∨y⟩,
which is a contradiction. Hence, we obtain that x ∈ H or y ∈ H, and so H is a
prime filter.

Proposition 4.16. Let H be an obstinate filter of a bounded EQ-algebra. If
(x⊗ y′) ≤ y for any x, y ∈ E, then H is an n-filter.

Proof. Assume H is not an n-filter. Then, we get J ⊈ H and H ⊈ J for some
J ∈ F(E). Thus, there are u, v ∈ E such that u ∈ H/J and v ∈ J/H. It follows
from H is an obstinate filter that v′ = v → 0 ∈ H, and so u⊗v′ ∈ H. Moreover,
since (u ⊗ v′) ≤ v, we get v ∈ H, which generates a contradiction. Hence, we
see immediately that H is an n-filter.
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Proposition 4.17. Suppose H is an implicative filter of a good EQ-algebra. If
d is a dense element for any d ∈ E, then H is an n-filter.

Proof. Suppose H is not an n-filter. Firstly, we show that d′′ → d ∈ H for any
d ∈ E. Since d′ → 0 ≤ d′ → d, we have d′′ → (d′ → d) = 1 ∈ H. And, because
d ≤ d′′ → d, we get d′ → d ≤ (d′′ → d)′ → d. Thus d′′ → (d′ → d) ≤ d′′ →
[(d′′ → d)′ → d] ∈ H, which implies that 1 → [(d′′ → d)′ → (d′′ → d)] = (d′′ →
d)′ → (d′′ → d) = d′′ → [(d′′ → d)′ → d] ∈ H. By definition of an implicative
filter, we know that d′′ → d ∈ H.

Assume H is not an n-filter of E . Then, J ⊈ H and H ⊈ J for some
J ∈ F(E). Thus, v ∈ J/H for some v ∈ E. By the conclusion above, we obtain
that v′′ → v ∈ H. Since v is a dense element, we have v′′ → v = v ∈ H, which
generates a contradiction. Hence, we see immediately that H is an n-filter.

Proposition 4.18. Assume H is a positive implicative filter of a residuated
EQ-algebra. If y → (x ⊙ y) = x → y holds for any x, y ∈ E, then H is an
n-filter.

Proof. Assume that H is not an n-filter. Firstly, we shall prove that for any
x ∈ E, x → x2 ∈ H. Since x → (x → x2) = x2 → x2 = 1 ∈ H and
x → x = 1 ∈ H. Then, by definition of a positive implicative filter, we get
x → x2 ∈ H. If H is not an n-filter, then there is J ∈ F(E) satisfying J ⊈ H
and H ⊈ J . Moreover, assume x ∈ H/J and y ∈ J/H. By the conclusion
above, it follows that y → y2 ∈ H. Then, x ⊗ (y → y2) ∈ H. And, because
x⊗ (y → y2) ≤ y → (x⊗ y2) ≤ y → (x⊗ y) = x→ y, we have x→ y ∈ H, and
so y ∈ H, which is a contradiction. Hence, we obtain that H is an n-filter.

Proposition 4.19. Let H be a non principal n-filter of an EQ-algebra E. Then,
(E/H,∧,⊙,∼H , 1) is linearly ordered.

Proof. Let x/H, y/H ∈ E/H and x/H ≰ y/H. Then, we can obtain that
x→ y /∈ H. Moreover, because H is a non principal n-filter, then from Theorem
4.15 that we get H is a prime filter. Hence, it readily follows that y → x ∈ H,
and so [y] ≤ [x]. Thus, we see immediately that E/H is a chain.

Lemma 4.20 ([9]). Assume θ is a congruence relation on a separated EQ-
algebra. Then, F = [1]θ = {a ∈ E | aθ1} is a filter.

Theorem 4.21. Assume E is an EQ-algebra. Then, [1]θ is an n-filter iff θ is a
node of Con(E), where Con(E) denotes the set of all congruence relation of E.

Proof. Note that the mapping θ 7→ Fθ of Con(E) on to NF (E) is an isomor-
phism and Fθ is an n-filter iff it is a node of NF (E).
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5. The structures of the set of all nodal filters on EQ-algebras

In this section, we study the algebraic properties NF (E) and topological prop-
erties of NP (E) on EQ-algebras.

Let O, J ∈ NF (E). Define five operations as follows:

O ⊓ J := O ∩ J,O ⊔ J := ⟨O ∪ J⟩, O → J := {a ∈ E | O ∩ ⟨a⟩ ⊆ J},
O ⊗ J := {o⊗ j | o ∈ O, j ∈ J}, O′ := O → {1}.

Proposition 5.1. Let E be an EQ-algebra. Then, for any O, J ∈ NF (E), the
following properties hold:

(1) O ⊓ J , O ⊔ J ∈ NF (E).

(2) O → J ∈ NF (E).

(3) O ⊗ J ∈ NF (E) and O ⊗ J = O ∪ J .

Proof. (1) For any K ∈ F(E). If O, J ⊆ K, then O ⊔ J = ⟨O ∪ J⟩ ⊆ K. And,
if K ⊆ O, J , we have K ⊆ O ⊆ ⟨O ∪ J⟩ = O ⊔ J . Now, if O ⊆ K ⊆ J or
J ⊆ K ⊆ O, we obtain that K ⊆ ⟨O ∪ J⟩ = O ⊔ J . Thus, it readily follows that
O ⊔ J ∈ NF (E). Analogously, we can prove that O ⊓ J ∈ NF (E) hold.

(2) If O = J , we can get that O → J = E ∈ NF (E). Now, if O ̸= J .
Suppose that O ⊆ J . Then, O ∩ ⟨a⟩ ⊆ O ⊆ J for any a ∈ E, which implies
that O → J = E. If J ⊆ O, we shall prove that O → J = J . In fact, for
any a ∈ O → J , if a ∈ J , then O → J ⊆ J . And, if a /∈ J and a ∈ O, we
get ⟨a⟩ ⊆ O. Thus, ⟨a⟩ = O ∩ ⟨a⟩ ⊆ J , which is a contradiction. Suppose that
a /∈ J and a /∈ O. Then, we have O ⊆ ⟨a⟩, which means O = O ∩ ⟨a⟩ ⊆ J .
Moreover, because J ⊆ O, we get that O = J , which is a contradiction. Hence,
O → J ⊆ J . Conversely, for any a ∈ J , we can easily get ⟨a⟩ ⊆ J , which implies
O ∩ ⟨a⟩ ⊆ ⟨a⟩ ⊆ J , that is a ∈ O → J . Hence J ⊆ O → J , and so O → J = J .

(3) If O ⊆ J , then O ⊗ J = {o⊗ j | o ∈ O, j ∈ J} = J ∈ NF (E). Similarly,
if J ⊆ O, then O⊗J = O ∈ NF (E). In any cases, O⊗J = O or J holds. Thus,
we see immediately that O ⊗ J = O ∪ J .

Remark 5.2. In particular, we know that H ′ := H → {1} ∈ NF (E) for any
H ∈ NF (E).

Proposition 5.3. Let E be an EQ-algebra. Then, for any O, J,K ∈ NF (E),
the following properties hold:

(1) E → O = O, O → O = E, O → E = E, {1} → O = E.
(2) O′ = {1}, O′′ = E, for O ̸= {1}.
(3) O → J ′ = J → O′ for O, J ̸= {1}.
(4) O ⊆ J implies J → K ⊆ O → K, K → O ⊆ K → J .
(5) O ⊆ J iff O → J = E.
(6) O ⊆ J → O and O, J ⊆ O ⊗ (O → J).
(7) O ⊗ (J ⊗K) = (O ⊗ J)⊗K.
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Proof. (1) By definition, we have E → O = {a ∈ E | E ∩ ⟨a⟩ ⊆ O} = {a ∈ E |
⟨a⟩ ⊆ O} = O. Similarly, we can prove other equations hold.

(2) By definition, it readily implies O′ = O → {1} = {a ∈ E | O∩⟨a⟩ ⊆ {1}}.
Now, let a ∈ O′ and a ̸= 1. If a ∈ O, then O ∩ ⟨a⟩ = ⟨a⟩ ⊈ {1}, which is a
contradiction. Thus a = 1, and so O′ = O → {1} = {1}. Furthermore, by (1),
we see immediately that O′′ = O′ → {1} = {1} → {1} = E.

(3) By (2), we get that O′ = J ′ = {1}. Then, O → J ′ = O → {1} =
O′ = {1}. Similarly, we can obtain J → O′ = {1}. Hence, we obtain that
O → J ′ = J → O′.

(4) For any a ∈ J → K, we get J ∩ ⟨a⟩ ⊆ K. And, since O ⊆ J , it readily
follows that O∩⟨a⟩ ⊆ J∩⟨a⟩ ⊆ K. Thus a ∈ O → K. That is J → K ⊆ O → K.
Analogously, we can obtain that K → O ⊆ K → J .

(5) By definition, we know that O ⊆ J iff ⟨a⟩ ∩ O ⊆ J holds for any a ∈ E
iff O → J = E.

(6) By the proof of Proposition 5.1, we obtain that if J ⊆ O, then O⊗ (O →
J) = O ⊗ J = O and J → O = E. And, if O ⊆ J , then O ⊗ (O → J) = E and
J → O = J . Therefore, in any case, we have O ⊆ J → O and O, J ⊆ O⊗ (O →
J).

(7) The proof is clear.

Proposition 5.4. Let E be an EQ-algebra. Then, (NF (E),⊔,⊓) is a bounded
distributive lattice.

Proof. By Proposition 5.1 (1), we know that (NF (E),⊔,⊓) is a lattice. Next we
shall show that O∩⟨J∪K⟩ = ⟨⟨O∩J⟩∪⟨O∩K⟩⟩ holds for any O, J,K ∈ NF (E).
Let us consider the following six cases:

Case 1. Assume O ⊆ J ⊆ K. Then, O ∩ ⟨J ∪K⟩ = O ∩K = O = ⟨O ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 2. Assume O ⊆ K ⊆ J . Then, O ∩ ⟨J ∪K⟩ = O ∩ J = O = ⟨O ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 3. Assume K ⊆ O ⊆ J . Then, O ∩ ⟨J ∪K⟩ = O ∩ J = O = ⟨O ∪K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 4. Assume K ⊆ J ⊆ O. Then, O ∩ ⟨J ∪K⟩ = O ∩ J = J = ⟨J ∪K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 5. Assume J ⊆ K ⊆ O. Then, O ∩ ⟨J ∪K⟩ = O ∩K = K = ⟨J ∪K⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Case 6. Assume J ⊆ O ⊆ K. Then, O ∩ ⟨J ∪K⟩ = O ∩K = O = ⟨J ∪ O⟩ =
⟨⟨O ∩ J⟩ ∪ ⟨O ∩K⟩⟩.

Hence, we obtain that (NF (E),⊔,⊓) is a bounded distributive lattice.

Theorem 5.5. Assume that E is an EQ-algebra. Then, (NF (E),⊓,→, E) is a
Hertz-algebra.
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Proof. It is apparent that (HE1) is valid. By Proposition 5.3 (6), we know that
(HE2) holds. For (HE3), if O ⊆ J , then O ⊓ (O → J) = O ⊓ E = O = O ⊓ J .
And, if J ⊆ O, then O ⊓ (O → J) = O ⊓ J . Hence, it implies that (HE3) holds.
Now, we prove that (HE4) is valid and we consider the following scenarios:

Case 1. Suppose that O ⊆ J ⊆ K. Then, O → (J ⊓ K) = O → J = E =
E ⊓ E = (O → J) ⊓ (O → K).

Case 2. If O ⊆ K ⊆ J , it follows that O → (J ⊓K) = O → K = E = E ⊓ E =
(O → J) ⊓ (O → K).

Case 3. If J ⊆ O ⊆ K, we conclude that O → (J ⊓K) = O → J = J = J ⊓E =
(O → J) ⊓ (O → K).

Case 4. Suppose J ⊆ K ⊆ O, we obtain that O → (J ⊓K) = O → J = J =
J ⊓K = (O → J) ⊓ (O → K).

Case 5. If K ⊆ O ⊆ J , it implies that O → (J ⊓K) = O → K = K = E ⊓K =
(O → J) ⊓ (O → K).

Case 6. If K ⊆ J ⊆ O, we have O → (J ⊓K) = O → K = K = J ⊓K = (O →
J) ⊓ (O → K).

Hence, (HE4) holds. Therefore, we obtain that (NF (E),⊓,→, E) is a Hertz-
algebra.

Theorem 5.6. Let E be an EQ-algebra. Then, the following properties hold:

(1) (NF (E),⊗, {1}) is a commutative monoid.

(2) (NF (E),→, E) is a Hilbert algebra.

(3) (NF (E),⊔,⊓,→, E) is a Heyting algebra.

(4) (NF (E),→, E) is a BCK-algebra.

Proof. (1) If O ⊆ J , then O ⊗ J = J = J ⊗ O. And, if J ⊆ O, we get
O ⊗ J = O = J ⊗ H. Moreover, because O ⊗ {1} = O = {1} ⊗ O, we see
immediately that (NF (E),⊗, {1}) is a commutative monoid.

(2) Firstly, we show that (HL1) is valid. If O ⊆ J , then we obtain O →
(J → O) = O → O = E by Proposition 5.1 and Proposition 5.3 (1). Similarly,
if J ⊆ O, it follows that O → (J → O) = O → E = E. Hence, we conclude that
(HL1) holds.

Next, we shall prove that (HL2). If O ⊆ J ⊆ K, then [O → (J → K)] →
[(O → J) → (O → K)] = (O → E) → (E → E) = E → E = E. And, if
O ⊆ K ⊆ J , then [O → (J → K)] → [(O → J) → (O → K)] = (O → K) →
(E → E) = E. Moreover, if K ⊆ O ⊆ J or K ⊆ J ⊆ O or J ⊆ K ⊆ O or
J ⊆ O ⊆ K, we can prove it in a similar way. Thus, we obtain that (HL2) holds.

Finally, by Proposition 5.3 (5), we can easily check that (HL3) holds. There-
fore, (NF (E),→, E) is a Hilbert algebra.



594 JIE QIONG SHI and XIAO LONG XIN

(3) By Proposition 5.4, we know that (NF (E),⊔,⊓) is a bounded distribu-
tive lattice. Now, for any O, J,K ∈ NF (E), we shall prove that O ∩K ⊆ J iff
K ⊆ O → J . Let us take the following six cases into account:

Case 1. If O ⊆ J ⊆ K, then O ∩K = O ⊆ J iff K ⊆ E = O → J .

Case 2. If O ⊆ K ⊆ J , then O ∩K = O ⊆ J iff K ⊆ E = O → J .

Case 3. If K ⊆ O ⊆ J , then O ∩K = K ⊆ J iff K ⊆ E = O → J .

Case 4. If K ⊆ J ⊆ O, then O ∩K = K ⊆ J iff K ⊆ E = O → J .

Case 5. If J ⊆ O ⊆ K, then O ∩K = O ⊈ J iff K ⊈ J = O → J .

Case 6. If J ⊆ K ⊆ O, then O ∩K = K ⊈ J iff K ⊈ J = O → J .

Hence, we obtain that (NF (E),⊔,⊓,→, E) is a Heyting algebra.

(4) Firstly, we show that (B1) holds. Let us consider the following six sce-
narios:

Case 1. Assume O ⊆ J ⊆ K. Then, (J → K) → [(K → O) → (J → O)] =
E → (O → O) = E → E = E.

Case 2. If O ⊆ K ⊆ J , then (J → K) → [(K → O) → (J → O)] = K → (O →
O) = K → E = E.

Case 3. If K ⊆ O ⊆ J , then (J → K) → [(K → O) → (J → O)] = K → (E →
O) = K → O = E.

Case 4. Suppose K ⊆ J ⊆ O, then (J → K) → [(K → O) → (J → O)] = K →
(E → E) = K → E = E.

Case 5. If J ⊆ K ⊆ O, then (J → K) → [(K → O) → (J → O)] = E → (E →
E) = E.

Case 6. If J ⊆ O ⊆ K, then (J → K) → [(K → O) → (J → O)] = E → (O →
E) = E.

Hence, we obtain that (B1) holds.

As for (B2), if O ⊆ J , then it implies that J → ((J → O) → O) = J →
(O → O) = J → E = E by Proposition 5.3 (1). Similarly, if J ⊆ O, we can get
that J → ((J → O) → O) = J → (E → O) = J → O = E. Hence, we conclude
that (B2) holds. Moreover, from Proposition 5.3 (1) and (5), we can easily check
that (B3), (B4) and (B5) hold. Therefore, we obtain that (NF (E),→, E) is a
BCK-algebra.

Theorem 5.7. Suppose that E is an EQ-algebra. If for any {1} ̸= O, J ∈
NF (E), O∩J ̸= {1}, then (NF (E),⊔,⊓,′ , {1}, E) is a semi-De Morgan algebra.

Proof. Similar to above, it follows that it is a bounded distributive lattice by
Theorem 5.4. Now, for any O, J ∈ NF (E), we shall show that (O⊔J)′ = O′⊓J ′,
(O ⊓ J)′′ = O′′ ⊓ J ′′ and O′ = O

′′′
. If O = J = {1}, since O′ = E and J ′ = E,

we get (O⊔J)′ = ⟨O∪J⟩ → {1} = {1} → {1} = E = E∩E = O′∩J ′ = O′⊓J ′,
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(O ⊓ J)′′ = ((O ⊓ J)′)′ = E′ = {1} = {1} ∩ {1} = O′′ ∩ J ′′ = O′′ ⊓ J ′′ and
O

′′′
= E = O′. Now, assume O = {1} and J ̸= {1}. Because O′ = E, it follows

that (O ⊔ J)′ = ⟨O ∪ J⟩ → {1} = J → {1} = J ′ = J ′ ∩ E = J ′ ∩ O′ = J ′ ⊓ O′

and (O⊓J)′′ = O′′ = {1} = {1}∩J ′′ = O′′∩J ′′ = O′′⊓J ′′ and O′ = E = O
′′′
by

Proposition 5.3 (2). Finally, assume O ̸= {1} and J ̸= {1}. Since O′ = J ′ = {1},
we obtain (O ⊔ J)′ = ⟨O ∪ J⟩ → {1} = {1} = {1} ∩ {1} = O′ ∩ J ′ = O′ ⊓ J ′,
(O ⊓ J)′′ = ((O ⊓ J) → {1})′ = {1}′ = E = E ∩ E = O′′ ∩ J ′′ = O′′ ⊓ J ′′ and
O

′′′
= {1}′′ = E′ = {1} = O′. Hence, the conclusion holds.

In the following, some topological properties of NF (E) will be stated and
proved. By Proposition 4.15, we know that each non principal nodal filter is
prime. Let us call this kind of filter nodal prime filter and denote the set of all
nodal prime filters by NP (E) .

Proposition 5.8. Suppose H is a prime filter of an EQ-algebra.

(1) If H1 is a proper filter with H ⊆ H1, then H1 is a prime filter.

(2) If {Hi | i ∈ I} ⊆ F(E) satisfying H ⊆
⋂
i∈I Hi, then {Hi | i ∈ I} is a

chain.

Proof. (1) It follows from H is a prime that either a → b ∈ H ⊆ H1 or
b→ a ∈ H ⊆ H1 for any a, b ∈ E. Thus, we obtain that H1 is a prime filter.

(2) Let H1, H2 ∈ {Hi | i ∈ I}. When H1 = E or H2 = E, the proof is
obvious. Now, let H1 ̸= E, H2 ̸= E and H1 ⊈ H2, H2 ⊈ H1. Then, u ∈ H1 \H2

and v ∈ H2 \ H1 for some u, v ∈ E. Since H ⊆
⋂
i∈I Hi ⊆ H1 ∩ H2, we know

that H1 ∩H2 is prime. Moreover, since ⟨u⟩ ∈ H1 and ⟨v⟩ ∈ H2, it follows that
⟨u⟩ ∩ ⟨v⟩ ⊆ H1 ∩ H2, and so u ∈ ⟨u⟩ ⊆ H1 ∩ H2 or v ∈ ⟨v⟩ ⊆ H1 ∩ H2, which
generates a contradiction. Therefore, H1 ⊆ H2 or H2 ⊆ H1, it turns out that
{Hi | i ∈ I} is a chain.

Theorem 5.9. Let H be a filter of an EQ-algebra and ∅ ≠ I ⊆ E with I∩H = ∅.
Then, there is a prime filter J satisfying H ⊆ J and I ∩ J = ∅.

Proof. Denote Γ = {K ∈ N (F ) | H ⊆ K and I ∩ K = ∅}. It follows from
H ∈ Γ that Γ is non-empty. Assume {Ki | i ∈ I} ⊆ Γ is a chain. Then,
J =

⋃
i∈I Ki is a maximal element in Γ by Zorn’s Lemma, and so we shall show

that J is a filter. Obviously, 1 ∈ J . For any u ∈ J and u ≤ v, we get u ∈ Ki1

for some i1 ∈ I. And, since Ki1 is a filter, we obtain that v ∈ Ki1 ⊆ J . Suppose
that x, y ∈ J . Then, there are i, j ∈ I such that x ∈ Ki, y ∈ Kj . If Ki ⊆ Kj ,
then we get x⊗ y ∈ Ki ⊆ J . Otherwise, we obtain that x⊗ y ∈ Kj ⊆ J . Now,
for any u → v ∈ J , there exists i2 ∈ I such that u → v ∈ Ki2 . Thus, it follows
from Ki2 is a filter that u ⊙ w → v ⊙ w ∈ Ki2 ⊆ J for any w ∈ E. Hence, we
obtain that J is a filter. By Proposition 5.8, we know that J is a prime filter.
Therefore, we see immediately that J is what we want.
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Corollary 5.10. Let H be a filter of an EQ-algebra and x /∈ H. Then, there is
a prime filter J satisfying H ⊆ J and x /∈ J .

For any A ⊆ E, denote T (A) = {H ∈ NP (E) | A ⊈ H}. Next, we will
present the properties of T (A) and the topology space induced by it.

Proposition 5.11. Let E be an EQ-algebra. Then, for any M,N ⊆ E, the
following properties hold:

(1) If M ⊆ N , then T (M) ⊆ T (N).

(2) T ({0}) = NP (E), T (∅) = ∅.

(3) If ⟨M⟩ = E, then T (M) = NP (E).

(4) T (M) = T (⟨M⟩).

(5) T (M) = T (N) iff ⟨M⟩ = ⟨N⟩.

(6) T (M) ∩ T (N) = T (⟨M⟩ ∩ ⟨N⟩).

(7) Let {Mi | i ∈ I} ⊆ E. Then, T (
⋃
i∈IMi) =

⋃
i∈I T (Mi).

Proof. (1) For any H ∈ T (M), we get M ⊈ H. And, by assumption, it follows
that N ⊈ H, which means H ∈ T (N). Thus, we obtain that T (M) ⊆ T (N).

(2) Let H ∈ NP (E). Since H is a prime filter, it implies that H is proper,
which means 0 ∈ H, that is {0} ⊆ H. Thus, we obtain that H ∈ T ({0}), and it
readily follows that T ({0}) = NP (E). Obviously, T (∅) = ∅ holds.

(3) If ⟨M⟩ = E, we know that E is the smallest filter containing M by
definition. Then, for any H ∈ NP (E), it readily follows that M ⊈ H. Thus
H ∈ T (M) holds, and then NP (E) ⊆ T (M). Hence, we obtain that T (M) =
NP (E).

(4) Since M ⊆ ⟨M⟩, we get T (M) ⊆ T (⟨M⟩) by (1). Conversely, let H ∈
T (⟨M⟩). Then, ⟨M⟩ ⊈ H. If M ⊆ H, it follows from the definition of ⟨M⟩ that
⟨M⟩ ⊆ H, which generates a contradiction. Hence, M ⊈ H, and so H ∈ T (M).
Therefore, we see immediately that T (M) = T (⟨M⟩).

(5) Assume ⟨M⟩ = ⟨N⟩. Then, we get T (⟨M⟩) = T (⟨N⟩), and so T (M) =
T (N) by (4). Conversely, let T (M) = T (N). If ⟨M⟩ ≠ ⟨N⟩, then we obtain
that there is a prime filter H satisfying ⟨M⟩ ⊆ H and ⟨N⟩ ⊈ H by Proposition
5.9. Thus, H /∈ T (M) and H ∈ T (N), which contradict to T (M) = T (N).
Therefore, ⟨M⟩ = ⟨N⟩ holds.

(6) By (4), it suffices to show that T (⟨M⟩) ∩ T (⟨N⟩) = T (⟨M⟩ ∩ ⟨N⟩).
Obviously, ⟨M⟩∩ ⟨N⟩ ⊆ ⟨M⟩, ⟨N⟩, which implies that T (⟨M⟩∩ ⟨N⟩) ⊆ T (⟨M⟩),
T (⟨N⟩), and so T (⟨M⟩ ∩ ⟨N⟩) ⊆ T (⟨M⟩) ∩ T (⟨N⟩). Conversely, for any H ∈
T (⟨M⟩) ∩ T (⟨N⟩), we obtain that ⟨M⟩ ⊈ H and ⟨N⟩ ⊈ H. Hence, there are
a ∈ ⟨M⟩ and b ∈ ⟨N⟩ satisfying a /∈ H and b /∈ H. Now, we show that
⟨M⟩ ∩ ⟨N⟩ ⊈ H. Otherwise, it follows from a ∨ b ∈ ⟨M⟩ ∩ ⟨N⟩ that a ∨ b ∈ H.
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By the fact that H is prime, we obtain that a ∈ H or b ∈ H, which generates a
contradiction. Hence, it follows that ⟨M⟩∩⟨N⟩ ⊈ H, and so H ∈ T (⟨M⟩∩⟨N⟩).

