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Ö. Kişi, M. Gürdal
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Novel properties of neighbourly edge irregular interval-valued
neutrosophic graphs
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Abstract. In this paper, some types of edge irregular interval-valued neutrosophic
graphs such as neighbourly edge irregular interval-valued neutrosophic graphs and
neighbourly edge totally irregular interval-valued neutrosophic graphs are introduced.
A comparative study between neighbourly edge irregular interval-valued neutrosophic
graphs and neighbourly edge totally irregular interval-valued neutrosophic graphs is
done. Likewise some properties of them are studied.

Keywords: edge degree in IVNG, edge totall degree in IVNG, edge irregular IVNG,
neighbourly edge irregular IVNG, neighbourly edge totally irregular IVNG.

1. Introduction

In 1736, Euler first introduced the concept of graph theory. In the history of
mathematics, the solution given by Euler of the well known Konigsberg bridge
problem is considered to be the first theorem of graph theory. This has now be-
come a subject generally regarded as a branch of combinatorics. The theory of
graph is an extremely useful tool for solving combinatorial problems in different
areas such as logic, geometry, algebra, topology, analysis, number theory, infor-
mation theory, artificial intelligence, operations research, optimization, neural
networks, planning, computer science and etc [9, 10, 11, 13].

Fuzzy set theory, introduced by Zadeh in 1965, is a mathematical tool for
handling uncertainties like vagueness, ambiguity and imprecision in linguistic
variables [31]. Research on theory of fuzzy sets has been witnessing an ex-
ponential growth; both within mathematics and in its application. Fuzzy set

*. Corresponding author
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theory has emerged as a potential area of interdisciplinary research and fuzzy
graph theory is of recent interest.

Atanassov [3, 4] proposed the extended form of fuzzy set theory by adding
a new component, called, intuitionistic fuzzy sets. Smarandache [23, 24] intro-
duced the concept of neutrosophic sets by combining the non-standard analysis.
In neutrosophic set, the membership value is associated with three components:
truth-membership (T), indeterminacy-membership (I) and falsity-membership
(F), in which each membership value is a real standard or non-standard subset of
the non-standard unit interval ]0−, 1+[ and there is no restriction on their sum.
Smarandache [25] and Wang et al. [29] presented the notion of single valued
neutrosophic sets to apply neutrosophic sets in real life problems more conve-
niently. In single valued neutrosophic sets, three components are independent
and their values are taken from the standard unit interval [0, 1]. Wang et al. [30]
presented the concept of interval-valued neutrosophic sets, which is more precise
and more flexible than the single valued neutrosophic set. An interval-valued
neutrosophic set is a generalization of the concept of single valued neutrosophic
set, in which three membership (T, I, F) functions are independent, and their
values belong to the unit interval [0, 1].

In 1975, Rosenfeld [19] introduced the concept of fuzzy graphs. The fuzzy
relations between fuzzy sets were also considered by Rosenfeld and he developed
the structure of fuzzy graphs, obtaining analogs of several graph theoretical
concepts. Later on, Bhattacharya gave some remarks on fuzzy graphs, and
some operations on fuzzy graphs were introduced by Mordeson and Peng [12].

Later, Broumi et al. [5] presented the concept of single valued neutrosophic
graphs by combining the single valued neutrosophic set theory and the graph
theory, and defined different types of single valued neutrosophic graphs (SVNG).
Recently, same authors [2, 6, 7, 8] introduced the concept of interval-valued
neutrosophic graph as a generalization of fuzzy graph, intuitionistic fuzzy graph
and single valued neutrosophic graph, and discussed some of their properties
with examples. Moreover, Akram and Nasir [1] have introduced several concepts
on interval-valued neutrosophic graphs.

A. Nagoorgani and K. Radha [15, 16] introduced the concept of regular
fuzzy graphs and defined degree of a vertex in fuzzy graphs. A. Nagoorgani and
S.R. Latha [14] introduced the concept of irregular fuzzy graphs, neighbourly
irregular fuzzy graphs and highly irregular fuzzy graphs in 2008. S.P.Nandhini
and E.Nandhini introduced the concept of strongly irregular fuzzy graphs and
discussed about its properties [17].

K. Radha and N. Kumaravel [18] introduced the concept of edge degree,
total edge degree in fuzzy graph and edge regular fuzzy graphs and discussed
about the degree of an edge in some fuzzy graphs. N.R. Santhi Maheswari
and C. Sekar introduced the concept of edge irregular fuzzy graphs and edge
totally irregular fuzzy graphs and discussed about its properties [20]. Also, N.R.
Santhi Maheswari and C. Sekar introduced the concept of neighbourly edge
irregular fuzzy graphs, neighbourly edge totally irregular fuzzy graphs, strongly
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edge irregular fuzzy graphs and strongly edge totally irregular fuzzy graphs
and discussed about its properties [21, 22]. Then we introduced this concepts
on intuitionistic fuzzy graphs, single valued neutrosophic graphs and interval-
valued neutrosophic graphs and discussed about their properties [26, 27, 28].

This is the background to introduce neighbourly edge irregular interval-
valued neutrosophic graphs, neighbourly edge totally irregular interval-valued
neutrosophic graphs and discussed some of their properties. Also neighbourly
edge irregularity and strongly edge irregularity on some interval-valued neutro-
sophic graphs whose underlying crisp graphs are a path, a cycle and a star are
studied.

2. Preliminaries

We present some known definitions and results for ready reference to go through
the work presented in this paper.

Definition 2.1. A graph is an ordered pair G∗ = (V,E), where V is the set of
vertices of G∗ and E is the set of edges of G∗. A graph G∗ is finite if its vertex
set and edge set are finite.

Definition 2.2. The degree dG∗(v) of a vertex v in G∗ or simply d(v) is the
number of edges of G∗ incident with vertex v.

Definition 2.3. A Fuzzy graph denoted by G : (σ, µ) on the graph G∗ : (V,E) is
a pair of functions (σ, µ) where σ : V → [0, 1] is a fuzzy subset of a non empty
set V and µ : E → [0, 1] is a symmetric fuzzy relation on σ such that for all u
and v in V the relation µ(u, v) = µ(uv) ≤ min(σ(u), σ(v)) is satisfied.

Definition 2.4. A single valued neutrosophic graph (SVNG) is of the form
G : (A,B) where A = (TA, IA, FA) and B = (TB, IB, FB) such that:

(i) The functions TA : V → [0, 1], IA : V → [0, 1] and FA : V → [0, 1]
denote the degree of truth-membership, the degree of indeterminacy-membership
and the degree of falsity-membership of the element u ∈ V , respectively, and
0 ≤ TA(u) + IA(u) + FA(u) ≤ 3 for every u ∈ V ;

(ii) The functions TB : V × V → [0, 1], IB : V × V → [0, 1] and FB :
V ×V → [0, 1] are the degree of truth-membership, the degree of indeterminacy-
membership and the degree of falsity-membership of the edge uv ∈ E, respec-
tively, such that TB(uv) ≤ min[TA(u), TA(v)] , IB(uv) ≥ max[IA(u), IA(v)] and
FB(uv) ≥ max[FA(u), FA(v)] and 0 ≤ TB(uv) + IB(uv) + FB(uv) ≤ 3 for every
uv in E.

Definition 2.5. Let G : (A,B) be a SVNG on G∗ : (V,E). Then the degree
of a vertex u is defined as dG(u) = (dTA(u), dIA(u), dFA

(u)) where dTA(u) =∑
v ̸=u TB(uv) , dIA(u) =

∑
v ̸=u IB(uv) and dFA

(u) =
∑

v ̸=u FB(uv).

Definition 2.6. Let G : (A,B) be a SVNG on G∗ : (V,E). Then the total
degree of a vertex u is defined by tdG(u) = (tdTA(u), tdIA(u), tdFA

(u)) where
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tdTA(u) =
∑

v ̸=u TB(uv)+TA(u) , tdIA(u) =
∑

v ̸=u IB(uv)+IA(u) and tdFA
(u) =∑

v ̸=u FB(uv) + FA(u).

Definition 2.7. An interval-valued fuzzy graph (IVFG) is of the form G : (σ, µ)
where σ = [σ−, σ+] is an interval-valued fuzzy set in V and µ = (µ−, µ+) is an
interval-valued fuzzy set in E ⊆ V × V such that µ−(uv) ≤ min(σ−(u), σ−(v))
and µ+(uv) ≤ min(σ+(u), σ+(v)) for every uv in E.

Definition 2.8. Let G : (σ, µ) be an IVFG on G∗ : (V,E). Then the degree of a
vertex u is defined as dG(u) = (dσ−(u), dσ+(u)) where dσ−(u) =

∑
v ̸=u µ

−(u, v)

and dσ+(u) =
∑

v ̸=u µ
+(u, v).

Definition 2.9. Let G : (σ, µ) be an IVFG on G∗ : (V,E). Then the total
degree of a vertex u is defined by tdG(u) = (tdσ−(u), tdσ+(u)) where tdσ−(u) =∑

v ̸=u µ
−(u, v) + σ−(u) and tdσ+(u) =

∑
v ̸=u µ

+(u, v) + σ+(u).

3. Interval-valued neutrosophic graphs (IVNGs)

Throughout this paper, we denote G∗ : (V,E) a crisp graph, and G : (A,B) an
interval-valued neutrosophic graph.

Definition 3.1. By an interval-valued neutrosophic graph(IVNG) of a graph
G∗ : (V,E) we mean a pair G : (A,B), where A : (TA, IA, FA) = ((T−

A , T
+
A ), (I−A ,

I+A ), (F
−
A , F

+
A )) is an interval-valued neutrosophic set on V , and B : (TB, IB, FB)

= ((T−
B , T

+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) is an interval-valued neutrosophic relation on

E satisfying the following condition:
(i) V = v1, v2, ..., vn such that T−

A : V → [0, 1], T+
A : V → [0, 1], I−A :

V → [0, 1], I+A : V → [0, 1], F−
A : V → [0, 1] and F+

A : V → [0, 1] denote
the degree of truth-membership, the degree of indeterminacy-membership and
falsity-membership of the element vi ∈ V , respectively, and 0 ≤ TA(vi)+IA(vi)+
FA(vi) ≤ 3 for all vi ∈ V, (i = 1, 2, ..., n).

(ii) The functions T−
B : V × V → [0, 1], T+

B : V × V → [0, 1], I−B : V × V →
[0, 1], I+B : V × V → [0, 1], F−

B : V × V → [0, 1] and F+
B : V × V → [0, 1] are

such that:
T−
B (vivj) ≤ min(T−

A (vi), T
−
A (vj)), T

+
B (vivj) ≤ min(T+

A (vi), T
+
A (vj)),

I−B (vivj) ≥ max(I−A (vi), I
−
A (vj)), I

+
B (vivj) ≥ max(I+A (vi), I

+
A (vj)),

F−
B (vivj) ≥ max(F−

A (vi), F
−
A (vj)) and F

+
B (vivj) ≥ max(F+

A (vi), F
+
A (vj))

denotes the degree of truth-membership, indeterminacy-membership and falsity-
membership of the edge vivj ∈ E respectively, where 0 ≤ TB(vivj) + IB(vivj) +
FB(vivj) ≤ 3 for all vivj ∈ E, (i, j = 1, 2, ..., n).

Definition 3.2. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E). Then the degree of a vertex vi is defined as
dG(vi) = ((dT−

A
(vi), dT+

A
(vi)), (dI−A

(vi), dI+A
(vi)), (dF−

A
(vi), dF+

A
(vi))) where

dT−
A
(vi) =

∑
vi ̸=vj T

−
B (vivj) dT+

A
(vi) =

∑
vi ̸=vj T

+
B (vivj),
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dI−A
(vi) =

∑
vi ̸=vj I

−
B (vivj) , dI+A

(vi) =
∑

vi ̸=vj I
+
B (vivj),

dF−
A
(vi) =

∑
vi ̸=vj F

−
B (vivj) and dF+

A
(vi) =

∑
vi ̸=vj F

+
B (vi, vj).

Definition 3.3. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E). Then the total degree of a vertex vi is defined as
tdG(vi) = ((tdT−

A
(vi), tdT+

A
(vi)), (tdI−A

(vi), tdI+A
(vi)), (tdF−

A
(vi), tdF+

A
(vi))) where

tdT−
A
(vi) =

∑
vi ̸=vj T

−
B (vivj) + T−

A (vi), tdT+
A
(vi) =

∑
vi ̸=vj T

+
B (vivj) + T+

A (vi),

tdI−A
(vi) =

∑
vi ̸=vj I

−
B (vivj) + I−A (vi), tdI+A

(vi) =
∑

vi ̸=vj I
+
B (vivj) + I+A (vi),

tdF−
A
(vi) =

∑
vi ̸=vj F

−
B (vivj)+F

−
A (vi) and tdF+

A
(vi) =

∑
vi ̸=vj F

+
B (vi, vj)+F

+
A (vi).

Definition 3.4. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E). Then:

(i) G is irregular, if there is a vertex which is adjacent to vertices with distinct
degrees.

(ii) G is totally irregular, if there is a vertex which is adjacent to vertices
with distinct total degrees.

Definition 3.5. Let G : (A,B) be a connected interval-valued neutrosophic
graph on G∗ : (V,E). Then:

(i) G is said to be a neighbourly irregular IVNG if every pair of adjacent
vertices have distinct degrees.

(ii) G is said to be a neighbourly totally IVNG if every pair of adjacent
vertices have distinct total degrees.

(iii) G is said to be a strongly irregular IVNG if every pair of vertices have
distinct degrees.

(iv) G is said to be a strongly totally irregular IVNG if every pair of vertices
have distinct total degrees.

(v) G is said to be a highly irregular IVNG if every vertex in G is adjacent
to the vertices having distinct degrees.

(vi) G is said to be a highly totally irregular IVNG if every vertex in G is
adjacent to the vertices having distinct total degrees.

Definition 3.6. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E). The degree of an edge vivj is defined as
dG(vivj) = ((dT−

B
(vivj), dT+

B
(vivj)), (dI−B

(vivj), dI+B
(vivj)), (dF−

B
(vivj), dF+

B
(vivj)))

where
dT−

B
(vivj) = dT−

A
(vi) + dT−

A
(vj)− 2T−

B (vivj),

dT+
B
(vivj) = dT+

A
(vi) + dT+

A
(vj)− 2T+

B (vivj),

dI−B
(vivj) = dI−A

(vi) + dI−A
(vj)− 2I−B (vivj),

dI+B
(vivj) = dI+A

(vi) + dI+A
(vj)− 2I+B (vivj),

dF−
B
(vivj) = dF−

A
(vi) + dF−

A
(vj)− 2F−

B (vivj) and

dF+
B
(vivj) = dF+

A
(vi) + dF+

A
(vj)− 2F+

B (vivj).
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Definition 3.7. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E). The total degree of an edge vivj is defined as
tdG(vivj) = ((tdT−

B
(vivj), tdT+

B
(vivj)), (tdI−B

(vivj), tdI+B
(vivj)), (tdF−

B
(vivj),

tdF+
B
(vivj))) where

tdT−
B
(vivj) = dT−

A
(vi) + dT−

A
(vj)− T−

B (vivj) = dT−
B
(vivj) + T−

B (vivj) ,

tdT+
B
(vivj) = dT+

A
(vi) + dT+

A
(vj)− T+

B (vivj) = dT+
B
(vivj) + T+

B (vivj) ,

tdI−B
(vivj) = dI−A

(vi) + dI−A
(vj)− I−B (vivj) = dI−B

(vivj) + I−B (vivj) ,

tdI+B
(vivj) = dI+A

(vi) + dI+A
(vj)− I+B (vivj) = dI+B

(vivj) + I+B (vivj) ,

tdF−
B
(vivj) = dF−

A
(vi) + dF−

A
(vj)− F−

B (vivj) = dF−
B
(vivj) + F−

B (vivj) and

tdF+
B
(vivj) = dF+

A
(vi) + dF+

A
(vj)− F+

B (vivj) = dF+
B
(vivj) + F+

B (vivj).

4. Neighbourly edge irregular interval-valued neutrosophic graphs
and neighbourly edge totally irregular interval-valued
neutrosophic graphs

In this section, neighbourly edge irregular interval-valued neutrosophic graphs
and neighbourly edge totally irregular interval-valued neutrosophic graphs are
introduced.

Definition 4.1. Let G : (A,B) be a connected interval-valued neutrosophic
graph on G∗ : (V,E). Then G is said to be:

(i) A neighbourly edge irregular interval-valued neutrosophic graph if every
pair of adjacent edges have distinct degrees.

(ii) A neighbourly edge totally irregular interval-valued neutrosophic graph if
every pair of adjacent edges have distinct total degrees.

Example 4.1. Graph which is both neighbourly edge irregular interval-valued
neutrosophic graph and neighbourly edge totally irregular interval-valued neu-
trosophic graph.

Figure 1: Both neighbourly edge irregular IVNG and neighbourly edge totally
irregular IVNG
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ConsiderG∗ : (V,E) where V = {u, v, w, x} and E = {uv, vw,wx, xu}. From
Figure 1, dG(u) = dG(v) = dG(w) = dG(x) = ((0.3, 0.5), (0.5, 1.0), (0.9, 1.5)).

Degrees of the edges are calculated as follows dG(uv) = dG(wx) = ((0.4, 0.6),
(0.4, 0.8), (1.0, 1.6)), dG(vw) = dG(xu) = ((0.2, 0.4), (0.6, 1.2), (0.8, 1.4)).

It is noted that every pair of adjacent edges have distinct degrees. Hence, G
is a neighbourly edge irregular interval-valued neutrosophic graph.

Total degrees of the edges are calculated as follows tdG(uv) = tdG(wx) =
((0.5, 0.8), (0.7, 1.4), (1.4, 2.3)), tdG(vw) = tdG(xu) = ((0.4, 0.7), (0.8, 1.6),
(1.3, 2.2)).

It is observed that every pair of adjacent edges having distinct total degrees.
So, G is a neighbourly edge totally irregular interval-valued neutrosophic graph.

Hence G is both neighbourly edge irregular interval-valued neutrosophic
graph and neighbourly edge totally irregular interval-valued neutrosophic graph.

Example 4.2. Neighbourly edge irregular interval-valued neutrosophic graph
don,t need to be neighbourly edge totally irregular interval-valued neutrosophic
graph.

Consider G : (A,B) be an interval-valued neutrosophic graph such that
G∗ : (V,E) is a star on four vertices.

Figure 2: Neighbourly edge irregular IVNG, not neighbourly edge totally irreg-
ular IVNG

From Figure 2, dG(u) = ((0.2, 0.3), (0.3, 0.4), (0.5, 0.6)), dG(v) = ((0.1, 0.2),
(0.4, 0.5), (0.6, 0.7)), dG(w) = ((0.0, 0.1), (0.5, 0.6), (0.7, 0.8)), dG(x) = ((0.3, 0.6),
(1.2, 1.5), (1.8, 2.1)); dG(ux)=((0.1, 0.3), (0.9, 1.1), (1.3, 1.5)), dG(vx)=((0.2, 0.4),
(0.8, 1.0), (1.2, 1.4)), dG(wx)=((0.3, 0.5), (0.7, 0.9), (1.1, 1.3)); tdG(ux)=tdG(vx)
= tdG(wx) = ((0.3, 0.6), (1.2, 1.5), (1.8, 2.1)).

Here, dG(ux) ̸= dG(vx) ̸= dG(wx). Hence G is a neighbourly edge irregular
interval-valued neutrosophic graph. But G is not a neighbourly edge totally
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irregular interval-valued neutrosophic graph, since all edges have same total
degrees.

Example 4.3. Neighbourly edge totally irregular interval-valued neutrosophic
graphs don,t need to be neighbourly edge irregular interval-valued neutrosophic
graphs. Following shows this subject:

Consider G : (A,B) be an interval-valued neutrosophic graph such that
G∗ : (V,E) is a path on four vertices.

Figure 3: Neighbourly edge totally irregular IVNG, not neighbourly edge irreg-
ular IVNG

From Figure 3, dG(u) = dG(x) = ((0.05, 0.20), (0.15, 0.25), (0.1, 0.3)), dG(v)
= dG(w) = ((0.15, 0.60), (0.45, 0.75), (0.3, 0.9)); dG(uv) = dG(vw) = dG(wx)
= ((0.1, 0.4), (0.3, 0.5), (0.2, 0.6)); tdG(uv) = ((0.15, 0.60), (0.45, 0.75), (0.3, 0.9)),
tdG(vw) = ((0.2, 0.8), (0.6, 1.0), (0.4, 1.2)), tdG(wx) = ((0.15, 0.60), (0.45, 0.75),
(0.3, 0.9)).

Here, dG(uv) = dG(vw) = dG(wx). Hence G is not a neighbourly edge
irregular interval-valued neutrosophic graph. But G is a neighbourly edge to-
tally irregular interval-valued neutrosophic graph, since tdG(uv) ̸= tdG(vw) and
tdG(vw) ̸= tdG(wx).

Theorem 4.1. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E) and B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) a constant function. Then

G is a neighbourly edge irregular interval-valued neutrosophic graph, if and only
if G is a neighbourly edge totally irregular interval-valued neutrosophic graph.

Proof. Assume that B : ((T−
B , T

+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) is a constant function,

let B(uv) = C, for all uv in E, where C = ((C−
T , C

+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F )) is

constant.
Let uv and vw be pair of adjacent edges in E, then we have dG(uv) ̸=

dG(vw)⇔ dG(uv)+C ̸= dG(vw)+C ⇔ ((dT−
B
(uv), dT+

B
(uv)), (dI−B

(uv), dI+B
(uv)),

(dF−
B
(uv), dF+

B
(uv)))+ ((C−

T , C
+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F )) ̸= ((dT−

B
(vw), dT+

B
(vw)),

(dI−B
(vw), dI+B

(vw)), (dF−
B
(vw), dF+

B
(vw))) + ((C−

T , C
+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F )) ⇔

((dT−
B
(uv)+C−

T , dT+
B
(uv)+C+

T ), (dI−B
(uv)+C−

I , dI+B
(uv)+C+

I ), (dF−
B
(uv)+C−

F ,

dF+
B
(uv) +C+

F )) ̸= ((dT−
B
(vw) +C−

T , dT+
B
(vw) +C+

T ), (dI−B
(vw) +C−

I , dI+B
(vw) +

C+
I ), (dF−

B
(vw)+C−

F , dF+
B
(vw)+C+

F ))⇔ ((dT−
B
(uv)+T−

B (uv), dT+
B
(uv)+T+

B (uv)),

(dI−B
(uv)+I−B (uv), dI+B

(uv)+I+B (uv)), (dF−
B
(uv)+F−

B (uv), dF+
B
(uv)+F+

B (uv))) ̸=
((dT−

B
(vw)+T−

B (vw), dT+
B
(vw)+T+

B (vw)), (dI−B
(vw)+I−B (vw), dI+B

(vw)+I+B (vw)),
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(dF−
B
(vw) + F−

B (vw), dF+
B
(vw) + F+

B (vw))) ⇔ ((tdT−
B
(uv), tdT+

B
(uv)), (tdI−B

(uv),

tdI+B
(uv)), (tdF−

B
(uv), tdF+

B
(uv))) ̸= ((tdT−

B
(vw), tdT+

B
(vw)), (tdI−B

(vw), tdI+B
(vw)),

(tdF−
B
(vw), tdF+

B
(vw)))⇔ tdG(uv) ̸= tdG(vw). Therefore, every pair of adjacent

edges have distinct degrees if and only if have distinct total degrees. Hence G is
a neighbourly edge irregular interval-valued neutrosophic graph if and only if G
is a neighbourly edge totally irregular interval-valued neutrosophic graph.

Remark 4.1. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E). If G is both neighbourly edge irregular interval-valued neutro-
sophic graph and neighbourly edge totally irregular interval-valued neutrosophic
graph, Then B don,t need to be a constant function.

Example 4.4. Consider G : (A,B) be an interval-valued neutrosophic graph
such that G∗ : (V,E) is a path on four vertices.

Figure 4: B is not a constant function.

From Figure 4,
dG(u) = dG(x) = ((0.2, 0.3), (0.4, 0.5), (0.6, 0.7)),
dG(v) = dG(w) = ((0.3, 0.5), (0.7, 0.9), (1.1, 1.3));
dG(uv) = dG(wx) = ((0.1, 0.2), (0.3, 0.4), (0.5, 0.6)),
dG(vw) = ((0.4, 0.6), (0.8, 1.0), (1.2, 1.4));
tdG(uv) = tdG(wx) = ((0.3, 0.5), (0.7, 0.9), (1.1, 1.3)),
tdG(vw) = ((0.5, 0.8), (1.1, 1.4), (1.7, 2.0)).

Here, dG(uv) ̸= dG(vw) and dG(vw) ̸= dG(wx). Hence G is a neighbourly
edge irregular interval-valued neutrosophic graph. Also, tdG(uv) ̸= tdG(vw) and
tdG(vw) ̸= tdG(wx). Hence G is a neighbourly edge totally irregular interval-
valued neutrosophic graph. But B is not constant function.

Theorem 4.2. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E) and B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) a constant function. If G

is a strongly irregular interval-valued neutrosophic graph, then G is a neighbourly
edge irregular interval-valued neutrosophic graph.

Proof. Let G : (A,B) be a connected interval-valued neutrosophic graph on
G∗ : (V,E). Assume that B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) is a constant func-

tion, let B(uv) = C, for all uv in E, where C = ((C−
T , C

+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F ))

is constant.
Let uv and vw be any two adjacent edges in G. Let us suppose that G

is a strongly irregular interval-valued neutrosophic graph. Then, every pair
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of vertices in G having distinct degrees, and hence dG(u) ̸= dG(v) ̸= dG(w) ⇒
((dT−

A
(u), dT+

A
(u)), (dI−A

(u), dI+A
(u)), (dF−

A
(u), dF+

A
(u))) ̸= ((dT−

A
(v), dT+

A
(v)),

(dI−A
(v), dI+A

(v)), (dF−
A
(v), dF+

A
(v))) ̸= ((dT−

A
(w), dT+

A
(w)), (dI−A

(w), dI+A
(w)),

(dF−
A
(w), dF+

A
(w)))⇒ ((dT−

A
(u), dT+

A
(u)), (dI−A

(u), dI+A
(u)), (dF−

A
(u), dF+

A
(u)))+

((dT−
A
(v), dT+

A
(v)), (dI−A

(v), dI+A
(v)), (dF−

A
(v), dF+

A
(v))) − 2((C−

T , C
+
T ), (C

−
I , C

+
I ),

(C−
F , C

+
F )) ̸= ((dT−

A
(v), dT+

A
(v)), (dI−A

(v), dI+A
(v)), (dF−

A
(v), dF+

A
(v))) + ((dT−

A
(w),

dT+
A
(w)), (dI−A

(w), dI+A
(w)), (dF−

A
(w), dF+

A
(w)))−2((C−

T , C
+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F ))

⇒ ((dT−
A
(u) + dT−

A
(v)− 2C−

T , dT+
A
(u) + dT+

A
(v)− 2C+

T ), (dI−A
(u) + dI−A

(v)− 2C−
I ,

dI+A
(u) + dI+A

(v)− 2C+
I ), (dF−

A
(u) + dF−

A
(v)− 2C−

F , dF+
A
(u) + dF+

A
(v)− 2C+

F )) ̸=
((dT−

A
(v) + dT−

A
(w) − 2C−

T , dT+
A
(v) + dT+

A
(w) − 2C+

T ), (dI−A
(v) + dI−A

(w) − 2C−
I ,

dI+A
(v)+ dI+A

(w)− 2C+
I ), (dF−

A
(v)+ dF−

A
(w)− 2C−

F , dF+
A
(v)+ dF+

A
(w)− 2C+

F ))⇒
((dT−

A
(u) + dT−

A
(v)− 2T−

B (uv), dT+
A
(u) + dT+

A
(v)− 2T−

B (uv)), (dI−A
(u) + dI−A

(v)−
2I−B (uv), dI+A

(u) + dI+A
(v) − 2I−B (uv)), (dF−

A
(u) + dF−

A
(v) − 2F−

B (uv), dF+
A
(u) +

dF+
A
(v)−2F−

B (uv))) ̸= ((dT−
A
(v)+dT−

A
(w)−2T−

B (vw), dT+
A
(v)+dT+

A
(w)−2T−

B (vw)),

(dI−A
(v) + dI−A

(w)− 2I−B (vw), dI+A
(v) + dI+A

(w)− 2I−B (vw)), (dF−
A
(v) + dF−

A
(w)−

2F−
B (vw), dF+

A
(v) + dF+

A
(w) − 2F−

B (vw))) ⇒ ((dT−
B
(uv), dT+

B
(uv)), (dI−B

(uv),

dI+B
(uv)), (dF−

B
(uv), dF+

B
(uv))) ̸= ((dT−

B
(vw), dT+

B
(vw)), (dI−B

(vw), dI+B
(vw)),

(dF−
B
(vw), dF+

B
(vw)))⇒ dG(uv) ̸= dG(vw).

Therefore, every pair of adjacent edges have distinct degrees, hence G is a
neighbourly edge irregular interval-valued neutrosophic graph.

Similar to the above theorem can be considered the following theorem:

Theorem 4.3. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E) and B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) a constant function. If G

is a strongly irregular interval-valued neutrosophic graph, then G is a neighbourly
edge totally irregular interval-valued neutrosophic graph.

Remark 4.2. Converse of the above theorems don,t need to be true.

Example 4.5. Consider G : (A,B) be an interval-valued neutrosophic graph
such that G∗ : (V,E) is a path on four vertices.

Figure 5: Both neighbourly edge irregular IVNG and neighbourly edge totally
irregular IVNG, not strongly irregular IVNG
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From Figure 5,
dG(u) = dG(x) = ((0.1, 0.3), (0.2, 0.4), (0.4, 0.7)),
dG(v) = dG(w) = ((0.2, 0.6), (0.4, 0.8), (0.8, 1.4)).

Here, G is not a strongly irregular interval-valued neutrosophic graph.

dG(uv) = dG(wx) = ((0.1, 0.3), (0.2, 0.4), (0.4, 0.7)),
dG(vw) = ((0.2, 0.6), (0.4, 0.8), (0.8, 1.4));

tdG(uv) = tdG(wx) = ((0.2, 0.6), (0.4, 0.8), (0.8, 1.4)),
tdG(vw) = ((0.3, 0.9), (0.6, 1.2), (1.2, 2.1)).

It is noted that dG(uv) ̸= dG(vw) and dG(vw) ̸= dG(wx). And also, tdG(uv) ̸=
tdG(vw) and tdG(vw) ̸= tdG(wx). Hence G is both neighbourly edge irregu-
lar interval-valued neutrosophic graph and neighbourly edge totally irregular
interval-valued neutrosophic graph. But G is not a strongly irregular interval-
valued neutrosophic graph.

Theorem 4.4. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E) and B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) a constant function. Then

G is a highly irregular interval-valued neutrosophic graph if and only if G is a
neighbourly edge irregular interval-valued neutrosophic graph.

Proof. Let G : (A,B) be a connected interval-valued neutrosophic graph on
G∗ : (V,E). Assume that B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) is a constant func-

tion, let B(uv) = C, for all uv in E, where C = ((C−
T , C

+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F ))

is constant.
Let uv and vw be any two adjacent edges in G. Then, we have dG(u) ̸=

dG(w) ⇔ ((dT−
A
(u), dT+

A
(u)), (dI−A

(u), dI+A
(u)), (dF−

A
(u), dF+

A
(u))) ̸= ((dT−

A
(w),

dT+
A
(w)), (dI−A

(w), dI+A
(w)), (dF−

A
(w), dF+

A
(w))) ⇔ ((dT−

A
(u), dT+

A
(u)), (dI−A

(u),

dI+A
(u)), (dF−

A
(u), dF+

A
(u)))+((dT−

A
(v), dT+

A
(v)), (dI−A

(v), dI+A
(v)), (dF−

A
(v), dF+

A
(v)))

− 2((C−
T , C

+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F )) ̸= ((dT−

A
(v), dT+

A
(v)), (dI−A

(v), dI+A
(v)),

(dF−
A
(v), dF+

A
(v))) + ((dT−

A
(w), dT+

A
(w)), (dI−A

(w), dI+A
(w)), (dF−

A
(w), dF+

A
(w))) −

2((C−
T , C

+
T ), (C

−
I , C

+
I ), (C

−
F , C

+
F ))⇔ ((dT−

A
(u)+dT−

A
(v)−2C−

T , dT+
A
(u)+dT+

A
(v)−

2C+
T ), (dI−A

(u) + dI−A
(v) − 2C−

I , dI+A
(u) + dI+A

(v) − 2C+
I ), (dF−

A
(u) + dF−

A
(v) −

2C−
F , dF+

A
(u)+ dF+

A
(v)− 2C+

F )) ̸= ((dT−
A
(v)+ dT−

A
(w)− 2C−

T , dT+
A
(v)+ dT+

A
(w)−

2C+
T ), (dI−A

(v) + dI−A
(w) − 2C−

I , dI+A
(v) + dI+A

(w) − 2C+
I ), (dF−

A
(v) + dF−

A
(w) −

2C−
F , dF+

A
(v) + dF+

A
(w) − 2C+

F )) ⇔ ((dT−
A
(u) + dT−

A
(v) − 2T−

B (uv), dT+
A
(u) +

dT+
A
(v) − 2T−

B (uv)), (dI−A
(u) + dI−A

(v) − 2I−B (uv), dI+A
(u) + dI+A

(v) − 2I−B (uv)),

(dF−
A
(u)+dF−

A
(v)−2F−

B (uv), dF+
A
(u)+dF+

A
(v)−2F−

B (uv))) ̸= ((dT−
A
(v)+dT−

A
(w)−

2T−
B (vw), dT+

A
(v) + dT+

A
(w) − 2T−

B (vw)), (dI−A
(v) + dI−A

(w) − 2I−B (vw), dI+A
(v) +

dI+A
(w)−2I−B (vw)), (dF−

A
(v)+dF−

A
(w)−2F−

B (vw), dF+
A
(v)+dF+

A
(w)−2F−

B (vw)))⇔
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((dT−
B
(uv), dT+

B
(uv)), (dI−B

(uv), dI+B
(uv)), (dF−

B
(uv), dF+

B
(uv))) ̸= ((dT−

B
(vw),

dT+
B
(vw)), (dI−B

(vw), dI+B
(vw)), (dF−

B
(vw), dF+

B
(vw)))⇔ dG(uv) ̸= dG(vw).

Therefore, every pair of adjacent edges have distinct degrees, if and only if
every vertex adjacent to the vertices having distinct degrees. Hence G is a highly
irregular interval-valued neutrosophic graph, if and only if G is a neighbourly
edge irregular interval-valued neutrosophic graph.

Theorem 4.5. Let G : (A,B) be a connected interval-valued neutrosophic graph
on G∗ : (V,E) and B : ((T−

B , T
+
B ), (I−B , I

+
B ), (F

−
B , F

+
B )) a constant function. Then

G is highly irregular interval-valued neutrosophic graph if and only if G is neigh-
bourly edge totally irregular interval-valued neutrosophic graph.

Proof. Proof is similar to the above Theorem 4.4.

Theorem 4.6. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E), a star K1,n. Then G is a totally edge regular interval-valued
neutrosophic graph. Also, if the degrees of truth-membership, indeterminacy-
membership and falsity-membership of no two edges are same, then G is a neigh-
bourly edge irregular interval-valued neutrosophic graph.

Proof. Let v1, v2, v3, . . . , vn be the vertices adjacent to the vertex x. Let
e1, e2, e3, . . . , en be the edges of a star G∗ in that order having the degrees of
truth-membership p1, p2, p3, . . . , pn , the degrees of indeterminacy-membership
q1, q2, q3, . . . , qn and the degrees of falsity-membership r1, r2, r3, . . . , rn where
pi = (p−i , p

+
i ) , qi = (q−i , q

+
i ) and ri = (r−i , r

+
i ) for i = 1, 2, ..., n such that 0 ≤ pi+

qi+ri ≤ 3, for every 1 ≤ i ≤ n . Then, tdG(ei) = ((tdT−
B
(ei), tdT+

B
(ei)), (tdI−B

(ei),

tdI+B
(ei)), (tdF−

B
(ei), tdF+

B
(ei))) = ((dT−

B
(ei)+T

−
B (ei), dT+

B
(ei)+T

+
B (ei)), (dI−B

(ei)+

I−B (ei), dI+B
(ei) + I+B (ei)), (dF−

B
(ei) + F−

B (ei), dF+
B
(ei) + F+

B (ei))) = ((
∑n

k=1 p
−
k −

p−i +p
−
i ,
∑n

k=1 p
+
k −p

+
i +p

+
i ), (

∑n
k=1 q

−
k −q

−
i +q

−
i ,
∑n

k=1 q
+
k −q

+
i +q

+
i ), (

∑n
k=1 r

−
k −

r−i + r−i ,
∑n

k=1 r
+
k − r+i + r+i )) = ((

∑n
k=1 p

−
k ,
∑n

k=1 p
+
k ), (

∑n
k=1 q

−
k ,
∑n

k=1 q
+
k ),

(
∑n

k=1 r
−
k ,
∑n

k=1 r
+
k )).

All edges ei , (1 ≤ i ≤ n), having same total degrees. Hence G is a totally
edge regular interval-valued neutrosophic graph.

Now, if p−i ̸= p−j , p+i ̸= p+j , q−i ̸= q−j , q+i ̸= q+j , r−i ̸= r−j and r+i ̸= r+j , for
every 1 ≤ i, j ≤ n then, we have dG(ei) = ((dT−

B
(ei), dT+

B
(ei)), (dI−B

(ei), dI+B
(ei)),

(dF−
B
(ei), dF+

B
(ei)))=((dT−

A
(x)+dT−

A
(vi)−2T−

B (xvi), dT+
A
(x)+dT+

A
(vi)−2T+

B (xvi)),

(dI−A
(x)+ dI−A

(vi)− 2I−B (xvi), dI+A
(x)+ dI+A

(vi)− 2I+B (xvi)), (dF−
A
(x)+ dF−

A
(vi)−

2F−
B (xvi), dF+

A
(x) + dF+

A
(vi)− 2F+

B (xvi))) = ((
∑n

k=1 p
−
k + p−i − 2p−i ,

∑n
k=1 p

+
k +

p+i − 2p+i ), (
∑n

k=1 q
−
k + q−i − 2q−i ,

∑n
k=1 q

+
k + q+i − 2q+i ), (

∑n
k=1 r

−
k + r−i − 2r−i ,∑n

k=1 r
+
k +r

+
i −2r

+
i ))=((

∑n
k=1 p

−
k −p

−
i ,
∑n

k=1 p
+
k −p

+
i ), (

∑n
k=1 q

−
k −q

−
i ,
∑n

k=1 q
+
k −

q+i ), (
∑n

k=1 r
−
k − r

−
i ,
∑n

k=1 r
+
k − r

+
i )) for every 1 ≤ i ≤ n .

Therefore, all edges ei ,(1 ≤ i ≤ n), having distinct degrees. Hence G is a
neighbourly edge irregular interval-valued neutrosophic graph.
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Theorem 4.7. Let G : (A,B) be an interval-valued neutrosophic graph such
that G∗ : (V,E) is a path on 2m(m > 1) vertices. If the degrees of truth-
membership, indeterminacy-membership and falsity-membership of the edges ei,
i = 1, 3, 5, ..., 2m − 1, are p1 = (p−1 , p

+
1 ), q1 = (q−1 , q

+
1 ) and r1 = (r−1 , r

+
1 ),

respectively, and the degrees of truth-membership, indeterminacy-membership
and falsity-membership of the edges ei, i = 2, 4, 6, ..., 2m− 2, are p2 = (p−2 , p

+
2 ),

q2 = (q−2 , q
+
2 ) and r2 = (r−2 , r

+
2 ), respectively, such that p1 ̸= p2 and p2 ̸= 2p1

and q1 ̸= q2 and q2 ̸= 2q1 and r1 ̸= r2 and r2 ̸= 2r1, then G is both neighbourly
edge irregular interval-valued neutrosophic graph and neighbourly edge totally
irregular interval-valued neutrosophic graph.

Proof. Let G : (A,B) be an interval-valued neutrosophic graph on G∗ : (V,E),
a path on 2m(m > 1) vertices.

Let e1, e2, e3, . . . , e2m−1 be the edges of path G∗. If the alternate edges have
the same degrees of truth-membership, indeterminacy-membership and falsity-
membership, such that

B(ei) = (TB(ei), IB(ei), FB(ei))

= ((T−
B (ei), T

+
B (ei)), (I

−
B (ei), I

+
B (ei)), (F

−
B (ei), F

+
B (ei)))

=

{
(p1, q1, r1), if i is odd,

(p2, q2, r2), if i is even
=

{
((p−1 , p

+
1 ), (q

−
1 , q

+
1 ), (r

−
1 , r

+
1 )), if i is odd,

((p−2 , p
+
2 ), (q

−
2 , q

+
2 ), (r

−
2 , r

+
2 )), if i is even

where 0 ≤ pi + qi + ri ≤ 3 for i = 1, 2 and (p−1 , p
+
1 ) ̸= (p−2 , p

+
2 ) and (p−2 , p

+
2 ) ̸=

2(p−1 , p
+
1 ) and (q−1 , q

+
1 ) ̸= (q−2 , q

+
2 ) and (q−2 , q

+
2 ) ̸= 2(q−1 , q

+
1 ) and (r−1 , r

+
1 ) ̸=

(r−2 , r
+
2 ) and (r−2 , r

+
2 ) ̸= 2(r−1 , r

+
1 ), then dG(e1) = (((p−1 )+(p−1 +p

−
2 )−2p

−
1 , (p

+
1 )+

(p+1 +p+2 )−2p+1 ), ((q
−
1 )+(q−1 + q−2 )−2q−1 , (q

+
1 )+(q+1 + q+2 )−2q+1 ), ((r

−
1 )+(r−1 +

r−2 )− 2r−1 , (r
+
1 )+ (r+1 + r+2 )− 2r+1 )) = ((p−2 , p

+
2 ), (q

−
2 , q

+
2 ), (r

−
2 , r

+
2 )) = (p2, q2, r2)

for i = 3, 5, 7, . . . , 2m − 3; dG(ei) = (((p−1 + p−2 ) + (p−1 + p−2 ) − 2p−1 , (p
+
1 +

p+2 ) + (p+1 + p+2 ) − 2p+1 ), ((q
−
1 + q−2 ) + (q−1 + q−2 ) − 2q−1 , (q

+
1 + q+2 ) + (q+1 +

q+2 ) − 2q+1 ), ((r
−
1 + r−2 ) + (r−1 + r−2 ) − 2r−1 , (r

+
1 + r+2 ) + (r+1 + r+2 ) − 2r+1 )) =

((2p−2 , 2p
+
2 ), (2q

−
2 , 2q

+
2 ), (2r

−
2 , 2r

+
2 )) = (2p2, 2q2, 2r2)

for i = 2, 4, 6, . . . , 2m − 2; dG(ei) = (((p−1 + p−2 ) + (p−1 + p−2 ) − 2p−2 , (p
+
1 +

p+2 ) + (p+1 + p+2 ) − 2p+2 ), ((q
−
1 + q−2 ) + (q−1 + q−2 ) − 2q−2 , (q

+
1 + q+2 ) + (q+1 +

q+2 ) − 2q+2 ), ((r
−
1 + r−2 ) + (r−1 + r−2 ) − 2r−2 , (r

+
1 + r+2 ) + (r+1 + r+2 ) − 2r+2 )) =

((2p−1 , 2p
+
1 ), (2q

−
1 , 2q

+
1 ), (2r

−
1 , 2r

+
1 )) = (2p1, 2q1, 2r1) dG(e2m−1) = (((p−1 + p−2 ) +

(p−1 )− 2p−1 , (p
+
1 + p+2 )+ (p+1 )− 2p+1 ), ((q

−
1 + q−2 )+ (q−1 )− 2q−1 , (q

+
1 + q+2 )+ (q+1 )−

2q+1 ), ((r
−
1 +r

−
2 )+(r−1 )−2r

−
1 , (r

+
1 +r

+
2 )+(r+1 )−2r

+
1 ))=((p−2 , p

+
2 ), (q

−
2 , q

+
2 ), (r

−
2 , r

+
2 ))

= (p2, q2, r2).
We observe that the adjacent edges have distinct degrees. Hence G is a

neighbourly edge irregular interval-valued neutrosophic graph. Also, we have
tdG(e1) = (p1+p2, q1+ q2, r1+ r2) tdG(ei) = (2p1+p2, 2q1+ q2, 2r1+ r2) for i =
2, 4, 6, . . . , 2m−2, tdG(ei) = (p1+2p2, q1+2q2, r1+2r2) for i = 3, 5, 7, . . . , 2m−3
tdG(e2m−1) = (p1 + p2, q1 + q2, r1 + r2).
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Therefore, the adjacent edges have distinct total degrees, hence G is a neigh-
bourly edge totally irregular interval-valued neutrosophic graph.

Theorem 4.8. Let G : (A,B) be an interval-valued neutrosophic graph such that
G∗ : (V,E) is an even cycle of length 2m. If the alternate edges have the same
degrees of truth-membership, the same degrees of indeterminacy-membership and
the same degrees of falsity-membership , then G is both neighbourly edge irreg-
ular interval-valued neutrosophic graph and neighbourly edge totally irregular
interval-valued neutrosophic graph.

Proof. Let G : (A,B) be an interval-valued neutrosophic graph on G∗ : (V,E),
an even cycle of length 2m. Let e1, e2, e3, . . . , e2m be the edges of cycle G∗. If the
alternate edges have the same degrees of truth-membership, the same degrees
of indeterminacy-membership and the same degrees of falsity-membership, such
that

B(ei) = (TB(ei), IB(ei), FB(ei))

= ((T−
B (ei), T

+
B (ei)), (I

−
B (ei), I

+
B (ei)), (F

−
B (ei), F

+
B (ei)))

=

{
(p1, q1, r1), if i is odd,

(p2, q2, r2), if i is even
=

{
((p−1 , p

+
1 ), (q

−
1 , q

+
1 ), (r

−
1 , r

+
1 )), if i is odd,

((p−2 , p
+
2 ), (q

−
2 , q

+
2 ), (r

−
2 , r

+
2 )), if i is even

where 0 ≤ pi+ qi+ ri ≤ 3 for i = 1, 2 and p1 ̸= p2 and q1 ̸= q2 and r1 ̸= r2, then
for i = 1, 3, 5, 7, . . . , 2m − 1: dG(ei) = (((p−1 + p−2 ) + (p−1 + p−2 ) − 2p−1 , (p

+
1 +

p+2 ) + (p+1 + p+2 ) − 2p+1 ), ((q
−
1 + q−2 ) + (q−1 + q−2 ) − 2q−1 , (q

+
1 + q+2 ) + (q+1 +

q+2 ) − 2q+1 ), ((r
−
1 + r−2 ) + (r−1 + r−2 ) − 2r−1 , (r

+
1 + r+2 ) + (r+1 + r+2 ) − 2r+1 )) =

((2p−2 , 2p
+
2 ), (2q

−
2 , 2q

+
2 ), (2r

−
2 , 2r

+
2 )) = (2p2, 2q2, 2r2),

for i = 2, 4, 6, . . . , 2m: dG(ei) = (((p−1 +p−2 )+(p−1 +p−2 )−2p−2 , (p
+
1 +p+2 )+(p+1 +

p+2 )−2p
+
2 ), ((q

−
1 +q−2 )+(q−1 +q−2 )−2q

−
2 , (q

+
1 +q+2 )+(q+1 +q+2 )−2q

+
2 ), ((r

−
1 +r−2 )+

(r−1 +r
−
2 )−2r

−
2 , (r

+
1 +r

+
2 )+(r+1 +r

+
2 )−2r

+
2 )) = ((2p−1 , 2p

+
1 ), (2q

−
1 , 2q

+
1 ), (2r

−
1 , 2r

+
1 ))

= (2p1, 2q1, 2r1).
We observe that the adjacent edges have distinct degrees. Hence G is a

neighbourly edge irregular interval-valued neutrosophic graph. Also, we have
tdG(ei) = (p1 + 2p2, q1 + 2q2, r1 + 2r2), for i = 1, 3, 5, 7, . . . , 2m − 1, tdG(ei) =
(2p1 + p2, 2q1 + q2, 2r1 + r2), for i = 2, 4, 6, . . . , 2m.

Therefore, the adjacent edges have distinct total degrees, hence G is a neigh-
bourly edge totally irregular interval-valued neutrosophic graph.

Theorem 4.9. Let G : (A,B) be an interval-valued neutrosophic graph on
G∗ : (V,E), a cycle on m(m ≥ 4) vertices. If the degrees of truth-membership,
indeterminacy-membership and falsity-membership of the edges e1, e2, e3, . . . , em
are p1, p2, p3, . . . , pm such that p1 < p2 < p3 < ... < pm and q1, q2, q3, . . . , qm
such that q1 > q2 > q3 > ... > qm and r1, r2, r3, . . . , rm such that r1 > r2 >
r3 > ... > rm, respectively, then G is both neighbourly edge irregular interval-
valued neutrosophic graph and neighbourly edge totally irregular interval-valued
neutrosophic graph.
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Proof. Let G : (A,B) be an interval-valued neutrosophic graph on G∗ : (V,E),
a cycle on m(m ≥ 4) vertices. Let e1, e2, e3, . . . , em be the edges of cycle G∗ in
that order. Let degrees of truth-membership, indeterminacy-membership and
falsity-membership of the edges e1, e2, e3, . . . , em are p1, p2, p3, . . . , pm such that
p1 < p2 < p3 < ... < pm and q1, q2, q3, . . . , qm such that q1 > q2 > q3 >
... > qm and r1, r2, r3, . . . , rm such that r1 > r2 > r3 > ... > rm, respectively,
where pi = (p−i , p

+
i ) and qi = (q−i , q

+
i ) and ri = (r−i , r

+
i ) for i = 1, 2, ...,m,

then dG(v1) = ((p−1 + p−m, p
+
1 + p+m), (q

−
1 + q−m, q

+
1 + q+m), (r

−
1 + r−m, r

+
1 + r+m)) =

(p1 + pm, q1 + qm, r1 + rm), for i = 2, 3, 4, 5, . . . ,m: dG(vi) = ((p−i−1 + p−i , p
+
i−1 +

p+i ), (q
−
i−1+q

−
i , q

+
i−1+q

+
i ), (r

−
i−1+r

−
i , r

+
i−1+r

+
i )) = (pi−1+pi, qi−1+qi, ri−1+ri),

dG(e1) = ((p−2 + p−m, p
+
2 + p+m), (q

−
2 + q−m, q

+
2 + q+m), (r

−
2 + r−m, r

+
2 + r+m)) = (p2 +

pm, q2 + qm, r2 + rm), for i = 2, 3, 4, 5, . . . ,m− 1: dG(ei) = ((p−i−1 + p−i+1, p
+
i−1 +

p+i+1), (q
−
i−1 + q−i+1, q

+
i−1 + q+i+1), (r

−
i−1 + r−i+1, r

+
i−1 + r+i+1)) = (pi−1 + pi+1, qi−1 +

qi+1, ri−1+ri+1), dG(em) = ((p−1 +p
−
m−1, p

+
1 +p

+
m−1), (q

−
1 +q

−
m−1, q

+
1 +q

+
m−1), (r

−
1 +

r−m−1, r
+
1 + r+m−1)) = (p1 + pm−1, q1 + qm−1, r1 + rm−1).

We observe that the adjacent edges have distinct degrees. Hence G is a
neighbourly edge irregular interval-valued neutrosophic graph.
tdG(e1) = (p1 + p2 + pm, q1 + q2 + qm, r1 + r2 + rm), for i = 2, 3, 4, 5, . . . ,m− 1,
tdG(ei) = (pi−1+pi+pi+1, qi−1+qi+qi+1, ri−1+ri+ri+1)for i = 2, 3, 4, 5, . . . ,m−
1, tdG(em) = (p1 + pm−1 + pm, q1 + qm−1 + qm, r1 + rm−1 + rm).

We note that the adjacent edges have distinct total degrees. Hence G is a
neighbourly edge totally irregular interval-valued neutrosophic graph.

5. Conclusion

It is well known that graphs are among the most ubiquitous models of both
natural and human-made structures. They can be used to model many types
of relations and process dynamics in computer science, physical, biological and
social systems. In general graphs theory has a wide range of applications in
diverse fields. IVNG is an extended structure of a fuzzy graph which gives more
precision, flexibility, and compatibility to the system when compared with the
classical, fuzzy and neutrosophic models.

In this paper, we defined degree of an edge and total degree of an edge. Also,
we introduced some types of edge irregular interval-valued neutrosophic graphs
and properties of them.

A comparative study between neighbourly edge irregular interval-valued neu-
trosophic graphs and neighbourly edge totally irregular interval-valued neutro-
sophic graphs did. Also some properties of neighbourly edge irregular interval-
valued neutrosophic graphs and neighbourly edge totally irregular interval-valued
neutrosophic graphs studied.

In our future work, we will introduce strongly edge irregular interval-valued
neutrosophic graphs and highly edge irregular interval-valued neutrosophic graphs.
Also, we will study some properties of them.
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Abstract. A new strongly regular relation θ∗n is defined on polygroup P such that
the quotient P/θ∗n, the set of all equivalence classes, is a Bell group for n ∈ {2, 3}.
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n-Bell, n-Engel, n-Kappe, n-Levi and n-Abelian groups.

1. Introduction

Hyperstructure theory was first initiated by Marty [15] in 1934. Let H be a
non-empty set and o : H × H −→ P ∗(H) be a hyperopration where P ∗(H) is
the family of non-empty subset of H. The couple (H,o) is called a hypergroupoid.
For any two non-empty subset A and B of H and x ∈ H, we define A ◦ B =⋃

a∈A,b∈B a ◦ b, A ◦ x = A ◦ {x} and B o x = B o {x}. A hypergroupoid (H,o)
is called semihypergroup if for all a, b, c ∈ H, we have (a ◦ b) ◦ c = a ◦ (b ◦ c)
which means that

⋃
u∈a◦b u ◦ c =

⋃
v∈b◦c a ◦ v and hypergrupoid (H,o) is called

qusihypergroup if for all a of H, we have a ◦ H = H ◦ a = H, which is called
reproduction axiom. This axiom means that for any x, y ∈ H, there exist
u, v ∈ H such that y ∈ x ◦ u, y ∈ v ◦ x. A hypergroupoid (H, ◦) which is both a
semihypergroup and a qusihypergroup is called hypergroup.

*. Corresponding author
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Definition 1.1 ([6]). A polygroup is a hypergroup ⟨P, ·, e,−1 ⟩ where e ∈ P,−1 is
a unitary operation on P, and the following axiom hold for all x, y, z ∈ P

(i) e · x = x · e = x;

(ii) x ∈ y · z =⇒ y ∈ x · z−1 =⇒ z ∈ y−1 · x.

Definition 1.2 ([5]). Let (H, ·) be a hypergroup and ρ ⊆ H×H be an equivalence
relation. For non-empty subset A and B of H, we define A ¯̄ρ B if and only if
a ρ b, for all a ∈ A and b ∈ B. The relation ρ is called strongly regular on the
left (on the right) if x ρ y, then a ◦ x ¯̄ρ a ◦ y (x ◦ a ¯̄ρ y ◦ b, respectively), for all
x, y, a ∈ H.

Moreover, ρ is called strongly regular if it is strongly regular on the left and
on the right.

Theorem 1.3 ([4]). If (H, ·) is a hypergroup and ρ is a strongly regular relation
on H, then H/ρ is a group under the operation:

ρ(x)⊗ ρ(y) = ρ(z), ∀z ∈ x · y.

For all n ≥ 1, we define the relation βn on a semihypergroup H, as follows,
a βn b, if and only if there exists (x1, . . . , xn) in H

n such that {a, b} ⊆
∏n

i=1 xi
and β =

⋃
n≥1 βn, where β1 = {(x, x);x ∈ H}, is the diagonal relation on H.

This relation was introduced by Koskas [14]. Suppose that β∗ is the transitive
closure of β, the relation β∗ is a strongly regular relation [4].

In [11], γ =
⋃

n≥1 γn, where γ1 is the diagonal relation and for every integer
n > 1, γn is the relation defined as follows, x γn y if and only if there exists
(z1, · · · , zn) in Hn and τ ∈ Sn such that x ∈

∏n
i=1 zi and y ∈

∏n
i=1 zτ(i), where

Sn is the symmetric group of order n. Suppose that γ∗ is the transitive closure
of γ. The relation γ∗ is a strongly regular relation [11].

The relation β∗ is the least equivalence relation on hypergroup H such that
the quotient H/β∗ is a group, while γ∗ is the least equivalence relation on
hypergroup H, such that the quotient H/γ∗ is an abelian group.

In [12], τn =
⋃

m≥1 τm,n, where τ1,n is the diagonal relation and for every
integer m > 1, τm,n is the relation defined as follows, x τm,n y if and only if
there exists (z1, · · · , zm) in Hm, and σ ∈ Sm such that σ(i) = i, if zi /∈ H(n)

such that x ∈
∏m

i=1 zi and y ∈
∏m

i=1 zσ(i), where

(1) H(0) = H;

(2) H(k+1) = {h ∈ H(k) | xy ∩ hyx ̸= ∅ ; x, y ∈ H(k)}.

Clearly, for every integer n ≥ 1, the relation τn is reflexive and symmetric.
Now, suppose that τ∗n is the transitive closure of τn. The relation τ∗n is

strongly regular such that the quotient H/τ∗n is a solubale group of the class
at most n+ 1.
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In [1], νn =
⋃

m≥1 νm,n, where ν1,n is the diagonal relation and for every
integer m > 1, νm,n is the relation defined as follows, x νm,n y if and only if,
there exists (z1, · · · , zm) in Hm and σ ∈ Sm such that σ(i) = i, if zi /∈ Ln(H)
such that x ∈

∏m
i=1 zi and y ∈

∏m
i=1 zσ(i), where

(1) L0(H) = H;

(2) Lk+1(H) = {h | xy ∩ hyx ̸= ∅ ; x ∈ Lk(H), y ∈ H}.

Clearly, for every integer n ≥ 1, the relation νn is reflexive and symmetric.
Now, suppose that ν∗n is the transitive closure of νn. The relation ν∗n is

strongly regular such that the quotient H/ν∗n is a nilpotent group of the class
at most n+ 1.

In [2], ξn,s =
⋃

m≥1 ξm,n,s, where ξ1,n,s is the diagonal relation and for every
integer m ≥ 1, ξm,n,s is the relation defined as follows:

x ξm,n,s y if and only if, there exists (z1, · · · , zm) in Hm and δ ∈ Sm such
that δ(i) = i if zi /∈ Ln,s(H) such that x ∈

∏m
i=1 zi and y ∈

∏m
i=1 zδ(i), where

(1) L0,s(H) = H;

(2) Lk+1,s(H) = {h | xs ∩ hsx ̸= ∅ ; x ∈ Lk,s(H)}, ∀k ≥ 0,

for fix element s ∈ H.
Obviously, for every n ≥ 1, the relation ξn,s is reflexive and symmetric. Now

let ξ∗n,s be the transitive closure of ξn,s.
In [2], the authors proved that the relation ξ∗n,s is strongly regular such that

the quotient H/ξ∗n,s is an n-Engel group.
Let n ̸= 0, 1 be an integer. A group G is said to be n-Bell if [xn, y] = [x, yn]

for all x and y in G, where [x, y] is the commutator of x and y. The study of
n-Bell groups was introduced by Kappe and Brandl in [3], [13] and it was also
the subject of several papers, see for instance [8], [9], [10] and [18]. For example
all of groups of finite exponent dividing n, groups of finite exponent dividing
n− 1, 2-Engel groups and n-Levi groups, are n-Bell groups (see, [9]).

In this paper, we define a new relation θn on a polygroup and then we show
that θ∗n is a strongly regular relation. In continue, we bring some results related
to θ∗n and one of the main result of this paper is about the relation of θ∗n and
n-Bell groups for n = 2 and 3. Also, if we set θ∗ =

⋂
n≥1 θ

∗
n, then we show that

P/θ∗ is a Bell group for any finite polygoup P .
In a polygroup P , the commutator of two elements x, y in P is defined by

[x, y] = {t | t ∈ xyx−1y−1}. If A ⊆ P, then [A, y] = {t | t ∈ AyA−1y−1}.

Theorem 1.4 ([2], Theorem 2.2). Let P be a polygroup. Then, for all x, y, h,∈
P , {h | xy ∩ hyx ̸= ∅} = {h | h ∈ xyx−1y−1}.

Remark 1.5. Let P be a polygroup. Then, for all x, y, h,∈ P and n ∈ N ,
{h | xny ∩ hyxn ̸= ∅} = {h | h ∈ xnyx−ny−1}.

Theorem 1.6 ([2], Theorem 2.10). H/ξ∗n,s is an n-Engel group.
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Theorem 1.7 ([1], Theorem 2.9). H/ν∗n is a nilpotent group of the class at most
n+ 1.

2. New strongly regular relation θ∗n

Now, we introduce a new strongly regular relation θ∗n on a polygroup P .
In the whole of this paper, P is a polygroup and Sn is symmetric group.

Definition 2.1. Let P be a polygroup. For fix elements x, y ∈ P , we define:

(1) L0,x,y(P ) = P ;

(2) Ln+1,x,y(P ) = {h | h ∈ Ln,x,y(P ), x
n+1y ∩ hyxn+1 ̸= ∅}.

Let θn =
⋃

m≥1 θm,n where θ1,n is diagonal relation and for every integer m ≥
1, θm,n is relation defined as follows:

x θm,n y if and only if, there exists (z1, · · · , zm) in Pm and ζ ∈ Sm if, zi /∈
Ln,x,y(P ) and z

−1
i /∈ Ln,y,x(P ), then ζ(i) = i and x ∈

∏m
i=1 zi and y ∈

∏m
i=1 zζ(i).

Clearly, θn is reflexive and symmetric. Let θ∗n be the transitive closure of θn.

Theorem 2.2. For every n ∈ N, the relation θ∗n is strongly regular relation.

Proof. Suppose that n ∈ N. Clearly, θ∗n is an equivalence relation. In order
to prove that it is strongly regular. First we have to show that if x θn y, then
x · z ¯̄θn y · z , z · x ¯̄θn z · y, for every z ∈ P . Suppose that xθny. Then, there
exists m ∈ N such that x θm,n y. Hence, there exists (z1, · · · , zm) ∈ Pm, ζ ∈ Sm
with ζ(i) = i if zi /∈ Ln,x,y(P ) and z−1

i /∈ Ln,y,x(P ) such that x ∈
∏m

i=1 zi and
y ∈

∏m
i=1 zζ(i). Suppose that z ∈ P. We have x · z ⊆ (

∏m
i=1 zi) · z, y · z ⊆

(
∏m

i=1 zζ(i)) · z. Now, suppose that zm+1 = z and we define the permutation
ζ ′ ∈ Sm+1 as follows:{

ζ ′(i) = ζ(i), for all 1 ≤ i ≤ m,

ζ ′(m+ 1) = m+ 1.

Thus, x · z ⊆
∏m+1

i=1 zi, y · z ⊆
∏m+1

i=1 zζ′(i). such that ζ ′(i) = i if zi /∈ Ln,x,y(P )

and z−1
i /∈ Ln,y,x(P ). Therefore, x · z ¯̄θn y · z. Similary, we have z · x ¯̄θn z · y.

Now, if x θ∗n y, then, there exists k ∈ N and (x = u0, u1, · · · , uk = y) ∈
P k+1 such that x = u0 θn u1 θn · · · θn uk−1 θn uk = y. Hence, we obtain
x · z = u0 · z ¯̄θ∗n u1 · z ¯̄θ∗n u2 · z ¯̄θ∗n · · · ¯̄θ∗n uk−1 · z ¯̄θ∗n uk · z = y · z and so
x · z ¯̄θ∗n y · z. Similarly, we can prove that z · x ¯̄θ∗n z · y, therefore ¯̄θ∗n is strongly
regular relation on P .

Proposition 2.3. For every n ∈ N, we have θ∗n+1 ⊆ θ∗n.

Proof. Let x θn+1 y, so, there exists m ∈ N and (z1, · · · , zm) ∈ Pm and ζ ∈ Sm
such that ζ(i) = i if zi /∈ Ln+1,x,y(P ) and z−1

i /∈ Ln+1,y,x(P ), such that x ∈∏m
i=1 zi and y ∈

∏m
i=1 zζ(i). Now, let ζ1 = ζ, since Ln+1,x,y(P ) ⊆ Ln,x,y(P ) and

Ln+1,y,x(P ) ⊆ Ln,y,x(P ), we have x θn y.
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Corollary 2.4. If P is a commutative hypergroup, then β∗ = θ∗n = ξ∗n = ν∗n =
γ∗.

Definition 2.5 ([13]). Let G be a group and n be an integer. The n-Bell center
of G denoted by Bn and defined as follows:

Bn = B(G,n) = {x ∈ G | [xn, y] = [x, yn], ; ∀y ∈ G}.

Clearly, B(G, 0) = B(G, 1) = G, and easy to see that B(G, 2) and B(G, 3) are
subgroup of G.

Remark 2.6. For every integer n, a group is n-Bell if B(G,n) = G.

Theorem 2.7. If P is a polygroup and ρ is a strongly regular relation on P ,
then for fix elements x, y ∈ P ;

Ln+1,x̄,ȳ(
P

ρ
) = {[x̄n+1, ȳ]},

where x̄, ȳ are the classes of x,y with respect to ρ.

Proof. The proof follows from definition of commutator of two elements in a
polygroup, Theorem 1.4 and Remark 1.5.

3. n-Bell groups derived from polygroups for n ∈ {2, 3}

In this section, we obtain an n-Bell group derived from polygroup for n = 2, 3,
and then we propose an open problem related to n-Bell groups.

Theorem 3.1. Let P be a polygroup. Then, for n ∈ {2, 3}, P/θ∗n is an n-Bell
group.

Proof. Let G = P/θ∗n. For n ∈ {2, 3}, we have B(G,n) ≤ G. By Remark 2.6,
it is enough to prove that G ≤ B(G,n). For this we should show that for every
h̄ ∈ Ln,x̄,ȳ(G) we have h̄−1 ∈ Ln,ȳ,x̄(G) and is obvious by Theorem 2.7.

Definition 3.2 ([16]). A group G is called an Engel group if, for each ordered
pair (x, y) of elements in G, there is a positive integer n = n(x, y), such that
[x,n y] = 1.

Theorem 3.3 ([17]). Let G be a group. Then

(a) G is a n-Bell group if and only if G is a (1− n)-Bell group;

(b) G is a 2-Bell group if and only if G is a 2-Engel group;

(c) G is a 3-Bell group if and only if G is a 3-Engel group satisfying the
identity [x, y, y]3 = 1, for all x, y ∈ G. In addition G has nilpotent of class
at most 4.
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Definition 3.4. Let H1 and H2 be two hypergroups (polygroups), and ρ1 and
ρ2 be two strongly regular relations. If H1/ρ1 and H2/ρ2 are isommorphism
groups, then we say that ρ1 is “the same” property to ρ2.

Remark 3.5. According to the above definition, θ∗2 is the same property to ξ∗2,s,
by Theorem 3.1, 3.3 and apply Theorem 1.6, and θ∗3 is the same property to ξ∗3,s
and ν∗3 , by Theorem 3.1, 3.3 and apply Theorem 1.6 and 1.7.

Example 3.6 ([2]). Let H be {e, a, b, c, d, f, g}. Consider the non-commutative
polygroup (H, ·), defined on H as follows: It is easy to see that H/β∗ ∼= S3 (for

. e a b c d f g

e e a b c d f,g f,g

a a e d f,g b c c

b b f,g e d c a a

c c d f,g e a b b

d d c a b f,g e e

f f,g b c a e d d

g f,g b c a e d d

more details, see [7]). Since S3 is not nilpotent, we conclude that β
∗ ̸= ν∗n, hence

H/ν∗n is an abelian group of order less than 6 and the class of nilpotency of H/ν∗n
is one for all n ∈ N [1], besides, S3 is not Engel and H/ξ∗n,s ⊆ H/β∗ ∼= S3, then
it concluded H/ξ∗n,s is an abelian group of order less than 6 and H/ξ∗ is 1-Engel
group. Then, H/θ∗2 is not 2-Bell or 3-Bell group, by apply the Remark 3.5.

Remark 3.7. We know that B(G,n) is called the n-Bell center of G. It is open
problem whether the n-Bell center always forms a subgroup. But, it is shown
that B(G, 2) is characteristic subgroup of all right 2-Engel elements and B(G, 3)
is characteristic subgroup of G which is nilpotent of class at most 4 (see, [13]).

Hence, according to above remark, we can put the following open problem:

Open Problem 3.8. Let H be non-commutative polygroup, for all n ≥ 4, is
H/θ∗n a n-Bell group?

4. On Bell groups derived from finite polygroup

In this section, we introduce a strongly regular relation θ∗ on finite polygroup
P such that P/θ∗ is a Bell group.

Definition 4.1. Let P be a finite polygroup. Then, we define the relation θ∗ on
P by θ∗ =

⋂
n≥1 θ

∗
n.

Definition 4.2. An equivalence relation ρ on a finite polygroup P , is called Bell
if and only if its derived group P/ρ is a Bell group.



STRONGLY REGULAR RELATION AND n-BELL GROUPS DERIVED FROM IT 25

Example 4.3. θ∗2 and θ∗3 are Bell relations. By using the Remark 3.5, and
Example 3.3 in [2], Bell relations θ∗2 and θ∗3 are the same with Engel relations
ξ∗2,s and ξ∗3,s.

Theorem 4.4. (a) The relation θ∗ is a strongly regular relation on a finite
polygroup P .

(b) P/θ∗ is a Bell group.

Proof. (a) Since θ∗ =
⋂

n≥1 θ
∗
n, it is easy to see that θ∗ is strongly regular

relation on P.

(b) By using Proposition 2.3, we conclude that there exists k ∈ N (k ≥ 1)
such that θ∗k+1 = θ∗k and so θ∗ = θ∗m for some m ∈ N.

5. Transitivity of θ∗

Definition 5.1. Let X be a non-empty subset of P and x, y are fix elements of
P . Then, we say that X is a θ-part of P if for every t ∈ N, (z1, · · · , zt) ∈ P t and
for every ζ ∈ St if zi /∈

⋃
n≥1 Ln,x,y(P ) , z

−1
i /∈

⋃
n≥1 Ln,y,x(P ), then ζ(i) = i,

then
t∏

i=1

zi ∩X ̸= ∅ =⇒
t∏

i=1

zζ(i) ⊆ X.

Theorem 5.2. Let X be a non-empty subset of a polygroup P . Then the fol-
lowing conditions are equivalent:

(1) X is a θ-part of P.

(2) x ∈ X, x θ y =⇒ y ∈ X.

(3) x ∈ X, x θ∗ y =⇒ y ∈ X.

Proof. (1) =⇒ (2) : If (x, y) ∈ P 2 is a pair, such that x ∈ X, x θ y, then there
exist (z1, · · · , zt) ∈ P t such that x ∈

∏t
i=1 zi ∩X, y ∈

∏t
i=1 zζ(i) and ζ(i) = i if

zi /∈
⋃

n≥1 Ln,x,y(P ), z
−1
i /∈

⋃
n≥1 Ln,y,x(P ). Since X is a θ-part of P , we have∏t

i=1 zζ(i) ⊆ X and so y ∈ X.

(2) =⇒ (3) : Suppose that (x, y) ∈ P 2 is a pair, such that x ∈ X, x θ∗ y,
then there exist (z1, · · · , zt) ∈ P t such that x = z0 θ z1 θ · · · θ zt = y. Now,
by using (2) “t” times iterated then, we obtain y ∈ X.

(3) =⇒ (1) : Suppose that x ∈
∏t

i=1 zi ∩X and ζ ∈ St such that ζ(i) = i if
zi /∈

⋃
n≥1 Ln,x,y(P ), z

−1
i /∈

⋃
n≥1 Ln,y,x(P ). Let y ∈

∏t
i=1 zζ(i). Since x θ y by

(3), we have y ∈ X. Consequently,
∏t

i=1 zζ(i) ⊆ X and so X is a θ-part.

Theorem 5.3. The following conditions are equivalent:

(1) For every a ∈ P , θ(a) is a θ-part of P .
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(2) θ is transitive.

Proof. (1) =⇒ (2) : Suppose that x θ∗ y. Then, there is (z1, · · · , zt) ∈ P t such
that x = z0 θ z1 θ · · · θ zt = y. Since θ(zi), for all 0 ≤ i ≤ t, is a θ-part, we
have zi ∈ θ(zi−1), for all 0 ≤ i ≤ t, thus y ∈ θ(x), which means that x θ y.

(2) =⇒ (1) : Suppose that x ∈ P, z ∈ θ(x) and z θ y. By transitivity of θ,
we have y ∈ θ(x). Now, according to Theorem 5.2, θ(x) is a θ-part of P.

Definition 5.4. Let A be a non-empty subset of a polygroup P . The intersection
of all θ-part, which contain A is called θ-closure of A in P and it will be denoted
by K(A).

In follows, we determine the set Z(A).
Assume that Z1(A) = A and Zn+1(A) = {x ∈ P |∃(z1, · · · , zt) ∈ P t, x ∈∏t

i=1 zi, ∃ζ ∈ St if zi /∈
⋃

s≥1 Ls,x,y(P ), & z−1
i /∈

⋃
s≥1 Ls,y,x(P ) then, ζ(i) = i

and
∏t

i=1 zζ(i) ∩ Zn(A) ̸= ∅}.
We denote Z(A) =

⋃
n≥1 Zn(A).

Theorem 5.5. For any non-empty subset A of P , the following statements hold:

(1) Z(A) = K(A);

(2) K(A) =
⋃

a∈AK(a).

Proof. (1) It is enough to prove that:

(a) Z(A) is a θ-part.

(b) If A ⊆ B and B is a θ-part, then Z(A) ⊆ B.

In order to (a), suppose that
∏t

i=1 zi ∩ Z(A) ̸= ∅ and ζ ∈ St such that
ζ(i) = i if zi /∈

⋃
n≥1 Ln,x,y(P ) and z−1

i /∈
⋃

n≥1 Ln,y,x(P ). Therefore,

there exists n ∈ N such that
∏t

i=1 zi ∩ Z(A) ̸= ∅, where it follows that∏t
i=1 zζ(i) ⊆ Zn+1(A) ⊆ Z(A).

Now, we prove (b) by induction on n. We have Z1(A) = A ⊆ B.

Suppose that Zn(A) ⊆ B. We prove that Zn+1(A) ⊆ B. If z ∈ Zn+1(A),
then z ∈

∏t
i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if zi /∈⋃

s≥1 Ls,x,y(P ), z
−1
i /∈

⋃
s≥1 Ls,y,x(P ), and also

∏t
i=1 zζ(i) ∩ Zn(A) ̸= ∅.

Therefore,
∏t

i=1 zζ(i) ∩B ̸= ∅ and hence z ∈
∏t

i=1 zi ⊆ B.

(2) It is clear that for all a ∈ A, K(a) ⊆ K(A). By part (1), we have K(A) =⋃
n≥1 Zn(A) and Z1(A) = A =

⋃
a∈A a. It is enough to prove that Zn(A) =⋃

a∈A Zn(a), for all n ∈ N. We follow by induction on n. Suppose it is
true for n. We prove that Zn+1(A) =

⋃
a∈A Zn+1(a). If z ∈ Zn+1(A),

then z ∈
∏t

i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if zi /∈⋃
s≥1 Ls,x,y(P ) and z

−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩ Zn(A) ̸= ∅.

By the hypothesis of induction
∏t

i=1 zζ(i) ∩ Zn(a
′) ̸= ∅, for some a′ ∈ A.

therefore, z ∈ Zn+1(a
′), and so Zn+1(A) ⊆

⋃
a∈A Zn+1(a). Hence, K(A) =⋃

a∈AK(a).
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Theorem 5.6. The following relation is equivalence relation on P ,

x Z y ⇐⇒ x ∈ Z(y),

for every (x, y) ∈ P 2, where Z(y) = Z({y}).

Proof. It is easy to see that Z is reflexive and transitive. For the proof of
symmetric of relation Z, it is enough that we prove the following statements:

(1) For all n ≥ 2 and x ∈ H, Zn(Z2(x)) = Zn+1(x).

(2) x ∈ Zn(y) if and only if y ∈ Zn(x).

We prove (1) by induction on n. Suppose that z ∈ Z2(Z2(x)). Then,
z ∈

∏t
i=1 zi and there is ζ ∈ St such that ζ(i) = i, if zi /∈

⋃
s≥1 Ls,x,y(P ),

z−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩ Z2(x) ̸= ∅, thus z ∈ Z3(x). if

z ∈ Zn+1(Z2(x)), then z ∈
∏t

i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if
zi /∈

⋃
s≥1 Ls,x,y(P ), z

−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩ Zn(Z2(x)) ̸= ∅.

By hypothesis of induction, we have
∏t

i=1 zζ(i)∩Zn+1(x) ̸= ∅ and so z ∈ Zn+2(x).
Now, we prove (2) by induction on n, too. It is clear that x ∈ Z2(y) if

and only if y ∈ Z2(x). Then x ∈
∏t

i=1 zi and there exists ζ ∈ St such that
ζ(i) = i, if zi /∈

⋃
s≥1 Ls,x,y(P ), z

−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩

Zn(y) ̸= ∅. Suppose that b ∈
∏t

i=1 zζ(i) ∩ Zn(y), then, we have y ∈ Zn(b). From

x ∈
∏t

i=1 zi ∩ Z1(x) and b ∈
∏t

i=1 Zζ(i) we conclude that b ∈ Z2(x). Therefore,
y ∈ Zn(Z2(x)) = Zn+1(x).

6. Conclusion

In this paper, we have introduced a new strongly regular relation θ∗n on a poly-
group P and we have shown that P/θ∗n is a n-Bell group for n = 2, 3.

We defined the same relation structure between two strongly regular relations
on a hypergroup (polygroup), and we bring an open problem relate to n-Bell
group of P/θ∗n. In continue, we obtained some results related to θ∗n. We try
to answer the mention open problem and in this regard, for the other research
work.
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1. Introduction

Fractional calculus has been extensively studied and investigated in the last two
decades. Its new results and their applications have emerged as a very effective
and powerful tool for many mathematical problems of science and engineer-
ing. Recently, fractional derivatives and integrals have employed in many fluid
problems to get more accurate and valid results. These fractional operators are
used in finance, biophysics, electrochemistry, computed tomography, engineer-
ing, control theory, geological surveying, thermodynamics, hydrology, electric
conductance of biological systems, statistical mechanics, astrophysics, mathe-
matical physics, and also used for the mathematical modelling of viscoelastic
materials.

Diaz and Pariguan [13] give new direction to fractional calculus by introduc-
ing k-gamma function and k-beta function which are the extensions of classical
gamma and beta functions. So, k-fractional calculus version was introduced.
Many results of fractional calculus were extended. Farid and Habibullah [14]
defined the Hadamard k-fractional integral. Azam et. al. [3], introduced the
extended Hadamard k-fractional integrals of order α.

Let f be continuous on [0,∞] and α, kϵ , sϵ. Then, ∀x > a > 0

(1) s
kI

α
H [f(x)] =

1

kΓk(α)

∫ x

a
[log

x

τ
]
α
k
−1(

τ

x
)sf(τ)

dτ

τ
.

The objective of this work is to extend some existing fractional integral in-
equalities by using extended Hadamard k-fractional integral [3]. New parameter
s and k are introduced. A few mathematicians have devoted their efforts to gen-
eralize and refine the fractional integral inequalities in the recent years due to
their applications in different fields of science and technology. We may refer the
interested reader to [1, 3, 4, 6, 10, 14, 15, 16, 17, 18].

2. Our some new results and discussions

Now, extension of some fractional integral inequalities using the equation (1)
are given below

Theorem 2.1. Let (gi)i=1,2,,...n be positive increasing function on [1,∞), and
α, k ,s. Then ∀z > 1

(2) s
kI

α
H(i=1

∏n
gi) ≥ [skI

α
H(I)(z)]1−α

i=1

∏ns
kI

α
H(gi)(z).

Proof. We prove this by induction. For n = 1

(3) s
kI

α
Hg1(z) ≥s

k I
α
Hg1(z),
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which is true. For n = 2

(4) s
kI

α
H(g1g2)(z) ≥ [skI

α
H(l)(z)]−1s

kI
α
Hg1(z)

s
kI

α
Hg2(z),

which is also true.

Suppose that the statement is true for n = k − 1

(5) s
kI

α
H(i=1

∏n−1
gi)(z) ≥ [skI

α
H(l)(z)]2−n

i=1

∏n−1s

k
IαH(gi)(z).

Now, (i=1
∏n−1gi)(z) is an increasing function on [1,∞] because of (gi)i=1,2,...,n.

So, we can get

s
kI

α
H(i=1

∏n
gi)(z) ≥s

k I
α
H(i=1

∏n
gign)(z)[

s
kI

α
H(l)(z)]−1s

kI
α
H

(i=1

∏n−1
gi)(z)

s
kI

α
H(gn)(z).

using (5), we get

s
kI

α
H(i=1

∏n
gi)(z) ≥ [skI

α
H(l)(z)]−1[skI

α
H(l)(z)]2−n(i=1

∏n−1
gi)(z)

s
kI

α
H(i=1(gn)(z).

Hence, we get

(6) s
kI

α
H(i=1

∏n
gi)(z) ≥ [skI

α
H(l)(z)]1−n

i=1

∏ns
kI

α
H(gi)(z).

Theorem 2.2. For integrable function g on [1,∞]. Assume that:

A1, There exist two integrable functions Ψ1 and Ψ2 on [1,∞] such that

(7) Ψ2(r) ≥ g(r) ≥ Ψ1(r), , ∀rϵ[1,∞].

Then, for r > 1 sϵ and α, β, kϵ,

(8) s
kI

β
HΨ1(r)

s
kI

α
Hgr +

s
kI

α
HΨ2(r)

s
kI

β
Hgr ≥

s
kI

α
HΨ2(r)

s
kI

β
HΨ1(r) +

s
kI

α
Hg(r)

s
kI

β
Hgr.

Proof. From A1, ∀, p ≥ 1, q ≥ 1, we have

(9) [Ψ2(p)− g(p)][g(q)−Ψ1(q)] ≥ 0.

Therefore,

(10) Ψ2(p)g(q) + g(p)Ψ1(q) ≥ Ψ1(q)Ψ2(p) + g(p)g(q).

Multiplying (10), by

(11)
1

kΓk(α)
[log

r

p
]
α
k
−1[

p

r
]s
1

p
,
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and integrating w.r.t. p on [1,∞]

g(q)
1

kΓk(α)

∫ r

1
[[log

r

p
]
α
k
−1[

p

r
]sΨ2(p)

dp

p
]

+ Ψ1(q)
1

kΓk(α)

∫ r

1
[[log

r

p
]
α
k
−1[

p

r
]sg(p)

dp

p
]

≥ Ψ2(w)
1

kΓk(α)

∫ r

1
[[log

r

p
]
α
k
−1[

p

r
]sΨ2(p)

dp

p
](12)

+ g(w)
1

kΓk(α)

∫ r

1
[[log

r

p
]
α
k
−1[

p

r
]sg(p)

dp

p
].

Using the result (1),

(13) g(q)skI
α
HΨ2(r) + Ψ1(q)

s
kI

α
Hgr ≥ Ψ1(q)

s
kI

α
HΨ2(r) + g(q)skI

α
Hg(r).

Multiplying (13) by

(14)
1

kΓk(β)
[log

r

p
]
β
k
−1[

q

r
]s
1

q
,

and integrating w.r.t. q on [1,∞],

s
kI

α
HΨ2(r)

1

kΓk(β)

∫ r

1
[[log

r

q
]
β
k
−1[

q

r
]sg(q)

dq

q
](15)

+ s
kI

α
Hg(r)

1

kΓk(β)

∫ r

1
[[log

r

q
]
β
k
−1[

q

r
]sΨ1(q)

dq

q
]

≥ s
kI

α
HΨ2(r)

1

kΓk(β)

∫ r

1
[[log

r

q
]
β
k
−1[

q

r
]sΨ1(q)

dq

q
]

+ s
kI

α
Hg(r)

1

kΓk(β)

∫ r

1
[[log

r

q
]
β
k
−1[

q

r
]sΨ1(q)

dq

q
]

+ s
kI

α
Hg(r)

1

kΓk(β)

∫ r

1
[[log

r

q
]
β
k
−1[

q

r
]sg(q)

dq

q
].

Using the equation (1), we get (8).

Theorem 2.3. Let f, g and h are positive valued and continuous functions on
[0.∞] such that

(16) [g(v)− g(w)](f(w)
h(w)

− f(v)

h(v)
) ≥ 0,

for all v, wϵ(0, z). Then ∀z > 0, sϵ, α, β, kϵ,

(17)
s
kI

α
H [gh](z)skI

β
H [f ](z) + s

kI
α
H [f ](z)skI

β
H [gh](z)

s
kI

α
H [fg](z)skI

β
H [h](z) + s

kI
α
H [h](z)skI

β
H [fg](z)

≥ 1.
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Proof. Multiplying

(18) [g(v)− g(w)](f(w)
h(w)

− f(v)

h(v)
) ≥ 0,

by h(v)h(w), we can get

(19) g(v)f(w)h(v)− g(v)f(v)h(w)− g(w)f(w)h(w) + g(w)f(v)h(w) ≥ 0.

Multiplying by 1
kΓk(α)

[log z
v ]

α
k
−1[vz ]

s 1
v and integrating w.r.t. v on [1,∞]

1

kΓk(α)

∫ z

1
[log

z

v
]
α
k
−1[

v

z
]sg(v)f(w)h(v)

dv

v
(20)

− 1

kΓk(α)

∫ z

1
[log

z

v
]
α
k
−1[

v

z
]sg(v)f(v)h(w)

dv

v

− 1

kΓk(α)

∫ z

1
[log

z

v
]
α
k
−1[

v

z
]sg(w)f(w)h(v)

dv

v

+
1

kΓk(α)

∫ z

1
[log

z

v
]
α
k
−1[

v

z
]sg(w)f(v)h(w)

dv

v
≥ 0.

Using the equation (1),

f(w)skI
α
H [gh](z)− h(w)skIαH [fg](z)− f(w)skIαH [h](z)

+ h(w)g(w)skI
α
H [f ](z) ≥ 0.(21)

Multiplying by 1
kΓk(β)

[log z
w ]

β
k
−1[wz ]

s 1
w , and integrating w.r.t. w on [1,∞]

s
kI

α
H [gh](z)

1

kΓk(β)

∫ z

1
[log

z

w
]
β
k
−1[

w

z
]sf(w)

dw

w
(22)

−s
kI

α
H [fg](z)

1

kΓk(β)

∫ z

1
[log

z

w
]
β
k
−1[

w

z
]sh(w)

dw

w

−s
kI

α
H [h](z)

1

kΓk(β)

∫ z

1
[log

z

w
]
β
k
−1[

w

z
]sf(w)g(w)

dw

w

+s
kI

α
H [f ](z)

1

kΓk(β)

∫ z

1
[log

z

w
]
β
k
−1[

w

z
]sh(w)g(w)

dw

w
≥ 0.