(7) Since Mi ⊆
⋃
i∈IMi for any i ∈ I, we get T (Mi) ⊆ T (

⋃
i∈IMi) for any

i ∈ I, that is
⋃
i∈I T (Mi) ⊆ T (

⋃
i∈IMi). Conversely, assume H ∈ T (

⋃
i∈IMi),

we have
⋃
i∈IMi ⊈ H by definition. Hence, there is Mi1 satisfying H ∈ T (Mi1),

and so Mi1 ⊈ H. It follows that
⋃
i∈IMi1 ⊈ H and H ∈ T (

⋃
i∈IMi). Hence,

we obtain that T (
⋃
i∈IMi) =

⋃
i∈I T (Mi).

Proposition 5.12. Let H,J be two filters of an EQ-algebra. Then, the equa-
tions T (H ⊔ J) = T (H) ∪ T (J) and T (H ∩ J) = T (H) ∩ T (J) hold.

Proof. Let K ∈ T (H) ∪ T (J). Then, H ⊈ K or J ⊈ K. Now, because
H,J ⊆ H ⊔ J , we get H ⊔ J ⊈ K, that is K ∈ T (H ⊔ J). Conversely, for any
K ∈ T (H ⊔ J), it readily implies that H ⊔ J ⊈ K. Assume that H ⊆ K and
J ⊆ K. Then, H ⊔ J ⊆ K, which is a contradiction. Thus, we get H ⊈ K
or J ⊈ K, it follows that K ∈ T (H) or K ∈ T (J), that is K ∈ T (H) ∪ T (J).
Hence, T (H ⊔ J) = T (H) ∪ T (J) holds.

Now, we prove that T (H ∩J) = T (H)∩T (J) holds. Obviously, T (H ∩J) ⊆
T (H) ∩ T (J) is valid. Conversely, for any K ∈ T (H) ∩ T (J), it implies that
H ⊈ K and J ⊈ K. Thus, u ∈ H and u /∈ K for some u ∈ E. If K ⊈ T (H ∩J),
we get H ∩ J ⊆ K, and then u ∨ v ∈ H ∩ J ⊆ K for some v ∈ J . Moreover,
since K is prime and u /∈ K, it follows that v ∈ K, and so J ⊆ K, which is a
contradiction. Hence,K ∈ T (H∩J), which implies T (H∩J) = T (H)∩T (J).

Especially, if A = {u}, then we denote T (u) = {H ∈ NP (E) | u /∈ H}.
Analogously, we have the following properties:

Proposition 5.13. Assume E is an EQ-algebra. Then, for any x, y ⊆ E, the
following properties hold:

(1) If x ≤ y, then T (y) ≤ T (x).

(2) T (0) = NP (E), T (1) = ∅.

(3) If ⟨x⟩ = E, then T (x) = NP (E).

(4) T (x) = T (⟨x⟩).

Proposition 5.14. Let E be an EQ-algebra. Then, for any x, y ⊆ E, the
following properties hold:

(1)
⋃
x∈E T (x) = NP (E).

(2) If x ∨ y exists, then T (x) ∩ T (y) = T (x ∨ y).

(3) T (x) ∪ T (y) = T (x ∧ y) = T (x⊗ y).
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Proof. (1) It follows from Proposition 5.11 (2).
(2) Let H ∈ T (x) ∩ T (y). Then, we have H ∈ T (x) and H ∈ T (y), which

implies x /∈ H, y /∈ H. If x ∨ y ∈ H, then by the fact that H is prime, we get
x ∈ H or y ∈ H, which generates a contradiction. Thus, we get x ∨ y /∈ H,
which means H ∈ T (x ∨ y). Hence, it follows that T (x) ∩ T (y) ⊆ T (x ∨ y).
Conversely, for any H ∈ T (x∨ y), it implies that x∨ y /∈ H. If x ∈ H or y ∈ H,
then we get x ∨ y ∈ H by x, y ≤ x ∨ y, which generates a contradiction. Hence,
it follows that x /∈ H and y /∈ H, that is H ∈ T (x) and H ∈ T (y), and so
H ∈ T (x) ∩ T (y). Therefore, we obtain that T (x) ∩ T (y) = T (x ∨ y).

(3) For any H ∈ T (x) ∪ T (y), it implies that H ∈ T (x) or H ∈ T (y), which
means x /∈ H or y /∈ H. Now, since H is a filter, we get x ∧ y /∈ H, that is
H ∈ T (x∧y), and so T (x)∪T (y) ⊆ T (x∧y). Conversely, for any H ∈ T (x∧y),
we have x ∧ y /∈ H. If x, y ∈ H, then x ⊗ y ∈ H, and so x ∧ y ∈ H, which
generates a contradiction. Hence, x /∈ H or y /∈ H, that is H ∈ T (x) ∪ T (y).
Therefore, T (x) ∪ T (y) = T (x ∧ y). Analogously, T (x) ∪ T (y) = T (x ⊗ y) also
holds.

Let E be an EQ-algebra and τ = {T (M) | M ⊆ E}. Then, by the above
Proposition, we have:

(1) ∅, NP (E) ∈ τ .

(2) If T (M), T (N) ∈ τ , then T (M) ∩ T (N) ∈ τ .

(3) If {T (Mi) | i ∈ I} ⊆ τ , then
⋃
i∈I T (Mi) ∈ τ .

Hence, τ is a topology on NP (E) and (NP (E), τ) is a topological space of nodal
prime filters.

Proposition 5.15. Assume that E is an EQ-algebra. Then, {T (m) | m ∈ E}
is a topological base of (NP (E), τ).

Proof. Let T (M) ∈ τ . Then, we get T (M) = T (
⋃
i∈I mi) =

⋃
i∈I T (mi),

that is to say each element in τ can be expressed by the union of elements in
subset of {T (m) | m ∈ E}. Hence, {T (m) | m ∈ E} is a topological base of
(NP (E), τ).

Proposition 5.16. Suppose that E is an EQ-algebra. Then, (NP (E), τ) is a
compact T0 space.

Proof. Firstly, we show that T (u) is compact set in (NP (E), τ) for any u ∈ E.
By definition of compact, we shall prove that each open covering of T (u) has
a finite open covering. Assume T (u) =

⋃
i∈I T (ui) = T (

⋃
i∈I ui). Then, from

Proposition 5.11 (5), we obtain that ⟨u⟩ = ⟨
⋃
i∈I ui⟩, and so u ∈ ⟨

⋃
i∈I ui⟩.

Hence, there are finite ui1 , ui2 , · · · , uin satisfying ui1 ⊗ui2 ⊗· · ·⊗uin ≤ u, which
implies T (u) ≤ T (ui1 ⊗ ui2 ⊗ · · · ⊗ uin) = T (ui1) ∪ T (ui2) ∪ · · · ∪ T (uin) ⊆⋃
i∈I T (ui) = T (u). Therefore, it follows that (NP (E), τ) is compact.
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Next, we show that (NP (E), τ) is a T0 space. Assume that H,J ∈ NP (E)
with H ̸= J . Then, we get H ⊈ J or J ⊈ H. If H ⊈ J , then there exists a such
that a ∈ H but a /∈ J . Let U = T (a). Then, it implies that J ∈ U and H ⊈ U .
If J ⊈ H, the proof is similar. Hence, the conclusion holds.

6. Conclusion

In this article, we presented the definitions of seminodes, nodes and nodal filters
in EQ-algebras and their related properties are stated and proved. At first, we
exemplify that the seminodes and nodes are different with other specific ele-
ments and show that the set ND(E) is a distributive lattice and the set SN (E)
is a Hertz-algebra and a Heyting-algebra under some conditions. Then, we in-
troduced the concept of n-filters, we studied it with the help of node elements
and obtained that there is a one-to-one correspondence between nodal princi-
ple filters and node elements in an idempotent EQ-algebra. Furthermore, the
relationships among it and other filters were given. It was turned out that each
obstinate filter and each (positive) implicative filter is an n-filter under some
conditions. Finally, we investigated the algebraic structures of NF (E) and topo-
logical structures of NP (E) on EQ-algebras and set up the connections from the
set NF (E) of all nodal filters in an EQ-algebra E to other algebraic structures,
like BCK−algebras, Hertz algebras and so on. In addition, we concluded that
(NP (E), τ) is a compact T0 space.
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Abstract. Multiset groups are multisets with its elements taken from a group and
the characteristic function of the multiset satisfying certain conditions. Apart from
the definition and examples of multiset groups, we try to explain some properties, that
a multiset should satisfy in order to become a multiset group. From this point, we
broaden the concept of multiset group to a new scenario, (A,B)- multiset group, where
A and B are non negative real numbers. The multiplicity of the identity element e
has its own importance in an (A,B)- multiset group. The count value of the elements
depends largely on the values of A and B. We have also delved upon the peculiarities
of an (A,B)- multiset group drawn from a cyclic group and defined and explored an
(A,B)- multiset normal group and cosets of (A,B)- multiset group.

Keywords: multiset, characteristic function, root set, multiset group, multiset sub-
group, level set, (A,B)- multiset group, (A,B)-multiset normal group

1. Introduction

The limitations of classical set theory is what led to the other forms of sets, such
as fuzzy set or multiset. Many researchers contributed in the development of
these generalized sets. Looking to the case of multisets (also, known as Bags),
D. E. Knuth pointed out the essentialness of such a set ([1]). Chris Brink in his
studies explained the relations and operations with multisets [2]. Later Wayne
D. Blizard developed some of the fundamental structures in multiset background
([3]). C. S. Calude [4], N.J. Wildberger [5], D. Singh [6] are some of the persons
who were put milestones in this journey. K.P. Girish and S.J. John [7] explores
the relations and functions in multiset context.

The algebraic structures, group, ring, ideal etc. with fuzzy set context are
being applied in subjects like computer science, physics and so on. Some of the

*. Corresponding author
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research work in this area are done by Azriel Rosenfield [8], Sabu Sebastian and
T. V. Ramakrishnan [9], and Yuying Li et all [10]. The structure with multiset
base are yet to be used and implemented widely. Multiset groups (shortly mset
groups) and some of its properties have been studied by the authors like A.M.
Ibrahim and P.A. Ajegwa [11], Binod Chandra Tripathy [12], A.A. Johnson [13],
P.A. Ejegwa [14], S.K. Nazmul [15], Tella [16]. Suma P. and Sunil J. John [17]
extended this to ring and ideal structures.

This paper is an attempt to extend the properties of multiset group to a
generalized form (A,B)- multiset group. Here, A and B are non negative real
numbers with A < B. Section 3 is a discussion of multiset group and some of
the properties of mset normal groups and cosets of mset groups. In section 4,
these properties are analysed in (A,B)- mset group.

2. Preliminaries

In this section, we will be revisiting some of the fundamental properties of
Multiset that have been developed by several researchers, which are necessary
for this paper.

A Multiset (shortly mset) T drawn (or derived) from a set U is represented
by a function CT : U → N , where N is the set of non negative integers. CT (u)
represents the number of occurrences of the element u in the multiset T. The
function CT is known as Characteristic function or Count Function and CT (u)
is the Count value of u in T (see, Girish and John (2009)).

Let T be an mset drawn from U , and let {u1, u2, · · · , un} be a subset of T ,
with u1 appearing k1 times, u2 appearing k2 times and so on. Then T is written
as

T = {k1|u1, k2|u2, · · · , kn|un}.

The subset S = {u1, u2, · · · , un} of U is called the Root Set of T .

Operations of multisets:-

1. Let T1 and T2 be two msets drawn from a set U . T1 is a submultiset of T2,
(T1 ⊆ T2) if CT1(u) ≤ CT2(u) for all u in U .

2. Two msets T1 and T2 are equal if T1 ⊆ T2 and T2 ⊆ T1.

3. The intersection of T1 and T2 is a multiset, T = T1 ∩ T2, with the count
function CT (u) = min{CT1(u), CT2(u)}, for every u ∈ U.

4. The union of T1 and T2 is a multiset, T = T1∪T2, with the count function
CT (u) = max{CT1(u), CT2(u)}, for every u ∈ U.

More details in [7].
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3. Multiset group

Consider the group (G, *) and a multiset T drawn from G. Then, T is said to
be a multiset group or shortly mset group if the characteristic function satisfies
the following properties:

(1) CT (g ∗ h) ≥ min{CT (g), CT (h) : g, h ∈ G};
(2) CT (g) = CT (g

−1) for all g ∈ G where g−1 is the inverse of g in G.
Let T be an mset group. A subset P of T is an mset subgroup, if P itself is

an mset group on G ([15]).

Example 3.1. Let G = {1, −1, i, −i}. Then (G, ∗) is a group, where ∗ is
the usual multiplication of real numbers. Consider the multiset T = {5|1, 3| −
1, 4|i, 4| − i}. Here T is a multiset group.

Theorem 3.1. Let T be a multiset group derived from a group (G, *) and let
S be the root set of T . Then S is a subgroup of G.

Proof. Let g, h ∈ S. Then CT (g) > 0 and CT (h) > 0, CT (g ∗ h−1) ≥
min{CT (g), CT (h

−1)} = min{CT (g), CT (h)} > 0 means that g ∗ h−1 ∈ S.

Proposition 3.1. Consider a group (G, *) with identity element e and a mul-
tiset group T drawn from G. Then:

(1) CT (e) ≥ CT (g), ∀g ∈ G;
(2) CT (g

n) ≥ CT (g),∀g ∈ G, and all natural number n. Here, gn means
g ∗ g ∗ · · ·n times.

Proof. (1) Since e = g ∗ g−1,∀g ∈ G, CT (e) ≥ min{CT (g), CT (g
−1)} = CT (g);

(2) Applying mathematical induction on n. For n = 1, CT (g) = CT (g) , and
hence the result is true. Assume the result is true for n − 1 i.e., CT (g

n−1) ≥
CT (g).

Now, CT (g
n) = CT (g

n−1 ∗ g) ≥ min{CT (g
n−1), CT (g)} = CT (g) , by induc-

tion hypothesis.

Theorem 3.2. If T is an mset derived from a group G, then T is an mset group
if and only if CT (g ∗ h−1) ≥ min{CT (g), CT (h)},∀g, h ∈ G.

Proof. First assume that T is an mset group. Then

CT (g ∗ h−1) ≥ min{CT (g), CT (h
−1)} = {min{CT (h), CT (h)}.

Conversely, suppose CT (g ∗ h−1) ≥ min{CT (g), CT (h)}, ∀g, h ∈ G.
Now, CT (e) = CT (g ∗ g−1),∀g ∈ G. ≥ min{CT (g), CM (g)}, by assumption.

So, CT (e) ≥ CT (g), ∀g ∈ G. Now, CT (g
−1) = CT (e∗g−1) ≥ min{CT (e), CT (g)} ≥

CT (g). Similarly, CT (g) = CT (e ∗ g) ≥ min{CT (e), CT (g
−1)} ≥ CT (g

−1).
Hence, we get CT (g) = CT (g

−1),∀g ∈ G, which is the second e condition of
Mset group. Now, to show the first condition, take two arbitrary elements g
and h from G.

CT (g ∗ h) = CT (g ∗ (h−1)−1) ≥ min{CT (g), CT (h
−1)}, by assumption

= min{CT (g), CT (h)}.
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Theorem 3.3. Let (G, ∗) be a group with identity e and T be an mset group
derived from G. If E = {g ∈ G : CT (g) = CT (e)}, then E is a subgroup of G.

Proof. Take g and h from E. Then, CT (g) = CT (h) = CT (e). CT (g ∗ h−1) ≥
min{CT (g), CT (h)}, by Theorem 3.4 = CT (e). Therefore, g ∗ h−1 ∈ E. Hence,
E is a subgroup of G.

Definition 3.1. Let T be an mset drawn from a group G. The subset {g :
CT (g) ≥ r} of G is known as the Level Set of T, denoted by Tr. Here, r is a
non negative real number.

Theorem 3.4. If T is an mset group drawn from a group (G, ∗) having identity
element e, then the level sets Tr are all subgroups of G.

Proof. If Tr = ϕ, then Tr is a subgroup.
If Tr is a singleton set, then Tr = {e}, which is also a subgroup of G.

Otherwise, Let g, h ∈ Tr. Then, CT (g) ≥ r and CT (h) ≥ r. Now, CT (g ∗ h−1) ≥
min{CT (g), CT (h)} ≥ r. So, Tr is a subgroups of G for all positive real number
r.

Theorem 3.5. Let T be an mset group drawn from a group (G, ∗) having
identity element e. If CT (g ∗ h−1) = CT (e), for some g and h in G, then
CT (g) = CT (h).

Proof. CT (g) = CT (g ∗e) = CT (g ∗ (h−1 ∗h)) = CT ((g ∗h−1)∗h) ≥ min{CT (g ∗
h−1), CT (h)}, = CT (h).

Similarly, starting from CT (h) , we can show that CT (h) ≥ CT (g).

Definition 3.2. An mset group T drawn from a group G is said to be an Mset
Normal group, if CT (g ∗ h ∗ g−1) ≥ CT (h), ∀g, h in G.

Proposition 3.2. If T is an mset normal group, then CT (g ∗ h) = CM (h ∗ g),
for every g and h in G.

Proof. Suppose T is an mset normal group derived from G. Then CT g ∗ h ∗
g−1) ≥ CT (h),∀g, h in G. Replacing h by h∗g, CT (g ∗ (h∗g)∗g−1) ≥ CT (h∗g).

By associativity CT (g ∗ h) ≥ CT (h ∗ g). Interchanging the role of g and h,
CT (h ∗ g) ≥ CT (g ∗ h).

Proposition 3.3. Let T an mset group drawn from a group G. If T is an mset
normal group, then Tr is a normal subgroup of G, for every r > 0.

Proof. Take an mset normal group T derived from G and r a positive real
number. Then CT (g ∗ h ∗ g−1) ≥ CT (h),∀g, h in G. Choose a h ∈ Tr. Then,
CT (h) ≥ r. For any g ∈ G, CT (g ∗ h ∗ g−1) ≥ CT (h) ≥ r, g ∗ h ∗ g−1 ∈ Tr. Tr is
a normal subgroup of G.

Theorem 3.6. Let T be an mset group drawn from a cyclic group G with gene-
rator a. Then CT (g) ≥ CT (a), ∀x ∈ G.
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Proof. Let g ∈ G. Then g = an for some non negative integer n and CT (g) ≥
CT (a), by Proposition 3.3.

Corollary 3.1. Let T be an mset group drawn from a cyclic group G with
generators a and b.Then CT (a) = CT (b).

Proof. since a is a generator, and b ∈ G, by above theorem CT (a) ≤ CT (b).
By interchanging the roles of a and b, CT (b) ≤ CT (a).

Corollary 3.2. Let T be an mset group drawn from a group G of prime order.
Then CT (g) are all equal for all g ∈ G other than the identity element.

Proof. Being prime order, G is cyclic and every element other than the identity
element of G are generators. The proof is then straight forward from above
theorem and corollary.

Definition 3.3. Let T be an mset group drawn from a group G and g ∈ G
such that CT (g) = 0. The Left Coset gM is defined as CgT (x) = CT (g ∗ x), for
x ∈ G.

Similarly, the Right Coset Tg is CTg(x) = CT (x ∗ g), for x ∈ G.

Proposition 3.4. If T is an mset group drawn from G, and g, h ∈ G, then

(a) eT = Te = T .

(b) g(hT ) = (g ∗ h)T

(c) (Tg)h = T (g ∗ h).

(d) gT = hT ⇔ T = (g−1 ∗ h)T ⇔ T = (h−1 ∗ g)T

(e) Tg = Th⇔ T = T (h ∗ g−1) ⇔ T = T (g ∗ h−1).

Proposition 3.5. Let T and R are two mset groups drawn from the same group
G, and g, h ∈ G

(a) gT = hR⇔ T = (g−1 ∗ h)R⇔ (h−1 ∗ g)T = R.

(b) Tg = Rh⇔ T = R(h ∗ g−1) ⇔ T (g ∗ h−1) = R.

4. (A,B)-multiset group

Definition 4.1. Let M be an mset drawn from a group G, and A,B are two
real numbers with 0 ≤ A < B. Then M is called an (A,B)- multiset group if
the characteristic function satisfies the following conditions.

1. max{CM (x ∗ y), A} ≥ min{CM (x), CM (y), B};

2. max{CM (x−1), A} ≥ min{CM (x), B},
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for every x and y in G.

Notation 4.1. An (A,B)- mset group is denoted by MAB.

Proposition 4.1. If M is an mset group derived from a group G, then it is an
(A,B)- mset group for every real number A and B with 0 ≤ A < B.

Proof. M is an mset group means CM (x ∗ y) ≥ min{CM (x), CM (y)}, for every
x and y in G. For 0 ≤ A < B,

max{CM (x ∗ y), A} ≥ CM (x ∗ y)
≥ min{CM (x), CM (y)}
≥ min{CM (x), CM (y), B}

M is an (A,B)- mset group.

Proposition 4.2. If an msetM derived from a group G is a (0, N)- mset group,
where N = max{CM (x) : x ∈ G}, then it is an mset group.

Proof. For any x, y ∈ G,max{C0N (x ∗ y), 0} ≥ min{CM0N
(x), CM0N

(y), N}

CM0N
(x ∗ y) ≥ min{CM0N

(x), CM0N
(y)},

since N ≥ CM (x) and N ≥ CM (y).

Similarly, by the second condition of (A,B)- mset group

max{CM0N
(x−1, 0)} ≥ min{CM0N

(x), N},
CM0N

(x−1) ≥ CM0N
(x).

Hence, the two conditions of mset group is satisfied by M0N .

Note 4.1. If an mset drawn from a group G, is not an (A,B) mset group for
all A and B with 0 ≤ A < B, then M need not be an mset group.

Example 4.1. Consider the group G = {1,−1, i,−i} with usual multiplication
and the mset M = {3|1, 4| − 1}. Here, M is a (5,6)- mset group,because both
th conditions of the definition of (A,B)-mset group is satisfied. But M is not
a (1,5)- mset group. Taking x = y = −1, LHS of condition (1) of definition is
max{CM (−1 ∗ −1), A} = max{3, 1} = 3.

RHS becomes min{CM (−1), CM (−1), 5} = min{4, 4, 5} = 4. We get LHS=3
and RHS=4, so that the first condition is not satisfied and hence not a (1, 5)-
mset group. Note that M is not an mset group.

Example 4.2. Consider the group G = {1,−1, i,−i} with usual multiplication
and the mset M = {3|1, 3| − 1, 2|i, 2| − i}. Here, M is an (A,B) mset group for
all A and B. M is an mset group also.
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Definition 4.2. Let MAB be an (A,B) mset group drawn from a group G. The
subset {x ∈ G : CMAB

(x) ≥ r} of G is known as level set of MAB and is denoted
by Mr, where r is any positive number.

The following theorem gives some of the properties of the count value of the
identity element e in an (A, B)- mset group.

Theorem 4.1. If G is a group with identity element e, and MAB- is an (A,B)-
mset group drawn from G, then:

(a) max{CMAB
(e), A} ≥ min{CMAB

(x), B},∀x ∈ G.

(b) If CMAB
(x) ≥ B, for some x ∈ G, then CMAB

(e) ≥ B.

(c) If CMAB
(x) < B, ∀x ∈ G, and CMAB

(x) > A, for atleast one x ∈ G, then
CMAB

(e) = max{CMAB
(x) : x ∈ G}.

(d) If CMAB
(e) ≤ A, then CMAB

(x) ≤ A, ∀x ∈ G.

(e) If A < CMAB
(e) < B, then CMAB

(x) ≤ CMAB
(e), ∀x ∈ G.

Proof. (a) In condition 1 of the definition of (A,B)- mset group, taking y =
x−1, we get

max{CMAB
(x ∗ x−1), A} ≥ min{CMAB

(x), CMAB
(x−1), B} i.e.

max{CMAB
(e), A} ≥ min{CMAB

(x), CMAB
(x−1), B}

≥ min{CMAB
(x), B}.

(b) Suppose there is an x0 ∈ G with CMAB
(x0) ≥ B. By part (a)

max{CMAB
(e), A} ≥ min{CMAB

(x0), B} = B,

since CMAB
(x0) ≥ BCMAB

(e) ≥ B, because A < B.

(c) If CMAB
(x) < B, ∀x ∈ G, min{CMAB

(x), B} = CMAB
(x),∀x ∈ G. So, by

part (a),

(1) max{CMAB
(e), A} ≥ CMAB

(x), ∀x ∈ G.

Suppose, there is an x0 ∈ G with

CMAB
(x0) ≥ A.

For this particular x0, (4.1) becomes max{CMAB
(e), A}≥CMAB

(x0), CMAB
(e)

≥ CMAB
(x0). Since, x0 is arbitrary, CMAB

(e) = max{CMAB
(x) : x ∈ G}.

(d) If CMAB
(e) ≤ A, max{CMAB

(e), A} = A. Then, by part (a),

A ≥ min{CMAB
(x), B},∀x ∈ G

A ≥ CMAB
(x),∀x ∈ G, since A < B.
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(e) If possible, let CMAB
(x0) ≥ B for some x0 ∈ G. Then, by part (b),

CMAB
(e) ≥ B, which is not the case. Therefore, CMAB

(x) ≤ B, ∀x ∈ G.

Since CMAB
(e) > A, by part (c), CMAB

(e) = max{CMAB
(x) : x ∈ G}. i.e.

CMAB
(x) ≤ CMAB

(e),∀x ∈ G.

Corollary 4.1. If A < CMAB
(e) < B, then CMAB

(x) = CMAB
(e), ∀x ∈ Mk,

where k = CMAB
(e)

Proof. For x ∈Mk, CMAB
(x) ≥ k, CMAB

(x) ≥ CMAB
(e). By Theorem 4.9 (e),

CMAB
(x) ≤ CMAB

(e),∀x ∈ G.

Hence, for x ∈Mk, CMAB
(x) = CMAB

(e).

Theorem 4.2. Let M be an mset drawn from a group G. If M is an (A,B)-
mset group, then the level set Mr is a subgroup of G for A < r ≤ B.

Proof. If Mr = ϕ, then it is a subgroup trivially.
If Mr has exactly one element say x, then, by Theorem 4.9 (a), x = e, the

identity element of G and is a subgroup of G.
Otherwise, take two element x and y fromMr, for a particular r. CMAB

(x) ≥
r and CMAB

(y) ≥ r and A < r ≤ B, will give min{CMAB
(x), CMAB

(y), B} ≥ r.
By definition, CMAB

(x ∗ y−1) ≥ r.
=⇒ x ∗ y−1 ∈Mr, completes the proof.

Corollary 4.2. If CMAB
(x) ≥ B and CMAB

(y) ≥ B for x ∈ G, y ∈ G, then
CMAB

(x ∗ y) ≥ B.

Proof. x ∈MB , y ∈MB and MB is a subgroup will imply x ∗ y ∈MB.

Example 4.3. In Example 4.7, Mr = G, if r ≤ 2, Mr = {1,−1}, if 2 < r ≤ 3,
and Mr = ϕ, if r > 3.

In all cases, Mr is a subgroup of G.

Theorem 4.3. If A < CMAB
(x) < B, for x ∈ G, then CMAB

(x ∗ y) =
CMAB

(x),∀y ∈ G with CMAB
(y) > CMAB

(x).

Proof. By the definition of MAB mset group

max{CMAB
(x ∗ y), A} ≥ min{CMAB

(x), CMAB
(y), B} = CMAB

(x),

since both B and CMAB
(y) are greater than CMAB

(x).

(2) ∴ CMAB
(x ∗ y) ≥ CMAB

(x).

If CMAB
(x ∗ y) > CMAB

(x), let r0 = min{CMAB
(x ∗ y), CMAB

(y), B}. Then
r0 > CMAB

(x). Also, A < r0 ≤ B and hence Mr0 is a subgroup of G.

x ∗ y ∈Mr0 , y ∈Mr0 =⇒ (x ∗ y) ∗ y−1 ∈Mr0 =⇒ x ∈Mr0 ,

i.e. CMAB
(x) ≥ r0 > CMAB

(x), a contradiction and this completes the proof.
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Theorem 4.4. If CMAB
(x) ≤ A and CMAB

(y) > A, for x, y in G, then CMAB
(x∗

y) ≤ A.

Proof. If possible, let CMAB
(x∗y) > A. Take r0 = min{CMAB

(x∗y), CMAB
(y), B}.

Then A < r0 ≤ B and hence Mr0 is a subgroup of G

x ∗ y ∈Mr0 , y ∈Mr0 =⇒ (x ∗ y) ∗ y−1 ∈Mr0 =⇒ x ∈Mr0 ,

i.e. CMAB
(x) ≥ r0 > A, a contradiction.

Theorem 4.5. If A < CMAB
(x) < B, then CMAB

(xn) ≥ CMAB
(x), for a positive

integer n.

Proof. By definition

max{CM (x ∗ x), A} ≥ min{CM (x), CM (x), B},
max{CMAB

(x2), A} ≥ min{CMAB
(x), B},

CMAB
(x2) ≥ CMAB

(x),

since A < CMAB
(x) < B. By the same argument CMAB

(x3) ≥ CMAB
(x2) ≥

CMAB
(x). Proceeding like this, CMAB

(xn) ≥ CMAB
(x).

Proposition 4.3. If G is a group and MAB is an (A,B)- mset group drawn
from G, then

(a) If CMAB
(x) ≤ A, for some x ∈ G, then CMAB

(x−1) ≤ A, for those x.

(b) If A < CMAB
(x) < B, for some x ∈ G, then CMAB

(x) = CMAB
(x−1).

(c) If CMAB
(x) ≥ B, for some x ∈ G, then CMAB

(x−1) ≥ B.

Proof. (a) Suppose CMAB
(x0) ≤ A, for x0 ∈ G. If possible, let CMAB

(x−1
0 ) >

A. Let r0 = min{CMAB
(x−1

0 ), B}. Then r0 > A, x−1
0 ∈ (MAB)r0 and being

(MAB)r0 is a subgroup of G, x0 ∈ (MAB)r0 . Therefore, CMAB
(x0) ≥ r0 > A,

a contraduction.

(b) choose x0 from G such that

(3) A < CMAB
(x0) < B.

By condition 2 of the definition of (A,B)-mset group,

max{CMAB
(x−1

0 ), A} ≥ min{CMAB
(x0), B},

max{CMAB
x−1
0 , A} ≥ CMAB

(x0), by (4.1)

since, A < CMAB
(x0),

(4) CMAB
(x−1

0 ) ≥ CMAB
(x0).
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Again by applying condition 2 of the definition of (A,B)-mset group to the
point (x−1

0 )

max{CMAB
(x0), A} ≥ min{CMAB

(x−1
0 ), B}.

In view of equation (4.4), this can be reduced to

(5) CMAB
(x0) ≥ CMAB

(x−1
0 )

the required result is obtained from the equations (4.4) and (4.5).

(c) Choose an x0 from G such that CMAB
(x0) ≥ B.

Consider MB. x0 ∈ MB. Since MB is a subgroup of G, x−1
0 ∈ MB, which

gives CMAB
(x−1

0 ) ≥ B.

4.1 MAB drawn from a cyclic group G

Theorem 4.6. Let G be a cyclic group with generator a, andMAB be an (A,B)-
mset group drawn from G.

If A < CMAB
(a) < B, then CMAB

(x) ≥ CMAB
(a),∀x ∈ G.

Proof. By an above theorem, CMAB
(x) ≤ CMAB

(e), ∀x ∈ G. So, CMAB
(a) ≤

CMAB
(e).

Now, for x ̸= e, x = an, for some positive integer n. Again, by a previous
theorem, CMAB

(an) ≥ CMAB
(a) i.e. CMAB

(x) ≥ CMAB
(a).

Theorem 4.7. Let G be a cyclic group with generator a, andMAB be an (A,B)-
mset group drawn from G. If CMAB

(a) ≥ B, then G =MB.

Proof. MB is a subgroup of G. Now to show G ⊆MB.
Let x ∈ G. Then x = an for a positive integer n. Given, CMAB

(a) ≥ B =⇒
a ∈MB =⇒ an ∈MB =⇒ x ∈MB. Hence, G =MB.

Theorem 4.8. Let G be a cyclic group with two generators a and b and MAB

be an (A,B)- mset group drawn from G. If A < CMAB
(a) < B, then CMAB

(a) =
CMAB

(b).

Proof. By Theorem 4.18,

(6) CMAB
(b) ≥ CMAB

(a).

If possible, let CMAB
(b) ≥ B. Then, by Theorem 4.14, G =MB and so a ∈MB

=⇒ CMAB
(a) ≥ B,

a contradiction. Therefore,

(7) CMAB
(b) < B.

From (4.6) and (4.7), A < CMAB
(b) < B. By Theorem 4.13

(8) CMAB
(a) ≥ CMAB

(b)

(4.6) and (4.8) together provides the requirement.
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Corollary 4.3. If G is a cyclic group of prime order with generator a and
identity element e, then CMAB

(x) = CMAB
(a),∀x ̸= e of G.

Proof. For a cyclic group of prime order, every element other than e, is a
generator, and hence the result is obtained by above theorem.

4.2 (A,B)- Mset normal group

Definition 4.3. An (A,B)- mset group drawn from a group G is said to be an
(A,B)- mset Normal group if max{CMAB

(x ∗ y ∗ x−1), A} ≥ min{CMAB
(y), B},

for every x and y in G.

Proposition 4.4. If an (A,B)- mset group is an (A,B) mset normal group,
then max{CMAB

(x ∗ y), A} ≥ min{CMAB
(y ∗ x), B}, for every x and y in G.

Proof. Replacing y by y ∗ x in the definition of (A,B)- mset normal group, we
get this proposition.

Corollary 4.4. For an abelian group G, MAB is normal iff A < CMAB
(x) < B

for all x in G.

Proposition 4.5. IfMAB is an mset normal group drawn from a group G, then
Mr is a normal subgroup of G, for A < r ≤ B.

Proof. Choose r such that A < r ≤ B. If Mr = ϕ, is a normal subgroup of G.
If Mr is a singleton set, then mr = {e}, again a subgroup of G.

On the other hand, if Mr contains more than one element. Take two ar-
bitrary elenemts x and y from Mr. Then, CMAB

(x) ≥ r and CMAB
(y) ≥ r.

Therefore, min{CMAB
(y), B} = r. From the definition of (A,B)- mset normal

group max{CMAB
(x ∗ y ∗ x−1, A} ≥ r.

CMAB
(x ∗ y ∗ x−1 ≥ r, since A < r ≤ B.

=⇒ x ∗ y ∗ x−1 ∈Mr, proving that Mr is a normal subgroup of G.

Proposition 4.6. MAB is an (A,B)- mset normal group drawn from a group
G, and x, y elements of G.

(a) If CMAB
(x) ≥ B, then CMAB

(y ∗ x ∗ y−1) ≥ B.

(b) If A < CMAB
(x) < B, then CMAB

(y ∗ x ∗ y−1) = CMAB
(x).

(c) If CMAB
(x ∗ y) ≤ A, then CMAB

(y ∗ x) ≤ A.

(d) if A < CMAB
(x ∗ y) < B, then CMAB

(x ∗ y) = CMAB
(y ∗ x).

(e) If CMAB
(x ∗ y) ≥ B, then CMAB

(y ∗ x) ≥ B.

Proof. The poof is straight forward from the definition of (A,B)- mset normal
group.
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4.3 Cosets of (A,B)- mset group

Definition 4.4. Let MAB be an (A,B)- mset group drawn from a group G and
let g ∈ G. The left coset gMAB is defined as CgMAB

(x) = min{max(CMAB
(g−1∗

x), A), B},∀x ∈ G. The right coset MABg is CMABg(x) = min{max(CMAB
(x ∗

g−1), A), B},∀x ∈ G.

Proposition 4.7. If MAB is an (A,B)- mset group drawn from a group G with
identity element e, then eMAB =MABe.

Proof. By Definition,

CeMAB
(x) = min{max(CMAB

(e−1 ∗ x), A), B},∀x ∈ G

= min{max(CMAB
(e ∗ x), A), B}, ∀x ∈ G

= min{max(CMAB
(x), A), B},∀x ∈ G

= min{max(CMAB
(x ∗ e), A), B}, ∀x ∈ G

= min{max(CMAB
(x ∗ e−1), A), B},∀x ∈ G

= CMABe(x).

Proposition 4.8. (a) CeMAB
(x) = A if CMAB

(x) ≤ A.

(b) If A < CMAB
(x) < B, then CeMAB

(x) = CMAB
(x).

(c) CeMAB
(x) = B if CMAB

(x) ≥ B.

Proof. The proof is obtained directly from the definition of left coset.

Corollary 4.5. eMAB =MAB if A ≤ CMAB
(x) ≤ B, ∀x ∈ G.

Note 4.2. Similar results hold for right cosets also.

Proposition 4.9. (a) If MAB- is an (A,B) mset group, then both eMAB and
MABe are (A,B)- mset groups.

(b) If MAB is an (A,B)- mset normal group, then both eMAB and MABe are
(A,B)- mset normal groups.

Theorem 4.9. If MAB is an (A,B)- mset group drawn from a group G with
identity element e. Suppose CMAB

(e) ≥ B. An element a ̸= e ∈ MB, if and
only if aMAB = eMAB.

Similar result hold for right cosets also.

Proof. Let a ̸= e ∈MB. Then a
−1 ∈MB.

Case 1. For x ∈ G with CMAB
(x) ≥ B,

x ∈MB =⇒ a−1 ∗ x ∈MB

=⇒ CMAB
(a−1 ∗ x) ≥ B

=⇒ CaMAB
(x) = B,
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by definition of left coset. For the same x, CeMAB
(x) = min{max(CMAB

(x), A), B}
= B. So, CaMAB

(x) = CeMAB
(x).

Case 2. For x ∈ G with A < CMAB
(x) < B,

CMAB
(a−1 ∗ x) = CMAB

(x), by Theorem 4.7

= CMAB
(e−1 ∗ x)

∴ CaMAB
(x) = CeMAB

(x)

Case 3 : For x ∈ G with CMAB
(x) ≤ A,

CMAB
(a−1 ∗ x) ≤ A, by Theorem 4.8

∴ CaMAB
(x) = A

= CeMAB
(x).

Hence, in all the three cases, CaMAB
(x) = CeMAB

(x) and this completes one
part of the proof.

Conversely, assume that aMAB = eMAB for some a ∈ G. CaMAB
(x) =

CeMAB
(x), ∀x ∈ G i.e., min{max(CMAB

(a−1∗x), A), B} = min{max(CMAB
(e−1∗

x), A), B},∀x ∈ G. Taking x = a,

min{max(CMAB
(a−1 ∗ a), A), B} = min{max(CMAB

(e−1 ∗ a), A), B}
i.e.min{max(CMAB

(e), A), B} = min{max(CMAB
(a), A), B}

=⇒ B

= min{max(CMAB
(e−1 ∗ a), A), B}

=⇒ CMAB
(a) ≥ B

=⇒ a ∈MB.

Corollary 4.6. Let MAB is an (A,B)- mset group drawn from a group G with
identity element e. If a ∈MB, then aMAB =MABa = eMAB =MABe.

Proof. if a ∈MB, then by above theorem aMAB = eMAB and aMAB = eMAB.
But by Proposition 4.24, eMAB =MABe.

Corollary 4.7. Let MAB is an (A,B)- mset group drawn from a group G and
let a, b ∈ G. aMB = bMB if and only if aMAB = bMAB.
Similarly for right cosets.

Proof.

aMB = bMB

⇔ a−1b ∈MB

⇔ (a−1b)MAB = eMAB

⇔ bMAB = aMAB.
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Theorem 4.10. Let MAB is an (A,B)- mset group drawn from a group G with
identity element e and suppose A < CMAB

(e) < B. Then, for an element a ∈ G,
CMAB

(a) = CMAB
(e) if and only if aMAB = eMAB

Proof. Assume first that CMAB
(a) = CMAB

(e). Choose an x ∈ G.

Case 1. CMAB
(x) ≤ A. Then CMAB

(a−1 ∗ x) ≤ A, by Theorem 4.8 and
Proposition 4.10 (b). Hence, by definition of left coset and Proposition 4.25
CaMAB

(x) = A = CeMAB
(x).

Case 2. A < CMAB
(x) < CMAB

(e) then, CMAB
(a−1 ∗ x) = CMAB

(x) =
CMAB

(e−1 ∗ x), by Theorem 4.7 and Proposition 4.10 (b) i.e. CaMAB
(x) =

CeMAB
(x).

Case 3. CMAB
(x) ≥ CMAB

(e). Let CMAB
(e) = m. CMAB

(x) = m, by Theo-
rem 4.11 (e).

Here, a ∈Mm, by assumption and Mm being a subgroup, a−1 ∈Mm. Also,
x ∈Mm =⇒ (a−1 ∗ x) ∈Mm =⇒ CMAB

(a−1 ∗ x) = m.

∴ CaMAB
(x) = min{max(CMAB

(a−1 ∗ x), A), B}
= min{max(m,A), B}
= min{max(CMAB

(e−1 ∗ x), A), B}
= CeMAB

(x).

From the above three cases, aMAB = eMAB. Conversely, assume that
aMAB = eMAB

CaMAB
(x) = CeMAB

(x), ∀x ∈ G

CaMAB
(a) = CeMAB

(a)

min{max(CMAB
(a−1 ∗ a), A), B} = min{max(CMAB

(e−1 ∗ a), A), B}
min{max(CMAB

(e), A), B} = min{max(CMAB
(a), A), B}

CMAB
(a) = CMAB

(e).

5. Conclusion and future work

We have broadened the group structure in multiset context to a new scenario ,
(A,B) multiset group. Here both A and B are non negative real numbers and
the (A,B) multiset group depends on A,B and the count value of the elements.
Hence, in practical situations, it will be more adequate to apply (A,B) multiset
groups, rather than multiset groups, and in this way, we are providing a novel
path for research.
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Abstract. Abrupt happenings in financial markets contribute to jumps of different
magnitudes that invariably affect interest rate derivatives. Many of the existing interest
rate models do not capture jumps, leading to inaccurate prediction of option prices and
sensitivity analysis in the markets. To incorporate jumps in interest rate derivatives, we
extend the Vasicek model with a Brownian motion as an underlying process to a model
driven by a normal inverse Gaussian process, which is a subordinated Lévy process, use
the extended model to obtain an expression for the price of an interest rate derivative
called a zero-coupon bond. We employ Malliavin calculus to compute the greeks delta
and vega of the derived price, which are important risk quantifiers in the interest rate
derivative markets driven by a normal inverse Gaussian process.

Keywords: interest rate derivatives, Lévy process, Malliavin calculus, normal inverse
Gaussian process, Vasicek model.

1. Introduction

Investing in an interest rate derivative market requires a good understanding
of how to minimize risks. This may be achieved by formulating a model which
incorporates sudden or rare occurrences that may lead to jumps in a market.
Such occurrences often arise from changes in monetary policy, inflation, natural
disaster, abrupt information, economic recession, presence of a pandemic, etc.

In the literature, many models of interest rate derivatives do not consider
jumps and heavy tails. The present paper bridges this gap by adopting a subor-
dinated Lévy process called a normal inverse Gaussian (NIG) process to derive
an extended Vasicek interest rate model and use the extended model to derive
an expression for the price of an interest rate derivative called a zero-coupon

*. Corresponding author
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bond and compute its sensitivity to some of its parameters using Malliavin cal-
culus. These will assist an investor and risk manager to make the right decision
and minimize risks in an NIG interest rate derivative market.

The NIG process was introduced by Barndorf-Nielsen [2] to generate good
models for log-return process of prices and exchange rates [7]. Using the NIG
process allows jumps and heavy tails to be captured. Examples of NIG mar-
kets include (i) volatile markets such as an electricity market, whose forward
price has a return distribution with excess kurtosis and heavy tails [1]; and
(ii) stock market prices [19]. Núñez [15] introduced the process as a replace-
ment of the Gaussian assumption of underlying asset returns since it takes care
of the heavy tails found in returns data series. Dhull and Kumar [9] empha-
sized the usefulness of the process in modelling various real-life time-series data.
Lahcene [13] discussed an extension of the process in modelling and analyz-
ing statistical data with emphasis on extensive sets of observations and some
applications. Pintoux and Privault [18] discussed an interest rate derivative
zero-coupon bond price using the Dothan model driven by a Wiener process
while Yin et al. [22] emphasized that non-Gaussian Ornstein-Uhlenbeck pro-
cess based on a negative/positive subordinated Lévy process fits and provides a
better economic interpretation of the associated time series. Sabino [20] consid-
ered how to price energy derivatives for spot prices driven by a tempered stable
Ornstein-Uhlenbeck process, while Hainaut [12] discussed an interest rate model
driven by a mean reverting Lévy process with a sub-exponential memory of sam-
ple path achieved by considering an Ornstein–Uhlenbeck process in which the
exponential decaying kernel is replaced by a Mittag–Leffler function. We adopt
the Vasicek model since it has the property of mean-reversion and possibility of
a negative interest rate. Research has shown that a good model should take care
of negative interest rates that now occur in the current market environment as
observed by Orlando et al. [16].

Bavouzet-Morel and Messaoud [3] discussed the Malliavin calculus for jump
processes while Petrou [17] extended the theory of the calculus adding some
tools for the computation of sensitivities. Bayazit and Nolder [4] applied the
calculus to the sensitivities of an option whose underlying is driven by an expo-
nential Lévy process. This work extends Bayazit and Nolder [4] to the sensitivity
analysis of interest rate derivatives in a normal inverse Gaussian Lévy market.

In the next section, we discuss important mathematical tools to be employed
in our results. In Section 3, we derive an extended Vasicek model driven by the
NIG process and derive an equivalent expression for the zero-coupon bond price.
In Section 4, we compute the greeks of the derived price using the Malliavin
calculus, and discuss sensitivity analysis of the interest rate derivatives. In a
previous publication [21], we derived expressions for certain greeks in a model
involving the variance gamma process.
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2. Foundational notion

In this section, we discuss important mathematical tools employed for the suc-
cess of the paper.

2.1 The normal inverse Gaussian process

The inverse Gaussian process is a random process with infinite number of jumps
for each finite period. The NIG process is a subordinated Lévy process.

Remark 2.1. 1. Let X be a random variable with an NIG distribution de-
noted X ∼ NIG(x;α, β, µ, δ), then its probability density function is given
by

fNIG(x) =
αδ exp(δ

√
α2 − β2 + β(x− µ))

π ·
√
δ2 + (x− µ)2

K1(α
√
δ2 + (x− µ)2)

where α > 0, |β| < α, δ > 0, and K1(x) is the modified Bessel function of
the third kind with index λ given by

Kλ(x) =
1

2

∫ ∞

0
tλ−1 exp

(
− 1

2
x
(
t+

1

t

))
dt, x > 0.

2. The parameters α, β, δ and µ are for tail heaviness, symmetry, scale and
location, respectively.

3. The characteristic function of the NIG process is given by

ϕt(u) = exp
(
− δt((α2 − (β + iu)2)

1
2 − (α2 − β2)

1
2 )
)
.

4. In what follows, we discuss the Malliavin calculus to be employed in the
computation of greeks.

2.2 The Malliavin calculus for Lévy processes

Let (Ω,F ,P) be a probability space andXi, i = 1, . . . , n be a sequence of random
variables with piecewise differentiable probability density functions. Let Cp(Rn)
where p, n ≥ 1, be the space of p times continuously differentiable functions. The
following basic definitions will be utilized in the sequel.

Definition 2.1. Let L0(Ω,R) be the linear space of all R-valued random vari-
ables on (Ω,B,P). A map F : (L0(Ω,R))n → L0(Ω,R), n ∈ N is defined as
(n, p)-simple functional of the n random variables if there exists an R-valued
function F̂ ∈ Cp(Rn) where

F (X1, . . . , Xn)(ω) = F̂ (X1(ω), . . . , Xn(ω)), ω ∈ Ω, X1, . . . , Xn ∈ L0(Ω,R).

An (n, p)-simple process of length n is a sequence of random variables U =
(Ui)i≤n such that Ui(ω) = ui(X1(ω), . . . , Xn(ω)) where ui ∈ Cp(Rn), X1, . . . , Xn

∈ L0(Ω,R) and ω ∈ Ω.
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We write S(n,p) for the space of all (n, p)-simple functionals and P(n,p) for
the space of all (n, p)-simple processes.

Definition 2.2. Let F ∈ S(n,1), where F (X1, . . . , Xn)(ω)=F̂ (X1(ω), . . . , Xn(ω)),

ω∈Ω, F̂ ∈ C1(Rn), and X1, . . . , Xn ∈ L0(Ω,R). Define the operator D :
S(n,1) → (P(n,0))

n called the Malliavin derivative operator by DF = (DiF )i≤n
where

DiF (X1, . . . , Xn)(ω) =

(
∂F̂

∂xi

)
(X1(ω), . . . , Xn(ω)),

(1) DiF (X)(ω) =

(
∂F̂

∂x

)
(X(ω)), when n = 1.

Definition 2.3. Let F=(F1, . . . , Fd) be a d-dimensional vector of simple func-
tionals where Fi∈S(n,1). The matrix M = (M(F )i,j) defined by

M(F )i,j = ⟨DFi, DFj⟩n =

n∑
m=1

DmFiDmFj

is called the Malliavin covariance matrix of F [4]. This implies that if n = 1,

(2) M(F )i,j = ⟨DFi, DFj⟩ = DFiDFj .

Definition 2.4. Define the operator δ̃ : P(n,1) → S(n,0) called the Skorohod in-
tegral operator for a simple process U = (Ui)i=1,...,n ∈ P(n,1), Ui(ω) = ui(X1(ω),
. . . , Xn(ω)), ω ∈ Ω by

δ̃(U)(X1, . . . , Xn) =
n∑
i=1

δ̃i(U)(X1, . . . , Xn)

= −
n∑
i=1

[Diui(X1, . . . , Xn) + ui(X1, . . . , Xn)φi(x)],

where φi(x) = ∂ ln fX(x)
∂xi

=
f ′Xi

(x)

fX(x) , fX(x) ̸= 0, 1 ≤ i ≤ n, x = x1, . . . , xn and

fX(x) is the density function of the random variable X.

Definition 2.5. The Ornstein-Uhlenbeck (O-U) operator L : S(n,2) → S(n,0) is
defined as

(LF )(X1, . . . , Xn) = −
n∑
i=1

[(∂2iiF̂ )(X1, . . . , Xn) + φi(x)(∂iF̂ )(X1, . . . , Xn)],

where F ∈ S(n,2), X1, . . . , Xn ∈ L0(Ω,R) and φi(x) is given by Definition 2.4.
For n = 1,

(3) LF (X) = −[DDF̂ (X) + φ(x)DF̂ (X)]

where

(4) φ(x) =
∂ ln fX(x)

∂x
=
f ′X(x)

fX(x)
, and fX(x) ̸= 0.
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2.2.1 Malliavin integration by parts theorem

To compute the greeks of the interest rate derivative, we need the integration
by parts theorem of the Malliavin calculus stated below.

Proposition 2.1. Let (Ω,F ,P) be a probability space; X1, . . . , Xn, a sequence
of real-valued random variables on (Ω,F ,P) and P = (P1, . . . , Pd) ∈ (S(n,2))

d,
Q ∈ S(n,1). Let M = (Mij(P ))1≤i≤n,1≤j≤n be an invertible Malliavin covariance

matrix with inverse given by M(P )−1 = (M(P )ij)
−1
1≤i≤n,1≤j≤n. Suppose that

E[detM(P )−1]p < ∞, p ≥ 1, and Φ : Rd → R represents a smooth bounded
function with bounded derivative. Then,

E[∂iΦ(P )Q] = E[Φ(P )Hi(P,Q)] where E[Hi(P,Q)] <∞, i = 1, 2, . . . , n;

and the Malliavin weight is given by

Hi(P,Q) =

n∑
j=1

QM(P )−1
ij LPj −M(P )−1

ij ⟨DPj , DQ⟩ −Q⟨DPj , DM(P )−1
ij ⟩.