Using the equation (1), we get

s
kI

α
H [gh](z)skI

β
H [f ](z)− s

kI
α
H [fg](z)skI

β
H [h](z)(23)

− s
kI

α
H [h](z)skI

β
H [fg](z) + s

kI
α
H [f ](z)skI

β
H [gh](z) ≥ 0.

Which gives (17).

Corollary 2.1. Let f, g and h are positive valued and continuous functions on
[0.∞] such that

(24) [g(v)− g(w)](f(w)
h(w)

− f(v)

h(v)
) ≥ 0,
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for all v, wϵ(0, z). Then ∀z > 0, sϵ, α, kϵ,

(25)
s
kI

α
H [f ](z)

s
kI

β
H [h](z)

≥
s
kI

α
H [fg](z)

s
kI

β
H [gh](z)

.

Proof. By substituting β = α in (17), we get

(26)
s
kI

α
H [f ](z)skI

α
H [gh](z)

s
kI

β
H [h](z)skI

α
H [fg](z)

≥ 1.

Which gives (25).

Theorem 2.4. For integrable function g on [1,∞] and constants l ≥ m ≥ 0,
l ̸= 0. Let (A1) holds. Then, for any z > 1, sϵ and α, β, k, qϵ, we have

s
kI

α
H(Ψ2 − g)

m
l (z) +

m

l
q

m−l
l

s
kI

α
Hg(z)

≤ m

l
q

m−l
l

s
kI

α
HΨ2(z) +

m− l
l

q
m
l
s
kI

α
HI(z),(27)

s
kI

α
H(g −Ψ1)

m
l (z) +

m

l
q

m−l
l

s
kI

α
HΨ1(z)

≤ m

l
q

m−l
l

s
kI

α
Hg(z) +

l −m
l

q
m
l
s
kI

α
HI(z).(28)

Proof. By the condition (A1) holds and for l ≥ m ≥ 0, l ̸= 0, we have

(29) [Ψ2(w)− g(w)]
m
l ≤ m

l
q

m−l
l [Ψ2(w)− g(w)] +

l −m
l

q
m
l ,

multiplying this by 1
kΓk(α)

[log z
w ]

α
k
−1[wz ]

s 1
w , and integrating w.r.t. w on [1, z], we

have

1

kΓk(α)

∫ z

1
(log

z

w
)
α
k
−1(

w

z
)s[Ψ2(w)− g(w)]

m
l
dw

w

≤ m

l
q

m−l
l

1

kΓk(α)

∫ z

1
(log

z

w
)
α
k
−1(

w

z
)s[Ψ2(w)− g(w)]

dw

w
(30)

+
l −m
l

q
m
l

1

kΓk(α)

∫ z

1
(log

z

w
)
α
k
−1(

w

z
)s
dw

w
.

Using equation (1), we get

s
kI

α
H [Ψ2 − g]

m
l (z) +

m

l
q

m−l
l

s
kI

α
Hg(z) ≤

m

l
q

m−l
l

s
kI

α
HΨ2(z)(31)

+
l −m
l

q
m
l
s
kI

α
H(I)(z).

For (14), we can use similar steps.
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Theorem 2.5. For integrable functions g and h on [1,∞]. Let (A1) holds and
also suppose the following:

(A2) There exist the integrable functions ϕ1 and ϕ2 on [1,∞] such that

(32) ϕ1(r) ≤ h(r) ≤ ϕ2(r), ∀rϵ[1,∞].

Then, for any r > 1, sϵ and λ, γ, κϵ,

s
kI

α
Hϕ1(r)

s
kI

α
Hg(r) +

s
kI

α
HΨ2(r)

s
kI

α
Hh(r)

≥ s
kI

α
HΨ2(r)

s
kI

α
Hϕ1(r) +

s
kI

α
Hg(r)

s
kI

α
Hh(r),(33)

s
kI

α
HΨ1(r)

s
kI

α
Hh(r) +

s
kI

α
Hϕ2(r)

s
kI

α
Hg(r)

≥ s
kI

α
Hϕ2(r)

s
kI

α
HΨ1(r) +

s
kI

α
Hh(r)

s
kI

α
Hg(r),(34)

s
kI

α
Hϕ2(r)

s
kI

α
HΨ2(r) +

s
kI

α
Hg(r)

s
kI

α
Hh(r)

≥ s
kI

α
HΨ2(r)

s
kI

α
Hh(r) +

s
kI

α
Hg(r)

s
kI

α
Hϕ2(r),(35)

s
kI

α
HΨ1(r)

s
kI

α
Hϕ1(r) +

s
kI

α
Hg(r)

s
kI

α
Hh(r)

≥ s
kI

α
HΨ1(r)

s
kI

α
Hh(r) +

s
kI

α
Hg(r)

s
kI

α
Hϕ1(r).(36)

Proof. From (A1) and (A2), ∀p ≥ 1, q ≥ 1, we have

(37) [Ψ2(p)− g(p)][h(q)− ϕ1(q)] ≥ 0.

Therefore,

(38) Ψ2(p)h(q) + ϕ1(q)g(p) ≥ ϕ1(p)Ψ2(p) + g(q)h(q).

Multiplying by 1
kΓk(λ)

[log r
p ]

λ
k
−1[pr ]

s 1
p and integrating w.r.t. p on [1, z], we

have

h(q)
1

kΓk(λ)

∫ r

1
(log

r

p
)
λ
k
−1(

p

r
)sΨ2(p)

dp

p

+ ϕ1(q)
1

kΓk(λ)

∫ r

1
(log

r

p
)
λ
k
−1(

p

r
)sg(p)

dp

p
(39)

≥ ϕ1(q)
1

kΓk(λ)

∫ r

1
(log

r

p
)
λ
k
−1(

p

r
)sΨ2(p)

dp

p

+ h(p)
1

kΓk(λ)

∫ r

1
(log

r

p
)
λ
k
−1(

p

r
)sg(p)

dp

p
.

Using equation (1)

(40) h(q)skI
λ
HΨ2(r) + ϕ1(q)

s
kI

λ
Hg(r) ≥ ϕ1(p)skIλHΨ2(r) + h(q)skI

λ
Hh(r).
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Multiplying by 1
kΓk(γ)

[log r
q ]

γ
k
−1[ qz ]

s 1
q and integrating w.r.t. q on [1, z], using

the equation (1), we get

s
kI

λ
Hϕ1(r)

s
kI

λ
Hg(r) +

s
kI

λ
HΨ2(r)

s
kI

λ
Hh(r)

≥ s
kI

λ
HΨ2(r)

s
kI

λ
Hϕ1(r) +

s
kI

λ
Hg(r)

s
kI

λ
Hh(r).(41)

For (34), (35) and (36), we can use similar steps.

Corollary 2.2. For integrable functions g and h on [1,∞] and constants l ≥
m ≥ 0, l ̸= 0. Let (A1) holds. Then for any z > 1, sϵ and α, β, k, qϵ,

s
kI

α
H(Ψ2 − g)

m
l (z) +

m

l
q

m−l
l

s
kI

α
HΨ2h(z) +

m

l
q

m−l
l

s
kI

α
Hgϕ2(z)

≤ m

l
q

m−l
l

s
kI

α
HΨ2ϕ2(z) +

m

l
q

m−l
l

s
kI

α
Hgh(z) +

l −m
l

q
m
l
s
kI

α
HI(z).(42)

s
kI

α
H(g −Ψ1)

m
l (z) +

m

l
q

m−l
l

s
kI

α
HΨ1h(z) +

m

l
q

m−l
l

s
kI

α
Hgϕ1(z)

≤ m

l
q

m−l
l

s
kI

α
HΨ1ϕ1(z) +

m

l
q

m−l
l

s
kI

α
Hgh(z) +

l −m
l

q
m
l
s
kI

α
HI(z).(43)

s
kI

α
H(g −Ψ1)

m
l (z)skI

β
H(h− ϕ1)

m
l (z) +

m

l
q

m−l
l

s
kI

α
Hg(z)

s
kI

β
Hϕ1(z)

≤ m

l
q

m−l
l

s
kI

α
HΨ1(z)

s
kI

α
Hϕ1(z) +

m

l
q

m−l
l

s
kI

α
Hg(z)

s
kI

β
Hh(z)(44)

+
l −m
l

q
m
l
s
kI

α+β
H I(z).

Theorem 2.6. Let g and h are positive valued and continuous functions on
[0.∞] such that g ≤ h. If g is increasing and g

h is decreasing on [0,∞], then for
any q ≥ 0, sϵ, α, β, k, zϵ,

s
kI

α
H [g](z)skI

β
H [hq](z) + s

kI
α
H [Hq](z)skI

β
H [g](z)

s
kI

α
H [h](z)skI

β
H [gq](z) + s

kI
α
H [gq](z)skI

β
H [h](z)

≥ 1(45)

Proof. Using g ≤ h, we can get

(46) hgq−1(z) ≤ hq(z).

Multiplying (46) by 1
kΓk(α)

[log z
v ]

α
k
−1[vz ]

s 1
v and integrating w.r.t. v on [1, z],

1

kΓk(α)

∫ z

1
(log

z

v
)
α
k
−1(

v

z
)shgq−1(v)

dv

v

≤ 1

kΓk(α)

∫ z

1
(log

z

v
)
α
k
−1(

v

z
)shq(v)

dv

v
.(47)
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Using the equation (1)

(48) s
kI

α
Hhg

q−1(z) ≤ s
kI

α
Hh

q(z).

Multiplying by s
kI

β
H [g](z)

(49) s
kI

α
Hhg

q−1(z)skI
β
H [g](z) ≤ s

kI
β
H [g](z)skI

α
Hh

q(z).

Multiplying (46) by 1
kΓk(β)

[log z
w ]

β
k
−1[wz ]

s 1
w and integrating w.r.t. w on [1, z],

1

kΓk(β)

∫ z

1
(log

z

w
)
β
k
−1(

w

z
)shgq−1(w)

dw

w

≤ 1

kΓk(β)

∫ z

1
(log

z

w
)
β
k
−1(

w

z
)shq(w)

dw

w
.(50)

Using the equation (1), we get

(51) s
kI

β
Hhg

q−1(z) ≤ s
kI

α
Hh

q(z).

Multiplying by s
kI

α
H [g](z)

(52) s
kI

β
Hhg

q−1(z)skI
α
H [g](z) ≤ s

kI
α
H [g](z)skI

β
Hh

q(z).

Adding (49) and (52), then simplifying we get

s
kI

α
H [g](z)skI

β
H [hq](z) + s

kI
β
H [g](z)skI

α
H [Hq](z)

s
kI

β
H [hgq−1](z)skI

α
H [g](z) + s

kI
α
H [hgq−1](z)skI

β
H [g](z)

≥ 1.(53)

Substituting g = gq−1 and f = g in Theorem 2.3, we get

s
kI

α
H [hgq−1](z)skI

β
H [g](z) + s

kI
α
H [g](z)skI

β
H [hgq−1](z)

s
kI

α
H [gq](z)skI

β
H [h](z) + s

kI
α
H [h](z)skI

β
H [gq](z)

≥ 1.(54)

(27) and (28) give (23).

Corollary 2.3. Let g and h are positive valued and continuous functions on
[0.∞] such that g ≤ h. If g is increasing and g

h is decreasing on [0,∞], then for
any q ≥ 0, sϵ, α, k, zϵ,

(55)
s
kI

α
H [g](z)

s
kI

α
H [h](z)

≥
s
kI

α
H [gq](z)

s
kI

α
H [h]q(z)

.

Proof. By substituting β = α (45), we get

(56)
s
kI

α
H [g](z)skI

α
H [h]q(z)

s
kI

α
H [h](z)skI

α
H [gq](z)

≥ 1,

which gives (55).
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Theorem 2.7. For integrable functions g and h on [0.∞] satisfying 1
θ1
+ 1

θ2
= 1,

θ1, θ2ϵ(0,∞). Let(A1 and (A2 holds. Then, for z > 1, sϵ, α, β, kϵ, we have

1

θ1
s
kI

β
H(I)(z)skI

α
H(Ψ2 − g)θ1(z)

+
1

θ2
s
kI

α
H(I)(z)skI

α
H(ϕ2 − h)θ2(z) ≥ s

kI
α
H(Ψ2 − g)(z)skI

β
H(ϕ2 − h)(z).(57)

1

θ1
s
kI

β
H(I)(z)skI

α
H(g −Ψ1)

θ1(z) +
1

θ2
s
kI

α
H(I)(z)skI

β
H(h− ϕ1)θ2(z)

≥ s
kI

α
H(g −Ψ1)(z)

s
kI

β
H(h− ϕ1)(z),(58)

1

θ1
s
kI

β
H(ϕ2 − h)θ1(z)skIαH(Ψ2 − g)θ1(z)

+
1

θ2
s
kI

α
H(ϕ2 − g)θ2(z)skI

β
H(Ψ2 − g)θ2(z)

≥ s
kI

α
H(Ψ2 − g)(ϕ2 − h)(z)skI

β
H(Ψ2 − g)(ϕ2 − h)(z),(59)

1

θ1
s
kI

β
H(h− ϕ1)θ1(z)skIαH(g −Ψ1)

θ1(z)

+
1

θ2
s
kI

α
H(h− ϕ2)θ2(z)skI

β
H(g −Ψ1)

θ2(z)

≥ s
kI

α
H(g −Ψ1)(h− ϕ1)(z)skI

β
H(g −Ψ1)(h− ϕ1)(z).(60)

Proof. By Young’s inequality

(61)
1

θ1
(x)θ1 +

1

θ2
(y)θ2 ≥ xy, ∀x, yϵ[1,∞], θ1, θ2ϵ(0,∞),

Also,

(62)
1

θ1
+

1

θ2
= 1, θ1, θ2ϵ(0,∞).

Let x = Ψ2(v)− g(v( and y = ϕ2(w)− h(w), v, wϵ(0,∞), we get

(63)
1

θ1
[Ψ2(v)− g(v)]θ1 +

1

θ2
(ϕ2(w)− h(w))θ2 ≥ [Ψ2(v)− g(v)][ϕ2(w)− h(w)].

Multiplying by 1
kΓk(α)

[log z
v ]

α
k
−1[vz ]

s 1
v and integrating w.r.t. v on [1, z],

1

θ1

1

kΓk(α)

∫ z

1
(log

z

v
)
α
k
−1(

v

z
)s[Ψ2(v)− g(v)]θ1

dv

v

+
1

θ2
[ϕ2(w)− h(w)]θ2

1

kΓk(α)

∫ z

1
(log

z

v
)
α
k
−1(

v

z
)s
dv

v
(64)

≥ [ϕ2(w)− h(w)]
1

kΓk(α)

∫ z

1
(log

z

v
)
α
k
−1(

v

z
)s[Ψ2(v)− g(v)]

dv

v
.
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Using the equation (1)

1

θ1
s
kI

α
H [Ψ2 − g]θ1(z) +

1

θ2
(ϕ2(w)− h(w))θ2skIαH [I](z)(65)

≥ [ϕ2(w)− h(w)]skIαH [Ψ2 − g](z).

Multiplying by 1
kΓk(β)

[log z
w ]

β
k
−1[wz ]

s 1
w and integrating w.r.t. w on [1,∞], and

usingthe definition (1), we have

1

θ1
s
kI

β
H(I)(z)skI

α
H(Ψ2 − g)θ1(z) +

1

θ2
s
kI

α
H(I)(z)skI

β
H(ϕ2 − h)θ2(z)

≥ s
kI

α
H(Ψ2 − g)(z)skI

β
H(ϕ2 − h)(z).(66)

For (58), (59) and (60), we can use similar steps.

Theorem 2.8. For integrable function g on [1.∞] satisfying θ1 + θ2 = 1,
θ1, θ2ϵ(0,∞). Let(A1 holds. Then for z > 1, sϵ, and α, β, kϵ,

θ1
s
kI

β
H(I)(z)skI

α
H(Ψ2(z)) + θ2

s
kI

α
H(I)(z)skI

β
Hg(z)

≥ s
kI

α
H(Ψ2 − g)θ1(z)skI

β
H(g −Ψ1)

θ1(67)

+ θ1
s
kI

β
H(I)(z)skI

α
Hg(z) + θ2

s
kI

α
H(I)(z)skI

β
HΨ1(z).

Proof. By the weighted AM-GM inequality,

(68) θ1(x)
θ1 + θ2(y)

θ2 ≥ xθ1yθ2 , ∀x, yϵ[0,∞], θ1, θ2ϵ(0,∞).

Also

(69) θ1 + θ2 = 1, θ1, θ2ϵ(0,∞).

Let x = Ψ2(p)− g(p) and y = g(q)−Ψ2(q), p, qϵ(1,∞), we get

(70) θ1[Ψ2(p)− g(p)] + θ2(g(q)−Ψ1(q)) ≥ [Ψ2(p)− g(p)]θ1 [g(q)−Ψ1(q)]
θ2 .

Multiplying by 1
kΓk(α)

[log z
p ]

α
k
−1[pz ]

s 1
p and integrating w.r.t. p on [1,∞],

θ1
kΓk(α)

∫ z

1
(log

z

p
)
α
k
−1(

p

z
)s[Ψ2(p)− g(p)]

dp

p

+ θ2[g(q)−Ψ1(q)]
1

kΓk(α)

∫ z

1
(log

z

p
)
α
k
−1(

p

z
)s
dp

p
(71)

≥ [g(q)−Ψ1(q)]
θ1 1

kΓk(α)

∫ z

1
(log

z

p
)
α
k
−1(

p

z
)s[Ψ2(p)− g(p)]θ2

dp

p
.

Using the equation (1)

θ1
s
kI

α
H [Ψ2 − g](z) + θ2(g(q)− ϕ1(q))skIαH(I)(z)

≥ [g(q)−Ψ1(q)]
θ2s

kI
α
H [Ψ2 − h]θ1(z).(72)
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Multiplying by 1
kΓk(β)

[log z
q ]

β
k
−1[ qz ]

s 1
q and integrating w.r.t. q on [1,∞],

θ1
s
kIH

α(Ψ2 − g)(z)
1

kΓk(β)

∫ z

1
(log

z

q
)
β
k
−1(

q

z
)s
dq

q

+ θ2
s
kI

α
H(I)(z)

1

kΓk(β)

∫ z

1
(log

z

q
)
β
k
−1(

q

z
)s
dq

q

≥ s
kIH

α(Ψ2 − g)(z)
1

kΓk(β)

∫ z

1
(log

z

q
)
β
k
−1(

q

z
)s[g(q)−Ψ1(q)]

θ2 dq

q
.(73)

Using the equation (1)

θ1
s
kI

β
H(I)(z)skI

α
H(Ψ2 − g(z))(z) + θ2

s
kI

α
H(I)(z)skI

β
H [g −Ψ1](z)

≥ s
kI

α
H(Ψ2 − g)θ1(z)skI

β
H(g −Ψ1)

θ1(z).(74)

Due to linearity of integrals we get (67).

Theorem 2.9. For integrable functions g and h on [1,∞] satisfying θ1+θ2 = 1,
θ1, θ2ϵ(0,∞). Let(A1. Let (A1) and (A2) hold. Then, for r > 1, sϵ, λ, γ, kϵ,

θ1
s
kI

γ
H(I)(r)skI

λ
H(Ψ2)(r) + θ2

s
kI

λ
H(I)(r)skI

γ
H [ϕ2](r)

≥ s
kI

λ
H(Ψ2 − g)θ1(r)skI

γ
H(ϕ2 − h)θ2(r) + θ1

s
kI

γ
H(I)(r)skI

λ
H(g)(r)(75)

+ θ2
s
kI

λ
H(I)(r)skI

γ
H(h)(r),

θ1
s
kI

γ
H(I)(r)skI

λ
H(g)(r) + θ2

s
kI

λ
H(I)(r)skI

γ
H(h)(r)

≥ s
kI

λ
H(g −Ψ1)

θ1(r)skI
γ
H(h− ϕ1)θ2(r) + θ1

s
kI

γ
H(I)(r)skI

λ
H(Ψ2)(r)(76)

+ θ1
s
kI

γ
H(I)(r)skI

γ
H(ϕ1)(r),

θ1
s
kI

γ
H(ϕ1)(r)skI

λ
H(Ψ2)(r) + θ1

s
kI

γ
H(h)(r)skI

γ
Hg(r)

+ θ2
s
kI

λ
H(ϕ2)(r)skI

γ
H(Ψ2)(r) + θ2

s
kI

γ
H(g)(r)skI

γ
Hh(r)

≥ s
kI

λ
H(Ψ2 − g)θ1(ϕ2 − h)θ1(r)skI

γ
H(ϕ2 − h)θ1(Ψ2 − g)θ2(r)(77)

+ θ1
s
kI

γ
H(h)(r)skI

λ
H(Ψ2)(r) + θ2

s
kI

λ
H(ϕ2)(r)

s
kI

γ
H(g)(r)

+ θ2
s
kI

λ
Hh(r)

s
kI

γ
H(Ψ2)(r),

θ1
s
kI

γ
H(h)(r)skI

λ
H(g)(r) + θ1

s
kI

γ
H(ϕ1)(r)

s
kI

λ
HΨ2(r)

+ θ2
s
kI

λ
H(ϕ1)(r)skI

γ
H(Ψ1)(r) + θ2

s
kI

γ
H(g)(r)skI

λ
Hh(r)

≥ s
kI

λ
H(g −Ψ1)

θ1(h− ϕ2)θ2(r)skI
γ
H(h− ϕ1)θ1(g −Ψ1)

θ2(r)

+ θ1
s
kI

γ
H(ϕ1)(r)

s
kI

λ
H(g)(r) + θ1

s
kI

γ
H(h)(r)skI

λ
H(Ψ1)(r)(78)

+ θ2
s
kI

λ
Hh(r)

s
kI

γ
H(Ψ1)(r) + θ2

s
kI

λ
Hϕ1(r)

s
kI

γ
H(g)(r).
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Theorem 2.10. Let g, Ψ1 and Ψ2 are integrable functions on [1,∞], assume
that condition (A1) holds. Then for r > 1, sϵ, λ, kϵ,

s
kI

λ
H(I)(r)skI

λ
Hg

2(r)− [skI
λ
Hg(r)]

2

= [skI
λ
HΨ2(r)− s

kI
λ
Hg(r)][

s
kI

λ
Hg(r)− s

kI
λ
HΨ1(r)](79)

− s
kI

λ
H(I)(r)skI

λ
H [Ψ2 − g](r)[g −Ψ1(r)] +

s
kI

λ
H(I)(r)skI

λ
HΨ1g(r)

− s
kI

λ
H(Ψ1(r))

s
kI

λ
Hg(r) +

s
kI

λ
H(Ψ2)g(r)

s
kI

λ
H(I)(r)− s

kI
λ
H(Ψ2)(r)

s
kI

λ
Hg(r)

+ s
kI

λ
H(Ψ1)(r)

s
kI

λ
HΨ2(r)− s

kI
λ
H(Ψ1Ψ2(r))

s
kI

λ
H(I)(r).

Proof. For p > 1, q > 1, we have

[Ψ2(q)− g(q)][g(p)−Ψ1(p)]

+ [Ψ2(p)− g(p)][g(q)−Ψ1(q)]− [Ψ2(p)− g(p)],(80)

[g(p)−Ψ1(p)]−[Ψ2(q)−g(q)][g(q)−Ψ1(q)]=g
2(p)+g2(q)−2g(p)g(q)

+ Ψ2(q)g(p) + Ψ1(p)g(q)−Ψ1(p)Ψ2(q) + Ψ2(p)g(q) + Ψ1(q)g(p)

−Ψ2(p)g(p)−Ψ1(p)Ψ2(p)+Ψ1(q)Ψ2(q)
s
kI

λ
H(I)(r)−Ψ1(q)g(q)

s
kI

λ
H(I)(r).

Multiplying by 1
kΓk(λ)

[log z
q ]

λ
k
−1[ qz ]

s 1
q and integrating w.r.t. q on [1,∞], and

using equation (1), we can get (79).

Theorem 2.11. Let g, h be two positive functions on [0,∞], such that ∀z > 1,

sϵ, α, kϵ, q ≥ 1 and s
kI

α
Hg

p(z) < ∞, s
kI

α
Hh

p(z) < ∞. If 0 < m ≤ g(v)
h(v) ≤ M ,

m,M, ϵ, ∀vϵ(0, z). Then, we have

(81) [skI
α
Hg

q(z)]
1
q + [skI

α
H [h]q(z)]

1
q ≤ M(m+ 2) + 1

(M + 1)(m+ 1)
[skI

α
H [g + h]q(z)]

1
q ,

(82) [skI
α
Hg

q(z)]
2
q + [skI

α
H [h]q(z)]

2
q ≥ (M + 1)(m+ 1)

(M)
[skI

α
H [g]q(z)]

1
q [skI

α
H [h]q(z)]

1
q .

Proof. Using g(v)
h(v) ≤M, ∀vϵ(0, z), we can get [g+h](v)

h(v) ≤M + 1 and hence

(83) (M + 1)qgq ≤M q[g + h]q(v).

Multiplying by 1
kΓk(α)

[log z
v ]

α
k
−1[vz ]

s 1
v and integrating w.r.t. v on [1,∞],

(84)
(M + 1)

kΓk(α)
[

∫ z

1
log

z

v
]
α
k
−1[

v

z
]s
1

v
≤ (M)q

kΓk(α)
[

∫ z

1
log

z

v
]
α
k
−1[

v

z
]s
1

v
.

Using the equation (1)

(85) (M + 1)qskI
α
Hg

q(z) ≤ (M)qskI
α
H [g + h]q(z).
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Which gives

(86) [skI
α
Hg

q(z)]
1
q ≤ M

M + 1
[skI

α
H [g + h]q(z)]

1
q .

Using m ≤ g(v)
h(v) , ∀vϵ(0,∞), we get

(87) (1 +
1

m
)qhq(v) ≤ (

1

m
)q[g + h]q(v),

Multiplying by 1
kΓk(α)

[log z
v ]

α
k
−1[vz ]

s 1
v and integrating w.r.t. v on [1,∞],

(1 + 1
m)

kΓk(α)
[

∫ z

1
log

z

v
]
α
k
−1[

v

z
]shq

dv

v

≤
( 1
m)q

kΓk(α)
[

∫ z

1
log

z

v
]
α
k
−1[

v

z
]s[g + h]q(v)

dv

v
.(88)

Using the equation (1)

(89) (1 +
1

m
)qskI

α
Hh

q(v) ≤ (
1

m
)qskI

α
H [g + h]q(v).

Which gives,

(90) [skI
α
Hh

q(v)]
1
q ≤ (

1

m+ 1
)[skI

α
H [g + h]q(z)]

1
q

.

Adding (42) and (43), we get (40).
Multiplying (42) and (43)

(91)
(M + 1)(m+ 1)

M
[skI

α
Hg

q(z)]
1
q [skI

α
Hh

q(z)]
1
q ≤ [skI

α
H [g + h]q(z)]

1
q .

Using Minkowski inequalities on R.H.S, we can get (41).

Applications

There are many applications of the fractional integral inequalities. Some of
them are as under. In boundary value problems, we can use fractional integral
inequalities to establish uniqueness of the solutions. They are also used in finding
the unique solutions in fractional partial differential equations.

Conclusions

Results of fractional integral inequalities are determined by using extended
Hadamard k-fractional integral. With these inequalities the uniqueness and
continuous dependence of the solution of the nonlinear fractional differential
equations can also be established. Furthermore, we can also extend these in-
equalities for α by analytical continuation.
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Convergence of a modified PRP conjugate gradient method
with a new formula of step-size
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Abstract. We present in this paper the global convergence of a modified PRP (Polak-
Ribière-Polyak) conjugate gradient method suggested by Min and Jing [11], by using
a new formula of step-size that combination by Wu [14], and by Sun and colleagues
[3, 12]. Some numerical results are also presented.

Keywords: conjugate gradient methods, global convergence, PRP method, step-size,
line search.

1. Introduction

Let us consider the following unconstrained minimization problem: f (x) , x ∈
Rn, where f is a differentiable objective function, has the following form

(1.1) xk+1 = xk + αkdk,

(1.2) where dk =

{
−gk, for k = 1,

−gk + βkdk−1, for k ≥ 2,

where gk = ∇f(xk) is the gradient of f at xk.
Motivated by the ideas of Wei and al. [14] and Dai and Wen [5], which

spured Min and Jing [11] construct two modified PRP methods, in which the
parameter βk is specified as follows:

(1.3) βMPRP
k =

gTk yk−1

µ|gTk dk−1|+ ∥gk−1∥2
,

*. Corresponding author
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where ∥.∥ means the Euclidean norm, yk−1 = gk−gk−1, and µ ≥ 0 is a constant.
Let us remark that the descent direction dk is defined by

(1.4) gTk dk = −c ∥gk∥2 ,

where 0 < c < 1.

The global convergence properties of conjugate gradient method have been
studied by many researchers [2-9].

In the implementation of any conjugate gradient (CG) method, the step-size
is often determined by certain line search conditions such as the Wolfe conditions
[13]. These types of line search involve extensive computation of function values
and gradients, which often becomes a significant burden for large-scale problems,
which spured Sun [12], and Wu [14] to pursue the conjugate gradient method
where they calculated the step-size instead of the line search. The new formula
for step-size αk in the form

(1.5) αk =
−δgTk dk

(ḡk+1 − gk)Tdk + γ ∥dk∥2
,

where

(1.6) δ ∈ (0, (κ+ γ)/τ), γ ≥ 0,

τ and κ confirm the Assumption 2.1 below, ḡk+1 denote ▽f(xk + dk).

In this paper, our goal is to employ the step-formula (1.5) to prove the
convergence of a modified PRP conjugate gradient method.

This paper is organized as follows. Some preliminary results on the family
of CG methods with the new-form step-size formula (1.5) are given in Section
2. Section 3 includes the main convergence properties of the modified PRP
conjugate gradient method.

2. Properties of the new step-size

The present section gathers technical results concerning the step-size αk gener-
ated by (1.5).

Assumption 2.1. The function f is LC1 and strongly convex in Rn, i.e, there
exists constants τ > 0 and κ ≥ 0 such that

(2.1) ∥▽f(u)−▽f(v)∥ ≤ τ ∥u− v∥ ,∀u, v ∈ Rn,

and

(2.2) [▽f(u)−▽f(v)]T (u− v) ≥ κ ∥u− v∥2 ,∀u, v ∈ Rn.

Note that Assumption 2.1 implies that the level set L = {x ∈ Rn|f(x) ≤ f(x1)}
is bounded.
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Lemma 2.2 Suppose that Assumption 2.1 holds. Then the following inequalities

(2.3) κ ∥sk∥2 ≤ yTk sk ≤ τ ∥sk∥
2 ,

where sk = xk+1 − xk, yk = gk+1 − gk and

(2.4) (κ+ γ) ∥dk∥2 ≤ (ḡk+1 − gk)Tdk + γ ∥dk∥2 ≤ (τ + γ) ∥dk∥2 ,

hold for all k.

Proof. It is straightforward from (2.1) and (2.2) that (2.3) holds. Now, we
prove (2.4) is true

(ḡk+1 − gk)Tdk + γ ∥dk∥2 ≤ ∥ḡk+1 − gk∥ ∥dk∥+ γ ∥dk∥2

≤ (τ + γ) ∥dk∥2 .(2.5)

Then, by (2.2), we have

(2.6) (ḡk+1 − gk)Tdk + γ ∥dk∥2 ≥ κ ∥dk∥2 + γ ∥dk∥2 ≥ (κ+ γ) ∥dk∥2 .

Hence, it follows from (2.5) and (2.6) that (2.4) hold for all k.

Lemma 2.3. Suppose that xk is given by (1.1), (1.2) and (1.5). Then

(2.7) gTk+1dk = ρkg
T
k dk,

holds for all k, where 0 < ρk = 1− δΦk ∥dk∥2 /[(ḡk+1 − gk)Tdk + γ ∥dk∥2],
and

(2.8) Φk =

{
0, for αk = 0,

(gk+1 − gk)T (xk+1 − xk)/ ∥xk+1 − xk∥2 , for αk ̸= 0.

Proof. If αk = 0, then ρk = 1 and xk+1 = xk. Thus, (2.7) is true.
Now, we suppose that αk ̸= 0. From (2.8) and (2.6), we have

gTk+1dk = gTk dk + (gk+1 − gk)Tdk
= gTk dk + α−1

k (gk+1 − gk)T (xk+1 − xk)
= gTk dk + α−1

k Φk ∥xk+1 − xk∥2

= gTk dk + αkΦk ∥dk∥2

= gTk dk − {δgTk dk/[(ḡk+1 − gk)Tdk + γ ∥dk∥2]}Φk ∥dk∥2

= {1− δΦk ∥dk∥2 /[(ḡk+1 − gk)Tdk + γ ∥dk∥2]}gTk dk
= ρkg

T
k dk.

The proof is complete.
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Corollary 2.4. Suppose that Assumption 2.1 holds. Then

δκ

τ + γ
≤ 1− ρk ≤

δτ

κ+ γ
,(2.9)

holds for all k.

Proof. It follows From (2.3) and (2.4), we obtain (2.9).

Lemma 2.5. Suppose that Assumption 2.1 holds and {xk} is generated by
(1.1), (1.2) and (1.5). Then

(2.10)
∑
dk ̸=0

(gTk dk)
2

∥dk∥2
<∞.

Proof. By the mean-value theorem, we have

(2.11) f(xk+1)− f(xk) = ḡT (xk+1 − xk),

where ḡ = ▽f(x̄) for some x̄ ∈ [xk,xk+1]. Now, by the Cauchy-Schwartz in-
equality, (1.5), and Assumption 2.1 we obtain

ḡT (xk+1 − xk) = gTk (xk+1 − xk) + (ḡ − gk)T (xk+1 − xk)
≤ gTk (xk+1 − xk) + ∥ḡ − gk∥ ∥xk+1 − xk∥
≤ gTk (xk+1 − xk) + τ ∥xk+1 − xk∥2

= αkg
T
k dk + τα2

k ∥dk∥
2

= αkg
T
k dk − ταkδg

T
k dk ∥dk∥

2 /[(ḡk+1 − gk)Tdk + γ ∥dk∥2]

= αkg
T
k dk(1−

τδ ∥dk∥2

(ḡk+1 − gk)Tdk + γ ∥dk∥2
).(2.12)

By from (2.4) and (2.12), we obtain

αkg
T
k dk = − δ

(ḡk+1 − gk)Tdk + γ ∥dk∥2
(gTk dk)

2

≤ − δ

(τ + γ)

(gTk dk)
2

∥dk∥2
,(2.13)

by (2.12) and (1.6), we have

(2.14) 1− τδ ∥dk∥2

(ḡk+1 − gk)Tdk + γ ∥dk∥2
≥ 1− τδ

κ+ γ
> 0.

From (2.13) and (2.14), it follows that

(2.15) Ω =
δ

τ + γ
(1− τδ

κ+ γ
) > 0.
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From (2.11) we have,

(2.16) f(xk+1)− f(xk) ≤ −Ω
(gTk dk)

2

∥dk∥2
≤ 0,

which implies f(xk+1) ≤ f(xk). Hence, it follows from (2.16) that (2.10) is true.
The proof is complete.

Lemma 2.6. Suppose that Assumption 2.1 holds, then we have

(2.17)
∑
k

α2
k ∥dk∥

2 <∞.

Proof. By (1.5) and (2.4) we have∑
k

α2
k ∥dk∥

2 =
∑
k

(δgTk dk)
2

[(ḡk+1 − gk)Tdk + ∥dk∥2]2
∥dk∥2

≤ (
δ

κ+ γ
)2
∑
dk ̸=0

(gTk dk)
2

∥dk∥2
<∞.(2.18)

The proof is complete.

3. Global convergence of the modified PRP method

In this section, we discuss the convergence properties of a modified PRP method
conjugate gradient method, in which βMPRP

k is given by (1.3).
We give the following algorithm firstly.

Algorithm 3.1
Step 0: Given x1 ∈ Rn, set d1 = −g1, k = 1.
Step 1: If ∥gk∥ = 0 then stop else go to Step 2.
Step 2: Set xk+1 = xk + αkdk where dk is defined by (1.2), and αk is defined
by (1.5).
Step 3: Compute βMPRP

k+1 using formula (1.3).
Step 4: Set k := k + 1, go to Step 1.

In 1992, Gilbert and Nocedal introduced the property (*) which plays an
important role in the studies of CG methods. This property means that the
next research direction approaches the steepest direction automatically when a
small step-size is generated, and the step-sizes are not produced successively [15].

Property (*). Consider a CG method of the form (1.1) and (1.2). Suppose
that, for all k,

(3.1) 0 < r ≤ ∥gk∥ ≤ r̄,
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where r and r̄ are two constants. If there exist b > 1 and λ > 0 such that for
all k,

(3.2) |βMPRP
k | ≤ b,

and

(3.3) ∥sk∥ ≤ λ =⇒ |βMPRP
k | ≤ 1

2b
,

where sk−1 = αk−1dk−1 .
The following Lemma shows that the MPRP method has Property (*).

Lemma 3.2. Consider the method of form (1.1) and (1.2). Suppose that
Assumption 2.1 hold, then, the method βMPRP

k has Property (∗).

Proof. Consider any constant r and r̄ which satisfy (3.1).

Let b =
2r̄2

r2
> 1, λ =

r4

4τ r̄3
. By (1.3) we have

(3.4) |βMPRP
k | ≤ |

gTk yk−1

µ|gTk dk−1|+ ∥gk−1∥2
| ≤ ∥gk∥

2 + ∥gk∥ ∥gk−1∥
∥gk−1∥2

≤ 2r̄2

r2
= b.

From (2.1), holds. If then

(3.5) |βMPRP
k | ≤ ∥gk∥ ∥gk − gk−1∥

∥gk−1∥2
≤ τ ∥sk−1∥ ∥gk∥

∥gk−1∥
≤ τλr̄

r2
=

1

2b
.

The proof is finished.

Theorem 3.3. Under Assumption 2.1, the method defined by (1.1), (1.2), (1.5)
and (1.3) will generate a sequence {xk} such that limk−→∞ inf ∥gk∥ = 0.

Proof. Suppose on the contrary that ∥gk∥ ≥ ψ, for all k.
Since L is bounded, both {xk} and {gk} are bounded. By using

(3.6) ∥dk∥ ≤ ∥gk∥+ |βMPRP
k | ∥dk−1∥ ,

one can show that {∥dk∥} is uniformly bounded. Definition (1.2) implies the
following relation

|gTk dk| = |gTk (−gk + βMPRP
k dk−1)|(3.7)

≥ ∥gk∥2 − |βMPRP
k | ∥gk∥ ∥dk−1∥ .(3.8)

From (1.3) and using the Cauchy-Schwarz inequality, we have

(3.9) |βMPRP
k | = |

gTk (gk − gk−1)

µ|gTk dk−1|+ ∥gk−1∥2
|.
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From (2.1) and (2.18) we have

∥gk − gk−1∥ ≤ ταk−1 ∥dk−1∥

≤ (
τδ

κ+ γ
)
|gTk−1dk−1|
∥dk−1∥

≤
|gTk−1dk−1|
∥dk−1∥

.(3.10)

From (1.4), (2.7) we have

(3.11) µ|gTk dk−1|+ ∥gk−1∥2 = (µρk−1 +
1

c
)|gTk−1dk−1| = m|gTk−1dk−1|, (m > 1).

By (3.9), (3.10), and (3.11) we have

|βMPRP
k | ∥dk−1∥ ≤

∥gk∥
m

.(3.12)

Hence by substituting (3.12) in (3.8), we have

(3.13) |gTk dk| ≥ A ∥gk∥
2 , A =

m− 1

m
,

for large k. Thus we have

(3.14)
(gTk dk)

2

∥dk∥2 ∥gk∥2
≥ A2 ∥gk∥

2

∥dk∥2
.

Since ∥gk∥ ≥ ψ and ∥dk∥ is bounded above, we conclude that there is ε > 0 such

that
(gTk dk)

2

∥dk∥2 ∥gk∥2
≥ ε, which implies

∑
dk ̸=0

(gTk dk)
2

∥dk∥2
=∞.

This is a contradiction to Lemma 2.5.

4. Numerical experiments and discussions

In this part, we present the numerical experiments of the new formula (1.5) and
apply it using (1.3), computer
(Processor: Intel(R)core(TM)i3-3110M cpu@2.40GHZ, Ram 4.00 GB) through
the Matlab programme.
10 testing problems have been taken from [1].

This will lead us to test for the global convergence properties of our method.
Stopping criteria is set to ∥gk∥ ≤ ε where ε = 10−6. Taking into consideration
the following parameters: γ = 1.5 and µ = 0.5.

Table 1 list numerical results. The meaning of each column is as follows:
“Problem ”the name of the test problem, “δ”, “Xzero”, “k ”the number of
iterations, “Time”, “Xoptimal”.

The following results showed the effectiveness of the proposed method.
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Table 1

Problem δ Xzero k Time Xopimal

1 Booth 1 (1 1) 46 0.118 (1.0 3.0)
2 Branin 1.5 (1 1) 54 0.113 (3.1416 2.275)
3 Sphere 1 (-1 1) 64 0.015 ( -0.230 -0.230)
4 Exponential 1 (-1 1) 59 0.082 (-0.6406 -0.6406)
5 Himmelblau 2 (1 1) 258 0.084 ( 0.6403 -0.6403)
6 Matyas 1 (-1 1) 34 0.047 ( 0.6403 -0.6403)
7 McCormick 1 (-1 1) 36 0.048 (-0.5472 -1.5472)
8 Rosenbrock 0.4 (1 1) 4999 0.735 ( 0.4198 1.9116)
9 SIX-HUMP CAMEL 2 (1 1) 15 0.031 ( -0.0898 0.7127)
10 THREE-HUMP CAMEL 1.5 (1 1) 46 0.1180 ( 0.2665 -0.2935)
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Abstract. This article provides sufficient conditions for non existence Global weak
solutions for non-local and non-linear equivalent equations on HN × (0,∞) × (0,∞),
where HN is the Heisenberg group. Our method of proof relies on a suitable choice of a
test function and the weak formulation approach of the sought for solutions.
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1. Introduction

In this article we are concerned with the nonexistence of global solutions of
nonlocal nonlinear ultra-parabolic two-times equation posed on the Heisenberg
group.

We start with the equation:

(1.1) Dα1

0|t1 (u) +Dα2

0|t2 (u) + (−∆H)
α/2 (|u|m) = |u|p

posed for ω = (η, t1, t2) ∈ Q = HN × R+ × R+, N ∈ N and supplemented with
the initial conditions

u (η, t1, 0) = u1 (η, t1) , u (η, 0, t2) = u2 (η, t2)

Here, p > 1 are real number, m ∈ N and where for 0 < α1 < α2 < 1 and Dα1

0|t1 ,

Dα2

0|t2 is the fractional derivative in the sense of the so-called Caputo’s. Then,
we extend our results to the system of two equations

(1.2)

{
Dα1

0|t1 (u) +Dα2

0|t2 (u) + (−∆H)
α/2 (|u|m) = |v|p ,

Dβ1

0|t1 (v) +Dβ2

0|t2 (v) + (−∆H)
β/2 (|v|n) = |u|q

posed for ω = (η, t1, t2) ∈ Q = HN × R+ × R+, N ∈ N and supplemented with
the initial conditions

u (η, t1, 0) = u1 (η, t1) u (η, 0, t2) = u2 (η, t2) ,

v (η, t1, 0) = v1 (η, t1) v (η, 0, t2) = v2 (η, t2) .
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Here p, q are positive real numbers and 0 < α1 < α2 < 1, 0 < β1 < β2 < 1,0 <
α, β ≤ 2.

Heisenberg group. The Heisenberg group HN , whose points will be denoted
by η = (x, y, τ), is the Lie group (R2N+1, ◦) with the non-commutative group
operation ◦ defined by

η ◦ η̃ = (x+ x̃, y + ỹ, τ + τ̃ + 2 (⟨x, ỹ⟩ − ⟨x̃, y⟩)) , η−1 = (−x, −y, τ) ,

where ⟨., .⟩ is the usual inner product in RN 1.
The Laplacian ∆H over H is obtained from the vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂τ
and Yi =

∂

∂yi
− 2xi

∂

∂τ

as

(1.3) ∆H =

N∑
i=1

(
X2

i + Y 2
i

)
,

An explicit calculation gives us the expression

(1.4) ∆H =
N∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+ 4yi

∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4

(
x2i + y2i

) ∂2
∂τ2

)
.

The operator ∆H is a degenerate elliptic operator verifying the so-called Hor-
mander condition of order 1. It is invariant by left multiplication in the group
since

∆H (u (η ◦ η̃)) = (∆Hu) (η ◦ η̃) , ∀ (η, η̃) ∈ HN ×HN .

The homogeneous norm of the space is

(1.5) |η|H =

τ2 +( N∑
i=1

(
x2i + y2i

))2
1/4

and the natural distance is accordingly defined d (η, η̃) = |η̃−1 ◦ η|H. It is also
important to observe that, η → |η|H is homogeneous of degree one compared
to the natural group of dilatations

(1.6) δλ (η) =
(
λx, λy, λ2τ

)
,

whose Jacobian determinant is λΛ, where Λ = 2N + 2, is the homogeneous
dimension of H. Note also, that the ∆H operator is homogeneous of degree 2
with respect to the dilatation δλ defined in (1.6), namely

∆H = λ2δλ (∆H) .

1. here ⟨x, y⟩ =
∑N

i=1 xiyi
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See [3], [4], [9], [11], [13].

Now, we call sub-elliptic gradient

(1.7) ∇H = (X,Y ) = (X1, . . . , XN , Y1, . . . , YN ) .

A remarkable property of the Kohn Laplacian is that a fundamental solution of
−∆H with pole at zero is given by

(1.8) Γ (η) =
CΛ

|η|Λ−2
H

,

where CΛ is a suitable positive constant.

A basic role in the functional analysis on the Heisenberg group is played by
the following Sobolev-type inequality

(1.9) ∥v∥2Λ∗ ≤ c∥∇Hv∥22, ∀v ∈ C∞
0

(
HN
)
,

where Λ∗ = 2Λ
Λ−2 and c is a positive constant.

This inequality ensures in particular that for every domain Ω the function

∥v∥ ≤ ∥∇Hv∥2

is a norm on C∞
0 (Ω). We denote by S10(Ω) the closure of C∞

0 (Ω) with respect to
this norm; S10(Ω) becomes a Hilbert space with the inner product

< u, v >S1
0
=

∫
Ω
< ∇Hu,∇Hv > .

Fractional powers of sub-elliptic Laplacians. Here, we recall a result on
fractional powers of sub-Laplacian in the Heisenberg group. Let N (t, x) be the
fundamental solution of ∆H + ∂

∂t . For all 0 < β < 4, the integral

Rβ (x) =
1

Γ
(
β
2

) ∫ +∞

0
t
β
2
−1N (t, x) dt

converges absolutely for x ̸= 0. If β < 0, β ̸∈ {0,−2,−4, . . .} , then

R̃β (x) =
β
2

Γ
(
β
2

) ∫ +∞

0
t
β
2
−1N (t, x) dt

defines a smooth function in H\{0}, since t 7→ N (t, x), vanishes of infinite order
as t → 0 if x ̸= 0. In addition, R̃β is positive and H-homogeneous of degree
β − 4.
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1.1 Theorem

For every v ∈ S(H)2 (−∆H)
sv ∈ L2(H) and

(−∆H)
s v (x) =

∫
H
(v (x ◦ y)− v (x)− χ (y) < ∇Hv (x) , y >) R̃−2s (y) dy,

where χ is the characteristic function of the unit ball Bρ(0, 1), (ρ (x) = R
−1
2−α

2−α (x),
0 < α < 2, ρ is an H-homogeneous norm in H smooth outside the origin).

1.2 Note

Proof of the Theorem 1.1 (see [2]).

1.3 Note

For α = 2 in equation (1.1) (see, ([1], [6], [11]).

2. Preliminaries

The nonlocal operator (the left-sided Riemann-Liouville) Dα
0|t is defined, for a

an absolutely continuous function g : R+ −→ R by(
Dα

0|t

)
g (t) =

1

Γ (1− α)

d

dt

∫ t

0

g (τ)

(t− τ)α
dτ

and Γ (α) =
∫∞
0 rα−1e−rdr is the Euler gamma function. And the right-sided

Riemann-Liouville derivatives of order 0 < α < 1 . are defined, by:(
Dα

t|T

)
g (t) = − 1

Γ (1− α)

d

dt

∫ T

t

g (τ)

(τ − t)α
dτ.

Note that for a differentiable function g, we have the left-sided Caputo deriva-
tives of order α are defined as:

Dα
0|t (g) (t) = Dα

0|t (g − g (0)) (t) =
1

Γ (1− α)

∫ t

0

g
′
(τ)

(τ − t)α
dτ.

Finally, taking into account the following integration by parts formula:∫ T

0
f (t)Dα

0|tg (t) dt =

∫ T

0
Dα

t|T f (t) g (t) dt.

Now, we define the regular function ψ : ψ ∈ C2
0 (R+)3 by

(2.1) ψ (ξ) =


1, if 0 ≤ ξ ≤ 1,

↘, if 1 ≤ ξ ≤ 2,

0, if ξ ≥ 2,

2. Schwartz’s class
3. Space defined and continuous functions and differentiable twice and compact support on

R+
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which will be used hereafter.

3. Résults

3.1 Definition

A locally integrable function u ∈ Lm
loc(QT ) ∩ Lp

loc(QT ) is called a local weak
solution of (1.1) in QT

(
QT = HN × [0, T ]× [0, T ]

)
subject to the initial data

u1, u2 ∈ L1
loc

(
HN × [0, T ]

)
if the equality∫

QT

|u|pφdω +

∫
QT

u2D
α1

t1|Tφdω +

∫
QT

u1D
α2

t2|Tφdω

=

∫
QT

uDα1

t1|Tφdω +

∫
QT

uDα2

t2|Tφdω +

∫
QT

|u|m (−∆H)
α/2 φdω(3.1)

is satisfied for any φ be a smooth test function (φ ∈ C∞
0 (QT )) with

φ (., T, .) = φ (., ., T ) = 0, φ ≥ 0, dω = dηdt1dt2

and the solution is called global if T = +∞.

3.2 Theorem

Let 1 < m < p < pc, where

pc = m+
mα− (m− 1)( α

α1
+ α

α2
)

2N + 2− α+ ( α
α1

+ α
α2
)
, (c for critical)

and ∫
Q
u2D

α1

t1|Tφdω > 0,

∫
Q
u1D

α2

t2|Tφdω > 0.

Then, (1.1) does not have a nontrivial global weak solution. For the proof, we
need to recall the following proposition from Proposition 2.3.

3.3 Proposition

Consider a convex function F ∈ C2(R). Assume that φ ∈ C∞
0 (R2N+1), then

(3.2) F ′(φ)(−∆H)
α/2φ ≥ (−∆H)

α/2F (φ).

In particular, if F (0) = 0 and φ ∈ C∞
0 (R2N+1), then

(3.3)

∫
R2N+1

F ′(φ)(−∆H)
α/2φdη ≥ 0.

Let us mention that hereafter we will use inequality (2.1) for F (φ) = φσ, σ ≫ 14,
φ ≥ 0; in this case it reads

(3.4) σφσ−1(−∆H)
α/2φ ≥ (−∆H)

α/2φσ.

We need the following Lemma taken from [32].

4. σ is much larger than 1
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3.4 Lemma

Let f ∈ L1
(
R2N+1

)
and

∫
R2N+1 fdη ≥ 0. Then there exists a test function

0 ≤ φ ≤ 1 such that

(3.5)

∫
R2N+1

fφdη ≥ 0.

3.5 Note

Let us set ∫
QT

=

∫ T

0

∫ T

0

∫
R2N+1

,

∫
Q
=

∫ ∞

0

∫ ∞

0

∫
R2N+1

.

Proof of Theorem 3.2. The proof is by contradiction. For that, let u be a
solution and φ be a smooth nonnegative test function such that

A(φ) =

∫
Q
|Dα1

t1|Tφ
σ|

p
p−1φ

−σ
p−1dω <∞,

B(φ) =
∫
Q
|Dα2

t2|Tφ
σ|

p
p−1φ

−σ
p−1dω <∞,(3.6)

K(φ) =

∫
Q
|(−∆H)

α/2φ|
p

p−mφ
(σ− p

p−m
)
dω <∞.

Then, taking φσ, σ ≫ 1 instead of φ in (3.1) and using inequality (3.4), we
obtain∫

Q
|u|pφσdω +

∫
Q
u2D

α1

t1|Tφ
σdω +

∫
Q
u1D

α2

t2|Tφ
σdω

=

∫
Q
uDα1

t1|Tφ
σdω +

∫
Q
uDα2

t2|Tφ
σdω +

∫
Q
|u|m (−∆H)

α/2 φσdω

≤
∫
Q
uDα1

t1|Tφ
σdω +

∫
Q
uDα2

t2|Tφ
σdω +

∫
Q
|u|mσφσ−1 (−∆H)

α/2 φdω.

• For
∫
Q uD

α1

t1|Tφ
σdω by means of the ε-Young’s inequality ab ≤ εap +

C(ε)b
p

p−1 , 1p + p−1
p = 1, a ≥ 0, b ≥ 0, we obtain

uDα1

t1|Tφ
σ ≤ |u||Dα1

t1|Tφ
σ| = φ

σ
pφ

−σ
p |u||Dα1

t1|Tφ
σ| = |u|φ

σ
p |Dα1

t1|Tφ
σ|φ

−σ
p

because φ
σ
pφ

−σ
p = φ

σ
p
−σ

p = φ0 = 1 if we pose a = |u|φ
σ
p and b = |Dα1

t1|Tφ
σ|φ

−σ
p ,

then

uDα1

t1|Tφ
σ ≤ ab ≤ εap + C(ε)b

p
p−1 = ε

(
|u|φ

σ
p

)p
+ C(ε)

(
|Dα1

t1|Tφ
σ|φ

−σ
p

) p
p−1

⇕

uDα1

t1|Tφ
σ ≤ ε|u|pφσ + C(ε)|Dα1

t1|Tφ
σ|

p
p−1φ

−σ
p−1
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⇓∫
Q
uDα1

t1|Tφ
σdω ≤ ε

∫
Q
|u|pφσdω + C(ε)

∫
Q
|Dα1

t1|Tφ
σ|

p
p−1φ

−σ
p−1dω

⇕

(I)

∫
Q
uDα1

t1|Tφ
σdω ≤ ε

∫
Q
|u|pφσdω + C(ε)A(φ)

• For
∫
Q uD

α2

t2|Tφ
σdω we take the previous method with placing t2 place t1

and α2 place α1 to get the

(II)

∫
Q
uDα2

t2|Tφ
σdω ≤ ε

∫
Q
|u|pφσdω + C(ε)B(φ)

• For
∫
Q |u|mσφσ−1 (−∆H)

α/2 φdω by means of the ε-Young’s inequality ab ≤
εa

p
m +C(ε)b

p
p−m , mp + p−m

p = 1, a ≥ 0, b ≥ 0, we obtain |u|mσφσ−1 (−∆H)
α/2 φ =

1.|u|mσφσ−1 (−∆H)
α/2 φ = φ

mσ
p φ

−mσ
p |u|mσφσ−1 (−∆H)

α/2 φ because φ
mσ
p φ

−mσ
p

= φ
mσ
p

−mσ
p = φ0 = 1, if we pose a = |u|mφ

mσ
p and b = | (−∆H)

α/2 φ|σφσ−1−mσ
p ,

then

|u|mσφσ−1 (−∆H)
α/2 φ ≤ ab ≤ εa

p
m + C(ε)b

p
p−m

εa
p
m + C(ε)b

p
p−m = ε

(
|u|mφ

mσ
p

) p
m
+ C(ε)

(
| (−∆H)

α/2 φ|σφσ−1−mσ
p

) p
p−m

⇕

|u|mσφσ−1 (−∆H)
α/2 φ ≤ ε|u|pφσ + C(ε)| (−∆H)

α/2 φ|
p

p−mσ
p

p−mφ
(σ−1−mσ

p
) p
p−m

⇕

|u|mσφσ−1 (−∆H)
α/2 φ ≤ ε|u|pφσ + C(ε)| (−∆H)

α/2 φ|
p

p−mσ
p

p−mφ
(σ− p

p−m
)

⇓

∫
Q
|u|mσφσ−1 (−∆H)

α/2 φdω

≤ ε

∫
Q
|u|pφσdω + C(ε)σ

p
p−m

∫
Q
| (−∆H)

α/2 φ|
p

p−mφ
(σ− p

p−m
)
dω

⇕

(III)

∫
Q
|u|mσφσ−1 (−∆H)

α/2 φdω ≤ ε

∫
Q
|u|pφσdω + C(ε)σ

p
p−mK(φ).
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Now, we choose ε = 1
6 and C = max

{
C(ε), C(ε)σ

p
p−m

}
and the (I), (II), (III)

we obtain ∫
Q
|u|pφσdω +

∫
Q
u2D

α1

t1|Tφ
σdω +

∫
Q
u1D

α2

t2|Tφ
σdω

≤ 1

2

∫
Q
|u|pφσdω + C (A(φ) + B(φ) +K(φ)) .(3.7)

We choose the test function φ (η, t1, t2), in the form

(3.8) φ (η, t1, t2) = φ1 (η)φ2 (t1)φ3 (t2) ,

where φ1(η) = ψ( τ
2+|x|4+|y|4

R4 ), and φ2(t1) = ψ( t1
Rρ1 ), and φ3(t2) = ψ( t2

Rρ2 ), and

ρ1 =
α(p−1)
α1(p−m) , and ρ2 =

α(p−1)
α2(p−m) . Set

Ω1 =
{
η̃ ∈ H; 0 < τ̃2 + |x̃|4 + |ỹ|4 ≤ 2

}
,

Ω2 =
{
t̃1; 0 ≤ t̃1 ≤ 2

}
,

Ω3 =
{
t̃2; 0 ≤ t̃2 ≤ 2

}
,

we apply the change of next variables τ̃ = R−2τ , x̃ = R−1x, ỹ = R−1y, t̃1 =
R−ρ1t1, t̃2 = R−ρ2t2, we obtain the estimates,

(3.9) A(φ) ≤ ARa, B(φ) ≤ BRb, K(φ) ≤ KRk

with

a = −α1ρ1p

p− 1
+ 2N + 2 + ρ1 + ρ2 = − αp

p−m
+ 2N + 2 + ρ1 + ρ2,

b = −α2ρ2p

p− 1
+ 2N + 2 + ρ1 + ρ2 = − αp

p−m
+ 2N + 2 + ρ1 + ρ2,

k = − αp

p−m
+ 2N + 2 + ρ1 + ρ2,

we put v = − αp
p−m + 2N + 2 + ρ1 + ρ2. Then

(3.10) A(φ) ≤ ARv, B(φ) ≤ BRv, K(φ) ≤ KRv

the constants A; B; K are A(φ) and B(φ) and K(φ) evaluated on Ω1×Ω2×Ω3.
Now, if

− αp

p−m
+ 2N + 2 + ρ1 + ρ2 < 0 ⇔ p < pc

by letting R→ ∞ in (2.6), we obtain∫
Q
|u|pdω = 0 ⇒ u ≡ 0

this is a contradiction. □
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4. System of fractional equations

We consider {
Dα1

0|t1 (u) +Dα2

0|t2 (u) + (−∆H)
α/2 (|u|m) = |v|p

Dβ1

0|t1 (v) +Dβ2

0|t2 (v) + (−∆H)
β/2 (|v|n) = |u|q

posed for ω = (η, t1, t2) ∈ Q = HN × R+ × R+, N ∈ N and supplemented with
the initial conditions u (η, t1, 0) = u1 (η, t1) , u (η, 0, t2) = u2 (η, t2) , v (η, t1, 0) =
v1 (η, t1) , v (η, 0, t2) = v2 (η, t2) , Here, p, q are positive real numbers and 0 <
α1 < α2 < 1, 0 < β1 < β2 < 1,0 < α, β ≤ 2.

Let us set

I0 =

∫
Q
u2D

α1

t1|Tφdω +

∫
Q
u1D

α2

t2|Tφdω,

J0 =

∫
Q
v2D

β1

t1|Tφdω +

∫
Q
v1D

β2

t2|Tφdω

where dω = dηdt1dt2.

4.1 Definition

We say that (u, v) ∈
(
Lq
loc(Q) ∩ Lm

loc(Q)
)
×
(
Lp
loc(Q) ∩ Ln

loc(Q)
)
is a weak formu-

lation to system (1.2) if
∫
Q
|v|pφdω + I0 =

∫
Q
uDα1

t1|Tφdω +

∫
Q
uDα2

t2|Tφdω +

∫
Q
|u|m (−∆H)

α/2 φdω,∫
Q
|u|qφdω + J0 =

∫
Q
vDβ1

t1|Tφdω +

∫
Q
vDβ2

t2|Tφdω +

∫
Q
|v|n (−∆H)

β/2 φdω

for any test function φ (see the equality (3.1)). Now, set

σ1 = − 1

pq − 1

[
pqα1 + pβ1 − 2 (pq − 1)−

(
(pq − p)α1

α
+

(p− 1)β1
β

)
(2N + 2)

]
,

σ2 = − 1

pq − 1

[
pqα1 + pβ2 − 2(pq − p)−

(
(pq − p)α1

α
+

(p− 1)β1
β

)
(2N + 2)

]
,

σ3 = − 1

pq − n
[pqα1 + pβ1 − 2 (2pq − nq − p)

−
(
(pq − p)α1

α
+

(pq − nq)β1
β

)
(2N + 2)

]
,

σ4 = − 1

pq − 1

[
pqα2 + pβ1 − 2 (pq − 1)−

(
(pq − p)α1

α
+

(p− 1)β1
β

)
(2N + 2)

]
,

σ5 = − 1

pq − 1

[
pqα2 + pβ2 − 2 (pq − 1)−

(
(p− 1)α1

α
+

(pq − p)β1
β

)
(2N + 2)

]
,
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σ6 = − 1

pq − n

[
pqα2 + pβ1 − 2 (pq − n)−

(
(pq − p)α1

α
+

(p− n)β1
β

)
(2N + 2)

]
,

σ7 = − 1

pq −m
[pqα1 + pmβ1 − 2 (pq −m)

−
(
(pq − pm)α1

α
+

(mp−m)β1
β

)
(2N + 2)

]
,

σ8 = − 1

pq −m
[pqα1 + pmβ2 − 2 (pq −m)

−
(
(pq − pm)α1

α
+

(mp−m)β1
β

)
(2N + 2)

]
,

σ9 = − 1

pq − nm
[pqα1 + pmβ1 − 2 (pq − nm)

−
(
(pq − pm)α1

α
+

(mp− nm)β1
β

)
(2N + 2)

]
.

Note. The way we calculate {σ1, . . . , σ9} is the same as the way we calculate
{δ1, . . . , δ9}.

4.2 Theorem

Let q > 1, p > 1, q > m, p > n and suppose that∫
Q
u2D

α1

t1|Tφ
µdω > 0,

∫
Q
u1D

α2

t2|Tφ
µdω > 0,∫

Q
v2D

β1

t1|Tφ
µdω > 0

∫
Q
v1D

β2

t2|Tφ
µdω > 0.

If max {σ1, . . . , σ9, δ1, . . . , δ9} ≤ 0.
Then, the system (1.2) does not admit local nontrivial weak solution5.

Proof. As in the proof of Theorem 1, we reason by the absurd. Suppose (u; v)
is a weak non-trivial solution that exists globally in time. Next,replacing φ by
φµ in (4.1). Since the initial conditions u0 and v0 are positive, the variational
formulation (4.1) leads to

(4.1)



∫
Q
|v|pφµdω ≤

∫
Q
uDα1

t1|Tφ
µdω +

∫
Q
uDα2

t2|Tφ
µdω

+

∫
Q
|u|m (−∆H)

α/2 φµdω,∫
Q
|u|qφµdω ≤

∫
Q
vDβ1

t1|Tφ
µdω +

∫
Q
vDβ2

t2|Tφ
µdω

+

∫
Q
|v|n (−∆H)

β/2 φµdω.

5. Then solutions to system (1.2) blow-up whenever max {σ1, . . . , σ9, δ1, . . . , δ9} ≤ 0
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Applying Hölder’s inequality, we obtain the following estimates:
• For q > m∫

Q
|u|m

∣∣∣(−∆H)
α/2 φµ

∣∣∣ dω ≤ µ

(∫
Q
|u|q φµdω

)m
q

×
(∫

Q
φ
µ− q

q−m

∣∣∣(−∆H)
α/2 φ

∣∣∣ q
q−m

dω

) q−m
q

.(4.2)

• For q > 1 :

(4.3)

∫
Q
u
∣∣∣Dα1

t1|Tφ
µ
∣∣∣ dω ≤

(∫
Q
|u|q φµdω

) 1
q

×
(∫

Q

∣∣∣Dα1

t1|Tφ
µ
∣∣∣ q
q−1

φ
−µ
q−1dω

) q−1
q

and

(4.4)

∫
Q
u
∣∣∣Dα2

t2|Tφ
µ
∣∣∣ dω ≤

(∫
Q
|u|q φµdω

) 1
q

×
(∫

Q

∣∣∣Dα2

t2|Tφ
µ
∣∣∣ q
q−1

φ
−µ
q−1dω

) q−1
q

.

Similarly, we have:
• For p > n :∫

Q
|v|n

∣∣∣(−∆H)
β/2 φµ

∣∣∣ dω ≤ µ

(∫
Q
|v|p φµdω

)n
p

×
(∫

Q
φ
µ− p

p−n

∣∣∣(−∆H)
β/2 φ

∣∣∣ p
p−n

dω

) p−n
p

(4.5)

• For p > 1 : ∫
Q
v
∣∣∣Dβ1

t1|Tφ
µ
∣∣∣ dω ≤

(∫
Q
|v|p φµdω

) 1
p

×
(∫

Q

∣∣∣Dβ1

t1|Tφ
µ
∣∣∣ p
p−1

φ
−µ
p−1dω

) p−1
p

(4.6)

and

(4.7)

∫
Q
v
∣∣∣Dβ2

t2|Tφ
µ
∣∣∣ dω ≤

(∫
Q
|v|p φµdω

) 1
p

×
(∫

Q

∣∣∣Dβ2

t2|Tφ
µ
∣∣∣ p
p−1

φ
−µ
p−1dω

) p−1
p

.

If, we set

Iu =

∫
Q
|u|q φµdω, Iv =

∫
Q
|v|p φµdω,

A (q,m) = µ

(∫
Q
φ
µ− q

q−m

∣∣∣(−∆H)
α/2 φ

∣∣∣ q
q−m

dω

) q−m
q

,

A (p, n) = µ

(∫
Q
φ
µ− p

p−n

∣∣∣(−∆H)
β/2 φ

∣∣∣ p
p−n

dω

) p−n
p

,
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B (q) =

(∫
Q

∣∣∣Dα1

t1|Tφ
µ
∣∣∣ q
q−1

φ
−µ
q−1dω

) q−1
q

,

B (p) =

(∫
Q

∣∣∣Dβ1

t1|Tφ
µ
∣∣∣ p
p−1

φ
−µ
p−1dω

) p−1
p

,

C (q) =

(∫
Q

∣∣∣Dα2

t2|Tφ
µ
∣∣∣ q
q−1

φ
−µ
q−1dω

) q−1
q

,

C (p) =

(∫
Q

∣∣∣Dβ2

t2|Tφ
µ
∣∣∣ p
p−1

φ
−µ
p−1dω

) p−1
p

,

Iµ0 =

∫
Q
u2D

α1

t1|Tφ
µdω +

∫
Q
u1D

α2

t2|Tφ
µdω,

Jµ
0 =

∫
Q
v2D

β1

t1|Tφ
µdω +

∫
Q
v1D

β2

t2|Tφ
µdω

then, using estimates (4.3)-(4.4)-(4.5), we can write (4.1) as

Iv + Iµ0 ≤ I
1
q
u B(q) + I

1
q
u C(q) + I

m
q
u A(q,m),

Iu + Jµ
0 ≤ I

1
p
v B(p) + I

1
p
v C(p) + I

n
p
v A(p, n).

Since Iµ0 , J
µ
0 > 0, we have

Iv ≤ I
1
q
u B(q) + I

1
q
u C(q) + I

m
q
u A(q,m),(4.8)

Iu ≤ I
1
p
v B(p) + I

1
p
v C(p) + I

n
p
v A(p, n).(4.9)

Now, from (4.8) and (4.9), we have

Iv + Iµ0 ≤
(
I

1
pq
v B

1
q (p) + I

1
pq
v C

1
q (p) + I

n
pq
v A

1
q (p, n)

)
B(q),

+

(
I

1
pq
v B

1
q (p) + I

1
pq
v C

1
q (p) + I

n
pq
v A

1
q (p, n)

)
C(q)

+

(
I

m
pq
v B

m
q (p) + I

m
pq
v C

m
q (p) + I

nm
pq
v A

m
q (p, n)

)
A(q,m).

Then, Young’s inequality implies

Iv + Iµ0 ≤ K

[(
B

1
q (p)B(q)

) pq
pq−1

+
(
C

1
q (p)B(q)

) pq
pq−1

+
(
A

1
q (p, n)B(q)

) pq
pq−n

+
(
B

1
q (p)C(q)

) pq
pq−1

+
(
C

1
q (p)C(q)

) pq
pq−1

+
(
A

1
q (p, n)C(q)

) pq
pq−n

+
(
B

m
q (p)A(q,m)

) pq
pq−m

+
(
C

m
q (p)A(q,m)

) pq
pq−m

+
(
A

m
q (p, n)A(q,m)

) pq
pq−nm

]
.
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Let’s take now the test function φ(η, t1, t2) in the form

φ(η, t1, t2) = ψ

(
τ2θj + |x|4θj + |y|4θj

R4

)
ψ

(
t1
R

)
ψ

(
t2
R

)
, j = 1, 2,

and θj will be determined further. Then

∆Hφ (η) = ψ

(
t1
R

)
ψ

(
t2
R

)
∆Hψ (ρ) ,

where

ρ =
τ2θj + |x|4θj + |y|4θj

R4

and

∆Hψ (ρ) =
N∑
i=1

(
∂2ψ (ρ)

∂x2i
+
∂2ψ (ρ)

∂y2i
+ 4yi

∂2ψ (ρ)

∂xi∂τ

−4xi
∂2ψ (ρ)

∂yi∂τ
+ 4

(
x2i + y2i

) ∂2ψ (ρ)

∂τ2

)
we have

∂2ψ (ρ)

∂x2i
=

∂

∂xi

(
∂ρ

∂xi

∂ψ(ρ)

∂ρ

)
=
∂2ρ

∂x2i
ψ′(ρ) +

(
∂ρ

∂xi

)2

ψ′′(ρ),

=
4θj
R4

(
|x|4θj−2 + (4θj − 2)x2i |x|4θj−4

)
ψ′(ρ) +

16θ2j
R8

x2i |x|8θj−4ψ′′(ρ)

and

∂2ψ (ρ)

∂y2i
=

∂

∂yi

(
∂ρ

∂yi

∂ψ(ρ)

∂ρ

)
=
∂2ρ

∂y2i
ψ′(ρ) +

(
∂ρ

∂yi

)2

ψ′′(ρ),

=
4θj
R4

(
|y|4θj−2 + (4θj − 2) y2i |y|4θj−4

)
ψ′(ρ) +

16θ2j
R8

y2i |y|8θj−4ψ′′(ρ)

and

4yi
∂2ψ (ρ)

∂xi∂τ
= 4yi

∂

∂xi

(
∂ρ

∂τ

∂ψ(ρ)

∂ρ

)
= 4yi

[
∂2ρ

∂xi∂τ
ψ′(ρ) +

(
∂ρ

∂τ

)(
∂ρ

∂xi

)
ψ′′ (ρ)

]
,

= 4yi

[
∂

∂xi

(
2θj
R4

τ2θj−1

)
ψ′(ρ) +

(
2θj
R4

τ2θj−1

)(
4θj
R4

|x|4θj−2xi

)
ψ′′(ρ)

]
=

8θ2j
R8

τ2θj−1|x|4θj−2xiyiψ
′′ (ρ)

and

− 4xi
∂2ψ (ρ)

∂yi∂τ
= −4xi

∂

∂yi

(
∂ρ

∂τ

∂ψ(ρ)

∂ρ

)
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= −4xi

[
∂2ρ

∂yi∂τ
ψ′(ρ) +

(
∂ρ

∂τ

)(
∂ρ

∂yi

)
ψ′′ (ρ)

]
= −4xi

[
∂

∂yi

(
2θj
R4

τ2θj−1

)
ψ′(ρ) +

(
2θj
R4

τ2θj−1

)(
4θj
R4

|y|4θj−2yi

)
ψ′′(ρ)

]
= −

8θ2j
R8

τ2θj−1|y|4θj−2xiyiψ
′′ (ρ)

and

4
(
x2i + y2i

) ∂2ψ (ρ)

∂τ2
= 4

(
x2i + y2i

) ∂
∂τ

(
∂ρ

∂τ

∂ψ (ρ)

∂ρ

)
= 4

(
x2i + y2i

) [(∂2ρ
∂τ2

)
ψ′ (ρ) +

(
∂ρ

∂τ

)2

ψ′′ (ρ)

]

= 4
(
x2i + y2i

) [(2θj (2θj − 1)

R4
τ2θj−2

)
ψ′ (ρ) +

(
4θ2j
R8

τ4θj−2

)
ψ′′ (ρ)

]
finally

∆Hψ(ρ) =
4θj
R4

[(N + (4θj − 2))(|x|4θj−2 + |y|4θj−2)

+ (4θj − 2)τ2θj−2(|x|2 + |y|2)]ψ′(ρ)

+
16θ2j
R8

[|x|8θj−2 + |y|8θj−2 +
1

2
τ2θj−1⟨x, y⟩(|x|4θj−2 − |y|4θj−2)

+ τ4θj−2(|x|2 + |y|2)]ψ′′(ρ)

and we apply the change of next variables in the form

η = (x, y, τ) −→ η̃ = (x̃, ỹ, τ̃) ,

where

x̃ = R
−1
θj x ỹ = R

−1
θj y τ̃ = R

−2
θj τ, t̃1 = R−1t1, t̃2 = R−1t2

we put

Ωj
1 =

{
η̃ ∈ H : ρ̃ = τ̃2θj + |x̃|4θj + |ỹ|4θj ≤ 2

}
,

for Ω2 and Ω3, see the equality (3.7). Then

∆Hψ(ρ) =
4θj

R
2
θj

[(N + (4θj − 2))(|x̃|4θj−2 + |ỹ|4θj−2)

+ (4θj − 2)τ̃2θj−2(|x̃|2 + |ỹ|2)]ψ′(ρ̃)

+
16θ2j

R
2
θj

[|x̃|8θj−2 + |ỹ|8θj−2 +
1

2
τ̃2θj−1⟨x̃, ỹ⟩(|x̃|4θj−2 − |ỹ|4θj−2)

+ τ̃4θj−2(|x̃|2 + |ỹ|2)]ψ′′(ρ̃)
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this means

∆Hψ (ρ) =
1

R
2
θj

∆Hψ (ρ̃) , ∀η̃ ∈ Ωj
1,

(−∆H)
α/2 ψ (ρ) = R

−α
θj (−∆H)

α/2 ψ (ρ̃) ,

(−∆H)
β/2 ψ (ρ) = R

−β
θj (−∆H)

β/2 ψ (ρ̃)

as

dη = R
N
θj

+N
θj

+ 2
θj dη̃ = R

2N+2
θj dη̃,

we make the following estimates:
• For j = 1, we choose θ1 =

α
α1

and as α1 < α2 we obtain

A (q,m) = C1R
−α1+

(q−m)
q

(
(2N+2)α1

α
+2

)

where

C1 = µ

(∫
Ω1

1

|(−∆H)
α/2ψ(ρ̃)|

q
q−mψ

µ− q
q−m (ρ̃)dη̃

∫
Ω2

ψµ(t̃1)dt̃1

∫
Ω3

ψµ(t̃2)dt̃2

) q−m
q

and

B (q) = C2R
−α1+

(q−1)
q

(
(2N+2)α1

α
+2

)
where

C2 =

(∫
Ω1

1

ψµ (η̃) dη̃

∫
Ω2

∣∣∣Dα1

t̃1|R−1T
ψµ
(
t̃1
)∣∣∣ q

q−1
ψ

−µ
q−1
(
t̃1
)
dt̃1

∫
Ω3

ψµ
(
t̃2
)
dt̃2

) q−1
q

and

C (q) = C3R
−α2+

(q−1)
q

(
(2N+2)α1

α
+2

)
where

C3 =

(∫
Ω1

1

ψµ (η̃) dη̃

∫
Ω2

ψµ
(
t̃1
)
dt̃1

∫
Ω3

∣∣∣Dα2

t̃2|R−1T
ψµ
(
t̃2
)∣∣∣ q

q−1
ψ

−µ
q−1
(
t̃2
)
dt̃2

) q−1
q

.

• For j = 2, we choose θ2 =
β
β1

and as β1 < β2 we obtain

A (p, n) = C4R
−β
θ2

+
(p−n)

p

(
(2N+2)β1

β
+2

)

where

C4 = µ

(∫
Ω2

1

|(−∆H)
β/2ψ(ρ̃)|

p
p−nψ

µ− p
p−n (ρ̃)dη̃

∫
Ω2

ψµ(t̃1)dt̃1

∫
Ω3

ψµ(t̃2)dt̃2

) p−n
p
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and

B (p) = C5R
−β1+

(p−1)
p

(
(2N+2)β1

β
+2

)
,

where

C5 =

(∫
Ω1

1

ψµ (η̃) dη̃

∫
Ω2

∣∣∣Dβ1

t̃1|R−1T
ψµ
(
t̃1
)∣∣∣ p

p−1
ψ

−µ
p−1
(
t̃1
)
dt̃1

∫
Ω3

ψµ
(
t̃2
)
dt̃2

) p−1
p

and

C (p) = C6R
−β2+

(p−1)
p

(
(2N+2)β1

β
+2

)
where

C6 =

(∫
Ω1

1

ψµ (η̃) dη̃

∫
Ω2

ψµ
(
t̃1
)
dt̃1

∫
Ω3

∣∣∣Dβ2

t̃2|R−1T
ψµ
(
t̃2
)∣∣∣ p

p−1
ψ

−µ
p−1
(
t̃2
)
dt̃2

) p−1
p

,

for some positive constant KĈ, where

Ĉ = max

{
(C

1
q

5 C2)
pq

pq−1 , (C
1
q

6 C2)
pq

pq−1 , (C
1
q

4 C2)
pq

pq−n , (C
1
q

5 C3)
pq

pq−1 ,

(C
1
q

6 C3)
pq

pq−1 , (C
1
q

4 C3)
pq

pq−n , (C
m
q

5 C1)
pq

pq−m , (C
m
q

6 C1)
pq

pq−m , (C
m
q

4 C1)
pq

pq−nm

}
.

Hence, we obtain

(4.10) Iv + Iµ0 ≤ KĈ {Rσ1 +Rσ2 + . . .+Rσ9} .

Similarly, we obtain for Iu the estimate

(4.11) Iu + Jµ
0 ≤ K

̂̂
C
{
Rδ1 +Rδ2 + . . .+Rδ9

}
,

where the value
̂̂
C is set as the value setting Ĉ. Finally, by tending R→ ∞, we

observe that:
Either max {σ1, . . . , σ9, δ1, . . . , δ9} < 0 and in this case, the right hand side

tends to zero while the left hand side is strictly positive. Hence, we obtain a
contradiction. Or, max {σ1, . . . , σ9, δ1, . . . , δ9} = 0 and in this case, following
the analysis similar as in one equation, we prove a contradiction.

References

[1] A. El Hamidi, M. Kirane, Nonexistence results of solutions to systems of
semilinear differential inequalities on the Heisenberg group, Abstract and
Applied Analysis, 2004 (2004), 155-164.

[2] Diego Chamorro, Inégalités de Gagliardo-Nirenberg précisées sur le groupe
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Abstract. Wireless sensor networks consist of microprocessor controlled sensors that
communicate with each other over multi-hop communication networks. In WSN, the
energy consumption of sensor networks for communication can be obviously bigger than
the energy required to operate computation that would bring us unimaginable benefits
if communication and computation between each node can be somehow isolated. In
this paper, a neurodynamic optimization approach is proposed based on the event-
triggered algorithm for handling standard NUM problem in WSN. We first confirm
that the equilibrium point set of the designed neural network model based on event-
triggered algorithm corresponds to the optimal solution of the NUM problem. Then,
it is proved that the proposed neural network model is stable in the sense of Lyapunov
and is convergent to the optimal solution. Finally, a numerical example is provided to
illustrate the performance of the proposed neural network.

Keywords: wireless sensor networks, neural network, distributed optimization, event
triggered, network utility maximization.

1. Introduction

In recent years, the distributed optimization algorithm, which is more powerful
than traditional optimization in large-scale problems, has attracted attention
from more and more researchers. Various optimization problems in sensor net-
works, smart grids, computation, etc. [1, 2, 3, 4], have been studied by using
distributed algorithms.

The wireless sensor network (WSN) consists of nodes with limited energy and
memory and helps to monitor the far located areas out of the human reach. The
sensor nodes gather and send information to the public mobile communication
base station. The nodes can only communicate with the nearby nodes. The
human administrators control the sensor network convey orders in time and get
reactions throughout the public mobile communication base station. The sensor
nodes and the battery are both small in size only to provide limited energy and
power to the nodes.

Generally speaking, it is impractical and sometimes impossible to replace
the battery to maintain a longer network lifetime. The sensor nodes utilize high
amount of energy in sensing the environmental activities and communicating
with other nodes in the network, sensation and communication with affects the
network lifetime. The lifetime of the network can be increased by using various
protocols that conserve the residual energy of the sensor nodes [5]. For instance,
an artificial bee colony algorithm can be applied to extend the network lifetime
[6]. The reference [7] proposed distributed algorithms to calculate and compute
the best routing scheme that maximizes the time where the initial node in the
network runs out of energy.

One way of conserving energy of the sensor nodes is reducing the complex-
ity of messaging by means of applying a novel distributed algorithms called
the event-triggered algorithm. Under the event-triggered algorithm, each agent
sends information from itself to its neighbours when a local “error” signal is
bigger than a state dependent threshold. The activation of the event-triggered
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system is due to the occurrence of a major event. In a time-triggered system,
the activities are initiated periodically at a preset point in real-time [8]. In order
to reduce the demand of communication in smart grid, Li et al. [9] presented
a distributed optimization approach based on an event-triggered communica-
tion under the economic dispatch problem. In order to reduce the demand of
information and communication in WSN, Pu and Lemmon [10] presented a dis-
tributed optimization approach based on the event-triggered communication.
Similar approaches of resource allocation were used in [11] and [12]. However,
these approaches are traditional optimization algorithms and lower in efficiency
in large-scale computing problems. Because of the inborn large-scale parallelism,
the neural network method can solve optimization problems in calculating time
at the order of magnitude. It is much faster than those optimization algorithms
implemented on general-purpose digital computers [13].

Since the mid-1980s, the neurodynamic optimization approach based on
continuous-time recurrent neural networks (RNNs) has been extensively stud-
ied. Hopfield and Tank [14] proposed a neural network approach to solve linear
programming problems. In [15], an RNN to handle a class of nonlinear optimiza-
tion problem was discovered by Kennedy and Chua. Since then, many neural
network models were proposed and studied. Yan, Wang and Li [16] presented
a neurodynamic approach for bound-constrained global optimization problem.
Qin et al. [17] presented a neurodynamic approach for solving a class of con-
vex optimization problems with equality and inequality constraints. In [18],
a complex-valued neural network was presented to handle a class of complex-
valued nonlinear convex optimization problem. In [19], a one-layer RNN was
proposed for solving a class of non-linear non-smooth pseudoconvex optimiza-
tion problem with linear equality constraints. Recently, a collaborative neuro-
dynamic approach to multiobjective optimization was presented to attain both
goals of pareto optimality and solution diversity[20]. The collaborative neurody-
namic approach demonstrates higher efficiency in seeking for the global optimal
solution [21]. A collaborative neurodynamic approach based on the distributed
constrained optimization was proposed in [22]. A collaborative neurodynamic
optimization approach for solving global and combinatorial optimization was
designed in [23]. [16] presented a new collaborative neurodynamic optimization
approach for solving a class of nonconvex optimization problems with bound
constraints.

Because of the inherent massive parallelism, the neurodynamic optimization
approach can solve optimization problems in running time much faster than
those of the most popular optimization algorithms executed on general-purpose
digital computers [25]. However, in WSN, there is a dearth of literature on
the neurodynamic optimization algorithms. In this paper, we use a neurody-
namic optimization approach to solve the network utility maximization (NUM)
problems in WSN.

The rest of this paper is organized as follows: Some basic concepts of the
problem are introduced in Section 2. Descriptions of the neurodynamic approach
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are provided in Section 3. In Section 4, the simulation examples are given to
show the performance and effectiveness of the proposed neural network model.
In Section 5, we give the conclusion of this paper.

2. Problem formulation

In this section, we introduce some background information. The data gathering
problem in WSN studied in [10] is formulated as

max U(x) =
∑

i∈V Ui(xi)
s.t. Ax ≤ c̄

(etx + erx)Ax− erxx ≤ b(t),

where x = [x1, x2, · · · , xN ]T , xi ∈ R and xi ≥ 0 stands for the data rate of
the node i. c̄ ∈ RM is the vector of node capacitie. A ∈ RN×N is the routing
matrix of the relaying relationship between nodes. Aji, the ji-th component,
is 1 if node i communicates with j and is 0 if node i does not communicate
with j. The j-th row of Ax means the total data rates node j requires to
send, which is not higher than its capacity c̄j . etx represents the energy used in
transmitting and erx represents the energy used in receiving one unit of data.
In the last inequality constraint, b(t) = [b1(t), b2(t), · · · , bN (t)]T represents the
expected energy rate of reduction on node i at instant t. The cost function U is
the sum of the node utility functions Ui(xi). By simplifying the notations and
descriptions, we obtain that

(1)
max U(x) =

∑
i∈V Ui (xi)

s.t. Ax ⩽ c, x ⩾ 0,

where

c = min

{
c̄,

b(t)

etx + ert

}
.

Equation (1) is a NUM problem and c is a constant.
In NUM problem, we have the following equation by applying the augmented

Lagrangian method,

(2)

L̄(x, s;λ,w) = −
∑
i∈V

Ui (xi) +
∑
j∈V

λj

(
aTj x− cj + sj

)
+1

2

∑
j∈V

1
wj

(
aTj x− cj + sj

)
,

where s ∈ Rn represents the slack variable and sj ≥ 0, j ∈ V. The vector
aTj = [Aj1, Aj2, · · · , AjN ] is the j-th row of the routing matrix A. The penalty
parameter wj is related to all constraints, and w = diag{w1, w2 · · · , wN} is the
diagonal matrix and the elements in the matrix are made up of penalty param-
eters. Under the Karush-Kuhn-Tucker condition, λj is the Lagrange multiplier
as related to node constraint cj − aTj x ≥ 0.
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Equation (2) can be rewritten as

(3) L(x;λ,w) =
∑
j∈V

ψj(x;λ,w) −
∑
i∈V

Ui (xi) ,

where

ψj(x;λ,w) =

{
−1

2wjλ
2
j , if cj − aTj x− wjλj ≥ 0,

λj
(
aTx− cj

)
+ 1

2wj

(
aTx− cj

)2
, otherwise.