Remark 2.2. For d = n = 1, the Malliavin weight is given by

H(P,Q) = QM(P )−1LP −M(P )−1⟨DP,DQ⟩ −Q⟨DP,DM(P )−1⟩.

We proceed to the next section and derive our results.

3. The Short rate model under the NIG process

In this section, we extend the Vasicek short rate model to a market driven by the
NIG process and derive an expression for the price of an interest rate derivative
called a zero-coupon bond.

The Vasicek (1977) interest rate model satisfies the stochastic differential
equation given by

(5) drt = a(b− rt)dt+ σdXt

where Xt = X(t), b, a and σ denote the Lévy process, long-term mean rate,
speed of mean reversion and volatility of the interest rate, respectively.
Integrating equation (5) by using Itô’s formula, we obtain

(6) rt = r0e
−at + b(1− e−at) + σ

∫ t

0
e−a(t−s)dXs.

We adopt the NIG model given by Xt = wt+βδ2IGt+ δW (IGt) [11] where
w is the cumulant generating function given by

w = −1

t
ln(ϕt(−i)) = δ(

√
α2 − (β + 1)2 −

√
α2 − β2).
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The parameters α, β and δ control the behaviour of the tail, skewness and scale of
the distribution, respectively. IGt = IG(t) denotes the inverse Gaussian process.
We represent the standard Brownian motionW (t) as the processW (t)−W (s) =√
| t− s |Z, t, s ≥ 0, where Z is a N(0, 1) Gaussian random variable. Then,

W (t) =
√
tZ and E(W (t)W (s)) = min(t, s), t, s ≥ 0. Thus,

Xt = wt+ δ
√
IG(t)Z + βδ2IG(t),

=⇒ dXt = wdt+ δ∆
√
IG(t)Z + βδ2∆IG(t).(7)

Substituting equation (7) into (6) and evaluating, we have

rt = r0e
−at + b(1− e−at) +

σw

a
(1− e−at) + σδ

( ∑
0≤s≤t

(∆
√
IG(s)Z

+ βδ∆IG(s))e−a(t−s)
)
.(8)

We adopt the above expression (8) to derive an expression for the zero-coupon
bond price driven by the NIG process.

3.1 Expression for a zero-coupon bond price with a Vasicek short
rate model under the NIG process

The dynamics of the zero-coupon bond price under a risk neutral measure is
given by

(9) dP = rtPdt+ σPdXt.

Applying Itô’s lemma to equation (9), we obtain

d lnP = rtdt+ σwdt+ σ(δ∆
√
IG(t)Z + βδ2∆IG(t))− 1

2
σ2(δ∆

√
IG(t)Z

+ βδ2∆IG(t))2.(10)

Integrating equation (10), we get

lnP (t, T ) = −
(∫ T

t
rudu+ σw

∫ T

t
du

+ σ

( ∑
0≤u≤T

(δ∆
√
IG(u)Z + βδ2∆IG(u))

−
∑

0≤u≤t
(δ∆

√
IG(u)Z+βδ2∆IG(u))

)
−1

2
σ2
( ∑

0≤u≤T
(δ∆

√
IG(u)Z(11)

+ βδ2∆IG(u))2 −
∑

0≤u≤t
(δ∆

√
IG(u)Z + βδ2∆IG(u))2

))
.
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By equation (8), it follows that∫ T

t
rudu =

−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+
σw

a

(
T − t+

1

a
(e−aT − e−at)

)
+ σδ

( ∑
0≤u≤T

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))e−a(u−s)

)
− σδ

( ∑
0≤u≤t

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))e−a(u−s)

)
.

(12)

Substituting equation (12) into (11) and evaluating, we obtain the zero-coupon
bond price driven by the NIG process as

P (t, T ) = exp

(
−
[
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+
σw

a

(
T − t+

1

a
(e−aT − e−at)

)
+ σδ

( ∑
0≤u≤T

∑
0≤s≤t

(∆
√
IG(s)Z

+ βδ∆IG(s))e−a(u−s)
)
− σδ

( ∑
0≤u≤t

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))

· e−a(u−s)
)
+ σw[T − t] + σδ

( ∑
0≤u≤T

(∆
√
IG(u)Z + βδ∆IG(u))

−
∑

0≤u≤t
(∆
√
IG(u)Z + βδ∆IG(u))

)
− 1

2
σ2δ2

( ∑
0≤u≤T

(∆
√
IG(u)Z

+ βδ∆IG(u))2 −
∑

0≤u≤t
(∆
√
IG(u)Z + βδ∆IG(u))2

)])
.

(13)

Besides being a function of t and T , the expression on the right hand side of
equation (13) also depends on r0, β, δ, σ,w and Z. Thus, in the sequel, we shall
regard P as a function of t, T, r0, β, δ, σ,w and Z.

The price of the zero-coupon bond driven by the NIG Lévy process given by
equation (13) can be written as

P (t, T ) = exp

(
−
(
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+
σw

a

[
T − t+

1

a
(e−aT − e−at)

]
+wσ[T − t]

+ σδ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)Z + βδ∆IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σ2δ2

2

( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

)))
.

(14)



SENSITIVITY ANALYSIS OF INTEREST RATE DERIVATIVES IN A NORMAL ... 625

We state the necessary lemmas for the computation of the delta which mea-
sures the sensitivity of a bond option price driven by the NIG process to changes
in the initial interest rate and vega which measures the sensitivity of the bond
option price with respect to changes in the volatility of the short rate model.

Lemma 3.1. Let P be the price of a zero-coupon bond driven by the NIG process.
Then, the Malliavin derivative on P is given by

DP = −
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P.

(15)

Proof. By equation (1) of Definition 2.2 and the zero-coupon price given by
equation (14), we get the Malliavin derivative

DP = −
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2

2

(
2
∑

t≤u≤T
(βδ∆IG(u) + ∆

√
IG(u)Z)∆

√
IG(u)

)]
P.

Hence, the result follows.

Lemma 3.2. Let P be the price of the zero-coupon bond driven by the NIG
process. Then, the Ornstein Uhlenbeck operator L on P is given by

LP=−
[
σ2δ2

( ∑
t≤u≤T

(∆
√
IG(u))2

)
+

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+σδ

∑
t≤u≤T

(∆
√
IG(u))−σ2δ2

( ∑
t≤u≤T

(βδ∆IG(u)+∆
√
IG(u)Z)∆

√
IG(u)

))2

− φ(z)

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

(16)

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))]
P, φ(z) = −z.

Proof. By equation (15) of Lemma 3.1, it follows that

DDP = σ2δ2
( ∑
t≤u≤T

(∆
√
IG(u))2

)
P +

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))−σ2δ2

( ∑
t≤u≤T

(βδ∆IG(u)+δ∆
√
IG(u)Z)∆

√
IG(u)

)]2
P.
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By equations (3) and (4) of Definition 2.5, we obtain

LP = −[DDP + φ(z)DP ]

where

φ(z) =
∂ ln fN (z)

∂z
=
∂ ln

(
1√
2π
e−

1
2
z2
)

∂z
= −z.

Substituting DDP and equation (15) of Lemma 3.1 into LP yields the desired
result.

Lemma 3.3. Let P be the price of the zero-coupon bond driven by the NIG
process and M(P ), its Malliavin covariance matrix. Then,

M(P )−1 =

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]−2

P−2.

(17)

Proof. By equation (2) of Definition 2.3, M(P ) = ⟨DP,DP ⟩. Thus, by equa-
tion (15), it follows that

M(P ) =

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]2
P 2.

Hence

M(P )−1 =

([
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P

)−2

which gives equation (17).

Lemma 3.4. Let P be the price of the zero-coupon bond driven by the NIG pro-
cess. Then, the Malliavin derivative of the inverse Malliavin covariance matrix
of P is given by

DM(P )−1=2

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]−3

P−2

(18)
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[(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))2

+ σ2δ2
( ∑
t≤u≤T

(∆
√
IG(u))2

)]
.

Proof. Applying Malliavin derivative to equation (17) gives

DM(P )−1 = 2

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]−3

P−2

·
[[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]2
+ σ2δ2

∑
t≤u≤T

(∆
√
IG(u))2

]
which yields the desired result.

4. The greeks of the zero-coupon bond price driven by the NIG
Lévy process

The greeks serve as risk quantifiers. They give insight on various dimensions
of insecurity involved in grabbing a bond option’s position. Investors and risk
managers use the greeks to predict future price and hedge risks. Some of the
greeks are delta, vega, gamma and Theta. We shall concentrate on the delta
and vega.

Remark 4.1. The price of a call option, with P as the underlying is given by

V = e−r0TE[Φ(P )]

where Φ(P ) = max(P −K, 0) is the payoff with strike price K.

A greek is computed using the formula

∂V
∂ς

=
∂
(
e−r0TE[Φ(P )]

)
∂ς

where ς represents a parameter of the bond price whose effect is to be deter-
mined.
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4.1 Computation of delta for NIG-driven interest rate derivatives

The greek delta measures the sensitivity of the zero-coupon bond option price
to changes in its initial interest rate. It helps investors and portfolio managers
by indicating the extent to which the bond option’s price will move when the
initial interest rate increases by a unit currency. This is very important because
movements in the underlying, that is, the initial interest rate can change the
worth of their investment [8].
Let P be the zero-coupon bond price given by equation (14), Φ(P ) be the payoff
function and Q = ∂P

∂r0
. Then, by Proposition 2.1,

△NIG =
∂

∂r0
[e−r0TE(Φ(P ))] = −Te−r0TE(Φ(P )) + e−r0TE[Φ(P )H(P,Q)].

Next, we establish Lemmas 4.1 - 4.4 using Lemmas 3.1-3.4, to obtain the Malli-
avin weight H(P,Q).

Lemma 4.1. Let P be the zero-coupon bond price driven by the NIG process
and Q = ∂P

∂r0
. Then the following hold:

(19) Q =
1

a
(e−aT − e−at)P

and

DQ = −1

a
(e−aT − e−at)

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))
P.

(20)

Proof. Applying partial derivative to equation (14) yields equation (19). More-
over, the Malliavin derivative

DQ =
1

a
(e−aT − e−at)DP.

SubstitutingDP from equation (15) into the above equation yields equation (20).

Lemma 4.2. Let P be the zero-coupon bond price driven by the NIG process
and L, the Ornstein-Uhlenbeck operator. Then,

QM(P )−1LP

= −1

a
(e−aT − e−at)

[
σ2δ2

( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2 + 1− φ(z)K̂−1

]
,(21)
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where φ(z) = −z and K̂ is given by

K̂ = σδ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)
.

(22)

Proof. The result follows from Lemmas 3.2, 3.3 and 4.1 by substituting Q from
equation (19) of Lemma 4.1, M(P )−1 from equation (17) of Lemma 3.3, and
LP from equation (16) of Lemma 3.2 into QM(P )−1LP .

Lemma 4.3. Let P be the zero-coupon bond price driven by the NIG process.
Then,

(23) M(P )−1⟨DP,DQ⟩ = 1

a
(e−aT − e−at).

Q⟨DP,DM(P )−1⟩

= −2
(1
a
(e−aT − e−at)

)[σ2δ2(∑t≤u≤T (∆
√
IG(u))2

)
K̂2

+ 1

]
,(24)

where K̂ is given by equation (22).

Proof. The result in equation (23) follows from Lemmas 3.1, 3.3 and 4.1 by
substituting M(P )−1 from equation (17) of Lemma 3.3, DP from equation (15)
of Lemma 3.1 andDQ from equation (20) of Lemma 4.1 intoM(P )−1⟨DP,DQ⟩;
while the result in equation (24) follows from Lemmas 3.1, 3.4 and 4.1 by substi-
tuting Q from equation (19) of Lemma 4.1, DP from equation (15) of Lemma 3.1
and DM(P )−1 from equation (18) of Lemma 3.4 into Q⟨DP,DM(P )−1⟩.

Lemma 4.4. Let P be the zero-coupon bond price driven by the NIG process
and its payoff function be given by Φ(P ) = max(P (t, T )−K, 0). Then,

E[Φ(P )] =
∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)

1√
2π
e−

1
2
z2

·
(
t(y(u))−3/2 exp(t(δ

√
α2 − β2))√

2π

· exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

where K is the strike price and from equation (14), p(t, T ) = p(t, T, y, z) is given
by

p(t, T ) = exp

(
−
[
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+
σw

a

[
T − t+

1

a
(e−aT − e−at)

](25)
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+wσ[T − t] + σδ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)z + βδy(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(√
y(u)z+βδy(u)

)
−σ

2δ2

2

∑
t≤u≤T

(βδy(u)+
√
y(u)z)2

])
.

Proof. Let fN (z;0,1) and fIG(y; t, δ
√
α2 − β2) be the probability density func-

tions for a Gaussian random variable and an inverse Gaussian random variable,
respectively. Then,

E[Φ(P )] =
∫
R

∫
R
Φ(p) · fN (z;0,1)fIG(y; t, δ

√
α2 − β2)

)
dzdy

=

∫
R

∫
R
max(p(t, T )−K, 0) · fN (z;0,1)fIG(y; t, δ

√
α2 − β2)

)
dzdy.

where K is a constant, fN (z;0,1) =
1√
2π
e−

1
2
z2 and

fIG(y; t, δ
√
α2 − β2)

=
ty−3/2 exp(t(δ

√
α2 − β2))√

2π
exp

(
− 1

2

( t2
y
+ (δ

√
α2 − β2)2y

))
· 1y>0.

Substituting the expression for fN (z;0,1) and fIG(y; t, δ
√
α2 − β2) into E[Φ(P )]

gives the desired result.

Lemma 4.5. Let P be the zero-coupon bond price driven by the NIG process
and let E[Φ(P )H(P,Q)] = E[Φ(P )H(P, ∂P∂r0 )]. Then,

E
[
Φ(P )H

(
P,
∂P

∂r0

)]
=

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,
∂p

∂r0

)
1√
2π
e−

1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

and the Malliavin weight for the delta satisfies

(26) H

(
p,
∂p

∂r0

)
=

1

a
(e−aT − e−at)

(
σ2δ2

∑
t≤u≤T

(
√
y(u))2K̂∗−2 − zK̂∗−1

)

where K̂∗ is obtained from K̂ given by equation (22) as

K̂∗ = σδ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(
√
y(u))

− σ2δ2
( ∑
t≤u≤T

(βδy(u) +
√
y(u)z)

√
y(u)

)
.

(27)
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Proof. From Proposition 2.1, the Malliavin weight becomes

H(P,Q)=H

(
P,
∂P

∂r0

)
=QM(P )−1LP−M(P )−1⟨DP,DQ⟩−Q⟨DP,DM(P )−1⟩.

Substituting equation (21) from Lemma 4.2 for QM(P )−1LP , equations (23)
and (24) from Lemma 4.3 for M(P )−1⟨DP,DQ⟩ and Q⟨DP,DM(P )−1⟩, re-
spectively into H(P,Q), we obtain the expression in (26) from

H(P,Q) =
1

a
(e−aT − e−at)

(
σ2δ2

∑
t≤u≤T

(∆
√
IG(u))2K̂−2 + φ(z)K̂−1

)
,

where φ(z) = −z and K̂ is given by equation (22). Hence, the result follows.

Theorem 4.1. Let P be the zero-coupon bond price driven by the NIG process
and Q = ∂P

∂r0
, then

△NIG = e−r0T
(
− T

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)

1√
2π
e−

1
2
z2

·
(
t(y(u))−3/2 exp(t(δ

√
α2 − β2))√

2π

· exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

+

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,
∂p

∂r0

)
1√
2π
e−

1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

)
where H(p, ∂p∂r0 ) is given by Lemma 4.5.

Proof. The greek delta is given by

△NIG =
∂

∂r0
e−r0TE[Φ(P )] = e−r0T (−TE[Φ(P )] + E[Φ(P )H(P,Q)]).

Substituting E[Φ(P )] given by equation (25) of Lemma 4.4 and E[Φ(P )H(P,Q)]
given by Lemma 4.5 into △NIG, gives the desired result.

4.2 Computation of vega for the NIG-driven interest rate derivative

The greek vega V measures the sensitivity of the zero-coupon bond option price
with respect to changes in its volatility. High vega implies that the bond option’s
value is very sensitive to little shift in volatility [6]. It presents uncertainty in
future prices for the underlying contract [5]. It is given by

V =
∂

∂σ
er0TE[Φ(P )] = e−r0TE

[
Φ′(P )

∂P

∂σ

]
= e−r0TE

[
Φ(P )H

(
P,
∂P

∂σ

)]
.
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Lemma 4.6. Let P be the zero-coupon bond price driven by the NIG process
and Qσ = ∂P

∂σ . Then,

Qσ = −
[
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t] + δ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)Z

+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σδ2

∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

]
P,

(28)

DQσ = −
[
δ
∑

t≤u≤T

∑
0≤s≤t

(∆
√
IG(s)e−a(u−s)) + δ

∑
t≤u≤T

(∆
√
IG(u))

− 2σδ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P + Λ̃K̂P,

(29)

where K̂ is given by equation (22) and

Λ̃ =
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)Z

+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σδ2

( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

)
.

(30)

Proof. Applying partial derivative to equation (14) yields equation (28). Hence,
the Malliavin derivative

DQσ = −
[
δ
∑

t≤u≤T

∑
0≤s≤t

(∆
√
IG(s)e−a(u−s)) + δ

∑
t≤u≤T

(∆
√
IG(u))

− σδ2
(
2
∑

t≤u≤T
(βδ∆IG(u) + ∆

√
IG(u)Z)∆

√
IG(u)

)]
P

+

(
−
[
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)Z
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+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σδ2

( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

)]
·
(
−
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))− σ2δ2

( ∑
t≤u≤T

(βδ∆IG(u)

+ ∆
√
IG(u)Z)∆

√
IG(u)

)]))
P

which yields equation (29).

Lemma 4.7. Let P be the zero-coupon bond price driven by the NIG process.
The following holds concerning the sensitivity with respect to σ:

QσM(P )−1LP

= Λ̃

[
σ2δ2

( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2 + 1− φ(z)K̂−1

]
, φ(z) = −z,(31)

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.2, 3.3 and 4.6. Substituting equation
(28) of Lemma 4.6 forQσ, equation (17) of Lemma 3.3 forM(P )−1, and equation
(16) of Lemma 3.2 for LP into QσM(P )−1LP yields the expression in equation
(31).

Lemma 4.8. Let P be the zero-coupon bond price driven by the NIG process.
Then,

M(P )−1⟨DP,DQσ⟩

= K̂−1

[
δ
∑

t≤u≤T

∑
0≤s≤t

(∆
√
IG(s)e−a(u−s)) + δ

∑
t≤u≤T

(∆
√
IG(u))

− 2σδ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
− Λ̃,

(32)

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.1, 3.3 and 4.6 by substituting equa-
tion (17) of Lemma 3.3 for M(P )−1, equation (15) of Lemma 3.1 for DP and
equation (29) of Lemma 4.6 for DQσ into M(P )−1⟨DP,DQσ⟩.
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Lemma 4.9. Let P denote the zero-coupon bond price driven by the NIG pro-
cess. Then, the following holds:

(33) Qσ⟨DP,DM(P )−1⟩ = 2Λ̃

[
1 + σ2δ2

( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2

]
,

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.1, 3.4 and 4.6 by substituting equa-
tion (28) of Lemma 4.6 for Qσ, equation (15) of Lemma 3.1 for DP and equation
(18) of Lemma 3.4 for DM(P )−1 into Qσ⟨DP,DM(P )−1⟩.

Lemma 4.10. Let P be the zero-coupon bond price driven by the NIG process.
Then, the Malliavin weight for the greek vega is given by

H

(
p,
∂p

∂σ

)
= zΛ̃K̂∗−1 − Λ̃σ2δ2

( ∑
t≤u≤T

(
√
y(u))2

)
K̂−2

− K̂−1

[
δ
∑

t≤u≤T

∑
0≤s≤t

(
√
y(s)e−a(u−s))

+ δ
∑

t≤u≤T
(
√
y(u))− 2σδ2

( ∑
t≤u≤T

(βδy(u) +
√
y(u)z)

√
y(u)

)]
,

(34)

where K̂∗ is given by equation (27) and

Λ̃∗ =
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)z

+ βδy(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(√
y(u)z + βδy(u)

)
− σδ2

( ∑
t≤u≤T

(βδy(u) +
√
y(u)z)2

)
.

(35)

Proof. The Malliavin weightH(P,Qσ) for the sensitivity with respect to volatil-
ity, is obtained by substituting equation (31) of Lemma 4.6 for QσM(P )−1LP ,
equation (32) of Lemma 4.7 forM(P )−1⟨DP,DQσ⟩ and equation (33) of Lemma
4.8 for Qσ⟨DP,DM(P )−1⟩ into H(P,Qσ). Thus,

H(P,Qσ) = H

(
P,
∂P

∂σ

)
= QσM(P )−1LP −M(P )−1⟨DP,DQσ⟩ −Qσ⟨DP,DM(P )−1⟩
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= −Λ̃φ(z)K̂−1 − Λ̃σ2δ2
( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2

− K̂−1

[
δ
∑

t≤u≤T

∑
0≤s≤t

∆
√
IG(s)e−a(u−s)

+ δ
∑

t≤u≤T
(∆
√
IG(u))− 2σδ2

( ∑
t≤u≤T

(βδ∆IG(u)

+ ∆
√
IG(u)Z)∆

√
IG(u)

)]
,

where φ(z) = −z; Λ̃ and K̂ are given by equations (30) and (22), respectively.
Hence, the result follows.

Theorem 4.2. Let P be the zero-coupon bond price driven by the NIG process.
Then, the greek vega is given by

V =

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,
∂p

∂σ

)
1√
2π
e−

1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz,

where the Malliavin weight H(p, ∂p∂σ ) is given by equation (34) of Lemma 4.10.

Proof. Recall that V = e−r0TE
[
Φ(P )H

(
P, ∂P∂σ

)]
. Thus,

V =

∫
R

∫
R
max(p(t, T, y, z)−K, 0)H

(
p,
∂p

∂σ

)
1√
2π
e−

1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz.

Hence, the result follows.

5. Discussion and conclusion

In this paper, we have extended the work of Bavouzet-Morel & Messaoud [3]
and Bayazit & Nolder [4] to the sensitivity analysis of an interest rate derivative
market driven by a subordinated Lévy process. The Vasicek interest rate model
was extended by considering the normal inverse Gaussian subordinated Lévy
process. This was used to derive an expression for the price of a zero-coupon
bond. The new model is important for transactions in a Lévy market situation
where the prices of financial derivatives may experience jumps of different sizes.
The greeks, namely: delta △NIG and vega V were computed using the Malliavin
integration by parts formula. The greeks assist an investor or decision maker to
evaluate certain risks and predict the possibility of making money in a particular
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investment. Vega is important since an increase in volatility will increase the
bond option price while a decrease in volatility will lead to a decrease in the bond
option value. It helps investors to quantify the risk in the interest rate derivative
Lévy market as the volatility changes. An investor or portfolio manager requires
an adequate understanding of these greeks in order to predict future worth of a
bond option so as to minimize risks. The work provided a better modelling of
the interest rate derivative and understanding of sensitivities in a market driven
by a normal inverse Gaussian process.

Appendix

Itô formula for semi-martingale [7]

Let Y = (Yt)0≤t≤T be a semi-martingale and f : [0, T ]×R → R, a C1,2 function,
then

f(t, Yt) = f(0, Y0) +

∫ t

0

∂f

∂s
(s, Ys)ds+

∫ t

0

∂f

∂y
(s, Ys−)dYs

+
1

2

∫ t

0

∂2f

∂y2
(s, Ys)d[Y, Y ]cs +

∑
0≤s≤t,∆Ys ̸=0

[f(s, Ys)− f(s, Ys−)

−∆Ys
∂f

∂y
(s, Ys−)],

where [Y, Y ]cs is the continuous part of the quadratic variation of Y and ∆Ys =
Ys − Ys− .
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[12] D. Hainaut, Lévy interest rate models with a long memory, Risks, 10 (2022).

[13] B. Lahcene, On extended normal inverse Gaussian distribution: theory,
methodology, properties and applications, American Journal of Applied
Mathematics and Statistics, 7 (2019), 224-230.

[14] S. Lang, R. Signer, K. Spremann, The choice of interest rate models and
its effect on bank capital requirements regulation and financial stability,
International Journal of Economics and Finance, 10 (2018), 74-92.
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Abstract. In this paper, we obtain some non-existence theorems for real hypersurfaces
in nonflat complex space forms such that the structure tensor fields are of Lie Codazzi,
Lie Killing or Lie recurrent type.
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1. Introduction

Let Mn(c) be a complete and simply connected complex space form which is
complex analytically isometric to

� a complex projective space CPn(c) if c > 0;

� a complex Euclidean space Cn if c = 0;

� a complex hyperbolic space CHn(c) if c < 0,

where c is the constant holomorphic sectional curvature. Let M be a real hyper-
surface of real dimension 2n− 1 immersed in Mn(c), n ≥ 2. On M there exists
a natural almost contact metric structure (ϕ, ξ, η, g) induced from the complex
structure on Mn(c) and the normal vector field, respectively, where ξ and ϕ are
called the structure vector field and the structure tensor field, respectively. If
the structure vector field ξ on real hypersurfaces is principal at each point, then
the hypersurface is said to be Hopf. In geometry of real hypersurface, the struc-
ture tensor field ϕ plays important roles in classification and characterization of
Hopf hypersurfaces (see, many references in [2, 17]). Before stating our main
study, we exhibit some well known results in this field.

A Hopf hypersurface in CPn(c) has constant principal curvatures if and only
if it is locally congruent to a type (A1), (A2), (B), (C), (D) or (E) hypersurfaces
(see, [9, 21]). A Hopf hypersurface in CHn(c) has constant principal curvatures
if and only if it is locally congruent to a type (A0), (A1,0), (A1,1), (A2) or (B) hy-
persurfaces (see, [1]). All type (A0), (A1), (A1,0), (A1,1) and (A2) hypersurfaces
are referred to collectively as type (A).
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Maeda and Udagawa in [16] first considered the Lie derivative of the structure
tensor field ϕ and proved that the structure vector field ξ of a real hypersurface in
CPn is an infinitesimal automorphism of the structure tensor field ϕ if and only
if the hypersurface is of type (A). Such a conclusion is still true even when the
restriction was weakened to some other geometric conditions and this was first
considered by Kwon and Suh in [12, Theorem] for a real hypersurface of dimen-
sion ≥ 5. Results in [16] have been generalized by Lim [13] by considering the
coincidence of the Lie derivative and covariant derivative of the structure tensor
field along ξ. Very recently, a new operator generated by the Lie derivative of
the structure tensor field ϕ along the structure vector field ξ was extensively
studied by Okumura in [18, 19] (see, also Cho [3, 4]). Nonexistence of the real
hypersurfaces with a Killing type structure tensor field was proved by Cho in
[5]. Some other results on the Lie derivative of the structure tensor field along
ξ can also be found in [8, 11, 14, 15]. In 2013, Kaimakamis and Panagiotidou
in [6, pp. 2091] proposed that it would be an interesting question for studying
the Lie recurrency of the structure tensor field. In the present paper, we study
the Lie derivative of the structure tensor field for real hypersurfaces in nonflat
complex space forms Mn(c), c ̸= 0, and solved the question posed in [6].

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N
be a unit normal vector field of M . We denote by ∇ the Levi-Civita connection
of the metric g of Mn(c) and J the complex structure. Let g and ∇ be the
induced metric from the ambient space and the Levi-Civita connection of the
metric g, respectively. Then, the Gauss and Weingarten formulas are given
respectively as the following:

(1) ∇XY = ∇XY + g(AX,Y )N, ∇XN = −AX,

for any X,Y ∈ X(M), where A denotes the shape operator of M in Mn(c). For
any vector field X ∈ X(M), we put

(2) JX = ϕX + η(X)N, JN = −ξ.

We can define on M an almost contact metric structure (ϕ, ξ, η, g) satisfying

(3) ϕ2 = −id + η ⊗ ξ, η(ξ) = 1, ϕξ = 0,

(4) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for anyX,Y ∈ X(M). If the structure vector field ξ is principal, that is, Aξ = αξ
at each point, where α = η(Aξ), then M is called a Hopf hypersurface and α is
called Hopf principal curvature.
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Moreover, applying the parallelism of the complex structure (i.e., ∇J = 0)
of Mn(c) and using (1), (2) we have

(5) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,

(6) ∇Xξ = ϕAX,

for any X,Y ∈ X(M).

3. Non-existence results

We denote by L the Lie derivative of a real hypersurface in a nonflat complex
space form Mn(c), c ̸= 0, n ≥ 2.

Definition 3.1. The structure tensor field of a real hypersurface is called Lie
Killing if

(7) (LXϕ)Y + (LY ϕ)X = 0,

for any vector fields X,Y .

Obviously, the above condition (7) is a generalization of the Lie parallelism
of the structure tensor field, i.e., LXϕ = 0, for any X ∈ X(M).

Theorem 3.1. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is of Lie Killing type.

Proof. By applying (5), we have

(8) (LXϕ)Y = η(Y )AX − g(AX,Y )ξ −∇ϕY X + ϕ∇Y X,

for any vector fields X,Y . Now suppose that the structure tensor field of a real
hypersurface M is Lie Killing. From (7) and (8) we get

(9) η(Y )AX−2g(AX,Y )ξ−∇ϕY X+ϕ∇Y X+η(X)AY −∇ϕXY +ϕ∇XY = 0,

for any vector fields X,Y . Taking the inner product of (9) with ξ, we obtain

(10) η(Y )η(AX)− 2g(AX,Y )− η(∇ϕY X) + η(X)η(AY )− η(∇ϕXY ) = 0,

for any vector fields X,Y . In (10), selecting Y = ξ we obtain

Aξ = η(Aξ)ξ.

This means that M is a Hopf hypersurface. In (10), selecting X,Y ∈ ker η, with
the help of (3), (6) and Aξ = η(Aξ)ξ := αξ, we get

(11) AX − ϕAϕX = 0 (⇔ AϕX + ϕAX = 0),
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for any X ∈ ker η. On the other hand, recall that, for any Hopf hypersurfaces,
we have (see, [17, Lemma 2.2]):

(12) AϕA− α

2
(Aϕ+ ϕA)− c

4
ϕ = 0.

Substituting AϕX+ϕAX = 0 (for any X ∈ ker η) into equality (12), then we
obtain AϕAX = c

4ϕX, for any X ∈ ker η. Now, let X be a unit eigenvector field
of A with eigenfunction λ orthogonal to ξ, then ϕX is also a unit eigenvector field
of A with eigenfunction c/(4λ). Notice that λ is nowhere vanishing. Otherwise
we shall arrive at a contradiction (i.e., c = 0) according to AϕAX = c

4ϕX, for
any X ∈ ker η. Therefore, with the aid of the second equality in (11), the inner
product of AϕAX = c

4ϕX with ϕX gives

c

4
= g(AϕAX,ϕX) = g(ϕAX,AϕX) = −|AϕX|2 = − c2

16λ2
.

In view of the above equality, one sees that this situation occurs only for a real
hypersurface in the complex hyperbolic space, and the two (distinct) principal
curvatures λ and ν of the shape operator on the holomorphic distribution ker η
are

(13) λ =

√
−c

2
and ν = −

√
−c

2
.

Recall that the Hopf principal curvature for any Hopf hypersurface is a constant
(see, [17, Theorem 2.1]). Thus, M is a Hopf hypersurface in CHn(c) with
constant principal curvatures. According to [1], M is locally congruent to a

� type (A2) hypersurface whose two principal curvatures on holomorphic

distribution ker η are
√
−c
2 tanh(

√
−c
2 r) and

√
−c
2 coth(

√
−c
2 r); or a

� type (B) hypersurface whose two principal curvatures on holomorphic dis-

tribution ker η are
√
−c
2 tanh(

√
−c
2 r) and

√
−c
2 coth(

√
−c
2 r).

Notice that the summation of the two principal curvatures of M on holomor-
phic distribution ker η in (13) vanishes, but by the above table this is impossible
for type (A2) or (B) hypersurfaces in CHn(c).

Corollary 3.1. There are no real hypersurfaces in nonflat complex space forms
with Lie parallel structure tensor field.

Definition 3.2. The structure tensor field of a real hypersurface is called Lie
Codazzi if

(14) (LXϕ)Y = (LY ϕ)X,

for any vector fields X,Y .
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Obviously, the above condition (14) is also a generalization of Lie parallelism
of the structure tensor field.

Theorem 3.2. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is of Lie Codazzi type.

Proof. If the structure tensor field ϕ of a real hypersurface M in nonflat com-
plex space forms is Lie Codazzi, from (8) and (14) we get

(15) η(Y )AX −∇ϕY X + ϕ∇Y X = η(X)AY −∇ϕXY + ϕ∇XY,

for any vector fields X,Y . Taking the inner product of (15) with ξ gives

η(Y )η(AX)− η(∇ϕY X) = η(X)η(AY )− η(∇ϕXY ),

for any vector fields X,Y . In the above equality, replacing Y by ξ gives

Aξ = η(Aξ)ξ.

This means that M is a Hopf hypersurface. We may write Aξ = η(Aξ)ξ := αξ,
and replacing Y by ξ in (15), we obtain

(16) 2AX + ϕ∇ξX = 2αη(X)ξ − ϕAϕX,

for any vector field X. With the aid of Aξ = αξ, the operation of ϕ on (16)
gives

2ϕAX −∇ξX + η(∇ξX)ξ = AϕX,

for any vector field X. On the other hand, with the aid of Aξ = αξ, replacing
X by ϕX in the above equality we have

2ϕAϕX −∇ξϕX = −AX + αη(X)ξ,

for any vector field X. Thus, adding the above equality to (16), with the aid of
(5), we get

AX + ϕAϕX = αη(X)ξ,

for any vector field X, where we have applied ∇ξϕ = 0 which is obtained from
(5) and Aξ = αξ. With the aid of Aξ = αξ, the operation of ϕ on the above
equality gives

(17) Aϕ = ϕA.

In general, the above relation implies that M is a type (A) hypersurface. How-
ever, in our case, there are no real hypersurfaces satisfying the above relation.
In fact, with the aid of (5), using (17) in (16) we get

(18) AX = −ϕ∇ξX + αη(X)ξ,
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for any vector field X. The operation of ϕ on (18) gives

ϕAX = ∇ξX − η(∇ξX)ξ.

With the aid of (17) and Aξ = αξ, the operation of A on (18) gives

A2X = −∇ξX + η(∇ξX)ξ + α2η(X)ξ,

for any vector field X. Eliminating ∇ξX, according to the above relation and
the previous one we get

A2X + ϕAX = α2η(X)ξ,

for any vector field X. From the above equality, we conclude that all principal
curvatures of the shape operator on ker η are zero. For any Hopf hypersurfaces,
if AU = λU and AϕU = νϕU for certain U ∈ ker η, from [17, Corollary 2.3] we
have

(19) λν =
α

2
(λ+ ν) +

c

4
.

As all principal curvatures are zero on ker η, applying this in (19) implies c = 0,
a contradiction.

Definition 3.3. The structure tensor field of a real hypersurface is called Lie
recurrent if

(20) (LXϕ)Y = ω(X)ϕY,

for any vector fields X,Y , and certain one-form ω.

Obviously, the above condition (20) is also a generalization of Lie parallelism
of the structure tensor field.

Theorem 3.3. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is Lie recurrent.

Proof. If the structure tensor field ϕ of a real hypersurface M in nonflat com-
plex space forms is Lie recurrent, from (8) and (20) we get

(21) η(Y )AX − g(AX,Y )ξ −∇ϕY X + ϕ∇Y X = ω(X)ϕY,

for any vector fields X,Y . Taking the inner product of (21) with ξ gives

(22) η(Y )η(AX)− g(AX,Y )− η(∇ϕY X) = 0,

for any vector fields X,Y . In (22), replacing X by ξ we see Aξ = η(Aξ)ξ, and
hence M is Hopf. In (21), with the aid of Aξ = αξ, replacing X by ξ we obtain

(23) −ϕAϕY −AY + αη(Y )ξ = ω(ξ)ϕY,
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for any vector field Y . With the aid of Aξ = αξ, the operation of ϕ on (23)
gives

AϕY − ϕAY = ω(ξ)ϕ2Y.

In (23), with the aid of Aξ = αξ, replacing Y by ϕY gives

ϕAY −AϕY = ω(ξ)ϕ2Y.

Subtracting the last equality from the previous one gives Aϕ = ϕA. Making use
of this, with the aid of Aξ = αξ, selecting X ∈ ker η in (22), we obtain

AX = 0,

for any X ∈ ker η. As seen in proof of Theorem 3.2, this is impossible because
of (19).

Remark 3.1. Corollary 3.1 is also a direct corollary of Theorems 3.2 and 3.3.

Remark 3.2. It has been proved in [6, Main Theorem] that there exist no real
hypersurfaces in Mn(c), c ̸= 0, n ≥ 2, whose structure Jacobi operator l is of Lie
recurrent type, i.e., LX l = ω(X)l, for any vector field X and certain one-form
ω. This conclusion is still valid when the structure Jacobi operator l is replaced
by the shape operator (see, [2, Theorem 8.116]) or the structure tensor field ϕ
(see, Theorem 3.3).

We remark that it was proposed in [6] that how about if we weaken condition
(20) to Lie D-recurrent? Before closing this paper, we also answer this question
and obtain again a nonexistence theorem. Next we denote by D the holomorphic
distribution ker η.

Definition 3.4. The structure tensor field of a real hypersurface is called Lie
D-recurrent if

(24) (LXϕ)Y = ω(X)ϕY,

for any vector field Y and X ∈ D, and certain one-form ω.

Obviously, condition (24) is much weaker than Lie parallelism (i.e., LXϕ =
0). Next, we extend Theorem 3.3 to the following form.

Theorem 3.4. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is Lie D-recurrent.

Proof. By Definition 3.4, equalities (21) and (22) are still valid, for any vector
field Y and X ∈ D. Considering X ∈ D and Y = ξ in (21), we get

(25) AX − η(AX)ξ + ϕ∇ξX = 0.



646 WENJIE WANG

Replacing X by ϕX in (25) gives

AϕX − η(AϕX)ξ + ϕ∇ξϕX = 0,

which is operated by ϕ yielding

ϕAϕX −∇ξϕX + η(∇ξϕX)ξ = 0.

Notice that from (6) and (4) we have η(∇ξϕX) + η(AX) = 0, for any X ∈ D,
which is substituted into the above equality giving

ϕAϕX −∇ξϕX − η(AX)ξ = 0,

for any X ∈ D. Adding this to (25) gives

(26) (∇ξϕ)X = ϕAϕX +AX − 2η(AX)ξ,

for any X ∈ D. Comparing (26) with (5) we obtain

(27) ϕAϕX +AX − η(AX)ξ = 0,

for any X ∈ D. On the other hand, considering X ∈ D in (22), with the aid of
(6), we get

ϕAϕX −AX + η(AX)ξ = 0.

Consequently, eliminating ϕAϕX, from the above equality and (27) we obtain
AX = η(AX)ξ, for any X ∈ D. This implies that g(AX,Y ) = 0, for any vector
fields X,Y ∈ D, and now the hypersurface is a ruled one (see, [2, 10, 17]). On
a ruled hypersurface, there exists a unit vector field U ∈ D such that

(28) Aξ = αξ + βU, AU = βξ, AX = 0,

for any X ∈ {ξ, U}⊥, where β is a non-vanishing function. Moreover, according
to [7, pp. 404] (see, also, [10, 20]) we have

(29) ∇XU =

{
1
β (β

2 − c
4)ϕX, X = U,

0, X = ϕU,

and

(30) dβ(X) =

{
0, X = U,

β2 + c
4 , X = ϕU.

In (21), considering X = Y = U , with the aid of (28), we obtain from (29) that

β2 − c

4
= 0 and ω(U) = 0.

The first equality implies that β is a constant, and hence according to (30) we
obtain β2 + c

4 = 0, which is compared with the above equality implying c = 0,
a contradiction.
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Remark 3.3. By Theorem 3.4, the structure tensor field of a real hypersurface
in nonflat complex space forms cannot be Lie D-parallel, but it can be Lie Reeb-
parallel (i.e., Lξϕ = 0). In fact, it has been proved in [13, Theorem A] that the
structure tensor field of a real hypersurface is Lie Reeb-parallel if and only if
the hypersurface is of type (A) (see, also, [12, 16]).
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Abstract. In this paper, we improve some Heinz inequalities for matrices by using the
convexity of function. Theoretical analysis shows that new inequalities are refinement
of the result in the related literature.

Keywords: Heinz inequalities, convex function, positive semidefinite matrix.

1. Introduction

Let Mn be the space of n × n complex matrices. Let ∥·∥ denote any unitarily
invariant norm on Mn. So, ∥UAV ∥ = ∥A∥ for all A ∈ Mn and for all unitary
matrices U, V ∈ Mn. The singular values sj(A)(j = 1, . . . , n) of A are the

eigenvalues of the positive semidefinite matrix |A| = (AA∗)
1
2 . The Schatten

p-norm ∥·∥p is defined as

∥A∥p = (

n∑
j=1

spj (A))
1
p , 1 ≤ p < ∞

and the Ky Fan k-norm ∥·∥(k) is defined as

∥A∥(k) =
k∑

j=1

sj(A), k = 1, . . . , n.

*. Corresponding author
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It is well known that the Schatten p-norm ∥·∥p and the Ky Fan k-norm ∥·∥(k)
are unitarily invariant [1].

Bhatia and Davis [2] have proved the following inequality

(1.1) 2
∥∥∥A 1

2XB
1
2

∥∥∥ ≤
∥∥AvXB1−v +A1−vXBv

∥∥ ≤ ∥AX +XB∥ , 0 ≤ v ≤ 1,

where A,B,X ∈ Mn with A and B are positive semidefinite matrices.
Kittaneh [3] proved that if A,B,X ∈ Mn such that A and B are positive

semidefinite, then

(1.2)
∥∥AvXB1−v +A1−vXBv

∥∥ ≤ (1− 2r0) ∥AX +XB∥+ 4r0∥A
1
2XB

1
2 ∥,

where 0 ≤ v ≤ 1, r0 = min{v, 1− v}. The inequality (1.2) is a refinement of the
second inequality in (1.1).

He et al. [4] proved that if A,B,X ∈ Mn such that A and B are positive
semidefinite, then

(1.3)
∥∥AvXB1−v +A1−vXBv

∥∥2 ≤ (1− 2r0) ∥AX +XB∥2 + 8r0∥A
1
2XB

1
2 ∥2,

where 0 ≤ v ≤ 1, r0 = min{v, 1− v}.
Improvements of Heinz inequalities have been done by many researchers. We

refer the reader to [5-8]. In this paper, we will improve the inequalities (1.2)
and (1.3) using the convexity of function.

2. Main results

Applying the convexity of function, we obtain the following theorem.

Theorem 1. Let A,B,X ∈ Mn such that A and B are positive semidefinite.
Then for every unitarily invariant norm∥∥AvXB1−v +A1−vXBv

∥∥ ≤ (1− 6r0) ∥AX +XB∥

+ 6r0

∥∥∥A 1
6XB

5
6 +A

5
6XB

1
6

∥∥∥ , v ∈ [0,
1

6
] ∪ (

5

6
, 1],∥∥AvXB1−v +A1−vXBv

∥∥ ≤ (6r0 − 1)
∥∥∥A 1

3XB
2
3 +A

2
3XB

1
3

∥∥∥
+ 2(1− 3r0)

∥∥∥A 1
6XB

5
6 +A

5
6XB

1
6

∥∥∥ ,
v ∈ (

1

6
,
1

3
] ∪ (

2

3
,
5

6
]

and∥∥AvXB1−v +A1−vXBv
∥∥ ≤ 4(3r0 − 1)

∥∥∥A 1
2XB

1
2

∥∥∥
+ 3(1− 2r0)

∥∥∥A 1
3XB

2
3 +A

2
3XB

1
3

∥∥∥ , v ∈ (
1

3
,
2

3
],

where r0 = min{v, 1− v}.
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Proof. For v = 0, the Theorem 1 is obvious. For 0 < v ≤ 1
6 , since f(v) =∥∥AvXB1−v +A1−vXBv

∥∥ is convex on [0, 1], it follows by a slope argument that

f(v)− f(0)

v − 0
≤

f(16)− f(0)
1
6 − 0

,

and so

f(v) ≤ (1− 6v)f(0) + 6vf(
1

6
),

that is ∥∥AvXB1−v +A1−vXBv
∥∥ ≤ (1− 6v) ∥AX +XB∥

+ 6v
∥∥∥A 1

6XB
5
6 +A

5
6XB

1
6

∥∥∥ .(2.1)

For 1
6 < v ≤ 1

3 , similarly, we have

f(v)− f(16)

v − 1
6

≤
f(13)− f(16)

1
6

,

and so

f(v) ≤ (6v − 1)f(
1

3
) + (2− 6v)f(

1

6
),

that is ∥∥AvXB1−v +A1−vXBv
∥∥ ≤ (6v − 1)

∥∥∥A 1
3XB

2
3 +A

2
3XB

1
3

∥∥∥
+ 2(1− 3v)

∥∥∥A 1
6XB

5
6 +A

5
6XB

1
6

∥∥∥ .(2.2)

For 1
3 < v ≤ 1

2 , similarly, we have∥∥AvXB1−v +A1−vXBv
∥∥ ≤ 4(3v − 1)

∥∥∥A 1
2XB

1
2

∥∥∥
+ 3(1− 2v)

∥∥∥A 1
3XB

2
3 +A

2
3XB

1
3

∥∥∥ .(2.3)

For 1
2 < v ≤ 2

3 , it follows by applying (2.3) to 1− v that∥∥AvXB1−v +A1−vXBv
∥∥ ≤ 4(2− 3v)

∥∥∥A 1
2XB

1
2

∥∥∥
+ 3(2v − 1)

∥∥∥A 1
3XB

2
3 +A

2
3XB

1
3

∥∥∥ .
For 2

3 < v ≤ 5
6 , by applying (2.2) to 1− v, we have∥∥AvXB1−v +A1−vXBv

∥∥ ≤ (5− 6v)
∥∥∥A 1

3XB
2
3 +A

2
3XB

1
3

∥∥∥
+ 2(3v − 2)

∥∥∥A 1
6XB

5
6 +A

5
6XB

1
6

∥∥∥ .
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For 5
6 < v ≤ 1, by applying (2.1) to 1− v, we have∥∥AvXB1−v +A1−vXBv

∥∥ ≤ (6v − 5) ∥AX +XB∥

+ 6(1− v)
∥∥∥A 1

6XB
5
6 +A

5
6XB

1
6

∥∥∥ .
This completes the proof.

Remark 1. Theorem 1 is better than inequality (1.2). For v ∈ [0, 16 ] ∪ (56 , 1],
we have

(1− 6r0) ∥AX +XB∥+ 6r0

∥∥∥A 1
6XB

5
6 +A

5
6XB

1
6

∥∥∥
≤ (1− 6r0) ∥AX +XB∥+ 6r0(

2

3
∥AX +XB∥+ 2

3

∥∥∥A 1
2XB

1
2

∥∥∥)
= (1− 2r0) ∥AX +XB∥+ 4r0

∥∥∥A 1
2XB

1
2

∥∥∥ .
For v ∈ (16 ,

1
3 ] ∪ (23 ,

5
6 ], we have

(6r0 − 1)
∥∥∥A 1

3XB
2
3 +A

2
3XB

1
3

∥∥∥+ 2(1− 3r0)
∥∥∥A 1

6XB
5
6 +A

5
6XB

1
6

∥∥∥
≤ (6r0 − 1)[

1

3
∥AX +XB∥+ 4

3

∥∥∥A 1
2XB

1
2

∥∥∥]
+ 2(1− 3r0)[

2

3
∥AX +XB∥+ 2

3

∥∥∥A 1
2XB

1
2

∥∥∥]
= (1− 2r0) ∥AX +XB∥+ 4r0

∥∥∥A 1
2XB

1
2

∥∥∥ .
For v ∈ (13 ,

2
3 ], we have

4(3r0 − 1)
∥∥∥A 1

2XB
1
2

∥∥∥+ 3(1− 2r0)
∥∥∥A 1

3XB
2
3 +A

2
3XB

1
3

∥∥∥
≤ 4(3r0 − 1)

∥∥∥A 1
2XB

1
2

∥∥∥+ 3(1− 2r0)[
1

3
∥AX +XB∥+ 4

3

∥∥∥A 1
2XB

1
2

∥∥∥]
= (1− 2r0) ∥AX +XB∥+ 4r0

∥∥∥A 1
2XB

1
2

∥∥∥ .
The following result implies that the inequality in Theorem 2 is a refinement

of the inequality (1.3).

Theorem 2. Let A,B,X ∈ Mn such that A and B are positive semidefinite.
Then for 0 ≤ v ≤ 1 and for every unitarily invariant norm∥∥AvXB1−v +A1−vXBv

∥∥2
+ 2r0(

∥∥AvXB1−v +A1−vXBv
∥∥− 2

∥∥∥A 1
2XB

1
2

∥∥∥)(∥AX +XB∥ − 2
∥∥∥A 1

2XB
1
2

∥∥∥)
≤ (1− 2r0) ∥AX +XB∥2 + 8r0

∥∥∥A 1
2XB

1
2

∥∥∥2 ,
where r0 = min{v, 1− v}.
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Proof. For v = 0, 1, the result in Theorem 2 is obvious. For 0 < v ≤ 1
2 , since

f(v) =
∥∥AvXB1−v +A1−vXBv

∥∥ is convex on [0, 1], it follows that

f(v)− f(0)

v − 0
≤

f(12)− f(0)
1
2 − 0

,

and so

2v(f(0)− f(
1

2
))(f(0) + f(v)) ≤ f2(0)− f2(v),

that is

(2.4) f2(v) + 2v(f(v)− f(
1

2
))(f(0)− f(

1

2
)) ≤ (1− 2v)f2(0) + 2vf2(

1

2
).

For 1
2 < v < 1, similarly, we have

f2(v) + 2(1− v)(f(v)− f(
1

2
))(f(0)− f(

1

2
))

≤ (1− 2(1− v))f2(0) + 2(1− v)f2(
1

2
).(2.5)

From (2.4) and (2.5), we obtain

f2(v) + 2r0(f(v)− f(
1

2
))(f(0)− f(

1

2
)) ≤ (1− 2r0)f

2(0) + 2r0f
2(
1

2
),

that is∥∥AvXB1−v +A1−vXBv
∥∥2

+ 2r0(
∥∥AvXB1−v +A1−vXBv

∥∥− 2
∥∥∥A 1

2XB
1
2

∥∥∥)(∥AX +XB∥ − 2
∥∥∥A 1

2XB
1
2

∥∥∥)
≤ (1− 2r0) ∥AX +XB∥2 + 8r0

∥∥∥A 1
2XB

1
2

∥∥∥2 .
This completes the proof.
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Abstract. In this paper, we study the Schur convexity of a function containing
variable upper and lower limit of integration, we prove that the function is Schur-
convex if its fourth-order derivative is non-negative. Finally, we use the obtained result
to derive an inequality of Hermite-Hadamard type.