The minimizer of L(x;λ,w) is sufficiently approximated to the solution of
problem (1) when λj = 0 and wj is sufficiently small. The algorithm is as follows
[24]:
Step 1. Select initial data rate x0 > 0, let λj = 0 and sufficiently small wj >
0, j ∈ V .
Step 2. Minimize L(x;λ,w), where γ is a sufficiently small step size,

x = max
{
0, x0 − γ∇xL

(
x0;λ,w

)}
, x0 = x.

In paper [10], we know that ρ is a constant, L̄ is the maximum number of
relay nodes and S̄ is the maximum number of nodes. For all i ∈ V, ℓ ∈ R+ and

any t ∈
[
TLj [ℓ], T

L
j [ℓ+ 1]

)
,

zi(t) = ẋi(t) =

∇Ui (xi(t))−∑
j∈Li

µ̂j(t)

+

xi(t)

,

µj(t) =
1

wj

(
aTj x(t)− cj

)+
,

ẑi(t) = zi
(
TSi [ℓ]

)
.

TSi [ℓ] is the ℓ- th time instant when node i sends information of its user state
to all nodes j ∈ Li.

µ̂j(t) = µj
(
TLj [ℓ]

)
.

The sequence TLj [ℓ] represents time instants when node j transmits its link
state to the relay nodes. Then, we have the following lemma.

Lemma 1 ([10]). The data rate x(t) asymptotically converges to the unique
minimizer of L(x;λ,w), while

z2i (t)− ρẑ2i (t) ≥ 0,

for t ∈
[
TSi [ℓ], T

S
i [ℓ+ 1]

)
,

ρ
∑
i∈Sj

1

L̄
ẑ2i (t)− L̄S̄ (µj(t)− µ̂j(t))2 ≥ 0,

for t ∈
[
TLi [ℓ], T

L
i [ℓ+ 1]

)
.
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3. Neural network model

Lemma 1 supplies the infrastructure for constructing a neurodynamic optimiza-
tion approach based on the event-triggered message-passing protocol. Accord-
ingly, we propose the following neural network based on the event-triggered
algorithm adopted from [10]

(4)



.
xi = xi − (xi + γ (zi − (µj − µ̂j)Aij))+

ẑi(t) =

{
zi(T

+), zi ≥
√
ρẑi

zi(t), zi <
√
ρẑi

µ̂j(t) =

{
µj(T

+),
√
ρ 1√

L̄
ẑi ≥

√
L̄S̄(µj − µ̂j)

µj(t),
√
ρ 1√

L̄
ẑi <

√
L̄S̄(µj − µ̂j),

where, L̄
√
S̄ ≤ Aji, T

+ is the time instant when zi ⩽
√
ρẑi and

√
ρ 1√

L̄
ẑi ⩽

√
L̄S̄(µj − µ̂j).

Lemma 2. System (4) is convergent to the unique optimal solution of prob-
lem (1).

Proof. Let

M(x) = − [z − (µ− µ̂)A] =M,

then, we have

ẋ = x− (x− γM)+.

The dynamic equation of the proposed continuous-time projection neural
network model is

(5)
dy

dt
= g(y)− γM(g(y))− y

output equation x = g(y).

Assume that x∗ is the solution of (4). According to

x∗ = [−γM (x∗) + x∗]+ ,

we obtain that

x∗ = g (−γM (x∗) + x∗) ,

where g(x) is the projection operator.

Let y∗ = −γM (x∗) + x∗, then x∗ = g (y∗). It follows that

y∗ = −γM (x∗) + g (y∗) ,

y∗ = −γM (g (y∗)) + g (y∗) .



NEURAL DYNAMIC OPTIMIZATION ALGORITHM BASED ON EVENT TRIGGERED ... 77

Then 0 = g (y∗)− γM (x∗)− y∗, thus y∗ is an equilibrium point of the system

dy

dt
= g(y)− γM(g(y))− y.

Assume ȳ is an equilibrium point of (5), they satisfies

x̄− γM(x̄)− ȳ = 0,

where x̄ = g(ȳ).
Let

M̄ =M(x̄) =M(g(ȳ)) =
[
z̄i − (µ̄j − ¯̂µj)Aji

]
,

where z̄i = z̄i(x) = zi(x̄) and ¯̂µj = ¯̂µj(x) = µ̂j(x̄).
According to

−ȳ + x̄− γM(x̄) = 0

and
dy

dt
= −y + g(y)− γM(g(y)),

we put the equilibrium point to the origin

dy

dt
= −γ(M(x)−M(x̄))− (y − ȳ) + (x− x̄).

Consider the following Lyapunov function V (y) = ∥y − ȳ∥2. According to
the chain rule, we have

V̇ (t) = ẏ(t)(∇V (y))T

= 2[−(y − ȳ) + (x− x̄)− γ(M − M̄))](y − ȳ)T

= −2(y − ȳ)T (y − ȳ) + 2(y − ȳ)T (x− x̄)
− 2γ(y − ȳ)T (M − M̄))

= 2γ
{
(x− x̄)T

(
M − M̄

)
−
(
M − M̄

)}
.

According to Lemma of variational inequality [26], we have

(x− x̄)T
(
M − M̄

)
= (x− x̄)T

(
M − M̄ + x̄− x̄

)
= −(x− x̄)T

(
x̄− (M − M̄ + x̄)

)
≤ 0,

when
(
M − M̄

)
≥ 0, we have V̇ ≤ 0.

According to [10], we have µ̄j = ¯̂µj , z̄i = 0 then(
M − M̄

)
= −[(z − z̄)−Aji

(
(µ− µ̂j)− (µ̄− ¯̂µj)

)
]

= −[z −Aji(µ− µ̂j)]
= −[z −√ρẑ +√ρẑ −Aji(µ− µ̂j)].

In the conditions of the proposed model, zi ⩽
√
ρẑi,

√
ρ 1√

L̄
ẑi ⩽

√
L̄S̄(µj −

µ̂j), L̄
√
S̄ ≤ Aji, we have zi ⩽

√
ρẑi,

√
ρẑi ⩽ Aji(µj − µ̂j), then

(
M − M̄

)
≥ 0,

thus, we have V̇ ≤ 0 then, system (4) is convergent to the unique optimal
solution of problem (1).
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4. Illustrative example

In this part, the effectiveness of the neural dynamic optimization approach based
on event-triggered algorithm is demonstrated by a simulation example.

Consider the following NUM problem

(6)
min U (x)
s.t. Ax ≤ C

As a special case, the number of communication nodes we consider is 2, and
the node utility function U(x) = x21 + x22.

Let C = [2, 3]T , A =

[
0 1
1 0

]
, ρ = 0.25, λ = 0, γ = 0.09, ω = 0.05, and

x ∈ [0, 10]. We apply the neurodynamic optimization approach based on event-
triggered algorithm (4) to solve this example. By the above assumptions, as
shown in Figure 1 and Figure 2, it can be seen that all trajectories converge to
the solutions 2.223 and 3.337.
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Figure 1: Transient behaviors of x1
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Figure 2: Transient behaviors of x2

5. Conclusions

In this paper, we propose a neurodynamic optimization approach based on event-
triggered algorithm for solving the NUM problems in WSN. The paper shows
that the proposed neural network model based on event-triggered algorithm is
stable in the sense of Lyapunov and converges to the optimal solution under
event-triggered mechanism. Moreover, in traditional optimization algorithms,
their efficiency is lower than the neurodynamic optimization approach. Finally,
the effectiveness of the neural dynamic optimization method based on event-
triggered algorithm is demonstrated by a simulation example. In the future
study, we will look more into the neurodynamic optimization approach based
on time-triggered algorithm.
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tended hypergeometric function, Mellin transform.
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1. Introduction

The well known Hurwitz-Lerch Zeta function (HLZF) is defined by (see, [2],
[10], [11]):

(1.1) Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
,

(a ∈ C \ Z0; s ∈ C, when | z |< 1;ℜ(s) > 1,when | z |= 1).
Due to diverse applications of Hurwitz-Lerch Zeta function (HLZF), several

extensions of Φ(z, s, a) have been introduced and studied (see, for example [1],
[3], [4], [5], [8], [10], [11], [12] etc).

Very recently, Parmar et al. [9] defined the following extended Hurwitz-Lerch
Zeta function (HLZF):

(1.2) Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) =

∞∑
n=0

(λ)nB
(ρ,σ)
p (µ+ n, γ − µ)
n!B(µ, γ − µ)

zn

(n+ a)s
,

(p ≥ 0,ℜ(ρ) > 0,ℜ(σ) > 0;λ, µ ∈ C; γ, a ∈ C \ Z0; s ∈ C, when | z |<
1;ℜ(s+ γ − λ− µ) > 1, when | z |= 1), where B

(ρ,σ)
p (x, y) is the extended Beta

function (see [6]):

(1.3) B(ρ,σ)
p (x, y) =

∫ 1

0
tx−1(1− t)y−1

1F1(ρ;σ;
−p

t(1− t)
)dt.

They also presented the integral representation of (1.2)

(1.4) Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) =

1

Γ(s)

∫ ∞

0
ts−1e−atF (ρ,σ)

p (λ, µ; γ; ze−t)dt.

For ρ = σ, (1.2) reduces to the Hurwitz-Lerch Zeta function (HLZF) defined by
Parmar and Raina [8], which, further for p = 0, gives the known extension of
(1.1) (see [3]).

In a sequel of above-mentioned works, we introduce a further extension of

Φ
(ρ,σ)
λ,µ;γ(z, s, a; p) by using the generalized Beta function defined by Parmar [7].

2. Extended Hurwitz-Lerch Zeta function (EHLZF)

Here we define the following extension of (1.2):

(2.1) Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) =

∞∑
n=0

(λ)nB
(ρ,σ;m)
p (µ+ n, γ − µ)
n!B(µ, γ − µ)

zn

(n+ a)s
,

(p ≥ 0,ℜ(ρ) > 0,ℜ(σ) > 0,ℜ(m) > 0;λ, µ ∈ C; γ, a ∈ C \ Z0; s ∈ C, when
| z |< 1;ℜ(s + γ − λ − µ) > 1, when | z |= 1), where B

(ρ,σ;m)
p (a, b) is the

extended Beta function (see, Parmar [7])

(2.2) B(ρ,σ;m)
p (a, b) =

∫ 1

0
xa−1(1− x)b−1

1F1(ρ;σ;
−p

xm(1− x)m
) dx.
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He [7] also gave the following extension of Gauass hypergeometric function:

(2.3) F (ρ,σ;m)
p (a, b; c; z) =

∞∑
n=0

(a)nB
(ρ,σ;m)
p (b+ n, c− b)
B(b, c− b)

zn

n!
.

If we setm = 1 in (2.1), we get the known extended Hurwitz-Lerch Zeta function
given by (1.2).

Remark 2.1. The extended Hurwitz-Lerch Zeta function (EHLZF)

Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

has the following limiting case:

Φ∗(ρ,σ;m)
µ;γ (z, s, a; p) = lim

|λ|−→∞

{
Φ
(ρ,σ;m)
λ,µ;γ

( z
λ
, s, a; p

)}
=

∞∑
n=0

B
(ρ,σ;m)
p (µ+ n, γ − µ)
n!B(µ, γ − µ)

zn

(n+ a)s
.(2.4)

(p ≥ 0,ℜ(ρ) > 0,ℜ(σ) > 0,ℜ(m) > 0;µ ∈ C; γ, a ∈ C \ Z0; s ∈ C, when
| z |< 1;ℜ(s+ γ − µ) > 1, when | z |= 1).

3. Integral representations of Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

In this section we deal with some integral representations of (2.1):

Theorem 3.1. The following integral representation of EHLZF Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

holds true:

(3.1) Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) =

1

Γ(s)

∫ ∞

0
ts−1e−atF (ρ,σ;m)

p (λ, µ; γ; ze−t)dt,

(ℜ(p) ≥ 0,ℜ(ρ) > 0,ℜ(σ) > 0,ℜ(m) > 0; p = 0,ℜ(a) > 0;ℜ(s) > 0, when
| z |≤ 1(z ̸= 1);ℜ(s) > 1, when z = 1).

Proof. We have
1

(n+ a)s
=

1

Γ(s)

∫ ∞

0
ts−1e−(n+a)tdt.

By using the above result in (2.1) and after changing the order of summation
and integration, which is guaranteed under the conditions, we get

Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)=

1

Γ(s)

∫ ∞

0
ts−1e−at

( ∞∑
n=0

(λ)nB
(ρ,σ;m)
p (µ+γ, γ−µ)
B(µ, γ−µ)

(ze−t)n

n!

)
dt,

which upon using (2.3), yields the required result.
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Theorem 3.2. The following integral representation of EHLZF Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

holds true:

(3.2) Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) =

1

Γ(λ)

∫ ∞

0
tλ−1e−tΦ∗(ρ,σ;m)

µ,γ (zt, s, a; p)dt.

(ℜ(p) ≥ 0,ℜ(ρ) > 0,ℜ(σ) > 0,ℜ(m) > 0; p = 0,ℜ(λ) > 0; ℜ(a) > 0;ℜ(s) > 0,
when | z |≤ 1(z ̸= 1);ℜ(s) > 1, when z = 1).

Proof. We have

(λ)n =
1

Γ(λ)

∫ ∞

0
tλ+n−1e−tdt.

By using the above result in (2.1) and after changing the order of summation
and integration, which is guaranteed under the conditions, we get

Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)=

1

Γ(λ)

∫ ∞

0
tλ−1e−t

( ∞∑
n=0

B
(ρ,σ;m)
p (µ+n, γ−µ)
B(µ, γ − µ)

(zt)n

n!(n+ a)s

)
dt,

which upon using (2.4), we arrive at our required result.

4. Mellin transform

The Mellin transform of the function f(u) is given by

(4.1) M{f(u); s} = ϕ(s) =

∫ ∞

0
us−1f(u)du.

Theorem 4. For the new extended Hurwitz-Lerch Zeta function

EHLZF Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p), we have the following Mellin transform representa-

tion:

M
{
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

}
=

Γ(ρ,σ)(s)Γ(mα+ µ)

B(µ, γ − µ)Γ(2mα+ γ)
Φλ,mα+µ;2mα+γ(z, s, a).(4.2)

(ℜ(s) > 0,ℜ(mα + µ) > 0,ℜ(2mα + γ) > 0, 0 < ℜ(µ) < ℜ(γ)), where Γ(ρ,σ)(s)
and Φλ,µ;γ(z, s, a) are the extended Gamma function and Hurwitz-Lerch Zeta
function, respectively ([7] and [3, p.313]).

Proof. Using the definition (4.1) on the L.H.S of (4.2) and then expanding

Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) with the help of (2.1), we get

M
{
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

}
=

∫ ∞

0
pα−1

( ∞∑
n=0

(λ)nB
(ρ,σ;m)
p (µ+ n, γ − µ)
n!B(µ, γ − µ)

zn

(n+ a)s

)
dp.
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Now, changing the order of integration and summation, we get

M
{
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

}
=

∞∑
n=0

(λ)nz
n

n!(n+ a)sB(µ, γ − µ)

∫ ∞

0
pα−1B(ρ,σ;m)

p (µ+ n, γ − µ)dp

=
∞∑
n=0

(λ)nz
n

n!(n+ a)s
B(mα+ µ+ n, γ − µ+mα)

B(µ, γ − µ)
Γ(ρ,σ)(s),

where Γ(ρ,σ)(s) is the generalized Gamma function given in Parmar [7].
Now, expanding B(mα + µ + n, γ − µ +mα) in terms of Gamma function

and then by using the result Γ(λ+ n) = Γ(λ)(λ)n, we get

M
{
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

}
=

Γ(ρ,σ)(s)Γ(mα+ µ)

B(µ, γ − µ)Γ(2mα+ γ)

∞∑
n=0

(λ)n(mα+ µ)n
n!(2mα+ γ)n

zn

(n+ a)s
.

Finally, using the definition of Hurwitz-Lerch Zeta function (HLZF) given
in [3, p.313], we arrive at our required result.

5. Generating relations

Theorem 5.1. For p ≥ 0, λ ∈ C and | t |< 1, the following generating function

of Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) holds true:

(5.1)
∞∑
n=0

(λ)nΦ
(ρ,σ;m)
λ+n,µ;γ(z, s, a; p)

tn

n!
= (1− t)−λΦ

(ρ,σ;m)
λ,µ;γ

(
z

1− t
, s, a; p

)
.

Proof. Let us denote the left hand side of (5.1) by L1. By using the series
expression given in (2.1) into L1, we find that

(5.2) L1 =

∞∑
n=0

(λ)n

{ ∞∑
k=0

(λ+ n)kB
(ρ,σ;m)
p (µ+ k, γ − µ)
B(µ, γ − µ)

zk

k!(k + a)s

}
tn

n!
,

which by changing the order of summation, gives

(5.3) L1 =
∞∑
k=0

(λ)kB
(ρ,σ;m)
p (µ+ k, γ − µ)
B(µ, γ − µ)

{ ∞∑
n=0

(λ+ k)n
tn

n!

}
zk

k!(k + a)s
.

Now, applying the following binomial expansion:

(1− λ)−(λ+k) =
∞∑
n=0

(λ+ k)n
tn

n!
, (| t |< 1),
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for evaluating the inner sum in (5.3) and then by using (2.1), we get our desired
result.

Theorem 5.2. For p ≥ 0, λ ∈ C and | t |<| a |; s ̸= 1, the following generating

function of Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) holds true:

(5.4) Φ
(ρ,σ;m)
λ,µ;γ (z, s, a− t; p) =

∞∑
n=0

(s)n
n!

Φ
(ρ,σ;m)
λ,µ;γ (z, s+ n, a; p) tn.

Proof. Let us denote the left hand side of (5.4) by L2. Then by using (2.1), we
get

L2 =
∞∑
l=0

(λ)lB
(ρ,σ;m)
p (µ+ l, γ − µ)
B(µ, γ − µ)

zl

l!(l + a− t)s

=
∞∑
l=0

(λ)lB
(ρ,σ;m)
p (µ+ l, γ − µ)
B(µ, γ − µ)

zl

l!(l + a)s
(1− t

l + a
)−s

=
∞∑
l=0

(λ)lB
(ρ,σ;m)
p (µ+ l, γ − µ)
B(µ, γ − µ)

zl

l!(l + a)s

{ ∞∑
n=0

(s)n
n!

(
t

l + a

)n
}

=

∞∑
n=0

(s)n
n!

( ∞∑
l=0

(λ)lB
(ρ,σ;m)
p (µ+ l, γ − µ)
B(µ, γ − µ)

zl

l!(l + a)s+n

)
tn.

Finally, by making use of (2.1), we get the desired assertion (5.4).

Remark 5.1. For m = 1, the generating function (5.1) and (5.4) asserted by
Theorem 5.1 and Theorem 5.2, respectively, were derived earlier by Parmar et
al. [9].

6. Derivation of Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

In this section we provide a differential formula of our new extended Hurwitz-

Lerch Zeta function (EHLZF) Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p).

Theorem 6. The following differential formula holds true:

(6.1)
dr

dzr

[
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

]
=

(µ)r(λ)r
(γ)r

Φ
(ρ,σ;m)
λ+r,µ+r;γ+r(z, s, a+ r; p),

where r ∈ N = {1, 2, 3, · · · }.

Proof. Taking the derivative of Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p) with respect to z, we get

d

dz

[
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

]
=

d

dz

[ ∞∑
n=0

(λ)nB
(ρ,σ;m)
p (µ+ n, γ − µ)
n!B(µ, γ − µ)

zn

(n+ a)s

]

=

∞∑
n=1

(λ)nB
(ρ,σ;m)
p (µ+ n, γ − µ)

(n− 1)!B(µ, γ − µ)
zn−1

(n+ a)s
.
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Replacing n by n+ 1, we get

d

dz

[
Φ
(ρ,σ;m)
λ,µ;γ (z, s, a; p)

]
=
µλ

γ

∞∑
n=0

(λ+ 1)nB
(ρ,σ;m)
p (µ+ n+ 1, γ − µ)

n!B(µ+ 1, γ − µ)
zn

((n+ 1 + a)s

=
µλ

γ
Φ
(ρ,σ;m)
λ+1,µ+1;γ+1(z, s, a+ 1; p).

Recursive of this procedure yields us the desired result (6.1).
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Abstract. The ecological food web problems and their impact on the environment play
vital role for balancing of some environments in our daily life. In the present work, the
analytic results of an ecological food web-model are rigorously examined and analyzed.
The model includes interactions and natural variables occur in different organisms of
the species that influence by the competition and refuge as two basic conditions. The
persistence of variant species for the resources competition is also analyzed. The global
asymptotic stability of the positive equilibrium points is investigated numerically based
on the Runge-Kutta predictor-corrector algorithm. Finally, the effects of the variation
of each parameter on the proposed model are inspected numerically.

Keywords: food web-model, global stability, persistence, period dynamic, stage-
structure.

1. Introduction

Our external environment suffers from many problems, including environmental,
economic, social, ..., etc, as well as, the spread of epidemics and infectious
diseases of all kinds. However, with the current technological universe and the
increase of population, many scientists are motivating to orient their interest
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for studying such natural phenomena, through mathematical modeling to be
analyzed deeply [1, 2, 3, 4, 5, 6, 7, 8].

With the time, and the arrival of the age of technology accompanied by the
increase in the population, these problems have become more complex and more
difficult. Therefore, it has become necessary to use modern technologies to help
us in diagnosing and analyzing the scientific results that obtained in theory. A
comprehensive number of studies have been developed to solve such difficulty
and complexity. Marcus R. [9] presented two finite-difference algorithms for
studying the dynamics of spatially extended predator-prey interactions with
the Holling type II functional response and logistic growth of the prey. Naji,and
Hussien, [10] proposed an epidemic model that describes the dynamics of the
spread of two different types of infectious diseases that spread through both
horizontal and vertical transmission in the host population. Whereas, Li, Hongli,
et al. [11] investigated a three-species food chain model in a patchy environment,
where the prey species, mid-level predator species, and top predator species can
disperse among n different patches (n ≥ 0).

The environmental-model that deals with endangered species (lemur ani-
mals) and two types of hunters (the black panthers and hyenas animals) that
are link together by a food web is studied and analyzed theoretically by Al-
Jubouri, et al. in [12].

The essential contribution of this study lies in demonstrating the theoretical
aspect of model (2) given in [12]. New criteria are introduced to study the
global stability of its unique equilibrium points, as well as, their existence. The
simulations results substantiate the feasibility of the analytical findings.

2. Mathematical formulation

The idea of the proposed ecological-model is based on three-types of different
species link together by a food web model. A high dimensional prey- predator
model proposed in [12] is shown in Figure 1, and expressed mathematically in
equation (1).

This model will be represented by the following nonlinear autonomous dif-
ferential equations,

dI1
dT

= rI2 − I1
(

ρ1(1−m)

b1 + (1−m)I1
P1 + a1(1−m)P2 + β + d1 + c1I1

)
,

dI2
dT

= βI1 − I2
(

ρ2(1−m)

b2 + (1−m)I2
P1 + a2(1−m)P2 + d2 + c2I2

)
,

dP1

dT
= P1

(
e1ρ1(1−m)I1
b1 + (1−m)I1

+
e2ρ2(1−m)I2
b2 + (1−m)I2

− d3 − c3P2

)
,(2.1)

dP2

dT
= P2 (e3a1(1−m)I1 + e4a2(1−m)I2 − d4 − c4P1) .

This model consists of a two stage-structure of prey species (Lemur animals),
which is an immature I1(t), and a mature I2(t), with a mid-level predator
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Figure 1: Sketch, showing the idea of mathematical simulation of an Ecological-
model.

(Hyenas) P1(t), and a top-level predator (the black panthers) P2(t). Each of,
I1, I2, P1, and P2 are representing the densities of populations at time (t). Fur-
thermore, all the parameters used are positive and will be described biologically
through Table 1.

Table 1: The inputs of the mathematical model(1).
Parameters

Code in Model (1) Biological Description

r Actual increase average of a mature prey
β Actual increase average of an immature prey
c1,2 Competition average for an immature and mature prey
d1,2 Natural death average for an immature and mature prey
ρ1,2 Predation average for the prey- by a mid- level predator
b1,2 Semi saturation average for a mid- level predator
a1,2 Predation average for the prey- by a top- level predator
c3,4 Competition average between a predators species
d3,4 Death average for a predators after loss prey species
m Refuge average

(1−m) The number of prey exposed to predation by a predators
e1,...,4 Conversion average of a sustenance



GLOBAL STABILITY ANALYSIS AND PERSISTENCE ... 93

Using the dimensionless variables technique, we have,

t = rT, x =
c1
r
I1, y =

c2
r
I2, z =

ρ1c1
r2

P1 ,and w =
a1(1−m)

r
P2.

A coordination to these assumptions, the model becomes as,

dx

dt
= υ1y − x

(
z

υ2 + x
+ w + (υ3 + υ4) + x

)
= f1(x, y, z, w);x(0) ≥ 0,

dy

dt
= υ5x− y

(
υ6z

υ7 + y
+ υ8w + υ9 + y

)
= f2(x, y, z, w); y(0) ≥ 0,

dz

dt
= z

(
υ10x

υ2 + x
+

υ11y

υ7 + y
− υ12 − υ13w

)
= f3(x, y, z, w); z(0) ≥ 0,(2.2)

dw

dt
= w (υ14x+ υ15y − υ16 − υ17z) = f4(x, y, z, w);w(0) ≥ 0.

Here:
υ1 =

c1
c2
; υ2 =

b1c1
r(1−m) ; υ3 =

β
r ; υ4 =

d1
r ; υ5 =

βc2
rc1

; υ6 =
ρ2c2
ρ1c1

; υ7 =
b2c2

r(1−m) ;

υ8 = a2
a1
; υ9 =

d2
r
; υ10 = e1ρ1

r ; υ11 = e2ρ2
r ; υ12 = d3

r ; υ13 = c2
a1(1−m) ; υ14 =

e3a1(1−m)
c1

; υ15 =
e4a2(1−m)

c2
; υ16 =

d4
r ; υ17 =

rc4
ρ1c1

.

Since these functions are Lipschitzian on R4
+ = {(x, y, z, w) ∈ R4

+ : x(0) ≥
0, y(0) ≥ 0, z(0) ≥ 0 and w(0) ≥ 0}, then the solution of the model (2) exists
and unique.

3. Boundedness

Theorem 1. All the trajectories of model (2), with the initial points in R4
+ are

uniformly bounded. For the proof, we refer the reader to see [12].

4. Existence and stability analysis

The model (2) have at most five- biologically reasonable equilibrium points
Hi = (x, y, z, w), i = 0, ..., 4, which are exist under the conditions established
in [12].

In the following, the stability of model (2) near proper equilibrium points
Hi, i = 0, ..., 4 is discussed in [12].

1. The trivial point H0 = (0, 0, 0, 0), if the following condition hold

(4.1) u5 <
u9(u3 + u4)

u1
.

Then, the trajectories of model (2) tending to the asymptotically stable point
H0.

2. The predators-free point H1 = (x̄, ȳ, 0, 0), if the following conditions hold

u12 + u16 > n3 + n4,(4.2)

n3n4 + u12u16 > u16n3 + u12n4.(4.3)
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Then, the trajectories of model (2) tending to the asymptotically stable point
H1.

3. The mid-level predator-free point H2 = (¯̄x, ¯̄y, 0, ¯̄w), if the following con-
ditions hold

¯̄w > max{Γ1,Γ2},(4.4)

Γ3 > Γ4,(4.5)

Γ5 > Γ6.(4.6)

Then, the trajectories of model(2)tending to the asymptotically stable point H2.
For more details see [12].

4. The top-level predator-free point H3 = (¯̄̄x, ¯̄̄y, ¯̄̄z, 0), if the following condi-
tions hold

¯̄̄z >
u14 ¯̄̄x+ u15 ¯̄̄y

u17
,(4.7)

u12 < c3 < u12 + c1 + c2,(4.8)

((u12 + c1 + c2)− c3)ψ1 > (c3 − (u12 + c1 + c2))ψ2 +Q3.(4.9)

Then, the trajectories of model(2) tending to the asymptotically stable point
H2. For more details see [12].

5. Finally, the coexistence equilibrium point H4 = (x∗, y∗, z∗, w∗), if the
following conditions hold

p212 <
4

9
p11p22,(4.10)

p213 <
4

9
p11p33,(4.11)

p214 <
4

9
p11p44,(4.12)

p223 <
4

9
p22p33,(4.13)

p224 <
4

9
p22p44,(4.14)

p234 >
4

9
p33p44.(4.15)

Then, the trajectories of model(2) tending to the asymptotically stable point
H2. For more details see [12].

5. Numerical simulations

In this section, the quantitative behavior of model (2) is determined based on
Runge-Kutta predictor-corrector method using MATLAB. These simulations
demonstrate the previously obtained theoretical results of stability and equi-
librium of the proposed model given in [12]. Also, the global dynamics and
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persistence have been proven and materialized numerically. As in the Figures
2-9. Furthermore, the effects of changing parameter values of model (2) were
investigated. The proposed system was simulated numerically for the following
parameter values:

υ1 = 0.9, υ2 = 0.4, υ3 = 0.3, υ4 = 0.4, υ5 = 2.5, υ6 = 0.4,

υ7 = 0.6, υ8 = 0.2, υ9 = 0.7, υ10 = 0.9, υ11 = 0.9,(5.1)

υ12 = 0.25, υ13 = 0.09, υ14 = 0.9, υ15 = 1.1, υ16 = 0.04, υ17 = 0.33.

Taking the above data into consideration, the time series of the trajectories of
model (2) are shown in Figure 2.

Figure 2: The time series of system (2), starting with four different ini-
tial points (0.1, 0.3, 0.5, 0.7) , (0.4, 0.5, 0.7, 0.9), (0.8, 0.9, 1.5, 1.5) and
(0.5, 0.7, 0.2, 0.4).
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It illustrates that model (2) has globally asymptotically stable as the solution
of model (2) approaches asymptotically to the positive equilibrium point H4 =
(0.254, 0.714, 0.2, 0.309), which confirmed the obtained analytical results.

Next, we need to analyze the results of the asymptotic stability of points
Hi, i = 0, 1, 2, 3. Some parameter values affect the dynamical behavior of model
(2). At each time, the effect of varying of one parameter while the others are
fixed is discussed. The results are summarized in Table 1.

It can be seen that varying the value of parameters υi, i = 3, 4, 5 does not
affect the dynamic of model(2). Therefore, the solution of the model (2) still
converges to the coexisting (positive) equilibrium point H4 = (x∗, y∗, z∗, w∗).
Figures (3-6) show the time series of model (2) according to different parame-
ters, which converge to the equilibrium points Hi ; for i = 0, 1, 2, 3.

Table 2: The numerical behaviors and persistence of model (2) by changing of
a specific parameter and fixing the other.

Variable parameters in Numerical behavior of Persistence of
model(2) model(2) model(2)

0.01 ⩽ υ1 < 0.9 Converge to stable point H0 = (0, 0, 0, 0) Not Persist
0.9 ⩽ υ1 ⩽ 1 Converge to stable point in Int.R4

+ Persist
υ1 > 1 Converge to stable point in xy − plane Persist

0.3 < υ2 ⩽ 1.1 Converge to stable point in Int.R4
+ Persist

0.01 ⩽ υ5 < 0.6 Converge to stable point H0 = (0, 0, 0, 0) Not Persist
0.6 ⩽ υ5 < 2.5 Converge to stable point in xyw − space Persist
2.5 ⩽ υ5 < 3 Converge to stable point in Int.R4

+ Persist
υ5 ⩾ 3 Converge to periodic dynamics in Int.R4

+ Persist
0.13 < υ7 < 0.6 Converge to periodic dynamics in Int.R4

+ Persist
0.6 ⩽ υ7 < 1 Converge to stable point in Int.R4

+ Persist
0.01 ⩽ υ8 ⩽ 0.35 Converge to stable point in Int.R4

+ Persist
0.3 < υ9 < 0.7 Converge to stable point in xyz − space Persist
0.7 ⩽ υ9 ⩽ 0.95 Converge to stable point in Int.R4

+ Persist
0.8 ⩽ υ10 < 1 Converge to stable point in Int.R4

+ Persist
1 ⩽ υ10 < 2 Converge to stable point in xyz − space Persist
0.9 ⩽ υ11 < 2 Converge to stable point in Int.R4

+ Persist
υ11 ⩾ 2 Converge to periodic dynamics in Int.R4

+ Persist
0.2 < υ12 ⩽ 0.25 Converge to stable point in Int.R4

+ Persist
0.01 ⩽ υ13 ⩽ 0.1 Converge to stable point in Int.R4

+ Persist
0.1 < υ13 ⩽ 0.7 Converge to stable point in xyw − space Persist
0.01 ⩽ υ14 ⩽ 0.9 Converge to stable point in Int.R4

+ Persist
0.3 < υ15 ⩽ 1.1 Converge to stable point in Int.R4

+ Persist
0.035 < υ16 ⩽ 0.5 Converge to stable point in Int.R4

+ Persist
0.5 < υ16 ⩽ 2 Converge to stable point in xyz − space Persist

0.33 ⩽ υ17 < 0.8 Converge to stable point in Int.R4
+ Persist

0.8 ⩽ υ17 ⩽ 2 Converge to stable point in xy − plane Persist
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Figure 3: Time series of the trajectories for the data given in equation (18), with
υ1 = 0.01, which shows that the trajectories converge asymptotically
to the vanishing equilibrium point H0 = (0, 0, 0, 0).

Figure 4: Time series of the trajectories for the data given in equation (18), with
υ17 = 0.8, which shows that the trajectories converge asymptotically
to the predators-free equilibrium point H1 = (0.596, 0.416, 0, 0).

Figure 3 confirms the obtained analytic results regarding the existence of a
locally asymptotically stable trivial equilibrium point H0 = (0, 0, 0, 0), when de-
creasing the intra-specific competition rate between the prey species (immature
and mature prey) relative to the food and a refuge within limits (0.01 ⩽ υ1 <
0.9). Increasing υ1 in the range (0.9 ⩽ υ1 ⩽ 1) and keeping other parameters
constant as equation (18) shows that the solution of model(2) converges asymp-
totically to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) in Int.R4

+, see
Figure 2. In addition, model (2) converges asymptotically to the predators-free
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Figure 5: Time series of the trajectories for the data given in equation (18),
with υ13 = 0.7, which shows that the trajectories converge asymp-
totically to the mid-level predator-free equilibrium point H2 =
(0.018, 0.212, 0, 0.314).

Figure 6: Time series of the trajectories for the data given in equation (18),
with υ16 = 0.95, which shows that the trajectories converge asymp-
totically to the top-level predator-free equilibrium point H3 =
(0.075, 0.142, 0.898, 0).

point H1 = (x̄, ȳ, 0, 0) when υ1 > 1. In Figure 4, (0.33 ⩽ υ17 < 0.8) repre-
sents the growth rate of the prey populations (immature and mature prey). To
compete the predators for the predation of prey, it will expand, so the solution
of model (2) converges asymptotically to the predators-free equilibrium point



GLOBAL STABILITY ANALYSIS AND PERSISTENCE ... 99

Figure 7: Time series of the trajectories for the data given in equation (18),
with υ5 = 3, which shows that the trajectories approach the period
dynamics in Int.R4

+.

Figure 8: Time series of the trajectories for the data given in equation (18),
with υ7 = 0.1, which shows that the trajectories approach the period
dynamics in Int.R4

+.

H1 = (0.596, 0.416, 0, 0). Decreasing the range (0.33 ⩽ υ17 < 0.8), lead to ap-
proaching the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) in Int.R4

+. For
the constant parameters of equation (18), with (0.1 < υ13 ⩽ 0.7), which rep-
resents the inter-specific competition rate between the predators species (Top
and mid-level predators) relative to the food and existence, the solution of
model (2) converges asymptotically to the mid-level predator-free equilibrium
point H2 = (0.018, 0.212, 0, 0.314) as shown in Figure 5, while it approaches
asymptotically to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) when
(0.01 ⩽ υ13 ⩽ 0.1) as shown in Figure 2. When the natural death rate for
the top-level predator population relative to their growth rate is in the range
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Figure 9: Time series of the trajectories for the data given in equation (18),
with υ11 = 2, which shows that the trajectories approach the period
dynamics in Int.R4

+.

(0.5 < υ16 ⩽ 2), the solution of model (2) converges asymptotically to the top-
level hunter-free equilibrium point H3 = (0.075, 0.142, 0.898, 0) as shown in Fig-
ure 6. But, it still approaches to positive equilibrium point H4 = (x∗, y∗, z∗, w∗)
in (0.035 < u16 ⩽ 0.5).

Numerical simulations of model(2) shows that the model has periodic dy-
namics, as presented in Figures (7-9). For constant parameters of equation
(18), Figure 7 shows that the solution curves of model (2) approach to periodic
dynamics in Int.R4

+, when (υ5 ⩾ 3), which represents the growing rate for im-
mature prey relative to compete the prey population for existence. Reducing
the half-saturation constant for mid-level predator relative to compete the ma-
ture prey population to refuge within the limits (0.13 < υ7 < 0.6) which causes
an approaching to periodic dynamics in Int.R4

+, see Figure 8. Expansion the
predation rate, the mid-level predator for the mature prey population relative
to their growth rate within limits (υ11 ⩾ 2) leads to approaching the periodic
dynamics in Int.R4

+, as shown in Figure 9. Otherwise, model (2) still has a
globally asymptotically stable positive equilibrium point.

6. Discussion and conclusions

This study aims to analyze a mathematical model (2) describing a food web-
model with ecological reactions that occur between different species. We used
computational algorithms, through which, the nature of the relationship of these
organisms to the external environment and its direct impact on maintaining
the balance of nature has been known to them through computer simulation.
Initially, the effects of the variation of each parameter on the proposed model
are studied and analyzed numerically. This can be summarize as follows:
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1. Consider that the parameters’ values in equation (18) are fixed, then the
time series of the trajectories of model (2) converges to a globally asymp-
totically stable positive equilibrium point H4 = (0.254, 0.714, 0.2, 0.309),
this can be seen obviously in Figure 2.

2. The trajectories of model (2) again converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗), when changing the parameters values υi, i =
3, 4, 5, because it does not affect the nature of the dynamic behavior of
model(2).

3. The trajectories of model (2) converges to the trivial equilibrium point
H0 = (0, 0, 0, 0), when decreasing the intra-specific competition rate be-
tween the prey species (immature and mature prey) are relative to the food
and refuge within the limits (0.01 ⩽ υ1 < 0.9), as shown in Figure 3. Oth-
erwise, it converges to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗).

4. The trajectories of model (2) converges to the predators-free equilibrium
pointH1 = (0.596, 0.416, 0, 0), when expanding the growth rate of the prey
species (immature and mature prey) within the limits (0.33 ⩽ υ17 < 0.8),
as shown in Figure 4. Otherwise, it converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗).

5. The trajectories of model (2) converges to the mid-level predator-free equi-
librium point H2 = (0.018, 0.212, 0, 0.314), when the inter-specific compe-
tition rate between the predators species (Top and mid-level predators)
are relative to the food and existence within the limits (0.1 < υ13 ⩽ 0.7),
as shown in Figure 5. Otherwise, it converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗).

6. The trajectories of model (2) converges to the top-level predator-free equi-
librium point H3 = (0.075, 0.142, 0.898, 0), when the natural death rate
for the top-level predator population is relative to their growth rate in the
range (0.5 < υ16 ⩽ 2), as shown in Figure 6. Otherwise, it converges to
the positive equilibrium point H4 = (x∗, y∗, z∗, w∗).

Moreover, the computer simulations of food web-model (2) showed us that
model (2) possesses periodic dynamic behavior, this can be seen obviously
in Figures (7-9). For more details see Table 2.

However, from these numerical analyses and results discussion, we conclude
that the global stability of such complex ecological model that includes inter-
actions and occur in different organisms is demonstrated. Moreover, such envi-
ronmental, which has many conflicting can coexist within a common environ-
ment. Besides, the numerical experiments give a guarantee that a balance can
be reached and the organisms can overcomes the danger of extinction.
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Abstract. Two subclasses L
∑b,δ

Σ (µ, α) and L
∑b,δ

Σ (µ, β) of the class
∑

of Bi-univalent
functions have been introduced by making use of the Srivastava-Attiya operator. The
estimates of the coefficients |a2| and |a3| of functions have been found for these sub-
classes. The results obtained are quit interesting and new.

Keywords: univalent function, bi-univalent function, coefficients bounds, and Srivastava-
Attiya operator.

1. Introduction

Let Σ denotes the class of functions f of the form [1]

(1) f(z) = z +
∞∑
n=2

anz
n,

which satisfy the following two continuous:

i. Holomorphic in the unit disk U = {z ∈ C : |z| < 1},

*. Corresponding author
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ii. Normalized by f(0) = f ′(0)− 1 = 0.

In addition, with z ∈ U, the general form of Hurwitz-Lerch Zeta function
φ(δ, b, z) which are used with the convolution of holomorphic function can be
defined by:

(2) φ(δ, b, z) =

∞∑
K=0

zk

(k + b)δ
= b−δ +

z

(1 + b)δ
+

∞∑
k=2

zk

(k + b)δ
,

such that b is a complex number with b ̸= 0,−1,−2, . . . , µ ∈ C, and Re(δ) > 1.
Also, Srivastava and Attiya [2] defined the linear operators Qδ,b : Σ −→ Σ

by means of:

(3) Qδ,bf(z) = Gδ,b ∗ f(z) = z +

∞∑
k=2

(
1 + b

k + b

)δ

akz
k,

where Gδ,b ∈ Σ to be:

(4) Gδ,b = (1 + b)δ
[
φ(δ, b, z)− b−δ

]
= z +

∞∑
k=2

(
1 + b

k + b

)δ

zk.

Remark 1.1. Q0,b and Q−δ,b denotes the identity and inverse operator of Qδ,b

respectively.

Koebe one-quarter theorem includes the image of U under every univalent
functions f ∈ A with an open disk centered at origin and radius 1

4 . Therefore,
the inverse of every univalent function f ∈ A can be written as f−1 : f(U) −→ U
satisfying:

f−1(f(z)) = z, z ∈ U,

f
(
f−1(ω)

)
= ω, |ω| < r0(f), r0(f) ≥

1

4
.

Furthermore, we notice that the inverse function has the series expansion which
can be written in the form:

(5) f−1(ω) = ω − a2ω2 +
(
2a22 − a3

)
ω3 −

(
5a32 − 5a2a3 + a4

)
ω4 + . . .

In addition, a function f ∈ A is bi-univalent if both f and the inverse g = f−1

are univalent in U .
Recently, several authors are concentrating on these functions, which are

defined to the class Σ composed with various other features of the bi-univalent
function class Σ, considering the most two important subclasses of univalent
functions S∗(β) and C(β) of order β (see [2-7]). Consequently via definition,
the classes S∗(β) and C(β) can be written as:

S∗(β) =

{
f ∈ S : Re

(
zf ′(z)

f(z)

)
> β, z ∈ U and 0 ≤ β < 1

}
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and

C(β) =

{
f ∈ S : Re

(
1 +

zf ′′(z)

f ′(z)

)
> β, z ∈ U and 0 ≤ β < 1

}
.

For 0 ≤ β < 1, if both f and its inverse f−1 are starlike and convex function
of order β, then a function f ∈

∑
d is in the class S∗

Σ(β), or CΣ(β). These
classes are introduced and investigated by Brannan and Taha [3]. Moreover,
the coefficients |a2| and |a3| for functions in the classes S∗

Σ(β) and CΣ(β) have
been found.

The main objective of this study is to present new two subclasses of the class
Σ related to the Srivastava-Attiya operator [2,7,10] and accordingly to find the
estimation of the coefficients |a2| and |a3| for functions in these new subclasses
[11-13].

In order to prove our main results, we have to remembrance the following
lemma.

Lemma 1.1. If a function h(z) ∈ P ([6])

(6) h(z) = 1 + c1z + c2z
2 + c3z

3 + . . . , z ∈ U.

Then

(7) |ck| ≤ 2, k ∈ N.

P is the family of all functions p, that an analytic in U for which h(0) = 1 and
Re(h(z)) > 0.

2. Coefficient estimates of L
∑b,δ

Σ (µ, α)

Definition 2.1. Let f(z) related by (1). Then, it be in the class L
∑b,δ

Σ (µ, α),
if the following are fulfilled [4]:

(8) f ∈
∑

, arg

∣∣∣∣{(1− µ)Qδ,bf(z)

z
+ µ (Qδ,bf(z))

′
}∣∣∣∣ < απ

2

with 0 < α ≤ 1, µ ≥ 1, z ∈ U , and

(9) arg

∣∣∣∣{(1− µ)Qδ,bg(ω)

ω
+ µ (Qδ,bg(ω))

′
}∣∣∣∣ < απ

2
,

where 0 < α ≤ 1, µ ≥ 1, z ∈ U , and the function g is extended by g = f−1 and
given by:

(10) f−1(ω) = ω − a2ω2 +
(
2a22 − a3

)
ω3 −

(
5a32 − 5a2a3 + a4

)
ω4 + . . .

For the functions in the class L
∑b,δ

Σ (µ, α), we find the coefficients |a2| and |a3|.
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Theorem 2.1. Let f(z) which is given by (1) supposed to be in the class

L
∑b,δ

Σ (µ, α), 0 < α ≤ 1 and µ ≥ 1, δ ≥ 1. Then:

(11) |a2| ≤
2a√

α

((
1+b
3+b

)δ
(2 + 4µ)

)
+ (1− α)

(
1+b
2+b

)2δ
(1 + µ)2

and

(12) |a3| ≤
2α(

1+b
3+b

)δ
(1 + 2µ)

.

Proof. The inequalities (11) and (12) are equivalent to:

(13) (1− µ)
Qδ,bf(z)

z
+ µ (Qδ,bf(z))

′ = (p(z))α

and

(14) (1− µ)
Qδ,bf(ω)

ω
+ µ (Qδ,bf(ω))

′ = (q(ω))α,

where p(z) and q(w) satisfies the inequalities:

Re(p(z)) > 0, z ∈ U and Re(q(w)) > 0, w ∈ U.

Moreover, the functions p(z) and q(w) can be written as:

(15) p(z) = 1 + p1z + p2z
2 + . . .

and

(16) q(ω) = 1 + q1ω + q2ω
2 + . . .

As well, g(w) is given as in (3).

Now, by equating the coefficients in equations (11) and (12), we get:(
1 + b

2 + b

)δ

(1 + µ)a2 = p1α,(17) (
1 + b

3 + b

)δ

(1 + 2µ)a3 = p2α+
α(α− 1)

2
p21,(18) (

1 + b

2 + b

)δ

(1 + µ)a2 = −q1α,(19) (
1 + b

3 + b

)δ

(1 + 2µ)
(
2a22 − a3

)
= q2α+

α(α− 1)

2
q21.(20)
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From equations (18) and (19), we obtained:

(21) p1 = −q1

and

(22) 2

(
1 + b

3 + b

)δ

(2µ+ 1)2a22 = α (p1 + q1) +
α(α− 1)

2

(
q21 + p21

)
.

From (20), (21) and (22), we got:

(23) a22 =
α2
(
q22 + p22

)
α

((
1+b
3+b

)δ
(2 + 4µ)

)
+ (1− α)

(
1+b
2+b

)2δ
(1 + µ)2

.

By applying lemma (1) on the coefficients p2 and q2, we obtained:

(24) |a2| ≤
2α√

α

((
1+b
3+b

)δ
(2 + 4µ)

)
+ (1− α)

(
1+b
2+b

)2δ
(1 + µ)2

.

Now, to find the bound on |a3|, subtract (20) from (18) to get:

(25) 2

(
1 + b

3 + b

)δ

(1 + 2µ)a3 − 2

(
1 + b

3 + b

)δ

(1 + 2µ)a22 = α
(
p2 − q22

)
.

From (23) and with the help of p21 = q21, substitute the value of a22 to get:

(26) a3 =

α

[(
4α(1 + 2µ)

(
1+b
3+b

)δ
+ (1− α)(1 + µ)2

(
1+b
3+b

)δ)
p2

−(1− α)(1 + µ)2
(
1+b
2+b

)2δ
q22

]
2
(
1+b
3+b

)δ
(1 + 2µ)

[
2α(1 + 2µ)

(
1+b
3+b

)δ
+ (1− α)(1 + µ)2

(
1+b
2+b

)2δ] .
Now, considering Lemma 1.1 again and using the substations of coefficients p1,
p2, q1 and q2, to get:

(27) |a3| ≤
2α(

1+b
3+b

)δ
(1 + 2µ)

.

Hence, the proof of the Theorem 2.2 is completed.

Now, assuming µ = 1 and b = 1 in above theorem, then we have:
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Corollary 2.1. If f(z) given by (1) is in L1,δ
Σ (1, α), 0 < α ≤ 1 and µ ≥ 1, δ ≥ 1,

then we have:

(28) |a2| ≤
2α√

6α
(
1
2

)δ
+ 4(1− α)

(
1
2

)2δ
and

(29) |a3| ≤
2α(

1
2

)δ
(1 + 2µ)

.

Assuming α = 1 in theorem 2.2, we have the following corollary:

Corollary 2.2. Let f(z) which is given by (1) belonged to the class L
∑b,δ

Σ (µ, 1), 0 <
α ≤ 1 and µ ≥ 1, δ ≥ 1. Then:

(30) |a2| ≤
2√((

1+b
3+b

)δ
(2 + 4µ)

)
and

(31) |a3| ≤
2(

1+b
3+b

)δ
(1 + 2µ)

.

3. Coefficient estimates of L
∑b,δ

Σ (β, µ)

Definition 3.1. Let f(z) related by (1). Then it be in the class L
∑b,δ

Σ (β, µ) if
the following conditions are fulfilled:

(32) f ∈
∑

and Re

{
(1− µ)

Qδ,bf(z)

z
+ µ (Qδ,bf(z))

′
}
> β,

where 0 < β ≤ 1, µ ≥ 1, z ∈ U and

(33) Re

{
(1− µ)

Qδ,bg(ω)

ω
+ µ (Qδ,bg(ω))

}
> β,

such that 0 < β ≤ 1, µ ≥ 1, z ∈ U . Thus, the function g is introduced that the
inverse of f given as in (5).

Theorem 3.1. If f(z) which is given by (1) supposed to be in L
∑b,δ

Σ (β, µ),
0 ≤ β < 1 and µ ≥ 0, then:

(34) |a2| ≤
√√√√ 2(1− β)(

1+b
3+b

)δ
(1 + 2µ)

and

(35) |a3| ≤
2(1− β)(

1+b
3+b

)δ
(1 + 2µ)

.
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Proof. The inequalities (32) and (33) are equivalent to:

(36) (1− µ)
Qδ,bf(z)

z
+ µ (Qδ,bf(z))

′ = β + (1− β)p(z)

and

(37) (1− µ)
Qδ,bg(ω)

ω
+ µ (Qδ,bg(ω))

′ = β + (1− β)q(z).

By equating coefficients in equations (36) and (37) produces:(
1 + b

2 + b

)δ

(1 + µ)a2 = p1(1− β),(38) (
1 + b

3 + b

)δ

(1 + 2µ)a3 = p2(1− β)(39)

and (
1 + b

2 + b

)δ

(1 + µ)a2 = −q1(1− β),(40) (
1 + b

3 + b

)δ

(1 + 2µ)
(
2a22 − a3

)
= q2(1− β).(41)

From equations (39) and (40), we obtained:

(42) p1 = −q1

and also from (39) and (41), we obtain:

(43) 2

(
1 + b

3 + b

)δ

(1 + 2µ)a22 = (1− β) (p2 + q2) .

So, we get:

(44) a22 =
(p2 + q2) (1− β)

2
(
1+b
3+b

)δ
(1 + 2µ)

.

By applying lemma 1.1 for the coefficients p2 and q2, we obtained:

(45)
∣∣a22∣∣ ≤√√√√ 2(1− β)(

1+b
3+b

)δ
(1 + 2µ)

which is the looked-for inequality as given in the (34).
Now, by subtracting (41) from (39), we have:

(46) 2

(
1 + b

3 + b

)δ

(1 + 2µ)a23 = (1− β) (p2 − q2) + 2

((
1 + b

3 + b

)δ

(1 + 2µ)a22
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Then, substitute the value of a22 from (43), to obtain:

(47) a23 =
(p2 − q2) (1− β)

2
(
1+b
3+b

)δ
(1 + 2µ)

.

Now, with the help of the Lemma 1.1, we got:

(48)
∣∣a23∣∣ ≤ 2(1− β)(

1+b
3+b

)δ
(1 + 2µ)

,

which is the bound on |a23| as stated in (35).

Assuming β = 0 in theorem 3.2, we have the following corollary:

Corollary 3.1. Let f(z) given by (1) supposed to be in the class Lb,δ
Σ (0, µ),

0 ≤ β < 1 and µ ≥ 0, z ∈ U . Then:

∣∣a22∣∣ ≤√√√√ 2(
1+b
3+b

)δ
(1 + 2µ)

,(49)

∣∣a23∣∣ ≤ 2(
1+b
3+b

)δ
(1 + 2µ)

.(50)

Conclusion

We have been shown the existence of novel two subclasses types paly an inter-
ested roll to the Srivastava-Attiya operator with their original results. Conse-
quently, the obtained outcomes have demonstrated the estimation of the coef-
ficients |a2| and |a3| for associated complex functions in new subclasses. Many
problem still opened for example extend the obtained results to the case of dif-
ferential operator in Hebert space as in [14-15] or with another operator types
(see [16-17]).
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1. Introduction

The Finsler geometry has its origins in the famous dissertation of Germann
mathematician Finsler [1] in 1918. A Finsler manifold is a manifold M where
each tangent space is equipped with a Minkowski norm. J. H. Taylor and J.
L. Synge introduced a special parallelism and the concept of connection in the
theory of Finsler space was introduced by L. Berwald. Later on, E. Cartan, H.
Rund, M. Matsumoto, D. Bao, Z. Shen etc, made effective contributions in this
field. Finsler geometry has many applications in theories of physics, biology and
mechanics. Especially, quantum physics has stimulated the study of complex
structures.

After, that as compared to the real case in complex Finsler geometry are
not known so many classes of complex Finsler metrics. Besides the significant
Kobayashi and Caratheodary metrics [1], which quickened the study of such
Finsler geometry and we know rather trivial classes of complex Finsler metrics,
one is to Hermitian metrics on the base manifold [5] and second is to the locally
Minkowski complex metrics. Therefore, any new class of complex Finsler spaces

*. Corresponding author
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with some presence in both theory and applications is welcomed (see more details
in ([2, 6, 9, 11, 13, 16]).

The aim of the present paper is to study the complex Matsumoto metric. In
the third section to determine the fundamental metric tensor and angular metric
tensor of the complex Matsumoto space. In the last section is to characterize
the Chern-Finsler connection coefficients, Cartan tensor and the formula for
holomorphic curvature of complex Matsumoto metric.

2. Priliminaries

Let M be a complex manifold of dimension n and (zk)k=1,2,3,..,, complex co-
ordinates in a local chart. Its complexified tangent bundle TCM splits in to
holomorphic tangent bundle T ′M and antiholomorphic tangent bundle T ′′M ,
i.e TCM = T ′M ⊕ T ′′M. The holomorphic tangent bundle T ′M is itself a com-
plex manifold with local coordinates (zk, ηk) in a chart, which changes by the
following rules.

(1) z
′k = z

′k(z), ηk =
∂z

′k

∂zj
ηj

Further, TC(T
′M) decomposes into holomorphic and antiholomorphic tan-

gent bundles T ′(T ′M) and T ′′(T ′M) respectively.

A natural local frame { ∂
∂zk

, ∂
∂ηk

} for T ′(T ′M) change according to the rules

from Jacobi matrix of (1). Since the changing rule of ∂
∂zk

contains the second
order partial derivatives, the concept of complex non-linear connection (c.n.c.)
was introduced.

Let V (T ′M) = kerπ∗ ⊂ T ′(T ′M) be the vertical bundle, spanned locally by
{ ∂
∂ηk

}. The complex non-linear connection (c.n.c.), determines a supplementary

complex sub-bundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M)⊕V (T ′M).
It determines an adapted frame δ

δzk
= ∂

∂zk
-N j

k
∂

∂ηj
, where N j

k(z, η) are the coeffi-

cients of the complex nonlinear connections:[1, 11]

A complex Finsler metric F on complex manifoldM is a continuous function
F : T ′M→R satisfying following conditions [11, 14]

(i) L := F 2 is smooth on ˜T ′M := T ′M\{0};
(ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;

(iii) F (z, λη)=|λ|F (z, η); for λ ∈ C;
(iv) the Hermitian matrix (gij̄(z, η)), with gij̄ = ∂2L

∂ηi∂η̄j
, called the funda-

mental metric tensor, is positive definite on T ′M \ {0}.
Let us write L = F 2. Then, the pair (M,F ) is called a complex Finsler space.

The strongly pseudoconvexity of the Finsler metric F on complex indicatrix,
IF,z = {η ∈ T ′

zM | F (z, η) < 1} is implied by assumption (iv). A Hermitian
connection of (1, 0) type named as the Chern-Finsler Connection [1] has a special
meaning in a complex Finsler space. Notationally, it is DΓN = (Li

jk, 0, C
i
jk, 0),
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where

(2)
CF

N i
j = gm̄i∂glm̄

∂zj
ηl, Li

jk = gm̄i δgjm̄
δzk

=
∂N i

k

∂ηj
, Ci

jk = gm̄i∂gjm̄
∂ηk

,

where (gm̄i) is the inverse of the metric tensor (gm̄i). The horizontal lift of the
Liouville complex field (or the vertical radial vector field) ηk∂̇k is χ = ηk∂̇k,
where ∂̇k = ∂

∂ηk
and δk = δ

δzk
. The holomorphic curvature [11] of the complex

Finsler space (M,F ) in the direction η is

(3) KF (z, η) =
2

L2(z, η)
G(R(χ, χ̃)χ, χ̃),

where G is the N−lift of the complex Finsler metric tensor gij̄ defined by G =
gij̄dz

i⊗dz̄j + gij̄∂η
i⊗∂η̄j and R is the curvature of Chern Finsler connection.

Locally, it has the following expression [7],

KF (z, η) =
2

L2
Rj̄kη̄

jηk(4)

where

(5) Rj̄k = −glj̄δh̄(
CF

N l
k)η̄

h.

3. Notion of complex Matsumoto space

In this section, we find the fundamental metric tensor gij̄ and its inverse and
determinant of the complex Matsumoto metric.

Let M be an n-dimensional complex manifold and (z, η) ∈ T ′M,η = ηk ∂
∂zk

.
Let a purely Hermitian positive metric a, and a differential (1, 0) from b, be
defined on M as a = aij̄(z)dz

i⊗dz̄j and b = bi(z)dz
i. Aldea and munteanu [5]

defined the complex Finsler metric on T ′M by

(6) F (z, η) = F (α(z, η), |β(z, η)|),

where

(a) α(z, η) =
√
aij̄(z)η

iη̄j ;

(b) |β(z, η)| =
√
β(z, η) β(z, η) with β(z, η) = bi(z)η

i.

We introduce a metric function F on the complex manifold M by

(7) F =
α2

α− |β|
(|β|̸= 0).

We call the metric F defined by (7) as a complex Matsumoto metric and the
manifold together with this complex Matsumoto metric as a complex Mat-
sumoto space. The above complex Matsumoto metric is positive and smooth
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on T ′M\{0}. This metric is purely Hermitian if and only if β vanishes iden-
tically. The function L = F 2 depends on z and η because of α = α(z, η)
and |β| = |β(z, η)|. Also, α and β are homogeneous with respect to η, i.e.
α(z, λη)=|λ|α(z, η) and β(z, λη) = λβ(z, η) for ∀λ ∈ C. Therefore, L(z, λη) =
λλ̄L(z, η) for any λ ∈ C. From the homogeneity property, we have

(8)
∂α

∂ηi
ηi =

1

2
α,

∂|β|
∂ηi

ηi =
1

2
|β|.

Differentiating α(z, η) and |β(z, η)| partially with respect to ηi and ηj , we obtain
the following

∂α

∂ηi
=

li
2α
,
∂|β|
∂ηi

=
β̄bi
2|β|

,
∂α

∂η̄j
=

lj̄
2α
,
∂|β|
∂η̄j

=
βbj̄
2|β|

,(9)

∂2α

∂ηi∂η̄j
=
aij̄
2α

−
lilj̄
4α3

,
∂2|β|
∂ηi∂η̄j

=
bibj̄
4|β|

,(10)

where

li = aij̄ η̄
j , lj̄ = akj̄η

k,

now

ηi =
∂L

∂ηi
= Lα

∂α

∂ηi
+ L|β|

∂|β|
∂ηi

.

Using (9) and (10) we get

ηi =
(α− 2|β|)
(α− |β|)2

Fli +
1

(α− |β|)
F 2β̄bi
|β|

,(11)

η̄j =
(α− |β|)
(α− |β|)2

Flj̄ +
1

(α− |β|)
F 2βbj̄
|β|

.(12)

The fundamental metric tensor gij̄ of the complex Matsumoto space (M,F ) is
given by

gij̄ =
∂2L

∂ηi∂η̄j

= Lαα
∂α

∂ηi
∂α

∂η̄j
+ Lα|β|

(
∂α

∂ηi
∂|β|
∂η̄j

+
∂|β|
∂ηi

∂α

∂η̄j

)
+ L|β||β|

(
∂|β|
∂ηi

∂|β|
∂η̄j

)
+ Lα

∂2α

∂ηi∂η̄j
+ L|β|

∂2|β|
∂ηi∂η̄j

,

where

Lα =
∂L

∂α
, L|β| =

∂L

∂|β|
, Lαα =

∂2L

∂α2
, L|β||β| =

∂2L

∂|β|2
, Lα|β| =

∂2L

∂α∂|β|
.
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Using (9), (10) and (11), (12) we have

gij̄ =
F (α− 2|β|)
(α− |β|)2

aij̄ +
−F |β|
2α2

(
α− 4|β|
(α− |β|)3

)
lilj̄ +

F 2

2|β|

(
α+ 2|β|
(α− |β|)2

)
bibj̄

+
F (α− 4|β|)
2|β|(α− |β|)3

(
liβbj̄ + β̄bilj̄

)
,

which may be written as

gij̄ = p0aij̄ + p−2lilj̄ + q′0bibj̄ + q−2

(
liβbj̄ + β̄bilj̄

)
,(13)

where

p0 =
F (α− 2|β|)
(α− |β|)2

, p−2 =
−F |β|
2α2

(
α− 4|β|
(α− |β|)3

)
,

q−2 =
F (α− 4|β|)
2|β|(α− |β|)3

, q′0 =
F 2

2|β|

(
α+ 2|β|
(α− |β|)2

)
.

A simple calculation shows that

q−2

(
liβbj̄ + β̄bilj̄

)
=

q−2

q0p0
ηiηj̄ −

q0q−2

p0
|β|2bibj̄ −

p0q−2

q0
lilj̄ ,(14)

substituting (14) in (13) we obtain a new expression for gij̄ as

gij̄ = p0aij̄ + p′−2lilj̄ + q′′0bibj̄ + q′′−2ηiηj̄ ,(15)

where

p′−2 = p−2 −
p0q−2

q0
=

−F
2 (α− |β|)3

(
|β|
α2

(α− 4|β|) + α2 − 4|β|2
)
,

q′′0 = q′0 −
q0q−2

p0
|β|2 = F

2(α− |β|)

(
α− 4|β|

|β|(α− |β|)2
− F 2(α+ 2|β|)

(α− 2|β|)

)
,

q′′−2 =
q−2

q0p0
=

(α− |β|)
2F (α− 2|β|)

(α+ 2|β|).

Theorem 3.1. Let F = α2

α−|β| , (|β|≠ 0) be the complex Matsumoto metric,

then the fundamental metric tensor gij̄ is given by equation (15).

Proof. Here the expression (15) is the fundamental metric tensor of the complex
Matsumoto space. Now our next aim is to find the formulas for the inverse as well
as for the determinant of the fundamental metric tensor gij̄ . For this purpose
we use the following proposition given below [5].

Proposition 3.1. Suppose:
• (Qij̄) is a non-singular n× n complex matrix with inverse (Qj̄i).
• Ci and Cī = C̄i, i = 1, 2, 3, . . . , n are complex numbers.
• Ci := Qj̄iCj̄ and its conjugates; C2 := CiCi = C̄iCī; Hij̄ := Qij̄ ± CiCj̄ .
Then:



118 K.S. VENKATESHA and S.K. NARASIMHAMURTHY

1. det(Hij̄) = (1± C2)det(Qij̄),

2. whenever (1± C2) ̸= 0, the matrix (Hij̄) is invertible and in this case its

inverse is H j̄i = Qj̄i ∓ 1
1∓C2C

iC̄j .

From (15) we may re written as,

gij̄ = p0

(
aij̄ +

p′−2

p0
lilj̄ +

q′′0
p0
bibj̄ +

q′′−2

p0
ηiηj̄

)
.

Assuming Qij̄ = aij̄ and Ci =
√

p′−2

p0
li and applying Proposition (3.1), we find

Qj̄i = aj̄i and Ci = Qj̄iCj̄ , C2 = α2 p
′
−2

p0
,

where (aj̄i) is the Hermitian inverse of (aij̄) since 1 ± C2 ̸= 0, and 1 − C2 =
p0−α2p′−2

p0
.

The matrix Hij̄ = aij̄ +
p′−2

p0
lilj̄ is invertible with the inverse as,

H j̄i = aj̄i +Rηiη̄j and det(Hij̄) =

(
1 +

α2p′2
p0

)
det(aij̄) =

p′−2

Rp0
det(aij̄)

where R =
p′2

p0−α2p′2
.

Taking Qij̄ = aij̄ +
p′−2

p0
lilj̄ and Ci =

√
q′′0
p0
bi and again applying Propo-

sition (3.1), we obtain Qj̄i = aj̄i + Rηiη̄j and Ci =
√

q′′0
p0
(bi + Rβ̄ηi), since

1± C2 ̸= 0, the inverse of Hij̄ = aij̄ +
p′−2

p0
lilj̄ +

q′′0
p0
bibj̄ exists and is given by

H j̄i = aj̄i +Rηiη̄j +
q′′0
p0

(bi +Rβ̄ηi)(bj̄ +Rβη̄j),

and also

det(aij̄ +
p′−2

p0
lilj̄ +

q′′0
p0
bibj̄) =

γp′−2

Rp0
det(aij̄),

where γ = 1 +
q20
p0
(∥b∥2 +R|β|2).

We set Qij̄ = aij̄ +
p′−2

p0
lilj̄ +

q′′0
p0
bibj̄ and Ci =

√
q′′−2

p0
ηi. Then, we have

Qj̄i = aj̄i +Rηiη̄j +
q′′0
γp0

(bi +Rβ̄ηi)(bj̄ +Rβη̄j),

C2 =
q′′−2

p0

[
aj̄iηiηj̄ +RF 4 +

q′′0
γp0

ηiηj̄(b
i +Rβ̄ηi)(bj̄ +Rβη̄j)

]
.
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Since 1± C2 ̸= 0, Hij̄ = aij̄ +
p′−2

p0
lilj̄ +

q′′0
p0
bibj̄ +

q′′−2

p0
ηiηj̄ , is invertible with the

inverse.

H j̄i =
aj̄i +Rηiη̄j +

q′′0
γp0

(bi +Rβ̄ηi)(bj̄ +Rβη̄j)

1 +
q′′−2

p0
ηmη̄n

[
an̄m +Rηmη̄n +

q′′0
γp0

(bm +Rβ̄ηm)(bn̄ +Rβη̄n)
] .(16)

In view of (11), we have

an̄mηiη̄j = p20α
2 + 2q0p0|β|2 + q20∥b∥

2|β|2,
bmηm = (p0β̄ + q0∥b∥2β̄),
bn̄η̄n = (p0β + q0∥b∥2β).

Therefore,

(bmηm +Rβ̄F 2)(bn̄η̄n +RβF 2) = p20|β|
2 + 2p0q0|β|2∥b∥4(17)

+q20|β|
2∥b∥4 + 2p0RF

2|β|2

+2q0RF
2|β|2∥b∥2 +R2F 4|β|2,

substitute (17), in (16), we get

H j̄i =
1

M

[
aj̄i +Rηiη̄j +

q′′0
γp0

(bi +Rβ̄ηi)(bj̄ +Rβη̄j)

]
,(18)

where

M = 1 +
q′′−2

p0

{
p20α

2 + 2q0p0|β|2 + q20∥b∥
2|β|2

+RF 4 +
q′′0
γp0

(
p20|β|

2 + 2p0q0|β|2∥b∥4(19)

+ q20|β|
2∥b∥4 + 2p0RF

2|β|2 + 2q0RF
2|β|2∥b∥2 +R2F 4|β|2

)}
,

and

det(Hij̄) = (1 + c2)det(Qij̄) =Mdet(aij̄ +
p′−2

p0
lilj̄ +

q′′0
p0
bibj̄).

On simplifying, above we have

det(Hij̄) =Mγ

(
1 +

α2p′−2

p0

)
det(aij̄) =

Mγ

R

p′−2

p0
det(aij̄).(20)

Since gij̄ = p0Hij̄ , the inverse of the fundamental metric tensor is given by

gj̄i =
1

p0
H j̄i,(21)
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where H j̄i is given by (18). Also, the determinant of the fundamental metric
tensor is given by

det(gij̄) = pn0det(Hij̄) = pn0
Mγ

R

p′−2

p0
det(aij̄).(22)

The angular metric tensors of the complex Matsumoto space (M,F ) is given by

Kij̄ =
∂2F

∂ηi∂η̄j
= Fαα

∂α

∂ηi
∂α

∂η̄j
+ Fα|β|

(
∂α

∂ηi
∂|β|
∂η̄j

+
∂|β|
∂ηi

∂α

∂η̄j

)
(23)

+F|β||β|

(
∂|β|
∂ηi

∂|β|
∂η̄j

)
+ Fα

∂2α

∂ηi∂η̄j
+ F|β|

∂2|β|
∂ηi∂η̄j

,

where

Fα =
∂F

∂α
, F|β| =

∂F

∂|β|
, Fαα =

∂2F

∂α2
, F|β||β| =

∂2F

∂|β2|
and Fα|β| =

∂2F

∂α∂|β|
.

On differentiating (6) with respect to α and β, we obtain

Fα =
α2 − 2α|β|
(α− |β|)2

, F|β| =
α2

(α− |β|)2
,

Fα|β| =
−2α|β|

(α− |β|)3
, Fαα =

2|β|2

(α− |β|)3
,(24)

F|β||β| =
2α2

(α− |β|)3
.

On substituting (24) and (9) in (23), we obtain

Kij̄ = ξ0aij̄ + ξ−2lilj̄ + χ−2(βlibj̄ + β̄bilj̄) + χ′
0bibj̄ ,(25)

where,

ξ0 =
α− 2|β|

2 (α− |β|)2
, ξ−2 =

−(α− 3|β|)
4α (α− |β|)3

, χ′
0 =

F

4|β|
(α+ 3|β|)
(α− |β|)2

, χ−2 =
−1

2(α− |β|)3
.

Again differentiatting (7) partially with respect to ηi and η̄j , respectively we
have,

∂F

∂ηi
=

(
α2 − 2α|β|
(α− |β|)2

)
li
2α

+

(
α2

(α− |β|)2

)
β̄bi
2|β|

,

∂F

∂η̄j
=

(
α2 − 2α|β|
(α− |β|)2

)
lj̄
2α

+

(
α2

(α− |β|)2

)
βbj̄
2|β|

.(26)

From (24) and (26), we obtain

∂F
∂ηi

∂F
∂η̄j

Fα
2α

F|β|
2|β|

−
F|β|/2|β|
Fα/2α

|β|2bibj̄ −
Fα/2α

F|β|/2|β|
lilj̄ = (liβbj̄ + lj̄ β̄bi),{

4|β|(α− |β|)4 ∂F
∂ηi

∂F
∂η̄j

α3(α− 2|β|)
− |β|(α− 2|β|)

α2
lilj̄ −

α2|β|
(α− 2|β|)

bibj̄

}
(27)

= (liβbj̄ + lj̄ β̄bi).
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Substituting the value of (liβbj̄ + lj̄ β̄bi) from (27) in (25), then we have

Kij̄ =
α− 2|β|

2 (α− |β|)2
aij̄ +

−(α− 3|β|)
4α (α− |β|)3

lilj̄(28)

+
F

4|β|
(α+ 3|β|)
(α− |β|)2

bibj̄ +
−1

2(α− |β|)3{
4|β|(α− |β|)4 ∂F

∂ηi
∂F
∂η̄j

α3(α− 2|β|)
− |β|(α− 2|β|)

α2
lilj̄ −

α2|β|
(α− 2|β|)

bibj̄

}
.

Since ηi =
∂L
∂ηi

= 2F ∂F
∂ηi

and η̄j =
∂L
∂η̄j

= 2F ∂F
∂η̄j

, we have ηiη̄j = 4L ∂F
∂ηi

∂F
∂η̄j

.

Substituting these values in (28) we get

Kij̄ = ξ0aij̄ + ξ′−2lilj̄ +
χ′′
−2

2L
ηiηj̄ + χ′′

0bibj̄ ,(29)

where

ξ′−2 =
1

2(α− |β|)3

(
3|β| − α

2α
+

|β|(α− 2|β|)
F (α− |β|)

)
, χ′′

−2 =
−2|β|(α− |β|)
F (α− 2|β|)

,

χ′′
0 =

F

2|β|(α− |β|)2

(
α+ 3|β|

2
+

1

α− 2|β|

)
,

or, in the equivalent form:

Kij̄ = ξ0

(
aij̄ +

ξ′−2

ξ0
lilj̄ +

χ′′
0

ξ0
bibj̄ +

χ′′
−2

2Lξ0
ηiηj̄

)
.(30)

Notice that (30) we obtain following lemma;

Lemma 3.1. Let (M,F ) be a complex Matsumoto space then the angular metric
tensor is given by (30).

Remark 3.1. Apply the same procedure of Proposition (3.1) then we obtain
the inverse and determinant value of angular metric tensor Kij̄ as in Proposi-
tion (3.2).

Proposition 3.2. Let F = α2

α−|β| be a complex Matsumoto metric with |β| ≠ 0.
Then, they have the following:

(i) The inverse tensor K j̄i of the angular tensor fields Kij̄ is.

K j̄i =
1

ξ0M1

{
aj̄i +R1η

iη̄j +
χ′′
0

γ1ξ0
(bi +R1β̄η

i)(bj̄ +R1βη̄
j)

}
(31)
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where R1 =
ξ′−2

ξ0+α2ξ′−2
, γ1 = 1 +

χ′′
0

ξ0
(∥b∥2 +R1|β|2), and

M1 = 1 +
χ′′
−2

2Lξ0

{
ξ20α

2 + 2χ0ξ0|β|2 + χ2
0∥b∥

2|β|2

+R1F
4 +

χ′′
0

γ1ξ0

[
ξ20 |β|

2 + 2ξ0χ0|β|2∥b∥4(32)

+ χ2
0|β|

2∥b∥4 + 2ξ0R1F
2|β|2 + 2χ0R1F

2|β|2∥b∥2 +R2
1F

4|β|2
]}

.

(ii)

det(Kij̄) = (ξ0)
ndet(Hij̄) = (ξ0)

nM1ξ
′
−2

γ1ξ0
det(aij̄).(33)

4. Holomorphic curvature of complex Matsumoto metric

In this section, we study the Chern-Finsler connection, complex Cartan tensor
and holomorphic curvature of complex Matsumoto metric.

Now, the Chern–Finsler connection coefficients (c.n.c.) and the horizontal
and vertical coefficients are computed. By definition,

CF

N i
j = gm̄i∂glm̄

∂zj
ηl = gm̄i∂η̄m

∂zj
.(34)

From (9) and (10), we compute the following

η̄m = (p0lm̄ + q0bm̄β),

η̄m =
(α− 2|β|)
(α− |β|)2

Flm̄ +
1

(α− |β|)
F 2βbm̄
|β|

.(35)

Differentiating (35) with respect to zj we have

∂η̄m
∂zj

=
(α− 2|β|)
(α− |β|)2

{
F
∂aim̄
∂zj

ηi +
1

(α− |β|)2

[
α

2

∂ais̄
∂zj

ηiη̄s

− α2

2|β|
(β
∂bs̄
∂zj

η̄s + β̄
∂bs
∂zj

ηs)− (α− |β|)∂ais̄
∂zj

ηiη̄s
]
lm̄

+
F

(α− |β|)

[
1

|β|
(β
∂bm̄
∂zj

η̄m + β̄
∂bm
∂zj

ηm)− 1

α

∂ais̄
∂zj

ηiη̄s
]
lm̄

}

+
F

(α− |β|)2

[
∂ais̄
∂zj

ηiη̄s − 1

|β|
(β
∂bm̄
∂zj

η̄m + β̄
∂bm
∂zj

ηm)

]
lm̄(36)
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+
F 2

|β|(α− |β|)

[
β
∂bm̄
∂zj

+
bm̄
2β

∂bi
∂zj

ηi − βbm̄

2|β|2
(β
∂bm̄
∂zj

η̄m + β̄
∂bm
∂zj

ηm)

]

+
βbm̄
|β|

{
2F

(α− |β|)3

[
α

2

∂ais̄
∂zj

ηiη̄s − α2

2|β|
(β
∂bs̄
∂zj

η̄s + β̄
∂bs
∂zj

ηs)− (α− |β|)∂ais̄
∂zj

ηiη̄s
]

+ F 2

[
∂ais̄
∂zj

ηiη̄s − 1

2|β|
(β
∂bm̄
∂zj

η̄m + β̄
∂bm
∂zj

ηm)

]}
.

Using (21) and (36) in (34), we have

CF

N i
j =

a

N i
j +

1

p0
am̄i

(
∂η̄m
∂zj

− p0
∂alm̄
∂zj

ηl

)

− 1

p0

{
Rηiη̄m +

q′′0
γp0

(bi +Rβ̄ηi)(bm̄ +Rβη̄m) +
q′′−2

p0M
(37)

[
am̄i +Rηiη̄m +

q′′0
γp0

(bi +Rβ̄ηi)(bm̄ +Rβη̄m)

]2}∂η̄n
∂zj

,

where ∂η̄n
∂zj

is same as in (36) and
a

N i
j = am̄i ∂alm̄

∂zj
ηl.

Next, we have to find the expression for the vertical and horizontal coef-
ficients of Chern–Finsler connection. Consider the following complex Cartan
tensor [2]

Cjh̄k =
∂gjh̄
∂ηk

=
∂gjh̄
∂α

∂α

∂ηk
+
∂gjh̄
∂|β|

∂|β|
∂ηk

.(38)

On calculating values of
∂gjh̄
∂α and

∂gjh̄
∂|β| and substituing in (38), we get

Cjh̄k =

{(
α2 − α3 + 4α|β|2

(α− |β|)4

)
lk
2α

+

(
3α3 − 2α2 − 6α2|β|

(α− |β|)4

)
βbk̄
2|β|

}
ajh̄

+

{(
4|β|2 − α|β|
2(α− |β|)5

)
lk
2α

+

(
12|β|2 − α2 + 4α|β|

2(α− |β|)6

)
βbk̄
2|β|

}
ljlh̄

+

{(
α4 − 4α3|β|
|β|(α− |β|)4

− 12α3

(α− |β|)5

)
lk
2α

+

(
(3α+ 9|β|)
2(α− |β|)3

(39)

+
(α+ 2|β|)
(α− |β|)2

)
βbk̄
2|β|

}
bjbh̄ +

{(
−α3 + 5α2|β|+ 8α|β|2

2|β|(α− |β|)5

)
lk
2α

+

(
5F 2

2α(α− |β|)3
− F 2

2|β|2(α− |β|)3
− 8F

(α− |β|)4

)
βbk̄
2|β|

}
(ljβbh̄ + β̄bjlh̄).
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Also, the vertical coefficients of Chern–Finsler connections are defined as

Ci
jk = gm̄i∂gkm̄

∂ηj
= gm̄i∂gjm̄

∂ηk
= gm̄iCjm̄k.(40)

Using (22) and (39) in (40), we have

Ci
jk =

1

M

[
am̄i +

(
1 +

q′′0R|β|
2

p0γ

)
Rηiη̄m +

q′′0
p0γ

bibm̄

+
q′′0R

p0γ
(βbiη̄m + β̄ηibm̄)

]
[{(

α2 − α3 + 4α|β|2

(α− |β|)4

)
lk
2α

+

(
3α3 − 2α2 − 6α2|β|

(α− |β|)4

)
βbk̄
2|β|

}
ajh̄

+

{(
4|β|2 − α|β|
2(α− |β|)5

)
lk
2α

+

(
12|β|2 − α2 + 4α|β|

2(α− |β|)6

)
βbk̄
2|β|

}
ljlh̄

+

{(
α4 − 4α3|β|
|β|(α− |β|)4

− 12α3

(α− |β|)5

)
lk
2α

+

(
(3α+ 9|β|)
2(α− |β|)3

(41)

+
(α+ 2|β|)
(α− |β|)2

)
βbk̄
2|β|

}
bjbh̄ +

{(
−α3 + 5α2|β|+ 8α|β|2

2|β|(α− |β|)5

)
lk
2α

+

(
5F 2

2α(α− |β|)3
− F 2

2|β|2(α− |β|)3
− 8F

(α− |β|)4

)
βbk̄
2|β|

}

(ljβbh̄ + β̄bjlh̄)

]
.

Also,

Ck = Ckh̄jg
h̄j .(42)

Plugging (22) and (40) in (42) gives us

Ck =

[{(
α2 − α3 + 4α|β|2

(α− |β|)4

)
lk
2α

+

(
3α3 − 2α2 − 6α2|β|

(α− |β|)4

)
βbk̄
2|β|

}
ajh̄

+

{(
4|β|2 − α|β|
2(α− |β|)5

)
lk
2α

+

(
12|β|2 − α2 + 4α|β|

2(α− |β|)6

)
βbk̄
2|β|

}
ljlh̄

+

{(
α4 − 4α3|β|
|β|(α− |β|)4

− 12α3

(α− |β|)5

)
lk
2α

+

(
(3α+ 9|β|)
2(α− |β|)3

(43)

+
(α+ 2|β|)
(α− |β|)2

)
βbk̄
2|β|

}
bjbh̄ +

{(
−α3 + 5α2|β|+ 8α|β|2

2|β|(α− |β|)5

)
lk
2α
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+

(
5F 2

2α(α− |β|)3
− F 2

2|β|2(α− |β|)3
− 8F

(α− |β|)4

)
βbk̄
2|β|

}

(ljβbh̄ + β̄bjlh̄)

][
ah̄i +

(
1 +

q′′0R|β|
2

p0γ

)
Rηj η̄h +

q′′0
p0γ

bjbh̄

+
q′′0R

p0γ
(βbj η̄h + β̄ηjbh̄)

]
.

Now, we find the Holomorphic curvature, first we compute Ricci curvature Rj̄k

in (4).

Substituting the values of gij̄ and
CF

N i
k in (5) then, we have

Rj̄k = −

[
F (α− 2|β|)
(α− |β|)2

alj̄ +
−F |β|
2α2

(
α− 4|β|
(α− |β|)3

)
lllj̄

+
1

2|β|

(
3F 2

(α− |β|)2
+

2F 2

(α− |β|)

)
blbj̄ +

F (α− 4|β|)
2|β|(α− |β|)3(

llβbj̄ + β̄bllj̄
) ]

δh̄

{
a

N l
k +

1

p0
am̄l

(
∂η̄m
∂zk

− p0
∂aqm̄
∂zj

ηq

)
(44)

− 1

p0

[
Rηlη̄m +

q′′0
γp0

(bl +Rβ̄ηl)(bm̄ +Rβη̄m) +
q′′−2

p0M(
am̄l +Rηlη̄m +

q′′0
γp0

(bl +Rβ̄ηl)(bm̄ +Rβη̄m)

)2
]
∂η̄m
∂zk

}
η̄h.

Theorem 4.1. Let (M,F ) be a complex Matsumoto space with the metric (7).
Then, Ricci curvature is given by equation (44) and holomorphic curvature is
given by (4).
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Abstract. In this paper, first we have shown that the variety of rectangular bands is
closed in the variety of all left[right] semiregular bands. Further, we have shown that the
variety of left[right] normal bands are closed in some containing varieties of semigroups
defined by the identities axy = anyax[axy = xyayn] and axy = ayanx[axy = xynay],
where (n ∈ N).
Keywords: zigzag equations, varieties, identity, closed and bands.

1. Introduction

Let U be a subsemigroup of a semigroup S. Following, Isbell [9], we say that U
dominates an element d of S if for every semigroup P and for all homomorphisms
α, δ : S −→ P and uα=uδ for every u in U implies dα=dδ. The set of all
elements of S dominated by U is called the dominion of U in S and we denote
it by Dom(U, S). It can be easily verified that Dom(U, S) is a subsemigroup of S
containing U . A subsemigroup U of semigroup S is called closed if Dom(U, S) =
U . A semigroup is called absolutely closed if it is closed in every containing
semigroup. Let D be a class of semigroups. A semigroup U is said to be D-
closed if Dom(U, S) = U , for all S ∈ D such that U ⊆ S. Let A and D be
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classes of semigroups such that A is a subclass of D. We say that A is D-closed
if every member of A is D-closed. A class D of semigroups is said to be closed if
Dom(U, S) = U , for all U, S ∈ D with U as a subsemigroup of S. Let B and C
be two categories of semigroups with B as a subcategory of C. It can be easily
verified that a semigroup U is B-closed if it is C-closed.

A (semigroup)amalgam A = [Si: i ∈ I; U ; ϕi: i ∈ I] consists of a semigroup
U (called the core of the amalgam), a family Si: i ∈ I of semigroups disjoint
from each other and from U , and a family ϕi: U → Si(i ∈ I) of monomorphisms.
We shall simplify the notation to U = [Si; U ; ϕi] or to U = [Si; U ] when the
context allows. We shall say that the amalgam A is embedded in a semigroup T
if there exist a monomorphism λ: U → T and, for each i ∈ I, a monomorphism
λi: Si → T such that:

(a) ϕiλi=λ for each i ∈ I;

(b) Siλi ∩ Sjλj = Uλ, for all i, j ∈ I such that i ̸= j.

A semigroup amalgam U = [ S, S′; U ; i, α | U ] consisting of a semigroup
S, a subsemigroup U of S, an isomorphic copy S′ of S, where α: S→ S′ is
an isomorphism and i is the inclusion mapping of U into S, is called a special
semigroup amalgam. A class C of semigroups is said to have the special amal-
gamation property if every special semigroup amalgam in C is embeddable in
C.

Theorem 1.1 ([8], Theorem VII.2.3). et U be a subsemigroup of a semigroup
S, S′ be a semigroup disjoint from S and let α: S→ S′ be an isomorphism. Let
P = S∗US′, be the free product of the amalgam

U = [S, S′;U ; i, α | U ],

where i is the inclusion mapping of U into S, and let µ, µ′ be the natural
monomorphisms from S, S′ respectively into P . Then

(Sµ ∩ S′µ′)µ−1 = Dom(U, S).

From the above result, it follows that a special semigroup amalgam [S, S′; U ;
i, α | U ] is embeddable in a semigroup if and only if Dom(U, S) = U . Therefore,
the above amalgam with core U is embeddable in a semigroup if and only if U
is closed in S.

The following theorem provided by Isbell [9], known as Isbell’s zigzag the-
orem, is a most useful characterization of semigroup dominions and is of basic
importance to our investigations.