Keywords: Schur-convex, majorization, fourth-order derivative, Hermite-Hadamard-
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1. Introduction

Schur convexity is an important notion in the theory of convex functions, which
was introduced by Schur in 1923 (see [1]). Over the past half a century, Schur
convexity has aroused the interest of many researchers due to its powerful appli-
cations in the theory of inequalities, we refer the reader to [2–19] and references
cited therein.

In [20], Elezović and Pečarić proved the Schur convexity of the following
function.

Claim 1.1. Suppose f : I → R is a continuous function. Then, the function

F (x, y) =

{
1

y−x
∫ y
x f(t)dt, x ̸= y, x, y ∈ I

f(x), x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I.

*. Corresponding author
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In [21], Chu, Wang and Zhang showed the Schur convexity of the following
two functions.

Claim 1.2. Suppose f : I → R is a continuous function. Then, the function

M(x, y) =

{
1

y−x
∫ y
x f(t)dt− f

(x+y
2

)
, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I, and the
function

T (x, y) =

{
f(x)+f(y)

2 − 1
y−x

∫ y
x f(t)dt, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I.

In [22], Franjić and Pečarić verified the Schur convexity of the function below.

Claim 1.3. Suppose f : I → R is a continuous function. Then, the function

S(x, y) =

{
1
6f(x) +

2
3f
(x+y

2

)
+ 1

6f(y)−
1

y−x
∫ y
x f(t)dt, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f (4) ≥ 0 (f (4) ≤ 0) on I.

Inspired by the research results described in [20-22] above, in this paper we
study the Schur convexity of a function which contains variable upper and lower
limit of integration, i.e.,

U(x, y)

=

{
1

y−x
∫ y
x f(t)dt−

f(x)+f(y)
2 + 1

12 (f
′(y)− f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I.

The remaining parts of this paper are organized as follows. In Section 2,
we present some definitions and lemmas which are essential in the proof of the
main results. In Sections 3 and 4, we give our main result and an application.

2. Preliminaries

Let us recall some definitions and lemmas, which will be used in the proofs of
the main results in subsequent sections.

Definition 2.1 ([2, 23]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.
(i) x is said to be majorized by y (in symbols x ≺ y) if

∑k
i=1 x[i] ≤

∑k
i=1 y[i]

for k = 1, 2, . . . , n − 1 and
∑n

i=1 x[i] =
∑n

i=1 y[i], where x[1] ≥ x[2] ≥ · · · ≥ x[n]
and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(ii) Let Ω ⊂ Rn, φ : Ω → R is said to be a Schur-convex function on Ω if
x ≺ y on Ω implies φ(x) ≤ φ(y). And φ is said to be a Schur-concave function
on Ω if and only if −φ is a Schur-convex function on Ω.
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Definition 2.2 ([2, 23]). Let x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn.
(i) A set Ω ⊂ Rn is called a symmetric set, if x ∈ Ω implies xP ∈ Ω for

every n× n permutation matrix P .

(ii) A function φ : Ω → R is called a symmetric function if for every per-
mutation matrix P , φ(xP ) = φ(x) for all x ∈ Ω.

Lemma 2.1 ([2, 23]). Let Ω ⊂ Rn be symmetric and have a nonempty interior
convex set. Ω◦ is the interior of Ω. φ : Ω → R is continuous on Ω and
differentiable in Ω◦. Then, φ is Schur-convex on Ω if and only if φ is symmetric
on Ω and

(1) (xi − xj)

(
∂φ

∂xi
− ∂φ

∂xj

)
≥ 0 (i ̸= j, i, j = 1, 2, . . . , n)

for any x = (x1, x2, . . . , xn) ∈ Ω◦. Furthermore, φ is Schur-concave on Ω if and
only if the reversed inequality above holds.

Lemma 2.2 ([24]). Let x ≤ y, u(t) = ty + (1 − t)x, v(t) = tx + (1 − t)y,
0 ≤ t1 ≤ t2 ≤ 1

2 or 1
2 ≤ t2 ≤ t1 ≤ 1. Then

(2)

(
x+ y

2
,
x+ y

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (x, y).

Lemma 2.3 ([25]). (Simpson formula) Let f : I ⊂ R→ R and x, y ∈ I. If f (4)

is continuous on I, then

(3)
1

y − x

∫ y

x
f(t)dt− 1

6

(
f(x) + 4f

(
x+ y

2

)
+ f(y)

)
= −(y − x)4

2880
f (4)(ξ),

where ξ is some number between x and y.

3. Main result

Our main result is stated in the following theorem.

Theorem 3.1. Let f : I ⊂ R → R be a continuous function. If f (4) ≥ 0
(f (4) ≤ 0) on I, then the function

U(x, y)

=

{
1

y−x
∫ y
x f(t)dt−

f(x)+f(y)
2 + 1

12 (f
′(y)− f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2.

Proof. Note that, U(x, y) is symmetric about x, y on I, without loss of gener-
ality, we may assume that y ≥ x. Below we divide the proof into two cases.
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Case 1. If x = y, it follows from the definition of derivative and L’Hopital’s rule
that, for any t0 ∈ I,

∂U

∂x
|(t0,t0) = lim

∆t→0

U(t0 +∆t, t0)− U(t0, t0)

∆t

= lim
∆t→0

− 1
∆t

∫ t0
t0+∆t f(t)dt−

f(t0+∆t)+f(t0)
2 − ∆t

12 (f ′(t0)− f ′(t0 +∆t))

∆t

= lim
∆t→0

−
∫ t0
t0+∆t f(t)dt−

∆t
2 (f(t0 +∆t) + f(t0))

(∆t)2

=− lim
∆t→0

∆tf ′′(t0 +∆t)

4

=0.

Similarly, we can obtain ∂U
∂y |(t0,t0) = 0. Hence we have, for any x = y ∈ I,

(y − x)

(
∂U

∂y
− ∂U

∂x

)
= 0.

Case 2. If x ̸= y, differentiating U(x, y) with respect to y and x respectively
gives

∂U

∂y
= − 1

(y − x)2

∫ y

x
f(t)dt+

f(y)

y − x
− f ′(y)

2
+
f ′′(y)(y − x) + f ′(y)− f ′(x)

12
,

∂U

∂x
=

1

(y − x)2

∫ y

x
f(t)dt− f(x)

y − x
− f ′(x)

2
− f ′′(x)(y − x) + f ′(y)− f ′(x)

12
.

Thus, we have

(y − x)

(
∂U

∂y
− ∂U

∂x

)
= − 2

y − x

∫ y

x
f(t)dt+ (f(x) + f(y))− (y − x)

3
(f ′(y)− f ′(x))(4)

+
(y − x)2

12
(f ′′(x) + f ′′(y)).

Using the Simpson formula (Lemma 2.3) with f (4) ≥ 0, we obtain

1

y − x

∫ y

x
f(t)dt ≤ 1

6

(
f(x) + 4f

(
x+ y

2

)
+ f(y)

)
.(5)

Combining (4) and (5), we acquire that

(y − x)

(
∂U

∂y
− ∂U

∂x

)
≥ −4

3
f

(
x+ y

2

)
+

2

3
(f(x) + f(y))− (y − x)

3
(f ′(y)− f ′(x))(6)

+
(y − x)2

12
(f ′′(x) + f ′′(y))

=: Q(x, y).
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It is enough to prove Q(x, y) ≥ 0 for any x, y ∈ I. Differentiating Q(x, y)
with respect to y and x respectively, we obtain

∂Q

∂y
=− 2

3
f ′
(x+ y

2

)
+
f ′(x) + f ′(y)

3
+
(y − x)(f ′′(x)− f ′′(y))

6
+

(y − x)2f ′′′(y)

12
,

∂Q

∂x
=− 2

3
f ′
(x+ y

2

)
+
f ′(x) + f ′(y)

3
+
(y − x)(f ′′(x)− f ′′(y))

6
+

(y − x)2f ′′′(x)

12
,

Then, by f (4) ≥ 0, we have

(y − x)

(
∂Q

∂y
− ∂Q

∂x

)
=

1

12
(y − x)3(f ′′′(y)− f ′′′(x)) ≥ 0.

It follows from Lemma 2.1 that Q(x, y) is Schur-convex on I2. In addition,
by Lemma 2.2, we have

(x+y
2 , x+y2

)
≺ (x, y). Hence, we deduce from Definition

2.1 that

Q(x, y) ≥ Q

(
x+ y

2
,
x+ y

2

)
= 0.(7)

Combining (6) and (7), we conclude that, for any x, y ∈ I, x ̸= y,

(y − x)

(
∂U

∂y
− ∂U

∂x

)
≥ Q(x, y) ≥ 0.

Hence, we derive from Lemma 2.1 that U(x, y) is Schur-convex on I2.
By the same way as the proof of Theorem 3.1 for f (4) ≥ 0 above, we can

prove that the U(x, y) is Schur-concave for f (4) ≤ 0. This completes the proof
of Theorem 4.

4. An application

Theorem 4.1. Let f : I ⊂ R → R be a continuous function with f (4) ≥ 0 on
I. Then, for x ̸= y, x, y ∈ I, 0 ≤ t1 ≤ t2 <

1
2 or 1

2 < t2 ≤ t1 ≤ 1, we have the
following inequalities

1

y − x

∫ y

x
f(t)dt− f(x) + f(y)

2
+

1

12

(
f ′(y)− f ′(x)

)
(y − x)

≥ 1

(1− 2t1)(y − x)

∫ t1x+(1−t1)y

t1y+(1−t1)x
f(t)dt

− f (t1y + (1− t1)x) + f (t1x+ (1− t1)y)

2

+
1

12

(
f ′ (t1x+ (1− t1)y)− f ′((t1y + (1− t1)x)

)
(1− 2t1)(y − x)

≥ 1

(1− 2t2)(y − x)

∫ t2x+(1−t2)y

t2y+(1−t2)x
f(t)dt(8)

− f (t2y + (1− t2)x) + f (t2x+ (1− t2)y)

2
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+
1

12

(
f ′ (t2x+ (1− t2)y)− f ′((t2y + (1− t2)x)

)
(1− 2t2)(y − x) ≥ 0.

Each of the inequalities in (8) is reverse for f (4) ≤ 0 on I.

Proof. Since each of the inequalities in (8) is symmetric about x, y, without
loss of generality, we can assume that y > x.

Using Lemma 2.2, we have(
x+ y

2
,
x+ y

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (x, y),(9)

where u(t) = ty + (1− t)x, v(t) = tx+ (1− t)y.
In addition, from Theorem 3.1, we find that

U(x, y) =

{
1

y−x
∫ y
x f(t)dt−

f(x)+f(y)
2 + 1

12 (f
′(y)−f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex on I2 under the assumption that f (4) ≥ 0.
Thus, we derive from the Definition (2.1) that

U

(
x+ y

2
,
x+ y

2

)
≤ U(u(t2), v(t2)) ≤ U(u(t1), v(t1)) ≤ U(x, y),(10)

which implies the required inequalities in (8). Similarly, we can deduce the
reversed inequalities of (8) under the assumption that f (4) ≤ 0. The proof of
Theorem 4.1 is complete.

As a direct consequence of Theorem 4.1, we obtain

Corollary 4.1. Let f : I ⊂ R → R be a continuous function with f (4) ≥ 0 on
I. Then, for x ̸= y, x, y ∈ I, the following inequality holds.

1

y − x

∫ y

x
f(t)dt ≥ f(x) + f(y)

2
− 1

12

(
f ′(y)− f ′(x)

)
(y − x).(11)

Inequality (11) is reverse for f (4) ≤ 0 on I.
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Abstract. Suppose that G is a finite group. As is known to all, the order of G and
the number of elements of maximal order in G are closely related to the structure of G.
This topic involves Thompson’s problem. In this paper we classify the finite groups of
order p3qr in which the number of elements of maximal order is p4q, where p < q < r
are different primes.

Keywords: finite groups, group order, the number of elements of maximal order,
isomorphic classification.

1. Introduction

All groups considered in our paper are finite. Let n be an integer. We denote
by π(n) the set of all prime divisors of n. Let G be a finite group. Then,
π(|G|) is denoted by π(G). The set of orders of elements of G is denoted by
πe(G). We denote by k(G) and m(G) the maximal order of elements in G and
the number of elements of order k(G) in G, respectively. We write H char G
if H is characteristic in G. G = N ⋊ Q stands for the split extension of a
normal subgroup N of G by a complement Q. By M ≲ G we denote M is
isomorphic to a subgroup of G. And we denote by Zn a cyclic group of order n.
All unexplained notations are standard and can be found in [6].

*. Corresponding author
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For a finite group G, |G| and m(G) have an important influence on the
structure of G. The authors in [13, 3, 9] proved that finite groups G with
m(G) = lp are soluble, where l = 2, 4, or 18. In [8] it was proved that finite
groups G withm(G) = 2p2 are soluble. The authors in [2, 7] gave a classification
of the finite groups G with m(G) = 30 and m(G) = 24. The authors in [10]
showed that if G is a finite group which has 4p2q elements of maximal order,
where p, q are primes and 7 ≤ p ≤ q, then either G is soluble or G has a section
who is isomorphic to one of L2(7), L2(8) or U3(3). These studies are closely
related to the following problem.

Thompson’s problem. Let H be a finite group. For a positive integer d,
define H(d) = |{x ∈ H||x| = d}|. Suppose that H(d) = G(d) for d = 1, 2, . . .,
where G is a soluble group. Is it true that H is also necessarily soluble?

The problem we consider is also closely related to Thompson’s problem. In
this paper we classify the finite groups of order p3qr in which the number of
elements of maximal order is p4q, where p < q < r are primes (Let us denote
this property by (*) for brevity). We find that this isomorphic classification
problem is complex. Our results are:

Theorem 1.1. A group G has property (*) if and only if one of the following
statements holds:

(1) G ∼= M ⋉ Zr and r − 1 = 16q. Moreover, CM (Zr) ∼= Z2, M/CM (Zr) ≲
Aut(Zr) and |M/CM (Zr)| = 4q;

(2) G ∼= K ⋉ Zr and r − 1 = 8q. Moreover, CK(Zr) ∼= Z4, K/CK(Zr) ≲
Aut(Zr) and |K/CK(Zr)| = 2q;

(3) G ∼= L ⋉ Zr and r − 1 = 8q. Moreover, CL(Zr) ∼= D8, L/CL(Zr) ≲
Aut(Zr) and |L/CL(Zr)| = q;

(4) G ∼= R⋉Zr and r− 1 = 4q. Moreover, CR(Zr) ∼= Z4 ×Z2, R/CR(Zr) ≲
Aut(Zr) and |R/CR(Zr)| = q;

(5) G ∼= Zq ⋉ Z8r and r − 1 = 4q. Moreover, CZq(Z8r) = 1;

(6) G ∼=M ⋉ Z7 and CM (Z7) ∼= A4, where M ∼= A4 × Z2 or S4;

(7) G ∼= Z168;

(8) G ∼= Q8 × Z15;

(9) G ∼= D8 × Zqr, where q = 3 and r = 13 or q = 5 and r = 11;

(10) G ∼= (Z4 × Z2)× Z21;

(11) G ∼= M ⋉ Zqr, q = 3 and r = 13 or q = 5 and r = 11, where M is a
group of order 8. Moreover, CM (Zqr) ∼= Z4;

(12) G ∼= (A4 × Z2)× Z7;

(13) G ∼= SL2(F3)× Z7;

(14) G is a Frobenius group and G ∼= Z8q ⋉ Zr. Moreover, r − 1 = 16q;

(15) G ∼= L2(7);

(16) G is a 2-Frobenius group and G ∼= Z3 ⋉ (Z7 ⋉ P ), where P is an
elementary abelian 2-group of order 8, P ⊴ G and G/P ∼= Z3 ⋉ Z7. Moreover,
πe(G) = {1, 2, 3, 6, 7}.
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Corollary 1.2. All of the groups with property (∗) are of even order.

Corollary 1.3. Suppose that G is a non-soluble group with property (∗). Then,
G ∼= L2(7).

Corollary 1.4. The answer to Thompson’s problem is yes for finite groups
(1)-(14) and (16) of Theorem 1.1.

2. Preliminaries

We need the following lemmas to prove our results.

Lemma 2.1 ([12]). Let G be a finite group. Then, the number of elements whose
orders are multiples of n is either zero, or a multiple of the greatest divisor of
|G| that is prime to n.

Lemma 2.2 ([3]). Let G be a finite group. We denote by Ai (1 ≤ i ≤ s) a
complete representative system of conjugate classes of cyclic subgroups of order
k(G), respectively. Then, we have:

(1) m(G) = φ(k(G))
∑
ni, where φ(k(G)) is Euler function, ni = |G :

NG(Ai)| and 1 ≤ i ≤ s;
(2) |G| = |G : NG(Ai)||NG(Ai) : CG(Ai)||CG(Ai)|, where 1 ≤ i ≤ s;
(3) |NG(Ai) : CG(Ai)||φ(k(G)), where 1 ≤ i ≤ s;
(4) π(CG(Ai)) = π(Ai), where 1 ≤ i ≤ s.

Lemma 2.3 ([4]). Let G be a soluble group of order mn, where m is prime to n.
Then, the number of subgroups of G of order m may be expressed as a product
of factors, each of which (i) is congruent to 1 modulo some prime factor of m,
(ii) is a power of a prime and divides the order of some chief factor of G.

Lemma 2.4 ([1]). Let H be a finite group and πe(H) = {1, 2, 3, 4}. Then,
H = N ⋊Q and one of the following conclusions holds:

(i) N has exponent 4 and class ≤ 2, Q ∼= Z3.
(ii) N = Z2

2t and Q ∼= S3, where Z2
2t stands for the direct product of 2t

copies of Z2.
(iii) N = Z3

2t and Q ∼= Z4 or Q8 and H is a Frobenius group, where Q8 is
the generalized quaternion group.

Lemma 2.5 ([14]). Let G be a finite group satisfying |G| = 23 ·3 ·7 and m(G) =
48.

(1) If k(G) = 42, then G ∼= (A4 × Z2)× Z7 or G ∼= SL2(F3)× Z7.
(2) If k(G) = 21, then G ∼=M ⋉Z7 and CM (Z7) ∼= A4, where M ∼= A4 ×Z2

or S4.

Lemma 2.6 ([5]). Let G be a finite simple group. If |π(G)| = 3, then we call
G a simple K3-group. If G is a simple K3-group, then G is isomorphic to one
of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) and U4(2).
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Lemma 2.7 ([15]). Let G be a finite group. Then, |G| = |L2(7)| and k(G) =
k(L2(7)) if and only if G ∼= L2(7) or G is a 2-Frobenius group, at this moment,
G ∼= Z3⋉ (Z7⋉P ), where P is an elementary abelian 2-group of order 8, P ⊴G
and G/P ∼= Z3 ⋉ Z7. Moreover, πe(G) = {1, 2, 3, 6, 7}.

3. Proof of the Results

Proof of Theorem 1.1

It is not hard to see that all the groups from items (1)-(16) of Theorem 1.1
have property (*).

Now, we assume that G has property (*). Namely, |G| = p3qr and m(G) =
p4q. From Lemma 2.1 we get that π(G) ⊆ π(m(G))

⋃
π(k(G)). Then, r ∈

π(k(G)). Since φ(k(G)) | m(G) by Lemma 2.2, we obtain that φ(r) = r−1|p4q.
From 2|r − 1 it follows that p = 2. In the following we discuss four cases.

Case 1. If π(k(G)) = {2, r}, then k(G) = 2r, 4r or 8r.

Suppose that k(G) = 2r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that x2 ∈ Z(CG(A)) and so G has a Sylow r-
subgroup Pr such that Pr ≤ Z(CG(A)). Therefore Pr char CG(A) and it follows
that Pr ⊴NG(A) since CG(A)⊴NG(A). Therefore NG(A) ≤ NG(Pr) and thus
|G : NG(Pr)|||G : NG(A)|. By Lemma 2.2 we get that |G : NG(A)||4q. So
|G : NG(Pr)||4q.

If Pr ⋬ G, then |G : NG(Pr)| = 2q or 4q by Sylow’s theorem. If |G :
NG(Pr)| = 4q, then |G : NG(A)| = 4q and so 4q|n by Lemma 2.2, where n is the

number of cyclic subgroups of order k(G) in G. Note that n = m(G)
φ(2r) =

16q
r−1 , thus

r − 1 = 4 and so r = 5. It follows that q = 3. Hence, |G : NG(P5)| = 12, which
is contradict to Sylow’s theorem. If |G : NG(Pr)| = 2q, then |NG(Pr)| = 4r and

|CG(Pr)| = 2αr, where 1 ≤ α ≤ 2. Moreover, CG(Pr) contains exactly
m(G)
2q = 8

elements of order 2r. On the other hand, we get that CG(Pr) = H×Pr by Schur-
Zassenhaus’s theorem since Pr ≤ Z(CG(Pr)), where H is a group satisfying
|H| = 2α. It follows that CG(Pr) contains exactly (2α − 1)(r − 1) elements
of order 2r. Thus, (2α − 1)(r − 1) = 8, which is impossible obviously since
1 ≤ α ≤ 2.

If Pr ⊴ G, then CG(Pr) contains all the elements of order k(G) in G since
A ≤ CG(A) ≤ CG(Pr). Note that Pr ≤ Z(CG(Pr)), thus |CG(Pr)| = 2lr, where
1 ≤ l ≤ 3. Moreover, CG(Pr) = H1 × Pr by Schur-Zassenhaus’s theorem, where
H1 is a group of order 2l. If l = 2, then H1 is an elementary abelian group of
order 4. Thus, 3(r − 1) = 16q and it follows that q = 3 and r = 17. Since
|G/CG(P17)|||Aut(P17)|, we get that 6|16, which is a contradiction. Similarly,
we can show that l ̸= 3. If l = 1, then r − 1 = 16q. Note that Pr

∼= Zr, then by
Schur-Zassenhaus’s theorem we get that G ∼=M ⋉Zr. Moreover, CM (Zr) ∼= Z2,
M/CM (Zr) ≲ Aut(Zr) and |M/CM (Zr)| = 4q. Hence, (1) holds.

Suppose that k(G) = 4r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. Similar to the above, we can get that G has a Sylow r-
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subgroup Pr such that Pr ≤ Z(CG(A)), |G : NG(Pr)||2q and |G : NG(Pr)| =
|G : NG(A)| = 2q by Sylow’s theorem if Pr ⋬ G. Hence, CG(Pr) contains

exactly m(G)
2q = 8 elements of order 4r. Note that Pr ≤ Z(CG(Pr)), thus r−1|8.

It follows that r = 5 and so q = 3. Therefore |G : NG(P5)| = 6 and so
|NG(P5)| = |CG(P5)| = 20. Hence, G is 5-nilpotent by Burnside’s theorem.
Then, G is soluble. By Lemma 2.3 it follows that 2 ≡ 1(mod 5) and 3 ≡ 1(mod
5), which is impossible.

If Pr ⊴G, then CG(Pr) contains all the elements of order 4r in G. Further-
more, |CG(Pr)| = 2α · qβ · r, where 2 ≤ α ≤ 3 and 0 ≤ β ≤ 1. Note that Pr ≤
Z(CG(Pr)), then by Schur-Zassenhaus’s theorem we have CG(Pr) = H × Pr,
where H is a group of order 2α · qβ.

Suppose that β = 1. Then, q = 3 since k(G) = 4r is the maximal element
order of G. If α = 2, then H is a group of order 12 and πe(H) = {1, 2, 3, 4}. It
follows thatH ∼= Z4⋊Z3 by Lemma 2.4. Hence, 2(r−1) = m(G) = 48. It follows
that r = 25, which is impossible. If α = 3, then CG(Pr) = G and so Pr ≤ Z(G).
Consequently, G =M ×Pr by Schur-Zassenhaus’s theorem, where M is a group
of order 24. Note that πe(M) = {1, 2, 3, 4}, thus M ∼= (Z2×Z2)⋊S3 or N ⋊Z3

by Lemma 2.4. If M ∼= (Z2 × Z2) ⋊ S3, then 6(r − 1) = m(G) = 48 and thus
r = 9, which is a contradiction. If M ∼= N ⋊ Z3, then the conjugate action of
Z3 on N is fixed-point-free. Thus, |Z3|||N | − 1 and it follows that 3|7, which is
impossible.

Suppose that β = 0. Then, |CG(Pr)| = 4r or 8r. If |CG(Pr)| = 4r, then
CG(Pr) ∼= Z4 × Zr. It follows that 2(r − 1) = m(G) = 16q and so r − 1 =
8q. Moreover, G ∼= K ⋉ Zr by Schur-Zassenhaus’s theorem, CK(Zr) ∼= Z4,
K/CK(Zr) ≲ Aut(Zr) and |K/CK(Zr)| = 2q. Hence, (2) holds. If |CG(Pr)| =
8r, then H is isomorphic to the dihedral group D8, the generalized quaternion
group Q8 or Z4 × Z2 since k(H) = 4. If H ∼= Q8, then 6(r − 1) = m(G) = 16q
and so r = 9, which is a contradiction. If H ∼= D8, then 2(r− 1) = m(G) = 16q
and so r − 1 = 8q. Moreover, G ∼= L ⋉ Zr by Schur-Zassenhaus’s theorem,
CL(Zr) ∼= D8, L/CL(Zr) ≲ Aut(Zr) and |L/CL(Zr)| = q. Hence, (3) holds.
If H ∼= Z4 × Z2, then 4(r − 1) = m(G) = 16q and so r − 1 = 4q. Moreover,
G ∼= R ⋉ Zr, CR(Zr) ∼= Z4 × Z2, R/CR(Zr) ≲ Aut(Zr) and |R/CR(Zr)| = q.
Hence, (4) holds.

Suppose that k(G) = 8r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that x8 ∈ Z(CG(A)) and so G has a Sylow
r-subgroup Pr such that Pr ≤ Z(CG(A)). Since A ≤ CG(A) ≤ CG(Pr), we
have |CG(Pr)| = 8qγr, where 0 ≤ γ ≤ 1. Note that Pr ≤ Z(CG(Pr)), thus
CG(Pr) = H × Pr by Schur-Zassenhaus’s theorem, where H is a group of order
8qγ and k(H) = 8.