Theorem 1.2 ([9], Theorem 2.3). Let U be a subsemigroup of a semigroup S
and let d ∈ S. Then d ∈ Dom(U, S) if and only if d ∈ U or there exists a series
of factorizations of d as follows:

(1) d = a0t1 = y1a1t1 = y1a2t2 = y2a3t2 = · · · = yma2m−1tm = yma2m,
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where m ≥ 1, ai ∈ U (i = 0, 1, . . . , 2m), yi, ti ∈ S (i = 1, 2, . . . ,m), and

a0 = y1a1, a2m−1tm = a2m,

a2i−1ti = a2iti+1, yia2i = yi+1a2i+1 (1 ≤ i ≤ m− 1).

Such a series of factorizations is called a zigzag in S over U with value d,
length m and spine a0, a1, . . . , a2m.

The following result is from Khan [10] and is also necessary for our investi-
gations.

Theorem 1.3 ([10], Result 3). Let U and S be semigroups with U as a sub-
semigroup of S. Take any d ∈ S\U such that d ∈ Dom(U, S). Let (1) be a
zigzag of minimal length m over U with value d. Then, tj , yj ∈ S\U , for all
j = 1, 2, . . . ,m.

Definition 1.1. A semigroup S is said to be a band if S satisfies the identity
a2 = a, for all a ∈ S.

Definition 1.2. A band S is said to be a rectangular band if S satisfies the
identity a = axa, for all a, x ∈ S.

Definition 1.3. A band S is said to be a left[right] normal band if S satisfies
the identity axy = ayx[axy = xay], for all a, x, y ∈ S.

Definition 1.4. A band S is said to be a left[right] semiregular band if S satisfies
the identity axy = axyayxy[axy = axayaxy], for all a, x, y ∈ S.

The reader is referred to Petrich [11] for a complete description of all varieties
of bands. The semigroup theoretic notations and conventions of Clifford and
Preston [6] and Howie [8] will be used throughout without explicit mention.

2. Closedness of rectangular bands

In general, varieties of bands containing the varieties of rectangular bands are
not absolutely closed as Higgins [7, Chapter 4] gave an example to show that
the variety of all rectangular bands is not absolutely closed. Therefore, for
the varieties of semigroups, it is worthwhile to find largest subvarieties of the
variety of all semigroups in which rectangular bands is closed. In this direction,
we show that the variety of rectangular bands is closed in the variety of all
left[right] semiregular bands.

Proposition 2.1. Let U be any rectangular band and S be any semiregular band
containing U . Assume that d ∈ Dom(U, S)\U . If (1) is a zigzag in S over U
with value d of minimal length m, then:

(a) yia2i−1ti = yia2i−1a2iyi+1a2i+1ti+1;
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(b) (yia2i−1a2i)(yi+1a2i+1a2i+2) = yia2i−1a2ia2i+2,

for all i = 1, 2, ...,m− 1.

Proof.

(a) yia2i−1ti = yia2i−1a2i−1ti (since U is a band)

= yia2i−1a2iti+1 (by zigzag equations)

= (yia2i−1a2i)ti+1

= (yia2i−1a2iyia2ia2i−1a2i)ti+1 (since S is a left semi-regular band)

= yia2i−1a2iyi(a2ia2i−1a2i)ti+1

= yia2i−1a2iyi(a2i)ti+1 (since U is a rectangular band)

= yia2i−1a2iyi+1a2i+1ti+1 (by zigzag equations),

as required.

(b) (yia2i−1a2i)(yi+1a2i+1a2i+2) = yia2i−1a2i(yia2i)a2i+2 (by zigzag equations)

= yia2i−1a2iyi(a2i)a2i+2

= yia2i−1a2iyi(a2ia2i−1a2i)a2i+2

(since U is a rectangular band)

= (yia2i−1a2iyia2ia2i−1a2i)a2i+2

= (yia2i−1a2i)a2i+2

(since S is a left semi-regular band),

as required.

Theorem 2.1. Rectangular bands are closed in left semiregular bands.

Proof. Let U be a rectangular band and S be any left semiregular band con-
taining U as a subband. We have to show that Dom(U, S) = U . Take any
d ∈ Dom(U, S)\U . Then d has zigzag of type (1) in S over U with value d of
minimal length m. Now

d = a0t1 (by zigzag equations)

= y1a1t1 (by zigzag equations)

= y1a1a2y2a3t2 (by Proposition 2.1 (a))

= y1a1a2(y2a3t2)

= y1a1a2(y2a3a4y3a5t3) (by Proposition 2.1 (a))

...

= y1a1a2y2a3a4 · · · ym−1a2m−3a2m−2ym(a2m−1)tm
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= y1a1a2y2a3a4 · · · ym−1a2m−3a2m−2ym(a2m−1a2m−1)tm (since U is a band)

= y1a1a2y2a3a4 · · · ym−1a2m−3a2m−2yma2m−1a2m (by zigzag equations)

= y1a1a2y2a3a4 · · · ym−2a2m−5a2m−4((ym−1a2m−3a2m−2)(yma2m−1a2m))

= y1a1a2y2a3a4 · · · ym−2a2m−5a2m−4(ym−1a2m−3a2m−2a2m)

(by Proposition 2.1 (b))

= y1a1a2y2a3a4 · · · ym−3a2m−7a2m−6((ym−2a2m−5a2m−4)(ym−1a2m−3a2m−2))a2m

= y1a1a2y2a3a4 · · · ym−3a2m−7a2m−6(ym−2a2m−5a2m−4a2m−2)a2m

(by Proposition 2.1 (b))

...

= y1a1a2a4 · · · a2m−4a2m−2a2m

= a0a2a4 · · · a2m−4a2m−2a2m (by zigzag equations)

∈ U

⇒ Dom(U, S) = U .

Hence, rectangular bands are closed in left semiregular bands. Thus, the
proof of the theorem is complete.

Dually, we can prove the following Theorem

Theorem 2.2. Rectangular bands are closed in right semiregular bands.

Corollary 2.1. The variety of all rectangular bands is closed in the variety of
all left[right] semiregular bands.

Corollary 2.2. The variety of all rectangular bands is closed in the following
varieties of bands:

(i) The variety of all regular bands.

(ii) The variety of all left[right] seminormal bands.

(iii) The variety of all left[right] quasinormal bands.

(iv) The variety of all normal bands.

3. Closedness of left[right] normal bands

In general, varieties of bands containing the variety of normal bands are not
absolutely closed as Higgins [7, Chapter 4] had shown that variety of right [left]
normal bands is not absolutely closed. Therefore, for the varieties of semigroups,
it is worthwhile to find largest subvarieties of the variety of all semigroups in
which the variety of right [left] normal bands is closed. As a first step in this
direction, one attempts to find those varieties of semigroups that are closed in
itself. Encouraged by the fact that Scheiblich [12] had shown that the variety
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of all normal bands was closed, Alam and Khan in [3, 4, 5] had shown that the
variety of left [right] regular bands, left [right] quasi-normal bands and left [right]
semi-normal bands were closed. In [2], Ahanger and Shah had proved a stronger
fact that the variety of left [right] regular bands was closed in the variety of all
bands and, recently, Abbas and Ashraf [1] had shown that a variety of left [right]
normal bands was closed in some containing homotypical varieties (varieties
admitting an identity containing same variables on both sides) of semigroups.

To this end, we first note that Petrich [11, Theorem II.5.1] has classified an
identity on bands in atmost three variables. Therefore, on the class of bands,
varieties of semigroups defined by the identities axy = anyax [axy = xyayn]
and axy = ayanx [axy = xynay] are equivalent to left[right] normal bands. In
this section, we have shown that varieties of semigroups defined by the identities
axy = anyax[axy = xyayn] and axy = ayanx[axy = xynay], where (n ∈ N),
are closed in itself and, as an application and consequence of these results,
we conclude that the varieties of semigroups defined by the identities axy =
anyax[axy = xyayn] and axy = ayanx[axy = xynay] have special amalgamation
property and left[right] normal bands are closed in axy = anyax[axy = xyayn]
and axy = ayanx[axy = xynay] and, thus a modest, but an important step
towards the solution of the above problem. However the problem of finding out
largest varieties of semigroups in which the varieties of semigroups defined by
the identities axy = anyax[axy = xyayn] and axy = ayanx[axy = xynay] are
closed still remains open.

Lemma 3.1. Let U be a subsemigroup of semigroup S such that S satisfies an
identity axy = anyax [axy = ayanx] and let d ∈ Dom(U, S)\U has a zigzag of
type (1) in S over U with value d of shortest possible length m. Then

d = yka2k−1tk(
k∏
i=1

an2k−(2i−1)),

for each k = 1, 2, . . . ,m.

Proof. Let V1 = [axy = anyax] and V2 = [axy = ayanx] be the varieties of
semigroups.

First, we show that in both cases whether S ∈ V1 or S ∈ V2, S satisfies
xyz = xyzyn.

Case (i). When S ∈ V1, then for any x, y, z ∈ S, we have

xyz = (xn(zx)y) (as S ∈ V1 )

= (xn)n(yxnz)x (as S ∈ V1 )

= ((xn)n(ynzy)xnx) (as S ∈ V1 )

= ((xnx)(ynz)y) (as S ∈ V1 )

= ((xnx)ny(xnx)yn)z (as S ∈ V1 )
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= xnxynyz (as S ∈ V1 )

= (xn−1(xx)yn)yz (for n = 1, we treat xn−1x as x)

= ((xn−1)nynxn−1x)xyz (as S ∈ V1 )

= xn−1xynxyz (as S ∈ V1 )

= (xnynx(yz))

= xyzyn (as S ∈ V1 ).(2)

Case (ii): When S ∈ V2, then for any x, y, z ∈ S, we have

xyz = (x(zxn)y) (as S ∈ V2 )

= x(y(xnz)xn) (as S ∈ V2 )

= (xyxnyn)xnz (as S ∈ V2 )

= xynyxnz (as S ∈ V2 )

= (x(yyn)(xnz))

= (x(xnz)xny)yn (as S ∈ V2 )

= (xyxn)zyn (as S ∈ V2 )

= x(xn(xny)z)yn (as S ∈ V2 )

= x(xnz(xn)nxn)yyn (as S ∈ V2 )

= (xxnxnz)yyn (as S ∈ V2 )

= (xzxny)yn (as S ∈ V2 )

= xyzyn (as S ∈ V2 ).

Thus, the claim is proved.
Now, we shall prove the lemma by using induction on k. Let U be a

subsemigroup of semigroup S such that S belongs to either V1 or V2 and let
d ∈ Dom(U, S)\U has a zigzag of type (1) in S over U with value d of shortest
possible length m.

Now, for k = 1, we have

d = y1a1t1 (by zigzag equations)

= y1a1t1a
n
1 (by equation (2)).

Thus, the result holds for k = 1. Assume inductively that the result holds for
k = j < m. Then, we shall show that it also holds for k = j + 1. Now,

d = yja2j−1tj(

j∏
i=1

an2j−(2i−1)) (by inductive hypothesis)

= yj+1a2j+1tj+1(

j∏
i=1

an2j−(2i−1)) (by zigzag equations)
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= yj+1a2j+1tj+1a
n
2j+1(

j∏
i=1

an2j−(2i−1)) (by equation (2))

= yj+1a2j+1tj+1(

j+1∏
i=1

an2(j+1)−(2i−1)),

as required and, by induction, the lemma is established.

Theorem 3.1. The variety V = [axy = anyax] of semigroups, i.e. the class of
all semigroups satisfying the identity axy = anyax, is closed.

Proof. Take any U , S ∈ V with U as a subsemigroup of S such that d ∈
Dom(U, S)\U . Let d has zigzag of type (1) in S over U of shortest possible
length m. Now,

d = yma2m−1tm(
m∏
i=1

an2m−(2i−1)) (by Lemma 3.1)

= (ym(a2m−1tm)a2m−1)a
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (for n = 1,

we treat a2m−1a
n−1
2m−1 as a2m−1)

= (ynma2m−1yma2m−1)tma
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (as S ∈ V)

= (yma2m−1)(a2m−1tm)a
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (as S ∈ V)

= ym−1a2m−2a2ma
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (by zigzag equations)

= (ym−1(a2m−2a2m)a
n−1
2m−1)a2m−3a

n−1
2m−3(

m∏
i=3

an2m−(2i−1))

= ynm−1(a
n−1
2m−1(ym−1a2m−2a2m)a2m−3)a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= ynm−1((a
n−1
2m−1)

na2m−3a
n−1
2m−1ym−1)a2m−2a2ma

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= (ynm−1a
n−1
2m−1ym−1(a2m−3a2m−2a2m))a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= (ym−1a2m−3)a2m−2a2ma
n−1
2m−1a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)
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= ym−2a2m−4a2m−2a2ma
n−1
2m−1a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (by zigzag equations)

...

= y1a2a4 · · · a2m−2a2ma
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an1

= (y1(a2a4 · · · a2m−2a2m)(a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 ))a1a

n−1
1

= yn1 ((a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 )(y1a2a4 · · · a2m−2a2m)a1)a

n−1
1 (as S ∈ V )

= yn1 ((a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 )na1(a

n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 )y1)a2a4 · · · a2m−2a2ma

n−1
1

(as S ∈ V )

= (yn1 (a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 )y1(a1a2a4 · · · a2m−2a2m))a

n−1
1 (as S ∈ V)

= (y1a1)a2a4 · · · a2m−2a2ma
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an−1

1 (as S ∈ V)
= a0a2a4 · · · a2m−2a2ma

n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an−1

1 (by zigzag equations)

∈ U

⇒ Dom(U, S) = U .

Thus, the proof of the theorem is complete.

The following corollary is an immediate consequence of Theorem 3.1:

Corollary 3.1. The variety of all left normal bands is closed in the variety
V = [axy = anyax] of semigroups.

Dually, we may prove the following results.

Theorem 3.2. The variety V = [axy = xyayn] of semigroups, i.e. the class of
all semigroups satisfying the identity axy = xyayn, is closed.

Corollary 3.2. The variety of all right normal bands is closed in the variety
V = [axy = xyayn] of semigroups.

Theorem 3.3. The variety V = [axy = ayanx] of semigroups, i.e. the class of
all semigroups satisfying the identity axy = ayanx, is closed.

Proof. Take any U , S ∈ V with U as a subsemigroup of S such that d ∈
Dom(U, S)\U . Let d has zigzag of type (1) in S over U of shortest possible
length m. Now,

d = yma2m−1tm(

m∏
i=1

an2m−(2i−1)) (by Lemma 3.1)

= (ym(a2m−1tm)a2m−1)a
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (for n=1, we treat a2m−1a
n−1
2m−1

as a2m−1)
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= (yma2m−1y
n
ma2m−1)tma

n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (as S ∈ V )

= (yma2m−1)(a2m−1tm)a
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (as S ∈ V )

= ym−1a2m−2a2ma
n−1
2m−1(

m∏
i=2

an2m−(2i−1)) (by zigzag equations)

= (ym−1(a2m−2a2m)a
n−1
2m−1)a2m−3a

n−1
2m−3(

m∏
i=3

an2m−(2i−1))

= ym−1(a
n−1
2m−1(y

n
m−1a2m−2a2m)a2m−3)a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= ym−1(a
n−1
2m−1a2m−3(a

n−1
2m−1)

nynm−1)a2m−2a2ma
n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= (ym−1a
n−1
2m−1y

n
m−1(a2m−3a2m−2a2m))a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= (ym−1a2m−3)a2m−2a2ma
n−1
2m−1a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (as S ∈ V)

= ym−2a2m−4a2m−2a2ma
n−1
2m−1a

n−1
2m−3(

m∏
i=3

an2m−(2i−1)) (by zigzag equations)

...

= y1a2a4 · · · a2m−2a2ma
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an1

= (y1(a2a4 · · · a2m−2a2m)(a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 ))a1a

n−1
1

= (y1(a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 yn1 a2a4 · · · a2m−2a2m)a1)a

n−1
1 (as S ∈ V )

= (y1a1y
n
1 (a

n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 yn1 ))a2a4 · · · a2m−2a2ma

n−1
1 (as S ∈ V)

= (y1(a
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 )yn1 (a1a2a4 · · · a2m−2a2m))a

n−1
1 (as S ∈ V)

= (y1a1)a2a4 · · · a2m−2a2ma
n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an−1

1 (as S ∈ V)
= a0a2a4 · · · a2m−2a2ma

n−1
2m−1a

n−1
2m−3 · · · a

n−1
3 an−1

1 (by zigzag equations)

∈ U

⇒ Dom(U, S) = U .
Thus, the proof of the theorem is complete.

The following corollary is an immediate consequence of Theorem 3.3:

Corollary 3.3. The variety of all left normal bands is closed in the variety
V = [axy = ayanx] of semigroups.

Dually, we may prove the following results.
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Theorem 3.4. The variety V = [axy = xynay] of semigroups, i.e. the class of
all semigroups satisfying the identity axy = xynay, is closed.

Corollary 3.4. The variety of all right normal bands is closed in the variety
V = [axy = xynay] of semigroups.

In the view of Section 2, we propose an important open problem.

Problem 1. Is the variety of normal bands closed in the variety of left[right]
semiregular bands?
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Abstract. The fundamentals concept of boundary asymptotic gradient observer of
full order type ∂ΩAGFO-observer via internal case in link with the strategic sensors
in different system domains have been presented. The results so obtained for linear
dynamical systems which is created by a strongly continuous semi-group (SCS-group)
in Hilbert space H1/2(∂Ω) have been analyzed. Consequently, the existence of sufficient
conditions for ∂ΩAGFO-estimator in parabolic infinite dimensional systems have been
studied and scrutinized. In addition to that, we have observed at the junction inter-
face that the interior solution is harmonized with the exterior solution for asymptotic
gradient full observation.

Keywords: ∂ΩAGFO-observer, ∂ΩAG-detectability, ∂ΩG-strategic sensor, junction
conditions.

1. Introduction

In literature, a distributed parameter systems and observability concepts on a
special domain Ω have been widely developed and tackled by several authors
[1-2]. The determination of Luenberger observer is to offer an asymptotic for-

*. Corresponding author
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mal approximation for the current state of deliberated system [3-4]. Recently,
Al-Saphory and El Jai et al. have explored a new direction of regional analy-
sis for distributed parameter systems in finite time interval and infinite, with
regional or regional boundary cases associated with strategic sensors and ac-
tuators as in [5-15]. In this paper, we familiarize and explore the notion of
∂ΩAGFO-observer connected to extended internal region approach of the con-
sidered system domain [7, 12]. Therefore the usual boundary case have been
developed through an extension to previous works as in [13-14]. In addition to
that, boundary detectability and boundary strategic sensors have been deliber-
ated and analyzed.

The incentive of studying this notion is there exist several problem in the
real world needs to be studied as in [4, 16]. Indeed, the authors have obtained a
more general mathematical model of the BAGFO-observer which characterized
by internal gradient strategic (zone, pointwise or filament) sensors (Figure 1).

Figure 1: Mathematical modeling with positions of sensors.

The rest of the paper is prearranged as follows. Section 2 is enthusias-
tic to the considered system and preliminaries. In Section 3, we study ∂ΩG-
observability and ∂ΩAG-detectability and extant some original results. In sec-
tion 4 we familiarize ∂ΩAGFO-observer concepts in terms of ∂ΩAG-detectability
and ∂ΩG-strategic sensors. Also, the matching of inside to the outside solution
at a junction interface has been studied in the sense of Banerjee et al. [16].
Finally, some applications for distributed diffusion systems with the devoted
different domains and strategic sensors have been demonstrated.

2. Preliminaries of system inceptions

Assume Ω be an open set in Rn , through smooth boundary ∂Ω with the following
sets

Π = Ω× (0,∞); Ξ = ∂Ω× (0,∞).

Suppose that the following spaces specify as separable Hilbert type given by

W = H1(Ω); U = L2(0,∞, Rp); Y = L2(0,∞, Rq).

So, these spaces represent respectively as state space; input space and measure-
ment space such that p with q the numbers of controls and information [17].
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Thus, the system can be written as:

(1)


∂w

∂t
(ξ, t) = Aw(ξ, t) +Bu(t) Π

w(µ, t) = 0 Ξ

w(ζ, 0) = w(ξ) Ω

augmented with the output function

(2) y(., t) = Cw(., t) Π

where Ω grips for the closure of Ω and w0(ξ) which is made-up to be uniden-
tified in the state space W = H1(Ω). Therefore, A is a linear self-adjoint
transformation of 2nd differential case, with compact resolvent. Now, operators
B ∈ L(Rp,W) and C ∈ L(H1(Ω),Rq) be contingent on the structures of control
and information [18], which means, in various situations [12]. Consequently, we
obtain B /∈ L(Rp,W) and C /∈ L(H1/2(∂Ω),Rq). Accordingly, the system (1)
has a unique solution [17-18] which is assumed as

(3) w(ζ, t) = SA(t)w0(ζ) +

∫ t

0
SA(t− τ)Bu(τ) dτ Π

� K an operator is defined by following

K : W −→ Y,
w −→ CSA(·)w

and,

y(·, t) = K(t)w(·, 0),

where K is bounded linear operator [14-15].

� K∗ : Y −→W is the adjoint operator of K, is defined by

K∗y∗ =

∫ t

0
S∗
A(τ)C

∗y∗(·, τ) dτ.

� The operator ∇ signifies the gradient, which is assumed to have the form

(4)

∇ : H1(Ω) −→ (H1(Ω))n

w −→ ∇w =

(
∂w

∂ζ1
, · · · , ∂w

∂ζn

)
∇∗ is the adjoint of ∇ and specified by{

∇∗ : (H1(Ω))n −→ H1(Ω)

w −→ ∇∗
w = v
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Such that v is characterized a solution of the Dirichlet problem{
∆v = −div(w) Ω

v = 0 ∂Ω

Thus, an extension of the trace operator [19] which is denoted by γ defined as

γ : (H1(Ω))n −→ (H1/2(∂Ω))n

and the adjoints is correspondingly given by γ∗.
� Systems (1)-(2) are assumed to be exactly observable (or EΩ-observable)

and weakly observable (or WΩ- observable) on [0, T ] if ImK∗ = H1(Ω) and
ImK∗ = H1(Ω) respectively.
� The semi-group (SA(t))t≥0 is asymptotically stable in H1(Ω) (or ΩA-

stable), if, for +ve constants MΩ and αΩ, then

∥SA(·)∥L(H1(Ω),W) ≤MΩe
−αΩt, t ≥ 0.

� System (1) is called ΩA-stable if the transformation A produces SCS-group
(SA(t))t≥0 which is ΩA-stable.
� Systems (1)-(2) are assumed to be asymptotically detectable (ΩA-detectable)

if the transformation HΩ : Y −→ H1(Ω) such that the operator (A−HΩC) cre-
ates a SCS-group (SHΩ

(t))t≥0, which is ΩA-stable.

3. ∂ΩG-observability and ∂ΩAG-detectability

The observability definitions to boundary case for parabolic, hyperbolic linear,
semi-linear and nonlinear have been extended [20-23] with duel concept [24].
Though, we come across to some definitions and theorems to elucidate the con-
cept of ∂ΩAG-detectability and ∂ΩG-observability in the state space H1/2(∂Ω)
in it’s an extension from [5,14].

Definition 3.1. System (1) together with information (2) is assumed to be
exactly gradient observable (or EΩG-observable) on [0, T ] if:

Im∇K∗ =
(
H1(Ω)

)n
.

Definition 3.2. System (1) together with information (2) is assumed to be
weakly gradient observable (or WΩG-observable) on [0, T ] if:

Im∇K∗ =
(
H1(Ω)

)n
.

Definition 3.3. System (1) together with information (2) is assumed to be
exactly boundary gradient observable (E∂ΩG-observable) on [0, T ], if:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n
.
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Definition 3.4. System (1) together with information (2) is assumed to be
weakly gradient observable W∂ΩG-observable on [0,T], if:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n
.

Remark 3.1. We can deduced that, the equation:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n

is equivalent to:
ker∇K∗γ∗ = {0}.

From previous results, we present the characterization of exactly boundary
gradient observable system in Ω (EG∂Ω-observable) in the following result.

Proposition 3.1. System (1) together with information (2) is said to be E∂ΩG-
observable on [0, T ] if and only if ∃ αE∂ΩG ≥ 0, such that:

(5) ∥γ∇w∥L(H1(Ω),(H1/2(∂Ω))
n
) ≤ αE∂ΩG ∥Kw0∥Y , for all w0 ∈W

Now, we give the concept of boundary gradient strategic sensor (∂ΩG-
strategic sensor).

Definition 3.5. Sensor (D, f) is ∂ΩG-strategic, if the corresponding system is
W∂ΩG-observable.

Definition 3.6. The semi-group (SA(t))t≥0 is supposed to be boundary asymp-
totic gradient stable on (H1/2(∂Ω))n (∂ΩAG-stable), if for some positive con-
stants M∂ΩAG, α∂ΩAG > 0, then:

∥γ∇SA(t)∥(H1/2(∂Ω))
n ≤M∂ΩAGe

−α∂ΩAGt, for all t ≥ 0.

Remark 3.2. If the semi-group (SA(t))t≥0 is ∂ΩAG-stable, then for all w0 ∈
(H1/2(∂Ω))n the solutions associated to the autonomous system of (1) satisfies:

(6) lim
t→∞
∥γ∇SAw(·, t)∥(H1/2(∂Ω))

n = lim
t→∞
∥γ∇SAw(·)∥(H1/2(∂Ω))

n = 0

Definition 3.7. System (1) is assumed to be ∂ΩAG-stable, if the transformation
A produces SCS-group (SA(t))t≥0 which is ∂ΩAG-stable.

Definition 3.8. System (1) together with the information (2) is assumed to be
∂ΩAG-detectable if there is transformation such that (A−H∂ΩAGC) , produces
a SCS-group (SH∂ΩAG

(t))t≥0 which is ∂ΩAG-stable.

Though, one can assume the following results. Consequently, the notion of
∂ΩAG-detectability is a weaker property than the exact E∂ΩG-observability
[1,14].
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4. Boundary asymptotic gradient full-order observer

A methodology that permits a construction and reconstruct asymptotically gra-
dient in full order estimator (∂ΩAGFO-estimator) of T̂w(ξ, t) has been pre-
sented in this section. This technique evades the evaluation inverse problem,
and related to calculate the unknown initial state [3,10], which permits to guess
a current state in ∂Ω with no needs to the outcome of the initial state of the
main system.

4.1 Modernization of ∂ΩAGFO-estimator

Assume the following system:

(7)



∂w

∂t
(ζ, t) = Aw(ζ, t) +Bu(t) Π

w(µ, t) = 0 Ξ

w(ζ, 0) = w0(ζ) Ω

y(·, t) = Cw(·, t) Π

For a region ∂Ω, assume that for T̂ ∈ L((H1/2(Ω))n, (H1/2(∂Ω))n) and T̂ =
γT, ∃ V(·, t), such that:

(8) V(ζ, t) = T̂w(ζ, t) Π

where V(·, t) is a state system. Therefore, if we can form a system which is an
asymptotic approach for V(·, t), then it will be give an asymptotic estimation for
T̂w(ζ, t) (i.e. it structure an asymptotic observer to the restriction of Tw(ζ, t)
on ∂Ω).

Equations (2)-(8) provides:

(9)

[
y
V

]
=

[
C

T̂

]
w

Suppose there exists two linear bounded operators R and S, where R : R −→
(H1/2(∂Ω))n and S : (H1/2(∂Ω))n −→ (H1/2(∂Ω))n, such that RC + ST̂ = I,
then by deriving V(ζ, t), we have:

∂V
∂t = T̂ ∂w

∂t (ζ, t) = T̂Aw(ζ, t) + T̂Bu(t)

= T̂ASV(ζ, t) + T̂ASRy(ζ, t) + T̂Bu(t) Π

Consider (∂ΩAGFO-estimator for x) as:

(10)


∂V
∂t

(ζ, t) = F∂ΩAGV(ζ, t) +G∂ΩAGu(t) +H∂ΩAGy(·, t) Π

V(ζ, 0) = V0(ζ) Ω

V(µ, t) = 0 Ξ
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with F∂ΩΩAG generates SCS-group (SF∂Ω
(t))t≥0, that is ∂ΩAG-stable on W =

H1/2(∂Ω), that means ∃ MF∂Ω
, αF∂Ω

> 0, such that:

(11) ∥χ∂ΩSF∂Ω
(.)∥L((H1/2(∂Ω))

n
,(H1/2(∂Ω))

n
) ≤MF∂Ω

e−αF∂Ω
t, t ≥ 0 Π

and G∂Ω ∈ L(Rp, (H1/2(∂Ω))n) and H∂Ω ∈ L(Rp, (H1/2(∂Ω))n). The solution
of (10) is given by:

(12) V(., t) = SF∂Ω
(t)V0(·) +

∫ t

0
SF∂Ω

(t− τ) [G∂Ωu(τ) +H∂Ωy(·, τ)] dτ Π

Now, in the case when T̂ = I and W = V in equation (8), the operator equation
[4]:

T̂A− F∂ΩAGT̂ = H∂ΩAGC

of the ∂ΩEFO-observer becomes to:

F∂ΩAGAG = A−H∂ΩAGC,

where A and C are identified. Hence, the operator H∂ΩAG has to be known such
that the operator F∂ΩAG is ∂ΩAG-stable.

Also, for the equation (7), the dynamical system can be deliberated as:

(13)


∂V
∂t

(ζ, t) = AV(ζ, t) +Bu(t) +H∂ΩAG (y(., t)− CV(ζ, t)) Π

V(µ, t) = 0 Ξ

V(ζ, 0) = 0 Ω

which is named ∂ΩEFO-observer.

4.2 Junction interface conditions

We examine the three regions E, E1 and E2 as in (Figure 2) of junction condi-
tions [16] used to generalize an approach may be called asymptotic observer to
build the gradient of current state on the ∂Ω. Thus, the boundary observer on

Figure 2: Ω, ∂Ω and regions junction conditions.

∂Ω might be gotten as an observer of internal regional type in E2. If we have
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the following mapping R holds an extension of continuous linear operator [19],
R : (H1/2(∂Ω))n −→ (H1(Ω))n, such that:

(14) γ∇Rh(µ, t) = h(µ, t), for all h ∈
(
H1/2(∂Ω)

)n
Ξ

Let ∀w0 ∈ ∂Ω there exists r > 0 is an random and appropriately small real with
the following sets:

E =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ Ω or w ∈ E1 : ∥w − w0∥ < r, w0 ∈ ∂Ω} ,

where:

E1 =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ E or w /∈ Ω : ∥w − w0∥ < r, w0 ∈ ∂Ω}

and

E2 =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ E or w /∈ E1 : ∥w − w0∥ < r, w0 ∈ ∂Ω} ⊂ Ω

and then we have:

E = E1 ∪ E2, ∂Ω = E1 ∩ Ē2 and E2 = E ∩ Ω,

where B(w0, r) represents a ball of radius r centered in w0(µ, t) and ∂Ω is
boundary of the domain Ω.

For the a region E2 of the domain Ω and let χE2 be a function assumed as:

χE2 :
(
H1(Ω)

)n → (
H1(E2)

)n
,

w : χE2w = w|E2
,

where w|E2
is the restriction of w to E2 with adjoint operator χ∗

E2
(for more

details see references [7-9]).

Definition 4.1. System (7) is E2AG-stable, then the autonomous system solu-
tion linked to (7), asymptotically converges to 0 when t approaches to ∞.

Definition 4.2. System (7) is called E2AG-detectable, if there exists an operator
HE2AG : O −→ (H1(E2))

n, such that the operator A−HE2AGC produces a SCS-
group (SE2AG(t))t>0, which is E2AG-stable.

So, the process of junction conditions from interior to exterior of E2AG-
detectability might be assumed as follows [ 23-26]:

Proposition 4.1. If the system (7) is Ē2AG-detectable, then it is ∂ΩAG-
detactable.
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Proof. Suppose that w(ζ, t) ∈ H1/2(∂Ω) and w̄(ζ, t) be an extension toH1/2(Ē2)
with ∂Ω ⊂ Ē2.

Trace theorem [19] with equation (14) tells, there exist Rw̄(ζ, t) ∈ (H1(Ω))n

with a bounded support such that:

(15) γ (RRE2w̄(ζ, t)) = w(ζ, t) Π

where RE2 : (H1(E2))
n −→ (H1/2(∂Ω))n. Since the system (7) is Ē2-detectable,

then it is E2-detectable [18, 25]. Accordingly, there exists an operator χE2∇K∗ :
O −→ (H1(E2))

n specified by:

(16) H∂ΩAGw(·, t) = γ∇K∗y(ζ, t) Π

such that the operator A−H∂ΩAGC produces a SCS-group (S∂Ω(t))t>0 which
is ∂ΩAG-stable. For every ∈ O, then we get:

χE2∇K∗y(ξ, t) = χE2RRE2w̄(ξ, t)

and hence:
H∂ΩAG =

(
γχ∗

E2
∇K∗y

)
: Y −→

(
H1/2(∂Ω)

)n

such that A−H∂ΩAGCproduces a semi-group (S∂Ω(t))t>0, which is ∂ΩAG-stable.
To conclude, the system (7) is ∂ΩAG-detectable.

Proposition 4.2. If the dynamical system (13) is Ē2AGFO-observer for the
systems (7) then, its ∂ΩAGFO-observer.

Proof. In view of assumptions as in Proposition 4.3 with equations (15) and
(16) and since the dynamical systems (13) Ē2AGFO-observer, so we can assume
that:

I- The systems (13) is E2AGFO-observer [25-26], thus there exists a dynam-
ical system with w(ξ, t) ∈W, such that:

χE2 T̂w(ζ, t) = χE2RRE2w̄(ζ, t).

Then, we have:

(17)
(
γχ∗

E2
χE2RT̂w

)
(ζ, t) = w(ζ, t) Π

II- The equations (2) and (16) allow:[
y
V

]
(ζ, t) =

[
C(

γχ∗
E2
χE2RT̂

) ]
w(ζ, t) Π

and there exists two linear bounded operator R̄ and C satisfy the relation:

R̄C
(
γχ∗

E2
χE2RT̂

)
+ γχ∗

E2
χE2RT̂ = I∂ΩAG.

III- There exist an operator FĒ2
is Ē2AGFO-observer, such that ∂ΩAG-stable

(see [28]). To end with the dynamical system (13) is ∂ΩAGFO-observer
for the system (7).



JUNCTION INTERFACE CONDITIONS FOR ASYMPTOTIC GRADIENT ... 147

4.3 Sensors and ∂ΩAG -detectability

The boundary asymptotic gradient detectability concept with the spatial struc-
ture of sensors can be linked [6]. Now, for that determination assume that J
has unstable modes to have a clear picture of this concept with respect to sensor
structures [5].

Proposition 4.3. Assume that there is q zone sensors (Di, fi)1≤i≤q and ρ(A)
is the spectrum of A holds for finite J eigenvalues of ReλJ ≥ 0. Then, (7) is
∂ΩAG-detectable if and only if:

I- q ≥ m,

II- rank Gi = mi, i = 1, 2, · · · , J , where supmi = m <∞ and j = 1, 2, · · · ,mi,

G = (G)ij =


< φnj , fi(.) >L2(Di), zone case

φnj(bi), poitwise case

< Φnj , fi(.) >L2(Γi), boundary zone case

Proof. The proof can be established as in [25] with case of state gradient w(ξ, t)
belong to sub region Γ, such that Γ = ∂Ω.

Remark 4.1. If the system (7) is ∂ΩAG-detectable, then it is possible to con-
struct an ∂ΩAGFO-observer for the original system [5, 25].

Proposition 4.4. If the systems (7) is ∂ΩAG-detectable, then the dynamical
system (13) is ∂ΩAGFO-observer of the systems (7) that means:

(18) lim
t→∞

[w(ζ, t)− V(ζ, t)] = 0 Π

Proof. Assume φ(ζ, t) = w(ζ, t)− V(ζ, t), where V(ζ, t) is the solution of (13).
Differentiate equation (18) and use of equations (7) and (13), we attain:

∂φ
∂t (ζ, t) =

∂w
∂t (ζ, t)−

∂V
∂t (ζ, t)

= (A−H∂ΩAGC)φ(ζ, t) Π.

The system (7) is ∂ΩAG-detectable. Hence, there exists an operator H∂ΩAG ∈
L(O, (H1/2(∂Ω))n), such thatA−H∂ΩAGC produces a SCS-group (S∂ΩAG(t))t≥0m
which is ∂ΩAG-stable on (H1/2(∂Ω))n, and there exists M∂ΩAG, ω∂ΩAG > 0,
such that:

∥φ∥(H1/2(∂Ω))n ≤ ∥γ∇S∂ΩAG(t)∥(H1/2(∂Ω))n∥φ0∥ ≤M∂ΩAGe
−ω∂ΩAGt∥φ0∥

with
φ0(ζ) = w0(ζ)− V0(ζ)

and hereafter, we got the following:

lim
t→∞

[w(ζ, t)− V(ζ, t)] = 0 Π.
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5. Applications to ∂ΩAGFO-Observer

The distributed diffusion systems defined in the domain Ω have been considered
as an application to ∂ΩAGFO-observer [12, 27]. Several applications in real
life problems associated with different types of sensor have been prolonged. For
two-dimensional system, the domain:

Ω =]0, a1[×]0, a2[

with the boundary is given by the following form:

∂Ω = [0, a1]× {a2} ∪ [0, a1]× {0} ∪ {0} × [0, a2] ∪ a1 × [0, a2]

is a region of Ω̄.
The eigenfunctions of (16) are defined by:

(19) φnm(ζ1, ζ2) =

(
4

a1a2

)1/2

cosnπ

(
ζ1
a1

)
cosnπ

(
ζ2
a2

)
associated with eigenvalues:

(20) λnm = −
(
n2

a21
+
m2

a22

)
π2, n,m ≥ 1

If we assume that
a21
a22

/∈ Q [28-30], then the multiplicity of the eigenvalues λnm

is rnm = 1 for every n,m = 1, 2, · · · , J , then one sensor (D, f) may be sufficient
for ∂ΩAGFO-observer [26-30].

5.1 Rectangular domain

A sufficient conditions which is characterized some cases of the ∂ΩAGFO-
observer in the rectangular domain of system (21) with various sensor locations
cases have been provided in this section.

5.1.1 Internal zone sensors case

Assume the following two dimensional system that is defined by parabolic equa-
tion:

(21)


∂w

∂t
(ζ1, ζ2, t) =

∂2w

∂w∂ζ21
(ζ1, ζ2, t) +

∂2w

∂ζ21
(ζ1, ζ2, t) Π

w(µ1, µ2, t) = 0 Ξ

w(ζ1, ζ2, 0) = w0(ζ1, ζ2) Ω

together with the information is represented via internal pointwise or zone sen-
sors

(22) y(·, t) =
∫
D
w(ζ1, ζ2, t)f(ζ1, ζ2) dζ1dζ2 Π
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where the zone sensor is situated interior to the domain Ω (Figure 3), with
support of:

D = [ζ10 − l1, ζ10 + l1]× [ζ20 − l2, ζ20 + l2] ⊂ Ω and L2(D)

In this case the system (21) together with the information (22) have an associ-

Figure 3: Ω, ∂Ω with sensor position D of internal zone type.

ated dynamical system, that is specified by the following formula:

(23)



∂V
∂t

(ζ1, ζ2, t) =
∂2V
∂w∂ζ21

(ζ1, ζ2, t) +
∂2V
∂ζ21

(ζ1, ζ2, t)

−H∂ΩGA(CV(ζ1, ζ2, t)− y(t)) Π

V(µ1, µ2, t) = 0 Ξ

V(ζ1, ζ2, 0) = z0(ζ1, ζ2) Ω

Hence, the following important result is obtained.

Proposition 5.1. Assume that f1 and f2 are symmetric about ζ = ζ01 and
ζ = ζ02 respectively, then the process (23) is ∂ΩAGFO-observer for systems
(21)-(22) if nζ01/a1 and mζ02/a2 /∈ N , for every n,m = 1, 2, · · · , J .

5.1.2 Pointwise sensors case

Assume the system (21) together with information (24) which is measured by
internal pointwise sensors. Then, the output function can be formulated as:

(24) y(t) =

∫
Ω
w(ζ1, ζ2, t)δ(ζ1 − b1, ζ2 − b2) dζ1dζ2 Π

So, the following result is prophesied.

Proposition 5.2. Let b = (b1, b2) is the sensor positioned in Ω, then the dy-
namic system (23) is ∂ΩAGFO-observer for the system (21)-(24), if (nb1)/(a1)
and (mb2)/(a2 /∈ N), for every n,m = 1, 2, · · · , J .
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Figure 4: Ω, ∂Ω with sensor position b of pointwise zone type.

Figure 5: Ω, ∂Ω with sensor position σ of filament zone type.

5.1.3 Filament pointwise sensors case

Assume that the filament sensor positioned in Ω, where σ = Im(γ) ⊂ Ω is
symmetric with respect to the line b = (b1, b2) (Figure 5). More precisely, the
sensor is line of pointwise positioned in Ω, then the output function still given
by equation (21).

Proposition 5.3. Let the sensor is located in b = (b1, b2), then the process (23)
is ∂ΩAGFO-observer to (21)-(24), if (nb1)/(a1) and (mb2)/(a2 /∈ N), for every
n,m = 1, 2, · · · , J .

5.2 Circular domain

Remark 5.1. The results in 5.1 can be extended to the case of circular domain
with the internal zone and pointwise sensor as in [27-28].

6. Conclusion

The crossing problem from interior to exterior of asymptotic gradient full order
observer have been explored and achieved in rigorous results. Thus, the char-
acterizations of this approach are presented in connection with corresponding
notions as stability, detectability, strategic sensor and considered domain. Then,
the boundary asymptotic gradient reconstruction state via full-order observer in
parabolic distributed parameter systems is examined and proved. Many inter-
esting results concerning the choice of sensors structure are given and illustrated
in specific situations to diffusion systems. Moreover, many problem still opened
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for instance, hyperbolic distributed parameter systems and it’s development of
the sense of these results as in [22] with another operators (see [31-32]).

References

[1] R.F. Curtain, H. Zwart, An introduction to infinite dimensional linear sys-
tem theory, Springer-Verlag, New York, 1995.

[2] S. Rekkab, S. Benhadid, R. Al-Saphory, An asymptotic analysis of the gradi-
ent remediability problem for disturbed distributed linear systems, Baghdad
Science Journal, 19 (2022), 1623–1635.

[3] X. Xu, S. Dubljevic, Boundary observer design for a class of semi-linear
hyperbolic PDE systems with recycle loop, International Journal of Control,
2019.

[4] H. Yu, A. Bayen, M. Krstic, Boundary observer for congested freeway traffic
state estimation via Aw-Rascle-Zhang model, ArXiv:12963vi [math OC] 29
April 2019.

[5] R. Al-Saphory, A. El Jai, Regional asymptotic state reconstruction, Inter-
national Journal of System Science, 33 (2002), 1025-1037.

[6] R. Al-Saphory, Sensors structures and regional exponential detectability,
2001 European Control Conference (ECC), IEEE Xplore: 27 April 2015,
2215–2220.

[7] R. Al-Saphory, N. Al-Jawari, A. Al-Janabi, Asymptotic regional gradient
reduced-order observer, Journal of Physics: Conference Series, 1818 (2021),
012190.

[8] M. Al-Bayati, A. Al-Shaya, R. Al-Saphory, Boundary exponential gradient
reduced order detectability in Neumann conditions, Iraqi Journal of Science,
65 (2024), 1-14.

[9] R. Al-Saphory, A. Al-Shaya, S. Rekkab, Regional boundary asymptotic gra-
dient reduced order observer, Journal of Physics: Conference Series, 1664
(2020), 012101.

[10] R. Al-Saphory, M. Al-Joubory, M.K. Jasim, Strategic sensors character-
izations, Journal of Mathematical and Computational Science, 3 (2013),
401-418.

[11] R. Al-Saphory, A. El Jai, Sensor structures and regional detectability of
parabolic distributes systems, Sensors and Actuators A, 90 (2001), 163-171.

[12] R. Al-Saphory, A. El Jai, Sensors and regional asymptotic ω-observer for
distributed diffusion systems, Sensors, 1 (2001), 161-182.



152 RAHEAM A. AL-SAPHORY, ZINAH A. KHALID and MAHMOOD K. JASIM

[13] R. Al-Saphory, Z. Khalid, A. El-Jai, Regional boundary gradient closed
loop control system and G∗AGFO-observer, Journal of Physics: Conference
Series, 1664 (2020), 012061.

[14] R. Al-Saphory, N. Al-Jawari, Sensor and regional gradient detectability of
distributed systems, 1999 (012084) (2021), 1-14.

[15] R. Al-Saphory, Asymptotic regional boundary observer in distributed pa-
rameter systems via sensors structures, Sensors, 2 (2002), 137-152.

[16] A. Banerjee, M.K. Jasim, A. Pradhan, Analytical model of dark energy
stars, Modern Physics Letters A, 33 (2020).

[17] A. El Jai, A.J. Pritchard, Sensors and controls in analysis of distributed
system, Ellis Harwood Series in Mathematics and Applications, Wiley, New
York, 1988.

[18] A. El Jai, A.J. Pritchard, Sensors and actuators in distributed systems,
International Journal of Control, 46 (1987), 1193-1153.

[19] R. Dautray, J. Lions, Analyze mathematique et calcul numerique pour les
sciences et les techniques, Serie Scientifique, Masson, 8 (2003), Paris.

[20] E. Zerrik, H. Bourray, Gradient observability for diffusion systems, Interna-
tional Journal of Applied Mathematics and Computer Science, 13 (2003),
139-150.

[21] E. Zerrik, L. Badraoui, Sensors characterization for regional boundary ob-
servability, International Journal of Applied Mathematics and Computer
Science, 10 (2000), 345-356.

[22] H. Bourray, S. Ben Hadid, Sensors and boundary state reconstruction of
hyperbolic systems, International Journal Mathematical and Computational
Science, 20 (2010), 227-238.

[23] A. Boutoulout, H. Bourray, F. Allaoui, Regional boundary observability
for semi-linear systems approach and simulation, International Journal of
Mathematical Analysis, 4 (2010), 1153-1173.

[24] E. Zerrik, R. Larhrissi, H. Bourray, An output controllability problem for
semi linear distributed hyperbolic systems, International Journal of Applied
Mathematics and Computer Science, 17 (2007), 437-448.

[25] S. Ben Hadid, S. Rekkab, E. Zerrik, Sensors and regional gradient observ-
ability of hyperbolic systems, Intelligent Control and Automation, 3 (2012),
78-89.

[26] A. El Jai, H. Hamzaoui, Regional observation and sensors, International
Journal of Applied Mathematics and Computer Sciences, 19 (2009), 5-14.



JUNCTION INTERFACE CONDITIONS FOR ASYMPTOTIC GRADIENT ... 153

[27] A. El Jai, M. Amouroux, E. Zerrik, Regional observability of distributed
system, International Journal of Systems Science, 25 (1994), 301-313.

[28] R. Gressang, G. Lamont, Observers for systems characterized by semi-
group, IEEE on Automatic and Control, 20 (1975), 523-528.

[29] A. El Jai, H. Hamzaoui, On actuators number in distributed systems, Sen-
sors and Actuators A, 147 (2008), 273-278.

[30] R. Al-Saphory, A. El Jai, Sensors characterizations for regional boundary
detectability in distributed parameter systems, Sensors and Actuators A, 94
(2001), 1-10.

[31] M. Mahmoud, A.R.S Juma, R. Al-Saphory, On bi-univalent functions in-
volving Srivastava-Attiya operator, Italian Journal of Pure and Applied
Mathematics, 49 (2023), 1-9.

[32] M. Abdul Ameer, A.R.S. Juma, R. Al-Saphory, Harmonic meromorphic
starlike functions of complex order involving Mittag-Leffler operator, Italian
Journal of Pure and Applied Mathematics, 48 (2022), 1-8.

Accepted: January 31, 2021



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 49–2023 (154–172) 154

Fixed point theorems for monotone mappings on partial
M∗-metric spaces

Maha S. Alsauodi
Department of Mathematics
University of Jordan
Amman
Jordan
alsoudimaha@gmail.com

Gharib M. Gharib
Department of Mathematics
Zarqa University
Zarqa
Jordan
ggharib@zu.edu.jo

Abed Al-Rahman M. Malkawi∗

Department of Mathematics
University of Jordan
Amman
Jordan
Abd9180065@ju.edu.jo

Ayat M. Rabaiah
Department of Mathematics
University of Jordan
Amman
Jordan
Aya916322@ju.edu.jo

Wasfi Shatanawi
Department of General Sciences

Prince Sultan University

Riyadh

Saudi Arabia

and

Department of Mathematics

Hashemite University

Zarqa

Jordan

wshatanawi@psu.edu.sa

swasfi@hu.edu.jo

Abstract. In this paper, we introduce the concept of partial M∗−metric on a
nonempty set X, and we give some properties supported by some examples to illustrate

*. Corresponding author



FIXED POINT THEOREMS FOR MONOTONE MAPPINGS ON PARTIAL ... 155

our results. Furthermore, we establish some fixed points results for partial M∗−metric.
Also, we extend our result for monotone mappings on partial M∗−metric spaces.

Keywords: M∗−metric spaces, fixed point, partial metric.

1. Introduction

Bakhtin [2] and Czerwik [3] are defined a b−metric space and the idea of a
b−metric space the triangle inequality axiom is weaker than for metric space.
Also, many authors gives many fixed point theorems in a b-metric space (see
[6−15]), Aydi et al. [8] gave some interesting theories for fixed point for set-valid
quasi contraction in b-metric space.

In 2021 [37], Malkawi et al. introduced the notion of MR-metric space and
MR-metric space is a generalization of a b-metric space [2, 3] and the tetrahedral
inequality axiom is weaker than for a D−metric space [1]. Also, there are many
fixed point theorems in different type spaces for more information. I Refer to
the reader to look at [4− 36].

Definition 1 ([37]). Let X be a non empty set and R ≥ 1 be a real number.
M : X×X×X → [0,∞) a function which is called an MR-metric, if it satisfies
the following axioms for each x, y, z ∈ X.

(M1) :M(x, y, z) ≥ 0.
(M2) :M(x, y, z) = 0 iff x = y = z.
(M3) : M(x, y, z) =M(p(x, y, z)); for any permutation p(x, y, z) of x, y, z.
(M4) : M(x, y, z) ≤ R [M(x, y, ℓ) +M(x, ℓ, z) +M(ℓ, y, z)] .
A pair (X,M) is called an MR-metric space.

Also, Gharib et al. [38] introduced the concept of M∗-metric spaces, the
importance of which lies in this property M∗(x, x, y) =M∗(x, y, y). It is worth
noting that these characteristics need not be satisfied in MR-metric space [37].

Definition 2 ([38]). Let X be a non empty set and R ≥ 1 be a real number.
A function M∗ : X × X × X → [0,∞) is called M∗-metric, if the following
properties are satisfied for each x, y, z ∈ X.

(M∗1) :M∗(x, y, z) ≥ 0.
(M∗2) :M∗(x, y, z) = 0 iff x = y = z.
(M∗3) :M∗(x, y, z) =M∗(p(x, y, z)); for any permutation p(x, y, z) of x, y, z.
(M∗4) : M∗(x, y, z) ≤ RM∗(x, y, u) +M∗(u, z, z).
A pair (X,M∗) is called an M∗-metric space.

The following are examples of M∗-metric space.

Example 1. a) Let (X, d) be a metric space then M∗(x, y, z) = 1
R max{d(x, y),

d(y, z), d(z, x)} and M∗(x, y, z) = 1
R [d(x, y), d(y, z), d(z, x)] are M

∗-metric on
X.

b) If X = Rn, then

M∗(x, y, z) =
1

R
[∥x+ y − 2z∥+ ∥y + z − 2x∥+ ∥z + x− 2y∥],
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for every x, y, z ∈ Rn is an M∗-metric on X.

Example 2. Let ψ : R× R → R+ be a mapping defined as the following:

ψ(x, y) = 0 if x = y, ψ(x, y) =
1

2
if x > y, ψ(x, y) =

1

3
if x < y.

Then, clearly ψ is not a metric, since ψ(1, 2) ̸= ψ(2, 1). Define G : R×R×R →
R+ by

G(x, y, z) =
1

R
max{ψ(x, y), ψ(y, z), ψ(z, x)}.

Then, G is an M∗-metric.

Example 3. Let ψ : R+ × R+ → R+ be a mapping defined as the following:
ψ(x, y) = max{x, y}. Clearly it is not a metric. Define G : R+×R+×R+ →

R+ by

ψ(x, y) =
1

R
[max{x, y}+max{y, x}+max{z, x}]− x− y − z,

for every x, y, z ∈ R+. Then G is an M∗-metric.

2. Partial M∗-metric space

The Authors defined b−metric space by replacing the triangular inequality ax-
iom with a weaker one. Also, for some work on b-metric, we refer the reader to
[40, 41, 42, 43, 44, 45, 46].
Now, we present the concept of a partial M∗−metric space and prove its prop-
erties.

Definition 3. A partial M∗-metric on a nonempty set X is a function M∗
p :

X ×X ×X → R+ such that for all x, y, z, a ∈ X :
(M∗

p 1) x = y = z ⇔M∗
p (x, x, x) =M∗

p (x, y, z) =M∗
p (y, y, y) =M∗

p (z, z, z),
(M∗

p 2) M
∗
p (x, x, x) ≤M∗

p (x, y, z),
(M∗

p 3) M
∗
p (x, y, z) =M∗

p (p{x, y, z}), where p is a permutation function,
(M∗

p 4) M
∗
p (x, y, z) ≤ RM∗

p (x, y, a) +M∗
p (a, z, z)−M∗

p (a, a, a).

(X,M∗
p ) is a partial M∗-metric space on a nonempty set X and M∗

p is a
partial M∗-metric on X. It is clear that, if M∗

p (x, y, z) = 0, then from (M∗
p 1)

and (M∗
p 2) x = y = z. But if x = y = z, M∗

p (x, y, z) may not be 0. The basic

example of a partial M∗-metric space (R+,M∗
p ) is M

∗
p (x, y, z) =

1
R max{x, y, z}

for all x, y, z ∈ R+.
It is obvious that everyM∗−metric is a partialM∗−metric, but the converse

need not be true. We will explain this in the following example.

Example 4. Let M∗
p :: R+×R+×R+ → R+ be a nonempty defined as follows:

M∗
p (x, y, z) =

1

R
[|x− y|+ |y − z|+ |x− z|] + max{x, y, z},

such that R ≥ 1. Then clearly it is a partial M∗-metric, but it is not an M∗-
metric.
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Example 5. Let (X, p) be a partial b-metric space and M∗
p :: R+×R+×R+ →

R+ be a nonempty defined as:

M∗
p (x, y, z) =

1

R
[p(x, y) + p(x, z) + p(y, z)]− p(x, x)− p(y, y)− p(z, z).

Then, clearly M∗
p is a partial M∗-metric, but it is not an M∗-metric.

Remark 1. M∗
p (x, x, y) =M∗

p (x, y, y)

Proof.

M∗
p (x, x, y) ≤ RM∗

p (x, x, x) +M∗
p (x, y, y)−M∗

p (x, x, x)

≤ RM∗
p (x, x, x) +M∗

p (x, y, y)−RM∗
p (x, x, x)

≤M∗
p (x, y, y).(2.1)

M∗
p (x, y, y) ≤ RM∗

p (y, y, y) +M∗
p (y, x, x)−M∗

p (y, y, y)

≤ RM∗
p (y, y, y) +M∗

p (y, x, x)−RM∗
p (y, y, y)

≤M∗
p (y, x, x).(2.2)

From (2.1) and (2.2), we get M∗
p (x, x, y) =M∗

p (x, y, y).

Lemma 1. Let (X,M∗
p ) be a partial M∗−metric space. If we define p(x, y) =

M∗
p (x, y, y), then (X, p) is a partial b-metric space

Proof. (M∗
p 1) x = y ⇔ M∗

p (x, x, x) = M∗
p (x, y, y) = p(y, y, y) ⇔ p(x, x) =

p(x, y) = p(y, y),

(M∗
p 2) M

∗
p (x, x, x) ≤M∗

p (x, y, y) implies that p(x, x) ≤ p(x, y),

(M∗
p 3) M

∗
p (x, y, y) =M∗

p (y, x, x) implies that p(x, y) = p(y, x),

(M∗
p 4) M

∗
p (y, y, x) ≤ RM∗

p (y, y, z) +M∗
p (z, x, x)−M∗

p (z, z, z) implies that

p(x, y) ≤ R[p(y, z) + p(z, x)]− p(z, z).

Let (X,M∗
p ) be a partial M∗−metric space. For r > 0 define

BM∗
p
(x, r) = {y ∈ X :M∗

p (x, y, y) < M∗
p (x, x, x) + r}.

Definition 4. Let (X,M∗
p ) be a partial M∗−metric space and A ⊂ X.

(1) If, for every x ∈ A there exists r > 0 such that BM∗
p
(x, r) ⊂ A, then the

subset A is called an open subset of X.

(2) {xn} is a sequence in a partial M∗−metric space (X,M∗
p ) converges to x

if and only if M∗
p (x, x, x) = limn→∞M∗

p (xn, xn, x). That is for each ϵ > 0, there
exists n0 ∈ N such that

(1) M∗
p (x, x, xn) < M∗

p (x, x, x) + ϵ ∀n ≥ n0,
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or equivalently, for each ϵ > 0, there exists n0 ∈ N such that

(2) M∗
p (x, xn, xm) < M∗

p (x, x, x) + ϵ ∀n,m ≥ n0.

Indeed, if (1) holds then

M∗
p (x, xn, xm) = M∗

p (xn, x, xm)

≤ RM∗
p (xn, x, x) +M∗

p (x, xm, xm)−M∗
p (x, x, x)

< Rϵ+ ϵ+M∗
p (x, x, x).

Conversely, set m = n in (2) we have M∗
p (xn, xn, x) < M∗

p (x, x, x) + ϵ.
(3) {xn} is a sequence in a partial M∗−metric space (X,M∗

p ) is called a
Cauchy if limn→∞M∗

p (xn, xm, xm) exists.
Let τM∗

p
be the set of all open subsets X, then τM∗

p
is a topolpgy on X (induced

by the partial M∗−metric M∗
p ).

A partial M∗−metric space (X,M∗
p ) is said to be complete if every Cauchy

sequence {xn} in X converges to a point x ∈ X with respect to τM∗
p
.

If a sequence {xn} in a partial M∗−metric space (X,M∗
p ) converges to x,

then we have

M∗
p (xn, xn, xm) ≤ RM∗

p (xn, xn, x) +M∗
p (x, xm, xm)−M∗

p (x, x, x)

< Rϵ+ ϵ+M∗
p (x, x, x).

Lemma 2. Let (X,M∗
p ) be a partial M∗−metric space. If r > 0, then the ball

BM∗
p
(x, r) with center x ∈ X and radius r is an open ball.

Proof. Let y ∈ BM∗
p
(x, r), thenM∗

p (x, y, y) < M∗
p (x, x, x)+r. LetRM

∗
p (x, y, y)−

M∗
p (x, x, x) = δ. Let z ∈ BM∗

p
(y, r − δ), by triangular inequality, we have

M∗
p (x, x, z) ≤ RM∗

p (x, y, y) +M∗
p (y, z, z) +M∗

p (y, y, y)

= RM∗
p (x, y, y)−M∗

p (x, x, x) +M∗
p (z, z, y)

−M∗
p (y, y, y) +M∗

p (x, x, x)

< δ + r − δ +M∗
p (x, x, x)

= M∗
p (x, x, x) + r.

Thus, z ∈ BM∗
p
(x, r). Hence BM∗

p
(y, r − δ) ⊆ BM∗

p
(x, r). Therefore, the ball

BM∗
p
(x, r) is an open ball.

Each partial M∗−metric M∗
p on X generates a topology τM∗

p
on X which

has as a base the family of open M∗
p−balls {BM∗

p
(x, ϵ) : x ∈ X, ϵ > 0}.

The following example shows that a convergent sequence {xn} in a partial
M∗−metric space (X,M∗

p ) need not be a Cauchy sequence. In particular, it
shows that the limit of a convergent sequence is not necessarily unique, to explain
that see the following example
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Example 6. Let X = [0,∞) andM∗
p (x, y, z) =

1
R max{x, y, z}. Then, it is clear

that (X,M∗
p ) is a complete partial M∗−metric space. Let

xn =

{
1, n = 2k

2, n = 2k + 1.

Then, clearly it is convergent sequence and for every x ≥ 2 we have

lim
n→∞

M∗
p (xn, xn, x) =M∗

p (x, x, x),

therefore
L(xn) = {x : xn → x} = [2,∞).

But, limn→∞M∗
p (xn, xm, xm) does not exist. Hence {xn} is not a Cauchy se-

quence.

The following Lemma plays an important role in this paper.

Lemma 3. Let (X, p) be a partial b−metric space then there exists a partial
M∗−metric M∗

p on X such that
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence

in the partial M∗−metric space (X,M∗
p ),

(b) the partial b−metric space (X, p) is complete if and only if the partial
M∗−metric space (X,M∗

p ) is complete. Furthermore, M∗
p (x, x, y) = p(x, y), for

every x, y ∈ X.

Proof. Define

M∗
p (x, y, z) =

1

R
max{p(x, y), p(x, z), p(y, z)}, ∀x, y, z ∈ X.

Then, it is easy to see thatM∗
p is a partialM∗−metric andM∗

p (x, x, y) = p(x, y),
for every x, y ∈ X.

The following Lemma shows that under certain conditions the limit is unique.

Lemma 4. Let {xn} be a convergent sequence in a partial M∗-metric space
(X,M∗

p ) such that xn → x and xn → y. If

lim
n→∞

M∗
p (xn, xn, xn) =M∗

p (x, x, x) =M∗
p (y, y, y),

then x = y.

Proof. As

M∗
p (x, y, y) =M∗

p (x, x, y) ≤ RM∗
p (x, x, xn) +M∗

p (xn, y, y)−M∗
p (xn, xn, xn),

therefore

M∗
p (xn, xn, xn) ≤ RM∗

p (x, x, xn) +M∗
p (xn, y, y)−M∗

p (x, y, y).
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By given assumptions, we have

lim
n→∞

M∗
p (xn, xn, x) = M∗

p (x, x, x),

lim
n→∞

M∗
p (xn, xn, y) = M∗

p (y, y, y),

lim
n→∞

M∗
p (xn, xn, xn) = M∗

p (x, x, x).

Therefore

M∗
p (x, x, x) ≤ RM∗

p (x, x, x) +M∗
p (y, y, y)−M∗

p (x, y, y),

which shows that M∗
p (y, y, y) ≤ (1−R)M∗

p (x, x, x)+M∗
p (x, y, y) ≤M∗

p (y, y, y).
So,

M∗
p (y, y, y) ≤M∗

p (x, y, y) ≤M∗
p (y, y, y).

Also,

M∗
p (x, y, y) =M∗

p (y, y, x) ≤ RM∗
p (y, y, xn) +M∗

p (xn, x, x)−M∗
p (xn, xn, xn),

implies that

M∗
p (xn, xn, xn) ≤ RM∗

p (y, y, xn) +M∗
p (xn, x, x)−M∗

p (x, y, y),

by on taking limit as n→ ∞ gives

M∗
p (y, y, y) ≤ RM∗

p (y, y, y) +M∗
p (x, x, x)−M∗

p (x, y, y),

which shows that

M∗
p (x, x, x) ≤ (1−R)M∗

p (y, y, y) +M∗
p (x, y, y) ≤M∗

p (x, x, x).

So,

M∗
p (x, x, x) ≤M∗

p (x, y, y) ≤M∗
p (x, x, x).

Thus, M∗
p (x, x, x) =M∗

p (x, y, y) =M∗
p (y, y, y). Therefore, x = y.

Lemma 5. Let {xn} and {yn} be two sequences in partial M∗−metric space
(X,M∗

p ) such that

lim
n→∞

M∗
p (xn, x, x) = lim

n→∞
M∗

p (xn, xn, xn) =M∗
p (x, x, x),

and

lim
n→∞

M∗
p (yn, y, y) = lim

n→∞
M∗

p (yn, yn, yn) =M∗
p (y, y, y).

Then limn→∞M∗
p (xn, yn, yn) =M∗

p (x, y, y). In particular, limn→∞M∗
p (xn, yn, z)

=M∗
p (x, y, z), for every z ∈ X.



FIXED POINT THEOREMS FOR MONOTONE MAPPINGS ON PARTIAL ... 161

Proof. As {xn} and {yn} converges to a x ∈ X and y ∈ X respectively, for
each ϵ > 0 there exists n0 ∈ N such that

M∗
p (x, x, xn) < M∗

p (x, x, x) +
ϵ

2R
,

M∗
p (y, y, yn) < M∗

p (y, y, y) +
ϵ

2R
,

M∗
p (x, x, xn) < M∗

p (xn, xn, xn) +
ϵ

2R

and

M∗
p (y, y, yn) < M∗

p (yn, yn, yn) +
ϵ

2R

for n ≥ n0. Now,

M∗
p (xn, xn, yn) ≤ RM∗

p (xn, xn, x) +M∗
p (x, yn, yn)−M∗

p (x, x, x)

≤ RM∗
p (xn, xn, x) +RM∗

p (y, yn, yn) +M∗
p (x, x, y)

−M∗
p (y, y, y)−M∗

p (x, x, x)

< M∗
p (x, y, y) +

Rϵ

2R
+
Rϵ

2R
= M∗

p (x, y, y) + ϵ,(1)

and so we have

M∗
p (xn, yn, yn)−M∗

p (x, y, y) < ϵ.

Also,

M∗
p (x, y, y) ≤ RM∗

p (xn, y, y) +M∗
p (x, x, xn)−M∗

p (xn, xn, xn)

≤ RM∗
p (x, x, x) +RM∗

p (xn, xn, yn) +M∗
p (yn, y, y)

−M∗
p (yn, yn, yn)−M∗

p (xn, xn, x)

< M∗
p (xn, xn, y) +

Rϵ

2R
+
Rϵ

2R
= M∗

p (x, y, y) + ϵ.(2)

Thus,

M∗
p (x, x, y)−M∗

p (xn, xn, yn) < ϵ.

Hence, for all n ≥ n0, we have
∣∣M∗

p (xn, xn, yn)−M∗
p (x, x, y)

∣∣ < ϵ. Hence, the
result follows.

Lemma 6. If M∗
p is a partial M∗-metric on X, then the functions M∗

ps ,M
∗
pm :

X ×X ×X → R+ are given by:

M∗
ps(x, y, z) = RM∗

p (x, x, y) +RM∗
p (y, y, z) +M∗

p (z, z, x)

−M∗
p (x, x, x)−M∗

p (y, y, y)−M∗
p (z, z, z)
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and

M∗
pm(x, y, z) = max


2RM∗

p (x, x, y)−M∗
p (x, x, x)−M∗

p (y, y, y),

2RM∗
p (y, y, z)−M∗

p (y, y, y)−M∗
p (z, z, z),

2RM∗
p (z, z, x)−M∗

p (z, z, z)−M∗
p (x, x, x)

 ,

for every x, y, z ∈ X are equivalent M∗-metrics on X.

Proof. It is easy to see thatM∗
ps andM

∗
pm areM∗-metrics onX. Let x, y, z ∈ X.

It is obvious that

M∗
pm(x, y, z) ≤ 2M∗

ps(x, y, z).

On the other hand, since a+ b+ c ≤ 3max {a, b, c} , it provides that

M∗
ps(x, y, z) = RM∗

p (x, x, y) +RM∗
p (y, y, z) +M∗

p (z, z, x)

−M∗
p (x, x, x)−M∗

p (y, y, y)−M∗
p (z, z, z)

≤ 1

2

[
2RM∗

p (x, x, y)−M∗
p (x, x, x)−M∗

p (y, y, y)
]

+
1

2

[
2RM∗

p (y, y, z)−M∗
p (y, y, y)−M∗

p (z, z, z)
]

+
1

2

[
2RM∗

p (z, z, x)−M∗
p (z, z, z)−M∗

p (x, x, x)
]

≤ 3

2
max


2RM∗

p (x, x, y)−M∗
p (x, x, x)−M∗

p (y, y, y),

2RM∗
p (y, y, z)−M∗

p (y, y, y)−M∗
p (z, z, z),

2RM∗
p (z, z, x)−M∗

p (z, z, z)−M∗
p (x, x, x)


=

3

2
M∗

pm(x, y, z).

Thus, we have

1

2
M∗

pm(x, y, z) ≤M∗
ps(x, y, z) ≤

3

2
M∗

pm(x, y, z).

These inequalities implies that M∗
ps and M∗

pm are equivalent.

Remark 2. Note that:

M∗
ps(x, x, y) = 2RM∗

p (x, x, y)−M∗
p (x, x, x)−M∗

p (y, y, y) =M∗
pm(x, x, y).

A mapping F : X → X is said to be continuous at x0 ∈ X, if for every ϵ > 0,
there exists δ > 0 such that F (BM∗

p
(x0, δ)) ⊆ BM∗

p
(Fx0, ϵ).

The following lemma plays an important role to prove fixed point results on
a partial M∗-metric space.

Lemma 7. Let (X,M∗
p ) be a partial M∗-metric space.

(a) {xn} is a Cauchy sequence in (X,M∗
p ) if and only if it is a Cauchy

sequence in the M∗-metric space (X,M∗
ps)
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(b) A partial M∗-metric space (X,M∗
p ) is complete if and only if the M∗-

metric space (X,M∗
ps) is complete. Furthermore,

lim
n→∞

M∗
ps(xn, xn, x) = 0

if and only if

M∗
p (x, x, x) = lim

n→∞
M∗

p (xn, xn, x) = lim
n,m→∞

M∗
p (xn, xn, xm).

Proof. Let {xn} be a Cauchy sequence in (X,M∗
p ), we want to prove {xn} is a

Cauchy sequence in the M∗-metric space (X,M∗
ps).

Since {xn} be a Cauchy sequence in (X,M∗
p ), then there exists α ∈ R and

for every ϵ > 0, there is nϵ ∈ N such that
∣∣M∗

p (xn, xn, xm)− α
∣∣ < ϵ

4R for all
n,m ≥ nϵ. Hence

M∗
ps(xn, xn, xm) ≤

∣∣2RM∗
p (xn, xn, xm)−M∗

p (xn, xn, xn)

−M∗
p (xm, xm, xm) + 2α− 2α

∣∣
≤
∣∣2RM∗

p (xn, xn, xm)− 2α
∣∣+ ∣∣M∗

p (xn, xn, xn)− α
∣∣

+
∣∣M∗

p (xm, xm, xm)− α
∣∣ ≤ 4R

ϵ

4R
= ϵ,

for all n,m ≥ nϵ. Thus {xn} is a Cauchy sequence in (X,M∗
ps).

Now, we prove that completeness of (X,M∗
ps) implies completeness of (X,M∗

p ).
Indeed, if {xn} be a Cauchy sequence in (X,M∗

p ) then it is {xn} be a Cauchy
sequence in (X,M∗

ps). Since theM
∗-metric space (X,M∗

ps) is complete we deduce
that there exists y ∈ X such that limn→∞M∗

ps(xn, xn, y) = 0. Thus,

lim
n→∞

sup
∣∣M∗

p (xn, xn, y)−M∗
p (y, y, y)

∣∣
≤ lim

n→∞

∣∣2RM∗
p (xn, xn, y)−M∗

p (xn, xn, xn)−M∗
p (y, y, y)

∣∣ = 0.

Hence, we follow that {xn} is a convergent sequence in (X,M∗
p ). That is

meaning
lim
n→∞

M∗
p (xn, xn, y) =M∗

p (y, y, y).

Now, we prove that every Cauchy sequence {xn} in (X,M∗
ps) is a Cauchy se-

quence in (X,M∗
p ). Let ϵ=

1
2R , then there exists n0 ∈ N such thatM∗

ps(xn, xn, xm)

< 1
2R for all n,m ≥ n0. Since

M∗
p (xn, xn, xn) ≤ 4RM∗

p (xn0 , xn0 , xn)− 3M∗
p (xn, xn, xn)

−M∗
p (xn0 , xn0 , xn0) +M∗

p (xn, xn, xn)

≤ 2RM∗
ps(xn, xn, xn0) +M∗

p (xn0 , xn0 , xn0).

Thus, we have

M∗
p (xn, xn, xn) ≤ 2RM∗

ps(xn, xn, xn0) +M∗
p (xn0 , xn0 , xn0)

≤ 1 +M∗
p (xn0 , xn0 , xn0).
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Consequently the sequence
{
M∗

p (xn, xn, xn)
}
is bounded in R and so there

exists an a ∈ R such that a sub sequence
{
M∗

p (xnk
, xnk

, xnk
)
}
is convergent to

a, i.e. limk→∞M∗
p (xnk

, xnk
, xnk

) = 0.
It remains to prove that

{
M∗

p (xn, xn, xn)
}
is a Cauchy sequence in R. Since

{xn} is a Cauchy sequence in (X,M∗
ps), for ϵ > 0, there exists nϵ such that

M∗
ps(xn, xn, xm) < ϵ

2R for all n,m ≥ nϵ. Hence, for all n,m ≥ nϵ,∣∣M∗
p (xn, xn, xn)−M∗

p (xm, xm, xm)
∣∣ ≤ 4RM∗

p (xn, xn, xm)− 3M∗
p (xn, xn, xn)

−M∗
p (xm, xm, xm) +M∗

p (xn, xn, xn)−M∗
p (xm, xm, xm)

≤ 2RM∗
ps(xn, xn, xm) < ϵ.

On the other hand,∣∣M∗
p (xn, xn, xn)− a

∣∣ ≤ ∣∣M∗
p (xn, xn, xm)−M∗

p (xnk
, xnk

, xnk
)
∣∣

+
∣∣M∗

p (xnk
, xnk

, xnk
)− a

∣∣ < ϵ+ ϵ = 2ϵ,

for all n, nk ≥ nϵ. Hence limn→∞M∗
p (xn, xn, xn) = a.

Now, we show that {xn} is a Cauchy sequence in (X,M∗
p ). We have∣∣2RM∗

p (xn, xn, xm)− 2a
∣∣

=
∣∣RM∗

ps(xn, xn, xm) +M∗
p (xn, xn, xn)− a+M∗

p (xm, xm, xm)− a
∣∣

≤ RM∗
ps(xn, xn, xm) +

∣∣M∗
p (xn, xn, xn)− a

∣∣+ ∣∣M∗
p (xm, xm, xm)− a

∣∣
<

ϵ

2R
+ 2ϵ+ 2ϵ = (

1

2R
+ 4)ϵ.

Hence, {xn} is a Cauchy sequence in (X,M∗
p ).

We shall have established the lemma if we prove that (X,M∗
ps) is complete

if so is (X,M∗
p ). Let {xn} be a Cauchy sequence in (X,M∗

ps). Then {xn} is a
Cauchy sequence in (X,M∗

p ) and so it is convergent to point y ∈ X with

lim
n,m→∞

M∗
p (xn, xn, xm) = lim

m→∞
M∗

p (y, y, xm) =M∗
p (y, y, y).

Thus, for ϵ > 0, there exists nϵ ∈ N such that∣∣M∗
p (y, y, xn)−M∗

p (y, y, y)
∣∣ < ϵ

2R

and ∣∣M∗
p (y, y, y)−M∗

p (xn, xn, xn)
∣∣ < ϵ

2R

whenever n ≥ nϵ. As a consequence, we have

M∗
ps(y, y, xn) = 2RM∗

p (y, y, xn)−M∗
p (xn, xn, xn)−M∗

p (y, y, y)

≤
∣∣RM∗

p (y, y, xn)−M∗
p (y, y, y)

∣∣+ ∣∣RM∗
p (y, y, xn)−M∗

p (xn, xn, xn)
∣∣

< R
ϵ

2R
+R

ϵ

2R
= ϵ,
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whenever n ≥ nϵ. Therefore (X,M∗
ps) is complete.

Finally, it is easy to check that limn→∞M∗
ps(a, a, xn) = 0 if and only if

M∗
p (a, a, a) = lim

n→∞
M∗

p (a, a, xn) = lim
n,m→∞

M∗
p (xn, xn, xm).

Definition 5. Let (X,M∗
p ) be a partial M∗-metric space, then M∗

p is said to
first type if

M∗
p (x, x, y) ≤M∗

p (x, y, z),

for all x, y, z ∈ X.

3. Fixed point result

We begin this section giving the concept of weakly increasing mappings.

Definition 6 ([39]). Let (X,⪯) be a partially ordered set. Two mappings S, T :
X → X are said to be S − T weakly increasing if Sx ⪯ TSx for all x ∈ X.

Remark 3 ([39]). (i) Two weakly increasing mappings need not be nondecreas-
ing. for examples see [4].

(ii) F denote the set of all functions F : [0,∞) → [0,∞) such that F is
nondecreasing and continuous, F (0) = 0 < F (t), for every t > 0 and F (x+y) ≤
F (x) + F (y) for all x, y ∈ [0,+∞).

(iii) Ψ denote the set of all functions ψ : [0,∞) → [0,∞) where ψ is contin-
uous, nondecreasing function such that

∑∞
n=0ψ

n(t) is convergent for each t > 0.
From the conditions on ψ, it is clear that limn→∞ ψn(t) = 0 and ψ(t) < t, for
every t > 0.

Now, we begin the our main results is as follows:

Theorem 8. Let (X,⪯) be a partially ordered set and suppose that the partial
M∗-metric space M∗

p is a first type on X and (X,M∗
p ) is a complete partial

M∗-metric space. Let S, T,G : X → X be three self-mappings such that S − T,
T −G and G− S are weakly increasing mappings such that

(3.1) F (M∗
p (Sx, Ty,Gz)) ≤

1

R
ψ(RF (φ(x, y, z))

for all x, y, z ∈ X with x, y, z are comparable with respect to partially order ⪯,
where F ∈ F , ψ ∈ Ψ and

(3.2) φ(x, y, z) = max

{
M∗

p (x, y, z),M
∗
p (x, x, Sx),

M∗
p (y, y, Ty),M

∗
p (z, z,Gz)

}
.

Further assume that if, for every increasing sequence {xn} convergent to
x ∈ X, we have xn ⪯ x. Then S, T and G have a common fixed point.
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Proof. Let x0 be arbitrary point of X.We can define a sequence in X as follows
x3n+1 = Sx3n, x3n+2 = Tx3n+1 and x3n+3 = Gx3n+2 for n = 0, 1, 2, ...

Since S − T, T − G and G − S are weakly increasing mappings, we have
x1 = Sx0 ⪯ TSx0 = x2 = Tx1 ⪯ GTx1 = x3 = Gx2 ⪯ SGx2 = x4 and
continuing this process, we have x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ xn+1 ⪯ · · ·
Case 1. Suppose there exists n0 ∈ N such that M∗

p (x3n0 , x3n0+1, x3n0+2) = 0.
Now, we show that M∗

p (x3n0+1, x3n0+2, x3n0+3) = 0. Otherwise, from (3.1), we
get

F (M∗
p (x3n0+2, x3n0+2, x3n0+3)) ≤ F (M∗

p (x3n0+1, x3n0+2, x3n0+3))

= F (M∗
p (Sx3n0 , Tx3n0+1, Gx3n0+2))

≤ 1

R
ψ(RF (φ(x3n0 , x3n0+1, x3n0+2)))

=
1

R
ψ(RF (φ(x3n0+2, x3n0+2, x3n0+3)))

< F (x3n0+2, x3n0+2, x3n0+3),

which is a contradiction. HenceM∗
p (x3n0 , x3n0+1, x3n0+1) = 0. Therefore, x3n0 =

x3n0+1 = x3n0+2 = x3n0+3. Thus, Sx3n0 = Tx3n0 = Gx3n0 = x3n0 . That is x3n0

is a common fixed point of S, T and G.
Case 2: Assume M∗

p (x3n, x3n+1, x3n+2) > 0 for all n ∈ N. Now, we want to
prove

(3.3) F (M∗
p (xn−1, xn, xn+1)) ≤ ψ(F (M∗

p (xn−2, xn−1, xn))).

Setting x = x3n, y = x3n+1 and z = x3n+2 in (3.2), we have

φ(x3n, x3n+1, x3n+2) = max


M∗

p (x3n, x3n+1, x3n+2),

M∗
p (x3n, x3n, x3n+1),

M∗
p (x3n, x3n, x3n+2),

M∗
p (x3n+2, x3n+2, x3n+3)

 .

Since M∗
p is of the first type, we get

φ(x3n, x3n+1, x3n+2) ≤ max
{
M∗

p (x3n, x3n+1, x3n+2),M
∗
p (x3n+1, x3n+2, x3n+3)

}
.

If M∗
p (x3n+1, x3n+2, x3n+3) is maximum in the R.H.S. of the above inequual-

ity, we have from (3.1) that

F (M∗
p (x3n+1, x3n+2, x3n+3)) ≤ F (M∗

p (Sx3n, Tx3n+1, Gx3n+2))

<
1

R
ψ(RF (φ(x3n, x3n+1, x3n+2)))

≤ 1

R
ψ(RF (max

{
M∗

p (x3n, x3n+1, x3n+2),

M∗
p (x3n+1, x3n+2, x3n+3)

}
))

=
1

R
ψ(RF (M∗

p (x3n+1, x3n+2, x3n+3)))

< F (M∗
p (x3n+1, x3n+2, x3n+3)),
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which is a contradiction. Thus,

F (M∗
p (x3n+1, x3n+2, x3n+3)) ≤ ψ(F (M∗

p (x3n, x3n+1, x3n+2))).

Similarly, we have

F (M∗
p (x3n+2, x3n+3, x3n+4)) ≤ ψ(F (M∗

p (x3n+1, x3n+2, x3n+3))),

and
F (M∗

p (x3n, x3n+1, x3n+2)) ≤ ψ(F (M∗
p (x3n−1, x3n, x3n+1))).

Therefore, for every n ∈ N, we have

F (M∗
p (xn, xn+1, xn+2)) ≤ ψ(F (M∗

p (xn−1, xn, xn+1))).

Now, we have F (M∗
p (xn, xn+1, xn+2)) ≤ ψ(F (M∗

p (xn−1, xn, xn+1))) ≤ · · · ≤
ψn(F (M∗

p (x0, x1, x2))).
Hence

lim
n→∞

F (M∗
p (xn, xn+1, xn+2)) = 0,

so that

(3.4) lim
n→∞

M∗
p (xn, xn+1, xn+2) = 0.

Since M∗
p is first type and F is non-decreasing, we have

F (M∗
p (xn, xn, xn+1)) ≤ F (M∗

p (xn, xn+1, xn+2)) ≤ ψn(F (M∗
p (x0, x1, x2))).

Since F (x, y) ≤ F (x) + F (y) and M∗
ps(xn, xn, xn+1) ≤ 2RM∗

p (xn, xn, xn+1),
we have

F (M∗
ps(xn, xn, xn+1)) ≤ 2RF (M∗

p (xn, xn, xn+1)) ≤ 2Rψn(F (M∗
p (x0, x1, x2))).

Now, from

M∗
ps(xn+k, xn, xn) ≤ RM∗

ps(xn+k, xn+k−1, xn+k−1)

+RM∗
ps(xn+k−1, xn+k−2, xn+k−2) + · · ·+M∗

ps(xn+1, xn, xn),

we have

F (M∗
ps(xn+k, xn, xn)) ≤ F (RM∗

ps(xn+k, xn+k−1, xn+k−1))

+ · · ·+ F (M∗
ps(xn+1, xn, xn))

≤ 2R2ψn+k−1(M∗
p (x0, x1, x2))

+ · · ·+ 2R2ψn(M∗
p (x0, x1, x2))

≤ 2R2
∞∑
i=n

ψi(M∗
p (x0, x1, x2)).
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Since
∑∞

n=0ψ
n(t) is convergent for each t > 0 it follows that {xn} is a Cauchy

sequence in theM∗-metric space (X,M∗
ps). Since (X,M

∗
p ) is complete, then from

Lemma 2.7 follows that the sequence {xn} converges to some x in theM∗-metric
space (X,M∗

ps). Hence limn→∞M∗
ps(xn, x, x) = 0. Again, from Lemma 2.7, we

have

(3.5) M∗
p (x, x, x) = lim

n→∞
M∗

p (x, x, xn) = lim
n,m→∞

M∗
p (xn, xm, xm).

Since {xn} is a Cauchy sequence in the M∗-metric space (X,M∗
ps) and

M∗
ps(xn, xm, xm) = 2RM∗

p (xn, xm, xm)−M∗
p (xn, xn, xn)−M∗

p (xm, xm, xm),

we have
lim

n,m→∞
M∗

ps(xn, xm, xm) = 0

and by (3.4), we have
lim
n→∞

M∗
p (xn, xn, xn) = 0,

thus by definition M∗
ps , we have

lim
n,m→∞

M∗
p (xn, xm, xm) = 0.

Therefore, by (3.5), we have

M∗
p (x, x, x) = lim

n→∞
M∗

p (xn, x, x)

= lim
n,m→∞

M∗
p (xn, xm, xm) = 0.

Now, by the inequality (3.1) for x = x, y = x3n+1 and z = x3n+2, then we
have

F (M∗
p (Sx, x3n+2, x3n+3)) ≤

1

R
ψ(RF (φ(x, x3n+1, x3n+2))),

and by letting n→ ∞ and using Lemma 2.5, we obtain

F (M∗
p (Sx, x, x)) ≤

1

R
ψ(RF (M∗

p (Sx, x, x))) < F (M∗
p (Sx, x, x)),

which is a contradiction. Hence, M∗
p (Sx, x, x) = 0. Thus Sx = x. Similarly, by

using the inequality (3.1) for y = x, x = x3n and z = x3n+2, then we have

F (M∗
p (x3n, Tx, x3n+3)) ≤

1

R
ψ(RF (φ(x3n, x, x3n+2))),

and letting n→ ∞ and using Lemma 2.5, we obtain

F (M∗
p (x, Tx, x)) ≤

1

R
ψ(RF (M∗

p (x, Tx, x)) < F (M∗
p (x, Tx, x)),

which is a contradiction. Hence, Tx = x. Similarly, by using the inequality
(3.1) for z = x, x = x3n and y = x3n+1, we can show that Gx = x.
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Abstract. In this paper, we introduce a new certain differential operator An
λf(z) with

subclass S∗
p (α, λ, n, β) for functions of the form f(z) = 1

zp +
∑∞

k=1 akz
k. For functions in

S∗
p (α, λ, n, β) , we give coefficient inequalities, distortion theorem, radii of starlikeness

and convexity.

Keywords: analytic functions, meromorphic functions, starlike, convex.

1. Introduction and preliminaries

Let A denote the class of functions f of the form:

(1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. As usual, we
denote by S the subclass of A, consisting of functions which are also univalent in
U. We recall here the definitions of the well-known classes of starlike functions
and convex functions:

S∗ =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> 0

}
(z ∈ U),

Sc =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
(z ∈ U)

*. Corresponding author
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Later Acu and Owa [2] studied the classes extensively. The class S∗
w is defined

by geometric property that the image of any circular arc centered at w is starlike
with respect to f(w) and the corresponding class Sc

w is defined by the property
that the image of any circular arc centered at w is convex. We observe that the
definitions are somewhat similar to the ones introduced by Amourah in [3] and
[4] for starlike and convex functions.