Suppose that γ = 1. Since k(G) = 8r, we have q = 3, 5 or 7. Note that
the Sylow 2-subgroup P2 of H is cyclic, thus H is 2-nilpotent and so the Sylow
q-subgroup Q of H is normal in H. If q = 5 or 7, then the conjugate action of P2

on Q is fixed-point-free since k(H) = 8. Therefore 8|q − 1, which is impossible.
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If q = 3, then H is a group of order 24 satisfying k(H) = 8. Now, we get a
contradiction since such group H does not exist by [11].

Suppose that γ = 0. Then, |CG(Pr)| = 8r. Since the Sylow 2-subgroup of
G is cyclic, we get that G is 2-nilpotent. It follows that the subgroup of order
qr of G is normal in G. Then, Pr ⊴G by Sylow’s theorem and so CG(Pr)⊴G.
Hence, CG(Pr) contains all the elements of order 8r and G ∼= Zq⋉Z8r by Schur-
Zassenhaus’s theorem. Moreover, 4(r − 1) = m(G) = 16q and CZq(Z8r) = 1.
Hence, (5) holds.

Case 2. If π(k(G)) = {q, r}, then k(G) = qr.

Choose an arbitrary element x of order k(G) in G and let ⟨x⟩ = A. Similar to
Case 1, we can get that G has a Sylow r-subgroup Pr such that Pr ≤ Z(CG(A))
and |G : NG(Pr)| = 1 or 8.

If |G : NG(Pr)| = 1, then Pr ⊴ G and CG(Pr) contains all the elements
of order qr in G since A ≤ CG(A) ≤ CG(Pr). Moreover, G is soluble. By
Lemma 2.3 it follows that |G : NG(A)| = 1, 4 or 8. If |G : NG(A)| = 8, then
8(q − 1)(r − 1) = m(G) = 16q. If follows that q = 3 and r = 4, which is a
contradiction. If |G : NG(A)| = 4, then 4 ≡ 1 (mod q) by Lemma 2.3. Therefore
q = 3 and thus 4(3 − 1)(r − 1) = m(G) = 48. Hence, r = 7. Therefore by (2)
of Lemma 2.5 we have G ∼=M ⋉ Z7 and CM (Z7) ∼= A4, where M ∼= A4 × Z2 or
S4. Hence, (6) holds. If |G : NG(A)| = 1, then (q − 1)(r − 1) = 16q, which is
impossible we can find by simple calculation.

If |G : NG(Pr)| = 8, then CG(Pr) contains exactly m(G)
8 = 2q elements of

order qr. On the other hand, we know that A ≤ CG(A) ≤ CG(Pr), thus CG(Pr)
contains at least φ(qr) = (q − 1)(r − 1) elements of order qr. Now, we get a
contradiction since (q − 1)(r − 1) > 2q.

Case 3. If π(k(G)) = {2, q, r}, then k(G) = 8qr, 4qr or 2qr.

If k(G) = 8qr, then φ(8qr) = 4(q−1)(r−1) = 16q. Consequently, q−1
2 · r−1

2 =

q. Since r−1
2 > 1, we have q−1

2 = 1 and so q = 3. It follows that r = 7. Hence,
G ∼= Z168 and thus (7) holds.

Suppose that k(G) = 4qr. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that Z(CG(A)) contains elements of order qr,
and so G has a subgroup H of order qr such that H ≤ Z(CG(A)). Therefore H
char CG(A) and it follows that H ⊴NG(A) since CG(A)⊴NG(A). So NG(A) ≤
NG(H). Then, |G : NG(H)|||G : NG(A)|. Note that |G : NG(A)| = 1, thus
|G : NG(H)| = 1 and so H ⊴G. Therefore CG(H) contains all the elements of
order k(G) in G and so |CG(H)| = 2αqr, where 2 ≤ α ≤ 3.

If α = 3, then CG(H) = G and so H ≤ Z(G). Thus, G = K ×H by Schur-
Zassenhaus’s theorem. Obviously, K is isomorphic to the dihedral group D8, the
generalized quaternion group Q8 or Z4 ×Z2. If K ∼= Q8, then 6(q− 1)(r− 1) =
m(G) = 16q. Hence, q = 3 and r = 5. Therefore G ∼= Q8 × Z15. Hence, (8)
holds. If K ∼= D8, then similarly we can get that G ∼= D8×Zqr, where q = 3 and



FINITE GROUPS OF ORDER p3qr IN WHICH THE NUMBER ... 669

r = 13 or q = 5 and r = 11. Hence, (9) holds. If K ∼= Z4 × Z2, then similarly
we can get that G ∼= (Z4 × Z2)× Z21. Hence, (10) holds.

If α = 2, then CG(H) ∼= Z4 × Zqr. So 2(q − 1)(r − 1) = 16q. It follows
that q = 3 and r = 13 or q = 5 and r = 11. Furthermore, G ∼= M ⋉ Zqr by
Schur-Zassenhaus’s theorem and CM (Zqr) ∼= Z4, where M is a group of order 8.
Hence, (11) holds.

Suppose that k(G) = 2qr. Choose an arbitrary element x of order k(G) in G
and let ⟨x⟩ = A. From the fact that Z(CG(A)) contains elements of order qr we
get thatG has a cyclic subgroupH of order qr such thatH ≤ Z(CG(A)). Similar
to the above, we get that |G : NG(H)| = 1, 2 or 4. Moreover, |CG(H)| = 2αqr,
where 1 ≤ α ≤ 3.

If |G : NG(H)| = 1, then H⊴G. It follows that CG(H) contains all elements
of order 2qr since A ≤ CG(A) ≤ CG(H). Since H ≤ Z(CG(H)), by Schur-
Zassenhaus’s theorem we have CG(H) = M × H, where M is an elementary
abelian group of order 2α. Hence, (2α − 1)(q − 1)(r − 1) = m(G) = 16q, which
is impossible we can find by simple calculation. If |G : NG(H)| = 2, then G
is non-soluble by Lemma 2.3. Note that NG(H) ⊴ G, thus NG(H) ∼= A5 by
Lemma 2.6, which is a contradiction since 2qr ∈ πe(NG(H)) and 2qr /∈ πe(A5).
If |G : NG(H)| = 4, then |G : NG(A)| = 4. Thus, 4|n by Lemma 2.2, where
n is the number of the cyclic subgroups of order 2qr of G. Note that n =
m(G)
φ(k(G) = 16q

(q−1)(r−1) , thus q = 3 and r = 7. Therefore G ∼= (A4 × Z2) × Z7 or

G ∼= SL2(F3)× Z7 by (1) of Lemma 2.5. Hence, (12) and (13) hold.

Case 4. If π(k(G)) = {r}, then k(G) = r.

We know that the number nr of Sylow r-subgroups of G is equal to 1, 2q,
4q, 8q or 8 by Sylow’s theorem.

If nr = 1, then the Sylow r-subgroup Pr of G is normal in G and r − 1 =
m(G) = 16q. Moreover, G has an r-complement H of order 8q by Schur-
Zassenhaus’s theorem. Note that the conjugate action of H on Pr is fixed-
point-free, thus G is a Frobenius group with Frobenius kernel Pr and Frobenius
complement H. Note that Pr

∼= Zr and H is a cyclic group since H ≲ Aut(Pr),
thus G ∼= Z8q ⋉ Zr. Hence, (14) holds.

If nr = 2q, then 2q(r − 1) = m(G) = 16q. It follows that r = 9, which is
impossible.

If nr = 4q, then 4q(r − 1) = m(G) = 16q. It follows that r = 5 and q = 3,
which is contradict to Sylow’s theorem.

If nr = 8q, then 8q(r − 1) = m(G) = 16q. It follows that r = 3, which is
impossible.

If nr = 8, then r = 7 by Sylow’s theorem and so q = 3 or 5. If q = 5, then
|NG(P7)| = 35. Since NG(P7)/CG(P7) ≲ Aut(P7), we have |NG(P7)/CG(P7)|
divides |Aut(P7)|. Note that |CG(P7)| = 7, thus 5|6, which is a contradiction.
If q = 3, then by Lemma 2.7 G ∼= L2(7) or G is a 2-Frobenius group, at this
moment, G ∼= Z3⋉ (Z7⋉P ), where P is an elementary abelian 2-group of order
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8, P ⊴ G and G/P ∼= Z3 ⋉ Z7. Moreover, πe(G) = {1, 2, 3, 6, 7}. Hence, (15)
and (16) hold.

Proof of Corollaries 1.2 and 1.3. It is evident by Theorem 1.1.

Proof of Corollary 1.4. Assume that G is a group, which is isomorphic to
one of the finite groups (1-14) and (16) of Theorem 1.1. Suppose that H is a
group satisfying H(d) = G(d). Then, |H| = |G| and m(H) = m(G). Thus, H is
soluble by Theorems 1.1. Hence, Corollary 1.4 holds.

Now, the proofs of our results are complete.
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Abstract. This paper adopts the concept of algebraic precision to construct the
derivative-based trapezoid rule for a special kind of Riemann-Stieltjes integral, which
uses two derivative values at the endpoints. This kind of quadrature rule obtains an
increase of two orders of precision over the trapezoid rule for the Riemann-Stieltjes
integral and the error term is investigated. Finally, some numerical examples indicate
the numerical superiority of the proposed approach with respect to closed Newton-Cotes
formulas.

Keywords: derivative, trapezoid rules, Riemann-Stieltjes integral, numerical integra-
tion, error term.

1. Introduction

Roughly speaking, the operation of integration is the reverse of differentiation.
Definite integration is one of the most important and basic concepts in math-
ematics. The Riemann integral of a function f provides a continuous analog
of the process of summation of numerical values f(ξ i), with each such value
weighted by the width ∆x i of the interval [x i−1, x i] from which ξ i is selected.
There are many reasons for generalizing this concept to allow for the weighting
of the numerical values f(ξ i) by numbers different from ∆x i.

In mathematics, the Riemann-Stieltjes integral is a kind of generalization of
the Riemann integral, named after Bernhard Riemann and Thomas Stieltjes. It
is Stieltjes [1] that first gives the definition of this integral in 1894. The Riemann-
Stieltjes integral allows for the replacement of ∆x i by ∆g i = g (x i)− g (x i−1),
where g is a function of bounded variation [2, 3]. There are many reasons
for making such an extension of the concept of the integral. It serves as an

*. Corresponding author
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instructive and useful precursor of the Lebesgue integral, and an invaluable tool
in unifying equivalent forms of statistical theorems that apply to discrete and
continuous probability.

The reason for introducing Riemann-Stieltjes integrals is to get a more uni-
fied approach to the theory of random variables, in particular for the expectation
operator, as opposed to treating discrete and continuous random variables sep-
arately.

In probability theory, the interval [a, b] might be the space of possible out-
comes of a probabilistic experiment. Then ∆g i = g (x i)− g (x i−1) could repre-
sent the probability of the outcome landing in the interval [x i−1, x i] of possibil-
ities, and the function f could be the value in some sense of such an outcome
[3]. In this illustration,

∫ b
a f(t)dg would be a probabilistically expected value to

result from running the experiment [2, 3].

It is known that the Riemann-Stieltjes integral has wide applications in the
field of stochastic process [4] and functional analysis [5], especially the spec-
tral theorem for self-adjoint operators in a Hilbert space [2, 5] and in original
formulation of F. Riesz’s theorem [2, 5]. The Riesz’s representation theorem
establishes that every such bounded linear functional comes from a Riemann-
Stieltjes integral with respect to a suitable function of bounded variation.

In several practical problems, we need to calculate integrals. As is known to
all, as for I =

∫ b
a f(x)dx, once the primitive function F of integrand f is known,

the definite integral of f over the interval [a, b] is given by Newton-Leibniz
formula, i.e.,

(1.1)

∫ b

a
f(x)dx = F (b)− F (a).

The need often arises for evaluating the definite integral of a function that
has no explicit antiderivative F (x) or whose antiderivative F (x) is not easy to
obtain, such as e±x2

, cosx2, sinx
x , etc.

Moreover, the integrand f(x) is only available at certain points xi, i =
1, 2, . . . , n.

The problem of numerical evaluating definite integrals arises both in math-
ematics and beyond, in many areas of science and engineering. One of the
most fruitful advances in the field of experimental mathematics has been the
development of practical methods for very high-precision numerical integration.
Beginning in the 1980s, researchers began to explore ways to extend some of
the many known techniques to the realm of high precision numerical integra-
tion formulas-tens or hundreds of digits beyond the realm of standard machine
precision [6].

The trapezoidal rule is the most well known numerical integration rules of
this type. Trapezoidal rule for classical Riemann integral is

(1.2)

∫ b

a
f(x)dx =

b− a

2
(f(a) + f(b))− (b− a)3

12
f ′′(ξ),
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where ξ ∈ (a, b).

In spite of the many accurate and efficient methods for numerical integra-
tion being available in [7-9], recently Mercer [10] has obtained trapezoid rule for
Riemann-Stielsjes integral which engenders a generalization of Hadamard’s inte-
gral inequality. Trapezoidal rule with error term for Riemann-Stieltjes integral
is

(1.3)

∫ b

a
f(t)dg = [G− g(a)] f(a) + [g(b)−G] f(b)− (b− a)3

12
f ′′(ξ)g′(η),

where G = 1
b−a

∫ b
a g(t)dt, ξ ∈ (a, b).

Then, Mercer develops Midpoint and Trapezoid rules for Riemann-Stielsjes
integral in [11] by using the concept of relative convexity. The composite trape-
zoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation
formula is presented by Zhao, Zhang and Ye [12]. It is applied to the composite
trapezoid rule to obtain high accuracy approximations with little computational
cost. Burg [13] has proposed derivative-based closed Newton-Cotes numerical
quadrature which uses both the function value and the derivative value on uni-
formly spaced intervals. Zhao and Li have proposed midpoint derivative-based
closed Newton-Cotes quadrature [14] and numerical superiority has been shown.
Then, the derivative-based trapezoid rule for the Riemann-Stieltjes integral is
presented by Zhao and Zhang [15], which uses derivative values at the endpoints.
The midpoint derivative-based trapezoid rule for the Riemann-Stieltjes integral
is presented by Zhao, Zhang and Ye [16], which only uses derivative values at
the midpoint. Recently, the Simpson’s rule for the Riemann-Stieltjes integral is
presented by Zhao and Zhang [17], which uses values instead of derivative values
at the midpoint.

The exponential function is one of the most important functions in calculus.
As we all know, the derivative of e t is the exponential function e t itself. This
is one of the properties that makes the exponential function really important.
Motivation for the research presented here lies in construction of derivative-
based trapezoid rule for a kind of Riemann-Stieltjes integral

∫ b
a f(t)d(e

t) , which
is a generalization of the results in [10-17].

The remainder is organized into four sections. These new scheme is investi-
gated in Section 2. Section 3 presents the error term. The numerical experiments
results are shown in Section 4. Section 5 is the conclusion part.

2. Derivative-based trapezoid rule for the
∫ b
a f(t)d(e

t)

In this section, by using the conclusions in [15], the derivative-based trapezoid

rule for a kind of special Riemann-Stieltjes integral
∫ b
a f(t)d(e

t) is presented.

Theorem 2.1. Suppose that f ′ is continuous on [a, b] and g(t) = e t is obviously
continuously differentiable and increasing there. Let T denote the derivative-
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based trapezoid rule for a kind of Riemann-Stieltjes integral
∫ b
a f(t)d(e

t). Then∫ b

a
f(t)d(e t) ≈ T

∆
=

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
f(a)

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

))
f(b)

(2.1)

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

))
f ′(a)

+

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
f ′(b).

Proof. First of all, it is not difficult to obtain

(2.2)



∫ b
a e

tdt=eb − ea,∫ b
a

∫ t
a e

tdxdt=
(
eb − ea

)
− (b− a) ea,∫ b

a

∫ t
a

∫ y
a e

tdxdydt=
(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea,∫ b
a

∫ t
a

∫ z
a

∫ y
a e

tdxdydzdt

=
(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea − 1
6 (b− a)3 ea.

Looking for the derivative-based trapezoid rule for
∫ b
a f(t)d(e

t), we seek
numbers a0, a1, b0, b1 such that∫ b

a
f(t)d(e t) ≈ a0f(a) + a1f(b) + b0f

′(a) + b1f
′(b)

is equality for f(t) = 1, t, t2, t3. That is

∫ b
a 1 d(e

t) = a0 + a1,∫ b
a td(e

t) = a0a+ a1b+ b0 + b1,∫ b
a t

2d(e t) = a0a
2 + a1b

2 + 2b0a+ 2b1b,∫ b
a t

3d(e t) = a0a
3 + a1b

3 + 3b0a
2 + 3b1b

2.

Therefore, by using the conclusions in [15] and a system of equations (2.2),

(2.3)



a0 + a1 = eb − ea,

a0a+ a1b+ b0 + b1 = beb − aea −
(
eb − ea

)
,

a0a
2 + a1b

2 + 2b0a+ 2b1b

= b2eb − a2ea − 2b
(
eb − ea

)
+ 2

[(
eb − ea

)
− (b− a) ea

]
,

a0a
3 + a1b

3 + 3b0a
2 + 3b1b

2

= b3eb − a3ea − 3b2
(
eb − ea

)
+ 6b

[(
eb − ea

)
− (b− a) ea

]
−6
[(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea
]
.
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Solving simultaneous equations (2.3) for a0, a1, b0, b1, we obtain

a0 =
6

(b−a)2
(
eb+ea

)
− 12

(b−a)3
(
eb − ea

)
− ea,

a1 = eb − 6
(b−a)2

(
eb+ea

)
+ 12

(b−a)3
(
eb − ea

)
,

b0 = ea + 2
b−a

(
eb + 2ea

)
− 6

(b−a)2
(
eb − ea

)
,

b1 =
2
b−a

(
2eb + ea

)
− 6

(b−a)2
(
eb − ea

)
− eb.

So, we have the derivative-based trapezoid rule for the special Riemann-
Stieltjes integral

∫ b
a f(t)d(e

t) as desired.

We shall now deduce some consequences of Theorem 2.1.

Corollary 2.1. The degree of precision of the derivative-based trapezoid rule
for the special Riemann-Stieltjes integral

∫ b
a f(t)d(e

t) is 3. That is to say, the
quadrature rule (4) is exact when f is any polynomial of degree 3 or less, but is
not exact for some polynomial of degree 4.

Proof. By looking at the construction of a0, a1, b0, b1, we know that the deri-
vative-based trapezoidal rule for the Riemann-Stieltjes integral has degree of
precision not less than 3.

In Section 3, Theorem 3.1, we can clearly see that the quadratue is not
equality for f(t) = t4. So the degree of precision of this method is 3.

Remark 2.1. An integral
∫ b
a f(x)e

kxdx (k > 0) over an arbitrary [a, b] can be

transformed into an integral over [ak ,
b
k ] by changing the variable via t = kx.

This permits Theorem 2.1 to be applied to any
∫ b
a f(x)e

kxdx (k > 0), be-
cause ∫ b

a
f(x)ekxdx =

∫ b
k

a
k

1

k
f(
t

k
)e tdt =

1

k

∫ b
k

a
k

f(
t

k
)d(e t).

3. The error term for the
∫ b
a f(t)d(e

t)

In the previous section, the derivative-based trapezoid rule for a kind of Riemann-
Stieltjes integral

∫ b
a f(t)d(e

t) is given in formula (2.1).
As is known to all, the most critical “indicator” of numerical integration,

which compares the level of accuracy, is error term. In this section, we are
now ready to establish the error term of the derivative-based trapezoid rule for∫ b
a f(t)d(e

t).
Here, the error term for this quadrature rule has been obtained by using

Generalized Rolle’ s Theorem with Derivatives, the Weighted Mean Value The-
orem for Integrals based on the concept of precision.

The error term is the difference between the exact value 1
(p+1)!

∫ b
a x

p+1dx

and the quadrature formula for the monomial xp+1

(p+1)! , where p is the precision of
the quadrature formula.
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Theorem 3.1. Suppose that f (4) is continuous on [a, b] and g(t) = e t is ob-
viously continuously differentiable and increasing there. The derivative-based
trapezoid rule for the Riemann-Stieltjes integral

∫ b
a f(t)d(e

t) with the error term
is ∫ b

a
f(t)d(e t) =

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
f(a)

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

))
f(b)

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

))
f ′(a)

+

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
f ′(b)(3.1)

+

[
−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

+

(
(b− a)2

12
− b− a

12
+ 1

)
eb

]
f (4)(ξ) eη,

where ξ, η ∈ (a, b). And the error term R[f ] of this method is[(
(b− a)2

12
− b− a

12
+ 1

)
eb

−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

]
f (4)(ξ) eη.(3.2)

Proof. Let f(t) = t4

4! . So

1

4!

∫ b

a
t4d(e t) =

1

24

(
b4 − 4b3 + 12b2 − 24b− 24

)
eb

− 1

24

(
a4 − 4a3 + 12a2 − 24a− 24

)
ea.(3.3)

By the Theorem 2.1, we have

T =

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
a4

24

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

)) b4

24

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

)) a3

6
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(3.4) +

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
b3

6
.

With the help of (3.3)-(3.4), we obtain

1

4!

∫ b

a
t4d(e t)− T

=

[(
(b− a)2

12
−b−a

12
+ 1

)(
eb−ea

)
−

(
5 (b− a)3

24
+
5 (b− a)2

12
+ (b− a)

)
ea

]

=

[(
(b− a)2

12
− b− a

12
+ 1

)
eb −

(
5 (b− a)3

24
+
(b− a)2

2
+

11 (b− a)

12
+1

)
ea

]
.

This implies that

R[f ] =

[(
(b− a)2

12
− b− a

12
+ 1

)
eb

−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

]
f (4)(ξ) eη.

Remark 3.1. The method used in Theorem 3.1 does not only apply to special
cases, but that one may select the precision p to calculate the difference between
the exact value 1

(p+1)!

∫ b
a x

p+1dx and the quadrature formula for the monomial
xp+1

(p+1)! and the similar conclusion will still hold.

Remark 3.2. The error term for the derivative-based trapezoid rule could also
be obtained using Taylor series expansions, by making certain unverifiable as-
sumptions about the higher order terms.

4. Numerical results

So far, we have proposed derivative-based trapezoid rule for a kind of Riemann-
Stieltjes integral in Section 2 and demonstrate the error term in Section 3.

In this section, compared with the traditional Newton-Cotes quadrature,
some numerical experiments are carried out to verify whether the novel methods
are of high precision.

In order to compare the precision of Newton-Cotes quadrature and the pro-
posed approach, we calculate the following integrals

∫ 1
0 x

4exdx. The comparison
results are shown in the following tables.

Let us define Absolute Error=|Exact value-Approximate value |.
In the following tables, the item Int. stands for the number of composite

interval.

Exact value of
∫ 1
0 x

4exdx = 9e− 24 ≈ 0.4645.
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Int.
Trapezoidal rule

Int.
Derivative-based trapezoid rule

Approximate
value

Absolute
Error

Approximate
value

Absolute
Error

1 1.3591 0.8946 1 0.4086 0.0559
2 0.7311 0.2666 2 0.4610 0.0035
4 0.5342 0.0697
8 0.4822 0.0177

Table 1: Numerical comparison of the new method with the classical method

Int.
Simpson’s rule

Int.
Derivative-based trapezoid rule

Approximate
value

Absolute
Error

Approximate
value

Absolute
Error

1 0.5217 0.0572 1 0.4086 0.0559
2 0.4686 0.0041 2 0.4610 0.0035

Table 2: Numerical comparison of the new method with the classical method

It can be seen from Table 1, Derivative-based trapezoid rule with Int.=1,
2 has a much higher accuracy than classical Trapezoidal rule with Int.=4, 8
respectively.

It can be seen from Table 2, Derivative-based trapezoid rule has a much
higher accuracy than classical Simpson’s rule with the same number of subin-
tervals.

The efficiency of the proposed approach has been demonstrated.

5. Conclusions

The main contributions of this paper are highlighted as follows.

1) By using the concept of algebraic precision, the derivative-based trapezoid

rule for a kind of Riemann-Stieltjes integral
∫ b
a f(t)d(e

t) is presented.

2) This kind of quadrature rule has 3 orders of algebraic precision.

3) The error term for Riemann-Stieltjes Simpson’s rule is investigated. Some
numerical examples are given to show the efficiency of the proposed approach.
In future work, we will seriously consider the Simpson’s rule for the kind of
Riemann-Stieltjes integral

∫ b
a f(t)d(e

t).

It is hoped that the results in this paper will stimulate further research in
this direction.

6. Acknowledgments

This work has been funded and supported by the Scientific Research Project of
Tianjin Municipal Education Commission (No. 2019KJ129).



680 WEIJING ZHAO and ZHAONING ZHANG

References

[1] R.A. Gordon, The integrals of Lebesgue, Denjoy, Perron and Henstock,
American Mathematical Society, Providence, 1994.

[2] P. Billingsley, Probability and measures, John Wiley and Sons, Inc., New
York, 1995.

[3] L. Richardson, Advanced calculus: an introduction to linear analysis, John
Wiley and Sons, Inc., New Jersey, 2008.

[4] P.E. Kopp, Martingales and stochastic integrals, Cambridge University
Press, Cambridge, 1984.

[5] W. Rudin, Functional analysis, McGraw Hill Science, McGraw, 1991.

[6] D.H. Bailey, J.M. Borwein, High-precision numerical integration: Progress
and challenges, Journal of Symbolic Computation, 46 (2011), 741-754.

[7] K. Atkinson, An introduction to numerical analysis, second ed., Wiley,
1989.

[8] R. L. Burden, J. D. Faires, Numerical analysis, Brooks/Cole, Boston, Mass,
USA, 9th edition, 2011.

[9] E. Isaacson, H. B. Keller, Analysis of numerical methods, John Wiley and
Sons, New York, 1966.

[10] P. R. Mercer, Hadamard’s inequality and trapezoid rules for the Riemann-
Stieltjes integral, Journal of Mathematical Analysis and Applications, 344
(2008), 921-926.

[11] P. R. Mercer, Relative convexity and quadrature rules for the Riemann-
Stieltjes integral, Journal of Mathematical Inequality, 6 (2012), 65-68.

[12] W. Zhao, Z. Zhang, Z. Ye, Composite trapezoid rule for the Riemann-
Stieltjes integral and its Richardson extrapolation formula, Italian Journal
of Pure and Applied Mathematics, 35 (2015), 311-318.

[13] O. E. Burg, Derivative-based closed Newton-Cotes numerical quadrature,
Applied Mathematics and Computation, 218 (2012), 7052-7065.

[14] W. Zhao, H. Li, Midpoint derivative-based closed Newton-Cotes quadrature,
Abstract and Applied Analysis, Article ID 492507, 2013.

[15] W. Zhao, Z. Zhang, Derivative-based trapezoid rule for the Riemann-
Stieltjes integral, Mathematical Problems in Engineering, Article ID
874651, 2014.



DERIVATIVE-BASED TRAPEZOID RULE FOR A SPECIAL KIND OF ... 681

[16] W. Zhao, Z. Zhang, Z. Ye, Midpoint, Derivative-based trapezoid rule for
the Riemann-Stieltjes integral, Italian Journal of Pure and Applied Math-
ematics, 33 (2014), 369-376.

[17] W. Zhao, Z. Zhang, Simpson’s rule for the Riemann-Stieltjes integral, Jour-
nal of Interdisciplinary Mathematics, 24 (2021), 1305-1314.

Accepted: March 15, 2022



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 50–2023 (682–695) 682

A Mehrotra-type algorithm with logarithmic updating
technique for P∗(κ) linear complementarity problems

Yiyuan Zhou∗

College of Science
China Three Gorges University
Yichang
P. R. China
Three Gorges Mathematical Research Center
China Three Gorges University
Yichang
P. R. China
zyy@ctgu.edu.cn

Mingwang Zhang
College of Science
China Three Gorges University
Yichang
P. R. China
zmwang@ctgu.edu.cn

Fangyan Huang
Wanzhou NO.2 Senior High School

Wanzhou

P. R. China

12huafa@163.com

Abstract. A Mehrotra-type predictor-corrector algorithm for P∗(κ) linear comple-
mentarity problems is presented. In this algorithm, the corrector step takes a new
direction, and the barrier parameter is the smaller positive root of a logarithmic equa-
tion. The iteration complexity of the new algorithm matches the currently best-known
results. Numerical results show that the algorithm is efficient.

Keywords: interior-point algorithm, linear complementarity problems, Mehrotra-
type algorithm, iteration complexity.

1. Introduction

Mehrotra’s predictor-corrector algorithm [1, 2] and its variants have become the
backbones of some optimization solvers [3-7]. The superior practical perforance
of Mehrotra-type predictor-corrector algorithms motivated scholars to explore
their theoretical properties. Jarre and Wechs [8] investigated an interior point
method in which the search direction is based on corrector directions of Mehro-
tra’s algorithm. To avoid small steps, Salahi et al. [9] introduced a safeguard

*. Corresponding author
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strategy for a Mehrotra-type algorithm. After that, Salahi and Terlaky [10]
proposed a new variant of Mehrotra-type algorithm without any safeguards and
proved the iteration complexity bound coincides with the result in [9]. Recently,
Salahi [11] introduced a new adaptive updating technique of the barrier param-
eter in Mehrotra-type algorithm for linear optimization (LO), which allowed
them to prove the polynomial iteration complexity without employing any safe-
guards. Infeasible versions of Mehrotra-type algorithm [12, 13] and second order
Mehrotra-type algorithms [14, 15] are also studied by scholars. Since efficiency
in computation, Mehrotra-type predictor-corrector algorithm are extended to
linear complementarity problems (LCPs) [12, 16], semidefinite programming
[17-19], nonlinear complementarity problems [20] and many other problems.

LCPs are closely associated with linear programming and quadratic pro-
gramming. The class of P∗(κ) LCP is an important branch of LCPs. Interior
point algorithms for P∗(κ) LCPs have been widely studied in the last few decades
[21]. Large update technique [22], full-Newton step [23, 24] and interior point
method based on kernel function [25] are also presented for P∗(κ) LCPs.

In this paper, a new Mehrotra-type algorithm for P∗(κ) LCPs is presented,
in which it takes a different corrector search direction and an adaptive updat-
ing technique of the barrier parameter. It extends the algorithm in [11] for
LO to P∗(κ) LCPs. In P∗(κ) LCPs, the search directions ∆x and ∆s are not
orthogonal any more, while they are orthogonal in LO, this leads a different
technique to analyze the iteration complexity. Taking a specific default value
as the predictor step size, we prove that the algorithm stops after at most
O(
√
(1 + 4κ)(1 + 2κ)n log((x0)T s0/ϵ)) iterations. If κ = 0, the iteration bound

coincides with the result of LO in [11].
The rest of this paper is organized as follows. In Section 2, we recall some

basic concepts and state a newMehrotra-type algorithm for P∗(κ) LCPs. Section
3 includes several important technical results, and subsequently the iteration
bound of this algorithm is derived. Two illustrative numerical results of this
algorithm are presented in Section 4. Finally, conclusion and final remarks are
shown in Section 5.

For simplicity, we use the following notations throughout the paper:

e = (1, 1, · · · , 1)T .
I = {1, 2, · · · , n}, I+ = {i ∈ I|∆xai∆sai ≥ 0}, I− = {i ∈ I|∆xai∆sai < 0}.
F =

{
(x, s) ∈ Rn × Rn|s = Mx+ q, (x, s) ≥ 0

}
.

F0 =
{
(x, s) ∈ F|(x, s) > 0

}
.

X = diag(x), S = diag(s).

xs = Xs = (x1s1, x2s2, · · · , xnsn)T .
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2. The algorithm

A matrix M ∈ Rn×n is a P∗(κ) matrix if there is a constant κ ≥ 0 such that

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀ x ∈ Rn,

or equivalently

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i, ∀x ∈ Rn,

where I+(x) = {i|xi(Mx)i ≥ 0, i ∈ I} and I−(x) = {i|xi(Mx)i < 0, i ∈ I}.
Note that, M is a positive semidefinite matrix if κ = 0. Thus, the class of P∗(κ)
matrices includes positive semi-definite matrices. The goal of a P∗(κ) LCP is to
find solutions (x, s) ∈ Rn × Rn such that

Mx+ q = s, xs = 0, (x, s) ≥ 0,(1)

where M is a P∗(κ) matrix, q ∈ Rn and n ≥ 2.
To find an approximate solution of (1), a parameterized system is established

as follows:

Mx+ q = s, xs = µe, (x, s) ≥ 0,(2)

where µ > 0. We assume that system (1) satisfies the interior point condition
(IPC), i.e., there exists a point (x0, s0) such that

s0 = Mx0 + q, x0 > 0, s0 > 0.

For a given µ > 0, if the IPC holds, then system (2) has a unique solution
(x(µ), s(µ)), which is called the µ-center of (1). The set of all µ-centers is called
the central path of (1). As µ goes to 0, the limit of (x(µ), s(µ)) exists and
approaches the solution of (1).

In the following, a feasible version of Mehrotra-type predictor-corrector al-
gorithm for P∗(κ) LCPs will be presented, which works in a negative infinity
neighborhood defined as

N−
∞(γ) = {(x, s) ∈ F0| xisi ≥ γµg,∀i ∈ I},

where γ ∈ (0, 1) is a constant independent of n. The neighborhood N−
∞(γ) is

also widely used in the implementation of other interior point algorithms.
The predictor direction (∆xa,∆sa) is determined by the following system:

(3)
M∆xa = ∆sa,

s∆xa + x∆sa = −xs,

and the predictor step size αa is defined by

αa = max{α|(x+ α∆xa, s+ α∆sa) ∈ F , 0 < α ≤ 1}.(4)
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However, the our algorithm does not take a predictor step right away. By
using information about the predictor step, the algorithm derives the corrector
direction from the following system:

(5)
M∆x = ∆s,

s∆x+ x∆s = µe− xs− α2
a∆xa∆sa.

The corrector direction in system (5) is different from that in [9] where it is
determined by the equations M∆x = ∆s and s∆x+ x∆s = µe− xs−∆xa∆sa.
Motivation of the modification is based on the following observation. Since 0 <
αa ≤ 1, it can be found that α2

a |∆xa∆sa| ≤ |∆xa∆sa|, thus µe−xs−α2
a∆xa∆sa

is much closer to µe− xs than µe− xs−∆xa∆sa.
In each iteration of a primal-dual interior point algorithm, the barrier param-

eter µ needs to be updated. In this paper, we focus on the updating technique
in [11]. A classical logarithmic barrier proximity function is used to measure
the distance from the current iterate to the central path, and it is defined as

Φ(x, s, µ) :=
xT s

2µ
− n

2
+

n

2
logµ− 1

2

n∑
i=1

log(xisi).(6)

Obviously, for given (x, s), the function Φ(x, s, µ) is minimum if µ = µg =
xT s
n .

We denote µh = n
√
x1s1 · · ·xnsn. From the Arithmetic Mean−Geometric Mean

inequality, it is clear that µh ≤ µg. We consider the following equation with
respect to µ,

Φ(x, s, µ) =
(σ − 1)n

2
,(7)

where the constant σ > 4κ+4. From (6) and (7), it can be found that equation
(7) is equivalent to

µg
µ

+ log
µ

µh
− σ = 0.(8)

Follows from Corollary 2.5 of [11], equation (8) has two positive roots. The
smaller one is defined as the target barrier parameter denoted by µt.

The barrier parameter µt is used to compute the corrector search direction
(∆x,∆s) by the following equations

(9)
M∆x = ∆s,

s∆x+ x∆s = µte− xs− α2
a∆xa∆sa.

The new iterate is denoted as (x(αc), s(αc)) = (x+ αc∆x, s+ αc∆s) where the
corrector step size αc is defined by

αc = max{α|(x(α), s(α) ∈ N−
∞(γ), 0 < α ≤ 1}.(10)

Based on the previous analysis, a new Mehrotra-type predictor-corrector algo-
rithm for P∗(κ) LCP is stated as Algorithm 1.
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Algorithm 1
Input:

A parameter σ > 4κ+ 4, a starting point (x0, s0) ∈ N−
∞(γ) with γ = 1

σ ,
an accuracy parameter ϵ > 0.
begin
Set x := x0; s = s0;
while xT s ≥ ϵ do

begin Predictor step
Solve (3) and calculate the predictor step size αa from (4);

end
begin Corrector step

Solve (8) to derive the smaller positive root µt;
Solve (9) and calculate the corrector step size αc from (10);
Set (x, s) := (x(αc), s(αc)).

end
end

3. Complexity analysis

In this section, we establish the polynomial complexity for Algorithm 1. In
the following, we give the bounds of µt, ∥∆x∆s∥, ∆xT∆s and step sizes of
Algorithm 1. The bounds are important in the complexity analysis.

Lemma 3.1 ([11])). For all iterates (x, s) of Algorithm 1, we have σ ≤ µg
µt

≤ 2σ.

Lemma 3.2. Let (∆xa,∆sa) be the solution of (3). Then:

(i) ∆xai∆sai ≤
xisi
4

, i ∈ I+; −∆xai∆sai ≤
1

αa
(
1

αa
− 1)xisi, i ∈ I−;

(ii)
∑
i∈I+

∆xai∆sai ≤
xT s

4
;
∑
i∈I−

|∆xai∆sai | ≤
4κ+ 1

4
xT s;

(iii) − κxT s ≤ (∆xa)T∆sa ≤ xT s

4
.

Proof. (i) The proof is similar to that of Lemma A.1 and Proposition 4.1 in
[9], and it is omitted here.

(ii) The first conclusion is a direct consequence of (i). We will prove the
second conclusion in the following. Since M is a P∗(κ) matrix, following from
the first conclusion, we have

0 >
∑
i∈I−

∆xai∆sai ≥ −(1 + 4κ)
∑
i∈I+

∆xai∆sai ≥ −1 + 4κ

4
xT s,

that is
∑

i∈I− |∆xai∆sai | ≤ 1+4κ
4 xT s.
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(iii) From statement (ii), it follows that (∆xa)T∆sa ≤
∑

i∈I+ ∆xai∆sai ≤ xT s
4 .

Since ∆sa = M∆xa and M is a P∗(κ) matrix, we get

(∆xa)T∆sa ≥ −4κ
∑
i∈I+

∆xai∆sai ≥ −κxT s.

This completes the proof.

Theorem 3.1 ([16])). If the current iterate (x, s) ∈ N−
∞(γ) and αa is the pre-

dictor step size, then

αa ≥
√

γ

(4κ+ 1)n
.

In what follows, we consider the lower bound as a default value for predictor
step size, that is

αa =

√
γ

(4κ+ 1)n
.(11)

Lemma 3.3. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with µ > 0,

then

||∆x∆s|| ≤
√
(
1

4
+ κ)(

1

2
+ κ)||w||2,

∑
i∈I+

∆xi∆si ≤
1

4
||w||2,

where w = (xs)−
1
2 (µe− xs− α2

a∆xa∆sa).

Proof. The proof is similar to that of Lemma 8 in [26], and we omit it here.

Lemma 3.4. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with µ > 0,

then

||w||2 ≤ nµ2

γµg
−2nµ+

(4κ+ 1)α2
anµ

2γ
+
α4
a + 8α2

a + 4α2
a(1− αa)(4κ+ 1) + 16

16
nµg.

Proof. From Lemma 3.3, one has

||w||2 =µ2
∑
i∈I

1

xisi
+
∑
i∈I

xisi − 2nµ+ α4
a

∑
i∈I

(∆xai∆sai )
2

xisi

− 2α2
aµ
∑
i∈I

∆xai∆sai
xisi

+ 2α2
a

∑
i∈I

∆xai∆sai .
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Due to (x, s) ∈ N−
∞(γ), we have µ2

∑
i∈I

1
xisi

≤ nµ2

γµg
. Using (i) and (ii) in

Lemma 3.2, we obtain

α4
a

∑
i∈I

(∆xai∆sai )
2

xisi
= α4

a

∑
i∈I+

(∆xai∆sai )
2

xisi
+ α4

a

∑
i∈I−

(∆xai∆sai )
2

xisi

≤ α4
a

∑
i∈I+

(xisi4 )2

xisi
+ α4

a

∑
i∈I−

−∆xai∆sai
xisi

(−∆xai∆sai )

≤ α4
a

∑
i∈I+

xisi
16

+
α4
a

αa
(
1

αa
− 1)

∑
i∈I−

|∆xai∆sai |

≤ α4
a

16
xT s+ α2

a(1− αa)
4κ+ 1

4
xT s

=
α4
a + 4α2

a(1− αa)(4κ+ 1)

16
nµg,

and

−2α2
aµ
∑
i∈I

∆xai∆sai
xisi

≤2α2
aµ
∑
i∈I−

|∆xai∆sai |
xisi

≤2α2
aµ(4κ+ 1)

4γµg
xT s≤(4κ+ 1)α2

anµ

2γ
,

where the second inequality follows from (x, s) ∈ N−
∞(γ). Moreover,

2α2
a

∑
i∈I

∆xai∆sai ≤ 2α2
a

∑
i∈I+

∆xai∆sai ≤
α2
a

2
nµg.

Combining the above results yields that

||w||2

≤nµ2

γµg
+ nµg − 2nµ+

α4
a + 4α2

a(1− αa)(4κ+ 1)

16
nµg +

(4κ+ 1)α2
anµ

2γ
+

α2
a

2
nµg

=
nµ2

γµg
− 2nµ+

(4κ+ 1)α2
anµ

2γ
+

α4
a + 8α2

a + 4α2
a(1− αa)(4κ+ 1) + 16

16
nµg.

This completes the proof.

Lemma 3.5. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with

µ = µt, then

||∆x∆s|| ≤ p1nµg,∆xT∆s ≤ p2nµg,

where p1 =
37
128

√
(1 + 4κ)(2 + 4κ), p2 =

37
128 .



A MEHROTRA-TYPE ALGORITHM WITH LOGARITHMIC UPDATING TECHNIQUE ... 689

Proof. Lemma 3.1 implies that γ
2 = 1

2σ ≤ µt
µg

≤ 1
σ = γ. Following from

Lemma 3.4, one has

||w||2 ≤nµ2
t

γµg
−2nµt+

(4κ+1)α2
anµt

2γ
+
α4
a+8α2

a+4α2
a(1− αa)(4κ+ 1) + 16

16
nµg

=
[1
γ

(µt
µg

)2−2
µt
µg

+
(4κ+1)α2

a

2γ

µt
µg

+
α4
a+8α2

a+4α2
a(1−αa)(4κ+1)+16

16

]
nµg

≤
(1
γ
γ2 − 2

γ

2
+

γ

4γ
γ +

6γ + 16

16

)
nµg

≤37

32
nµg,

where the second inequality is due to n ≥ 2, κ ≥ 0 and αa =
√

γ
(4κ+1)n ≤ 1 by

Theorem 3.1. The third inequality comes from γ = 1
σ < 1

4κ+4 ≤ 1
4 .

From Lemma 3.3, it follows that

||∆x∆s|| ≤ 37

32

√
(
1

4
+ κ)(

1

2
+ κ)nµg =

37

128

√
(1 + 4κ)(2 + 4κ)nµg = p1nµg,

and ∆xT∆s ≤ 37
128nµg, which completes the proof.

In order to simplify the analysis, we define

t = max
i∈I+

{
∆xai∆sai
xisi

}
,(12)

that is, ∆xai∆sai ≤ txisi if i ∈ I+. Since M is a P∗(κ) matrix, one has I+ ̸= ∅
and t ≤ 1

4 from Lemma 3.2.

Theorem 3.2. Let (x, s) ∈ N−
∞(γ), where γ = 1

σ and σ > 4 + 4κ. If (∆x,∆s)
is the solution of (5) with µ = µt and αc is the corrector step size, then

αc ≥
14γ

37n
√

(1 + 4κ)(2 + 4κ)
.(13)

Proof. The goal is to determine a maximum step size α ∈ (0, 1] in the corrector
step such that

xi(α)si(α) ≥ γµg(α), ∀i ∈ I,(14)

where µg(α) =
x(α)T s(α)

n and

xi(α)si(α) = xisi + α(xi∆si + si∆xi) + α2∆xi∆si

= xisi + α(µt − xisi − α2
a∆xai∆sai ) + α2∆xi∆si

= (1− α)xisi + αµt − αα2
a∆xai∆sai + α2∆xi∆si.
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Since we consider the lower bound of ∆xai∆sai , we should give more focus on the
case of ∆xai∆sai > 0 than ∆xai∆sai ≤ 0. Thus, we have to prove xi(α)si(α) ≥
γµg(α) for all i ∈ I+. From Lemma 3.5 and equation (12), it follows that, for
any i ∈ I+,

xi(α)si(α) = (1− α)xisi + αµt − αα2
a∆xai∆sai + α2∆xi∆si

≥ [1− (1 + α2
at)α]xisi + αµt − α2p1nµg

≥ [1− (1 +
α2
a

4
)α]xisi +

α

2
γµg − α2p1nµg,

where the last inequality follows from t ≤ 1
4 and

µg
µt

≤ 2σ.

Since (x, s) ∈ N−
∞(γ), it is clear that [1− (1+ α2

a
4 )α]xisi ≥ [1− (1+ α2

a
4 )α]γµg

if α ≤ 4
4+α2

a
. Thus,

xi(α)si(α) ≥ [1− (1 +
α2
a

4
)α]γµg +

α

2
γµg − α2p1nµg(15)

if α ≤ 4
4+α2

a
.

On the other hand, we have

µg(α) =
x(α)T s(α)

n
=

xT s+ α[nµt − xT s− α2
a(∆xa)T∆sa] + α2∆xT∆s

n
.

From Lemma 3.1, 3.2 and 3.5, we get

µg(α) ≤
xT s+ α(

nµg
σ − xT s+ α2

aκx
T s) + α2np2µg

n
= (1− α)µg + αγµg + αα2

aκµg + α2p2µg.(16)

Combining (15) and (16) yields that the new iterate is certainly in the neigh-
borhood N−

∞(γ) if[
1−(1+

α2
a

4
)α
]
γµg+

α

2
γµg−α2p1nµg ≥ (1−α)γµg+αγ2µg+αα2

aκγµg+α2γp2µg.

This is equivalent to (12 − γ − α2
a
4 − α2

aκ)γ ≥ (γp2 + np1)α, that is,

α ≤
(12 − γ − α2

a
4 − α2

aκ)γ

γp2 + np1
.

Furthermore,

1
2 − γ − α2

a
4 − α2

aκ

γp2 + np1
=

1
2 − γ − γ

4n
37
128γ + 37

128n
√
(1 + 4κ)(2 + 4κ)

≥
7
32

37
64n
√
(1 + 4κ)(2 + 4κ)

=
14

37n
√
(1 + 4κ)(2 + 4κ)

,
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where the inequality follows from γ < 1
4κ+4 ≤ 1

4 < n
√
(1 + 4κ)(2 + 4κ) and

n ≥ 2. Therefore inequality (14) holds if α ≤ 14γ

37n
√

(1+4κ)(2+4κ)
. Thus, the

maximal step size satisfies

α ≥ min
{ 4

4 + α2
a

,
14γ

37n
√
(1 + 4κ)(2 + 4κ)

}
.

Since αa ≤ 1, γ < 1
4 , n ≥ 2 and κ ≥ 0, we have 4

4+α2
a

≥ 4
5 > 14γ

37n >
14γ

37n
√

(1+4κ)(2+4κ)
. Consequently, the corrector step size αc satisfies

αc ≥
14γ

37n
√
(1 + 4κ)(2 + 4κ)

.

This completes the proof.

The following theorem gives the upper bound of iteration number in which
Algorithm 1 stops with an ϵ-approximate solution.

Theorem 3.3. After at most

O
(√

(1 + 4κ)(2 + 4κ)n log
(x0)T s0

ϵ

)
iterations, Algorithm 1 stops with a solution for which xT s ≤ ϵ.

Proof. After each iteration, the dual gap is µg(αc). From (16), it follows that

µg(αc) ≤
[
1− (1− γ − α2

aκ)αc + p2α
2
c

]
µg

≤
[
1−

(
1− 1

4
− 1

32

)
αc +

37

128
αc

]
µg

=
(
1− 55

128
αc

)
µg

≤
[
1− 385γ

2368n
√
(1 + 4κ)(2 + 4κ)

]
µg,

where the second inequality is due to αa =
√

γ
(4κ+1)n and γ < 1

4 . This completes

the proof by Theorem 3.2 of [27].

4. Numerical results

It is difficult to know the value of parameter κ of a P∗(κ) matrix [26], however,
it is well known that a positive semi-definite matrix is a P∗(0) matrix. In the
following, Algorithm 1 is applied to P∗(0) LCPs.

Example 4.1. Let M = (mij)n×n, q = (qi)n×1, where qi = n+ 1− i and

mij =


2, if i = j;

−1, if |i− j| = 1;

0, else.
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Table 1: Iteration numbers of Example 4.1

n=5 n=10 n=50 n=100 n=200 n=400 n=800 n=1000

σ = 4.5 11 11 14 15 16 17 18 18
σ = 5 10 11 13 14 15 16 17 17
σ = 5.5 10 11 13 14 15 15 16 17
σ = 6 10 10 12 13 14 15 16 16
σ = 6.5 9 10 12 13 14 15 16 16
σ = 7 9 10 12 13 14 14 15 16
σ = 7.5 9 10 12 13 13 14 15 16
σ = 8 9 10 12 12 13 14 15 15

Table 2: Average iteration numbers of Example 4.2

n=5 n=10 n=50 n=100 n=200 n=400 n=800 n=1000

σ = 4.5 10.98 12.00 15.00 16.91 18.00 19.00 21.00 21.01
σ = 5 10.40 11.85 15.00 16.00 17.09 19.00 20.00 21.00
σ = 5.5 10.04 11.05 14.05 16.00 17.00 18.00 20.00 20.02
σ = 6 9.98 11.00 14.00 15.10 17.00 18.00 19.01 20.00
σ = 6.5 9.79 11.00 14.00 15.00 16.82 18.00 19.00 20.00
σ = 7 9.39 10.80 14.00 15.00 16.00 18.00 19.00 19.00
σ = 7.5 9.15 10.30 13.35 15.00 16.00 17.08 19.00 19.00
σ = 8 9.07 10.15 13.01 15.00 16.00 17.00 19.00 19.00

Example 4.2. Let M = RRT , where R = (rij)n×n is randomly generated and
rij ∈ [0, 1]. The vector q = (qi)n×1 is also randomly generated, where qi ∈ [0, 5].

In both examples, the accuracy parameter is set as ϵ = 10−6. Table 1 shows
the iteration numbers to obtain an ϵ-solution for Example 4.1. In Example 4.2,
for each n and every σ, one hundred random P∗(0) LCPs are considered. Itera-
tion numbers in Table 2 are the average iteration numbers of the one hundred
LCPs. From Table 1 and Table 2, we can find that, for a given n, the iteration
number decreases if σ increases. This is because that if σ is larger, then the
neighborhood N−

∞(γ) is bigger, and Algorithm 1 has a larger corrector step size
and fewer steps. The numerical results show that Algorithm 1 is efficient.

5. Concluding remarks

In this paper, we present a modified Mehrotra-type predictor-corrector algo-
rithm for P∗(κ) LCPs and discuss the polynomial complexity of this algorithm.
It should be pointed out that the corrector direction in our algorithm is different

from other algorithms. The iteration bound isO(
√
(1 + 4κ)(2 + 4κ)n log (x0)T s0

ϵ ).
If κ = 0, this bound coincides with the iteration bound for LO.
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