Let S denoted the subclass of A(p) consisting of the function of the form:

f(z) =
1

zp
+

∞∑
k=1

ak+p−1z
k+p−1,(2)

(ak+p−1 > 0, z ∈ U∗ = {z : z ∈ C and 0 < |z| < 1}).

The function f(z) in S is said to be starlike functions of order α if and only
if

(3) Re

{
−zf

′(z)

f(z)

}
> α (z ∈ U∗),

for some α(0 ≤ α < 1). We denote by S∗(α) the class of all starlike functions of
order α. Similarly, a function f in S is said to be convex of order α if and only
if

(4) Re

{
−1− zf ′′(z)

f ′(z)

}
> α (z ∈ U∗),

for some α(0 ≤ α < 1). We denote by V R(α) the class of all convex functions
of order α. We note that the class S∗(α) and various other subclasses have
been studied rather extensively by Nehari and Netanyahu [5], Acu and Owa [2],
Amourah ([6],[7],[10],[11],[13]), Aouf [12], Miller [8] and Royster [9].

For the function f ∈ A(p), the definition of linear operator An
λf(z) intro-

duced by [1] to define the linear operator An
λf(z) as the following:

A0
λf(z) = f(z),

A1
λf(z) = (1 + pλ)A0

λf(z) + λz
(
A0

λf(z)
)′
,

and for n = 1, 2, 3, · · ·

An
λf(z) = A(An−1

λ f(z)),(5)

=
1

zp
+

∞∑
k=1

[1 + 2pλ+ kλ− λ]n ak+p−1z
k+p−1,(6)

for λ ≥ 0, z ∈ U∗, p ∈ N and n ∈ N0 = N ∪ {0}.
Then, we can observe easily that for

λz (An
λf(z))

′ = An+1
λ f(z)− (1 + pλ)An

λf(z), (p ∈ N, n ∈ N0)
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Definition 1.1. A function f(z) ∈ S is said to be in Sp (α, λ, n, β) if and only
if

(7)

∣∣∣∣z(An
λf(z))

′

pAn
λf(z)

+ α+ αβ

∣∣∣∣ ≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ,

for some 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0 and for all z ∈ U∗.

Let A∗(p) denote the subclass of A(p) consisting of functions of the form:

(8) f(z) =
1

zp
+

∞∑
k=1

akz
k, (ak ≥ 0).

Further, we define the class Sp (α, λ, n, β) by

(9) S∗
p (α, λ, n, β) = Sp (α, λ, n, β) ∩ A∗(p).

In this paper, coefficient inequalities, growth and distortion theorem, radii of
starlikeness and convexity.

2. Coefficient inequalities

In this section, the result provides a sufficient condition for a function, regular
in U∗, to be in S∗

p (α, λ, n, β) .

Theorem 2.1. Let the function f(z) be given by (8). If

(10)
∞∑
k=1

[p (αβ + 1) + k − 1] γnak+p−1 ≤ p (1− αβ) , (z ∈ U∗)

where γn = (1 + 2pλ+ kλ− λ)n , 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0.

Proof. Suppose that f ∈ S∗
p (α, λ, n, β) . Then, by the inequality (7), we get

that ∣∣∣∣z(An
λf(z))

′

pAn
λf(z)

+ α+ αβ

∣∣∣∣ ≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ.

That is,

Re

{
z(An

λf(z))
′

pAn
λf(z)

+ α+ αβ

}
≤
∣∣∣∣z(An

λf(z))
′

pAn
λf(z)

+ α+ αβ

∣∣∣∣
≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ.

That is,

Re

{
2z(An

λf(z))
′

pAn
λf(z)

2αβ

}
≤ 0.
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Hence, by the inequalities (7) and (8)

(11) Re

{
−2p (1− αβ) +

∑∞
k=1 2 [p (αβ + 1) + k − 1] γnak+p−1zk+2p−1

p+
∑∞

k=1 pγnak+p−1zk+2p−1

}
≤ 0.

Taking z to be real and putting z → 1− through real values, then the
inequality (11) yields

−2p (1− αβ) +
∑∞

k=1 2 [p (αβ + 1) + k − 1] γnak+p−1

p+
∑∞

k=1 pγnak+p−1
≤ 0

Hence,
∞∑
k=1

[p (αβ + 1) + k − 1] γnak+p−1 ≤ p (1− αβ)

This completes the proof of Theorem 2.1.

Corollary 2.1. Let the function f(z) be defined by (8). If f ∈ S∗
p (α, λ, n, β) ,

then

(12) ak+p−1 ≤
p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n
, (k ∈ N).

The result (12) is sharp for functions of the form:

(13) f(z) =
1

zp
+

p (1− αβ)
[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

zk+p−1, (k ∈ N).

where 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0.

Proof. Since f ∈ S∗
p (α, λ, n, β) , then from Theorem 2.1 above, we get that

∞∑
k=1

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) .

Next, note that

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1

≤
∞∑
k=1

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) .

Hence,

ak+p−1 ≤
p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

Thus, the equality (12) is attained for the function f given by

f(z) =
1

zp
+

p (1− αβ)
[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

zk+p−1.
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3. Growth and distortion theorem

In this section we will prove the following growth and distortion theorems for
the class S∗

p (α, λ, n, β).

Theorem 3.1. Let the function f(z) given by (8) be in the class S∗
p (α, λ, n, β) ,

where 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N, p > m, 0 < |z| = r < 1 and n ∈ N0. Then,

we have{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
.

p!

(2p−m− 1)!
r3p−1

}
r−(p+m)

≤
∣∣∣f (m)(z)

∣∣∣(14)

≤
{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
.

p!

(2p−m− 1)!
r3p−1

}
r−(p+m).

The result is sharp for the function f given by

(15) f(z) =
1

zp
+

∞∑
k=1

(1− αβ)
(1 + αβ) (1 + 2pλ)n

zk+p−1.

Proof. Since f ∈ S∗
p (α, λ, n, β) , from Theorem 2.1 readily yields the inequality

(1 + αβ) (1 + 2pλ)n

(p− 1)!

∞∑
k=1

(k + p− 1)!ak+p−1,(16)

≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) ,(17)

that is,

∞∑
k=1

(k + p− 1)!ak+p−1 ≤
p (1− αβ) (p− 1)!

(1 + αβ) (1 + 2pλ)n
(18)

=
(1− αβ) p!

(1 + αβ) (1 + 2pλ)n
.

By differentiating the function f in the form m times with respect to z, we get
that

f (m)(z) = (−1)m (p+m− 1)!

(p− 1)!
z−(p+m)

+
∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1z

k+p−m−1.(19)
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From (18) and (19), we get that

∣∣∣f (m)(z)
∣∣∣ ≤ (p+m− 1)!

(p− 1)!
r−(p+m) +

∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1r

k+p−m−1

≤

{
(p+m− 1)!

(p− 1)!
+

∞∑
k=1

(k + p− 1)!

(2p−m− 1)!
ak+p−1r

3p−1

}
r−(p+m)(20)

≤
{
(p+m− 1)!

(p− 1)!
+

(1− αβ)
(1 + αβ) (1 + 2pλ)n

p!

(2p−m− 1)!
r3p−1

}
r−(p+m),(21)

and∣∣∣f (m)(z)
∣∣∣ ≥ (p+m− 1)!

(p− 1)!
r−(p+m)

−
∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1r

k+p−m−1(22)

≥

{
(p+m− 1)!

(p− 1)!
−

∞∑
k=1

(k + p− 1)!

(2p−m− 1)!
ak+p−1r

3p−1

}
r−(p+m)

≥
{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
p!

(2p−m− 1)!
r3p−1

}
r−(p+m).

We can easily prove that the bounds of (14) are attained for the function f
given by the form (15).

This completes the proof of Theorem 3.1.

4. Radii of starlikeness and convexity

The radii of starlikeness and convexity for the class S∗
p (α, λ, n, β) is given by

the following theorems.

Theorem 4.1. If the function f(z) given by (8) is in the class S∗
p (α, λ, n, β) ,

where 0 < β ≤ 1 and n ∈ N0, then f(z) is starlike of order µ( 0 ≤ µ < p) in
|z| < r1, that is

(23) Re

{
−zf

′(z)

f(z)

}
> µ,

where

(24) r1 = inf
k≥1

{
(p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p(k + 2µ− 1) (1− αβ)

} 1
k+2p−1

.
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Proof. It suffices to prove that∣∣∣∣∣∣
zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2µ

∣∣∣∣∣∣ =
∣∣∣∣ ∑∞

k=1 (k + 2p− 1) ak+p−1z
k+2p−1

2(p− µ)−
∑∞

k=1 (k + 2µ− 1) ak+p−1zk+2p−1

∣∣∣∣(25)

≤
∑∞

k=1 (k + 2p− 1) ak+p−1 |z|k+2p−1

2(p− µ)−
∑∞

k=1 (k + 2µ− 1) ak+p−1 |z|k+2p−1
.

Then, the following

(26)

∣∣∣∣∣∣
zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2µ

∣∣∣∣∣∣ ≤ 1, (0 ≤ µ < p, p ∈ N)

will hold if

(27)
∞∑
k=1

k + 2µ− 1

p− µ
ak+p−1 |z|k+2p−1 ≤ 1.

Then, by Corollary 2.1 the inequality (27) will be true if

k + 2µ− 1

(p− µ)
|z|k+2p−1 ≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (1− αβ)
that is,

(28) |z|k+2p−1 ≤ (p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (k + 2µ− 1) (1− αβ)
.

This completes the proof of Theorem 4.1.

Theorem 4.2. If the function f(z) given by (8) is in the class S∗
p (α, λ, n, β) ,

where 0 < β ≤ 1 and n ∈ N0, then f(z) is convex of order µ( 0 ≤ µ < p) in
|z| < r2, that is,

Re

{
−1− zf ′′(z)

f ′(z)

}
> µ,

where

r2 = inf
k≥1

{
(p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

(k + µ− 1)(k + 2µ− 1) (1− αβ)

} 1
k+2p−1

,

(k ≥ 1).(29)

Proof. By using the same technique employed in the proof of Theorem 4.1, we
can show that∣∣∣∣∣∣

1+ zf ′′(z)
f ′(z) +p

zf ′′(z)
f ′(z) − p+ 2µ

∣∣∣∣∣∣ =
∣∣∣∣ ∑∞

k=1(k+p−1)(k+2p−1)ak+p−1z
k+2p−1

2p(p−µ)z−p−
∑∞

k=1(k + p− 1)(k + 2µ− 1)ak+p−1zk+2p−1

∣∣∣∣
≤

∑∞
k=1(k + p− 1)(k + 2p− 1)ak+p−1 |z|k+2p−1

2p(p− µ)−
∑∞

k=1(k + p− 1)(k + 2µ− 1)ak+p−1 |z|k+2p−1
.
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Then, the following

(30)

∣∣∣∣∣∣
1 + zf ′′(z)

f ′(z) + p

zf ′′(z)
f ′(z) − p+ 2µ

∣∣∣∣∣∣ ≤ 1

will hold if

(31)
∞∑
k=1

(k + µ− 1) (k + 2µ− 1)

p (p− µ)
ak+p−1 |z|k+2p−1 ≤ 1.

Then, by Corollary 2.1 the inequality (31) will be true if

(k + µ− 1) (k + 2µ− 1)

p (p− µ)
|z|k+2p−1 ≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (1− αβ)

that is,

(32) |z|k+2p−1 ≤ (p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

(k + µ− 1) (k + 2µ− 1) (1− αβ)
.

Therefore, the inequality (32) leads us to the disk |z| < r2, where r2 is given by
the form (29).
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Abstract. Let R be a commutative ring with 1 ̸= 0, Z(R) be the set of zero-divisors
of R, and Reg(R) be the set of regular elements of R. In this paper, we introduce and
investigate the dot total graph of R and denote by TZ(R)(Γ(R)). It is the (undirected)
simple graph with all elements of R as vertices, and any two distinct vertices x, y ∈ R are
adjacent if and only if xy ∈ Z(R). The graph TZ(R)(Γ(R)) is shown to be connected and
has a small diameter of at most two. Furthermore, TZ(R)(Γ(R)) divides into two distinct
subsets of R, i.e., Z(R) and Reg(R). Following that, the connectivity, clique number,
and girth of the graph TZ(R)(Γ(R)) were investigated. Finally, the traversability of the
graph TZ(R)(Γ(R)) is investigated.

Keywords: commutative rings, zero-divisor graph, regular elements, zero-divisors.

1. Introduction

Throughout this paper, let R be a commutative ring with unity 1 ̸= 0. In 1988,
Beck [10] considered Γ(R) as a simple graph, whose vertices are the elements of
R and any two different elements x and y are adjacent if and only if xy = 0,
but he was mainly interested in colorings. In 1993, Anderson and Naseer [6]
continued this study by giving a counterexample, where R is a finite local ring.

*. Corresponding author
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In 1999, Anderson and Livingston [3], associated a (simple) graph Γ(R) to R
with vertices Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and for
distinct x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0
and they were interested to study the interplay of ring-theoretic properties of
R with graph-theoretic properties of Γ(R). In 2008, Anderson and Badawi [4]
introduced the total graph of R, denoted by T (Γ(R)), as the (undirected) graph
with all elements of R as vertices and for distinct x, y ∈ R, the vertices x and
y are adjacent if and only if x + y ∈ Z(R). In 2012, Abbasi and Habibi [2]
introduced and studied the total graph of a commutative ring R with respect
to proper ideal I, denoted by T (ΓI(R)). In addition, some fundamental graphs
with vector spaces can be identified in [7, 8].

Let G be a graph. We say that G is connected if there is a path between
any two distinct vertices of G. For distinct vertices x and y of G, we define
d(x, y) to be the length of the shortest path from x to y (d(x, y) = ∞ if there
is no such path). The diameter of G is diam(G) = sup{d(x, y) | x and y are
distinct vertices of G}. The girth of G, denoted by gr(G), is defined as the
length of the shortest cycle in G (gr(G) = ∞ if G contains no cycle). Note
that if G contains a cycle, then gr(G) ≤ 2 diam(G) + 1. The complement G
of a graph G is that graph whose vertex set is V (G) and such that for each
pair u, v of distinct vertices of G, uv is an edge of G if and only if uv is not an
edge of G. The degree of vertex v, written degG(v) or deg(v), is the number
of edges incident to v, (or the degree of the vertex v is the number of vertices
adjacent to v). In a connected graph G, a vertex v is said to be a cut-vertex
of G if and only if G \ {v} is disconnected. Let V (G) be a vertex set of G.
Then the subset U ⊆ V (G) is called as vertex-cut if G \U is disconnected. The
connectivity of a graph G denoted by k(G) and is defined as the cardinality of
a minimum vertex-cut of G, also the same concepts we have for the edges. In a
connected graph G, an edge e is said to be a bridge of G if and only if G \ {e}
is disconnected. Let E(G) be an edge set of G. Then the subset X ⊆ E(G) is
called an edge-cut if G \X is disconnected. The edge-connectivity of a graph G
denoted by λ(G) and is defined as the cardinality of a minimum edge-cut of G.
A complete subgraph of a graph G is called a clique. The clique number denoted
by ω(G), is the greatest integer n ⩾ 1 such that Kn ⊆ G, and ω(G) = ∞ if
Kn ⊆ G for all n ⩾ 1. A nontrivial connected graph G is Eulerian if and only
if every vertex of G has even degree. Also, G contains an Eulerian trail if and
only if exactly two vertices of G have odd degree. In addition, let G be a graph
of order n ≥ 3. If deg(u) + deg(v) ≥ n for each pair u, v of nonadjacent vertices
of G, then G is Hamiltonian. The present paper is organise as follows:

In Section 2, we introduce the definition of the total graph of R with re-
spect to multiplication. We give some examples, and show that TZ(R)(Γ(R)) is
always connected with diam(TZ(R)(Γ(R))) ⩽ 2 and gr(TZ(R)(Γ(R))) ⩽ 5, and
we establish if the graph TZ(R)(Γ(R)) is a complete graph or a star graph based
on the type of ring and we observe that if R is not trivial then TZ(R)(Γ(R)) is
not null graph. Also, we find the degree of each vertex of TZ(R)(Γ(R)). Further,
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in Section 3, we study the connectivity of Kn ∨Km when TZ(R)(Γ(R)) has no
cut-vertex and TZ(R)(Γ(R)) has a bridge. We also, find the k(TZ(R)(Γ(R))).

Furthermore, in Section 4, we study the clique number of the graph Kn ∨Km.
Also, we find the girth of TZ(R)(Γ(R)) i.e., gr(Kn∨Km). Finally, in Section 5, we
study the traversability of the graph TZ(R)(Γ(R)) when the graph TZ(R)(Γ(R))
have an Eulerian trail and TZ(R)(Γ(R)) is Hamiltonian. Further, we generalized
the definition of the graph TZ(R)(Γ(R)) and denoted by TA(Γ(B)). Also, we
investigate some properties viz complement graph, spaning subgraph, induced
subgraph of TA(Γ(B)).

2. Definition and properties of TZ(R)(Γ(R))

We begin this section by define dot total graph of a commutative ring and
denoted by TZ(R)(Γ(R)). We demonstrate that TZ(R)(Γ(R)) is always connected
and has small diameter which is less than or equal to two and girth which is less
than or equal to five. We start with some examples which motivate later results
and we associate some examples from zero-divisor graph of a commutative ring,
total graph and compare them with TZ(R)(Γ(R)).

Definition 2.1. Let R be a commutative ring with 1 ̸= 0 and Z(R) be the set of
zero-divisors of R, and Reg(R) be the set of regular elements of R. We define
an undirected simple graph TZ(R)(Γ(R)), whose vertices are all the elements of
R and any two distinct vertices x and y of TZ(R)(Γ(R)) are adjacent if and only
if xy ∈ Z(R).

Example 2.1. We have several rings with its set of zero-divisor Z(R) and its set
of regular elements Reg(R) and comparisons Γ(R), T (Γ(R)) and TZ(R)(Γ(R)):

(i) R = Z4, Z(R) = {0, 2} and Reg(R) = {1, 3} ( see Fig.1 )

2

(a) Γ(R)

0 1

2 3

(b) T (Γ(R))

0 1

2 3

(c) TZ(R)(Γ(R))

Figure 1: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z4

(ii) R = Z2[x]/(x
2) = {0, 1, x, 1 + x}, Z(R) = {0, x} and Reg(R) = {1, 1 + x}

(see Fig. 2)

(iii) R = Z9, Z(R) = {0, 3, 6} and Reg(R) = {1, 2, 4, 5, 7, 8} (see Fig. 3)
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x

(a) Γ(R)

0 1

x 1 + x

(b) T (Γ(R))

0 1

x 1 + x

(c) TZ(R)(Γ(R))

Figure 2: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z2[x]/(x
2)

3 6

(a) Γ(R)

7

8

41

5263

0

(b) T (Γ(R))

0

36

18

2

4

7

5

(c) TZ(R)(Γ(R))

Figure 3: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z9

(1, 0)(0, 1)

(a) Γ(R)

(0, 0) (0, 1)

(1, 0) (1, 1)

(b) T (Γ(R))

(0, 0) (0, 1)

(1, 0) (1, 1)

(c) TZ(R)(Γ(R))

Figure 4: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z2 × Z2

(iv) R = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, Z(R) = {(0, 0), (0, 1), (1, 0)}
and Reg(R) = {(1, 1)} (see Fig. 4)

(v) R = Z3[x]/(x
2) = {0, 1, 2, x, 2x, 1 + x, 2 + x, 1 + 2x, 2 + 2x}, Z(R) =

{0, x, 2x} and Reg(R) = {1, 2, 1 + x, 2 + x, 1 + 2x, 2 + 2x} (see Fig. 5)

(vi) R = Z6, Z(R) = {0, 2, 3, 4} and Reg(R) = {1, 5} (see Fig. 6)
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x 2x

(a) Γ(R)

1 + 2x

2 + 2x

1 + x1

2 + x22xx

0

(b) T (Γ(R))

0

x2x

12 + 2x

21 + x1 + 2x 2 + x

(c) TZ(R)(Γ(R))

Figure 5: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z3[x]/(x
2)

2 3 4

(a) Γ(R)

0

2

4

1

5

3

(b) T (Γ(R))

0

3

5

4

1

2

(c) TZ(R)(Γ(R))

Figure 6: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z6

(vii) R = Z8, Z(R) = {0, 2, 4, 6} and Reg(R) = {1, 3, 5, 7} (see Fig. 7)

(viii) R = Z7, Z(R) = {0} and Reg(R) = {1, 2, 3, 4, 5, 6} (see Fig 8 )

Remark 2.1.

(1) Note that these examples show that non isomorphic rings may have the
same zero-divisor graph, but in dot total graph the non isomorphic rings
R1 and R2 have the following:

(a) If |R1| ≠ |R2|, then TZ(R1)(Γ(R1)) ≇ TZ(R2)(Γ(R2)).

(b) If |R1| = |R2|, then they may have the same dot total graph.

(2) For any integral domain R, we know that Γ(R) = ∅ ( null graph ), but
here TZ(R)(Γ(R)) is complete bipartite graph of the form K1,n is called
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2 4 6

(a) Γ(R)

0 4

2 6

1 7

3 5

(b) T (Γ(R))

0 1

2

3

45

6

7

(c) TZ(R)(Γ(R))

Figure 7: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z8

(a) Γ(R)

0

1

6

2 3

5 4

(b) T (Γ(R))

0

4 5 6321

(c) TZ(R)(Γ(R))

Figure 8: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z7

a star graph and n = |R| − 1, if R is finite ( previous Example (viii) )
otherwise n =∞, if R is infinite.

(3) Let R be a commutative ring. Then the following statements hold:

(i) If x ∈ Z(R), then x is adjacent to each vertex y ∈ R.
(ii) If x ∈ Reg(R), then x is adjacent to y ∈ Z(R), only.
(iii) Any two distinct verties of Reg(R) are not adjacent in TZ(R)(Γ(R)).

(4) T (Γ(R)) may be connected and may not. That is, if R is a finite commu-
tative ring and Z(R) is not an ideal of R, then T (Γ(R)) is connected [4],
but TZ(R)(Γ(R)) is connected as we prove in next theorem.

We next show that the all dot total graphs of R are connected and study
the diameter and girth.

Theorem 2.1. TZ(R)(Γ(R)) is connected and diam(TZ(R)(Γ(R))) ≤ 2. More-
over, if TZ(R)(Γ(R)) contains a cycle, then gr(TZ(R)(Γ(R))) ≤ 5.

Proof. Let x and y be distinct vertices of TZ(R)(Γ(R)).

Case(i) If x, y ∈ Z(R), then x− y is a path in TZ(R)(Γ(R)).

Case(ii) If x, y ∈ Reg(R), then there is some z ∈ Z(R) such that xz ∈ Z(R) and
yz ∈ Z(R). Thus x− z − y is a path.
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Case(iii) If x ∈ Z(R) and y ∈ Reg(R), then x− y is a path.

Thus TZ(R)(Γ(R)) is connected and diam(TZ(R)(Γ(R))) ≤ 2. Since for any
undirected graph H, gr(H) ≤ 2 diam(H) + 1, H contains a cycle (for reference
see [12]). Thus gr(TZ(R)(Γ(R))) ≤ 5.

Remark 2.2. For any commutative ring R with 1 ̸= 0, we know that Γ(R)
is connected and has diam(Γ(R)) ≤ 3 and if Γ(R) contains a cycle, then
gr(Γ(R)) ≤ 7 (for reference see [3]). Also, the same results hold for ΓI(R) (for
reference see [15]). In addition, if T (Γ(R)) is connected, then diam(T (Γ(R))) =
d(0, 1) (for reference see [4]). But for TZ(R)(Γ(R)), we get a connected graph
which has diam(TZ(R)(Γ(R))) ≤ 2 and if TZ(R)(Γ(R)) contains a cycle, then
gr(TZ(R)(Γ(R))) ≤ 5.

The graph TZ(R)(Γ(R)) has a very special form. In fact, if |Z(R)| = m and

|Reg(R)| = n then TZ(R)(Γ(R)) ∼= Kn ∨Km, where ∨ is used for the join of two
graphs.

Theorem 2.2. The graph Kn ∨Km is complete iff n = 1.

Proof. Suppose Kn ∨ Km is complete. Then each distinct vertices in R are
adjacent. If n > 1, then there is at least two vertices x and y in Kn which are
non adjacent, which is a contradiction. Hence n = 1.

Conversely, suppose that n = 1. Then it is clear that Kn ∨Km is complete
graph.

Corollary 2.1. TZ(R)(Γ(R)) is not complete if and only if |Reg(R)| ⩾ 2.

Corollary 2.2. TZ(R)(Γ(R)) is Kn with vertices of regular elements of R, where
n = |Reg(R)| and other vertices are isolated (elements of Z(R)).

Remark 2.3. Let R be a finite commutative ring. Then the following state-
ments hold:

(i) If Z(R) is an ideal, then T (Γ(R)) is not connected [11, 13] and for any
element x ∈ R, there are two possibilities:

(a) If 2 ∈ Z(R), then deg(x) = |Z(R)| − 1 for each x ∈ R.
(b) If 2 /∈ Z(R), then deg(x) = |Z(R)| − 1 for each x ∈ Z(R) and

deg(x) = |Z(R)| for each x ∈ Reg(R).

(ii) If Z(R) is not an ideal, then T (Γ(R)) is connected and deg(x) = |Z(R)|−1
for each x ∈ R.

In the next theorem, we find the degree of each vertex of TZ(R)(Γ(R)) ∼=
Kn ∨Km.

Theorem 2.3. The degree of vertices in the graph Kn∨Km are m or m+n−1.
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Proof. Since vertices in the graph Kn ∨ Km are belong to either Km or Kn,
we have the following two cases:

Case(i) If x ∈ Km, then x is adjacent to each vertex in Kn ∨Km except x, that
is, x is adjacent to m+ n− 1 vertices and hence degree of x is m+ n− 1.

Case(ii) If x ∈ Kn, then x is adjacent to the vertices, which belongs to Km, that
is, x is adjacent to m vertices and hence deg(x) = m.

Corollary 2.3. The graph Kn ∨Km is regular graph iff n = 1.

Remark 2.4. For any graph G, δ(G) is the minimum degree of G and ∆(G)
is the maximum degree of G. Here for G = TZ(R)(Γ(R)), δ(G) = |Z(R)| and
∆(G) = |R| − 1.

3. Connectivity of Kn ∨Km

In this section, we study the connectivity of Kn ∨Km.

Theorem 3.1. The graph Kn ∨Km has a cut vertex iff m = 1. i.e., R is an
integral domain.

Proof. Assume that the vertex x of Kn ∨Km is a cut-vertex. Then there exist
u,w ∈ Kn ∨Km such that x lies on every path from u to w. Thus we have the
following two cases:

Case(i) If u is adjacent to w, then we get a contradiction.

Case(ii) If u is not adjacent to w, then u,w ∈ Kn and x ∈ Km. Now, if m > 1,
then Km have more than one vertices. i.e., x ̸= y ∈ Km. Therefore,
there is at least one path from u to w and x does not lie on it, which is a
contradiction. Hence m = 1.

Conversely, assume that m = 1. Then it is clear that Kn ∨ Km has a cut
vertex.

Theorem 3.2. The graph Kn∨Km has a bridge iff m = 1. i.e., R is an integral
domain.

Proof. Suppose that Kn ∨Km has a bridge. Now we have the following cases:

Case(i) If |R| = 2, then it is clear that m = 1.

Case(ii) If |R| ⩾ 3, then either V (Kn ∨Km) ⊆ V (Kn) or V (Kn ∨Km) ⊆ V (Km)
and we know that there is no edge between any two elements of Kn, and
we have an edge either between each x, y ∈ V (Km) or each x ∈ V (Km)
with all y ∈ R. Therefor we have the following subcases:
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Subcase(a) If x, y ∈ V (Km) and |R| ⩾ 3, then there exists z ∈ R such that x and
y are adjacent to z. We note that x− y − z − x is a cycle, and there
is no bridge between them, we get a contradiction.

Subcase(b) If x ∈ V (Km), y ∈ V (Kn) and |R| ⩾ 3, then there exists at least one
element z ∈ R \ {x, y}. There are two possibilities:

If z ∈ V (Km), then z is adjacent to x and y. Thus x− z − y− x is a
cycle and there is no bridge between them. This is a contradiction.

If z ∈ V (Kn) and only x ∈ V (Km) (here x = 0, additive identity),
then x is adjacent to each z ∈ V (Kn) and there is no adjacency
between any two elements of Kn. Thus there are more than one
vertex adjacent to x and 0 = x ∈ V (Km) only, otherwise, there is a
cycle. Thus all edges are bridge. Hence m = 1.

Converse of the proof is trivial.

Remark 3.1. If the ring R ∼= Z2 or R is an integral domain, then TZ(R)(Γ(R))
has a bridge and vice versa.

Theorem 3.3. k(Kn ∨Km) = m.

Proof. We know that, for any graph G, k(G) ⩽ λ(G) ⩽ δ(G) and by Re-
mark 2.4, δ(Kn ∨Km) = |Z(R)| = m. Therefore,

k(Kn ∨Km) ⩽ m.

Now if x ∈ V (Km), then x is adjacent to each vertex y ∈ R. Hence the minimum
vertex-cut is the set of all those vertices in V (Km), otherwise, Kn ∨ Km is
connected. Hence k(Kn ∨Km)) = m.

Remark 3.2. For any commutative ring R with 1 ̸= 0, Z(R) is the minimum
vertex-cut of TZ(R)(Γ(R)).

4. Clique number of Kn ∨Km

In this section, we study the clique number of Kn ∨Km.

Theorem 4.1. ω(Kn ∨Km) = m+ 1.

Proof. We know that each pair of elements in Km are adjacent. In general,
they are adjacent to all elements of Kn ∨Km. Thus each element is adjacent at
least to one element in Kn. Since |Km| = m, we find that m + 1 elements are
adjacent. This completes the proof.

Corollary 4.1. If m ⩾ 2, then gr(Kn∨Km) = 3. If m = 1,i.e., R is an integral
domain, then gr(Kn ∨Km) =∞.
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Proof. Suppose that m ⩾ 2. Then by the same arguments as used in the above
theorem, and given that |Km| = m ⩾ 2, we find that at least two elements are
in Km. Let u, v ∈ Km. Also, Kn ∨Km has at least one element w ∈ Kn. Then
u − w − v − u is a cycle of length 3, which is the smallest cycle in Kn ∨ Km.
Hence gr(Kn ∨Km) = 3.

Suppose that m = 1. Then there is no cycle in Kn ∨Km. Hence gr(Kn ∨
Km) =∞.

5. Traversability of TZ(R)(Γ(R))

In this section, we show that TZ(R)(Γ(R)) can not be an Eulerian graph. Also,
we discover the types of rings that make the graph TZ(R)(Γ(R)) have an Eulerian
trail. Further, we find out when the graph TZ(R)(Γ(R)) is Hamiltonian graph.

Theorem 5.1. TZ(R)(Γ(R)) can not be an Eulerian graph.

Proof. First of all, we prove that TZ(R)(Γ(R)) is an Eulerian if and only if |R| is
odd and |Z(R)| is even. Moreover, |Reg(R)| is odd. Suppose that TZ(R)(Γ(R))
is an Eulerian. Then every vertex of TZ(R)(Γ(R)) has even degree. Since the
degree of each vertex of TZ(R)(Γ(R)) either (|R| − 1) or |Z(R)| (Theorem 2.3),
we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R| − 1, which is even, and we get |R| is odd.

Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)|, which is even. Thus |Z(R)| is even.

Hence |R| is odd and |Z(R)| is even. Moreover, |Reg(R)| is odd.
Conversely, suppose that |R| is odd and |Z(R)| is even. Then |R| − 1 is

even and |Z(R)| is also even. Since the degree of each vertex of TZ(R)(Γ(R)) is
either |R| − 1 or |Z(R)|, degree of each vertex of TZ(R)(Γ(R)) is even. Hence
TZ(R)(Γ(R)) is an Eulerian.

Second, we show that there is no ring R such that TZ(R)(Γ(R)) be an Eulerian
graph. If u ∈ Reg(R) = U(R) then un = 1 where n = |U(R)|. So, if n is an odd
number, then −1 = (−1)n = 1. Hence 2 = 0 and Char(R) = 2. Thus |R| = 2k.
So, there is no ring R such that TZ(R)(Γ(R)) be an Eulerian graph.

Theorem 5.2. TZ(R)(Γ(R)) has an Eulerian trail iff R ∼= Z2,Z3,Z4,
Z2[x]
(x2)

.

Proof. Suppose that |Z(R)| = |Reg(R)| = 1. Then TZ(R)(Γ(R)) has an Eule-
rian trail and R ∼= Z2. Now suppose that |Z(R)| > 1 or |Reg(R)| > 1. Then we
prove that TZ(R)(Γ(R)) has an Eulerian trail if and only if either |Z(R)| = 2 and
|Reg(R)| is even or |Reg(R)| = 2 and |Z(R)| is odd. Suppose that TZ(R)(Γ(R))
has an Eulerian trail. Then exactly two vertices of TZ(R)(Γ(R)) have odd de-
gree. Let u and v be the two vertices of odd degree and let x1, x2, ..., xn be the
vertices of even degree. Then we have the following cases:
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Case(i) If u, v ∈ Z(R) and xi ∈ Reg(R) for all 1 ≤ i ≤ n, then deg(u) = deg(v)
is odd and deg(xi) for all 1 ≤ i ≤ n is even, therefor |R| − 1 is odd and
|Z(R)| = 2 is even, thus |R| is even and |Z(R)| = 2. Hence |Z(R)| = 2
and |Reg(R)| is even. Moreover, |R| is even.

Case(ii) If u, v ∈ Z(R) and there exists at least one xj ∈ Z(R), then deg(u) =
deg(v) = deg(xj) is odd. Hence there are more than two odd vertices in
TZ(R)(Γ(R)), we get a contradiction.

Case(iii) If u, v ∈ Reg(R) and xi ∈ Z(R) for all 1 ≤ i ≤ n, then deg(u) = deg(v)
is odd and deg(xi) for all 1 ≤ i ≤ n is even. Note that |Z(R)| is odd and
|R| − 1 is even. We get |Z(R)| is odd and |R| is odd. Since u, v ∈ Reg(R)
only, we have |Reg(R)| = 2. Hence |Reg(R)| = 2 and |Z(R)| is odd.
Moreover, |R| is odd.

Case(iv) If u, v ∈ Reg(R) and there exists at least one xj ∈ Reg(R), then deg(u) =
deg(v) = deg(xj) is odd. Thus there are more than two odd vertices in
TZ(R)(Γ(R)), we get a contradiction.

Case(v) If u ∈ Z(R) and v ∈ Reg(R), then deg(u) = deg(v) = deg(xi) for all
1 ≤ i ≤ n is odd. Thus all the vertices of TZ(R)(Γ(R)) have odd degree,
we get a contradiction.

Therefore in all the cases, we get that either |Z(R)| = 2 and |Reg(R)| is even
or |Reg(R)| = 2 and |Z(R)| is odd.

Conversely, suppose that either |Z(R)| = 2 and |Reg(R)| is even or |Reg(R)| =
2 and |Z(R)| is odd. Now we assume that |Z(R)| = 2 and |Reg(R)| is even, let
x be any vertex of TZ(R)(Γ(R)), then we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R| − 1, which is odd. Since |Z(R)| = 2
and |Reg(R)| is even, there are only two vertices in Z(R) have odd degree
and each other vertices in Reg(R) have even degree. Hence TZ(R)(Γ(R))
contains an Eulerian trail.

Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)| = 2, which is even, by the same
argument, there are only two vertices x1, x2 ∈ Z(R) such that x1 and
x2 are adjacent to each vertices in Reg(R) and x1 adjacent to x2 and
deg(x1) = deg(x2) = |Reg(R)|+ 1 which is odd. Therefor, there are only
two vertices in Z(R) have odd degree and each other vertices in Reg(R)
have even degree. Hence TZ(R)(Γ(R)) contains an Eulerian trail.

After that, we assume that |Reg(R)| = 2 and |Z(R)| is odd. Then |R| is odd,
and let x be any vertex of TZ(R)(Γ(R)). Then we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R|−1, which is even. Since |Reg(R)| = 2 and
|Z(R)| is odd, there are only two vertices in Reg(R) have odd degree and
each other vertices in Z(R) have even degree. Hence TZ(R)(Γ(R)) contains
an Eulerian trail.
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Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)|, which is odd, thus |R| is odd. By
the same argument, there are only two vertices in Reg(R) have odd degree
and each other vertices in Z(R) have degree |R| − 1, which is even. Hence
TZ(R)(Γ(R)) contains an Eulerian trail.

From all the above cases we conclude that TZ(R)(Γ(R)) contains an Eulerian
trail. Hence if either |Z(R)| = 2 and |Reg(R)| is even or |Reg(R)| = 2 and
|Z(R)| is odd, then TZ(R)(Γ(R)) contains an Eulerian trail.

Second, we show that TZ(R)(Γ(R)) has an Eulerian trail iff R ∼= Z3,Z4,
Z2[x]
(x2)

.

(i) Assume |Z(R)| = 2. Let 0 ̸= x ∈ Z(R). Since ann(x), Rx ⊆ Z(R) we
conclude ann(x) = Rx = Z(R). So, the isomorphism R

ann(x)
∼= Rx implies

|R| = 4. Hence R ∼= Z4 or R ∼= Z2[x]
(x2)

.

(ii) It is well known that every commutative artinian ring is isomorphic to
direct product of finitely many local rings. If R is a finite local ring with
the unique maximal ideal M , then |R| = pr,m = |Z(R)| = |M | = ps and
n = |Reg(R)| = |U(R)| = pr − ps. In particular, m|n. So, if n = 1, then
R ∼= Z2. If n = 2, then m = 1 or m = 2. If m = 1, then R ∼= Z3. If m = 2,
then |R| = 4 and R ∼= Z4. So, the only odd order ring with |Reg(R)| = 2
is Z3.

Remark 5.1. In the above theorem, if |Z(R)| = 2, then Eulerian trail of
TZ(R)(Γ(R)) begins at one of these two elements of Z(R) and ends at other.
Also, if |Reg(R)| = 2, then Eulerian trail of TZ(R)(Γ(R)) begins at one of these
two elements of Reg(R) and ends at other.

Theorem 5.3. Let R has a maximal ideal of index 2 and |R| > 2, then
TZ(R)(Γ(R)) is Hamiltonian.

Proof. The graph Kn∨Km is Hamiltonian iffm ≥ max{n, 2}. So, TZ(R)(Γ(R))

is Hamiltonian iff |R| > 2 and |Z(R)| ≥ |R|
2 iff |R| > 2 and |U(R)|

|R| ≤ 1

2
.

Since |U(R)|
|R| =

|U( R
J(R)

)|
| R
J(R)

| (J(R) is the Jacobson radial of R). So, TZ(R)(Γ(R))

is Hamiltonian if TZ( R
J(R)

)(Γ(
R

J(R))) is Hamiltonian. Also If TZ(R)(Γ(R)) is

Hamiltonian and |R/J(R)| > 2, then TZ( R
J(R)

)(Γ(
R

J(R))) is Hamiltonian. Since

R
J(R)

∼=
∏

Mi∈Max(R)

R

Mi

∼=
∏
Fqi ( R

Mi

∼= Fqi is a field). So,
|U( R

J(R)
)|

| R
J(R)

| =
∏ qi−1

qi
.

In particular, if R has a maximal ideal of index 2 and |R| > 2, then TZ(R)(Γ(R))
is Hamiltonian. Also TZ(R)(Γ(R)) is Hamiltonian for a local ring (R,M) iff
|R/M | = 2 and |R| > 2.

Corollary 5.1. Let R be a local ring and has k maximal ideal. If TZ(R)(Γ(R))
is Hamiltonian, then R/J(R) ∼= F , i.e., k = 1 and J(R) is maximal ideal of R.
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Corollary 5.2. Let R be a finite commutative ring with 1 ̸= 0, such that |R| =
n ≥ 3. If |Z(R)| ≥ n

2 for each pair u, v of Reg(R), then TZ(R)(Γ(R)) + uv is
Hamiltonian if and only if TZ(R)(Γ(R)) is Hamiltonian.

Let A,B ⊆ R. Define TA(Γ(B)) be a graph whose vertex set is B and two
distinct vertices x, y are adjacent if xy ∈ A.

Theorem 5.4. The graph TA(Γ(B)) is the complement graph of TAc(Γ(B))
where Ac = R \A.

Proof. Let u and v be two distinct vertices ofB. Then TA(Γ(B)) and TAc(Γ(B))
have the same set of vertices. Since uv ∈ A if and only if uv /∈ Ac, we get that
uv is an edge of TA(Γ(B)) if and only if uv is not an edge of TAc(Γ(B)).

Theorem 5.5. The graph TA(Γ(B)) is a spaning subgraph of TC(Γ(B)) if A ⊆
C.

Proof. Let A ⊆ C. Since TA(Γ(B)) and TC(Γ(B)) have the same set of vertices
depending on B, we have to prove that the edge set of TA(Γ(B)) contains in
the edge set of TC(Γ(B)). To complete the prove, assume, on contrary, that
the edge set of TA(Γ(B)) contains the edge set of TC(Γ(B)). Then for every
two distinct vertices u, v ∈ B that adjacent in TC(Γ(B)) should be adjacent in
TA(Γ(B)). By definitions of TC(Γ(B)) and TA(Γ(B)), we get that C ⊆ A, which
is a contradiction. Hence TA(Γ(B)) is the spanning subgraph of TC(Γ(B)).

Corollary 5.3. The graph TA(Γ(B)) is an induced subgraph of TA(Γ(C)) if
B ⊆ C.

Corollary 5.4. If A is multiplicatively closed subset of R and B ⊆ A, then
TA(Γ(B)) is a complete graph.

Corollary 5.5. If A and B are two disjoint multiplicatively closed subsets of
R, then TA(Γ(B)) is the empty graph.
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Abstract. Exponential Diophantine equations of the form pX + qY = Z2, with un-
knowns (X,Y, Z) in the set of positive integers, are of interest to many number theorists.
Many of these equations are solved using congruence techniques and the quadratic reci-
procity. The goal of this paper is to show unsolvability of some Diophantine equations
of this type using the concept of elliptic curves. Similar types of exponential Diophan-
tine equations are also considered in this study. To illustrate the results, examples are
provided.

Keywords: exponential Diophantine equation, elliptic curve, congruences, factoriza-
tion.

1. Introduction

Solving Diophantine equations is one of the oldest problems in Number Theory
but is one of the hot topics of research in this field of mathematics in the past few
years. Recently, several papers have been devoted in finding the non-negative
integer solutions of Diophantine equations of the form

(1) pX + qY = Z2

with unknowns (X,Y, Z). Such equations are called exponential Diophantine
equations as they require solutions in the exponents. In 2007, Acu [1] found the
complete set of solutions of the Diophantine equation 2X + 5Y = Z2. In 2012
and 2013, Sroysang ([8],[9]) worked on the equations 3X + 5Y = Z2 and 8X +

*. Corresponding author
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19Y = Z2. On the other hand, Rabago [4] looked into Diophantine equations
3X+19Y = Z2 and 3X+91Y = Z2. Many other similar problems were considered
in the references [11], [10], [5], [6], [7], [15] and [2].

Most of the tools used in the said studies were the congruence and factoriza-
tion techniques. In 2019, Mina and Bacani [3] were able to provide some criteria
for showing non-existence of solutions over the set of positive integers for such
equations by using the values of the Legendre and Jacobi symbols.

In this paper, we will present several ways on determining whether equation
(1) has no solutions in the set of positive integers. These are done by trans-
forming such equations to another family of equations whose rational points
form an abelian group structure. These equations are no other than equations
that describe elliptic curves. The use of elliptic curves in solving Diophantine
equations is not new and has already been done in the past. A classical example
would be the Fermat equation

(2) a4 + b4 = c4, a ̸= 0.

Using the transformation

x = 2
b2 + c2

a2
and y = 4

b(b2 + c2)

a3
,

we get a corresponding elliptic curve

y2 = x3 − 4x

which has only the following rational solutions: (x, y) = (0, 0), (2, 0), (−2, 0).
These all correspond to b = 0, so there are no nontrivial solutions to (2).

We will also be dealing with equations of the form

(3) pX + qY = Zn

where n = 3 or 6. This type of equation is generally not possible to study when
using only congruence techniques. Most of the cases we will be dealing with
require one of the exponents to be even. There are some theorems that guarantee
non-existence of solutions to (1), such as those presented in [3] which deal with
the case where one of the exponents is odd. Note that since computation of ranks
of elliptic curves is generally a hard problem, most of the results will focus on
the case where the bases p and q are fixed. We use a free mathematical software
SAGE [13] for the computation of ranks and torsion subgroups of elliptic curves.

Throughout the paper, we will denote by N, N0, Z and Q the sets of positive
integers, non-negative integers, integers and rational numbers, respectively.

2. Basic concepts about elliptic curves

An elliptic curve defined over Q is a curve that is described by the following
general Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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where a1, a2, a3, a4, a6 ∈ Q. By completing the square, we get(
y +

a1x

2
+
a2
2

)2
= x3 +

(
a2 +

a21
4

)
x2 +

(
a4 +

a1a3
2

)
x+

(
a23
4

+ a6

)
,

which can be written as

y21 = x3 + a′2x
2 + a′4x+ a′6,

where y1 = y + a1x/2 + a3/2 and a′2 = a2 + a21/4. Furthermore, if we let
x1 = x+ a′2/3, then we get the simpler Weierstrass equation

y21 = x31 +Ax1 +B, for some A,B ∈ Q.

In other words, an elliptic curve defined over the rationals is given by the fol-
lowing equation:

E : y2 = x3 +Ax+B,

where A and B are rational numbers. In addition, the discriminant ∆ := 4A3+
27B2 must be nonzero. It is well-known that the rational points on the elliptic
curve E over Q forms an abelian group called the Mordell-Weil group with the
point at infinity O acting as the identity. The group is isomorphic to E(Q)tors⊕
Zr, where E(Q)tors is the group of elements of finite order, called the torsion
subgroup, and r ≥ 0 is called the rank of E. There are ways of solving the
torsion subgroup, such as using the well-known Nagell-Lutz Theorem, but the
computation of rank r is generally a hard problem.

One of the results in the theory of elliptic curves is the transformation of
a quartic equation to the Weierstrass equation of elliptic curve, and vice-versa.
The proof of this theorem can be seen in [12].

Theorem 2.1. Consider the following equation

v2 = au4 + bu3 + cu2 + du+ q2,

with coefficients a, b, c, d, q ∈ Q. Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du+ cu2)− (d2u2/2q)

u3
.

Define a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4. Then,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The inverse transformation is given by

u =
2q(x+ c)− (d2/2q)

y
, v = −q + u(ux− d)

2q
.

The point (u, v) = (0, q) corresponds to the point (x, y) = O, and (u, v) = (0,−q)
corresponds to (x, y) = (−a2, a1a2 − a3).
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The next theorem is a well-known result regarding the torsion subgroup of
the elliptic curve y2 = x3 +B.

Theorem 2.2. Let E : y2 = x3 + B be an elliptic curve for some sixth power-
free integer B. Then, the torsion subgroup E(Q)tors of E(Q) is isomorphic to
one of the following groups:

1. Z/6Z if B = 1,

2. Z/3Z if B ̸= 1 is a square or B = −432,

3. Z/2Z if B ̸= 1 is a cube,

4. {O}, otherwise.

3. Main results

For the first two theorems, we present some results about the transformation
of the exponential Diophantine equation (1) into the Weierstrass equation of
elliptic curve.

Theorem 3.1. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the exponential Diophantine equation (1) has no solutions (X,Y, Z) in N
if X ≡ 0 (mod 3) and Y ≡ 0 (mod 4).

Proof. Suppose (X,Y, Z) is a solution of (1) such that X ≡ 0 (mod 3) and
Y ≡ 0 (mod 4). This implies that X = 3X1 and Y = 4Y1, for some X1, Y1 ∈ N.
By factoring pX + qY = Z2, we get

(pX1)3 = (Z + (qY1)2)(Z − (qY1)2).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 3X1 and

pα(pβ−α − 1) = pβ − pα = (Z + (qY1)2)− (Z − (qY1)2) = 2(qY1)2.

Since gcd(p, q) = 1, we find that α = 0 and we get the equation

(pX1)3 − 1 = 2(qY1)2.

Multiplying both sides by 8 yields (4qY1)2 = (2pX1)3 − 8. By substituting
x = 2pX1 and y = 4qy1 , we obtain the elliptic curve E1 : y2 = x3 − 8. Using
SAGE, we find that its rank is r = 0 and its torsion subgroup E1(Q)tors is
isomorphic to Z/2Z. We see that the rational points on E1(Q) are (2, 0) and the
point at infinity O, all of which are of finite order. This yields (pX1 , q) = (1, 0),
which is a contradiction to the assumption that q is positive. Therefore, (1) has
no solutions in N.
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Theorem 3.2. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the Diophantine equation (1) can be transformed to the elliptic curve
E2 : y

2 = x3− 8q3 if X ≡ 0 (mod 3) and Y ≡ 2 (mod 4). Moreover, if the rank
of E2 is zero, then (1) has no solutions in N.

Proof. Let (X,Y, Z) be a solution such that X = 3X1 and Y = 4Y1 + 2, for
some X1 ∈ N and Y1 ∈ N0. By factoring pX + qY = Z2, we have

(pX1)3 = (Z + q2Y1+1)(Z − q2Y1+1).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 3X1, and

pα(pβ−α − 1) = pβ − pα = (Z + q2Y1+1)− (Z − q2Y1+1) = 2q2Y1+1.

Since gcd(p, q) = 1, we find that α = 0 and we get the equation

(pX1)3 − 1 = 2q2Y1+1, or (pX1)3 − 1 = 2q · (qY1 )2.

Multiplying both sides by 8q3 yields (4qY1+2)2 = (2q·pX1)3−8q3. By substituting
x = 2q·pX1 and y = 4qY1+2, we obtain the elliptic curve E2 : y

2 = x3−8q3. Using
Theorem 2.2, we find that E2(Q)tors is isomorphic to Z/2Z. The torsion points
on E2(Q) are (2q, 0) and the point at infinity O. This yields (pX1 , q) = (1, 0)
which gives no solutions to the original equation since q is assumed to be positive.
Moreover, since the rank of E2 is assumed to be zero, this means that there are
no other rational points on E2, and consequently on (1). Hence, (1) has no
solutions in N.

Remark 3.1. In Theorems 3.1 and 3.2, the elliptic curves y2 = x3 − 8 and
y2 = x3 − 8q3 are also called Mordell curves [14]. The determination of values
of q for which the second curve has rank zero is a difficult problem.

Let us now apply these two theorems to a specific exponential Diophantine
equation of the form (1).

Example 3.1. The Diophantine equation 19X + 27Y = Z2 has no solutions
(X,Y, Z) in N.

Proof. Taking the equation in modulo 4 gives us 3X +3Y ≡ Z2 (mod 4). Since
Z2 is even, Z2 ≡ 0 (mod 4). Thus, 3X + 3Y ≡ 0 (mod 4). This implies that X
and Y are of different parity. For the sake of our purpose, we will only deal with
the case where X is odd and Y is even. The other cases yield no solution via
congruence considerations. By letting Y = 2Y1, for some Y1 ∈ N and factoring,
we get

19X = (Z + 27Y1)(Z − 27Y1).

Using the same reasoning as done in the proof of Theorem 3.1, we get the
equation

19X − 1 = 2 · 27Y1 .



ON NONSOLVABILITY OF EXPONENTIAL DIOPHANTINE EQUATIONS ... 201

Factoring this equation, we get (19−1)(19X−1+19X−2+ · · ·+1) = 18 ·3 ·27Y1−1.
This implies that 19X−1 +19X−2 + · · ·+1 = 3 · 27Y1−1. Taking modulo 3 yields
X ≡ 0 (mod 3), i.e. X = 3X1, for some X1 ∈ N.

Now, if Y1 is odd, then our equation becomes (19X1)3 + (272Y2+1)2 = Z2,
where Y1 = 2Y2 +1. Now, we can transform the equation into the elliptic curve
y2 = x3−157464. This has rank zero with torsion subgroup isomorphic to Z/2Z.
Using Theorem 3.2, the equation has no solutions in N.

For the second part of the proof, if Y1 is even, i.e., Y1 = 2Y2, for some
Y2 ∈ N, then the original equation becomes (19X1)3 + (27Y1)4 = Z2. This
resulting equation has no solutions in N using Theorem 3.1.

For the next results, we will consider another family of exponential Diophan-
tine equations of the form (3).

Theorem 3.3. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the Diophantine equation pX+qY = Z6 can be transformed into the elliptic
curve E3 : y2 = x3 − 4p3 if X ≡ 1 (mod 2) and Y ≡ 0 (mod 2). Moreover, if
the rank of E3 is zero, then pX + qY = Z6 has no solutions in N.

Proof. Let X = 2X1+1 and Y = 2Y1, for some X1 ∈ N0, Y1 ∈ N. By factoring,
we have the following,

p2X1+1 = (Z3 + (qY1)2)(Z3 − (qY1)2).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 2X1 + 1 and

pα(pβ−α + 1) = pβ + pα = (Z3 + (qY1)2) + (Z3 − (qY1)2) = 2Z3.

Note that p ̸ | Z, otherwise p | q which is not possible since gcd(p, q) = 1. Hence,
α = 0 and we get the equation

p · (pX1)2 − 1 = 2Z3.

Multiplying both sides by 4p3 yields (2pX1+2)2 = (2pZ)3− 4p3. By substituting
x = 2pZ and y = 2pX1+2, we obtain the elliptic curve E3 : y

2 = x3− 4p3. Using
Theorem 2.2 the torsion subgroup E3(Q)tors is isomorphic to {O}. This implies
that if the rank of E3 is zero, then there are no solutions in N to the original
equation.

Next, we are going to consider a larger family of equations of the form
pX + qY = Z3, but this time both p and q are primes. In this case, we have the
following two results.

Theorem 3.4. Let p and q be distinct odd primes. Then, the Diophantine
equation pX + qY = Z3 has no solutions (X,Y, Z) in N with X ≡ 0 (mod 2)
and Y ≡ 0 (mod 6).
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Proof. Let X = 2X1 and Y = 6Y1, for some X1, Y1 ∈ N. By factoring, we have
the following:

p2X1 = (Z − q2Y1)(Z2 + Zq2Y1 + q4Y1).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 2X1 and

pβ−α =
pβ

pα
=
Z2 + Zq2Y1 + q4Y1

Z − q2Y1
= Z2 + 2q2Y1 +

3q4Y1

Z − q2Y1
.

This means that Z − q2Y1 divides 3q4Y1 . Since q is prime, Z − q2Y1 = 3qj or
Z−q2Y1 = qj , for some 0 ≤ j ≤ 4Y1. If j > 0, then q | Z which is a contradiction.
Hence j = 0 and we have either Z− q2Y1 = 3 or Z− q2Y1 = 1. For the first case,
we have

pX + q6Y1 = (q2Y1 + 3)3 = q6Y1 + 9q4Y1 + 27q2Y1 + 27,

which implies that pX = 9q4Y1 + 27q2Y1 + 27. This means that 9 | pX or p = 3.
This gives us 3X−2 = q4Y1 + 3q2Y1 + 3. Since gcd(p, q) = gcd(3, q) = 1, we have
X = 2 and consequently, 1 = q4Y1 + 3q2Y1 + 3, a contradiction.

For the second case, we have

pX + q6Y1 = (q2Y1 + 1)3 = q6Y1 + 3q4Y1 + 3q2Y1 + 1.

This implies that p2X1 = 3q4Y1 + 3q2Y1 + 1. Let u = qY1 and v = pX1 so that
v2 = 3u4 + 3u2 + 1. Using Theorem 2.1, if we let x̂ = 2v+2

u2 and ŷ = 4v+4+6u2

u3

and define a1 = 0, a2 = 3, a3 = 0, a4 = −12 and a6 = −36, then we get the
elliptic curve

ŷ2 = x̂3 + 3x̂2 − 12x̂− 36.

By letting x = x̂+ 1 and y = ŷ, we obtain the elliptic curve

E4 : y
2 = x3 − 15x− 22.

We have computed its rank to be r = 0 and the torsion subgroup E4(Q)tors of
E4 to be {O, (−2, 0)} ∼= Z/2Z. This means that (x, y) = (−2, 0) is the only
Q-rational point on E4. We retrieve (x̂, ŷ) = (−3,−1), which corresponds to no
integer point in the original equation.

Theorem 3.5. Let p̂ and q be distinct odd primes, and p = p̂k, for some k ∈ N.
Then, the Diophantine equation pX+qY = Z3 can be transformed into the elliptic
curve E4 : y2 = x3 − 15p2x − 22p3 if X ≡ 1 (mod 2), Y ≡ 0 (mod 6) and k is
even. Moreover, if the Mordell-Weil group of E4 is trivial, then pX + qY = Z3

has no solutions in N.

Proof. Let k = 2k1, X = 2X1 + 1 and Y = 6Y1, for some X1,∈ N0, k1, Y1 ∈ N.
By factoring, we have the following:

p2X1+1 = (Z − q2Y1)(Z2 + Zq2Y1 + q4Y1).
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Since p = p̂k, where p̂ is prime, there exist two non-negative integers α and β,
α < β such that α+ β = k(2X1 + 1) and

p̂β−α =
p̂β

p̂α
=
Z2 + Zq2Y1 + q4Y1

Z − q2Y1
= Z2 + 2q2Y1 +

3q4Y1

Z − q2Y1
.

This means that Z − q2Y1 divides 3q4Y1 . Since q is prime, Z − q2Y1 = 3qj or
Z−q2Y1 = qj , for some 0 ≤ j ≤ 4Y1. If j > 0, then q | Z which is a contradiction.
Hence, j = 0 and we have either Z − q2Y1 = 3 or Z − q2Y1 = 1. For the first
case, we have

pX + q6Y1 = (q2Y1 + 3)3 = q6Y1 + 9q4Y1 + 27q2Y1 + 27,

which implies that pX = 9q4Y1 +27q2Y1 +27. This means that 9 | pX or that is,
p̂ = 3. This gives us 3k(X−2) = q4Y1 +3q2y1 +3. Since gcd(p, q) = gcd(3k, q) = 1,
we have X = 2 which gives 1 = q4Y1 +3q2Y1 +3, a contradiction. For the second
case, we have

pX + q6Y1 = (q2Y1 + 1)3 = q6Y1 + 3q4Y1 + 3q2Y1 + 1.

This implies that p · p2X1+1 = 3pq4Y1 + 3pq2Y1 + p. Let u = qY1 and v = pX1+1

so that v2 = 3pu4 + 3pu2 + 1. Using Theorem 2.1, if we let x̂ = 2p̂k1v+2p
u2 and

ŷ = 4p2v+4pp̂k1+6pp̂k1u2

u3 and define a1 = 0, a2 = 3p, a3 = 0, a4 = −12p2 and
a6 = −36p3, then we get the elliptic curve

ŷ2 = x̂3 + 3px̂2 − 12p2x̂− 36p3.

By letting x = x̂+ 1 and y = ŷ, we obtain the elliptic curve

E5 : y
2 = x3 − 15p2x− 22p3.

One can use the SAGE to determine the torsion and the rank of this elliptic
curve for a specific value of p. Moreover, if the Mordell-Weil group of E4 is
trivial, then pX + qY = Z3 has no solutions in N.

We have the following example demonstrating the use of Theorem 3.4 and
Theorem 3.5.

Example 3.2. Consider the Diophantine equation 7X + 11Y = Z3 over the set
of positive integers. Taking modulo 7, we get Z3 ≡ 4Y (mod 7). Now, since
Z3 ≡ 0, 1, 6 (mod 7), we get 4Y ≡ 1 (mod 7) or that is Y ≡ 0 (mod 3). Using
Theorem 3.4, the equation has no solutions in N if X and Y are even. On
the other hand, consider the Diophantine equation 49X + 11Y = Z3 where X
is odd and Y is even. Using Theorem 3.5, this can be transformed into the
elliptic curve E : y2 = x3 − 36015x − 2588278 which has rank 0. Furthermore,
its torsion subgroup is isomorphic to Z/2Z. We can easily see that (−98, 0) is
the only non-trivial torsion point of E which does not correspond to an integer
solution in the original equation.
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4. Summary

In this paper, we presented a way of determining nonsolvability of exponential
Diophantine equations of type pX + qY = Zn, where n is either 2, 3 or 6, via
transformation to a Weierstrass equation of elliptic curves. We did this because
the rational points on an elliptic curve form an abelian group, and so are easier
to determine. Theorems 3.1 and 3.2 are dedicated for the case when n = 2, and
Theorems 3.3, 3.4 and 3.5 for the case when n = 3 and 6. These theorems do
not cover all possible scenarios when solving a certain Diophantine equation but
are effective in reducing the number of cases to be considered when solving for
its solutions. For future works, some of the results can be extended to a more
general family of exponential Diophantine equations or to any similar types of
equation.
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Abstract. The damped Gauss-Newton methods have been successfully applied to
solve the nonlinear complementarity problem (NCP). This class of methods is usually
designed based on a monotone Armijo line search. In this paper, we propose a damped
Gauss-Newton method with a nonmonotone line search to solve the NCP. Without
requiring any problem assumptions, we prove that the proposed method is well de-
fined and it is globally convergent. Moreover, under the nonsingularity assumption, we
show that the proposed method is locally superlinearly/quadratically convergent. Some
numerical results are reported.

Keywords: nonlinear complementarity problem, Gauss-Newton method, nonmono-
tone line search, quadratic convergence.

1. Introduction

The nonlinear complementarity problem (NCP) is to find x ∈ Rn such that

(1) x ≥ 0, F (x) ≥ 0, xTF (x) = 0,

where F : Rn → Rn is a continuously differentiable function. The NCP has
been studied extensively due to its various applications in operations research,
economic equilibrium and engineering design.

There has been developed a number of numerical algorithms for solving the
NCP. Among them, the Newton-type algorithm is one kind of the most effec-
tive algorithms which is designed based on some equation reformulation of the
NCP. One class of well-known Newton-type algorithms is the smoothing Newton
methods (e.g., [2, 3, 5, 6, 11, 13]). This class of algorithms usually reformulates
the NCP as a smooth nonlinear equation and then solves it by Newton method.
It is worth pointing out that, in these smoothing Newton methods, to ensure
Newton step be feasible, one usually requires that the function F has Cartesian
P0-property, that is, for every x and y in Rn with x ̸= y, there is an index
i0 ∈ {1, ..., n} such that xi0 ̸= yi0 and (xi0 − yi0)(Fi0(x)− Fi0(y)) ≥ 0.

Another class of Newton-type algorithms is the damped Gauss-Newton meth-
ods (e.g, [4, 9, 10]). Different from smoothing Newton methods, the damped
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Gauss-Newton methods usually reformulate the NCP as a nonsmooth nonlin-
ear equation and then solve it. Since the Gauss-Newton equation is always
solvable, the damped Gauss-Newton method is well defined without requiring
that the function F has Cartesian P0-property. It is worth pointing out that,
in many damped Gauss-Newton methods (e.g., [8, 10]), the nonmonotone line
search technique has been used to improve numerical results when the methods
are implemented. However, the theoretical analyses are based on the methods
with some monotone line search. As is well known, the nonmonotone line search
technique can improve the likelihood of finding a global optimal solution and
convergence speed in cases where the involving function is highly nonconvex and
has a valley in a small neighbourhood of some point (e.g., [1, 14]). Encouraging
numerical results have been reported when smoothing Newton methods with
nonmonotone line search schemes were applied to solve NCPs (e.g., [2, 7, 11]).

In this paper, we propose a damped Gauss-Newton method to solve the NCP
which is designed based on a nonmonotone line search scheme. We prove that the
proposed method is well defined and it is globally convergent without requiring
any problem assumptions. Moreover, we show that the convergence rate of
the proposed method is local superlinear/quadratic under the nonsingularity
assumption. We also report some numerical results which indicate that our
method is very effective for solving NCPs even though these problems have no
Cartesian P0-property.

2. A nonmonotone damped Gauss-Newton method

2.1 The reformulation of the NCP

In this paper, we consider the following Fischer-Burmeister function:

(2) ϕ(a, b) :=
√
a2 + b2 − (a+ b), ∀(a, b) ∈ R2,

which satisfies

(3) ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

By using ϕ, we can reformulate the NCP as the following nonsmooth equation:

(4) H(x) :=

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))

 = 0.

Obviously, x is a solution of the NCP if and only if H(x) = 0.
Define the merit function ψ(x) : Rn → R as

(5) ψ(x) :=
1

2
∥H(x)∥2 = 1

2

n∑
i=1

(ϕ(xi, Fi(x)))
2.

The following lemma gives some useful properties which can be found in [4].
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Lemma 2.1. (a) H(x) defined in (4) is semismooth on Rn and it is strongly
semismooth on Rn if F ′(x) is Lipschitz continuous on Rn.

(b) For any x ∈ Rn and V ∈ ∂H(x), V can be represented as follows

V = diag(ai)∇F (x)T + diag(bi),

where diag(αi) denotes a diagonal matrix with the diagonal elements α1, ..., αn
and (ai + 1)2 + (bi + 1)2 ≤ 1, i = 1, ..., n.

(c) ψ(x) defined by (5) is continuously differentiable on Rn and its gradient
∇ψ(x) can be represented as ∇ψ(x) = V TH(x) for any V ∈ ∂H(x).

2.2 The algorithm

We now describe our nonmonotone damped Gauss-Newton method (NDGNM)
as follows.
Algorithm NDGNM
Step 1. Choose γ ∈ (0, 1/2), η ∈ (0, 1) and x0 ∈ Rn. Choose a sequence {µk}
such that µk > 0 for all k ≥ 0. Choose a sequence {τk} such that τk ∈ (τ, 1]
where τ > 0 is a constant. Set R0 := ψ(x0). Set k := 0.
Step 2. Choose Vk ∈ ∂H(xk) and compute∇ψ(xk) = V T

k H(xk). If∇ψ(xk) = 0,
then stop.
Step 3. Let dk be the solution of the following linear system

(6) (V T
k Vk + µkI)d = −∇ψ(xk).

Step 4. Find a step-size λk := ηmk , where mk is the smallest nonnegative
integer m satisfying

(7) ψ(xk + ηmdk) ≤ Rk + γηm∇ψ(xk)Tdk.

Step 5. Set xk+1 := xk + λkdk and

(8) Rk+1 := (1− τk)Rk + τkψ(x
k+1).

Set k := k + 1. Go to Step 2.

Theorem 2.1. Algorithm NDGNM is well defined and its generated sequence
{xk} satisfies ψ(xk) ≤ Rk for all k ≥ 0.

Proof. Suppose that ψ(xk) ≤ Rk holds for some k. If ∇ψ(xk) = 0, then
Algorithm NDGNM terminates. Now, we suppose that ∇ψ(xk) ̸= 0. Since
µk > 0, V T

k Vk + µkI is positive definite and the search direction dk in Step 3 is
well defined. Moreover, since ∇ψ(xk) ̸= 0, we have dk ̸= 0 and hence

(9) ∇ψ(xk)Tdk = −dTk (V T
k Vk + µkI)dk < 0.

Next we show that there exists at least a nonnegative integer m satisfying (7).
On the contrary, we suppose that for any nonnegative integer m,

(10) ψ(xk + ηmdk) > Rk + γηm∇ψ(xk)Tdk.
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Since ψ(xk) ≤ Rk, by (10), we have

ψ(xk + ηmdk)− ψ(xk)
ηm

> γ∇ψ(xk)Tdk.

Since ψ is continuously differentiable at xk, by letting m → ∞ in the above
inequality, we have ∇ψ(xk)Tdk ≥ γ∇ψ(xk)Tdk. This contradicts (9) and γ ∈
(0, 1/2). Hence, we can find a step-size λk in Step 4 and get the (k + 1)-th
iteration xk+1 = xk + λkdk. Moreover, from (7) and (9) we have

(11) ψ(xk+1) ≤ Rk + γλk∇ψ(xk)Tdk ≤ Rk.

Using this fact, we obtain from (8) that

ψ(xk+1) = (1− τk)ψ(xk+1) + τkψ(x
k+1) ≤ (1− τk)Rk + τkψ(x

k+1) = Rk+1.

Hence, we can conclude that if ψ(xk) ≤ Rk, then xk+1 can be generated by
Algorithm NDGNM and it satisfies ψ(xk+1) ≤ Rk+1. Since ψ(x

0) = R0, by the
mathematical induction, we prove the theorem. The proof is completed.

3. Convergence analysis

In this section, we assume that Algorithm NDGNM does not terminate in finitely
many steps, i.e., ∇ψ(xk) ̸= 0 for all k ≥ 0. To establish the global convergence
of Algorithm NDGNM, we need the following result.

Lemma 3.1 ([12], Corollary 1). Let {xk} ⊂ Rn be a sequence converging to
x. Let {Vk} be a sequence such that Vk ∈ ∂H(xk) for all k ≥ 0. Then {Vk} is
bounded. Moreover, if {Vk} converges to V , then V ∈ ∂H(x).

Theorem 3.1 (Global convergence). Assume that x∗ is an accumulation point
of {xk} generated by Algorithm NDGNM. Then x∗ is a stationary point of the
merit function ψ(x) if any one of the following conditions holds:

(i) both {µk} and {dk} are bounded.

(ii) µ̃ < µk < µ̄ for some µ̄ > µ̃ > 0.

(iii) µk = α∥H(x)∥β for any α, β > 0.

Moreover, x∗ is a solution of the NCP if there exists a nonsingular element in
∂H(x∗).

Proof. By (11), we have ψ(xk+1) ≤ Rk for all k ≥ 0. Then, it follows from (8)
that for all k ≥ 0

(12) Rk+1 = (1− τk)Rk + τkψ(x
k+1) ≤ (1− τk)Rk + τkRk = Rk.
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Thus, there exists a constant R∗ ≥ 0 such that limk→∞Rk = R∗. By (8), we
have for all k ≥ 1

ψ(xk) = Rk−1 +
Rk −Rk−1

τk−1
.

Since τk ≥ τ > 0, we have limk→∞ ψ(xk) = R∗. Now, without loss of generality,
we assume that lim(K∋)k→∞ xk = x∗ where K is a subsequence of {0, 1, ...}.

First, we consider the condition (i). Since {Vk}k∈K is bounded by Lemma
3.1, and {µk}k∈K and {dk}k∈K are bounded by the condition (i), by passing to
the subsequence, we may assume that

lim
(K∋)k→∞

Vk = V ∗, lim
(K∋)k→∞

µk = µ∗, lim
(K∋)k→∞

dk = d∗.

Moreover, by Lemma 3.1 we have V ∗ ∈ ∂H(x∗). Thus, from Lemma 2.1 (c) it
follows that ∇ψ(x∗) = (V ∗)TH(x∗) and

(13) lim
(K∋)k→∞

∇ψ(xk) = lim
(K∋)k→∞

V T
k H(xk) = (V ∗)TH(x∗) = ∇ψ(x∗).

Now, we prove that ∇ψ(x∗)Td∗ = 0. We divide the proof into the following two
parts:

Part 1. λk ≥ c > 0 for all k ∈ K where c is a fixed constant. In this case, it
follows from (7) and (9) that for all k ∈ K,

(14) 0 ≤ −γc∇ψ(xk)Tdk ≤ −γλk∇ψ(xk)Tdk ≤ Rk − ψ(xk+1).

Since limk→∞Rk = limk→∞ ψ(xk) = R∗, by letting k →∞ with k ∈ K in (14),
we have ∇ψ(x∗)Td∗ = 0.

Part 2. {λk}k∈K has a subsequence converging to zero. We may pass to the
subsequence and assume that lim(K∋)k→∞ λk = 0. From the line search (7), we
get that for all sufficiently large k ∈ K,

ψ(xk + η−1λkdk) > Rk + γη−1λk∇ψ(xk)Tdk.

Since ψ(xk) ≤ Rk for all k ≥ 0, it follows that

ψ(xk + η−1λkdk)− ψ(xk) ≥ γη−1λk∇ψ(xk)Tdk,

i.e.,

(15)
ψ(xk + η−1λkdk)− ψ(xk)

η−1λk
≥ γ∇ψ(xk)Tdk.

Since ψ is continuously differentiable at x∗, by letting k → ∞ with k ∈ K in
(15), we have

(16) ∇ψ(x∗)Td∗ ≥ γ∇ψ(x∗)Td∗.
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On the other hand, since ∇ψ(xk)Tdk < 0 for all k ≥ 0 by (9), we have

(17) ∇ψ(x∗)Td∗ ≤ 0.

Since γ ∈ (0, 1), we obtain from (16) and (17) that ∇ψ(x∗)Td∗ = 0.

By Part 1 and Part 2, we can conclude that ∇ψ(x∗)Td∗ = 0. Moreover, from
(6) we have

∇ψ(x∗)Td∗ + (d∗)T ((V ∗)TV ∗ + µ∗I)d∗ = 0,

which gives

(18) (d∗)T ((V ∗)TV ∗ + µ∗I)d∗ = 0.

If µ∗ > 0, then the matrix (V ∗)TV ∗ + µ∗I is positive definite. By (18), we have
d∗ = 0 which together with (6) gives ∇ψ(x∗) = −((V ∗)TV ∗ + µ∗I)d∗ = 0. If
µ∗ = 0, then by (18) we have V ∗d∗ = 0. Using (6) again, we have ∇ψ(x∗) =
−(V ∗)TV ∗d∗ = 0. This proves that x∗ is a stationary point of ψ.

Next, we consider the condition (ii). Since 0 < µ̃ < µk < µ̄, the matrices
{V T

k Vk + µkI} are uniformly positive definite for all k. It follows from (6) that

∥dk∥ = ∥(V T
k Vk + µkI)

−1∇ψ(xk)∥
≤ ∥(V T

k Vk + µkI)
−1∥∥∇ψ(xk)∥

≤ 1

µk
∥∇ψ(xk)∥

≤ 1

µ̃
∥∇ψ(xk)∥.

Since {∥∇ψ(xk)∥}k∈K is bounded, {dk}k∈K is bounded. So, by following from
(i), we obtain the desired result.

At last, we consider the condition (iii). For all k ≥ 0, since ∇ψ(xk) ̸= 0,
we have H(xk) ̸= 0 and hence µk = α∥H(x)∥β > 0. Suppose that ∇ψ(x∗) ̸= 0.
Then ∥H(x∗)∥ > 0. Since limk→∞ ψ(xk) = R∗, by (5) and the continuity of H,
we have

lim
k→∞

µk = lim
k→∞

α

(√
2ψ(xk)

)β
= α(

√
2R∗)β = α∥H(x∗)∥β > 0.

So, there exists µ̄ > µ̃ > 0 such that µ̃ < µk < µ̄. By (ii), x∗ must be a
stationary point of ψ(x). It is a contradiction. Thus, x∗ is a stationary point of
ψ(x).

The second part of the theorem follows from Lemma 2.1 (c).

We complete the proof.

In a similar way as those in [10, Theorem 7.2], we can obtain the local
superlinear/quadratic convergence of Algorithm NDGNM as follows.
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Theorem 3.2 (Local superlinear/quadratic convergence). Assume that x∗ is
an accumulation point of {xk} generated by Algorithm NDGNM. Let µk =
α∥H(x)∥β for some α, β > 0. If all V ∈ ∂H(x∗) are nonsingular, then the
whole sequence {xk} converges to x∗ superlinearly. Furthermore, if F ′ is Lips-
chitz continuous around x∗ and β ≥ 1, then the convergence rate is quadratic.

In Theorem 3.1 and Theorem 3.2, we assume that the sequence {xk} genera-
ted by Algorithm NDGNM has one accumulation point x∗ and all V ∈ ∂H(x∗)
are nonsingular. In the following, we show that this assumption is satisfied when
F in the NCP is a uniform P -function. For this purpose, we need the following
lemma.

Lemma 3.2 ([4], Lemma 4.1). Suppose that F is a uniform P -function, i.e.,
there exists a positive scalar c > 0 such that

max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) ≥ c∥x− y∥2, ∀ x, y ∈ Rn.

Then, the following results hold:

(i) The NCP has a unique solution.

(ii) For any x ∈ Rn and any V ∈ ∂H(x), V is nonsingular.

(iii) The level set L(x0) := {x ∈ Rn : ψ(x) ≤ ψ(x0)} is bounded for any
x0 ∈ Rn.

Theorem 3.3. If F is a uniform P -function, then the sequence {xk} generated
by Algorithm NDGNM has at least one accumulation point x∗ and all V ∈
∂H(x∗) are nonsingular.

Proof. By Theorem 2.1 and (12), we have ψ(xk) ≤ Rk ≤ R0 = ψ(x0) for all
k ≥ 0. This together with Lemma 3.2 (iii) implies that {xk} is bounded and it
has at least one accumulation point x∗. The second result holds by Lemma 3.2
(ii).

By Theorems 3.1–3.3 and Lemma 3.2 (i), we can directly have the following
result

Theorem 3.4. If F is a uniform P -function, then the sequence {xk} gener-
ated by Algorithm NDGNM converges to the unique solution of the NCP locally
superlinearly/quadratically.

4. Numerical results

In this section, we report some numerical results of Algorithm NDGNM. All
experiments are carried on a PC with CPU of Inter(R) Core(TM)i7-7700 CPU
@ 3.60 GHz and RAM of 8.00GB. The codes are written in MATLAB and run
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in MATLAB R2018a environment. The parameters used in Algorithm NDGNM
are chosen as γ = 0.1, η = 0.8, τk =

2k+1
2k+1 .

We consider the following linear complementarity problem (LCP):

x ≥ 0, y ≥ 0, y =Mx+ q, xT y = 0,

in which M ∈ Rn×n and q ∈ Rn. By using the Fischer-Burmeister function ϕ,
we have a nonsmooth equation reformulation of the LCP:

H(x, y) :=


y −Mx− q
ϕ(x1, y1)

...
ϕ(xn, yn)

 = 0,

namely, (x, y) is a solution of the LCP if and only if H(x, y) = 0.

We apply Algorithm NDGNM to solve H(x, y) = 0 and use ∥H(xk, yk)∥ ≤
10−6 as the stopping criterion. In our experiments, we investigate the following
two LCPs:

(I) Let M be the block diagonal matrix with M1, ...,M4 as block diagonals,

i.e., M = diag(M1, ...,M4), in which Mi =
NT

i Ni

∥NT
i Ni∥

with Ni = rand(n4 ,
n
4 )

for i = 1, ..., 4. Take q = rand(n, 1). In this case, the function F (x) =
Mx+ q has the Cartesian P0-property.

(II) Let M = diag(M1, ...,M4), in which Mi = Ni
∥Ni∥ − eye(n/4) with Ni =

rand(n4 ,
n
4 ) for i = 1, ..., 4. Take q = rand(n, 1). In this case, the function

F (x) =Mx+ q may have no Cartesian P0-property.

In the experiments, we generate 10 problem instances for each size of n. We use
the following two starting points: (1) x0 = (1, 0, ..., 0)T , y0 = (1, 1, ..., 1)T ; (2)
x0 = (1, 0, ..., 0)T , y0 = Mx0 + q. Numerical results are listed in Table 1 where
SP denotes the starting point, aIT denotes the average value of the iteration
numbers, aCPU denotes the average value of the CPU time in seconds and aHK

denotes the average value of ∥H(xk, yk)∥ when Algorithm NDGNM terminates
among the 10 testing. From Table 1, we can see that Algorithm NDGNM is
very effective for solving LCPs even though these problems have no Cartesian
P0-property.
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Table 1 Numerical results of Algorithm NDGNM

LCP SP n aIT aCPU aHK

(I) (1) 1000 4.9 1.83 2.1706e-07
1500 5.5 5.68 8.2870e-08
2000 5.5 14.50 2.6248e-07
2500 5.4 22.64 1.9886e-07
3000 6.2 53.75 2.2750e-07

(2) 1000 4.2 1.54 1.2565e-07
1500 4.5 4.67 2.2360e-07
2000 4.8 10.69 1.1695e-07
2500 4.2 18.02 1.2727e-07
3000 4.7 34.96 2.3348e-07

(II) (1) 1000 4.1 1.47 1.2654e-07
1500 4.0 9.07 2.3691e-07
2000 4.2 17.62 1.1274e-07
2500 4.2 30.95 3.7991e-07
3000 4.4 41.55 1.1590e-07

(2) 1000 3.2 1.13 1.1403e-07
1500 3.4 3.47 8.1548e-08
2000 3.6 8.18 2.1214e-08
2500 3.2 13.17 4.4488e-08
3000 3.5 24.83 1.4597e-07
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1. Introduction

Throughout this paper, all rings are associative with unity. R denotes an as-
sociative ring with unity, MR is a unitary right R-module, Id (R) denotes the
set of all idempotent elements of R, N(R) denotes the set of all nilpotent ele-
ments of R, C(R) denotes the center of R, Sr(R) = {e ∈ Id (R) : e R e = e R}
denotes the set of all right semicentral idempotent elements of R, Sℓ(R) =
{e ∈ Id (R) : e R e = R e} denotes the set of all left semicentral idempotent el-
ements of R, and rR(M) = {a ∈ R :Ma = 0} denotes the right annihilator of
M in R.

A ring R is said to be abelian if Id (R) ⊆ C(R). A ring R is called reduced
if N (R) = 0. This concept of reduced rings was extended to modules [9] as
follows: a right R-module MR is reduced if, for any m ∈ M and any a ∈ R,
ma = 0 implies mR ∩Ma = 0. Recall from [10], R is a right e-reduced ring,
where e ∈ Id(R), if N (R) e = 0. A ring R is called symmetric [8] if whenever
a, b, c ∈ R such that abc = 0, we have acb = 0. Recall from Refs. [8] and [11], a
right R-module MR is called symmetric if whenever a, b ∈ R and m ∈ M such
that mab = 0 implies mba = 0. Following [10], a ring R is called e-symmetric,
for e ∈ Id(R), if whenever a, b, c ∈ R such that abc = 0, we have acbe = 0.

Introduce of these properties via idempotents, inspires us to extend the
notions of e-reduced and e-symmetric to modules as follows:

Definition 1.1 ([1]). A right R-moduleMR is called e-reduced, where e ∈ Id(R),
if whenever a ∈ R and m ∈M such that ma = 0 implies mR ∩Mae = 0.

Definition 1.2 ([1]). A right R-module MR is called e-symmetric, where e ∈
Id(R), if whenever a, b ∈ R and m ∈M such that mab = 0 implies mbae = 0.
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A ring R is an e-reduced (e-symmetric) ring if and only if RR is an e-reduced
(e-symmetric) module.

According to [3] a ring R is called semicommutative, if whenever a, b ∈ R
satisfy ab = 0, then aRb = 0. A right R-module MR is called semicommutative
[5], if whenever a ∈ R and m ∈ M satisfy ma = 0, then mRa = 0. Recall from
[7], a ring R is called e-semicommutative, for e ∈ Id(R), if whenever a, b ∈ R
such that ab = 0, we have aRbe = 0.

So it is natural to motivate us to extend the condition of e-semicommutativity
to Module Theory.

2. Modules with e-semicommutative condition

In this section, we extend the notion of e-semicommutative rings to modules as
follows:

Definition 2.1. A right R-module MR is called e-semicommutative, where e ∈
Id(R), if whenever a ∈ R and m ∈M such that ma = 0 implies mRae = 0.

Obviously, R is an e-semicommutative ring if and only if RR is an e-semi-
commutative module.

Clearly, any semicommutative module is an e-semicommutative module,
for any e ∈ Id(R), and every an e-reduced (e-symmetric) module is e-semi-
commutative. The following examples demonstrate rather strikingly that the
class of e-semicommutative modules is properly contains the class of semi-
commutative modules.

Example 2.1. Let S be a semicommutative ring and R =

(
S S
0 S

)
. Consider

a right R-module MR = R[x]R. Assume that A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
and

C =

(
1 1
0 1

)
∈ R. We see that (Ax + A)B = 0 but (Ax + A)CB ̸= 0. Then,

MR is not semicommutative. Now for the idempotent E =

(
1 1
0 0

)
∈ R, we

can show that MR is E-semicommutative. Let f(x) =
∑n

i=0Aix
i ∈ M, where

Ai =

(
ai bi
0 ci

)
∈ R for every i = 0, 1, ..., n, and B =

(
w u
0 v

)
∈ R such that

f(x)B = 0. Then, 0 = AiB =

(
aiw aiu+ biv
0 civ

)
for every i = 0, 1, ..., n. Hence,

aiw = 0, civ = 0 and aiu+ biv = 0. For any element C =

(
x y
0 z

)
∈ R, we have

f(x)CBE =
∑n

i=0 (AiCBE)xi = 0. Therefore, MR is E-semicommutative.
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Example 2.2. Let S be a semicommutative ring and R =

S 0 0
S S S
0 0 S

 . Con-

siderRR as a rightR-module. Assume thatm =

1 0 0
0 1 1
0 0 0

 , a =

0 0 0
0 0 −1
0 0 1

 ,

b =

1 0 0
1 0 0
0 0 1

 ∈ R. We see that ma = 0 but mba ̸= 0. Then, RR is not semi-

commutative. Now for the idempotent e =

0 0 0
0 1 0
0 0 0

 , we can show that RR

is e-semicommutative. Let m =

x1 0 0
y1 z1 w1

0 0 v1

 , a =

x2 0 0
y2 z2 w2

0 0 v2

 ∈ R such

that ma = 0. Hence, x1x2 = z1z2 = v1v2 = z1w2 = w1v2 = 0 and y1x2 + z1y2 =

0. For any element r =

x 0 0
y z w
0 0 v

 ∈ R, we have mrae =
0 0 0
0 z1zz2 0
0 0 0

 = 0,

since SS is semicommutative. Therefore, RR is e-semicommutative.

Proposition 2.1. The class of e-semicommutative modules is closed under sub-
modules, direct products and so direct sums.

Proof. The proof is immediate from the definitions and algebraic structures.

Proposition 2.2. Let R be a ring, e ∈ Id(R) and MR a right R-module.
MR is e-semicommutative if and only if every cyclic submodule of MR is e-
semicommutative.

Proof. Assume that every cyclic submodule of MR is e-semicommutative. Let
a ∈ R and m ∈M such that ma = 0 in M. Consider the cyclic submodule mR,
we have ma = 0 in mR. Since mR is e-semicommutative, we get mRae = 0.
Hence, MR is e-semicommutative.

Proposition 2.3. Let R be a ring, e ∈ Id(R) and MR a right R-module. Then,
the following two conditions are equivalent:

1) MR is an e-semicommutative module.
2) NA = 0 implies NRAe = 0 for any nonempty subset N in M and A in

R.

Proof. “(1) =⇒ (2)” Assume that MR is e-semicommutative and N is a subset
of M and A is a subset of R such that NA = 0. Then, for any n ∈ N and
a ∈ A, we have na = 0. Thus, nRae = 0. Then,

∑
n∈N,a∈A nRae = 0. Hence,

NRAe = 0.
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“(2) =⇒ (1)” Assume that a ∈ R and m ∈M such that ma = 0. Then, MR

is e-semicommutative follows directly if we set N = {m} and A = {a}.

Proposition 2.4. Let R be a ring with every right ideal is two sided and e ∈
Id(R). Then, every right R-module is e-semicommutative.

Proof. Suppose that MR is a right R-module. Let a ∈ R and m ∈ M such
that ma = 0. From our assumption, the right ideal ae R is two sided. Then,
we have R ae ⊆ ae R . So, we get m R ae ⊆ mae R = 0. Therefore, MR is
e-semicommutative.

Proposition 2.5. Let R,S be rings, e ∈ Id(R) and φ : R → S be a ring
homomorphism. If MS is a right S-module, then M is a right R-module via
mr = mφ(r) for all r ∈ R and m ∈M. Then, we get:

(1) If MS is a φ(e)-semicommutative module, then MR is an e-semicommu-
tative module.

(2) If φ is onto and MR is an e-semicommutative module, then MS is a
φ(e)-semicommutative module.

Proof. (1) Suppose thatMS is a φ(e)-semicommutative module. Let a ∈ R and
m ∈M such thatma = 0. Then,mφ(a) = 0. SinceMS is φ(e)-semicommutative,
we have msφ(a)φ(e) = 0 for all s ∈ S. Hence, for any r ∈ R, we have mrae =
mφ(rae) = mφ(r)φ(a)φ(e) = 0. Therefore, MR is an e-semicommutative mod-
ule.

(2) Suppose that φ is onto and MR is an e-semicommutative module. Let
x ∈ S and m ∈ M such that mx = 0. Since φ is onto, there exists a ∈ R such
that x = φ(a). Then, 0 = mx = mφ(a) = ma. Since MR is e-semicommutative,
implies mRae = 0. Hence, 0 = mφ(R)φ(a)φ(e) = mSxφ(e). Thus MS is a
φ(e)-semicommutative module.

Corollary 2.1. Let R be a ring, e ∈ Id(R), MR a right R-module and R =
R /rR(M) . MR is an e-semicommutative module if and only if MR is an e-
semicommutative module.

Proof. This is a consequence of Proposition 2.5, if we consider the canonical
epimorphism φ : R→ R defined by φ(r) = r = r + rR(M), for all r ∈ R.

Proposition 2.6. Let R be a ring, e ∈ C(R) and MR a right R-module. Then,
MR is an e-semicommutative module if and only if MRe is a semicommutative
module.

Proof. “ =⇒”Assume that MR is an e-semicommutative module. Let a ∈
R e ⊆ R and m ∈ M such that ma = 0. Then, we get mRae = 0. Since
e ∈ C(R), we have m R ea = 0. Hence, MRe is a semicommutative module.

“ ⇐=”Assume that MRe is a semicommutative module. Let a ∈ R and
m ∈ M such that ma = 0. Then, we get m R ea = 0. Since e ∈ C(R), we have
m R ae = 0. Thus MR is an e-semicommutative module.
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Corollary 2.2. Let R be a ring, e ∈ C(R) and MR a right R-module. If MRe

and MR(1−e) are semicommutative modules, then MR is a semicommutative
module.

Proof. We can easily check that e ∈ C(R) if and only if (1 − e) ∈ C(R).
From Proposition 2.6, we conclude that MR is both e-semicommutative and
(1 − e)-semicommutative. Now let a ∈ R and m ∈ M such that ma = 0. Thus
mRae = 0 and mRa(1− e) = 0, which implies that mRa = 0. Therefore, MR is
a semicommutative module.

Proposition 2.7. Let R be a ring, e ∈ Sℓ(R) and MR a right R-module. Then,
MR is an e-semicommutative module if and only if MeRe is a semicommutative
module.

Proof. “ =⇒”Assume that MR is an e-semicommutative module. Let ere ∈
e R e and m ∈ M such that m (ere) = 0. Then, we get m R (ere) = 0. Since
e ∈ Sℓ(R), we have 0 = m (R e) (ere) = m (e R e) (ere) . Hence, MeRe is a
semicommutative module.

“ ⇐=”Assume that MeRe is a semicommutative module. Let a ∈ R and
m ∈ M such that ma = 0. Then, we get mae = 0. Since e ∈ Sℓ(R), we have
meae = 0. Hence, 0 = m (e R e) (eae) = m (R e) (eae) = mR (eae) = mRae.
Thus MR is an e-semicommutative module.

Recall from [4], that a right R-module MR is called principally quasi-Baer
(p.q.-Baer for short) if for any m ∈M, rR(mR) = gR, where g ∈ Id(R).

Proposition 2.8. Let R be an abelian ring, e ∈ Id(R) and MR a p.q.-Baer
right R-module. If MR is e-semicommutative, then MR is e-reduced.

Proof. Assume that MR is e-semicommutative. Let a ∈ R and m ∈ M such
that ma = 0. Then, we get mRae = 0. Let x ∈ mR ∩Mae, so there exist r ∈ R
and n ∈ M such that x = mr and x = nae. Since ae ∈ rR(mR) = gR, where
g ∈ Id(R), we get ae = gae. Thus x = ngae = naeg = xg = mrg = mgr = 0.
Hence, mR ∩Mae = 0. Therefore, MR is an e-reduced module.

3. Matrix extensions

This section is devoted to characterize right e-semicommutative 2-by-2 gener-
alized upper triangular matrix rings. Moreover, as a corollary we obtain that
a ring R is a right e-semicommutative ring if and only if Tn(R) is right E-
semicommutative for all positive integers n.

Theorem 3.1. Let T =

(
R M
0 S

)
where R and S are rings, and RMS an (R,S)-

bimodule. If T is a right

(
e k
0 g

)
-semicommutative ring, where

(
e k
0 g

)
∈ Id(T ),

then:
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(1) R is a right e-semicommutative ring;
(2) S is a right g-semicommutative ring;
(3) MS is a right g-semicommutative S-module.

Proof of Theorem 3.1. Assume that T is a right

(
e k
0 g

)
-semicommutative

ring, where

(
e k
0 g

)
∈ Id(T ). Then, by easy computations, we can check that

e ∈ Id(R), g ∈ Id(S) and ek + kg = k.
(1) Assume that ab = 0, for a, b ∈ R. Consider the following elements(

a 0
0 0

)
,

(
b 0
0 0

)
∈ T.We have 0 =

(
a 0
0 0

)(
b 0
0 0

)
. Since T is a right

(
e k
0 g

)
-

semicommutative ring, we get for any

(
x y
0 z

)
∈ T,

0 =

(
a 0
0 0

)(
x y
0 z

)(
b 0
0 0

)(
e k
0 g

)
.

Hence, axbe = 0 in R, for any x ∈ R. Therefore, R is a right e-semicommutative
ring.

(2) Assume that αβ = 0, for α, β ∈ S. Consider the following elements(
0 0
0 α

)
,

(
0 0
0 β

)
∈ T. We have 0 =

(
0 0
0 α

)(
0 0
0 β

)
. Since T is a right(

e k
0 g

)
-semicommutative ring, we get for any

(
x y
0 z

)
∈ T,

0 =

(
0 0
0 α

)(
x y
0 z

)(
0 0
0 β

)(
e k
0 g

)
.

Hence, αzβg = 0 in S, for any z ∈ S. Therefore, S is a right g-semicommutative
ring.

(3) Let a ∈ S and m ∈ M such that ma = 0. Consider the following

elements

(
0 0
0 a

)
,

(
0 m
0 0

)
∈ T. We have 0 =

(
0 m
0 0

)(
0 0
0 a

)
. Since T is a

right

(
e k
0 g

)
-semicommutative ring, we get for any

(
x y
0 z

)
∈ T,

0 =

(
0 m
0 0

)(
x y
0 z

)(
0 0
0 a

)(
e k
0 g

)
.

Hence, mzag = 0 in MS , for any z ∈ S. Therefore, MS is a right g-semicommu-
tative S-module.

Theorem 3.2. Let T =

(
R M
0 S

)
, where R and S are rings, and RMS an

(R,S)-bimodule. If T is a left

(
e k
0 g

)
-semicommutative ring, where

(
e k
0 g

)
∈

Id(T ), then:
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(1) R is a left e-semicommutative ring,

(2) S is a left g-semicommutative ring, and

(3) RM is a left e-semicommutative R-module.

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 3.1.

Theorem 3.3. Let T =

(
R M
0 S

)
where R and S are rings, and RMS an

(R,S)-bimodule. If R is a right e-semicommutative ring, where e ∈ Id(R), then

T is a right

(
e 0
0 0

)
-semicommutative ring.

Proof of Theorem 3.3. Assume that R is a right e-semicommutative ring,

where e ∈ Id(R). Let

(
a m
0 b

)
,

(
q n
0 p

)
∈ T such that

0 =

(
a m
0 b

)(
q n
0 p

)
=

(
aq an+mp
0 bp

)
.

Hence, aq = 0 inR. SinceR is a right e-semicommutative ring, we have auqe = 0,

for any u ∈ R. Thus, for any
(
u t
0 v

)
∈ T, we have

(
a m
0 b

)(
u t
0 v

)(
q n
0 p

)(
e 0
0 0

)
= 0.

Therefore, T is a right

(
e 0
0 0

)
-semicommutative ring.

Corollary 3.1. Let Tn(R) be the n-by-n upper triangular matrix ring over a
ring R, where n ≥ 1. Then, the following are equivalent:

(1) R is a right e-semicommutative ring, where e ∈ Id(R).

(2) T2(R) =

(
R R
0 R

)
is a right

(
e 0
0 0

)
-semicommutative ring.

(3) Tn(R) is a right


e 0 ... 0
0 0 ... 0
...

...
. . .

...
0 0 ... 0

-semicommutative ring for every posi-

tive integer n.

Proof. “(3) =⇒ (1)” follows directly from the fact that T1(R) ∼= R.
“(1) =⇒ (2)” is clear from Theorem 3.3.

“(2) =⇒ (3)” Note that Tn+1(R) ∼=
(
R M
0 Tn(R)

)
where M is the 1-by-n row

matrix with R in every entry and 0 is the n-by-1 column zero matrix. So, this
implication is proved by using induction on n.
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4. Polynomial extensions

This section is intended to motivate our investigation of the behavior of right
e-semicommutative modules with respect to polynomial extensions.

Recall the following extensions of a right R-module MR :

M [x] =

{
φ(x) =

n∑
i=0

mix
i : mi ∈M

}
.

M [x] is a right R [x]-module and M [x]R[x] is called the usual polynomial exten-
sion of MR.

M [x, x−1] =

{
φ(x) =

n∑
i=−k

mix
i : mi ∈M

}
.

M [x, x−1] is a right R[x, x−1]-module and M [x, x−1]R[x,x−1] is called the usual
Laurent polynomial extension of MR.

We mean by a regular element of a ring R, a nonzero element which is not
a zero divisor.

Theorem 4.1. Let R be a ring, ∆ be a multiplicatively closed subset of R
consisting of central regular elements, 1 ∈ ∆ and e ∈ Id(R). Then, MR is e-
semicommutative if and only if

(
∆−1M

)
(∆−1R)

is
(
1−1e

)
-semicommutative.

Proof of Theorem 4.1. Suppose that MR is e-semicommutative. Let a ∈ R,
m ∈ M and u,w ∈ ∆ such that

(
w−1m

) (
u−1a

)
= 0 in

(
∆−1M

)
(∆−1R)

. Since

∆ is contained in the center of R, we have 0 =
(
w−1u−1

)
(ma) = (wu)−1 (ma) ,

and so ma = 0. Hence, for any r ∈ R, we have mrae = 0. So, in
(
∆−1M

)
(∆−1R)

,

we have for any v ∈ ∆, 0 = (wvu)−1 (mrae) =
(
w−1v−1u−11−1

)
(mrae) . Thus(

w−1m
) (
v−1r

) (
u−1a

) (
1−1e

)
= 0.

Hence,
(
∆−1M

)
(∆−1R)

is
(
1−1e

)
-semicommutative.

It is clear that if
(
∆−1M

)
(∆−1R)

is
(
1−1e

)
-semicommutative, then MR is

e-semicommutative.

Corollary 4.1. Let R be a ring and e ∈ Id(R). Then,M [x]R[x] is e-semicommu-

tative if and only if M [x, x−1]R[x,x−1] is e-semicommutative.

Proof. Consider the multiplicatively closed set ∆ =
{
1, x, x2, x3, ...

}
which is

clearly a subset of R[x] consisting of central regular elements. Since ∆−1R [x] =
R[x, x−1] and ∆−1M [x] = M [x, x−1], the result follows directly from Theo-
rem 4.1.
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Abstract. The quasi frame is an alternate frame to the Frenet-Serret frame but it
is defined when the second derivative of the curve vanishes. It has the same behavior
as a parallel transport frame but is easier in computation and has the same accuracy.
In this paper, we investigate the quasi frame and equations of non-lightlike curves
in 3-dimensional Minkowski space E3

1 and in 4-dimensional Minkowski space-time E4
1.

Furthermore, we show the quasi frame can be considered as a generalization of Bishop
frame in E3

1 and E4
1.

Keywords: Minkowski space, spacelike curve, timelike curve, Bishop frame.

1. Introduction

The Frenet frame was created to study the behavior of curves. The two curva-
tures {κi(s) |i = 1, 2} in E3 (the three curvatures {κi(s) |i = 1, 2, 3} in E4) play
an effective role to identify the shape and size of the curve. The main disad-
vantage that appeared on this frame is when the second derivative in E3 (one of
the curvatures {κi(s) |i = 1, 2, 3} in E4) of a curve vanishes i.e. if the curve was

*. Corresponding author
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a straight line or at an inflection point, the Frenet frame in these cases becomes
undefined [1].

In 1975, R. Bishop created a frame that called an alternative frame or parallel
transport frame that is well defined when the second derivative in E3 (one of the
curvatures {κi(s) |i = 1, 2, 3} in E4) is zero. This frame was known as Bishop
frame [1]. The idea of Bishop in E3 (E4) based on the observation of a tangent
vector field takes place in the same direction and the other vector fields take
place in a plane perpendicular to the tangent vector field so, their derivatives
take the same direction of the tangent vector field.

In 1983, Bishop and Hanson gave the advantages of a parallel transport frame
[7] and regarded it as a developed frame of the Frenet frame. Many researchers
have been using Bishop’s concepts. In Euclidean space, see [3, 6]; in Minkowski
space, see [2, 12]; In dual space, see [9] and this frame is developed to study of
canal and tubular surfaces, see [8].

In 2015, C. Ekici and H. Tozak [4] defined a framing alternative to the
Frenet-Serret frame called the quasi frame. The behavior of the quasi frame
is similar to Bishop Frame but it is easier in computing, although both frames
have similar accuracy. In 2020, M. Khalifa and R. A. Abdel-Baky used the quasi
frame to study the skew ruled surfaces in Euclidean space[10].

In this paper, we investigate the quasi frame and equations of non-lightlike
curves in 3-dimensional Minkowski space E3

1 and in 4-dimensional Minkowski
space-time E4

1. Furthermore, we show the quasi frame can be considered as a
generalization of Bishop frame in E3

1 and E4
1. This paper is organized as follows:

In section 2, some basic definitions of the frame and equations of Frenet are
presented in 3-dimensional Minkowski space E3

1 and 4-dimensional Minkowski
space-time E4

1. In section 3, we investigate the quasi equations in 3-dimensional
Minkowski space E3

1 in the three different cases of a non-lightlike curve by using
the transformation matrix between the quasi and Frenet frames. In section 4,
we investigate the quasi equations in 4-dimensional Minkowski space E4

1 in the
four different cases of a non-lightlike curve by using the transformation matrices
between the quasi and Frenet frames.

2. Preliminaries

The Minkowski space E3
1 is the space R3 with a metric g, where g is defined by

g = −dx21 + dx22 + dx23, where (x1, x2, x3) is a coordinate system of E3
1. If

v ∈ E3
1 then, the vector v is called a spacelike, a timelike or a lightlike(null), if

g(v, v) > 0, g(v, v) < 0 or g(v, v) = 0 and v ̸= 0, respectively. In particular, the
vector v = 0 is a spacelike.

Let α(s) be any curve in Minkowski E3
1, then frenet equations are given by

(1)

 T′

N′

B′

 =

 0 κ1 0
ϵ1κ1 0 ϵ2κ2
0 ϵ3κ2 0

 T
N
B

 .
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• If ϵ1 = −1 and ϵi = 1 for (i = 2, 3) then, the curve is spacelike with
spacelike principal normal.

• If ϵi = 1 for (i = 1, 2, 3) then, the curve is spacelike with spacelike binormal.

• If ϵ3 = −1 and ϵi = 1 for (i = 1, 2) then, the curve is timelike.

The Minkowski space E4
1 is the space R4 with a metric g, where g is defined

by
g = −dx21 + dx22 + dx23 + dx24, where (x1, x2, x3, x4) is a coordinate system of E4

1.
If v ∈ E4

1 then, the vector v is called a spacelike, a timelike or a lightlike(null),
if g(v, v) > 0, g(v, v) < 0 or g(v, v) = 0 and v ̸= 0, respectively. In particular,
the vector v = 0 is a spacelike.

Let α(s) be any curve in Minkowski E4
1 then, Frenet equations are given by

(2)


T′

N′

B′
1

B′
2

 =


0 κ1 0 0

ϵ1κ1 0 ϵ2κ2 0
0 ϵ3κ2 0 ϵ4κ3
0 0 ϵ5κ3 0




T
N
B1

B2

 .
• If ϵ1 = ϵ3 = −1 and ϵi = 1 for (i = 2, 4, 5) then, the curve is spacelike

with spacelike principal normal with spacelike principal first binormal.

• If ϵ1 = ϵ5 = −1 and ϵi = 1 for (i = 2, 3, 4) then, the curve is spacelike with
spacelike principal normal with spacelike principal second binormal.

• If ϵ5 = −1 and ϵi = 1 for (i = 1, 2, 3, 4) then, the curve is spacelike with
spacelike principal first and second binormals.

• If ϵ3 = ϵ5 = −1 and ϵi = 1 for (i = 1, 2, 4) then, the curve is timelike.

In E3, let α(s) be a curve, quasi frame depends on three orthonormal vectors,
T(s) is the tangent vector, Nq(s) is the quasi normal and Bq(s) is the quasi
binormal vector. The quasi frame {T(s),Nq(s),Bq(s)} is given by

(3) T =
α′

∥ α′ ∥
, Nq =

T× k

∥ T× k ∥
, Bq = T×Nq,

where k is the projection vector.

For our calculations, we have chosen k = (0, 0, 1) in this paper. In all cases
that T and k are parallel then, the quasi frame is singular. Thus, in those cases
k can be chosen as k = (0, 1, 0) or k = (1, 0, 0).

Let T(s),N(s),B(s)} be the Frenet-Serret frame vectors and θ(s) is an Eu-
clidean angle between principal normal N(s) and quasi normal Nq(s) then, we
obtain

Nq = cosθ N+ sinθ B,

Bq = −sinθ N+ cosθ B.
(4)

• Let us consider a line curve parametrized by

α(t) = (t, t, 0).
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Easily, we see the Frenet frame is not suitable for this curve, while the quasi
frame is given by

T(t) = (1/
√
2, 1/

√
2, 0),

Nq(t) = (1/
√
2,−1/

√
2, 0),

Bq(t) = (0, 0, 1).

Which indicates that the quasi frame is better than Frenet frame.
• Let us consider a curve parametrized by

α(t) = (t, t, t9).

Easily, we get

κ(t) =
72
√
2

(2 + 82t16)3/2
, τ(t) = 0.

Since τ ≡ 0 then, the angle between the Bishop frame and the Frenet frame is
constant, therefore the Bishop frame is also not suitable for this curve, while
the quasi frame is given by

T(t) =
(1, 1, 9t2)√
2 + 81t16

,

Nq(t) =
1

2
(
√
2,−

√
2, 0),

Bq(t) =
(9
√
2t8, 9

√
2t8,−2

√
2)

2
√
2 + 81t16

.

• Let us consider the curve parametrized by

α(t) = (2t, t2, t3/3).

The quasi and Bishop frames of the curve have the same behavior but, the
computing of the Bishop frame along the curve is difficult, although both of the
frames have similar accuracy.

In E4, let α(s) be a curve, quasi frame depends on four orthonormal vec-
tors, T(s) is the tangent vector, Nq(s) is the quasi normal, B1q(s) is the quasi
first binormal vector and B2q(s) is the second binormal. The quasi frame
{T(s),Nq(s),B1q(s),B2q(s)} is given by

T =
α′

∥ α′ ∥
, Nq =

T× k1 × k2

∥ T× k1 × k2 ∥
,

B2q = ζ
T×Nq × α′′′

∥ T×Nq × α′′′ ∥
, B1q = ζB2q ×T×Nq,(5)

where k1 and k2 are the projection vectors and ζ is ±1 where the determinant
of matrix is equal to 1.
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For simplicity, we choose k1 = (0, 0, 0, 1) and k2 = (0, 0, 1, 0) in our calcula-
tions. However, the quasi frame is singular when T and k1 or T and k2 or k1

and k2 are parallel and in those cases we may change our projection vectors.
Let {T(s),N(s),B1(s),B2(s)} are the Frenet-Serret frame vectors, where

T(s), N(s), B1(s) and B2(s) are tangent, principal normal, first and second
binormal vector fields, respectively and θ(s) is an Euclidean angle between prin-
cipal normal N(s) and quasi normal Nq(s) then, we obtain

Nq = cos θ cosψ N+ (− cosϕ sinψ + sin θ sinϕ cosψ)B1

+ (sinϕ sinψ + cosϕ sin θ cosψ)B2

B1q = cos θ sinψ N+ (cosϕ cosψ + sin θ sinϕ sinψ)B1

+ (− sinϕ cosψ + cosϕ sin θ sinψ)B2(6)

B2q = sin θ N + cos θ sinϕ B1 + cos θ cosϕ B2.

3. Quasi equations in E3
1

In this section, we investigate quasi equations in 3-dimensional Minkowski space
E3
1 in the three different cases of a non-lightlike curve by using the transformation

matrix between quasi and Frenet-Serret frames. Furthermore, we introduce the
quasi curvatures in Minkowski 3-space.

Theorem 3.1. If α(s) is a spacelike curve with a quasi spacelike normal vector
filed Nq(s) and a quasi timelike binormal vector field Bq(s) then, the quasi
equations are given by

(7)

 T′

N′
q

B′
q

 =

 0 K1 −K2

−K1 0 K3

−K2 K3 0

 T
Nq

Bq

 ,
where K1 = κ1 cosh θ, K2 = κ1 sinh θ and K3 = κ2 + θ′.

Proof 3.1. Let the transformation matrix is given by

(8)

 T
Nq

Bq

 =

 1 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 T
N
B

 .
By using Equation (1), we obtain

(9) T′ = κ1 N = κ1 cosh θ Nq − κ1 sinh θ Bq,

Since Nq = cosh θ N+sinh θ B, Bq = sinh θ T+cosh θ B and by differentiating
with respect to arc length s, we get

N′
q = −κ1 cosh θ T+ (κ2 + θ′) Bq,

B′
q = −κ1 sinh θ T+ (κ2 + θ′) Nq.

(10)

Therefore, the proof is completed.
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Corollary 3.1. If α(s) is a spacelike curve with a quasi spacelike normal vector
filed Nq(s) and a quasi timelike binormal vector field Bq(s) then, quasi curvatures
{Ki|i = 1, 2, 3} can be determined by

K1 = g(T′,Nq) = −g(N′
q,T),

K2 = g(T′,Bq) = −g(B′
q,T),

K3 = −g(N′
q,Bq) = g(B′

q,Nq).

(11)

Corollary 3.2. If we put (κ2 = −θ́) in Equation (7), we get the same results
as Bishop frame.

The next two theorems can be proved analogously so, we omit their proofs.

Theorem 3.2. If α(s) be a curve is a spacelike curve with a quasi timelike
normal vector filed Nq(s) and a quasi spacelike binormal vector field Bq(s) then,
quasi equations is given by

(12)

 T′

N′
q

B′
q

 =

 0 K1 −K2

K1 0 K3

K2 K3 0

 T
Nq

Bq

 ,
where K1 = κ1 cosh θ, K2 = κ1 sinh θ and K3 = κ2 + θ′.

Corollary 3.3. If α(s) be a curve is a spacelike curve with a quasi timelike
normal vector filed Nq(s) and a quasi spacelike binormal vector field Bq(s) then,
quasi curvatures {Ki|i = 1, 2, 3} can be determined by

K1 = −g(T′,Nq) = g(N′
q,T),

K2 = −g(T′,Bq) = g(B′
q,T),

K3 = g(N′
q,Bq) = −g(B′

q,Nq).

(13)

Corollary 3.4. If we put (κ2 = −θ́) in Equation (12), we get the same results
as Bishop frame.

Theorem 3.3. If α(s) be a timelike curve with a quasi spacelike normal vector
filed Nq(s) and a quasi spacelike binormal vector Bq(s) then, quasi equations is
given by

(14)

 T′

N′
q

B′
q

 =

 0 K1 K2

K1 0 K3

K2 −K3 0

 T
Nq

Bq

 ,
where K1 = κ1 cos θ, K2 = −κ1 sin θ and K3 = κ2 + θ′.

Note that: The transformation matrix is given by

(15)

 T
Nq

Bq

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T
N
B

 .
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Corollary 3.5. If α(s) be a timelike curve with a quasi spacelike normal vector
filed Nq(s) and a quasi spacelike binormal vector Bq(s) then, quasi curvatures
{Ki|i = 1, 2, 3} can be determined by

K1 = g(T′,Nq) = −g(N′
q,T),

K2 = g(T′,Bq) = −g(B′
q,T),

K3 = g(N′
q,Bq) = −g(B′

q,Nq).

(16)

Corollary 3.6. If we put (κ2 = −θ́) in equations (14), we get the same results
as Bishop frame.

4. Quasi equations in E4
1

In this section, we investigate quasi equations in 4-dimensional Minkowski space
E4
1 in the four different cases of a non-lightlike curve by using the transformation

matrices between quasi and Frenet-Serret frames.

Theorem 4.1. If α(s) be a timelike curve with a quasi spacelike normal vector
filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s) then, quasi equations is given by

(17)


T′

N′
q

B′
1q

B′
2q

 =


0 K1 K2 K3

K1 0 K4 K5

K2 −K4 0 K6

K3 −K5 −K6 0




T
Nq

B1q

B2q

 ,
where

K1 = κ1 cosϕ cosψ,

K2 = κ1 (− cosψ sin θ sinϕ+ cos θ sinψ),

K3 = κ1 (cos θ cosψ sinϕ+ sin θ sinψ),

K4 = sin θ (κ3 sinψ + ϕ′) + cos θ
(
κ3 cosψ sinϕ+ cosϕ (κ2 − ψ′)

)
,

K5 = − cos θ cos2 ϕ (κ3 sinψ + ϕ′) + cosϕ sin θ (κ2 − ψ′)

+ sinϕ
(
κ3 cosψ sin θ − cos θ sinϕ (κ3 sinψ + ϕ′)

)
,

K6 = − sin2 θ
[
− κ3 cosϕ cosψ + cos2 ψ

(
θ′ + sinϕ (κ2 − ψ′)

)
+ sin2 ψ

(
θ′ + sinϕ(κ2 − ψ′)

)]
− cos2 θ

[
− κ3 cosϕ cosψ + cos2 ϕ θ′

+ cos2 ψ sinϕ
(
κ2 + sinϕ θ′ − ψ′

)
+ sinϕ sin2 ψ

(
κ2 + sinϕ θ′ − ψ′

)]
.

Proof 4.1. We have three possible simple rotations. The first rotation exists on
the spacelike plane spanned by the spacelike Frenet first binormal B1 and the
spacelike Frenet second binormal B2 with angle θ. The second rotation exists on
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the spacelike plane spanned by the spacelike Frenet principal normal N and the
spacelike Frenet second binormal B2 with angle ϕ. The third rotation exists on
the spacelike plane spanned by the spacelike Frenet principal normal N and the
spacelike Frenet first binormal B1 with angle ψ so, the transformation matrix
is given by

R =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ




1 0 0 0
0 cosϕ 0 − sinϕ
0 0 1 0
0 sinϕ 0 cosϕ



·


1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1

(18)

so,


T
Nq

B1q

B2q



=

1 0 0 0
0 cosϕ cosψ − cosϕ sinψ − sinϕ
0 − cosψ sin θ sinϕ+ cos θ sinψ cos θ cosψ + sin θ sinϕ sinψ − cosϕ sin θ
0 cos θ cosψ sinϕ+ sin θ sinψ cosψ sin θ − cos θ sinϕ sinψ cos θ cosϕ

 T
N
B1

B2

 .
(19)

By using Equations (2), we obtain

N′
q=

[
κ1 cosϕ cosψ

]
T

+
[
κ2 cosϕ sinψ − cosψ sinϕ ϕ′ − cosϕ sinψ ψ′

]
N

+
[
κ2 cosϕ cosψ + κ3 sinϕ+ sinϕ sinψ ϕ′ − cosϕ cosψ ψ′

]
B1

+
[
− κ3 cosϕ sinψ + (− cosϕ ϕ′)

]
B2,

B′
1q=

[
κ1(− cosψ sin θ sinϕ+ cos θ sinψ)

]
T

+
[
− κ2(cos θ cosψ + sin θ sinϕ sinψ)− sin θ sinψθ′

− cosψ(cos θ sinϕθ′+cosϕ sin θϕ′)+(cos θ cosψ+sin θ sinϕ sinψ)ψ′
]
N

+
[
κ2(− cosψ sin θ sinϕ+ cos θ sinψ) + κ3 cosϕ sin θ − cosψ sin θθ′

+sinψ(cos θ sinϕθ′+cosϕ sin θϕ′)+(cosψ sin θ sinϕ− cos θ sinψ)ψ′
]
B1

(20)
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+
[
κ3(cos θ cosψ + sin θ sinϕ sinψ)− cos θ cosϕθ′ + sin θ sinϕϕ′

]
B2,

B′
2q =

[
κ1(cos θ cosψ sinϕ+ sin θ sinψ)

]
T

+
[
− κ2(cosψ sin θ − cos θ sinϕ sinψ) + cos θ sinψθ′

+ cosψ(− sin θ sinϕθ′ + cos θ cosϕϕ′) + cosψ sin θ − cos θ sinϕ sinψ)ψ′
]
N

+
[
κ2(cos θ cosψ sinϕ+ sin θ sinψ)− κ3 cos θ cosϕ+ cos θ cosψθ′

− cos θ cosϕ sinψϕ′ − sin θ sinψψ′ − sinϕ(− sin θ sinψθ′ + cos θ cosψψ′)
]
B1

+
[
κ3(cosψ sin θ − cos θ sinϕ sinψ)− cosϕ sin θθ′ − cos θ sinϕϕ′

]
B2.

Therefore, 
T′

N′
q

B′
1q

B′
2q

 =


0 K1 K2 K3

K1 0 K4 K5

K2 −K4 0 K6

K3 −K5 −K6 0




T
Nq

B1q

B2q

 .
Corollary 4.1. If α(s) be a timelike curve with a quasi spacelike normal vector
filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s) then, quasi curvatures {Ki|i =
1, 2, 3, 4, 5, 6} can be determined by

K1 = g(T′,Nq) = −g(N′
q,T),

K2 = g(T′,B1q) = −g(B′
1q,T),

K3 = g(T′,B2q) = −g(B′
2q,T),

K4 = g(N′
q,B1q) = −g(B′

1q,Nq)

,K5 = g(N′
q,B2q) = −g(B′

2q,Nq)

K6 = g(B′
1q,B2q) = −g(B′

2q,B1q).

(21)

Corollary 4.2. If we put κ2 = ψ′ + ϕ′ tanϕ cotψ and κ3 = − ϕ′

sinψ in equations
(17), we can easily find (K4 = 0 = K5 = K6) and hence, we have the same
result as Bishop frame.

The next three theorems can be proved analogously so, we omit their proofs.

Theorem 4.2. If α(s) is a spacelike curve with a quasi spacelike normal vector
filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a quasi
timelike second binormal vector field B2q(s) then, quasi equations are given by

(22)


T′

N′
q

B′
1q

B′
2q

 =


0 K1 K2 K3

−K1 0 K4 K5

−K2 −K4 0 K6

K3 K5 K6 0




T
Nq

B1q

B2q

 ,
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where

K1 = κ1 cosψ coshϕ,

K2 = κ1 (cosh θ sinψ + cosψ sinh θ sinhϕ),

K3 = −κ1 (sinψ sinh θ + cosψ cosh θ sinhϕ),

K4 = κ3 cosψ cosh θ sinhϕ+ sinh θ
[
cosh2 ϕ (κ3 sinψ − ϕ′)

+ sinψ sinh2 ϕ(−κ3 + sinψ ϕ′)
]
+ cos2 ψ

[
sinh θ sinh2 ϕ ϕ′

+ cosh θ coshϕ (κ2 − ψ′)
]
+ cosh θ coshϕ sin2 ψ (κ2 − ψ′),

K5 = −κ3 cosψ sinh θ sinhϕ+ cosh θ cosh2 ϕ (−κ3 sinψ + ϕ′)

+ cosh θ sinψ sinh2 ϕ (κ3 − sinψ ϕ′)− cos2 ψ
[
cosh θ sinh2 ϕ ϕ′

+ coshϕ sinh θ (κ2 − ψ′)
]
+ coshϕ sin2 ψ sinh θ (−κ2 + ψ′),

K6 = κ3 cosψ coshϕ− sin2 ψ sinh2 θ
(
θ′ + sinhϕ (κ2 − ψ′)

)
− cos2 ψ

[
sinh2 θ

(
θ′ + sinhϕ (κ2 − ψ′)

)
+ cosh2 θ sinhϕ (−κ2 + sinhϕ θ′ + ψ′)

]
+ cosh2 θ

(
cosh2 ϕ θ′ − sin2 ψ sinhϕ (−κ2 + sinhϕ θ′ + ψ′)

)
.

Note that: We have three possible simple rotations. The first rotation exists
on the timelike plane spanned by the spacelike Frenet first binormal B1 and the
timelike Frenet second binormal B2 with angle θ. The second rotation exists on
the timelike plane spanned by the spacelike Frenet principal normal N and the
timelike Frenet second binormal B2 with angle ϕ. The third rotation exists on
the spacelike plane spanned by the spacelike Frenet principal normal N and the
spacelike Frenet first binormal B1 with angle ψ so, the transformation matrix
is given by

R =


1 0 0 0
0 1 0 0
0 0 cosh θ sinh θ
0 0 sinh θ cosh θ



1 0 0 0
0 coshϕ 0 sinhϕ
0 0 1 0
0 sinhϕ 0 coshϕ



·


1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1

(23)

so, 
T
Nq

B1q

B2q
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=

1 0 0 0
0 cosψ coshϕ − coshϕ sinψ sinhϕ
0 cosh θ sinψ + cosψ sinh θ sinhϕ cosψ cosh θ − sinψ sinh θ sinϕ coshϕ sinh θ
0 sinψ sinh θ + cosψ cosh θ sinhϕ cosψ sinh θ − cosh θ sinψ sinhϕ cosh θ coshϕ

 T
N
B1

B2

 .
Corollary 4.3. If α(s) is a spacelike curve with a quasi spacelike normal vec-
tor filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a
quasi timelike second binormal vector field B2q(s) then, quasi curvatures {Ki|i =
1, 2, 3, 4, 5, 6} can be determined by

K1 = g(T′,Nq) = −g(N′
q,T),

K2 = g(T′,B1q) = −g(B′
1q,T),

K3 = −g(T′,B2q) = g(B′
2q,T),

K4 = g(N′
q,B1q) = −g(B′

1q,Nq),

K5 = −g(N′
q,B2q) = g(B′

2q,Nq)

K6 = −g(B′
1q,B2q) = g(B′

2q,B1q).

(24)

Corollary 4.4. If we put κ2 = ψ′−ϕ′ tanhϕ cotψ and κ3 = − ϕ′

sinψ in equations
(22), we can easily find (K4 = 0 = K5 = K6) and hence, we have the same
result as Bishop frame.

Theorem 4.3. If α(s) is a spacelike curve with a quasi spacelike normal vector
filed Nq(s) with a quasi timelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s) then, quasi equations are given by

(25)


T′

N′
q

B1q′

B′
2q

 =


0 K1 K2 K3

−K1 0 K4 K5

K2 K4 0 K6

−K3 −K5 K6 0




T
Nq

B1q

B2q

 ,
where

K1 = κ1 cosϕ coshψ,

K2 = −κ1 (coshψ sinϕ sinh θ + cosh θ sinψ),

K3 = κ1 (cosh θ coshψ sinϕ+ sinh θ sinhψ),

K4 = sinϕ
[
κ3 cosh θ coshψ − sinϕ sinh θ (κ3 sinhψ − ϕ′)

]
+ cosϕ cosh θ (κ2 + ψ′)

+ cos2 ϕ sinh θ (−κ3 sinhψ + ϕ′),

K5 = cos2 ϕ cosh θ (κ3 sinhψ − ϕ′) + sinϕ
(
(coshψ sinh θ + cosh θ sinϕ sinhψ) κ3

− cosh θ sinϕ ϕ′
)
− cosϕ sinh θ (κ2 + ψ′),

K6 = cosh2 θ
[
κ3 cosϕ coshψ + cos2ϕ θ′ + cosh2 ψ sinϕ (κ2 + sinϕ θ′ + ψ′)

− sinϕ sinh2 ψ (κ2 + sinϕ θ′ + ψ′)
]
− sinh2 θ

[
κ3 cosϕ coshψ

+ cosh2 ψ
(
θ′ + sinϕ (κ2 + ψ′)

)
− sinh2 ψ

(
θ′ + sinϕ (κ2 + ψ′)

)]
.
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Note that: We have three possible simple rotations. The first rotation
exists on the timelike plane spanned by the timelike Frenet first binormal B1

and the spacelike Frenet second binormal B2 with angle θ. The second rotation
exists on the spacelike plane spanned by the spacelike Frenet principal normal N
and the spacelike Frenet second binormal B2 with angle ϕ. The third rotation
exists on the timelike plane spanned by the spacelike Frenet principal normal N
and the timelike Frenet first binormal B1 with angle ψ so, the transformation
matrix is given by

R =


1 0 0 0
0 1 0 0
0 0 cosh θ sinh θ
0 0 sinh θ cosh θ



1 0 0 0
0 cosϕ 0 − sinϕ
0 0 1 0
0 sinϕ 0 cosϕ



·


1 0 0 0
0 coshψ sinhψ 0
0 sinhψ coshψ 0
0 0 0 1

(26)

so,
T
Nq

B1q

B2q



=

1 0 0 0
0 cosϕ coshψ cosϕ sinhψ − sinϕ
0 coshψ sinϕ sinh θ + cosh θ sinhψ cosh θ coshψ + sinϕ sinh θ sinhψ cosϕ sinh θ
0 cosh θ coshψ sinϕ+ sinh θ sinhψ coshψ sinh θ + cosh θsinϕ sinhψ cosϕ cosh θ

 T
N
B1

B2

 .
(27)

Corollary 4.5. If α(s) is a spacelike curve with a quasi spacelike normal vector
filed Nq(s) with a quasi timelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s) then, quasi curvatures {Ki|i =
1, 2, 3, 4, 5, 6} can be determined by

K1 = g(T′,Nq) = −g(N′
q,T),

K2 = −g(T′,B1q) = g(B′
1q,T),

K3 = g(T′,B2q) = −g(B′
2q,T),

K4 = −g(N′
q,B1q) = g(B′

1q,Nq),

K5 = g(N′
q,B2q) = −g(B′

2q,Nq),

K6 = g(B′
1q,B2q) = −g(B′

2q,B1q).

(28)

Corollary 4.6. If we put κ2 = ψ′ − ϕ′ tanϕ cothψ and κ3 = ϕ′

sinhψ in equation
(25), we can easily find (K4 = 0 = K5 = K6) and hence, we have the same
result as Bishop frame.
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Theorem 4.4. If α(s) is a spacelike curve with a quasi timelike normal vector
filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s), then quasi equations are given by

(29)


T′

N′
q

B′
1q

B′
2q

 =


0 K1 K2 K3

K1 0 K4 K5

−K2 K4 0 K6

−K3 K5 −K6 0




T
Nq

B1q

B2q

 ,
where

K1 = κ1 coshϕ coshψ,

K2 = κ1 (coshψ sin θ sinhϕ− cos θ sinhψ),

K3 = −κ1 (cos θ coshψ sinhϕ+ sin θ sinhψ),

K4 = − sin θ (sinhψ κ3 + ϕ′) + cos θ
(
− coshψ sinhϕ κ3 + coshϕ (κ2 + ψ′)

)
,

K5 = cos θ cosh2 ϕ (sinhψ κ3 + ϕ′)− sinhϕ
(
coshψ sin θ κ3

+ cos θ sinhϕ (sinhψ κ3 + ϕ′)
)
+ coshϕ sin θ(κ2 + ψ′),

K6 = cos2 θ
[
coshϕ coshψ κ3 − cosh2 ϕ θ′ + cosh2 ψ sinhϕ (−κ2 + sinhϕ θ′

+−ψ′) sinhϕ sinh2 ψ (κ2 − sinhϕ θ′ + ψ′)
]
+ sin2 θ

[
coshϕ coshψ κ3

− cosh2 ψ
(
θ′ + sinhϕ (κ2 + ψ′)

)
+ sinh2 ψ

(
θ′ + sinhψ (κ2 + ψ′)

)]
.

Note that: We have three possible simple rotations. The first rotation
exists on the spacelike plane spanned by the spacelike Frenet first binormal B1

and the spacelike Frenet second binormal B2 with angle θ. The second rotation
exists on the timelike plane spanned by the timelike Frenet principal normal N
and the spacelike Frenet second binormal B2 with angle ϕ. The third rotation
exists on the timelike plane spanned by the timelike Frenet principal normal N
and the spacelike Frenet first binormal B1 with angle ψ so, the transformation
matrix is given by

R =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ



1 0 0 0
0 coshϕ 0 sinhϕ
0 0 1 0
0 sinhϕ 0 coshϕ



·


1 0 0 0
0 coshψ sinhψ 0
0 sinhψ coshψ 0
0 0 0 1

(31)
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so,
T
Nq

B1q

B2q



=

1 0 0 0
0 coshϕ coshψ coshϕ sinhψ sinhϕ
0 cos θ sinhψ − coshψ sin θ sinhϕ cos θ coshψ − sin θ sinhϕ sinhψ − coshϕsinθ
0 cos θ coshψ sinhϕ+ sin θ sinhψ coshψ sin θ + cos θ sinhϕ sinhψ cos θ coshϕ

 T
N
B1

B2

 .
(32)

Corollary 4.7. If α(s) is a spacelike curve with a quasi timelike normal vector
filed Nq(s) with a quasi spacelike first binormal vector field B1q(s) and a quasi
spacelike second binormal vector field B2q(s) then, quasi curvatures {Ki|i =
1, 2, 3, 4, 5, 6} can be determined by

K1 = −g(T′,Nq) = g(N′
q,T),

K2 = g(T′,B1q) = −g(B′
1q,T),

K3 = g(T′,B2q) = −g(B′
2q,T),

K4 = g(N′
q,B1q) = −g(B′

1q,Nq),

K5 = g(N′
q,B2q) = −g(B′

2q,Nq),

K6 = g(B′
1q,B2q) = −g(B′

2q,B1q).

Corollary 4.8. If we put κ2 = −ψ′ − ϕ′tanhϕcothψ) and κ3 = − ϕ′

sinhψ in
equations (29), we can easily find (K4 = 0 = K5 = K6) and hence, we have the
same row result as Bishop frame.

5. Conclusion

In this paper, we investigated the frame and equations of quasi for non-lightlike
curves in 3-dimensional Minkowski space E3

1 and in 4-dimensional Minkowski
space-time E4

1. Furthermore, we showed the quasi frame can be considered as a
generalization of Bishop frame in E3

1 and E4
1.
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Abstract. In this study, we obtain upper and lower estimates for product of two hy-
perbolic p-convex functions, which is analogous to Hermite-Hadamard type inequalities
for product of two hyperbolic p-convex functions.
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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are considerable significant in the literature (see [7], [8]). These inequalities state
that if f : I → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b, then

(1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard inequality may be regarded as a refinement of the concept
of convexity and it follows easily from Jensen’s inequality. Over the last twenty

*. Corresponding author
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years, the numerous studies have focused on to establish generalization of the
Inequality (1) and to obtain new bounds for left hand side and right hand side
of the Inequality (1) (see [12], [17], [6], [22], [16] and [13]).

In [20], Pachpatte established some new integral inequalities analogous to
that of Hadamard’s inequality given in (1) involving two convex functions.

Theorem 1.1 ([20]). Let f and g be real-valued, non-negative and convex func-
tions on [a, b]. Then we have

(2)
1

b− a

∫ b

a
f(x)g(x)dx ≤ 1

3
M(a, b) +

1

6
N(a, b),

and

(3) 2f

(
a+ b

2

)
g

(
a+ b

2

)
− 1

3
M(a, b)− 1

6
N(a, b) ≤ 1

b− a

∫ b

a
f(x)g(x)dx,

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

Over the year, the generalized versions of Inequalities (2) and (3) for several
convexity has been proved. For some of them please refer to ([16], [4], [14], [15],
[21] and [23]). In [3], on the other hand, F. Chen proved Hermite-Hadamard type
inequalities for product of two convex functions via Riemann-Liouville fractional
integrals. For the other results of this topic, please refer to ([2], [18] and [19]). In
[1], Mohamed S. S. Ali introduced the definition of hyperbolic p-convex functions
as follows:

Definition 1.1 ([1]). A function f : I → R is said to be sub H-function on
I or hyperbolic p-convex function, if for any arbitrary closed subinterval [a, b]
of I the graph of f(x) for x ∈ [a, b] lies nowhere above the graph of function,
determined by the equation:

H(x) = H(x, a, b, f) = A cosh px+B sinh px, p ∈ R \ {0},

where A and B are chosen such that H(a) = f(a), and H(b) = f(b).

Equivalently, for all x ∈ [a, b]

(4) f(x) ≤ H(x) =
f(a) sinh p(b− x) + f(b) sinh p(x− a)

sinh p(b− a)
.

For x = (1− t)a+ tb, t ∈ [a, b], the condition (4) becomes

(5) f((1− t)a+ tb) ≤ sinh[p(1− t)(b− a)
sinh[p(b− a)])

f(a) +
sinh[pt(b− a)]
sinh[p(b− a)]

f(b).

If the inequality (4) holds with ′′ ≥′′, then the function is called hyperbolic p-
concave on I.
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For some properties and results concerning the class of hyperbolic p-convex
functions (see [1], [6], [10], [12], [11], [9] and [5]).

In 2016, Mohamed S. S. Ali introduced the following Hermite-Hadamard in-
equality for hyperbolic p-convex functions. The analysis of this proof is depend-
ing on the geometric observation which shows that the graph of the function f(x)
lies between the chord H(x) and the support Su(x) (see [1]). In 2018, Dragomir
proved Hermite-Hadamard Inequality (1) for hyperbolic p-convex functions with
different method (see [6]).

Theorem 1.2 ([1]). Assume that the function f : I → R is hyperbolic p-convex
on I and a, b ∈ I with a < b. Then, one has the inequality

(6)
2

p
f

(
a+ b

2

)
sinh p

(
b− a
2

)
≤
∫ b

a
f(x)dx ≤ 1

p
[f(a) + f(b)] tanh p(

b− a
2

).

Theorem 1.3 ([6]). Assume that the function f : I → R is hyperbolic p-convex
on I and a, b ∈ I with a < b. Then, one has the inequality

(7) f(
a+ b

2
) ≤

∫ b

a
f(x)sech

[
p

(
x− a+ b

2

)]
dx ≤ f(a) + f(b)

2
.

The aim of this paper is to establish new integral inequalities for product of
two hyperbolic p-convex functions.

2. Results

Theorem 2.1. If f , g : I → R are two real-valued, non-negative and hyperbolic
p-convex functions on I, then for any a, b ∈ I, we have

1

b− a

∫ b

a
f(x)g(x)dx ≤ M(a, b)

2

[
coth[p(b− a)]
p(b− a)

− csch2[p(b− a)]
]

+
N(a, b)

2 sinh[p(b− a)]

[
coth[p(b− a)− 1

p(b− a)

]
,

where

M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f and g are hyperbolic p-convex functions on [a, b], then from (5),
we have

(8) f((1− t)a+ tb) ≤ sinh[p(1− t)(b− a)]
sinh[p(b− a)]

f(a) +
sinh[pt(b− a)]
sinh[p(b− a)]

f(b),

and

(9) g((1− t)a+ tb) ≤ sinh[p(1− t)(b− a)]
sinh[p(b− a)]

g(a) +
sinh[pt(b− a)]
sinh[p(b− a)]

g(b).
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By using (8) and (9), we have

f((1− t)a+ tb)g((1− t)a+ tb) ≤ sinh2[p(1− t)(b− a)]
sinh2[p(b− a)]

f(a)g(a)

+
sinh[pt(b− a)]
sinh[p(b− a)]

sinh[p(1− t)(b− a)]
sinh[p(b− a)]

[f(a)g(b) + f(b)g(a)]

+
sinh2[pt(b− a)]
sinh2[p(b− a)]

f(b)g(b).(10)

Integrating the both sides of (10) with respect to t from 0 to 1, then we
obtain ∫ 1

0
f((1− t)a+ tb)g((1− t)a+ tb)dt ≤(11)

≤ f(a)g(a)

sinh2[p(b− a)]

∫ 1

0
sinh2[p(1− t)(b− a)]dt

+
f(a)g(b) + f(b)g(a)

sinh2[p(b− a)]

∫ 1

0
sinh[pt(b− a)] sinh[p(1− t)(b− a)]dt

+
f(b)g(b)

sinh2[p(b− a)]

∫ 1

0
sinh2[pt(b− a)]dt.(12)

By changing of variable x = (1− t)a+ tb, we get

(13)

∫ 1

0
f((1− t)a+ tb)g((1− t)a+ tb)dt =

1

b− a

∫ b

a
f(x)g(x)dx.

Moreover, it is easy observe that∫ 1

0
sinh2[p(1− t)(b− a)]dt =

∫ 1

0
sinh2[pt(b− a)]dt(14)

=
1

4p(b− a)
sinh[2p(b− a)]− 1

2
(15)

and

(16)

∫ 1

0
sinh[pt(b−a)] sinh[p(1−t)(b−a)]dt = 1

2

[
cosh p(b−a)− sinh p(b− a)

p(b− a)

]
.

By substituting by the Equalities (13), (14) and (16) in (11), then we have

1

b− a

∫ b

a
f(x)g(x)dx ≤ f(a)g(a) + f(b)g(b)

2 sinh2[p(b− a)]

[
sinh[2p(b− a)]

2p(b− a)
− 1

]
+
f(a)g(b) + f(b)g(a)

2 sinh2[p(b− a)]

[
cosh[p(b− a)]− sinh[p(b− a)]

p(b− a)

]
.



244 NASHAT FARIED, MOHAMED S. S. ALI and ZEINAB M. YEHIA

Hence

1

b− a

∫ b

a
f(x)g(x)dx ≤ M(a, b)

2

[
coth[p(b− a)]
p(b− a)

− csch2[p(b− a)]
]

+
N(a, b)

2 sinh[p(b− a)]

[
coth[p(b− a)− 1

p(b− a)

]
.

This completes the proofs.

Remark 2.1. For p→ 0, we observe that

(17) lim
p→0

1

2

[
coth[p(b− a)]
p(b− a)

− csch2[p(b− a)]
]
=

1

3
,

and

(18) lim
p→0

1

2 sinh[p(b− a)]

[
coth[p(b− a)− 1

p(b− a)

]
=

1

6
.

Corollary 2.1. With the notations in Theorem 2.1, if p→ 0, then

(19)
1

b− a

∫ b

a
f(x)g(x)dx ≤ 1

3
M(a, b) +

1

2
N(a, b),

which is analogous to inequality (2) in case of convex functions.

Theorem 2.2. If f , g : I → R are two real-valued, non-negative and hyperbolic
p-convex functions on I, then for any a, b ∈ I, we have

2 cosh2
[
p(b− a)

2

]
f

(
a+ b

2

)
g

(
a+ b

2

)
− M(a, b)

2 sinh p(b− a)

[
coth p(b− a)− 1

p(b− a)

]
−N(a, b)

2

[
coth p(b− a)
p(b− a)

− csch2p(b− a)
]
≤ 1

b− a

∫ b

a
f(x)g(x)dx,

where

M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(b) + f(b)g(a).

Proof. For t ∈ [a, b], we can write

a+ b

2
=

(1− t)a+ tb

2
+
ta+ (1− t)b

2
.
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Using the hyperbolic p-convexity of f and g, we have

f

(
a+ b

2

)
g

(
a+ b

2

)
= f

(
(1− t)a+ tb

2
+
ta+ (1− t)b

2

)
× g
(
(1− t)a+ tb

2
+
ta+ (1− t)b

2

)
≤
[

sinh[p(b−a)
2 ]

sinh[p(b− a)]
f((1− t)a+ tb) +

sinh[p(b−a)
2 ]

sinh[p(b− a)]
f(ta+ (1− t)b)

]
×
[

sinh[p(b−a)
2 ]

sinh[p(b− a)]
g((1− t)a+ tb) +

sinh[p(b−a)
2 ]

sinh[p(b− a)]
g(ta+ (1− t)b)

]
=

sinh2[p(b−a)
2 ]

sinh2[p(b−a)]
[f((1−t)a+tb)g((1−t)a+tb)+f(ta+(1−t)b)g(ta+(1−t)b)]

+
sinh2[p(b−a)

2 ]

sinh2[p(b−a)]
[f((1−t)a+tb)g(ta+(1−t)b)+f(ta+(1−t)b)g((1−t)a+tb)].

For the second expression in the last equality, by using again the hyperbolic
p-convexity of f and g, we obtain

f

(
a+ b

2

)
g

(
a+ b

2

)
≤

sinh2[p(b−a)
2 ]

sinh2[p(b− a)]

[
f((1− t)a+ tb)g((1− t)a+ tb)

+ f(ta+ (1− t)b)g(ta+ (1− t)b)
]

+
sinh2[p(b−a)

2 ]

sinh2[p(b− a)]

{[
sinh[p(1− t)(b− a)]

sinh[p(b− a)]
f(a) +

sinh[pt(b− a)]
sinh[p(b− a)]

f(b)

]
×
[
sinh[pt(b− a)]
sinh[p(b− a)]

g(a) +
sinh[p(1− t)(b− a)]

sinh[p(b− a)]
g(b)

]
+

[
sinh[pt(b− a)]
sinh[p(b− a)]

f(a) +
sinh[p(1− t)(b− a)]

sinh[p(b− a)]
f(b)

]
×
[
sinh[p(1− t)(b− a)]

sinh[p(b− a)]
g(a) +

sinh[pt(b− a)]
sinh[p(b− a)]

g(b)

]}
.(20)

Hence,

f

(
a+ b

2

)
g

(
a+ b

2

)
≤

sinh2[p(b−a)
2 ]

sinh2[p(b− a)]

[
f((1− t)a+ tb)g((1− t)a+ tb)

+ f(ta+ (1− t)b)g(ta+ (1− t)b)
]

+
sinh2[p(b−a)

2 ]

sinh2[p(b− a)]

{
2M(a, b)

sinh2[p(b− a)]
sinh[pt(b− a)] sinh[p(1− t)(b− a)]

+
N(a, b)

sinh2[p(b− a)]
[sinh2[pt(b− a)] + sinh2[p(1− t)(b− a)]]

}
.(21)
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Integrating the both sides of (21) with respect to t from 0 to 1, and by using
the equalities (13), (14) and (16), we get

f

(
a+ b

2

)
g

(
a+ b

2

)
≤

sinh2[p(b−a)
2 ]

sinh2[p(b− a)]
2

b− a

∫ b

a
f(x)g(x)dx

+
sinh2[p(b−a)

2 ]

sinh2[p(b− a)]
M(a, b)

sinh2[p(b− a)]

[
cosh p(b− a)− sinh[p(b− a)]

p(b− a)

]
+

sinh2[p(b−a)
2 ]

sinh2[p(b− a)]
N(a, b)

sinh2[p(b− a)]

[
sinh[2p(b− a)]

2p(b− a)
− 1

]
.(22)

By multiplying the both sides of (22) by sinh2[p(b−a)]

2 sinh2[
p(b−a)

2
]
, then, we obtain the desired

inequality

2 cosh2
[
p(b− a)

2

]
f

(
a+ b

2

)
g

(
a+ b

2

)
− M(a, b)

2 sinh p(b− a)

[
coth p(b− a)− 1

p(b− a)

]
− N(a, b)

2

[
coth p(b− a)
p(b− a)

− csch2p(b− a)
]
≤ 1

b− a

∫ b

a
f(x)g(x)dx.

Corollary 2.2. With the notations in Theorem 2.2, if p→ 0, then

2f

(
a+ b

2

)
g

(
a+ b

2

)
− 1

6
M(a, b)− 1

3
N(a, b) ≤ 1

b− a

∫ b

a
f(x)g(x)dx,

which is analogous to inequality (3) in case of convex functions.
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Abstract. The dynamics of the Duffing-Holms model are researched, and the critical
conditions for chaos of the model with external excitation are obtained using Melnikov
method. The expression of Melnikov function is given. The results show that the
criteria obtained for chaos motion in the sense of the Smale horseshoe is consistent with
that obtained by the numerical simulation. Research shows the Melnikov function is an
effective analytical method to judge the occurrence of chaotic motion.

Keywords: financial market, Duffing Holms model, chaos, Melnikov method.

1. Introduction

Financial market is a complex economic system. Financial risk can be divided
into endogenous financial risk and exogenous financial risk. Endogenous finan-
cial risk refers to the financial risk generated in the process of commercial finan-
cial transactions. It mainly includes market risk, credit risk, liquidity risk and
operational risk, etc., which are generally manifested as non systematic risks.
Exogenous financial risk refers to the financial risk generated in the process of
non-commercial financial transactions. It mainly includes currency risk, legal
risk, policy risk, social and economic environment change risk, and most of them
show systemic financial risk. From the characteristics and properties of financial
risk, financial risk has the characteristics of uncertainty, universality, diffusion,
concealment and suddenness. All these indicate that the financial system and

*. Corresponding author
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its evolution have obvious characteristics of chaos. Chaos is a harmful form of
movement, which may lead to the system out of control and cause the system
to collapse completely. Chaos theory can provide a new method and idea for
solving financial crisis and related problems.

Considering the real financial system as a discrete dynamic system and de-
scribing it with a nonlinear chaotic dynamic model, it can accurately reflect the
operation and law of the financial system. In 1988, Ramsay [1] used Duffing-
Holmes equation to test the fluctuation of M2 money in the US financial market
from January 1959 to November 1987, and the stock fluctuation in the US com-
modity market from July 1962 to August 1985, the sufficient evidence of the
existence of chaos is obtained. Therefore, Duffing-Holmes model has become
an effective tool to study financial chaos. G. H. Zhou [2] uses Duffing-Holmes
model to discuss the conditions and mechanism of financial system risk and some
specific measures of risk control, and discusses the application of chaos theory
in financial system. H. X. Yao, T. L. Shi [3] obtains the sufficient conditions of
system hope bifurcation by using harmonic balance method and bifurcation the-
ory. Using periodic excitation method and constant external excitation method,
the chaotic behavior of the Duffing-Holms system can be effectively controlled
to a stable periodic orbit or equilibrium point. Combined with the financial
market, the relationship between the occurrence of chaos and financial crisis is
explained. New order parameters are explored of the Duffing-Holms model in
[4]. Xu, et al. studied the interaction effect among several financial factors in
a financial system using mathematical models [5]. Their investigation showed
that such model displays rich dynamical behaviours including chaos. Synchro-
nization of the model were considered in their work. Zhang et al. studied a 4D
chaos financial system [6]. Liao, et al. used a system of differential equations to
model the evolution of a financial system and study its complexity [7].

Melnikov function is an effective analytical method for theoretical prediction
of chaotic motions in nonlinear systems [8, 9]. This method can be used to
analyze and judge whether Smale chaos occurs. Compared with the traditional
numerical simulation methods of chaotic motion [10-15], Melnikov method can
give analytical conditions for existence of chaotic motions.

In this paper, the dynamics of the Duffing-Holms model is investigated,
and the critical conditions for chaos of the model with external excitation are
obtained by Melnikov method. The expression of Melnikov function is given.
Research shows the Melnikov function method is an effective analytical method
to judge the occurrence of chaotic motion. The research results can better
guide the government departments to make some strategic adjustments and
avoid financial problems.

2. Duffing-Holms model and the equilibrium analysis

Duffing-Holms model is a nonlinear equation with oscillation introduced by Duff-
ing in 1918. It is considered as a typical example of chaotic phenomena, and



CHAOTIC DYNAMICS OF THE DUFFING-HOLMS MODEL WITH EXTERNAL EXCITATION 251

has been widely used in financial markets. Duffing-Holms model can accurately
describe the various states of a complex system under different conditions [16],

(1) ẍ+ εδẋ+ ax+ bx3 = εf cosωt.

Where x is the state of the financial market, ẋ is the rate at which the state
of the financial market changes, ẍ is the acceleration of changes in the state of
the financial market, δ represents the government’s ability to prevent financial
risks, ε is the control parameter of the policy, f is the speculative disturbance
parameter, ω is the self regulating ability of financial market order, a, b are the
coefficients of a cubic function, a < 0, b > 0.

Take the state variable of Eq. (1), let (u, v) = (x, ẋ) and reduce Eq. (1) to
the first order differential equations

(2)

{
u̇ = v,

v̇ = −au− bu3 − εδv + εf cos(ωτ).

Because the exciting force f is small, −εδv + εf cos(ωτ) is considered as
disturbance terms. When ε = 0, Eq. (2) is called a conservative undisturbed
system,

(3)

{
u̇ = v,

v̇ = −au− bu3.

When a > 0, b > 0, Eq. (3) has a unique equilibrium point P0(0, 0). The
characteristic roots of the linearized system are a pair of pure imaginary roots
λ1 =

√
ai, , λ2 = −

√
ai and the equilibrium point is a center. When b < 0, there

are three equilibrium points P0 (0, 0), P1(
√
−a/b, 0), P2(−

√
−a/b, 0). P0(0, 0)

is a center, the characteristic roots of the linearized system corresponding to
P0(0, 0) are a pair of pure imaginary roots λ1 =

√
ai, λ2 = −

√
ai. For the other

two non-zero equilibrium points P1(
√

−a/b, 0), P2(−
√

−a/b, 0), the character-
istic roots of the linearized system are a pair of real roots, so the two non-zero
equilibrium points are saddle points. When a > 0, the time process diagram
(t−u, t− v) and the phase diagram (u− v) of the conservative undisturbed Eq.
(3) are shown in Fig. 1-3. The system appears a period-1 motion. When a < 0,
the time process diagram (t − u, t − v) and the phase diagram (u − v) of the
conservative undisturbed Eq. (3) are shown in Fig. 4-6. We find that when the
speculative disturbance parameter f is zero, the financial system is in a stable
state.
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Figure 1: The time process dia-
gram (t− u).

Figure 2: The time process dia-
gram (t− v).

Figure 3: Phase diagram (u − v) of
the unperturbed system.

Figure 4: The time process diagram
(t− u).

Figure 5: The time process diagram
(t− v).

Figure 6: Phase diagram (u − v) of
the unperturbed system.
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When a < 0, the homoclinic orbit of Hamilton system corresponding to Eq.
(3) is

(4) 2
(
v2 + au2

)
+ bu4 = 4h.

According Eq. (4), the homoclinic orbits of the hyperbolic saddle points
P1(
√

−a/b, 0), P2(−
√
−a/b, 0) of Eq. (3) are obtained,

(5) q±0 (τ) :

{
u0(τ) = ±

√
−2a/bsech(

√
−aτ),

v0(τ) = ±a
√

2/bsech(
√
−aτ)th(

√
−aτ).

Where (+) represents the positive axis part of the homoclinic orbits and (−)
represents the negative axis part of the homoclinic orbits.

3. Melnikov method for chaotic motion analysis of the system

When ε = 0, the homoclinic orbits of Eq. (2) appear under some range of
parameters a, b. For the perturbed system, as ε ̸= 0, the cross section homoclinic
may appear. The quasi Hamiltonian system of Eq. (2) can be written

(6) ẋ = f(x) + εg(x, τ).

Where x =

(
u
v

)
∈ R2, f(x) =

(
f1(x)
f2(x)

)
, g =

(
g1(x, τ)
g2(x, τ)

)
, and g(x, τ)

is a periodic function. Melnikov integral is constructed to determine the distance
between stable and unstable manifolds, which is defined as

(7) M±(τ0) =

∫ +∞

−∞
f(q±0 (τ))∧g(q

±
0 (τ), τ + τ0) exp[− traceDf(q±0 (s))ds]dτ.

Where traceDf(q±0 (s) is the trace of the matrix Df(q±0 (s)) and ”∧” denotes
the Possion symbol, which is defined as

(8) f ∧ g = f1g2 − f2g1.

Since the unperturbed system is a Hamiltonian system, the traceDf(q±0 (s) ≡
0, Eq. (7) can be reduced,

(9) M±(τ0) =

∫ +∞

−∞
f(q±0 (τ))∧g(q

±
0 (τ), τ + τ0)dτ.

Let

(10)
f1 = υ, g1 = 0,
f2 = −au− bu3,
g2 = −δv + f cos(ωτ).
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The Melnikov function corresponding to Eq. (2) is

(11)

M± (τ0) =

∫ +∞

−∞
v±0 (τ)

(
−δv±0 (τ) + f cos (ω (τ + τ0))

)
dτ

= −δ
∫ +∞

−∞

[
v±0 (τ)

]2
dτ + f

∫ +∞

−∞
v±0 (τ) sin (ωτ0) sin(ωτ)dτ

= −δB + f sin (ωτ0)A.

The Melnikov integral can be calculated

(12) A =

∫ +∞

−∞
v±0 (τ) sin(ωτ)dτ, B =

∫ +∞

−∞

[
v±0 (τ)

]2
dτ.

According to Melnikov’s theory [9, 16], if Melnikov’s function has a simple
zero point which does not depend on ε, there exists t0 such that M± (t0) = 0.
For a sufficiently small ε, on the Poincaré mapping of Eq. (2), there is a chaotic
motion in the sense of Smale horseshoe. For a certain frequency ω, if

(13) f/δ > B/A.

then Eq. (2) appears a Smale horseshoe type chaotic motion.

4. Numerical integration method for calculating Melnikov function

From the above, in order to get the threshold value |B/A|, the calculation of
the Melnikov integral is very important. Although the analytical expression
of the non perturbed homoclinic orbit can be obtained, it is difficult to get the
Melnikov integral analytically, so it is necessary to use the numerical integration
method to calculate it. Now we calculate the Melnikov integral by the methods
in [17, 18]. The idea of this method is that the time variable t is a function of
the state variable u of the homoclinic orbit. The Melnikov integral of the time
variable t can be transferred to the integral of the state variable u, and then it
can be solved by the numerical calculation.

If τ > 0, according to Eq. (4), we obtain,

(14)
du

dτ
= ∓

√
h− au2 − b

2
u4.

On the homoclinic orbit q±0 , for Eq. (10), we separate variables, and integrate
both sides, then we obtain,

(15) τ = ∓
∫ u

u1,2

dξ√
h− aξ2 − b

2ξ
4
.
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Figure 7: The time process diagram (t− v).

It follows from Eq. (14, 15), and Eq. (12),

(16)

A = 2

∫ +∞

0
v±0 (τ) sin(ωτ)dτ = 2

∫ u

u1,2

sin(ωτ)dτ

= ∓
∫ u

u1,2

sin

ω dξ√
h− aξ2 − b

2ξ
4

 du.

(17) B=2

∫ +∞

0

[
v±0 (τ)

]2
dτ=2

∫ u

u1,2

v±0 (τ)du=∓ 2

∫ u

u1,2

(
h−au2− b

2
u4
)
du.

When the frequency ω of the applied force is in the interval [0, 1], the complex
Simpson formula is used to integrate u in 1000 steps and u in 500 steps, then the
A and B values corresponding to each value ω can be obtained. We can get the
Melnikov threshold value with ω. When the ratio of the speculative disturbance
parameter f and the government’s ability to prevent financial risks δ is greater
than the value of |B/A|, the chaotic motion of the system appears in the sense
of Smale horseshoe. The financial system will change from stable equilibrium
to chaos, which will cause financial system shock or economic crisis.

(18) f/δ > 4/(
3
√
2πω sech(πω/2)).

5. Numerical simulation of the system

When ω ̸= 0, when the market is disturbed by changing external force, the
system will gradually lose its stability, generate bifurcation and finally generate
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chaos. The bifurcation diagrams of u and v with the change of external force f
are shown in Fig. 8-9, as ω = 1.5. It shows the complex dynamic behavior of
Eq. (2). With the change of the ratio of the speculative disturbance parameter,
the stability of the state of the financial market and the rate at which the state
of the financial market changes will change.

Figure 8: The bifurcation diagram
(f − u) of Eq. (2).

Figure 9: The bifurcation diagram
(f − v) of Eq. (2).

Let a = −1.2, ε = 0.8, δ = 0.2, b = 1, f = 1.5, when ω = 1.5, the Eq. (2)
appears chaotic motion. The time process diagram (t−u) and the phase diagram
(u− v) of the conservative undisturbed Eq. (2) are shown in Fig. 10-11.

Figure 10: The time process diagram
(t− u) of Eq. (2).

Figure 11: The phase diagram (u− v)
of Eq. (2).

When ω = 1.85, the time process diagram (t − u) and the phase diagram
(u − v) of the conservative undisturbed Eq. (2) are shown in Fig. 12-13. The
chaotic attractor of the system on Poincaré section is shown in Fig. 14. It can
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be seen from the calculation results that the critical value of the parameters
obtained from the numerical simulation results is consistent with the critical
value determined by Melnikov method.

Figure 12: The time process diagram
(t− u) of Eq. (2).

Figure 13: The phase diagram (u− v)
of Eq. (2).

(a) ω = 1.5 (b) ω = 1.85

Figure 14: Chaotic attractor on Poincaré section of Eq. (2)

When the dynamic property of chaos appears in the Duffing-Holms model,
that is, the financial system appears chaos or economic crisis, the government’s
ability to prevent financial risks and the control parameter of the policy need
to be adjusted and made to solve the current crisis.
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6. Conclusion

The dynamics of the Duffing-Holms model are researched, and the critical condi-
tions for chaos of the model with external excitation are obtained using Melnikov
method. The results show that the criteria obtained for chaos motion by the
Smale horseshoe mapping is consistent with that obtained by the numerical sim-
ulation. Research shows the Melnikov function is an effective analytical method
to judge the occurrence of chaotic motion.

The research results can better guide the government departments to make
strategic adjustments and avoid financial crisis. First of all, it is necessary to
enhance the government’s ability δ to prevent financial crisis, that is, to increase
the government’s foreign exchange reserves, reduce foreign debts, and improve
the capital structure, so as to prevent the international financial giants from
speculating on foreign exchange and stocks in a country or a region’s foreign
exchange market and stock market. Secondly, when δ becomes great under the
interference of international speculators, the financial market will break away
from the undisturbed track and enter into an unstable state. Thirdly, the finan-
cial system reform should be gradual, the policy parameter ε should be adjusted,
and the psychological preparation for medium and long-term governance of the
financial market should be made. When a country’s financial market is in an
unstable or chaotic state, the government should not make sudden and signif-
icant changes to the financial system (such as the exchange rate system), but
should take a small range of policy fine-tuning measures, and actively strive for
a large amount of financial assistance from international financial organizations.
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Abstract. In this paper, we study and establish some interesting results of strongly
prime ideal and strongly m-system in posets. Also, we study the notion of strongly
primary ideals in posets and show some properties of the set

√
I = {x : L(x)∗ ∩ I ̸= ϕ}

for ideal I of P .

Keywords: Posets, ideals, strongly prime ideal, strongly m-system, strongly primary
ideal, minimal strongly prime ideal.

1. Introduction

Throughout this paper (P , ≤) denotes a poset with smallest element 0. For
basic terminology and notation for posets, we refer [8] and [9]. For M ⊆ P, let
L(M) = {x ∈ P : x ≤ m, for all m ∈ M} denote the lower cone of M in P
and U(M) = {x ∈ P : m ≤ x, for all m ∈ M} be the upper cone of M in P.
Let A,B ⊆ P , we write L(A,B) instead of L(A ∪ B) and dually for the upper
cones. If M = {x1, x2, ..., xn} is finite, then we use the notation L(x1, x2, ..., xn)
instead of L({x1, x2, ..., xn})(and dually). It is clear that for any subset A of P ,
we have A ⊆ L(U(A)) and A ⊆ U(L(A)). If A ⊆ B, then L(B) ⊆ L(A) and
U(B) ⊆ U(A). Moreover, LUL(A) = L(A) and ULU(A) = U(A). Following
[12], a non-empty subset I of P is called semi-ideal if b ∈ I and a ≤ b, then
a ∈ I. A subset I of P is called ideal if a, b ∈ I implies L(U((a, b)) ⊆ I (see [8]).
Following [7], for any subset X of P , [X] is the smallest ideal of P containing
X and X∗ = X\{0}. If X = {b}, then L(b) is called the principle ideal of P
generated by b. A proper semi-ideal (ideal) I of P is called prime if L(a, b) ⊆ I
implies that either a ∈ I or b ∈ I (see [9]). An ideal I of P is called semi-prime if
L(a, b) ⊆ I and L(a, c) ⊆ I together imply L(a, U(b, c))) ⊆ I (see [8]). Following

*. Corresponding author
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[4], an ideal I of P is called strongly prime if L(A∗, B∗) ⊆ I implies that either
A ⊆ I or B ⊆ I for different proper ideals A,B of P. A non-empty subset M of
P is called m-system if for any x1, x2 ∈M , there exists t ∈ L(x1, x2) such that
t ∈ M . Following [6], a non-empty subset M of P is called strongly m-system
if A ∩ M ̸= ϕ and B ∩ M ̸= ϕ imply L(A∗, B∗) ∩ M ̸= ϕ for any different
proper ideals A,B of P . It is clear that an ideal I of P is strongly prime if
and only if P\I is a strongly m- system of P and every strongly m-system of
P is m-system. Following [4], an ideal I of P is called strongly semi-prime if
L(A∗, B∗) ⊆ I and L(A∗, C∗) ⊆ I together imply L(A∗, U(B∗, C∗)) ⊆ I for any
different proper ideals A,B and C of P. For any semi-ideal I of P and a subset
A of P , we define ⟨A, I⟩ = {z ∈ P : L(a, z) ⊆ I, for all a ∈ A} =

⋂
a∈A ⟨a, I⟩

(see [4]). If A = {x}, then we write ⟨x, I⟩ instead of ⟨{x}, I⟩. For any ideal I of
P , a strongly prime ideal Q of P is said to be a minimal strongly prime ideal of
I if I ⊆ Q and there is no strongly prime ideal R of P such that I ⊂ R ⊂ Q.
The set of all strongly prime ideals of P is denoted by Sspec(P ) and the set of
minimal strongly prime ideals of P is denoted by Smin(P ). For any ideal I of P ,
P (I) and SP (I) denotes the intersection of all prime semi-ideals and strongly
prime ideals of P containing I respectively. It is clear from Theorem 6 of [9] and
Example 1.1 of [6] that P (I) = I and SP (I) ̸= I for any ideal I of P . Following
[2], let I be a semi-ideal of P. Then, I is said to have (*) condition if whenever
L(A,B) ⊆ I, we have A ⊆ ⟨B, I⟩ for any subsets A and B of P. From [8], a
non empty subset F of a poset P is called semi-filter if x ≤ y and x ∈ F , then
y ∈ F. It is clear that for any subset I of P , I is a semi-ideal of P if and only if
P\I is a semi-filter of P . A subset F of P is called filter if for x, y ∈ F implies
U(L(x, y)) ⊆ F . A filter F is called prime, whenever U(x, y) ⊆ F implies x ∈ F
or y ∈ F .

2. Minimal strongly prime ideals

Lemma 2.1. Let M be a strongly m-system of P . Then, the following state-
ments hold:

(i) P\M satisfies the condition that L(A∗, B∗) ⊆ P\M implies A ⊆ P\M or
B ⊆ P\M for any different proper ideals A,B of P .

(ii) If P\M is a semi-ideal of P , then M is a prime filter of P .

(iii) If P\M is an ideal of P , then P\M is a strongly prime ideal of P .

Proof. (i) Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆
P\M . If A ⊈ P\M and B ⊈ P\M , then A ∩M ̸= ϕ and B ∩M ̸= ϕ imply
that L(A∗, B∗) ∩M ̸= ϕ, a contradiction.

(ii) Let x, y ∈ M . Then, L(x) ∩M ̸= ϕ and L(y) ∩M ̸= ϕ, there exists
t ∈ L(x, y) ∩M with U(L(x, y)) ⊆ U(t) ⊆M. So, M is a filter.

Let U(a, b) ⊆ M for some a, b ∈ P . Then, U(a) ∩ M ̸= ϕ and U(b) ∩
M ̸= ϕ which imply there exists a1 ∈ U(a) ∩M and b1 ∈ U(b) ∩M such that
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L(L(a1)
∗, L(b1)

∗)∩M ̸= ϕ, so L(L(a)∗, L(b)∗)∩M ̸= ϕ. Thus, L(L(a)∗, L(b)∗) ⊈
P\M. By (i), we have a ∈M and b ∈M . So, M is a prime filter.

(iii) It is trivial from (i).

The following example shows the condition “P\M is an ideal of P ”is not
superficial in Lemma 2.1 (iii).

Example 2.2. Consider P = {0, 1, 2, 3} and define a relation ≤ on P as follows.

b

b

b

b

0

1

2

3

Then, (P,≤) is a poset and M = {1, 2} is a strongly m-system of P , but P\M
is not an ideal of P . □

The below example shows that every prime filter of P need not to be strongly
m-system of P in general.

Example 2.3. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as
follows.

Then, (P,≤) is a poset and F = {b, c, e} is a prime filter of P, but not strongly
m-system as A = {0, b} and B = {0, a, b, c} are the ideals of P with A ∩ F ̸= ϕ
and B ∩ F ̸= ϕ, but L(A∗, B∗) ∩ F = ϕ. □

In the papers [10], [11] and [13], authors related the concept of minimal
prime ideal over an ideal I and the maximal multiplicative system disjoint from
I in rings, semigroups and lattices. Following the above papers, we have some
interesting results in posets.

Theorem 2.4. Let I be an ideal of P . If P\I is a maximal strongly m-system
of P , then I is a minimal strongly prime of P .
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Proof. Let I be an ideal of P such that P\I is a maximal strongly m-system
of P . Then, I is strongly prime ideal. If J is a strongly prime ideal of P such
that J ⊂ I, then P\I ⊂ P\J , a contradiction to the maximality of P\I.

Example 2.5. Let n ∈ Z+\{0, 1} and ρ be the “less than or equal ”relation
on set of integers. Then, Pn = {a : a is an integer and aρn} is a poset and
In = {a : aρ(n − 1)} is a minimal strongly prime ideal of Pn. Here Pn\In is
not a maximal strongly m-system of Pn as Pn\In is contained in a strongly m-
system Pn\{0} of Pn.

The above example shows that the converse of Theorem 2.4 is not true in
general, but we have the following.

Theorem 2.6. Let I be an ideal of P . If the complement of every strongly
m-system of P is a semi-ideal of P and I is minimal strongly prime ideal, then
P\I is a maximal strongly m-system of P .

Proof. Let I be a minimal strongly prime ideal of P . Then, P\I is a strongly
m-system of P . If there exists a strongly m-systemM of P such that P\I ⊂M .
Then, P\M ⊂ I. We now prove P\M is an ideal of P . Let x, y ∈ P\M and
L(U(x, y)) ⊈ P\M . Then, there exists t ∈ L(U(x, y)) ∩ M with U(x, y) ⊆
U(t) ⊆ M which implies that U(x) ∩M ̸= ϕ and U(y) ∩M ̸= ϕ, there exists
t1 ∈ U(x) ∩M and t2 ∈ U(y) ∩M such that t1, t2 ∈M. Since M is strongly m-
system, we have L(L(t1)

∗, L(t2)
∗)∩M ̸= ϕ which implies L(L(x)∗, L(y)∗)∩M ̸=

ϕ. Thus L(L(x)∗, L(y)∗) ⊈ P\M. By Lemma 2.1(i), we have x ∈M and y ∈M ,
a contradiction. So, P\M is an ideal of P . By Lemma 2.1(iii), we have P\M is
a strongly prime ideal of P , a contradiction to the minimality of I.

As a consequence of above theorem, we have the following.

Corollary 2.7. Let M be a strongly m-system of P . If M is a semi-filter of P ,
then P\M is an ideal of P .

Theorem 2.8. Let I ̸= 0 be an ideal of P satisfies (∗) condition and M be a
strongly m-system of P . If M is semi-filter, then the following are equivalent:

(i) M is a maximal strongly m-system of P with respect to M ∩ I = ϕ.

(ii) P\M is a minimal strongly prime ideal of P containing I.

(iii) For a strongly prime ideal P\M containing I, for each x ∈ P\M , there
exists t ∈ U(x) and y ∈M such that L(L(t)∗, L(y)∗) ⊆ I.

Proof. (i)⇒(ii) It follows from Corollary 2.7 and Theorem 2.4, P\M is a min-
imal strongly prime ideal of P containing I.

(ii)⇒(iii) It is trivial from Theorem 2.2 of [3].

(iii)⇒(i) From (iii), we have M is a strongly m-system of P with M ∩ I = ϕ.
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Suppose N is a strongly m-system of P such that N ∩ I = ϕ and M ⊂ N .
Then, there exists a ∈ N\M , y ∈M and t ∈ U(a) such that L(L(t)∗, L(y)∗) ⊆ I
which implies L(y)∗ ⊆ ⟨L(t)∗, I⟩ ⊆ ⟨L(a)∗, I⟩ . So, L(L(a)∗, L(y)∗) ⊆ I. Since
y, a ∈ N and N is strongly m-system, we have L(L(a)∗, L(y)∗) ∩N ̸= ϕ which
implies I ∩N ̸= ϕ, a contradiction.

Theorem 2.9. Let I be an ideal of P and M be a strongly m-system of P such
that M ∩ I = ϕ. Then, there exists a maximal strongly m-system N containing
M with N ∩ I = ϕ.

Proof. It follows from Theorem 2.1 of [3].

Lemma 2.10. Let P be a poset and r ∈ P . If P\U(r) satisfies (∗) condition,
then U(r) is a strongly m-system of P .

Proof. Let A and B be different proper ideals of P such that A ∩ U(r) ̸= ϕ
and B ∩ U(r) ̸= ϕ. Suppose L(A∗, B∗) ∩ U(r) = ϕ. Then, L(A∗, B∗) ⊆ P\U(r)
and B∗ ⊆ ⟨A∗, P\U(r)⟩ =

⋂
a∈A∗ ⟨a, P\U(r)⟩ ⊆ ⟨q, P\U(r)⟩ ⊆ ⟨r, P\U(r)⟩ for

some q ∈ A ∩ U(r). Since U(r) is a m-system of P , then P\U(r) is a prime
semi-ideal of P . By Theorem 20 of [8], we have B∗ ⊆ ⟨r, P\U(r)⟩ = P\U(r), a
contradiction.

For any subset X of P , we define V
′
(X) = {Q ∈ Smin(P ) : X ⊆ Q} and

D
′
(X) = Smin(P )\V ′

(X).

Theorem 2.11. Let A be a non empty subset of P and J ̸= {0} be an ideal of
P . If every semi-ideal of P satisfies (∗) condition and every m-system of P is
a semi-filter of P , then ⟨A, J⟩ =

⋂
{Q : Q ∈ V ′

(J) ∩D′
(A)}.

Proof. Let x ∈ ⟨A, J⟩. Then, L(a, x) ⊆ J , for all a ∈ A. ForQ ∈ V ′
(J)∩D′

(A),
there exists a1 ∈ A\Q such that L(L(x)∗, L(a1)

∗) ⊆ J ⊆ Q which implies x ∈ Q.
Hence, x ∈

⋂
{Q : Q ∈ V ′

(J) ∩D′
(A)}.

Conversely, let x ∈
⋂
{Q : Q ∈ V

′
(J) ∩ D′

(A)} and x /∈ ⟨A, J⟩. Then,
L(x, t) ⊈ J for some t ∈ A, so there exists r ∈ L(x, t)\J with U(r) ∩ J = ϕ. By
Lemma 2.10, we have U(r) is a stronglym-system such that U(r)∩J = ϕ. Then,
by Theorem 2.9, there exists a maximal strongly m-system K of P containing
U(r) such that K ∩J = ϕ and, by Theorem 2.8, P\K ∈ V ′

(J). Since r ≤ x and
r ∈ K, we have U(x) ⊆ U(r) ⊆ K which implies x /∈

⋂
{Q : Q ∈ V ′

(J)∩D′
(A)},

a contradiction.

Theorem 2.12. Let J ̸= {0} be an ideal of P . If every maximal m-system is a
semi-filter of P and every semi-ideal satisfies (∗) condition, then J is a strongly
semi-prime ideal of P .

Proof. Let J be an ideal of P such that L(A∗, B∗) ⊆ J and L(A∗, C∗) ⊆ J
for different proper ideals A,B,C of P . If L(A∗,∪(B∗, C∗)) ⊈ J, then there
exists t ∈ L(A∗, U(B∗, C∗))\J with U(t)∩J = ϕ. By Lemma 2.10 and Theorem
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2.9, there exists a maximal strongly m-system K of P containing U(t) of P
such that K ∩ J = ϕ. Then, by Theorem 2.8, P\K ∈ V

′
(J) which implies

L(A∗, B∗) ⊆ P\K and L(A∗, C∗) ⊆ P\K. Since P\K is strongly prime ideal,
we have A ⊆ P\K or B,C ⊆ P\K which imply L(L(a)∗, L(t)∗)) ⊆ P\K, for all
a ∈ A∗ and t ∈ L(U(B∗, C∗). Since t ∈ U(t) ⊆ K with t ≤ a and K is strongly
m-system, we have L(L(a)∗, L(t)∗)) ∩K ̸= ϕ, a contradiction.

Following [6], for an ideal I and a strongly prime ideal Q of P , IQ = {x ∈
P : L(x, y) ⊆ I for some y /∈ Q}.

Theorem 2.13. Let I be a strongly prime ideal of P and J ̸= {0} be an ideal
of P with (∗) condition. Then, the following statements are equivalent:

(i) I ∈ V ′
(J).

(ii) I contains precisely one of x or ⟨x, J⟩, for any x ∈ P .

(iii) ⟨x, J⟩ \I ̸= ϕ, for any x ∈ I.

(iv) JI = I.

Proof. (i)⇒(ii) Assume on the contrary that ⟨x, J⟩ ⊆ I for x ∈ I. Since
I ∈ V

′
(J), we have by Theorem 2.2 of [3], for each x /∈ P\I, there exists

t ∈ U(x) and y ∈ P\I such that L(L(t)∗, L(y)∗) ⊆ J which implies L(y) ⊆
⟨L(t)∗, J⟩ ⊆ ⟨L(x)∗, J⟩ ⊆ ⟨x, J⟩. So, y ∈ I, a contradiction. If x /∈ I, let
t ∈ ⟨x, J⟩. Then, L(L(t)∗, L(x)∗) ⊆ L(x, t) ⊆ J ⊆ I. Since I is strongly prime
ideal and x /∈ I, we have t ∈ I.

(ii)⇒(iii) It is trivial.

(iii)⇒(iv) By the definition of JI , we have JI ⊆ I. Let x ∈ I. Then, ⟨x, J⟩ ⊈
I which implies there exists t ∈ ⟨x, J⟩ \I. Hence, L(t, x) ⊆ J for some t /∈ I. So,
x ∈ JI .

(iv)⇒(i) It is follows from Theorem 2.10 of [6].

Theorem 2.14. Let J ̸= {0} be an ideal of P with (∗) condition and I ∈ V ′
(J).

Then, ⟨⟨x, J⟩ , J⟩ ⊆ I.

Proof. Let I ∈ V
′
(J) and x ∈ I. Then, by Theorem 2.2 of [3], there ex-

ists t ∈ U(x) and y ∈ P\I such that L(L(t)∗, L(y)∗) ⊆ J , so y ∈ ⟨L(t)∗, J⟩ ⊆
⟨L(x)∗, J⟩ ⊆ ⟨x, J⟩. Suppose ⟨⟨x, J⟩ , J⟩ ⊈ I. Then, there exists z ∈ ⟨⟨x, J⟩ , J⟩ \I.
Now, for y, z ∈ P\I, we have L(L(z)∗, L(y)∗)∩P\I ̸= ϕ which implies L(z, y)∩
P\I ̸= ϕ. Then, there exists t ∈ L(y, z) and t ∈ P\I. Since z ∈ ⟨⟨x, J⟩ , J⟩ , we
have L(z, r) ⊆ J , for all r ∈ ⟨x, J⟩ which imply L(z, y) ⊆ J ⊆ I, a contradic-
tion.

Theorem 2.15. Let I be an ideal of P with (∗) condition andM = {x : ⟨x, I⟩ =
I}. Then, M is a strongly m-system of P .
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Proof. Let A and B be different proper ideals of P such that A ∩ M ̸= ϕ
and B ∩M ̸= ϕ. Then, there exists x ∈ A and y ∈ B such that x, y ∈ M .
Suppose L(A∗, B∗) ∩M = ϕ. Then, for all t ∈ L(A∗, B∗) there exists r ∈ P\I
and L(r, t) ⊆ I which implies t ∈ ⟨r, I⟩ . So, L(A∗, B∗) ⊆ ⟨r, I⟩ which implies
L(A∗, B∗, r) ⊆ I. Since I satisfies (*) condition, we have L(B∗, r) ⊆ ⟨A∗, I⟩ ⊆
⟨x, I⟩ = I which implies r ∈ ⟨B∗, I⟩ ⊆ ⟨y, I⟩ = I, a contradiction.

Lemma 2.16. Let I be an ideal of P . Then, SP (I) = {c ∈ P : every strongly
m-system in P which contains c has a non empty intersection with I}.

Proof. Let H = {c ∈ P : every strongly m-system in P which contains c has a
non empty intersection with I} and c /∈ H. Then, there is a strongly m-system
M of P which contains c and M ∩ I = ϕ. By Theorem 2.1 of [3], there exists a
strongly prime ideal Q of P with I ⊆ Q and Q∩M = ϕ which implies c /∈ ∩Qi.
So, ∩Qi ⊆ H.

Conversely, let c /∈ ∩Qi. Then, there is a strongly prime ideal Qi of P
for some i such that c /∈ Qi which implies c ∈ P\Qi and P\Qi is a strongly
m-system of P . Since P\Qi ∩ I = ϕ, we have c /∈ H. Hence, H ⊆ ∩Qi.

Theorem 2.17. Let A and B be ideals of P . Then, the following statements
hold:

(i) A ⊆ B implies SP (A) ⊆ SP (B).

(ii) SP (L(A∗, B∗)) = SP (A ∩B) = SP (A) ∩ SP (B).

Proof. (i) It is trivial.

(ii) We have L(A∗, B∗) ⊆ A∩B ⊆ A. Then, by (i), SP (L(A∗, B∗)) ⊆ SP (A∩
B) ⊆ SP (A) which imply SP (L(A∗, B∗)) ⊆ SP (A∩B) ⊆ SP (A)∩SP (B). Let
x ∈ SP (A) ∩ SP (B) and K be a strongly m-system containing x. Then, by
Lemma 2.16, K ∩ A ̸= ϕ and K ∩ B ̸= ϕ. Since K is strongly m-system, we
have L(A∗, B∗) ∩K ̸= ϕ which implies x ∈ SP (L(A∗, B∗)).

3. Strongly primary ideals

Theory of primary ideals played an important role in commutative ring theory.
Because every ideal can be written as the intersection of finitely many primary
ideals. In [1], A. Anjaneyulu developed the theory of primary ideals in arbitrary
semigroup. Primary ideals in semigroup. In this section we study the notion of
primary in poset. Following [1], we define

√
I = {x : L(x)∗ ∩ I ̸= ϕ} for ideal I

of P . An ideal I of P is called primary if L(a, b) ⊆ I implies a ∈ I or b ∈
√
I.

An ideal I of P is called strongly primary if L(A∗, B∗) ⊆ I implies A ⊆ I or
B ⊆

√
I∪{0} for different proper ideals A,B of P . Every strongly primary ideal

of P is a primary ideal of P , and every strongly prime ideal of P is a strongly
primary ideal of P . But the converse need not be true in each case in general.
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Example 3.1. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as
follows.

b b

b b

b
0

a b

cd

Then, (P,≤) is a poset and I = {0, a}, A = {0, b} and B = {0, a, d} are ideals
of P . Here I is a strongly primary ideal of P , but not a strongly prime as
L(A∗, B∗) ⊆ I with A ⊈ I and B ⊈ I. □

Lemma 3.2. Let A and B be ideals of P . Then, the following statements hold:

(i) A ⊆
√
A ∪ {0}.

(ii)
√√

A =
√
A.

(iii) If A ⊆ B, then
√
A ⊆

√
B.

(iv)
√
L(A∗, B∗) =

√
A ∩B =

√
A ∩
√
B.

The following theorem relates the strongly primary and strongly primness
between I and

√
I.

Theorem 3.3. Let I be a strongly primary ideal of P and
√
I ∪{0} be an ideal

of P . Then,
√
I ∪ {0} is a strongly prime ideal of P .

Proof. Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆√
I ∪ {0} and A ⊈

√
I ∪ {0}. Then, for all t ∈ L(A∗, B∗), we have t ∈

√
I ∪ {0}

which imply L(t)∗ ∩ I ̸= ϕ. There exists s ∈ I and s ∈ A∗, B∗ which imply
L(A∗, B∗) ⊆ L(s) ⊆ I. Since I is strongly primary ideal and A ⊈ I, we have
B ⊆

√
I ∪ {0}.

The condition “
√
I ∪ {0} is an ideal of P ”is not superficial in Theorem 3.3.

In Example 2.3, if I = {0, b}, then
√
I ∪ {0} = {0, b, c, e} is not an ideal of P .

Definition 3.4. Let Q be a strongly prime ideal of P . A strongly primary ideal
I of P is said to be Q- strongly primary if

√
I ∪ {0} = Q.

Theorem 3.5. Let I1, I2, ..., In be Q-strongly primary ideals of P . Then,
⋂n

i=1 Ii
is a Q-strongly primary ideal of P .
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Proof. Let J =
⋂n

i=1 Ii. Then,
√
J∪{0} ⊆

⋂n
i=1

√
Ii∪{0} and

⋂n
i=1

√
Ii∪{0} ⊆√

J ∪ {0} as J ⊆ Ii ⊆
√
Ii. Since I ′is are Q-strongly primary ideals, we have√

J ∪ {0} =
⋂n

i=1

√
Ii ∪ {0} = Q. We now prove that J is a strongly primary

ideal of P . Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆ J
and A ⊈ J . Then, there is an ideal Ij of P such that A ⊈ Ij . Since L(A

∗, B∗) ⊆
J ⊆ Ij and Ij is strongly primary, we have B ⊆

√
Ij ∪{0} = Q =

√
J ∪{0}.

Theorem 3.6. Let I be a strongly primary ideal of P . If I is a semi-prime
ideal of P , then ⟨x, I⟩ is a strongly primary ideal of P for any x ∈ P .

Proof. Let A and B be different proper ideals of P such that L(A∗, B∗) ⊆ ⟨x, I⟩
for any x ∈ P\I. Then, L(A∗, B∗, L(x)∗) ⊆ I. If L(A∗, B∗) ⊆ I, then A ⊆ I ⊆
⟨x, I⟩ or B ⊆

√
I ∪{0} ⊆

√
⟨x, I⟩ ∪ {0}. If L(A∗, B∗) ⊈ I, then by Theorem 2.4

of [5], L(A∗, L(x)∗) ⊆ I and L(L(x)∗, B∗) ⊆ I. Since I is primary and x /∈ I,
we have A ⊆ ⟨x, I⟩ ∪ {0} and B ⊆ ⟨x, I⟩ ∪ {0}.

Lemma 3.7. Let I be an ideal of P and I ⊆ Q for some strongly prime ideal
Q of P . Then, SP (I) ⊆

√
I ∪ {0}.

Proof. Let x ∈ SP (I). Then, x ∈
⋂

I⊆Qi
Qi, where Qi’s are strongly prime

ideals of P which implies L(Qi) ∩ I ̸= ϕ and L(x) ∩ I ̸= ϕ, so x ∈
√
I ∪ {0}.

Hence, SP (I) ⊆
√
I ∪ {0}.

Theorem 3.8. Let I be an ideal of P and I ⊆ Q for some strongly prime ideal
Q of P . Then, I is a strongly primary ideal of P .

Theorem 3.9. Let I be an ideal of P with (∗) condition and Q be a strongly
prime ideal of P . If IQ ⊆

√
I ∪ {0}, then I is strongly primary.

Proof. Let IQ ⊆
√
I ∪ {0} and L(A∗, B∗) ⊆ I with A ⊈ I for different proper

ideals A,B of P .

Case (i). If I ⊆ Q, then by Theorem 3.8, I is a strongly primary ideal of P .

Case (ii). Let I ⊈ Q. Then, there is x ∈ I\Q. We now prove B ⊆
√
I ∪ {0}.

Suppose not, B ⊈
√
I ∪ {0}. Since IQ ⊆

√
I ∪ {0}, we have B ⊈ IQ. Then,

there exists y ∈ B\IQ which implies L(y, t) ⊈ I, for all t /∈ Q. In particular
L(x, y) ⊈ I which implies B∗ ⊈ ⟨x, I⟩ = P , a contradiction.
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1. Introduction

Approximation theory is an important part of mathematical analysis where the
main purpose of investigation is to approximate a delicate, difficult and sophis-
ticated function with the help of simple and smooth function. Karl Weierstrass
(1885) developed an elegant theorem called as Weierstrass approximation the-
orem [25] which is widely known and accepted that all types of algebraic poly-
nomial in the category of continuous real valued function on closed interval are
dense. Among these, S. N. Bernstein (1912)[4] introduced the polynomials via
binomial distribution to give the simplest and easiest proof of this celebrated
theorem as follows:

(1) Bn(f ;x) =

n∑
ν=0

pn,ν(x)f

(
ν

n

)
, n ∈ N,

where pn,ν(x) =
(
n
k

)
xν(1−x)n−ν and f ∈ [0, 1]. He established thatBn(f ;x)⇒

f for each f ∈ C[0, 1] where ⇒ holds for uniform convergence. Szász [1] gener-
alized the operators defined by (1) on unbounded interval, i.e. on [0,∞) as

Sn(f ;x) = e−nx
∞∑
ν=0

(nx)ν

ν!
f

(
ν

n

)
, n ∈ N.(2)

Several generalizations studied for (2) to yield the convergence properties by
these sequences on [0,∞). Operators (1) and (2) are limited for continuous
functions only. Durrmeyer [2] suggested for an integral modification of Bernstein
operators (1) on an interval [0,1] to study the approximation properties for
Lebsgue integrable functions given by

Dn(f ;x) =
n∑

ν=0

pn,ν(x)

∫ 1

0
pn,ν(t)f(t)dt.(3)

With the help of the Bézier bases and shape parameter λ ∈ [1,−1], Cai et. al.
[14] obtained a generalization of classical Bernstein operators. In the sequence,
Cai [10], Srivastava et al. [23] and Ozger ([18], [19]) constructed Stancu, Shurer
and Kantorovich variants of λ-Bernstein operators. Motivated with the idea of
λ-Bernstein polynomials, Acu et al. [26] introduced a new family of modified
Uρ
m operators and the operator is denoted by Uρ

m,λ. Recently, Rao et al [6],
introduced a new sequence of Hybrid type operators as:

A∗
n,α(f ;x) =

∞∑
k=0

Pα
n,k(x)

nk+λ+1

Γ(k + λ+ 1)

∫ ∞

0
tk+λ+1e−ntdt(4)
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where

Pα
n,k(x) =

xk−1

(1 + x)n+k−1

{
αx

1 + x

(
n+ k − 1

k

)
− (1− α)(1 + x)

(
n+ k − 3

k − 2

)

+ (1− α)x
(
n+ k − 1

k

)}
with

(
n−3
−2

)
=
(
n−2
−1

)
= 0, and the gamma function

Γn =

∫ ∞

0
xn−1e−xdx, Γz = (z − 1)Γ(z − 1) = (z − 1)!.

2. Construction of bivariate extension of λ-hybrid type operators
and their basic estimates

Let I2 = {(u1, u2) : 0 ≤ u1 < ∞, 0 ≤ u2 < ∞} and C
(
I2
)
be the class of all

continuous functions on I2 equipped with the norm

∥g∥C(I2) = sup
(u1,u2)∈I2

|g(u1, u2)|.

Then, for all f ∈ C
(
I2
)
and n1, n2 ∈ N, we construct a new sequences of

bi-variate extension of λ-Hybrid type operators as follow:

Bα
n1,n2

(f ;u1, u2) =
∞∑

k1=0

∞∑
k2=0

P1,n1,k1(u1)P2,n2,k2(u2)

·
∫ ∞

0

∫ ∞

0
G∗

1
(u1)G

∗
2
(u2)f(t1, t2)dt1dt2.(5)

where

P ∗
i,n,k(ui) =

ui
ki−1

(1 + ui)
ni+kν−1

{
αui

1 + ui

(
ni + ki − 1

ki

)

− (1− α)(1 + ui)

(
ni + ki − 3

ki − 2

)
+ (1− α)u1

(
ni + ki
ki

)}
and G∗i (ui) =

ni
ki+λi+1

Γ(ki+λi+1)

∫∞
0 ti

ki+λi+1e−nitidti for i = 1, 2.

Lemma 2.1 ([6]). For the operators defined by (4) and ei(x) = xi, i ∈ {0, 1, 2},
test function, we have the following identities:

A∗
n,α(e0;x) = 1,

A∗
n,α(e1;x) = x+

2

n
(α− 1)x+

λ+ 1

n
,

A∗
n,α(e2;x) = x2

(
1 +

4α− 3

n

)
+ x

(
2λ+ 3

n
+

4α− 4 + (2λ+ 3)(α− 1)

n2

)
+

λ2 + 3λ+ 2

n2
,
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where n ∈ N, and α ∈ [−1, 1].

Lemma 2.2 ([6]). Let ηj(x) = (t − x)j, j∈ {0, 1, 2} be the central moments.
Then for the operator A∗

n,α(.; .), given by (4), we have the following equalities:

A∗
n,α(η0;x) = 1,

A∗
n,α(η1;x) =

2(λ− 1)x

n
+
λ+ 1

n
,

A∗
n,α(η2;x) = O

(
1

n

)(
x2 + x+ 1

)
.

Lemma 2.3. Let ei,j = u1
iu2

j. Then, for the operator Bα
n1,n2

(.; .), we have

Bα
n1,n2

(e0,0;u1, u2) = 1,

Bα
n1,n2

(e1,0;u1, u2) = u1 +
2

n1
(α− 1)u1 +

λ+ 1

n1
,

Bα
n1,n2

(e0,1;u1, u2) = u2 +
2

n2
(α− 1)u2 +

λ+ 1

n2
,

Bα
n1,n2

(e1,1;u1, u2) =

(
u1

2

n1
(α− 1)u1 +

λ+ 1

n1

)(
u2 +

2

n2
(α− 1)u2 +

λ+ 1

n2

)
,

Bα
n1,n2

(e2,0;u1, u2) = u21

(
1+

4α− 3

n1

)
+u1

(
2λ+3

n1
+
4α−4+(2λ+3)(α−1)

n21

)
+
λ2 + 3λ+ 2

n21
,

Bα
n1,n2

(e0,2;u1, u2) = u22

(
1+

4α−3
n2

)
+u2

(
2λ+3

n2
+
4α−4+(2λ+3)(α−1)

n22

)
+
λ2 + 3λ+ 2

n22
.

Proof. In the light of lemma (2.1) and linearly property, we have

Bα
n1,n2

(e0,0;u1, u2) = Bα
n1,n2

(e0;u1, u2)B
α
n1,n2

(e0;u1, u2),

Bα
n1,n2

(e1,0;u1, u2) = Bα
n1,n2

(e1;u1, u2)B
α
n1,n2

(e0;u1, u2),

Bα
n1,n2

(e0,1;u1, u2) = Bα
n1,n2

(e0;u1, u2)B
α
n1,n2

(e1;u1, u2),

Bα
n1,n2

(e1,1;u1, u2) = Bα
n1,n2

(e1;u1, u2)B
α
n1,n2

(e1;u1, u2),

Bα
n1,n2

(e2,0;u1, u2) = Bα
n1,n2

(e2;u1, u2)B
α
n1,n2

(e0;u1, u2),

Bα
n1,n2

(e0,2;u1, u2) = Bα
n1,n2

(e0;u1, u2)B
α
n1,n2

(e2;u1, u2),

which proves Lemma (2.3).

Lemma 2.4. Let Ψu1,u2
i,j (t, s) = ηi,j(t, s) = (t−u1)i(s−u2)j , i, j ∈ {0, 1, 2} be

the central moments. Then from the operators Bα
n1,n2

(.; .) defined by (5) satisfies
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the following identities

Bα
n1,n2

(η0,0;u1, u2) = 1,

Bα
n1,n2

(η1,0;u1, u2) =
2(λ− 1)u1

n1
+
λ+ 1

n1
,

Bα
n1,n2

(η0,1;u1, u2) =
2(λ− 1)u1

n2
+
λ+ 1

n2
,

Bα
n1,n2

(η1,1;u1, u2) =
2(λ− 1)u1

n1
+
λ+ 1

n1

2(λ− 1)u1
n2

+
λ+ 1

n2
,

Bα
n1,n2

(η2,0;u1, u2) = O

(
1

n

)(
u21 + u1 + 1

)
,

Bα
n1,n2

(η0,2;u1, u2) = O

(
1

n

)(
u22 + u2 + 1

)
.

Proof. Using lemma (2.2) and linearly property, we have

Bα
n1,n2

(η0,0;u1, u2) = Bα
n1,n2

(η0;u1, u2)B
α
n1,n2

(η0;u1, u2),

Bα
n1,n2

(η1,0;u1, u2) = Bα
n1,n2

(η1;u1, u2)B
α
n1,n2

(η0;u1, u2),

Bα
n1,n2

(η0,1;u1, u2) = Bα
n1,n2

(η0;u1, u2)B
α
n1,n2

(η1;u1, u2),

Bα
n1,n2

(η1,1;u1, u2) = Bα
n1,n2

(η1;u1, u2)B
α
n1,n2

(η1;u1, u2),

Bα
n1,n2

(η2,0;u1, u2) = Bα
n1,n2

(η2;u1, u2)B
α
n1,n2

(η0;u1, u2),

Bα
n1,n2

(η0,2;u1, u2) = Bα
n1,n2

(η0;u1, u2)B
α
n1,n2

(η2;u1, u2),

which proves Lemma 2.4.

Lemma 2.5. For all u1, u2 ∈ I2 and sufficiently large n1, n2 ∈ N the operators
H∗

n1,n2
(. ; .) satisfy following

(1) Bα
n1,n2

(Ψ2,0
u1,u2

;u1, u2) = O

(
1

n1

)
(u1 + 1)2 ≤ C1(u1 + 1)2 as n1, n2 →∞,

(2) Bα
n1,n2

(Ψ0,2
u1,u2

;u1, u2) = O

(
1

n2

)
(u2 + 1)2 ≤ C2(u2 + 1)2 as n1, n2 →∞,

(3) Bα
n1,n2

(Ψ4,0
u1,u2

;u1, u2) = O

(
1

n21

)
(u1 + 1)4 ≤ C3(u1 + 1)4 as n1, n2 →∞,

(4) Bα
n1,n2

(Ψ0,4
u1,u2

;u1, u2) = O

(
1

n22

)
(u2 + 1)4 ≤ C4(u2 + 1)4 as n1, n2 →∞.

3. Some approximation results in weighted space and their degree
of convergence

Let φ be weight function such that φ(u1, u2) = 1 + u21 + u22 and satisfying
Bφ

(
I2
)
= {g :| g(u1, u2) |≤ Cgφ(u1, u2), Cg > 0}, where Bφ

(
I2
)
is the set of

all bounded function on I2 = [0,∞)×[0,∞). Suppose C(m)
(
I2
)
be them-times
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continuously differentiable functions defined on I2 = {(u1, u2) ∈ I2 : u1, u2 ∈
[0,∞)}. The equipped norm on Bφ defined by ∥ g ∥φ= supu1,u2∈I2

|g(u1,u2)|
φ(u1,u2)

.
Moreover, we have classified here some classes of function as follows:

Cm
φ

(
I2
)
=

{
g : g ∈ Cφ

(
I2
)
; such that lim

(u1,u2)→∞

g(u1, u2)

φ(u1, u2)
= kg <∞

}
,

C0
φ

(
I2
)
=

{
f : f ∈ Cm

φ

(
I2
)
; such that lim

(u1,u2)→∞

g(u1, u2)

φ(u1, u2)
= 0

}
,

Cφ

(
I2
)
= {g : g ∈ Bφ ∩ Cφ

(
I2
)
}.

Suppose ωφ(g; δ1, δ2) is the weighted modulus of continuity for all g ∈ C0
φ

(
I2
)

and δ1, δ2 > 0, defined by

(6) ωφ(g; δ1, δ2)= sup
(u1,u2)∈[0,1]

sup
0≤|θ1|≤δ1,0≤|θ2|≤δ2

| g(u1+θ1, u2+θ2)−g(u1, u2) |
φ(u1, u2)φ(θ1, θ2)

.

For any η1, η2 > 0 one has

ωφ(g; η1δ1, η2δ2) ≤ 4(1 + η1)(1 + η2)(1 + δ21)(1 + δ22)ωφ(g; δ1, δ2),

| g(t, s)− g(u1, u2) |≤ φ(u1, u2)φ (| t− u1 |, | s− u2 |)ωφ (g; | t− u1 |, | s− u2 |)
≤ (1 + u21 + u22)(1 + (t− u1)2)(1 + (s− u2)2)ωφ (g; | t− u1 |, | s− u2 |) .

Theorem 3.1. Let g ∈ C0
φ

(
I2
)
, then for sufficiently large n1, n2 ∈ N operator

Bα
n1,n2

(.; .) satisfying the inequality

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |
(1 + u21 + u22)

≤ Ψu1,u2

(
1 +O

(
n−1
1

))(
1 +O

(
n−1
2

))
ωφ

(
g;O

(
n
− 1

2
1

)
,

(
n
− 1

2
2

))
,

where Ψu1,u2 = (1+(u1+1)+C1(u1+1)2+
√
C3(u1+1)3)(1+(u2+1)+C2(u2+

1)2 +
√
C4(u2 + 1)3) and C1, C2, C3, C4 > 0.

Proof. For all δn1 , δn2 > 0 we have

| g(t, s)− g(u1, u2) |≤ 4(1 + u21 + u22)
(
1 + (t− u1)2

) (
1 + (s− u2)2

)
×
(
1 +
| t− u1 |
δn1

)(
1 +
| s− u2 |
δn2

)
(1 + δ2n1

)(1 + δ2n2
)ωφ (g; δn1 , δn2)

= 4(1 + u21 + u22)(1 + δ2n1
)(1 + δ2n2

)

×
(
1 +
| t− u1 |
δn1

+ (t− u1)2 +
1

δn1

| t− u1 | (t− u1)2
)

×
(
1 +
| s− u2 |
δn2

+ (s− u2)2 +
| s− u2 |
δn2

(s− u2)2
)
ωφ (g; δn1 , δn2) .
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Applying Bα
n1,n2

(.; .) both the sides and then using Cauchy-Schwarz inequality,

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) | ≤Bα
n1,n2

(| g(., .)−g(u1, u2) |;u1, u2) 4(1+u21+u22)

×Bα
n1,n2

(
1 +
| t− u1 |
δn1

+ (t− u1)2 +
1

δn1

| t− u1 | (t− u1)2;u1, u2
)

×Bα
n1,n2

(
1 +
| s− u2 |
δn2

+ (s− u2)2 +
| s− u2 |
δn2

(s− u2)2;u1, u2
)

× (1 + δ2n1
)(1 + δ2n2

)ωφ (g; δn1 , δn2)

= 4(1 + u21 + u22)(1 + δ2n1
)(1 + δ2n2

)ωφ (g; δn1 , δn2)

×
(
1 +

1

δn1

Bα
n1,n2

(| t− u1 |;u1, u2) +Bα
n1,n2

((t− u1)2;u1, u2)

+
1

δn1

Bα
n1,n2

(| t− u1 | (t− u1)2;u1, u2
)

×
(
1 +

1

δn2

Bα
n1,n2

(| s− u2 |;u1, u2) +Bα
n1,n2

((s− u2)2;u1, u2)

+
1

δn2

Bα
n1,n2

(| s− u2 | (s− u2)2;u1, u2
)
;

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ 4(1 + u21 + u22)(1 + δ2n1
)(1 + δ2n2

)ωφ (g; δn1 , δn2)

×
[
1 +

1

δn1

√
Bα

n1,n2
((t− u1)2;u1, u2) +Bα

n1,n2
((t− u1)2;u1, u2)

+
1

δn1

√
Bα

n1,n2
((t− u1)2;u1, u2)

√
Bα

n1,n2
((t− u1)4;u1, u2)

]
×
[
1 +

1

δn2

√
Bα

n1,n2
((s− u2)2;u1, u2) +Bα

n1,n2
((s− u2)2;u1, u2)

+
1

δn2

√
Bα

n1,n2
((s− u2)2;u1, u2)

√
Bα

n1,n2
((s− u2)4;u1, u2)

]
.

In view of Lemma 2.5 and choose δn1 = O(n
− 1

2
1 ) and δn2 = O(n

− 1
2

2 ), then

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ 4(1 + u21 + u22)(1 + δ2n1
)(1 + δ2n2

)ωφ (g; δn1 , δn2)

×
[
1 +

1

δn1

√
O

(
1

n1

)
(u1 + 1)2 +O

(
1

n1

)
(u1 + 1)2

+
1

δn1

√
O

(
1

n1

)
(u1 + 1)2

√
O

(
1

n1

)
(u1 + 1)4

]

×
[
1 +

1

δn2

√
O

(
1

n2

)
(u2 + 1)2 +O

(
1

n2

)
(u2 + 1)2

+
1

δn2

√
O

(
1

n2

)
(u2 + 1)2

√
O

(
1

n2

)
(u2 + 1)4

]
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| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ 4(1 + u21 + u22)(1 + δ2n1
)(1 + δ2n2

)ωφ (g; δn1 , δn2)

×
[
1 + (u1 + 1) + C1(u1 + 1)2 +

√
C2(u1 + 1)3

][
1 + (u2 + 1)

+ C3(u2 + 1)2 +
√
C4(u2 + 1)3

]
.

Which completes the proof.

Lemma 3.1 ([38, 39]). For the positive sequence of operators {Ln1,n2}n1,n2≥1,
which acting Cφ → Bφ defined earlier then there exists some positive K such
that

∥ Ln1,n2(φ;u1, u2) ∥φ≤ K.

Theorem 3.2 ([38, 39]). For the positive sequence of operators {Ln1,n2}n1,n2≥1

acting Cφ → Bφ defined earlier satisfying the following conditions

(1) lim
n1,n2→∞

∥ Ln1,n2(1;u1, u2)− 1 ∥φ = 0,

(2) lim
n1,n2→∞

∥ Ln1,n2(t;u1, u2)− u1 ∥φ = 0,

(3) lim
n1,n2→∞

∥ Ln1,n2(s;u1, u2)− u2 ∥φ = 0,

(4) lim
n1,n2→∞

∥ Ln1,n2((t
2 + s2);u1, u2)− (u21 + u22) ∥φ = 0.

Then, for all g ∈ C0
φ,

lim
n1,n2→∞

∥ Ln1,n2g − g ∥φ= 0

and there exists another function f ∈ Cφ \ C0
φ, such that

lim
n1,n2→∞

∥ Ln1,n2f − f ∥φ≥ 1.

Theorem 3.3. If g ∈ C0
φ

(
I2
)
then, we have

lim
n1,n2→∞

∥ Bα
n1,n2

(g)− g ∥φ= 0.

Proof.

∥ Bα
n1,n2

(φ;u1, u2) ∥φ= sup
(u1,u2)∈I2

| Bα
n1,n2

(1 + u21 + u22;u1, u2) |
1 + u21 + u22

= 1 + sup
(u1,u2)∈I2

[
1

1 + u21 + u22

∣∣∣∣(1 +Bα
n1,n2

(u21;u1, u2) +Bα
n1,n2

(u22;u1, u2)

)∣∣∣∣]
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∥ Bα
n1,n2

(φ;u1, u2) ∥φ= 1 +

∣∣∣∣1 + 4α− 3

n1

∣∣∣∣ sup
(u1,u2)∈I2

u21
1 + u21 + u22

+

∣∣∣∣2λ+ 3

n1
+

4α− 4 + (2λ+ 3)(α− 1)

n21

∣∣∣∣ sup
(u1,u2)∈I2

u1
1 + u21 + u22

+

∣∣∣∣λ2 + 3λ+ 2

n21

∣∣∣∣ sup
(u1,u2)∈I2

1

1 + u21 + u22

+

∣∣∣∣1 + 4α− 3

n2

∣∣∣∣ sup
(u1,u2)∈I2

u22
1 + u21 + u22

+

∣∣∣∣2λ+ 3

n2
+

4α− 4 + (2λ+ 3)(α− 1)

n22

∣∣∣∣ sup
(u1,u2)∈I2

u2
1 + u21 + u22

+

∣∣∣∣λ2 + 3λ+ 2

n22

∣∣∣∣ sup
(u1,u2)∈I2

1

1 + u21 + u22
,

∥ Bα
n1,n2

(φ;u1, u2) ∥φ≤ 1+

∣∣∣∣1+4α− 3

n1

∣∣∣∣+∣∣∣∣2λ+ 3

n1
+
4α− 4+(2λ+ 3)(α− 1)

n21

∣∣∣∣
+

∣∣∣∣λ2 + 3λ+ 2

n21

∣∣∣∣+ ∣∣∣∣1 + 4α− 3

n2

∣∣∣∣
+

∣∣∣∣2λ+ 3

n2
+

4α− 4 + (2λ+ 3)(α− 1)

n22

∣∣∣∣+ ∣∣∣∣λ2 + 3λ+ 2

n22

∣∣∣∣.
Now, for all n1, n2 ∈ N \ {1, 2}, there exists a positive constant K such that

∥ Bα
n1,n2

(φ;u1, u2) ∥φ≤ K.

Therefore, in order to prove Theorem 3.3 it is sufficient from the Lemma 3.1
and Theorem 3.2. Thus we arrive at the prove of Theorem 3.3.

For any g ∈ C(I2) and δ > 0 modulus of continuity of order second is given
by

ω (g; δn1 , δn2) = sup{| g(t, s)− g(u1, u2) |: (t, s), (u1, u2) ∈ I2}

with | t − u1 |≤ δn1 , | s − u2 |≤ δn2 with the partial modulus of continuity
defined as:

ω1 (g; δ) = sup
0≤u2≤1

sup
|x1−x2|≤δ

{| g(x1, u2)− g(x2, u2) |},

ω2 (g; δ) = sup
0≤u1≤1

sup
|u1−u2|≤δ

{| g(u1, u1)− g(u1, u2) |}.

Theorem 3.4. For any g ∈ C(I2), we have

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ 2

(
ω1(g; δu1,n1) + ω2(g; δn2,u2)

)
.
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Proof. In order to give the prove of Theorem 3.4, in general we use well-known
Cauchy-Schwarz inequality. Thus, we see that

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ Bα
n1,n2

(| g(t, s)− g(u1, u2) |;u1, u2)
≤ Bα

n1,n2
(| g(t, s)− g(u1, s) |;u1, u2)

+Bα
n1,n2

(| g(u1, s)− g(u1, u2) |;u1, u2)
≤ Bα

n1,n2
(ω1(g; | t− u1 |);u1, u2) +Bα

n1,n2
(ω2(g; | s− u2 |);u1, u2)

≤ ω1(g; δn1)
(
1 + δ−1

n1
Bα

n1,n2
(| t− u1 |;u1, u2)

)
+ ω2(g; δn2)

(
1 + δ−1

n2
Bα

n1,n2
(| s− u2 |;u1, u2)

)
≤ ω1(g; δn1)

(
1 +

1

δn1

√
Bα

n1,n2
((t− u1)2;u1, u2)

)
+ ω2(g; δn2)

(
1 +

1

δn2

√
Bα

n1,n2
((s− u2)2;u1, u2)

)
.

If we choose δ2n1
= δ2n1,u1

= Bα
n1,n2

((t−u1)2;u1, u2) and δ2n2
= δ2n2,u2

= Bα
n1,n2

((s−
u2)

2;u1, u2), then we easily to reach our desired results.

Here, we find convergence in terms of the Lipschitz class for bivariate func-
tion. For M > 0 and ρ1, ρ2 ∈ [0, 1], Lipschitz maximal function space on
E × E ⊂ I2 defined by

Lρ1,ρ2(E × E) =

{
g : sup(1 + t)ρ1(1 + s)ρ2 (gρ1,ρ2(t, s)− gρ1,ρ2(u1, u2))

≤ M
1

(1 + u1)ρ1
1

(1 + u2)ρ2

}
,

where g is continuous and bounded on I2, and

(7) gρ1,ρ2(t, s)− gρ1,ρ2(u1, u2) =
| g(t, s)− g(u1, u2) |
| t− u1 |ρ1 | s− u2 |ρ2

; (t, s), (u1, u2) ∈ I2.

Theorem 3.5. Let g ∈ Lρ1,ρ2(E × E), then for any ρ1, ρ2 ∈ [0, 1], there exists
M > 0 such that

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |

≤M
{(

(d(u1, E))ρ1 +
(
δ2n1,u1

) ρ1
2

)(
(d(u2, E))ρ2 +

(
δ2n2,u2

) ρ2
2

)
+ (d(u1, E))ρ1 (d(u2, E))ρ2

}
,

where δn1,u1 and δn2,u2 defined by Theorem 3.4.

Proof. Take | u1 − x0 |= d(u1, E) and | u2 − y0 |= d(u2, E). For any (u1, u2) ∈
I2, and (x0, y0) ∈ E × E we let d(u1, E) = inf{| u1 − u2 |: u2 ∈ E}. Thus, we
can write here

(8) | g(t, s)− g(u1, u2) |≤M | g(t, s)− g(x0, y0) | + | g(x0, y0)− g(u1, u2) | .
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Apply Bα
n1,n2

, we obtain

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤ Bα
n1,n2

(| g(u1, u2)− g(x0, y0) |
+ | g(x0, y0)− g(u1, u2) |)
≤MBα

n1,n2
(| t− x0 |ρ1 | s− y0 |ρ2 ;u1, u2)

+M | u1 − x0 |ρ1 | u2 − y0 |ρ2 .

For all A,B ≥ 0 and ρ ∈ [0, 1] we know inequality (A+B)ρ ≤ Aρ +Bρ, thus

| t− x0 |ρ1≤| t− u1 |ρ1 + | u1 − x0 |ρ1 ,

| s− y0 |ρ1≤| s− u2 |ρ2 + | u2 − y0 |ρ2 .

Therefore,

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) | ≤MBα
n1,n2

(| t− u1 |ρ1 | s− u2 |ρ2 ;u1, u2)
+M | u1 − x0 |ρ1 Bα

n1,n2
(| s− u2 |ρ2 ;u1, u2)

+M | u2 − y0 |ρ2 Bα
n1,n2

(| t− u1 |ρ1 ;u1, u2)
+ 2M | u1−x0 |ρ1 | u2−y0 |ρ2 Bα

n1,n2
(µ0,0;u1, u2) .

On apply Hölder inequality on Bα
n1,n2

, we get

Bα
n1,n2

(| t− u1 |ρ1 | s− u2 |ρ2 ;u1, u2)
= Uα1

n1,k
(| t− u1 |ρ1 ;u1, u2)Vα2

n2,l
(| s− u2 |ρ2 ;u1, u2)

≤
(
Bα

n1,n2
(| t− u1 |2;u1, u2)

) ρ1
2
(
Bα

n1,n2
(µ0,0;u1, u2)

) 2−ρ1
2

×
(
Bα

n1,n2
(| s− u2 |2;u1, u2)

) ρ2
2
(
Bα

n1,n2
(µ0,0;u1, u2)

) 2−ρ2
2 .

Thus, we can obtain

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |

≤M
(
δ2n1,u1

) ρ1
2
(
δ2n2,u2

) ρ2
2 + 2M (d(u1, E))ρ1 (d(u2, E))ρ2

+M (d(u1, E))ρ1
(
δ2n2,u2

) ρ2
2 + L (d(u2, E))ρ2

(
δ2n1,u1

) ρ1
2 .

We have complete the proof.

Theorem 3.6. If g ∈ C ′(I2), then for all (u1, u2) ∈ I2, operator Bα
n1,n2

satis-
fying

| Bα
n1,n2

(g;u1, u2)− g(u1, u2) |≤∥ gu1 ∥C(I2)

(
δ2n1,u1

) 1
2 + ∥ gu2 ∥C(I2)

(
δ2n2,u2

) 1
2 ,

where δn1,u1 and δn2,u2 are defined by Theorem 3.4.
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Proof. Let g ∈ C ′(I2), and for any fixed (u1, u2) ∈ I2 we have

g(t, s)− g(u1, u2) =

∫ t

u1

gϱ(ϱ, s)dϱ+

∫ s

u2

gµ(u1, µ)dµ.

On apply Bα
n1,n2

Bα
n1,n2

(g(t, s);u1, u2)− g(u1, u2)

= Bα
n1,n2

(∫ t

u1

gϱ(ϱ, s)dϱ;u1, u2

)
+Bα

n1,n2

(∫ s

u2

gµ(u1, µ)dµ;u1, u2

)
.(9)

From the sup-norm on I2 we can see that

(10) |
∫ t

u1

gϱ(ϱ, s)dϱ |≤
∫ t

u1

| gϱ(ϱ, s)dϱ |≤∥ gu1 ∥C(I2)| t− u1 |,

(11) |
∫ s

u2

gµ(u1, µ)dµ |≤
∫ s

u2

| gµ(u1, µ)dµ |≤∥ gu2 ∥C(I2)| s− u2 | .

In the view of (9), (10) and (11) we can obtain

| Bα
n1,n2

(g(u1, u2);u1, u2)− g(u1, u2) |

≤ Bα
n1,n2

(∣∣∣∣ ∫ t

u1

gϱ(ϱ, s)dϱ

∣∣∣∣;u1, u2)
+Bα

n1,n2

(∣∣∣∣ ∫ s

u2

gµ(u1, µ)dµ

∣∣∣∣;u1, u2)
≤∥ gu1 ∥C(I2) B

α
n1,n2

(| t− u1 |;u1, u2)
+ ∥ gu2 ∥C(I2) B

α
n1,n2

(| s− u2 |;u1, u2)

≤∥ gu1 ∥C(I2)

(
Bα

n1,n2
((t− u1)2;u1, u2)Bα

n1,n2
(1;u1, u2)

) 1
2

+ ∥ gu2 ∥C(I2)

(
Bα

n1,n2
((s− u2)2;u1, u2)Bα

n1,n2
(1;u1, u2)

) 1
2

=∥ gu1 ∥C(I2)

(
δ2n1,u1

) 1
2 + ∥ gu2 ∥C(I2)

(
δ2n2,u2

) 1
2 .

Theorem 3.7. For any f ∈ C(I2), if we define an auxiliary operator such that

Rα1,α2
n1,n2

(f ;u1, u2) = Bα
n1,n2

(g;u1, u2) + f(u1, u2)

− f

(
Uα1
n1,k

(µ1,0;u1, u2),Vα2
n2,l

(µ0,1;u1, u2)

)
,

where, from Lemma 2.4, Uα1
n1,k

(µ1,0;u1, u2) =
2(λ−1)u1

n1
+ λ+1

n1
, n1 > 1 and

Vα2
n2,l

(µ0,1;u1, u2) =
2(λ− 1)u1

n2
+
λ+ 1

n2
, n2 > 1.
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Then, for all g ∈ C ′(I2), Rα1,α2
n1,n2 satisfying

Rα1,α2
n1,n2

(g; t, s)− g(u1, u2) ≤

{
δ2n1,u1

+ δ2n2,u2
+

(
2(λ− 1)u1

n1
+
λ+ 1

n1
− u1

)2

+

(
2(λ− 1)u1

n2
+
λ+ 1

n2
− u2

)2}
∥ g ∥C2(I2) .

Proof. In the light of operator Rα1,α2
n1,n2 (f ;u1, u2) and Lemma 2.4, we obtain

Rα1,α2
n1,n2 (1;u1, u2) = 1, Rα1,α2

n1,n2 (t − u1;u1, u2) = 0 and Rα1,α2
n1,n2 (s − u2;u1, u2) = 0.

For any g ∈ C ′(I2) the Taylor series give us:

g(t, s)− g(u1, u2) =
∂g(u1, u2)

∂u1
(t− u1) +

∫ t

u1

(t− λ)∂
2g(λ, u2)

∂λ2
dλ

+
∂g(u1, u2)

∂u2
(s− u2) +

∫ s

u2

(s− ψ)∂
2g(u1, ψ)

∂ψ2
dψ.

On apply Rα1,α2
n1,n2 , we see that

Rα1,α2
n1,n2

(g(t, s);u1, u2)−Rα1,α2
n1,n2

(g(u1, u2)

= Rα1,α2
n1,n2

(∫ t

u1

(t− λ)∂
2g(λ, u2)

∂λ2
dλ;u1, u2

)
+Rα1,α2

n1,n2

(∫ s

u2

(s− ψ)∂
2g(u1, ψ)

∂ψ2
dψ;u1, u2

)
= Bα

n1,n2

(∫ t

u1

(t− λ)∂
2g(λ, u2)

∂λ2
dλ;u1, u2

)
+Bα

n1,n2

(∫ s

u2

(s− ψ)∂
2g(u1, ψ)

∂ψ2
dψ;u1, u2

)
−
∫ 2(λ−1)u1

n1
+λ+1

n1

u1

(
2(λ− 1)u1

n1
+
λ+ 1

n1
− λ

)
∂2g(λ, u2)

∂λ2
dλ

−
∫ 2(λ−1)u1

n2
+λ+1

n2

u2

(
2(λ− 1)u1

n2
+
λ+ 1

n2
− ψ

)
∂2g(u1, ψ)

∂ψ2
dψ.

From hypothesis we easily obtain∣∣∣∣ ∫ t

u1

(t− λ)∂
2g(λ, u2)

∂λ2
dλ

∣∣∣∣ ≤ ∫ t

u1

∣∣∣∣(t− λ)∂2g(λ, u2)∂λ2
dλ

∣∣∣∣ ≤∥ g ∥C2(I2) (t− u1)2,∣∣∣∣ ∫ s

u2

(s− ψ)∂
2g(u1, ψ)

∂ψ2
dψ

∣∣∣∣ ≤ ∫ s

u2

∣∣∣∣(s− ψ)∂2g(u1, ψ)∂ψ2
dψ

∣∣∣∣ ≤∥ g ∥C2(I2) (s− u2)2,∣∣∣∣ ∫ 2(λ−1)u1
n1

+λ+1
n1

u1

(
2(λ− 1)u1

n1
+
λ+ 1

n1
− λ

)
∂2g(λ, u2)

∂λ2
dλ

∣∣∣∣
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≤∥ g ∥C2(I2)

(
2(λ− 1)u1

n1
+
λ+ 1

n1
− u1

)2

∣∣∣∣ ∫ 2(λ−1)u1
n2

+λ+1
n2

u2

(
2(λ− 1)u1

n2
+
λ+ 1

n2
− ψ

)
∂2g(u1, ψ)

∂ψ2
dψ

∣∣∣∣
≤∥ g ∥C2(I2)

(
2(λ− 1)u1

n2
+
λ+ 1

n2
− u2

)2

.

Thus,

| Rα1,α2
n1,n2

(g; t, s)− g(u1, u2) |

≤

{
Bα

n1,n2
((t− u1)2;u1, u2) +Bα

n1,n2
((s− u2)2;u1, u2)

+

(
2(λ− 1)u1

n1
+
λ+ 1

n1
− u1

)2

+

(
2(λ− 1)u1

n2
+
λ+ 1

n2
− u2

)2}
∥ g ∥C2(I2) .

We complete the proof of desired Theorem 3.7.

4. Some approximation results in Bögel space

Take any function g : I1 × I2 → R for a real compact intervals of I1 × I2. For
all (t, s), (u1, u2) ∈ I1 × I2 suppose ∆∗

(t,s)g(u1, u2) denotes the bivariate mixed
difference operators defined as follows:

∆∗
(t,s)g(u1, u2) = g(t, s)− g(t, u2)− g(u1, s) + g(u1, u2).

If at any point (u1, u2) ∈ I1 × I2 the function g : I1 × I2 → R defined on
I1 × I2, then lim(t,s)→(u1,u2)∆

∗
(t,s)g(u1, u2) = 0. If set of all the space of all

Bögel-continuous(B-continuous) denoted by CB(I1 × I2) on (u1, u2) ∈ I1 × I2
and be defined such that CB(I1×I2) = {g, such that g : I1×I2 → R is g, B−
bounded on I1×I2}. Next, the Bögel-differentiable function on (u1, u2) ∈ I1×I2
be g : I1 × I2 → R and limit exists finite defined by

lim
(t,s)→(u1,u2), t ̸=u1, s ̸=u2

1

(t− u1)(s− u2)

(
∆∗

(t,s)

)
= DBg(u1, u2) <∞.

Let the classes of all Bögel-differentiable function denoted byDφg(u1, u2) and be
Dφ(I1 × I2) = {g, such that g : I1 × I2 → R is g, B−differentiable on I1 × I2}.
Suppose the function g is B-bounded on D and be g : I1 × I2 → R, then
for all (t, s), (u1, u2) ∈ I1 × I2 there exists positive constant M such that
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| ∆∗
(t,s)g(u1, u2) |≤ M . The classes of all B-continuous function is called a B-

bounded on I1 × I2, whene I1 × I2 is compact subset. Let Bφ(I1 × I2) denote
the classes of all B-bounded function defined on I1 × I2 which equipped the
norm on B as ∥ g ∥B= sup(t,s),(u1,u2)∈I1×I2 | ∆

∗
(t,s)g(u1, u2) |. As we know to

approximate the degree for a set of all B-continuous function on positive linear
operators, it is essential to use the properties of mixed-modulus of continuity.
So we let for all (t, s), (u1, u2) ∈ I1 × I2 and g ∈ Bφ(Iαn), the mixed-modulus
of continuity of function g bt ωB : [0,∞)× [0,∞)→ R and be defined such as:

ωB(g; δ1, δ2) = sup{∆∗
(t,s)g(u1, u2) :| t− u1 |≤ δ1, | s− u2 |≤ δ2}.

For any I2 = [0, 1] × [0, 1], we suppose the classes of all B-continuous function
defined on I2 denoted by Cφ(I2). Moreover, let set of all ordinary continuous
function defined on I2 be C(I2) . For further details on space of Bögel functions
related to this paper we propose the article [35, 36].

Let (u1, u2) ∈ I2 and n1, n2 ∈ N then for all g ∈ C(I2) we define the GBS
type operators for the positive linear operators Bα

n1,n2
. Thus we suppose

(12) Kα1,α2
n1,n2

(g(t, s);u1, u2) = Bα
n1,n2

(
g(t, u2) + g(u1, s)− g(t, s);u1, u2

)
.

More precisely, the generalized GBS operator for bivariate function is defined
as follows:

Kα1,α2
n1,n2

(g(t, s);u1, u2)

=
∞∑

k,l=0

Q∗
1(n1, u1)Q∗

2(n2, u2)

∫ ∞

0

∫ ∞

0
P∗
1 (n1, u1)P

∗
2 (n2, u2),(13)

where Pu1,u2(t, s) =
(
g(t, u2) + g(u1, s)− g(t, s)

)
.

Theorem 4.1. For all g ∈ Cφ(I2), it follows that

| Kα1,α2
n1,n2

(g(t, s);u1, u2)− g(u1, u2) |≤ 4ωB (g; δn1,u1 , δn2,u2) ,

where δn1,u1 and δn2,u2 are defined by Theorem 3.4.

Proof. Let (t, s), (u1, u2) ∈ I2. For all n1, n2 ∈ N and δn1 , δn2 > 0, it follows
that

| ∆∗
(u1,u2)

g(t, s) | ≤ ωB (g; | t− u1 | | s− u2 |)

≤
(
1 +

t− u1
δn1

)(
1 +

s− u2
δn2

)
ωB (g; δn1 , δn2) .
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From (12) and well-known Cauchy-Schwarz inequality, we easily conclude that

| Kα1,α2
n1,n2

(g(t, s);u1, u2)− g(u1, u2) |≤ Bα
n1,n2

(
| ∆∗

(u1,u2)
g(t, s) |;u1, u2

)
≤
(
Bα

n1,n2
(ϕ0,0;u1, u2) +

1

δn1

(
Bα

n1,n2
((t− u1)2;u1, u2)

) 1
2

+
1

δn2

(
Bα

n1,n2
((s− u2)2;u1, u2)

) 1
2

+
1

δn1

(
Bα

n1,n2
((t− u1)2;u1, u2)

) 1
2

× 1

δn2

(
Bα

n1,n2
((s− u2)2;u1, u2)

) 1
2

)
ωB (g; δn1 , δn2) .

In the view of Theorem 3.4 we easily get our results.

If we let x = (t, s), y = (u1, u2) ∈ I2, then the Lipschitz function in terms
of B-continuous functions defined by

LipξM =

{
g ∈ C(I2) :| ∆∗

(u1,u2)
g(x, y) |≤M ∥ x− y ∥ξ

}
,

where M is a positive constant, 0 < ξ ≤ 1, and Euclidean norm ∥ x − y ∥=√
(t− u1)2 + (s− u2)2.

Theorem 4.2. For all g ∈ LipξM operator Kα1,α2
n1,n2 satisfying

| Kα1,α2
n1,n2

(g(x, y);u1, u2)− g(u1, u2) |≤M{δ2n1,u1
+ δ2n2,u2

}
ξ
2 ,

where δn1,u1 and δn2,u2 are defined by Theorem 3.4.

Proof. We easily see that

Kα1,α2
n1,n2

(g(x, y);u1, u2) = Bα
n1,n2

(g(u1, y) + g(x, u2)− g(x, s);u1, u2)

= Bα
n1,n2

(
g(u1, u2)−∆∗

(u1,u2)
g(x, s);u1, u2

)
= g(u1, u2)−Bα

n1,n2

(
∆∗

(u1,u2)
g(x, s);u1, u2

)
.

Therefore,

| Kα1,α2
n1,n2

(g(x, y);u1, u2)− g(u1, u2) |≤ Bα
n1,n2

(
| ∆∗

(u1,u2)
g(x, y) |;u1, u2

)
≤MBα

n1,n2

(
∥ x− y ∥ξ;u1, u2

)
≤M{Bα

n1,n2

(
∥ x− y ∥2;u1, u2

)
}

ξ
2

≤M{Bα
n1,n2

(
(t− u1)2;u1, u2

)
+Bα

n1,n2

(
(s− u2)2;u1, u2

)
}

ξ
2 .
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Theorem 4.3. If g ∈ Dφ(I2) and DBg ∈ B(I2), then

| Kα1,α2
n1,n2

(g;u1, u2)− g(u1, u2) |

≤ C
{
3 ∥ DBg ∥∞ +ϖmixed (DBg; δn1 , δn2)

}
(u1 + 1)(u2 + 1)

+

{
1 +

√
C2(u1 + 1) +

√
C1(u2 + 1)

}
×ϖmixed (DBg; δn1 , δn2) (u1 + 1)(u2 + 1),

where δn1 , δn2 defined by Theorem 3.4 and C is any positive constant.

Proof. Suppose ρ ∈ (u1, t), ξ ∈ (u2, s) and

∆∗
(u1,u2)

g(t, s) = (t− u1)(s− u2)DBg(ρ, ξ),

DBg(ρ, ξ) = ∆∗
(u1,u2)

DBg(ρ, ξ) +DBg(ρ, y) +DBg(x, ξ)−DBg(u1, u2).

For all DBg ∈ B(I2), it follows that

| Kα1,α2
n1,n2

(
∆∗

(u1,u2)
g(t, s);u1, u2

)
|=| Kα1,α2

n1,n2
((t− u1)(s− u2)DBg(ρ, ξ);u1, u2) |

≤ Kα1,α2
n1,n2

(
| t− u1 || s− u2 || ∆∗

(u1,u2)
DBg(ρ, ξ) |;u1, u2

)
+Kα1,α2

n1,n2

(
| t− u1 || s− u2 | (| DBg(ρ, u2) |

+ | DBg(u1, ξ) | + | DBg(u1, u2) |);u1, u2
)

≤ Kα1,α2
n1,n2

(
| t− u1 || s− u2 |

×ϖmixed (DBg; | ρ− u1 |, | ξ − u2 |) ;u1, u2
)

+ 3 ∥ DBg ∥∞ Kα1,α2
n1,n2

(| t− u1 || s− u2 |;u1, u2) .

Here, ϖmixed, is mixed-modulus of continuity and it follows that

ϖmixed (DBg; | ρ− u1 |, | ξ − u2 |)
≤ ϖmixed (DBg; | t− u1 |, | s− u2 |)
≤
(
1 + δ−1

n1
| t− u1 |

) (
1 + δ−1

n2
| s− u2 |

)
ϖmixed (DBg; | δn1 , δn2) .

Therefore, it is obvious that

| K∗
n1,n2

(g;u1, u2)− g(u1, u2) |=| ∆∗
(u1,u2)

g(t, s);u1, u2 |

≤ 3 ∥ DBg ∥∞
(
Kα1,α2

n1,n2

(
(t− u1)2(s− u2)2;u1, u2

)) 1
2
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+

(
Kα1,α2

n1,n2
(| t− u1 || s− u2 |;u1, u2)

+ δ−1
n1
Kα1,α2

n1,n2

(
(t− u1)2 | s− u2 |;u1, u2

))
+ δ−1

n2
Kα1,α2

n1,n2

(
| t− u1 | (s− u2)2;u1, u2

)
+ δ−1

n1
δ−1
n2
Kα1,α2

n1,n2

(
(t− u1)2(s− u2)2;u1, u2

)
ϖmixed (DBg; δn1 , δn2) ;

| K∗
n1,n2

(g;u1, u2)− g(u1, u2) |=| ∆∗
(u1,u2)

g(t, s);u1, u2 |

≤ 3 ∥ DBg ∥∞
(
Kα1,α2

n1,n2

(
Ψ2,2

u1,u2
;u1, u2

)) 1
2

+

{(
Kα1,α2

n1,n2

(
Ψ2,2

u1,u2
;u1, u2

)) 1
2

+ δ−1
n1

(
Kα1,α2

n1,n2

(
Ψ4,2

u1,u2
;u1, u2

)) 1
2

+ δ−1
n2

(
Kα1,α2

n1,n2

(
Ψ2,4

u1,u2
;u1, u2

)) 1
2

+ δ−1
n1
δ−1
n2
Kα1,α2

n1,n2

(
Ψ2,2

u1,u2
;u1, u2

)}
ϖmixed (DBg; δn1 , δn2) .

Which follows that

| K∗
n1,n2

(g;u1, u2)− g(u1, u2) |

= 3 ∥ DBg ∥∞
(
Kα1,α2

n1,n2

(
Ψ2,0

u1,u2
;u1, u2

)
Kα1,α2

n1,n2

(
Ψ0,2

u1,u2
;u1, u2

)) 1
2

+

{(
Kα1,α2

n1,n2

(
Ψ2,0

u1,u2
;u1, u2

)
Kα1,α2

n1,n2

(
Ψ0,2

u1,u2
;u1, u2

)) 1
2

+ δ−1
n1

(
Kα1,α2

n1,n2

(
Ψ4,0

u1,u2
;u1, u2

)
Kα1,α2

n1,n2

(
Ψ0,2

u1,u2
;u1, u2

)) 1
2

+ δ−1
n2

(
Kα1,α2

n1,n2

(
Ψ2,0

u1,u2
;u1, u2

)
Kα1,α2

n1,n2

(
Ψ0,4

u1,u2
;u1, u2

)) 1
2

+ δ−1
n1
δ−1
n2
Kα1,α2

n1,n2

(
Ψ2,0

u1,u2
;u1, u2

)
Kα1,α2

n1,n2

(
Ψ0,2

u1,u2
;u1, u2

)}
×ϖmixed (DBg; δn1 , δn2) .

From Lemma (2.5), we demonstrate

| K∗
n1,n2

(g;u1, u2)− g(u1, u2) |≤ 3 ∥ DBg ∥∞
(√

C1C2(u1 + 1)(u2 + 1)

)
+

{(√
C1C2(u1 + 1)(u2 + 1)

)
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+ δ−1
n1

(√
C2

√
O

(
1

n1

)
(u1 + 1)2(u2 + 1)

)

+ δ−1
n2

(√
C1

√
O

(
1

n2

)
(u2 + 1)2(u1 + 1)

)

+ δ−1
n1
δ−1
n2

(√
O

(
1

n1

)√
O

(
1

n2

)
(u1 + 1)(u2 + 1)

)}
×ϖmixed (DBg; δn1 , δn2) .

Which complete the proof of Theorem 4.3.

5. Conclusion and remarks

These types of generalization, that is, Bivariate Szász operators is a new gener-
alization. In this, manuscript our investigation is to generalize the Szász Dur-
rmeyer operators based on Dunkl analogue [41] by introducing the bivariate
functions. We study the bivariate properties of Szász Durrmeyer operators with
the help of modulus of continuity, mixed-modulus of continuity and then find
the approximation results in Peetre’s K-functional, Voronovskaja type theo-
rem and Lipschitz maximal functions for these bivariate operators. Next, we
also construct the GBS type operator of these generalized operators and study
approximation in Bögel continuous functions by use of mixed-modulus of conti-
nuity.
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Abstract. Methods of data classifications are considered as a major preprocessing
step for pattern recognition, machine learning, and data mining. In this paper, we
give two topological approaches to generalize multi-granular rough sets using families
of binary relations. In the first approach, we define a family of topological spaces
using families of relations to maximize the interiors and minimize the closures. In the
second approach we define minimal neighborhoods to classify multi-data of information
systems and generate a multi-granular knowledge base. Moreover, we present some
important algorithms to reduce all topological reductions of the information system
using topological bases. We round off by studying real life applications of this work
using medical data.

Keywords: multi-granulation, rough sets, data classifications, information systems,
interior operators, closure operators, approximation spaces.

1. Introduction

According to the very rapid growth of data and the high incidence of Internet
broadcasting it becomes a seriously urgent issue to extract useful information to
make decisions. In order to do this accurately, quickly and cost less, researchers
need to work together in this field to unify their research frameworks.

*. Corresponding author



294 S. HUSSEIN, A.S. SALAMA and A.K. SALAH

Many researchers have solved some of the problems of data sharing, but
without a general conceptual framework governing their techniques. Some of
them have used old mathematical techniques, some have used modern statisti-
cal methods, and others have developed hybrid methods between mathematics,
statistics, and computer science.

In 1982 Z.Pawlak, introduced the theory of rough sets, [1], which may con-
sidered as the first mathematical tool to deal with uncertainty, incomplete and
imprecise knowledge. The approximation space in the sense of Pawlak is an
ordered pair AS = (U,R), where U is a universal set and R is an equivalence
relation on U . The equivalence classes of U are called the knowledge base. The
lower approximation of a subset A of U is the union of all equivalence classes
contained in A, while the upper approximation is the intersection of all equiva-
lence classes which intersect A non-trivially. A rough set is a pair of two exact
sets the lower approximation of A and the upper approximation of A.

Since equivalence relations are too restrictive for many real life applications,
the classical rough set theory of Pawlak needed to be generalized. The gener-
alization process is twofold; The first, is to replace the equivalence relation by
tolerance relation [2],[3], similarity relation [4] , characteristic relation [5],[6] and
arbitrary binary relation [7]. The second, is to replace the partition induced by
the equivalence relation by a covering and use it to approximate any subset of
the universe [8].

These frameworks are called granular computing, which are models providing
solutions to problems in data mining, machine learning, pattern recognition and
cognitive science. But, still there are problems that require more extensions. In
2006, Y. Qian introduced the multi-granular computing using rough set instead
of a single granular. Multi-granular computing approach is replacing the single
relation used in a single granular by a set of relations on the same universe (see
[9], [10], [11]).

One of the important branches in mathematics is topology. Topology is
the best implementation of relationship between objects or features so when we
deal with complicated relationships topology becomes a very satisfactory tool.
Pawlak has pointed out that topology is closely linked to rough set theory and
on the full conviction that the topological structure of the rough sets is one of
the key issues of rough set theory. This convenient relationship has prompted
researchers to study this relationship, it’s properties and its applications in real
life (see [12], [13], [14], [15], [16], [17], [18], [19], [20]]. In 2013, Y. Qian has
investigated a new theory on multi-granulation rough sets from the topological
point of view, by inducing n-topological spaces on the universe set U from n-
equivalence relations on U . He also has studied the multi-granulation topological
rough space and its topological properties (see [21]).

An improvement of rough sets’ accuracy measure using containment neigh-
borhoods with a medical application and a comparison of two types of rough
approximations based on neighborhoods, for new applications at the same re-
search point can found in (see [22],[23],[24],[25],[26],[27],[28]).
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In this paper, we offer a convenient hybrid method using topology and rough
set theory to solve the problem of multi-source, variable, and large-scale data-
sharing. We also develop algorithms based on the extraction of knowledge from
such data.

This paper is arranged as follows:
In Section 2, we present the fundamental concepts and properties of the gen-

eral topology and some concepts of information systems. In section 3 we present
two topological approaches for generalized multi-granulation in two categories.
The first approach used minimization in the boundary region, while the second
approach used the idea of minimal neighborhoods. In Section 4 we apply our
results to the problem of attribute reduction in medical information systems.
Section 5 lists some important results and some directions for future studies.

2. Preliminaries

In this section, we provide the basic definitions and results on topological spaces
and rough sets. In classical rough set theory the approximation space is defined
as (U, R) where U is non-empty finite set and R is an equivalence relation on
U .

Definition 2.1 ([1]). Let (U,R) be a classical approximation space, the lower
and upper approximation of a given set X ⊆ U are defined as follows:

RX = {x : [x]R ⊆ X},
RX = {x : [x]R ∩X ̸= ϕ},

where [x]R is the equivalence class of x ∈ U with respect to the equivalence
relation R.

Remark 1. The boundary region of X is given by RX −RX, RX is called the
positive region while U −RX is called the negative region.

Definition 2.2 ([29]). A topological space is a pair (U, τ) consisting of a set U
and a family τ of subsets of U satisfying the following conditions:

(τ1) ∅ ∈ τ and U ∈ τ .

(τ2) τ is closed under arbitrary union.

(τ3) τ is closed under finite intersection.

the members of τ are called open sets and the complement of members of τ are
called closed sets.

Definition 2.3 ([29]). Let (U, τ) be topological space then the τ − closure of a
subset A ⊂ U is defined as follows:

τ − cl(A) = ∩{F ⊆ U : A ⊆ F and F is closed set}.
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Definition 2.4 ([29]). Let (U, τ) be topological space then the τ − interior of a
subset A ⊂ U is defined as follows:

τ − int(A) = ∪{G ⊆ U : G ⊆ A and G is open set}.

Z. Pawlak pointed out in [1]that lower approximations correspond to interiors
and upper approximations correspond to closures. This idea has prompted the
researchers to study the theory of rough set from the topological point of view
to know more about rough sets.

Definition 2.5 ([29]). If U is a finite universe and R is a binary relation on
U , then we define, the right neighborhood of x ∈ U as follows:

xR = {y : xRy}.

Definition 2.6 ([30]). Let U be non-empty set, a basis for a topology on U is
a collection β of subsets of U such that

1. For each x ∈ U , there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis elements B1 and B2, then there
is a basis element B3 containing x such that B3 ⊂ B1 ∩B2.

There are many ways to induce a topology from a given relation. One of
them is achieved as follows: using Definition 2.5 we construct the collection
{xR} for all x in U , the family of all intersections of {xR}x∈U is a base β for a
topology on U . If the union of all members of β ̸= U then we add U to β to be
a base for a topology on U .

The classification of a rough set to three region as in Remark 1 can also be
done by a membership function as follows:

Definition 2.7 ([29]). Let τ be a topology on a finite set U , with base β, then
the rough membership function is

µτX(x) =
|{∩Bx} ∩X|
| ∩Bx|

, x ∈ U,

where Bx is any member of β containing x.

Theorem 2.1 ([30]). Let (U, τ) be a topological space, A ⊆ U then x ∈ τ−cl(A)
if and only if G ∩A ̸= ∅, for all G ∈ τ and x ∈ G.

The idea of the multi-granulation is based on using multi-relation instead of
a single relation to obtain better approximation. Thus, we start by giving the
definition of multi-granular rough sets based on equivalence relations.

Definition 2.8 ([21]). Let (Ω, τ1), (Ω, τ2), . . . , (Ω, τn) be n topological spaces in-
duced by equivalence relations R1, R2, . . . , Rn, respectively, and X ⊆ Ω. Then, we
define mint and mcl operators of X with respect to Γ, where Γ = {τ1, τ2, . . . , τn},
respectively, as follows:

mint(X) =
⋃
{A ∈ τi| ∨ (A ⊆ X), i ≤ n},

mcl(X) =
⋃
{A ∈ τi| ∧ (A ∩X ̸= ∅), i ≤ n}.
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3. Topological approaches for generalized multi-granulation

In this section we introduce a new theory on multi-granulation rough sets from
the point of view of topological spaces. We generalize the equivalence relations
to binary relations to be suitable in real life problems in other branches like
artificial intelligence, knowledge discovery, machine learning and data mining.
Also, our approach can be regarded as a generalization of Pawlak rough set,
and we introduce a new algorithmic method for the reduction of attributes in
information (decision) system.

3.1 First approach (maximization of interior and minimization of
closure)

Definition 3.1. Let U be a non-empty set, X ⊂ U , R1, R2, . . . , Rn be n binary
relations on U and τ1, τ2, . . . , τn be n topologies on U induced by the binary
relations R1, R2, . . . , Rn. We define the Gmint and Gmcl of X as follows

Gmint(X) =

n⋃
i=1

τi − int(X),(1)

Gmcl(X) =

n⋂
i=1

τi − cl(X).(2)

Lemma 3.1. Let U be a non-empty set and X ⊆ U and τ1, τ2, . . . , τn be n
topologies on U.Then

1. τi − int(Gmint(X)) = τi − int(X),

2. τi − cl(Gmcl(X)) = τi − cl(X).

Proof. (1) By Definition 3.1, we have

Gmint(X) =

n⋃
i=1

τi − int(X) =

n⋃
i=1

Gi,

where Gi is the greatest τi − open contained in X. Now,

τi − int(Gmint(X)) = τi − int(
n⋃

i=1

Gi). = Gi.

Since Gi ⊆
⋃n

i=1Gi and Gi is the greatest τi − open contained in X which
contains Gi ⊆

⋃n
i=1Gi , then the greatest τi − open contained in Gi ⊆

⋃n
i=1Gi

is Gi.
(2) By Definition 3.1, we have

Gmcl(X) =

n⋂
i=1

τi − cl(X) =

n⋂
i=1

Fi,
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where Fi is the smallest τi − closed containing X. Now,

τi − cl(Gmcl(X)) = τi − cl(
n⋂

i=1

Fi).

We claim that τi − cl(
⋂n

i=1 Fi) = Fi.
Suppose contrarily that there exists a τi−closed Fi

′ such that Fi
′ ⊊ Fi and

τi − cl(
⋂n

i=1 Fi) = Fi
′. Then, X ⊆ (

⋂n
i=1 Fi) ⊆ Fi

′ ⊊ Fi. Therefore, there exists
a τi− closed Fi

′ smaller than Fi containing X, which contradicts the fact that
τi − cl(X) = Fi. Hence, τi − cl(

⋂n
i=1 Fi) = Fi, and then τi − cl(Gmcl(X)) =

τi − cl(X).

Proposition 3.1. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively, and X,Y ⊆ U . Then,

1. Gmint(U)=U,

2. Gmint(∅)=∅,

3. Gmint(X)⊆ X,

4. X ⊆ Y ⇒ Gmint(X)⊆ Gmint(Y),

5. Gmint(Gmint(X))=Gmint(X).

Proof. The first three assertions are direct consequences of Definition 3.1. For
(4), we have

x ∈ Gmint(X)⇒ x ∈
n⋃

i=1

τi − int(X)

⇒ x ∈ τi0 − int(X) for some i0 ∈ {1, . . . , n}
⇒ x ∈ τi0 − open G such that x ∈ G ⊆ X
⇒ x ∈ τi0 − open G such that x ∈ G ⊆ Y, since X ⊆ Y
⇒ x ∈ τi0 − int(Y ) for some i0 ∈ {1, . . . , n}

⇒ x ∈
n⋃

i=1

τi − int(Y ), i.e x ∈ Gmint(Y )

⇒ (X ⊆ Y ⇒ Gmint(X) ⊆ Gmint(Y )).

For (5), we observe that

Gmint(Gmint(X)) =

n⋃
i=1

τi − int(Gmint(X))

=

n⋃
i=1

τi − int(X) by Lemma 3.1.
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Proposition 3.2. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively, and X,Y ⊆ U . Then,

1. Gmcl(U)=U,

2. Gmcl(∅)=∅,

3. Gmcl(X)⊆ X,

4. X ⊆ Y ⇒ Gmcl(X)⊆ Gmcl(Y),

5. Gmcl(Gmcl(X))=Gmcl(X).

Proof. The first three assertions are direct consequences of Definition 3.1. For
(4), let x ∈ Gmcl(x) then x ∈ τi − cl(x) for all i ∈ {1, 2, . . . , n}, by applying
Theorem 2.1 we get x ∈ τi − cl(X) if and only if G ∩X ̸= ∅ for all G ∈ τi , x ∈
G, because X ⊆ Y . Then, G ∩ Y ̸= ∅ for all G ∈ τi , x ∈ G. Therefore,
x ∈ τi − cl(Y ) for all i ∈ {1, 2, . . . , n}. Hence, x ∈ Gmcl(Y ), and then X ⊆ Y
⇒ Gmcl(X) ⊆ Gmcl(Y ). For (5), we observe that

Gmcl(Gmcl(X)) =

n⋂
i=1

τi − cl(Gmcl(X))

=

n⋂
i=1

τi − cl(X) by Lemma 3.1.

Proposition 3.3. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn respectively. If X,Y ⊆ U , then

Gmint(X ∩ Y ) = Gmint(X) ∩Gmint(Y ).

Proof. Because X ∩ Y ⊆ X and X ∩ Y ⊆ Y then Gmint(X ∩ Y ) is a subset
of both Gmint(X) and Gmint(Y ). Hence, Gmint(X ∩ Y ) ⊆ Gmint(X) ∩
Gmint(Y ). Now, if

p /∈ Gmint(X ∩ Y )⇒ p /∈ τi − int(X ∩ Y ) for all i ∈ {1, 2, . . . , n}
⇒ p /∈ τi − int(X) ∩ τi − int(Y ) for all i

⇒ p /∈ Gmint(X) ∩Gmint(Y ).

Therefore, Gmint(X ∩ Y ) ⊇ Gmint(X) ∩Gmint(Y ). Thus,

Gmint(X ∩ Y ) = Gmint(X) ∩Gmint(Y ).

Proposition 3.4. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by binary relations R1, R2, . . . , Rn, respectively. If X,Y ⊆ U . Then

Gmcl(X ∪ Y ) = Gmcl(X) ∪Gmcl(Y ).
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Proof. Since X ⊆ X ∪ Y and Y ⊆ X ∪ Y then Gmcl(X) ⊆ Gmcl(X ∪ Y ) and
Gmcl(Y ) ⊆ Gmcl(X ∪ Y ). Hence, Gmcl(X ∪ Y ) ⊇ Gmcl(X) ∪Gmcl(Y ). Now,
let

p ∈ Gmcl(X ∪ Y )⇒ p ∈ τi − cl(X ∪ Y ) for all i ∈ {1, 2, . . . , n}
⇒ p ∈ τi − cl(X) ∪ τi − cl(Y ) for all i

⇒ p ∈ Gmcl(X) ∪Gmcl(Y ).

Therefore, Gmcl(X ∪ Y ) ⊆ Gmcl(X) ∪Gmcl(Y ). Thus,

Gmcl(X ∪ Y ) = Gmcl(x) ∪Gmcl(Y ).

Theorem 3.1. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced by
n binary relations R1, R2, . . . , Rn, respectively. If X,Y ⊆ U , then, Gmint and
Gmcl are interior and closure operators, respectively.

Proof. The proof follows directly by applying Propositions 3.1, 3.2, 3.3 and
3.4.

Example 1. Let U = {1, 2, 3, 4, 5}, X1 = {1, 2, 4}, X2 = {3, 4, 5}. R1, R2 and
R3 be binary relations on U defined as follows

R1 = {(1, 2), (1, 3), (2, 4), (2, 5), (5, 1)}
R2 = {(2, 2), (3, 4), (4, 5), (4, 1), (5, 3)}
R3 = {(1, 1), (5, 2), (5, 3), (3, 4), (3, 2), (4, 1)}

according to Definition 2.5 we have the following induced topologies

τ1 = {∅, {2, 3}, {4, 5}, {1}, {2, 3, 4, 5}, {1, 2, 3}, {1, 4, 5}, U},
τ2 = {∅, {2}, {4}, {1, 5}, {3}, {2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 3}, {3, 4}, {1, 3, 5},
{1, 2, 4, 5}, {2, 3, 4}, {1, 2, 3, 5}, {1, 3, 4, 5}, U},

τ3 = {∅, {1}, {2, 4}, {2, 3}, {2}, {1, 2, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2}, {1, 2, 3, 4}, U}.

In tables 1 and 2 we make a comparison between the accuracy in each topology
alone and in our approach to X1 and X2.

Approximation Space Int(X1) Cl(X1) Accuracy

(U, τ1) {1} U 0.2

(U, τ2) {2,4} {1,2,4,5} 0.5

(U, τ3) {1,2,4} U 0.6

our approach {1,2,4} {1,2,4,5} 0.75

Table 1: Comparison among accuracy measures of category X1

Depends on Definition 2.7 we define rough membership function in our ap-
proach as follows.
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Approximation Space Int(X2) Cl(X2) Accuracy

(U, τ1) {4,5} {2,3,4,5} 0.5

(U, τ2) {3,4} {1,3,4,5} 0.5

(U, τ3) ∅ {3,4,5} 0

our approach {3,4,5} {3,4,5} 1

Table 2: Comparison among accuracy measures of category X2

Definition 3.2. Let (U, τ1), (U, τ2), . . . , (U, τn) be n topological spaces induced
by n binary relations R1, R2, . . . , Rn, respectively. Then a membership function
is defined, for every x ∈ U , as follows:

µΓX(x) =


1, if maxni=1(µ

τi
X(x)) = 1,

0, elseif minni=1(µ
τi
X(x)) = 0,

maxni=1(µ
τi
X(x)), otherwise,

where Γ = {τ1, τ2, . . . , τn}.

The following example illustrates Definition 3.2.

Example 2. Let U , R1, R2 and R3 be as in Example 1 and

β1 = {{2, 3}, {4, 5}, {1}},
β2 = {{2}, {4}, {1, 5}, {3}},
β3 = {{1}, {2, 4}, {2, 3}, {2}, U}.

where β1, β2 and β3 are the basis of τ1, τ2 and τ3, respectively. For X1 = {1, 2, 4}
we have,

µτ1X1
(1) = 1, µτ1X1

(2) =
1

2
, µτ1X1

(3) =
1

2
, µτ1X1

(4) =
1

2
, µτ1X1

(5) =
1

2
,

µτ2X1
(1) =

1

2
, µτ2X1

(2) = 1, µτ2X1
(3) = 0, µτ2X1

(4) = 1, µτ2X1
(5) =

1

2
,

µτ3X1
(1) = 1, µτ3X1

(2) = 1, µτ3X1
(3) =

1

2
, µτ3X1

(4) = 1, µτ3X1
(5) =

3

5
.

Then, Gmint(X1) = {1, 2, 4} and Gmcl(X1) = {1, 2, 4, 5} which ensures the
result in Example 1, Table 1. For X2 = {3, 4, 5}

µτ1X2
(1) = 0, µτ1X2

(2) =
1

2
, µτ1X2

(3) =
1

2
, µτ1X2

(4) = 1, µτ1X2
(5) = 1,

µτ2X2
(1) =

1

2
, µτ2X2

(2) = 0, µτ2X2
(3) = 1, µτ2X2

(4) = 1, µτ2X2
(5) =

1

2
,

µτ3X2
(1) = 0, µτ3X2

(2) = 0, µτ3X2
(3) =

1

2
, µτ3X2

(4) =
1

2
, µτ3X2

(5) =
3

5
,

also Gmint(X2) = {3, 4, 5} = Gmcl(X2) which insures the result in Example 1,
Table 2.
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3.2 Second approach ( minimal neighborhood approach)

Definition 3.3 (Neighborhood-map). Let U be a non-empty set, R be a binary
relation on U, τ is the topology on U induced by R and β is a base for τ . Then,
we define the map N : U 7−→ β as follows, for x ∈ U , N(x) = ∩Bx where Bx

is any member of β containing x (i.e., the map N is mapping the element x to
the minimal member of β containing x). Obviously, the map N is a well defined
map.

Definition 3.4 (Minimal Neighborhood-map). Let U be a non-empty set, R1, R2,
. . . , Rn be n binary relations on U, and β1, β2, . . . , βn be n basis for the topologies
τ1, τ2, . . . , τn on U induced by R1, R2, . . . , Rn, respectively. We define the map
H H : U 7−→ P (U) as follows: for x ∈ U , H(x) =

⋂n
i=1Ni(x) where Ni is the

neighborhood-map corresponding to the base βi. Briefly the map H obtain the
smallest neighborhood of an element x in all topologies τi for i ∈ {1, 2, . . . , n}
and the collection {H(x) : x ∈ U} is called multi-granular knowledge base
denoted by ≬ni=1 βi.

Theorem 3.2. Let U be a non-empty set, R1, R2 be two binary relations on
U, and β1, β2 are two basis for the topologies τ1, τ2 on U induced by R1, R2,
respectively. Then β1 ≬ β2 = {H(x) : x ∈ U} is also a topological base for U .

Proof. Clearly, for each x ∈ U , H(x) contains x. Finally let B1, B2 ∈ β1 ≬ β2
and p ∈ B1 ∩ B2 since B1, B2 ∈ β1 ≬ β2, then there exist x, x′ ∈ U such that
B1 = H(x) and B2 = H(x′). Therefore, p ∈ B1∩B2 if and only if p ∈ B1 = H(x)
and p ∈ B2 = H(x′). Clearly p ∈ H(p) ⊆ H(x) and p ∈ H(p) ⊆ H(x′).
Therefore, there exist B3 = H(p) ∈ β1 ≬ β2 such that p ∈ B3 ⊆ B1 ∩B2.

Corollary 3.1. Let U be a non-empty set, R1, R2, . . . , Rn be n binary relations
on U, and β1, β2, . . . , βn are n basis for the topologies τ1, τ2, . . . , τn on U induced
by R1, R2, . . . , Rn, respectively. Then, ≬ni=1 βi = {H(x) : x ∈ U} is also a
topological base on U .

Proof. Using mathematical induction, we find that this is an immediate con-
sequence of Theorem 3.2.

Definition 3.5. Let U be a non-empty set, R1, R2, . . . , Rn be n binary relations
on U and β1, β2, . . . , βn be n topological basis on U induced by the binary re-
lations R1, R2, . . . , Rn. We define a generalize multi-granular topological rough
space as follows GMgTRS( ≬ni=1 βi ) = (U,Mτ), where Mτ is the topology
generated by the base ≬ni=1 βi.

Theorem 3.3. Let U be a non-empty finite set of order m, R1, R2, . . . , Rn be n
binary relations on U, and β1, β2, . . . , βn be n basis for topologies on U induced by
R1, R2, . . . , Rn, respectively. If Ri0 for i0 ∈ {1, 2, . . . , n} is the identity relation
then GMgTRS( ≬ni=1 βi ) is equal to (U, τi0) where τi0 is the topology induced
by Ri0.
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Proof. Let U = {x1, x2, . . . , xm}. Since Ri0 is identity relation on U then the
induced base by Ri0 is βio = {{x1}, {x2}, . . . , {xm}} and by Definition 3.4 we
have H(x) = {x} for all x in U so ≬ni=1 βi = {{x1}, {x2}, . . . , {xm}} and hence
≬ni=1 βi = βio therefore they generate the same topology on U .

The following example illustrates the second approach.

Example 3. Let U = {1, 2, 3, 4, 5, 6}, X = {2, 4, 5} ⊆ U and R1, R2 and R3 be
binary relations on U defined as follows

R1 = {(1, 1), (1, 2), (3, 3), (3, 5), (4, 6), (6, 4)}
R2 = {(1, 5), (1, 6), (2, 1), (2, 2), (3, 3), (3, 4), (4, 4)}
R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3),

(4, 4), (4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}

According to the paragraph below Definition 2.2 we induced the following bases:

β1 = {{1, 2}, {3, 5}, {4}, {6}}
β2 = {{1, 2}, {3, 4}, {4}, {5, 6}}
β3 = {{1, 2}, {3, 4}, {3, 4, 6}, {5, 6}, {4, 5, 6}, {4}, {6}, {4, 6}}

So, the multi-granular knowledge base ≬3i=1 βi = {{1, 2}, {3}, {4}, {5}, {6}}. In
Table 3 we make a comparison between the accuracy in each basis alone and
in our approach to the set X. We compute the interior and closure using the
Definition 2.7 of membership function.

Approximation Space Int(X) Cl(X) Accuracy

using β1 {4} {1,2,3,4,5} 20%

using β2 {4} U 16.66%

using β3 {4} {1,2,3,4,5} 20%

using ≬3i=1 βi {4,5} {1,2,4,5} 50%

Table 3: Interior and closure comparison by basis

The reduction process of data is very important since we express the whole
data by a part of it with conservation of the structure of the whole data. So
we introduce two algorithms for bases reduction, the first algorithm gets one
bases reduct in polynomial time and the second algorithm gets all reducts but
in exponential time.

Algorithm 1 (Bases Reduct).
Input: The non-empty set U and the basis (β1, β2, . . . , βn) induced by the
binary relations R1, R2, . . . , Rn.
Output: One reduct
Steps are shown as follows:
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I: X ←− Compute (≬ni=1 βi)

reduct = list of (β1, β2, . . . , βn)

II: For(i = 1; i ≤ n; i++)

remove the first element in reduct and store it in E.

if ( ≬ reduct == X)

continue

else

add E in the last position of reduct

end

III: return reduct.

The following example illustrate the Algorithm 1 to get bases reduct.

Example 4. Let U = {1, 2, 3, 4, 5, 6}, and

β1 = {{1, 2, 3}, {4, 5, 6}},
β2 = {{1, 2, 3, 4, 6}, {5}},
β3 = {{1, 4}, {2, 5}, {3, 6}}.

Then

≬3i=1 βi = {{1}, {2}, {3}, {4}, {5}, {6}}; reduct = {β1, β2, β3};
β2 ≬ β3 = {{1, 4}, {2}, {3, 6}, {5}}; reduct = {β2, β3, β1};
β3 ≬ β1 = {{1}, {2}, {3}, {4}, {5}, {6}}; reduct = {β3, β1};

β1 = {{1, 2, 3}, {4, 5, 6}}; reduct = {β1, β3};

Hence, β2 is redundant base which can be omit, and the basis reduct needed for
classification are β1 and β3

The following algorithm computing all reducts but with exponential run time
because we compute the power set of the set of bases.

Algorithm 2 (All Basis reduct).
Input: The non-empty set U and the basis (β1, β2, . . . , βn) induced by the
binary relations R1, R2, . . . , Rn.
Output: List of all reducts
Steps are shown as follows:

I: X ←− Compute( ≬ni=1 βi ) ;

allsubsets = powerset of ({β1, β2, . . . , βn});
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allReducts = null;

II: For(i = 1; i ≤ 2n; i++)

if ( ≬ allsubsets[i] == X);

add i into allReducts;

end

III: return allReducts.

4. Real life applications

4.1 Clinical data description

Patients with digestive disease have become so many of these lesions due to the
high number of fast foods which contain high calories as well as processed meat.
As a direct result of this food many people suffer from excessive infusion and
as a result of the subsequent diseases of the digestive system, the most serious
of which are stomach cancers and colon. Because of eradication of the stomach
up the food, directly go to the intestine, causing confusion in the absorption.
The patients have some violent symptoms after the meal, such as dizziness,
headache, colic and increasing the blood sugar. After a period, the patient is
highest and most dangerous complications such as high cholesterol and clogged
arteries leading to heart attacks.

The most general forms of innate stomach and colon cancer syndromes are:

� Hereditary nonpolyposis colorectal cancer (HNPCC). HNPCC, also called
Lynch syndrome, increases the risk of stomach and colon cancer and other
cancers. People with HNPCC tend to expand stomach and colon cancer
before age 50.

� Familial adenomatous polyposis (FAP). FAP is a rare confusion that causes
you to expand thousands of polyps in the inside layer of your stomach
and colon and rectum. People with unprocessed FAP have a very much-
increased risk of developing stomach and colon cancer before age 40.

4.2 Analysis of the problem

Our aim in this study to find the recommendations for patients show them ap-
propriately greeted approach combines treatment and exercise to reach results
explain the function of each presentation of the positive and negative impact on
the patient. The decision of the Physician, according to the medical reports is
the continuation of the medical tests are all for another or off the medical ana-
lyzes the patient’s condition is stable loft insensitively to healthy style workout
constantly.
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4.3 Problem formulation

According to the medical reports requested by the doctor for patients in this
case the following attributes:

1) Liver Functions: of the type S. GPT (Natural percent between 0 to 45 U/L)
and of the type S. GOT (Natural percent between 0 to 37 U/L).

2) Kidney Functions: The measurements of uric acid in the blood (Uric Acid
varies between 3 to 7 mg/dl).

3) Fats Percentage: Fats in the blood are divided into two types, the cholesterol
level that has a natural range less than 200 mg/dl. The border range is
between 200 to 240 mg/dl. The critical range of it that causes arteriosclerosis
or heart is higher than 240 mg/dl. Second, the so-called triglycerides range
that has reference up to 150 mg/dl.

4) Heart Efficiency: we measured the enzyme (Serum LDH) that has ranged
reference between 0 to 480 U/L.

5) Signs of Tumors: we tested the digestive system through the scale (CEA)
and normal Non-smoking rooms if less than 5 mg/ml. The other measure
so-called CA 19.9 and extent of reference from 0 to 39 U/ml.

6) Viruses Hepatitis: Test the patient’s immunity against of viruses of type B
(HBC) and of type C (Highly infectious) furthermore is positive or negative.

7) Blood Sugar: The patient measurement of sugar of fasting for 6 hours, and
an hour after eating, and then two hours after eating.

The results of the seven patients were collected from official files in the
physician, which has been done after six months of surgery (see Table 4).

Patients ID Age LF1 LF2 VH1 VH2 KF FP1 FP2 HE ST1 ST2 BS D

P1 12 63 45 N N 11.2 180 210 526 36 44 N C

P2 5 50 44 N P 4.7 255 188 512 11 26 N C

P3 18 34.5 23 N N 5.6 177 112 430 16 36 P S

P4 22 55 33 P P 14.2 311 240 515 28 49 P S

P5 8 36 22 N N 6.3 166 99 310 11 23 N C

P6 13 49 50 P N 8.5 230 120 420 18 24 N C

P7 15 57.5 41 N P 7.6 206 144 460 17 25 P S

Table 4: Medical Decision Information System
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We define a suitable relation for each attribute and apply our approach on
this data as follows.

Rage = {(x, y) : |fage(x)− fage(y)| ≤ 3},
RLF1 = {(x, y) : fFL1(x) and fFL1(y) ≤ 45 or fFL1(x) and fFL1(y) > 45},
RLF2 = {(x, y) : fFL2(x) and fFL2(y) ≤ 37 or fFL2(x) and fFL2(y) > 37},
RV H1 = {(x, y) : fV H1(x) = fV H1(y)},
RV H2 = {(x, y) : fV H2(x) = fV H2(y)},
RKF = {(x, y) : 3 ≤ fKF (x) and fKF (y) ≤ 7, fKF (x) and fKF (y) < 3 or

fKF (x) and fKF (y) > 7},
RFP1 = {(x, y) : 200 ≤ fFP1(x) and fFP1(y)≤240, fFP1(x) and fFP1(y)<200

or fFP1(x) and fFP1(y) > 240},
RFP2 = {(x, y) : fFP2(x) and fFP2(y) ≤ 150 or fFP2(x) and fFP2(y) > 150},
RHE = {(x, y) : fHE(x) and fHE(y) ≤ 480 or fHE(x) and fHE(y) > 480},
RST1 = {(x, y) : fST1(x) and fST1(y) ≤ 5 or fST1(x) and fST1(y) ≤ 15 or

fST1(x) and fST1(y) > 15},
RST2 = {(x, y) : fST2(x) and fST2(y) ≤ 39 or fST2(x) and fST2(y) > 39},
RBS = {(x, y) : fBS(x) = fBS(y)}.

Hence, we compute the basis of every relation as we did before in Example 2 to
get the following bases.

β1 = {{3, 7}, {1, 3, 6, 7}, {1, 6, 7}, {2, 5}, {7}, {4}},
β2 = {{3, 5}, {1, 2, 4, 6, 7}},
β3 = {{1, 2, 6, 7}, {3, 4, 5}},
β4 = {{1, 2, 3, 5, 7}, {4, 6}},
β5 = {{1, 3, 5, 6}, {2, 4, 7}},
β6 = {{2, 3, 5}, {1, 4, 6, 7}},
β7 = {{1, 3, 5}, {6, 7}, {2, 4}},
β8 = {{1, 2, 4}, {3, 5, 6, 7}},
β9 = {{1, 2, 4}, {3, 5, 6, 7}},
β10 = {{2, 5}, {1, 3, 4, 6, 7}},
β11 = {{1, 4}, {2, 3, 5, 6, 7}},
β12 = {{1, 2, 5, 6}, {3, 4, 7}},

hence the multi-granular knowledge base will be as follows

≬12i=1 βi = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}

and Mτ is the topology generated by the base ≬12i=1 βi. Now we want to ap-
proximate the concept XC = {p1, p2, p5, p6} represent the set of patients with



308 S. HUSSEIN, A.S. SALAMA and A.K. SALAH

decision C (continue check up)

Mτ − int(XC) = {p1, p2, p5, p6} =Mτ − cl(XC)

so, the accuracy of approximating the concept XC only with information in
the data table is 100 % and when we apply the basis reduct algorithm we get
the bases β7, β11, β12 is a reduct of β1, β2, . . . , β12. This reduct represent the
information of the whole table where ≬ {β7, β11, β12} =≬12i=1 βi so we use it
instead of the 12th bases.

After reduction the table of information reduced to be as in Table 5 and has
the same structure of original data in Table 4 where {β7, β11, β12} represent the
attributes {FP1, ST2, BS} respectively. From this reduct we get the decision
rules to be used in the decision making in the future tests by a decision program.

Patients ID FP1 ST2 BS D

P1 180 44 N C

P2 255 26 N C

P3 177 36 P S

P4 311 49 P S

P5 166 23 N C

P6 120 24 N C

P7 206 25 P S

Table 5: Reduct Information System

4.4 Results analysis

This method of dividing patient data from the results of the 12 medical examina-
tions has been reduced to only three tests to being sufficient to make the right
decision for these patients. There are other alternatives for decision-making
where using the pathological method of data analysis and division, we have
been able to find more than one reduction of medical examinations and each
patient can choose the appropriate alternative in terms of financial capacity and
likelihood.

5. Conclusions and future works

The amount of research papers available online on the topological application is
growing and this growth has generated a need for a unifying theory to compare
the results. Also, we need new techniques and tools that can intelligently and
automatically extract implicit knowledge from these data.

These tools and technicality are the subjects of future research trends using
general topological concepts. We deduce that the development of topology in
the construction of some knowledge base concepts will help to get rich results
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that yield a lot of logical statements that discover hidden relationships among
data and moreover, probably help in producing accurate rules.

In future papers, we hope to study more generalizations using topological
concepts such as near open and near closed sets. And apply these generalized
concepts to realistic medical data of large size. The topic of multivariate data
reduction can also be studied using generalized topological concepts.

The following are some problems and lines for future study:

1. Developing a unifying theory of topological generalizations that using
rough concepts.

2. Scaling up for design topological softwares to handle big dimensional clas-
sification problems.

3. Topological methods for mining complex knowledge from complex data.

Abbreviations

Gmint Generalized multi interior.

Gmcl Generalized multi closure.

GMgTRS Generalized multi-granular topological rough space.
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Abstract. The present study concerns the oscillation of a class of fourth-order nonlin-
ear damped delay differential equations with distributed deviating arguments. We offer
a new description of oscillation of the fourth-order equations in terms of oscillation of
a related well studied second-order linear differential equation without damping. Some
new oscillatory criteria are obtained by using the generalized Riccati transformation, in-
tegral averaging technique and comparison principles. The effectiveness of the obtained
criteria is illustrated via example.
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1. Introduction

The purpose of this work, we are concerned with fourth-order nonlinear damped
delay differential equations with distributed deviating arguments

(
x2(µ)

(
x1(µ)

(
u′′(µ)

)α)′)′
+ p(µ)

(
u′′(δ(µ))

)α
+

∫ d

c
q(µ, ϱ)f(µ, u(g(µ, ϱ)))dϱ = 0,(E1)

*. Corresponding author
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where α ≥ 1 is a quotient of odd positive integers and c < d. Throughout this
paper, we use the following assumptions:

x1, x2, p, δ ∈ C
(
I, [0,∞)) and x1, x2 > 0, where I = [µ0,+∞);

q, g ∈ C[I × [c, d], [0,∞)), δ(µ) ≤ µ,
limµ→+∞ δ(µ) =∞, g(µ, ϱ) is a nondecreasing

function for ϱ ∈ [c, d] satisfying g(µ, ϱ) ≤ µ and limµ→+∞ g(µ, ϱ) =∞;

f ∈ C(R,R), there exists a contacts k1 > 0 such that f(µ, u(µ))/uβ ≥ k1.

We define the operators,

L[0]u = u, L[1]u = u′, L[2]u = x1
((
L[0]u

)′′)α
, L[3]u = x2

(
L[2]u

)′
, L[4]u = (L[3]u)′.

By a solution to (E1), we mean a function u(µ) in C2[Tu,∞) for which
L[2]u, L[4]u is in C1[Tu,∞) and (E1) is satisfied on some interval [Tu,∞), where
Tu ≥ µ0. We consider only solutions u(µ) for which sup{|u(µ)| : µ ≥ T} > 0
for all T ≥ Tu. A solution of (E1) is called oscillatory if it is neither even-
tually positive nor eventually negative on [Tu,∞) and otherwise, it is said to
be nonoscillatory. The equation itself is termed oscillatory if all its solutions
oscillate.

We define

A1(µ1, µ) =

∫ µ

µ1

x
−1/α
1 (s)ds,

A2(µ1, µ) =

∫ µ

µ1

x−1
2 (s)ds,

A3(µ1, µ) =

∫ µ

µ1

((
x1(s)

)−1
A2(µ1, s)

)1/α
ds,

A4(µ1, µ) =

∫ µ

µ1

∫ u

µ1

((
x1(s)

)−1
A2(µ1, s)

)1/α
ds du,

for µ0 ≤ µ1 ≤ µ <∞ and assume that

A1(µ1, µ)→∞, A2(µ1, µ)→∞ as µ→∞.(1)

In mathematical representations of numerous physical, chemical phenom-
ena and biological, fourth-order differential equations are very commonly en-
countered [1, 3]. Applications involve, for example, problems with elasticity,
structural deformation or soil settlement. Questions related to the presence
of oscillatory and nonoscillatory solutions play an important role in mechani-
cal and engineering problems [5]. Many authors have extensively studied the
problem of the oscillation of fourth (higher) order differential equations, in-
cluding many techniques for obtaining oscillatory criteria for fourth (higher)
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order differential equations. Several studies have had very interesting results
related to oscillatory properties of solutions of neutral differential equations and
damped delay differential equations with/without distributed deviating argu-
ments [4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Dzurina et al. [8] presented oscillation results for a fourth-order equation(
r3(µ)

(
r2(µ)(r1(µ)y

′(µ))
)′)′

+ p(µ)y′(µ) + q(µ)y(τ(µ)) = 0.

More precisely, the existing literature does not provide any criteria for the os-
cillation of Eq. (E1). Inspired by the above papers, in this paper, using suit-
able Riccati type transformation, integral averaging condition, and comparison
method, we present some sufficient conditions which insure that any solution of
Eq. (E1) oscillates when the associated second order equation

(x2(µ)z
′(µ))′ +

p(µ)

x1(δ(µ))
z(µ) = 0,(E2)

is oscillatory or nonoscillatory.

2. Basic lemmas

In this section, we state and prove some Lemmas that are frequently used in the
remainder of this paper.

Lemma 2.1 ([9]). Assume that (E2) is nonoscillatory. If Eq. (E1) has a
nonoscillatory solution u(µ) on I, µ1 ≥ µ0, then there exists a µ2 ∈ I such that
u(µ)L[2]u(µ) > 0 or u(µ)L[2]u(µ) < 0 for µ ≥ µ2.

Lemma 2.2. If Eq. (E1) has a nonoscillatory solution u(µ) which satisfies
u(µ)L[2]u(µ) > 0 in Lemma 2.1 for µ ≥ µ1 ≥ µ0. Then,

L[2]u(µ) > A2(µ1, µ)L
[3]u(µ), µ ≥ µ1,(2)

L[1]u(µ) > A3(µ1, µ)
(
L[3]u(µ)

)1/α
, µ ≥ µ1,(3)

and

u(µ) > A4(µ1, µ)
(
L[3]u(µ)

)1/α
, µ ≥ µ1.(4)

Proof. If Eq. (E1) has a non-oscillatory solution u. We assume that there
exists a µ1 ≥ µ0 such that u(µ) > 0 and u(g(µ, ϱ)) > 0 for µ ≥ µ1. From Eq.
(E1), we have

L[4]u(µ) = −
( p(µ)

x1(δ(µ))

)
L[2]u(δ(µ))− k1

∫ d

c
q(µ, ϱ)uβ(g(µ, ϱ))dϱ ≤ 0,

and L[3]u(µ) is non increasing on I, we get

L[2]u(µ) ≥
∫ µ

µ1

(
L[2]u(s)

)′
ds =

∫ µ

µ1

(x2(s))
−1L[3]u(s) ds ≥ A2(µ1, µ)L

[3]u(µ),



ON THE OSCILLATORY BEHAVIOR OF A CLASS OF FOURTH ORDER NONLINEAR ... 315

this implies that

u′′(µ) ≥
(
L[3]u(µ)

)1/α(
(x1(µ))

−1A2(µ1, µ)
)1/α

.

Now, twice integrating above from µ1 to µ and using L[3]u(µ) ≤ 0, we find

u′(µ) ≥
(
L[3]u(µ)

)1/α ∫ µ

µ1

(
(x1(s))

−1A2(µ1, s)
)1/α

ds

and

u(µ) ≥
(
L[3]u(µ)

)1/α ∫ µ

µ1

∫ u

µ1

(
(x1(s))

−1A2(µ1, s)
)1/α

ds du for µ ≤ µ1.

Lemma 2.3 ([11]). Let ξ ∈ C1(I,R+), ξ(µ) ≤ µ, ξ′(µ) ≥ 0 and G(µ) ∈
C(I,R+) for µ ≥ µ0. Assume that y(µ) is a bounded solution of second order
delay differential equation(

x2(µ) y
′(µ))′ −Θ(µ) y(ξ(µ)) = 0.(E3)

If

lim sup
µ→∞

∫ µ

ξ(µ)
Θ(s)A2(ξ(µ), ξ(s)) ds > 1(5)

or

lim sup
µ→∞

∫ µ

ξ(µ)

((
x2(µ)

)−1
∫ µ

u
Θ(s) ds

)
du > 1,(6)

where x2(µ) is as in (E1). Then the solutions of (E3) are oscillatory.

3. Oscillation-comparison principle method

In this section, we shall establish some oscillation criteria for Eq. (E1). For
convenience, we denote

Q(µ) =
( p(µ)

x1(δ(µ))

)
A2(µ1, δ(µ)), ψ(µ) = exp

(∫ µ

µ1

Q(s)ds
)
,

q̃(µ, ϱ) =

∫ d

c
q(µ, ϱ) dϱ, Θ∗(µ) = k1 q̃(µ, ϱ)

(
A4(µ1, g(µ, d))

)β
.

Theorem 3.1. Assume α ≥ β and the conditions (1) hold, Eq. (E2) is nonoscil-
latory. Suppose there exists a ξ ∈ C1(I,R) such that

g(µ, ϱ) ≤ ξ(µ) ≤ δ(µ) ≤ µ, ξ′(µ) ≥ 0 for µ ≥ µ1,
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and (5) or (6) holds with

Θ(µ) = ℓ∗ k1q̃(µ, ϱ)g
β(µ, d)

(
A1(ξ(µ), g(µ, d))

)β − p(µ)

x1(δ(µ))
≥ 0, µ ≥ µ1,

for constant ℓ∗ > 0. Moreover, suppose that every solution of the first-order
delay equation

z′(µ) + ψ1− β
α (g(µ, d))Θ∗(µ) z

β
α (g(µ, d)) = 0.(7)

Then every solution of Eq. (E1) is oscillatory.

Proof. Let Eq. (E1) has a nonoscillatory solution u(µ). Assume that, there
exists a µ ≥ µ1 such that u(µ) > 0 and u(g(µ, ϱ)) > 0 for some µ ≥ µ0. From
Lemma 2.1, u(µ) has the conditions either L[2]u(µ) > 0 or L[2]u(µ) < 0 for
µ ≥ µ1.

Assume u(µ) has the condition L[2]u(µ) > 0, for µ ≥ µ1, then one can easily
see that L[3]u(µ) > 0 for µ ≥ µ1. We can choose µ2 ≥ µ1 such that g(µ, ϱ) ≥ µ1
for µ ≥ µ2, g(µ, ϱ) → ∞ as µ→∞ and we have (4),

u(g(µ, d)) > A4(µ1, g(µ, d))
(
L[3]u(g(µ, d))

)1/α
, µ ≥ µ2.(8)

By substituting (2), (8) in Eq. (E1) and L
[3]u(µ) is decreasing, then(

L[3]u(µ)
)′

+
( p(µ)

x1(δ(µ))

)
L[3]u(µ)A2(µ1, δ(µ))

+k1 q̃(µ, ϱ)
(
A4(µ1, g(µ, d))

)β(
L[3]u(g(µ, d))

)β/α
≤ 0.(9)

Take ϕ = L[3]u, we have

ϕ′(µ) +Q(µ)ϕ(µ) + Θ∗(µ)ϕ
β
α (g(µ, d)) ≤ 0(10)

or (
ψ(µ)ϕ(µ)

)′
+ ψ(µ)Θ∗(µ)ϕ

β
α (g(µ, d)) ≤ 0, for µ ≥ µ2.(11)

Next, setting z = ψ ϕ > 0 and ψ(g(µ, d)) ≤ ϕ(µ), thus we have

z′(µ) + ψ1− β
α (g(µ, d))Θ∗(µ)z

β
α (g(µ, d)) ≤ 0.(12)

This means (12) is a positive for this inequality. Also, by [[2], Corollary 2.3.5],
it can be seen that (3.1) has a positive solution, a contradiction.

Next, assume u(µ) has the condition L[2]u(µ) < 0, for µ ≥ µ1, then one can
easily see that L[1]u(µ) ≥ 0 , L[3]u(µ) > 0 for µ ≥ µ3(≥ µ2). Using monotonicity
of u′(µ) and mean value property of differentiation there exists a θ ∈ (0, 1) such
that

u(µ) ≥ θ µ u′(µ), for µ ≥ µ3.(13)
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Set w(µ) = L[1]u(µ), then w′(µ) = u′′(µ) < 0. Using (13) in Eq. (E1) we get(
x2(µ)

(
x1(µ)

[
w′(µ)

]α)′)′
+ p(µ)(w′(δ(µ)))α + k1 (µθ)

β q̃(µ, ϱ)wβ(g(µ, d)) ≤ 0,

and so
(
x1(µ)

[
w′(µ)

]α)
< 0, we have

(
x1(µ)

[
w′(µ)

]α)′
> 0 for µ ≥ µ3.

Now, for v ≥ u ≥ µ3, we get

w(u) > w(u)− w(v) = −
∫ v

u
−x−1/α

1 (τ)(x1(τ)(w
′(τ))α)1/αdτ

≥ x
1/α
1 (v)(−w′(v)))

(∫ v

u
x
−1/α
1 (τ)dτ

)
= x

1/α
1 (v)(−w′(v))A1(u, v).

Taking u = ξ(µ) and v = g(µ, d), we obtain

w(g(µ, d)) > A1(g(µ, d), ξ(µ))
(
x
1/α
1 (ξ(µ))(−w′(ξ(µ)))

)
= A1(g(µ, d), ξ(µ)) y(ξ(µ)),

where y(µ) = x
1/α
1 (ξ(µ))(−w′(ξ(µ))

)
> 0 for µ ≥ µ3. From Eq. (E1), we have

that y(µ) is decreasing and g(µ, d) ≤ ξ(µ) ≤ δ(µ) ≤ µ, we get

(x2(µ)z
′(µ))′ +

p(µ)

x1(δ(µ))
z(δ(µ))

≥ k1 (θg(µ, d))β q̃(µ, ϱ)A1(g(µ, d), ξ(µ))z
β
α
−1(ξ(µ))z(ξ(µ)).

Since z is decreasing and α ≥ β, there exists a constant ℓ such that z
β
α
−1(µ) ≥ ℓ

for µ ≥ µ3. Thus, we obtain

(x2(µ)z
′(µ))′ ≥

(
ℓ k1 (θ g(µ, d))

β q̃(µ, ϱ)A1(g(µ, d), ξ(µ))−
p(µ)

x1(δ(µ))

)
z(ξ(µ)).

Proceeding the rest of the proof in Lemma (2.3), we arrive at the required
conclusion, and so is omitted.

4. Oscillation-Riccati method

This section deals with some oscillation criteria for Equation Eq. (E1) by using
Ricatti Method.

Theorem 4.1. Assume α ≥ β and the conditions (1) hold, Eq. (E2) is nonoscil-
latory. Suppose there exists η, ξ ∈ C1(I,R) such that g(µ, ϱ) ≤ ξ(µ) ≤ δ(µ) ≤ µ,
ξ′(µ) ≥ 0 and η > 0 for µ ≥ µ1 with

lim sup
µ→∞

∫ µ

µ5

(
k1 η(s) q̃(s, ϱ)−

A2(s)

4B(s)

)
ds =∞ for all µ1 ∈ I,(14)
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where, for µ ≥ µ1,

A(µ) =
η′(µ)

η(µ)
− p(µ)

x1(δ(µ))
A2(µ1, δ(µ))(15)

and

B(µ) =
β ℓβ−α

2 g′(µ, d)

η(µ)

(
A4(µ1, g(µ, d))

)β−1(
A3(µ1, g(µ, d))

)1/α
,(16)

also (5) or (6) holds with Θ(µ) as in Theorem 3.1. Then, every solution of Eq.
(E1) is oscillatory.

Proof. Let Eq. (E1) has a nonoscillatory solution u(µ). Assume that, there
exists a µ ≥ µ1 such that u(µ) > 0 and u(g(µ, ϱ)) > 0 for some µ ≥ µ0. From
Lemma 2.1, u(µ) has the conditions either L[2]u(µ) > 0 or L[2]u(µ) < 0 for
µ ≥ µ1. If condition L

[2]u(µ) < 0 holds, the proof is follows from Theorem 3.1.
Next, if condition L[2]u(µ) > 0 holds. Define

ω(µ) = η(µ)
L[3]u(µ)

uβ(g(µ, d))
, µ ∈ I,(17)

then ω(µ) > 0 for µ ≥ µ1. From (4) and L[4]u(µ) < 0, we have

ω(µ) = η(µ)
L[3]u(µ)

uβ(g(µ, d))
≤ η(µ)L

[3]u(g(µ, d))

uβ(g(µ, d))

≤ η(µ)(A4(µ1, g(µ, d)))
−αuα−β(g(µ, d)),(18)

for µ ≥ µ1. From (3) and definition L[2]u(µ), we find

u′(g(µ, d)) = L[1]u(g(µ, d)) ≥ A3(µ1, g(µ, d))(L
[3]u(δ(µ)))1/α

≥ A3(µ1, g(µ, d))(L
[3]u(g(µ, d)))1/α.

Then

u′(g(µ, d))

u(g(µ, d))
≥

(
A3(µ1, g(µ, d))

η(δ(µ))

)1/α
η1/α(δ(µ))(L[3]u(µ))1/α

uβ/α(g(δ(µ), d))
uβ/α−1(g(δ(µ), d))

=

(
A3(µ1, g(µ, d))

η(µ)

)1/α

ω1/α(µ)uβ/α−1(g(δ(µ), d)).(19)

Also, since there exists a constant ℓ1 and µ2 ≥ µ1 such that for L[3]u(µ) ≤
L[3]u(µ2) = ℓ1. Therefore,

L[2]u(µ) = L[2]u(µ2) +

∫ µ

µ2

(L[2]u(s))′ds ≤ L[2]u(µ2) + ℓ1

∫ µ

µ2

ds

x2(s)

= L[2]u(µ2) + ℓ1A2(µ2, µ) =

[
L[2]u(µ2)

A2(µ2, µ)
+ ℓ1

]
A2(µ2, µ)

≤

[
L[2]u(µ2)

A2(µ2, µ3)
+ ℓ1

]
A2(µ2, µ) = ℓ∗1A2(µ2, µ),(20)
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holds for all µ ≥ µ2, where ℓ∗1 = ℓ1 +
L[2]u(µ1)
A2(µ2,µ3)

, this implies that,

u′(µ) = u′(µ3) +

∫ µ

µ3

u′′(s)ds ≤ u′(µ3) +
∫ µ

µ3

(
ℓ∗1A2(µ2, s)

x1(s)

)1/α

ds

= u(µ3) +
(
ℓ∗1
)1/α

A3(µ3, µ) = ℓ2A3(µ3, µ),

holds for all µ ≥ µ3(≥ µ2), where ℓ2 = u(µ2)
A3(µ3,µ4)

+ (ℓ∗1)
1/α. Then

u(µ) = u(µ4) +

∫ µ

µ4

u′(s)ds ≤ u(µ4) +
∫ µ

µ4

(
ℓ2A3(µ3, s)

)
ds

= u(µ4) + ℓ2A4(µ4, µ) = ℓ∗2A4(µ4, µ),(21)

holds for all µ ≥ µ4(≥ µ3),where ℓ∗2 =
u(µ4)

A4(µ4,µ1)
+ ℓ2. Further

uβ/α−1(g(µ, d)) ≥
(
ℓ∗2
)β/α−1(

A4(µ4, g(µ, d))
)β/α−1

, µ ≥ µ4.(22)

By using (21) in (18), we obtain

ω(µ) ≤
(
ℓ∗2
)α−β

η(µ) (A4(µ1, g(µ, d)))
−β,(23)

and hence

ω
1
α
−1(µ) ≤

(
ℓ∗2
)(α−β)( 1

α
−1)

η
1
α
−1(µ) (A4(µ1, g(µ, d)))

−β( 1
α
−1).(24)

Now differentiating (17), we get

ω′(µ) =
η′(µ)

η(µ)
ω(µ) +

L[4]u(µ)

L[3]u(µ)
ω(µ)− βg′(µ, d)u

′(g(µ, d))

u(g(µ, d))
ω(µ).(25)

Using Eq. (E1), (2) in (25), we have

ω′(µ) ≤
[η′(µ)
η(µ)

− p(µ)

x1(g(µ, d))
A2(µ4, g(µ, d))

]
ω(µ)

−k1η(µ)q̃(µ, ϱ)− βg′(µ)
u′(g(µ, d))

u(g(µ, d))
ω(µ)

≤ A(µ)ω(µ)− k1η(µ)q̃(µ, ϱ)− βg′(µ)
u′(g(µ, d))

u(g(µ, d))
ω(µ).(26)

By using (19), (22) and (25) in (26), we have

ω′(µ) ≤ A(µ)ω(µ)− k1η(µ)q̃(µ, ϱ)

−β ℓ
β−α
2 g′(µ)

η(µ)

(
A4(µ1, g(µ, d))

)β−1(
A3(µ1, g(µ, d))

)1/α
ω2(µ)

= A(µ)ω(µ)− k1η(µ)q̃(µ, ϱ) +B(µ)ω2(µ)(27)

= −k1η(µ)q̃(µ, ϱ) +

[√
B(µ)ω(µ)− 1

2

A(µ)√
B(µ)

]2
+

1

4

A2(µ)

B(µ)

≤ −k1η(µ)q̃(µ, ϱ) +
1

4

A2(µ)

B(µ)
.(28)
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Integrating (28) from µ5(> µ4) to µ gives∫ µ

µ5

(
k1 η(s) q̃(s, ϱ)−

1

4

A2(s)

B(s)

)
ds ≤ ω(µ5),(29)

which contradicts (14).

Corollary 4.1. Assume α ≥ β and the conditions (1) hold, Eq. (E2) is
nonoscillatory. Suppose there exists η, ξ ∈ C1(I,R) such that g(µ, ϱ) ≤ ξ(µ) ≤
δ(µ) ≤ µ, ξ′(µ) ≥ 0 and η > 0 for µ ≥ µ1 such that the function A(µ) ≤ 0,

lim sup
µ→∞

∫ µ

µ5

(
η(s) q̃(s, ϱ)

)
ds =∞ for all µ1 ∈ I,(30)

where A(µ) is defined in (15), also (5) or (6) holds with Θ(µ) as in Theorem
3.1. Then every solution of Eq. (E1) is oscillatory.

Next, we examine the oscillation results of solutions of (E1) by Philos-type.
Let D0 = {(µ, s) : a ≤ s < µ < +∞} , D = {(µ, s) : a ≤ s ≤ µ < +∞} the
continuous function H(µ, s), H : D→ R belongs to the class function R

(i) H(µ, µ) = 0 for µ ≥ µ0 and H(µ, s) > 0 for (µ, s) ∈ D0,

(ii) H has a continuous and non-positive partial derivative on D0 with respect
to the second variable such that

−∂H(µ, s)

∂s
= h(µ, s)[H(µ, s)]1/2,

for all (µ, s) ∈ D0.

Theorem 4.2. Assume α ≥ 1 and the conditions (1) hold, Eq. (E2) is nonoscil-
latory. Suppose there exists η, ξ ∈ C1(I,R) such that g(µ, ϱ) ≤ ξ(µ) ≤ δ(µ) ≤ µ,
ξ′(µ) ≥ 0, η > 0 and H(µ, s) ∈ R for µ ≥ µ1 with

lim sup
µ→∞

1

H(µ, µ5)

∫ µ

µ5

(
k1 η(s) q̃(s, ϱ)H(µ, s)− P 2(µ, s)

4B(s)

)
ds =∞,(31)

for all µ1 ∈ I, where P (µ, s) = h(µ, s) − A(s)
√
H(µ, s) and A(µ), B(µ) are

defined in Theorem 4.1, also (5) or (6) holds with Θ(µ) as in Theorem 3.1.
Then every solution of Eq. (E1) is oscillatory.

Proof. Let Eq. (E1) has a nonoscillatory solution u(µ). Assume that, there
exists a µ ≥ µ1 such that u(µ) > 0 and u(g(µ, ϱ)) > 0 for some µ ≥ µ0.
Proceeding as in the proof of Theorem 4.1, we obtain the inequality (27), i.e.,

ω′(µ) ≤ A(µ)ω(µ)− k1η(µ)q̃(µ, ϱ) +B(µ)ω2(µ),
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and so,∫ µ

µ5

H(µ, s)η(s)q̃(s, ϱ)ds ≤
∫ µ

µ5

H(µ, s)[−ω′(s) +A(s)ω(s)−B(s)ω2(s)]ds

= −H(µ, s)
[
ω(s)

]µ
µ5

+

∫ µ

µ5

[∂H(µ, s)

∂s
ω(s)

+H(µ, s)
[
A(s)ω(s)−B(s)ω2(s)

]]
ds

= H(µ, µ5)ω(µ5)−
∫ µ

µ5

[
ω2(s)B(s)H(µ, s)

+ω(s)
(
h(µ, s)

√
H(µ, s)−H(µ, s)A(s)

)]
ds

≤ H(µ, µ5)ω(µ5) +

∫ µ

µ5

P 2(µ, s)

4B(s)
ds,

which contradicts to (31). The rest of the proof is similar to that of Theorem
4.1 and hence is omitted.

5. Examples

Below, we present a example to show application of the main results.

Example 5.1. For µ ≥ 1, consider fourth order differential equation

(32)
(
1/2µ

(
9e−µ(µ)

(
u′′(µ)

))′)′
+ 36e−s/2u(ii)(

µ

2
) +

∫ 2

1

µ

3
u(ϱ, 36eµ/3)dϱ = 0.

Here, x1 = 9e−µ, x2 = 1/2µ, α = β = 1, p(µ) = 36e−s/2, q(µ, ϱ) = µ/3 and
δ(µ) = µ/2, g(µ, ϱ) = µ/3. Now Pick η(µ) = 36eµ/3, we obtain

A1(µ1, µ) =

∫ µ

1
(9es)−1ds = 9(eµ − e),

A2(µ1, µ) =

∫ µ

1
2s ds = µ2 − 1 = (µ+ 1)(µ− 1),

A3(µ1, µ/3) =

∫ µ/3

1
(9es)−1(s2 − 1)ds = eµ/3(µ− 3)2,

q̃(s, ϱ) =
s

3

∫ 2

1
dϱ = s/3,

A2(s) = (3µ2−5)2

9 and B(s) = (s−3)2

36 . Now,

lim sup
µ→∞

∫ µ

2

(
k1 η(s) q̃(s, ϱ)−

A2(s)

4B(s)

)
ds

= lim sup
µ→∞

∫ µ

2

(
12k1 s e

s/3 −
(3s2 − 5

s− 3

)2)
ds→∞ as µ→∞,

and all hypotheses of Theorem 4.1 are satisfied, so every solution of (32) is
oscillatory.
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6. Conclusions

It is clear that the form of problem Eq. (E1) is more general than all the
problems considered in the study. In this paper, using the suitable Riccati type
transformation, integral averaging condition, and comparison method, we offer
some oscillatory properties which ensure that any solution of Eq. (E1) oscillates
under assumption of A1(µ1, µ) → ∞, A2(µ1, µ) → ∞ as µ → ∞. Also, it
would be useful to extend oscillation criteria of Eq. (E1) under the condition
of A1(µ1, µ) < ∞, A2(µ1, µ) < ∞ as µ → ∞. In addition, we can consider the
oscillation of Eq. (E1) when equation Eq. (E2) is oscillatory, and we can try to
get some oscillation criteria of Eq. (E1) if p(t) < 0 in the future work.
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Abstract. In this article, Intuitionistic Triangular Neutrosophic Fuzzy Graph of
Shortest Path Problem was Inaugurated, which is drew on triangular numbers and
Intuitionistic Neutrosophic Fuzzy Graph. Real-world application is given as an illustra-
tive model for Intuitionistic Triangular Neutrosophic Fuzzy Graph. Here we introduced
famous chola period temples. These types of temples builted in various king of cholas.
Here we assume only seven types of temples as vertices of Intuitionistic Triangular Neu-
trosophic Fuzzy Graph. Use of fuzzification method, edge weights of this Graph was
calculated. Score function of Intuitionistic Triangular Neutrosophic Fuzzy Graph is in-
augurated, with the help of this score function in the proposed algorithm, shortest way
is determined.. This present Chola period temples Shortest Path Problem. Obtained
shortest path is verified through Dijkstra’s Algorithm with the help of Python Jupyter
Notebook (adaptation) programming.
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1. Introduction

The creators of, Ahuja [1] examined systematic execution of Dijkstra’s calcula-
tion. Arsham [2] introduced another crucial arrangement calculation which per-
mits affectability examination without utilizing any counterfeit, slack or surplus
factors. Anusuya [3] apply positioning capacity for briefest way issue. Broumi
[4] proposed for extend esteemed Neutrosophic Number. Broumi [5] presented
Neutrosophic charts with most limited way issues. Broumi [6] proposed calcu-
lation gives Shortest way issue on single esteemed Neutrosophic charts. Broumi
[7] proposed the Shortest way under Bipolar Neutrosophic setting. Broumi [8]
gave the Shortest way issue under span esteemed Neutrosophic setting. Chi-
ranjibe Jana [9] Presented Trapezoidal Neutrosophic aggregation operators and
its application in multiple attribute decision making process. De [10] Compu-
tation of Shortest Path in a Fuzzy organization. De [11] Study on Ranking of
Trapezoidal Intuitionistic Fuzzy Numbers. Enayattabar [12] introduced Dijk-
stra calculation for briefest way issue under Pythagorean Fuzzy climate. Jana
[13] presented stretch esteemed Trapezoidal Neutrosophic Set. Jayagowri [14]
discover Optimized Path in a Network utilizing Trapezoidal Intuitionistic Fuzzy
Numbers. Kalaiarasi [15] determine fuzzy optimal total cost and fuzzy optimal
order quantity obtained by Ranking function method and Kuhn-tucker method
for the proposed Inventory model. Kalaiarasi [16] constructed Inventory param-
eters that are Fuzzy using Trapezoidal Fuzzy Numbers. Kumar [17] proposed to
tackling briefest way issue with edge weight. Kumar [18] introduced Algorithm
for most limited way issue in an organization with span esteemed Intuitionistic
Trapezoidal Fuzzy Number. Kumar [19] presented the SPP from an underly-
ing hub to an objective hub on Neutrosophic chart. Majumdar [20] introduced
an Intuitionistic Fuzzy most brief way organization. Nagoor Gani [21] look-
ing Intuitionistic Fuzzy most brief organization. Ojekudo Nathaniel akpofure
[22] tended to the most brief way utilizing Dijkstra’s calculation. Said broumi
[23] processing the most brief way Neutrosophic Information. Smarandache [24]
summed up the Fuzzy rationale and presented two Neutrosophic ideas. Victor
christianto [25] gave a Neutrosophic approach to futurology. Wang [26] con-
tributed Neutrosophic sets with their properties. Xu [27] introduced a strate-
gies for amassing span esteemed Intuitionistic Fuzzy data, Yang [28] introduced
rectangular hindrance subject to various improvement capacities regarding the
quantity of curves. Ye [29] proposed a Trapezoidal Fuzzy Neural Computing and
Applications. Ye [30] developed of the Multi models dynamic strategy utilizing
shape liking measure, Ye [31] presented a Prioritized aggregation operators of
Trapezoidal Intuitionistic Fuzzy Sets and their Application.

Fuzzy graph theory is finding an increasing number in developing real time
applications in modeling systems with accuracy varying at different levels of
infor mation. The fuzzy set theory can play a significant role in this kind of
decision making environment to tackle the unknown or the vagueness about the
time du ration of activities in a project network. To effectively deal with the
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ambiguities involved in the process of linguistic estimate times. In the applied
field, the success of the use of fuzzy set theory depends on the choice of the
membership function that we make. However, there are applications in which
experts do not have precise knowledge of the function that should be taken. In
these cases, it is appropriate to represent the membership degree of each ele-
ment of the fuzzy set by means of an interval. From these considerations arises
the extension of fuzzy sets called the theory of interval-valued fuzzy sets. That
is, fuzzy sets such that the membership degree of each element of the fuzzy set
is given by a closed subinterval of the interval [0,1]. Replacing the member-
ship function of vertices and edges in fuzzy graphs by interval-valued fuzzy sets
such that they satisfy some particular conditions, interval valued fuzzy graphs
(IVFG) were defined. Thus IVFG provide a better description of vagueness and
uncertainty within the specific interval than the traditional fuzzy graph.

Triangular intuitionistic fuzzy numbers

Triangular intuitionistic fuzzy numbers (TIFNS) are a special kind of intuition-
istic fuzzy sets (IFSS) on a real number set. TIFNs are useful to deal with
ill-known quantities in decision data and decision making problems themselves.

Dijkstra’s Algorithm

The shortest path algorithm is given a weighted graph or digraph G = (V,E,W )
and two specified vertices V and W ; the algorithm finds a shortest path from
V to W . The distance from a vertex V to a vertex W (denote d(V,W )) is the
weight of a shortest path from V to W . Dijkstra’s shortest path algorithm will
find the shortest paths from V to the other vertices in order of increasing dis-
tance from V . The algorithm stops when it reaches W.

Here, in this paper disclosed the briefest way to Chola period temples uti-
lized the proposed calculation.

Intuitionistic fuzzy number gives more accuracy than fuzzy numbers. So
that intuitionistic fuzzy numbers are used for finding shortest path of a graph.
In this paper Dijkstra’s algorithm is the only algorithm suitable for verifying
our real world problem, because of the edge weight of fuzzy graph, rather than
other algorithms.

2. Methodology

In this section, we explain important notions of Intuitionistic Fuzzy Sets.

Definition 2.1 ([9]). Let n1 = [(t1, t2, t3), (t4, t5, t6)], [(i1, i2, i3), (i4, i5, i6)],
[(f1, f2, f3), (f4, f5, f6)] and n2 = [(T1, T2, T3), (T4, T5, T6)], [(I1, I2, I3), (I4, I5, I6)],
[(F1, F2, F3), (F4, F5, F6)]. Therefore, the conditions are
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1. n1 ⊕ n2 = ⟨[(t1 + T1 − t1T1, t2 + T2 − t2T2, t3 + T3 − t3T3),
(t4 + T4 − t4T4, t5 + T5 − t5T5, t6 + T6 − t6T6)],
[(i1I1, i2I2, i3I3), (i4I4, i5I5, i6I6)],
[(f1F1, f2F2, f3F3), (f4F4, f5F5, f6F6)]⟩.

2. n1 ⊗ n2 = ⟨[(t1T1, t2T2, t3T3), (t4T4, t5T5, t6T6)],
[(i1 + I1 − i1I1, i2 + I2 − i2I2, i3 + I3 − i3I3),
(i4 + I4 − i4I4, i5 + I5 − i5I5, i6 + I6 − i6I6)],
[(f1 + F1 − f1F1, f2 + F2 − f2F2, f3 + F3 − f3F3),
(f4 + F4 − f4F4, f5 + F5 − f5F5, f6 + F6 − f6F6)]⟩.

3. λn1 = ⟨[(1− (1− t1)
λ), (1− (1− t2)

λ), (1− (1− t3)
λ), (1− (1− t4)

λ), (1−
(1− t5)

λ), (1− (1− t6)
λ)],

[((i1)
λ, (i2)

λ, (i3)
λ), ((i4)

λ, (i5)
λ, (i6)

λ)],
[((f1)

λ, (f2)
λ, (f3)

λ), ((f4)
λ, (f5)

λ, (f6)
λ)]⟩, for λ > 0.

4. nλ1 = [((t1)
λ, (t2)

λ, (t3)
λ), ((t4)

λ, (t5)
λ, (t6)

λ)],
[1−(1−i1)λ, (1−(1−i2)λ), (1−(1−i3)λ), (1−(1−i4)λ), (1−(1−i5)λ), (1−
(1− i6)

λ)],
[(1 − (1 − f1)

λ), (1 − (1 − f2)
λ), (1 − (1 − f3)

λ), (1 − (1 − f4)
λ), (1 − (1 −

f5)
λ), (1− (1− f6)

λ)]⟩, for λ > 0.

Definition 2.2 ([9]). Let n = [(t1, t2, t3), (t4, t5, t6)], [(i1, i2, i3), (i4, i5, i6)],
[(f1, f2, f3), (f4, f5, f6)] be an intuitionistic triangular neutrosophic number, then
defined as their score functions

S(n) =
1

3

{
2 +

(
t4 + 2t5 + t6

4
− t1 + 2t2 + t3

4

)
−
(
i4 + 2i5 + i6

4
− i1 + 2i2 + i3

4

)
−
(
f4 + 2f5 + f6

4
− f1 + 2f2 + f3

4

)}
,(1)

S(n) ∈ [−1, 1],

where the higher value of S(n) larger the intuitionistic triangular number n.

3. Intuitionistic triangular neutrosophic fuzzy graph

Advantages of the proposed Algorithm
It is easy to understand a step wise representation and not dependent on any
programming language. So we introduce Intuitionistic Triangular Neutrosophic
Fuzzy Graph algorithm.
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Merits of Proposed Algorithms:

1. It is a step-wise representation of a solution to a given problem, which
makes it easy to understand.

2. An algorithm uses a definite procedure.

3. It is not dependent on any programming language, so it is easy to under-
stand for anyone even without programming knowledge.

4. Every step in an algorithm has its own logical sequence so it is easy to
debug.

5. By using algorithm, the problem is broken down into smaller pieces or steps
hence, it is easier for programmer to convert it into an actual program.

Demerits of Proposed Algorithms:

1. Alogorithms is Time consuming.

2. Difficult to show Branching and Looping in Algorithms.

3. Big tasks are difficult to put in Algorithms.

Algorithm:
In this research, we using proposed algorithm for finding shortest path.

Step 1. Let d1 = ⟨[(0, 0, 0), (0, 0, 0)], [(1, 1, 1), (1, 1, 1)], [(1, 1, 1), (1, 1, 1)]⟩ the
source node as d1 = ⟨[(0, 0, 0), (0, 0, 0)], [(1, 1, 1), (1, 1, 1)], [(1, 1, 1), (1, 1, 1)]⟩.
Step 2. Find dj = minimum{di + dij}, j = 2, 3, ..., n.
Step 3. If the minimum value of i. i.e., i = r then the label node j as [dj , r]. If
minimum arise related to more than one values of i. Their position we choose
minimum value of i.
Step 4. Let the destination node be [dn, l]. Here source node is dn. We con-
clude a Score function and we finds minimum value of Intuitionistic Triangular
Neutrosophic Number.
Step 5. We calculate Shortest Path Problem between source and destination
node. Review the label of node 1. Let it be as [dn, A]. Now review the label of
node A and so on. Replicate the same procedure until node 1 is procured.
Step 6. The Shortest Path can be procured by combined all the nodes by the
step 5.

4. Data analysis

To find Shortest Path on Chola period built temples using Intuitionistic Trian-
gular Neutrosophic Fuzzy Graph.

In this chapter, AST denotes AmarasundreashwararTemple, GKCT denotes
Gangai konda cholapuram Temple, TKT denotes Thiruvanai Kovil Temple,
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MKT denotes Moovar Kovil Temple, SST denotes Shri Suryanar Temple, BT
denotes Brihadeeswarar Temple, and SAT denotes Shri Airavatesvara Temple.

Here, each node is converts as ITNFN.

Here, we consider source node is Amarasundreashwarar Temple and destina-
tion node is Airavatesvara temple. To find shortest path on Amarasundreash-
warar Temple to Airavatesvara temple.

Node 1 = AmarasundreashwararTemple
Node 2 = Gangai konda cholapuram Temple
Node 3 = Thiruvanai Kovil Temple
Node 4 = Moovar Kovil Temple
Node 5 = Shri Suryanar Temple
Node 6 = Brihadeeswarar Temple
Node 7 = Shri Airavatesvara Temple

The distance (km) between temples are considered as the edges of the graph.
Considered distance are converted as Intuitionistic Triangular Neutrosophic
Fuzzy Graph using the score function(fuzzification) of Intuitionistic Triangu-
lar Neutrosophic Fuzzy Graph.

Figure 1: A graph of Chola period temples

Here, distance between one temple to another temple is calculated in kilome-
ters. The numerical value of the distance is converted to Intuitionistic Triangular
Neutrosophic Fuzzy Graphs with the help of through Neutrosopic Score function
and trapezoidal signed distance.

The given distance ( kilometer) converted to neutrosophic number 2+T−I−F
3

(using score function). We converted neutrosophic number as (a1, a2, a3) are
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membership function & (a∗1, a
∗′
2 , a

∗′
3 ) are non-membership function. These func-

tions converted to fuzzy triangular numbers using triangular signed distance
a1+2a2+a3

4 . Finally, converted Intuitionistic Triangular Neutrosophic Fuzzy Num-
ber.

Here, Apply the Intuitionistic Triangular Neutrosophic Fuzzy Number in our
algorithm to find shortest path to Chola period temples. In this application,
many paths have chola period temples. To calculate Shortest Path using score
function( Definition 2.1 and 2.2). An algorithm is used to apply a definite
procedure and the process has been expensive and time consuming. Here node
1-2 = 117 km

This km changed to neutrosophic number use neutrosophic score function,
and each neutrosophic number converted to fuzzification method, so we get fuzzy
number. Finally we convert membership and non-membership from fuzzy num-
ber because of Intuitionistic fuzzy number, and use triangular signed distance
to membership and non-membership functions. At last we get Intuitionistic
Triangular Neutrosophic Fuzzy Number.

820 340 131
0.82 0.34 0.131

(0.82,0.18) (0.34,0.66) (0.131,0.869)〈
[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52), (0.57, 0.66, 0.75)],

[(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]

〉

1-3=35 km

350 142 105
0.85 0.142 0.105

(0.35,0.65) (0.142,0.858) (0.105,0.895)〈
[(0.21, 0.35, 0.49), (0.49, 0.65, 0.81)], [(0.088, 0.142, 0.196), (0.744, 0.858, 0.972)],

[(0.018, 0.105, 0.192), (0.835, 0.895, 0.955)]

〉
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2-3=125 km

955 425 157
0.955 0.425 0.157

(0.955,0.045) (0.425,0.575) (0.157,0.843)〈
[(0.911, 0.955, 0.999), (0.029, 0.045, 0.061)], [(0.229, 0.425, 0.621), (0.425, 0.575, 0.725)],

[(0.013, 0.157, 0.301), (0.722, 0.843, 0.964)]

〉

2-5=24 km

316 172 74
0.316 0.172 0.074

(0.316,0.684) (0.172,0.828) (0.074,0.926)〈
[(0.128, 0.316, 0.504), (0.556, 0.684, 0.812)], [(0.011, 0.172, 0.333), (0.721, 0.828, 0.935)],

[(0.049, 0.074, 0.099), (0.873, 0.926, 0.979)]

〉

2-6=71 km

650 330 109
0.65 0.33 0.109

(0.65,0.35) (0.33,0.67) (0.109,0.891)〈
[(0.59, 0.65, 0.71), (0.17, 0.35, 0.53)], [(0.17, 0.33, 0.49), (0.51, 0.67, 0.83)],

[(0.035, 0.109, 0.183), (0.826, 0.891, 0.956)]

〉

3-4=48 km

465 220 103
0.465 0.22 0.103

(0.465,0.535) (0.22,0.78) (0.103,0.897)〈
[(0.395, 0.465, 0.535), (0.455, 0.535, 0.615)], [(0.11, 0.22, 0.33), (0.71, 0.78, 0.85)],

[(0.011, 0.103, 0.195), (0.821, 0.897, 0.973)]

〉
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4-6=95 km

950 435 232
0.95 0.435 0.232

(0.95,0.05) (0.435,0.565) (0.232,0.768)〈
[(0.91, 0.95, 0.99), (0.02, 0.05, 0.08)], [(0.333, 0.435, 0.537), (0.505, 0.565, 0.625)],

[(0.149, 0.232, 0.315), (0.733, 0.768, 0.803)]

〉

5-6=54 km

650 320 170
0.65 0.32 0.17

(0.65,0.35) (0.32,0.68) (0.17,0.83)〈
[(0.51, 0.65, 0.79), (0.24, 0.35, 0.46)], [(0.17, 0.32, 0.47), (0.6, 0.68, 0.76)],

[(0.09, 0.17, 0.25), (0.69, 0.83, 0.97)]

〉

5-7=20 km

180 72 50
0.18 0.072 0.05

(0.18,0.82) (0.072,0.928) (0.05,0.95)〈
[(0.09, 0.18, 0.27), (0.71, 0.82, 0.93)], [(0.045, 0.072, 0.099), (0.869, 0.928, 0.987)],

[(0.03, 0.05, 0.07), (0.93, 0.95, 0.97)]

〉

6-7=20 km

640 330 201
0.64 0.33 0.201

(0.64,0.36) (0.33,0.67) (0.201,0.799)〈
[(0.56, 0.64, 0.72), (0.28, 0.36, 0.44)], [(0.2, 0.33, 0.46), (0.59, 0.67, 0.75)],

[(0.069, 0.201, 0.333), (0.737, 0.799, 0.861)]

〉

In this iteration SPP was calculated through the proposed algorithm, the
concept of the Chola period temples shortest path calculated from Amarasun-
dreashwarar Temple to Shri Airavatesvara Temple.
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Let n = 7 is the destination node, since there are totally 7 nodes.

Iteration 1. Assume the source node is Amarasundreashwarar Temple. Here
we assume d1 = ⟨[(0,0,0), (0,0,0)], [(1,1,1), (1,1,1)], [(1,1,1), (1,1,1)]⟩ and label
of source node is {⟨[(0, 0, 0), (0, 0, 0)], [(1, 1, 1), (1, 1, 1)], [(1, 1, 1), (1, 1, 1)]⟩,−−}
the value of dj , j = 2, 3, 4, 5, 6 is succeeding. Here we assume d1 is the Amara-
sundreashwarar Temple.

Iteration 2. The node Gangai konda cholapuram Temple has only node Ama-
rasundreashwarar Temple as the predecessor. Intuitionistic Triangular Fuzzy
Neutrosophic Shortest Path is calculated from Gangai konda cholapuram Tem-
ple to Amarasundreashwarar Temple. Since node 2 has only node 1 as the
predecessor. So fix i = 1 and j = 2 we apply step 2 at proposed algorithm

d2 = minimum{d1 ⊕ d12}

= minimum


⟨[(0, 0, 0), (0, 0, 0)], [(1, 1, 1), (1, 1, 1)], [(1, 1, 1), (1, 1, 1)]⟩⊕

⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),
(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩


=

{
⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),

(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩

}

Therefore, minimum value i = 1, corresponding to label node 2 as

=

{
⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),

(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩, 1

}

d2 =

{
⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),

(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩

}

The labeled node is Gangai Konda Cholapuram and minimum provided corre-
sponding node is Amarasundreashwarar Temple.

Minimum
Node

Labeled
Node

Path Node

AST GKCT ⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)],
[(0.16, 0.34, 0.52), (0.57, 0.66, 0.75)],
[(0.07, 0.131, 0.192), (0.813, 0.869,
0.925)]⟩

Iteration 3. The node Thiruvanai Kovil Temple has two predecessors node,
they are node Amarasundreashwarar Temple and node Gangai konda chola-
puram Temple. Intuitionistic Triangular Fuzzy Neutrosophic Shortest Path is
calculated to Thiruvanai Kovil from Amarasundreashwarar Temple and Gangai
konda cholapuram. Since node 3 has two predecessors node 1 and node 2. So
fix i = 1, 2 and j = 3 we apply step 2 at proposed algorithm.
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d3 = minimum{d1 ⊕ d13, d2 ⊕ d23}

= minimum



⟨[(0, 0, 0), (0, 0, 0)], [(1, 1, 1), (1, 1, 1)], [(1, 1, 1), (1, 1, 1)]⟩⊕
⟨[(0.21, 0.35, 0.49), (0.49, 0.65, 0.81)], [(0.088, 0.142, 0.196),

(0.744, 0.858, 0.972)], [(0.018, 0.105, 0.192), (0.835, 0.895, 0.955)]⟩
⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52)

(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩⊕
⟨[(0.911, 0.955, 0.999), (0.029, 0.045, 0.061)], [(0.229, 0.425, 0.621)
(0.425, 0.575, 0.725)], [(0.013, 0.157, 0.301), (0.722, 0.843, 0.964)]⟩



= minimum


⟨[(0.21, 0.35, 0.49), (0.49, 0.65, 0.81)], [(0.088, 0.142, 0.196),

(0.744, 0.858, 0.972)], [(0.018, 0.105, 0.192), (0.835, 0.895, 0.955)]⟩,
⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217, 0.2957)], [(0.0366, 0.1445, 0.323),

(0.2422, 0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577), (0.5869, 0.7325, 0.8917)]⟩


Using equation (2.1),we have

S

{
⟨[(0.21, 0.35, 0.49), (0.49, 0.65, 0.81)], [(0.088, 0.142, 0.196),

(0.744, 0.858, 0.972)], [(0.018, 0.105, 0.192), (0.835, 0.895, 0.955)]⟩

}
S(n1) = 0.2647

S

{
⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217, 0.2957)], [(0.0366, 0.1445, 0.323),

(0.2422, 0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577), (0.5869, 0.7325, 0.8917)]⟩

}
S(n2) = 0.0978

Therefore minimum value i = 2, corresponding to label node 3 as{
⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217, 0.2957)], [(0.0366, 0.1445, 0.323),

(0.2422, 0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577), (0.5869, 0.7325, 0.8917)]⟩, 2

}

d3 =

{
⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217, 0.2957)], [(0.0366, 0.1445, 0.323),

(0.2422, 0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577), (0.5869, 0.7325, 0.8917)]⟩

}

Here, the labeled node is Thiruvanai Kovil and the minimum provided corre-
sponding node is Gangai konda cholapuram.

Minimum
Node

Labeled
Node

Path Node

GKCT TKT ⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217,
0.2957)], [(0.0366, 0.1445, 0.323), (0.2422,
0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577),
(0.5869, 0.7325, 0.8917)]⟩

Iteration 4. The node Moovar Kovil has only node Thiruvanai Kovil as the
predecessor. Intuitionistic Triangular Fuzzy Neutrosophic Shortest Path is cal-
culated to Moovar Kovil from Thiruvanai Kovil. Since node 4 has only node 3 as
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the predecessor. So fix i = 3 and j = 4 we apply step 2 at proposed algorithm.

d4 = minimum{d3 ⊕ d34}

= minimum


⟨[(0.9688, 0.9919, 0.999), (0.1358, 0.217, 0.2957)], [(0.0366, 0.1445, 0.323),

(0.2422, 0.3795, 0.5437)], [(0.0009, 0.0205, 0.0577), (0.5869, 0.7325, 0.8917)]⟩⊕
⟨[(0.395, 0.465, 0.535), (0.455, 0.535, 0.615)], [(0.11, 0.22, 0.33),
(0.71, 0.78, 0.85)], [(0.011, 0.103, 0.195), (0.821, 0.897, 0.973)]⟩


=

{
⟨[(0.98, 0.995, 0.999), (0.529, 0.636, 0.728)], [(0.004, 0.032, 0.107),

(0.172, 0.296, 0.462)], [(0.000009, 0.002, 0.011), (0.482, 0.657, 0.868)]⟩

}

Therefore minimum value i = 3, corresponding to label node 4 as

=

{
⟨[(0.98, 0.995, 0.999), (0.529, 0.636, 0.728)], [(0.004, 0.032, 0.107),

(0.172, 0.296, 0.462)], [(0.000009, 0.002, 0.011), (0.482, 0.657, 0.868)]⟩, 3

}

d4 =

{
⟨[(0.98, 0.995, 0.999), (0.529, 0.636, 0.728)], [(0.004, 0.032, 0.107),

(0.172, 0.296, 0.462)], [(0.000009, 0.002, 0.011), (0.482, 0.657, 0.868)]⟩

}

Here, the labeled node is Moovar Kovil and the minimum provided correspond-
ing node is Thiruvanai Kovil.

Minimum
Node

Labeled
Node

Path Node

TKT MKT ⟨[(0.98, 0.995, 0.999), (0.529, 0.636, 0.728)],
[(0.004, 0.032, 0.107), (0.172, 0.296, 0.462)],
[(0.000009, 0.002, 0.011), (0.482, 0.657, 0.868)]⟩

Iteration 5. The node Shri Suryanar Temple has only node Gangai konda
cholapuram as the predecessor. Intuitionistic Triangular Fuzzy Neutrosophic
Shortest Path is calculated to Shri Suryanar Temple from Gangai konda chola-
puram. Since node 5 has only node 2 as the predecessor. So fix i = 2 and j = 5
we apply step 2 at proposed algorithm.

d5 = minimum{d2 ⊕ d25}

= minimum


⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),

(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩⊕
⟨[(0.128, 0.316, 0.504), (0.556, 0.684, 0.812)], [(0.011, 0.172, 0.333),
(0.721, 0.828, 0.935)], [(0.049, 0.074, 0.099), (0.873, 0.926, 0.979)]⟩


=

{
⟨[(0.695, 0.877, 0.995), (0.605, 0.741, 0.859)], [(0.002, 0.058, 0.173),
(0.411, 0.546, 0.701)], [(0.003, 0.0096, 0.019), (0.709, 0.805, 0.906)]⟩

}
Therefore minimum value i = 2, corresponding to label node 5 as

=

{
⟨[(0.695, 0.877, 0.995), (0.605, 0.741, 0.859)], [(0.002, 0.058, 0.173),

(0.411, 0.546, 0.701)], [(0.003, 0.0096, 0.019), (0.709, 0.805, 0.906)]⟩, 2

}

d4 =

{
⟨[(0.695, 0.877, 0.995), (0.605, 0.741, 0.859)], [(0.002, 0.058, 0.173),
(0.411, 0.546, 0.701)], [(0.003, 0.0096, 0.019), (0.709, 0.805, 0.906)]⟩

}
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Here the labeled node is Shri Suryanar Temple and the minimum provided cor-
responding node is Gangai konda cholapuram.

Minimum
Node

Labeled
Node

Path Node

GKCT SST ⟨[(0.695, 0.877, 0.995), (0.605, 0.741,
0.859)], [(0.002, 0.058, 0.173), (0.411,
0.546, 0.701)], [(0.003, 0.0096, 0.019),
(0.709, 0.805, 0.906)]⟩

Iteration 6. The node Brihadeeswarar Temple has three predecessors node,
they are node Gangai konda cholapuram, node Moovar Kovil and node Shri
Suryanar Temple. Intuitionistic Triangular Fuzzy Neutrosophic Shortest Path
is calculated to Brihadeeswarar Temple from Gangai konda cholapuram, Moovar
Kovil and Shri Suryanar Temple. Since node 6 has three predecessors . The
predecessors are node 2, node 4 and node 5. So fix i = 2, 4, 5 and j = 6 we
apply step 2 at proposed algorithm.

d6 = minimum{d2 ⊕ d26, d4 ⊕ d46, d5 ⊕ d56}

= minimum



⟨[(0.65, 0.82, 0.99), (0.11, 0.18, 0.25)], [(0.16, 0.34, 0.52),
(0.57, 0.66, 0.75)], [(0.07, 0.131, 0.192), (0.813, 0.869, 0.925)]⟩⊕

⟨[(0.59, 0.65, 0.71), (0.17, 0.35, 0.53)], [(0.17, 0.33, 0.49),
(0.51, 0.67, 0.83)], [(0.035, 0.109, 0.183), (0.826, 0.891, 0.956)]⟩

⟨[(0.98, 0.995, 0.999), (0.529, 0.636, 0.728)], [(0.004, 0.032, 0.107),
(0.172, 0.296, 0.462)], [(0.000009, 0.002, 0.011), (0.482, 0.657, 0.868)]⟩⊕

⟨[(0.91, 0.95, 0.99), (0.02, 0.05, 0.08)], [(0.333, 0.435, 0.537),
(0.505, 0.565, 0.625)], [(0.149, 0.232, 0.315), (0.733, 0.768, 0.803)]⟩
⟨[(0.695, 0.877, 0.995), (0.605, 0.741, 0.859)], [(0.002, 0.058, 0.173),

(0.411, 0.546, 0.701)], [(0.003, 0.0096, 0.019), (0.709, 0.805, 0.906)]⟩⊕
⟨[(0.51, 0.65, 0.79), (0.24, 0.35, 0.46)], [(0.17, 0.32, 0.47),
(0.6, 0.68, 0.76)], [(0.09, 0.17, 0.25), (0.69, 0.83, 0.97)]⟩



= minimum



⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)], [(0.0272, 0.1122, 0.2548),
(0.291, 0.442, 0.6225)], [(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩,

⟨[(0.998, 0.9997, 0.99999), (0.538, 0.654, 0.749)], [(0.001, 0.014, 0.057),
(0.087, 0.167, 0.289)], [(0.000001, 0.0005, 0.003), (0.353, 0.504, 0.697)]⟩
⟨[(0.85, 0.956, 0.999), (0.699, 0.832, 0.9238)], [(0.0003, 0.0185, 0.0813),

(0.247, 0.371, 0.322)], [(0.0003, 0.002, 0.005), (0.489, 0.668, 0.879)]⟩


Using equation (2.1),we have

S

{
⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)], [(0.0272, 0.1122, 0.2548),

(0.291, 0.442, 0.6225)], [(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩

}
S(n1) = 0.149
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S

{
⟨[(0.998, 0.9997, 0.99999), (0.538, 0.654, 0.749)], [(0.001, 0.014, 0.057),
(0.087, 0.167, 0.289)], [(0.000001, 0.0005, 0.003), (0.353, 0.504, 0.697)]⟩

}
S(n2) = 0.32662

S

{
⟨[(0.85, 0.956, 0.999), (0.699, 0.832, 0.9238)], [(0.0003, 0.0185, 0.0813),

(0.247, 0.371, 0.322)], [(0.0003, 0.002, 0.005), (0.489, 0.668, 0.879)]⟩

}
S(n3) = 0.3032

Therefore minimum value i = 2, corresponding to label node 6 as

{
⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)], [(0.0272, 0.1122, 0.2548),
(0.291, 0.442, 0.6225)], [(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩, 2

}

d3 =

{
⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)], [(0.0272, 0.1122, 0.2548),

(0.291, 0.442, 0.6225)], [(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩

}

Here, the labeled node is Brihadeeswarar Temple and the minimum provided
corresponding node is Gangai konda cholapuram.

Minimum
Node

Labeled
Node

Path Node

GKCT BT ⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)],
[(0.0272, 0.1122, 0.2548), (0.291, 0.442, 0.6225)],
[(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩

Iteration 7. The node Shri Airavatesvara Temple has two predecessors node,
they are node Shri Suryanar Temple and node Brihadeeswarar Temple. ITNSP
is calculated to Shri Airavatesvara Temple from Shri Suryanar Temple and Bri-
hadeeswarar Temple. Since node 7 has two predecessors node 5 and node 6. So
fix i = 5, 6 and j = 7 we apply step 2 at proposed algorithm.

d7 = minimum{d5 ⊕ d57, d6 ⊕ d67}

= minimum



⟨[(0.695, 0.877, 0.995), (0.605, 0.741, 0.859)], [(0.002, 0.058, 0.173),
(0.411, 0.546, 0.701)], [(0.003, 0.0096, 0.019), (0.709, 0.805, 0.906)]⟩⊕

⟨[(0.09, 0.18, 0.27), (0.71, 0.82, 0.93)], [(0.045, 0.072, 0.099),
(0.869, 0.928, 0.987)], [(0.03, 0.05, 0.07), (0.93, 0.95, 0.97)]⟩

⟨[(0.856, 0.937, 0.997), (0.2613, 0.467, 0.647)], [(0.0272, 0.1122, 0.2548),
(0.291, 0.442, 0.6225)], [(0.0024, 0.014, 0.035), (0.671, 0.774, 0.884)]⟩⊕

⟨[(0.56, 0.64, 0.72), (0.28, 0.36, 0.44)], [(0.2, 0.33, 0.46),
(0.59, 0.67, 0.75)], [(0.069, 0.201, 0.333), (0.737, 0.799, 0.861)]⟩


= minimum


⟨[(0.722, 0.899, 0.996), (0.885, 0.953, 0.99)], [(0.00009, 0.004, 0.017),

(0.357, 0.507, 0.692)], [(0.00009, 0.0005, 0.0013), (0.659, 0.765, 0.8788)]⟩,
⟨[(0.93, 0.977, 0.999), (0.468, 0.659, 0.802)], [(0.005, 0.037, 0.1172),
(0.172, 0.296, 0.467)], [(0.0002, 0.003, 0.012), (0.494, 0.618, 0.761)]⟩
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Using equation (2.1),we have

S

{
⟨[(0.722, 0.899, 0.996), (0.885, 0.953, 0.99)], [(0.00009, 0.004, 0.017),

(0.357, 0.507, 0.692)], [(0.00009, 0.0005, 0.0013), (0.659, 0.765, 0.8788)]⟩

}
S(n1) = 0.26339

S

{
⟨[(0.93, 0.977, 0.999), (0.468, 0.659, 0.802)], [(0.005, 0.037, 0.1172),
(0.172, 0.296, 0.467)], [(0.0002, 0.003, 0.012), (0.494, 0.618, 0.761)]⟩

}
S(n2) = 0.2665

Therefore minimum value i = 5, corresponding to label node 7 as{
⟨[(0.722, 0.899, 0.996), (0.885, 0.953, 0.99)], [(0.00009, 0.004, 0.017),

(0.357, 0.507, 0.692)], [(0.00009, 0.0005, 0.0013), (0.659, 0.765, 0.8788)]⟩, 5

}

d3 =

{
⟨[(0.722, 0.899, 0.996), (0.885, 0.953, 0.99)], [(0.00009, 0.004, 0.017),

(0.357, 0.507, 0.692)], [(0.00009, 0.0005, 0.0013), (0.659, 0.765, 0.8788)]⟩

}
The labeled node is Airavatesvara Temple and the minimum provided corre-
sponding node is Shri Suryanar Temple.

Minimum
Node

Labeled
Node

Path Node

SST AT ⟨[(0.722, 0.899, 0.996), (0.885, 0.953, 0.99)],
[(0.00009, 0.004, 0.017), (0.357, 0.507, 0.692)],
[(0.00009, 0.0005, 0.0013), (0.659, 0.765,
0.8788)]⟩

Since Airavatesvara Temple is the destination node.We calculate SP to destina-
tion node to source node. Since

Labeled Node Minimum Node

Shri Airavatesvara Temple Shri Suryanar Temple

Shri Suryanar Temple Gangai konda cholapuram

Gangai konda cholapuram Amarasundreashwarar Temple

Therefore, the Chola period built temples Intuitionistic Triangular Neutrosophic
Fuzzy Graph Shortest Path is

AST → GKCT → SST → SST

5. The shortest path on Dijkstra’s algorithm

Edge weight suitable algorithm is Dijkstra’s algorithm. So here we conclude
same type of Shortest Path through Dijkstra’s Algorithm.
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Figure 2: SP from Amarasundareshwarar Temple to Airavateswara Temple

In the above real life application, we clarify another method of Shortest Path
Problem using Dijkstra’s algorithm. In this Shortest Path Problem, we use
direct method of Dijkstra’s algorithm and we assume edge weight is Chola period
temples km.

Figure 3: SP for Dijkstra’s Algorithm
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Here, we verify Chola period buildted temples shortest path through Dijkstra’s
Algorithm. We have the paths are

1 → 2 → 5 → 7

Here, the intuitionistic triangular Neutrosophic fuzzy graphs and Dijkstra’s Al-
gorithm are same. The shortest path is

1 → 2 → 5 → 7

DIJKSTRA’S ALGORITHM PYTHON PROGRAM

Python program has been used to verify the result of Dijktra’s Algorithm. It
can be accessed earily and checked properly.

import sys

def to_be_visited():

global visited_and_distance

v = -10

for index in range(number_of_vertices):

if visited_and_distance[index][0] == 0 and

(v < 0 or visited_and_distance[index][1]

<= visited_and_distance[v][1]):

v = index

return v

vertices = [[0,1,1,0,0,0,0],

[0,0,1,0,1,1,0],

[0,0,0,1,0,0,0],

[0,0,0,0,0,1,0],

[0,0,0,0,0,1,1],

[0,0,0,0,0,0,1],

[0,0,0,0,0,0,0]]

edges = [[0,117,35,0,0,0,0],

[0,0,125,0,24,71,0],
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[0,0,0,48,0,0,0],

[0,0,0,0,0,95,0],

[0,0,0,0,0,54,20],

[0,0,0,0,0,0,37],

[0,0,0,0,0,0,0]]

number_of_vertices = len(vertices[0])

visited_and_distance = [[0, 0]]

for i in range(number_of_vertices-1):

visited_and_distance.append([0, sys.maxsize])

for vertex in range(number_of_vertices):

to_visit = to_be_visited()

for neighbor_index in range(number_of_vertices):

if vertices[to_visit][neighbor_index] == 1 and

visited_and_distance[neighbor_index][0] == 0:

new_distance = visited_and_distance[to_visit][1] +

edges[to_visit][neighbor_index]

if visited_and_distance[neighbor_index][1] > new_distance:

visited_and_distance[neighbor_index][1] = new_distance

visited_and_distance[to_visit][0] = 1

i = 0

for distance in visited_and_distance:

print("The shortest distance of ",chr(ord(’a’) + i), "

from the source vertex a is:",distance[1])

i = i + 1

Output for the above program

-----------------------------

The shortest distance of a from the source vertex a is: 0

The shortest distance of b from the source vertex a is: 117

The shortest distance of c from the source vertex a is: 35

The shortest distance of d from the source vertex a is: 83

The shortest distance of e from the source vertex a is: 141

The shortest distance of f from the source vertex a is: 178

The shortest distance of g from the source vertex a is: 161
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6. Conclusion

In this article, discovering Shortest Path on Chola period temples using Intu-
itionistic Triangular Neutrosophic Fuzzy Graph. We use Neutrosophic score
function and Triangular signed distance for fuzzification of membership and
non-membership function. Intuitionistic Triangular Neutrosophic Fuzzy Num-
ber Score function is used to calculate Shortest Path of Intuitionistic Triangular
Neutrosophic Fuzzy Graph. A genuine application is given to act as an Intu-
itionistic Triangular Neutrosophic Fuzzy Graph. Finally most brief way Short-
est Path on Chola period buildted temples verified with Dijkstra’s algorithm
through the long last Python Jupyter Notebook (form) programming.

Futuristic work

In future shortest path problem can be applied by using Kruskal’s Algorithm.
We can verified by applying transportation Problem and Decision making prob-
lem. All weightage fuzzy number will be incorporated to find the shortest route
of traffic or human intervention practical problem.

References

[1] R.K. Ahuja, K. Mehlhrn, J.B. Orlin, R.E. Tarjan, Faster algorithms for the
shortest path problem, J. ACM, (1990), 213-223.

[2] H. Arsham, Stability analysis for the shortest path problem, Conf. J. Num-
ber Themes, (1998), 171-210.

[3] V. Anusuya, R. Sathya, Shortest path with complement of type-2 fuzzy num-
ber, Malya Journal of Mathematik, (2013), 71-76.

[4] S. Broumi, A. Bakali, T. Mohamed, F. Smarandache, L. Vladareanu, Short-
est path problem under triangular fuzzy neutrosophic information, In 10th
International Conference on Software, Knowledge, Information Manage-
ment and Applications (SKIMA), (2016), 169-174.

[5] S. Broumi, T. Mohamed, A. Bakali, F. Smarandache, Single valued neutro-
sophic graphs, J. New Theory, (2016), 86-101.

[6] S. Broumi, T. Mohamed, A. Bakali, F. Smarandache, K.K. Krishnan, Short-
est path problem on single valued neutrosophic graphs, International Sym-
posium on Networks, Computers and Communications, 2017.

[7] S. Broumi, A. Bakali, M. Talea, F. Smarandache, M. Ali, Shortest path
under bipolar neutrosophic setting, Appl. Mech. Mater., 859 (2017), 59-66.

[8] S. Broumi, A. Bakali, M. Talea, F. Smarandache, P.K. Kishore, R. Sachin,
Shortest path problem under interval-valued neutrosophic setting, Int. J.
Adv. Trends Compt. Sci. Eng., 8 (2019), 216-222.



THE SHORTEST PATH PROBLEM ON CHOLA PERIOD BUILT TEMPLES ... 343

[9] Jana Chiranjibe, Pal Madhumangal, Faruk Karaaslan, Jian-qiang Wang,
Trapezoidal neutrosophic aggregation operators and its application in mul-
tiple attribute decision making process, 2018.

[10] P.K. De, Bhinchar Amita, Computation of Shortest Path in a fuzzy network,
International Journal Computer Applications, 11 (2010), 0975-8887.

[11] P.K. De, Das Debaroti, A study on ranking of trapezoidal intuitionistic
fuzzy numbers, International Journal of Computer Information Systems and
Industrial Management Applications, 6, 437-444.

[12] M. Enayattabar, A. Ebrahimnejad, H. Motameni, Dijkstra algorithm for
shortest path problem under interval-valued pythagorean fuzzy environment,
Complex Intell. Syst., (2018), 1-8.

[13] C. Jana, M. Pal, F. Karaaslan, J.-Q. Wang, Trapezoidal neutrosophic aggre-
gation operators and their application to the multi-attribute decision-making
process, Scientia Iranica, Transactions E: Industrial Engineering, 27, 1655-
1673.

[14] P. Jayagowri, G.G. Ramani, Using trapizoidal intuitionistic fuzzy number
to find optimized path in a network, Advances in Fuzzy Systems, (2014).

[15] K. Kalaiarasi, M. Sumathi, S. Daisy, Optimization of fuzzy EOQ model with
unit time depended constant demand and shortage, International Journal of
Mechanical Engineering and Technology, 9 (2018), 1520-1527.

[16] K. Kalaiarasi, S. Sumathi, H. Mary Henrietta, Optimization of fuzzy in-
ventory EOQ model using Kuhn-Tucker method, Jour. of Adv. Research in
Dynamical & Control Systems, 11 (2019).

[17] A. Kumar, K. Kaur, A new algorithm for solving shortest path problem on a
network with imprecise edge weight, Applications and Applied Mathematics,
6 (2011) 602-619.

[18] G. Kumar, R.K. Bajaj, N. Gandotra, Algorithm for shortest path problem
in a network with interval valued intuitionistic trapezoidal fuzzy number,
Procedia Computer Science, 70 (2015) 123-129.

[19] R. Kumar, S.A. Edaltpanah, S. Jha, S. Broumi, A. Dey, Neutrosophic short-
est path problem, Neutrosophic Sets. Syst., 23 (2018), 5-15.

[20] S. Majumdar, A. Pal, Shortest path problem on intuitionistic fuzzy network,
Annals of Pure and Applied Mathematics, 5 (2013), 26-36.

[21] A. Nagoor Gani, M. Mohamed Jabarulla, On searching intuitionistic fuzzy
shortest network, Applied Mathematical Science, 69 (2010), 3447-3454.



344 K. KALAIARASI, R. DIVYA and VISHNU NARAYAN MISHRA

[22] Nathaniel Akpofure Ojekudo, Nsikan Paul Akpan, An application of Dijk-
stra’s algorithm to shortest path problem, IOSR Journal of Mathematics,
13, 20-32.

[23] Said Broumi, Assia Bakali, Mohamed Talea, Florentin Smarandache, Short-
est path problem under trapezoidal neutrosophic information, Computing
Conference, (2017), 142-148.

[24] F. Smarandache, A unifying field in logic neutrosophy: neutrosophic prob-
ability, Set, Logic, 4th edn. American Research Press, Rehoboth, (2005).

[25] Victor Christianto, Florentin Smarandache, Remark on artificial intelli-
gence, Humanoid and Terminator Scenario: A neutrosophic Way to Futur-
ology, International Journal of Neutrosophic Science, 1, 08-13.

[26] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single value neu-
trosophic sets, Multisp. Multistruct., (2010), 410-413.

[27] Z.S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy infor-
mation and their application to decision making, Control and Decision, 22
(2007), 215-219.

[28] C.D. Yang, D.T. Lee, C.K. Wong, On bends and lengths of rectilinear paths:
a graph theoretic approach, Int. J. Comput. Geom. Appl., 2 (1992), 61-74.

[29] J. Ye, Trapezoidal fuzzy neutrosophic set and its application to multiple
attribute decision making, Neural Computing and Applications, 2014.

[30] J. Ye, Multi criteria decision-making method using the Dice similarity mea-
sure between expected intervals of trapezoidal fuzzy numbers, Journal of De-
cision Systems, 21 (2012), 307-317.

[31] J. Ye, Prioritized aggregation operators of trapezoidal intuitionistic fuzzy
sets and their application to multi-criteria decision making, Neural. Com-
put. Appl., (2014), 1447-1454.

Accepted: November 17, 2021



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 49–2023 (345–361) 345

Invariant approximation property under group passes to
extensions with a finite quotient

Kankeyanathan Kannan
Department of Mathematics and Statistics

University of Jaffna

Jaffna

Sri Lanka

p kkannan@yahoo.com

Abstract. Analytic properties of invariant approximation property, studies analytic
techniques from operator theory that encapsulate geometric properties of a group. also
we show that the invariant approximation property passes to finite extensions.

Keywords: uniform roe algebras, invariant approximation property.

1. Introduction

The purpose of this paper is to provide an illustration of an interesting and
nontrivial interaction between analytic and geometric properties of a group. We
provide approximation property of operator algebras associated with discrete
groups. There are various notions of finite dimensional approximation prop-
erties for C∗− algebras and more generally operator algebras. Some of these
(approximation properties) notations will be defined in this paper, the reader
is referred to [2], [3], [4], [7], [10], [11], [12], [13], and [15] for these beautiful
concepts: Haagerup discovery that the reduced C∗− algebra Fn has the metric
approximation property, Higson and Kasparov’s resolution of the Baum-connes
conjecture for the Haagerup groups. We study analytic techniques from opera-
tor theory that encapsulate geometric properties of a group. The approximation
properties of group C∗− algebra are everywhere; it is powerful, important, back-
bone of countless breakthroughs.

Roe considered the discrete group of the reduced group C∗− algebra of
C∗
r (G) is the fixed point algebra {Adρ(t) : t ∈ G} acting on the uniform Roe

algebra C∗
u(G) [14]. A discrete group G has natural coarse structure which

allows us to define the the uniform Roe algebra, C∗
u(G) [14]. We say that the

uniform Roe algebra, C∗
u(G), is the C∗− algebra completion of the algebra of

bounded operators on ℓ2(X) which have finite propagation. The reduced C∗−
algebra C∗

r (G) is naturally contained in C∗
u(G) [14]. According to [Roe] [14], G

has the invariant approximation property (IAP) if

C∗
λ(G) = C∗

u(G)
G.
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2. Preliminaries

In this section we shall establish the basic definitions and notations for the
category of coarse metric spaces. Coarse geometry is the study of the large
scale properties of spaces. The notion of large scale is quantified by means of a
coarse structure.

Example 2.1 ([14]). Let G be a finitely generated group. Then the bounded
coarse structure associated to any word metric onG is generated by the diagonals

∆g = {(h, hg) : h ∈ G} .

We next recall some basic fact about uniform Roe algebra and metric prop-
erty of a discrete group. Next we recall the following definitions; Let X be a
discrete metric space.

Definition 2.2 ([14]). We say that discrete metric space X has bounded geom-
etry if for all R there exists N in N such that for all x ∈ X , |BR(x)| < N ,
where B(x, r) = {x ∈ X : d(y, x) ≤ r}.

Definition 2.3 ([14]). A kernel ϕ : X ×X −→ C:

� is bounded if there, existsM > 0 such that |ϕ(s, t)| < M for all s, t ∈ X

� has finite propagation if there exists R > 0 such that ϕ(s, t) = 0 if
d(s, t) > R.

Let B(X) be a set of bounded finite propagation kernels on X × X. Each
such ϕ defines a bounded operator on ℓ2(X) via the usual formula for matrix
multiplication

ϕ ∗ ζ(s) =
∑
r∈G

ϕ(s, r)ζ(r) for ζ ∈ ℓ2(X).

We shall denote the finite propagation kernels on X by A∞(X).

Definition 2.4 ([14]). The uniform Roe algebra of a metric space X is the
closure of A∞(X) in the algebra B(ℓ2(X)) of bounded operators on X.

If a discrete group G is equipped with its bounded coarse structure intro-
duced in Example 2.1, then one can associate with its uniform Roe algebra
C∗
u(G) by repeating the above. A discrete group G has a natural coarse struc-

ture which allows us to define the uniform Roe algebra C∗
u(G). A group G can

be equipped with either the left or right-invariant of the metric. A choice of one
of the determines whether C∗

λ(G) or C
∗
ρ(G) is a sublagebra of the uniform Roe

algebra C∗
u(G) of G.

Hence, any element of C[G] will give the finite propagation and this assign-
ment extends to an inclusion

C∗
λ(G) ↪→ C∗

u(G).
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Next, if the metric on G is left-invariant then

C∗
ρ(G) ⊂ C∗

u(G).

Let d1 be the left-invariant metric on G

d1(x, y) = d1(gx, gy) ∀ g ∈ G.

Now, we choose a right invariant metric for G so that C∗
λ(G) ↪→ C∗

u(G). The
right regular representation ρ gives the adjoint action on C∗

u(G) defined by

Adρ(g)T = ρ(g)Tρ(g)∗ = ρ(g)Tρ(g)−1,

for all t ∈ G, T ∈ C∗
u(G). Our remarks above show that the elements of C∗

λ(G)
are invariant with respect to this action and so C∗

λ(G) is contained in invariant
subalgebra C∗

u(G)
G.

Lemma 2.5. If T ∈ C∗
u(G) has kernel A(x, y), then Adρ(t)T has kernel A(xt, yt)

Proof. We have that:

(Adρ(t)Tζ)(s) = ρ(t)(Tρ(t)∗ζ)(s)

= Tρ(t)∗ζ(st)

=
∑
x∈G

A(st, x)(ρ(t)−1ζ)(x)

=
∑
x∈G

A(st, x)ζ(xt−1).

Now, A(st, x) is non-zero whenever x, y, t ∈ G such that y = xt−1,
so x = yt and we have

(Adρ(t)Tζ)(s) =
∑
x∈G

A(st, yt)ζ(y)

Thus, Adρ(t)T has kernel A(st, yt).

In general, if T ∈ C∗
u(X), then ∀ x, y ∈ G:

⟨Ad(ρ(t))Tδx, δy⟩ =
〈
ρ(t)Tρ(t−1)δx, δy

〉
=

〈
Tρ(t−1)δx, ρ(t

−1)δy
〉

= ⟨Tδxt, δyt⟩ .

So, the operator T is Adρ− invariant if and only if

∀ x, y ∈ X ∀ t ∈ G ⟨Tδxt, δyt⟩ = ⟨Tδx, δy⟩ .

We now define the invariant approximation: property (IAP).

Definition 2.6 ([14]). We say that G has the invariant approximation prop-
erty(IAP) if

C∗
λ(G) = C∗

u(G)
G.
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3. The IAP passes to extensions with a finite quotient

In this section, we show that the invariant approximation property passes to
extensions. For details of extensions see [15] . Consider two groups H and N ,
and let G be an extension of H by N where N ∼= G/H. Let

1 −→ H
i
↪→ G

π−→ G/H −→ 1

be an exact sequence.

Let G be the set G = H × N and i : H −→ G be given by i(a) = (a, e)
(for any a ∈ H), with π : G −→ N given by π(a, γ) = γ (for any (a, γ) ∈ G).
We choose a set-theoretic cross-section σ : N −→ G, 1 7−→ 1 of σ such that
π ◦ σ = IdG/H . We define

f : N ×N −→ G

by

f(n1, n2) = σ(n1)σ(n2)σ(n1n2)
−1, ∀ n1, n2 ∈ N.

Let ρ(γ) be the conjugation by σ(γ) in H:

ρ(γ)(h) = σ(γ)hσ(γ)−1.

For α ∈ N ,

Ad(α) : N −→ N and γ 7−→ αγα−1.

Then, the function f and ρ are related as follows [5]:

(3.1) ρ(β)ρ(γ) = Ad(f(β, γ))ρ(βγ),

and

(3.2) f(γ1, γ2)f(γ1γ2, γ3) = ρ(γ1)f(γ2, γ3)f(γ1, γ2γ3).

Since

Ad(f(β, γ))ρ(βγ) = f(β, γ)f(β, γ)−1ρ(βγ) = ρ(β)ρ(γ)

and

f(γ1, γ2)f(γ1γ2, γ3) = σ(γ1)σ(γ2)σ(γ1γ2)
−1σ(γ1γ2)σ(γ3)σ(γ1γ2γ3)

−1

= σ(γ1)σ(γ2)σ(γ3)σ(γ1γ2γ3)
−1

= σ(γ1)1σ(γ1)
−1σ(γ1)σ(γ2)σ(γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)σ(γ2)σ(γ2)
−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)σ(γ2)σ(γ3)σ(γ3)
−1σ(γ2)

−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)
−1

= ρ(γ1)σ(γ2)σ(γ3)σ(γ2γ3)
−1σ(γ1)σ(γ2γ3)σ(γ1γ2γ3)

−1

= ρ(γ1)f(γ2, γ3)f(γ1, γ2γ3)
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The set group law is given by (h1, γ1)(h2, γ2) = (h1ρ(γ1)(h2)f(γ1, γ2), γ1γ2). Let
G be a group. Now, we choose a set-theoretic section in

1 −→ H
i
↪→ G

π−→ G/H −→ 1

is the same as to choose coset representatives in G/H: r1, · · · , rn. G/H is a
group, but it is not true in general that

rirj ∈ R = {set of coset representatives}

since rirj is product in G, there is a new product on R (which is a product on
G/H). Let r1∗r2 ∈ G such that r1∗r2 = r↭ the choosen coset representatives
of [r1r2]. And, also

(Hr1)(Hr2) = Hr1r2 = H
(
r1r2 (r1 ∗ r2)−1

)
(r1 ∗ r2) ,

and (r1r2(r1 ∗ r2)−1) ∈ H. So, r1 ∗ r2 is the product in G/H. To choose coset
representatives, we have a set-theoretic identification:

G = H ×G/H (This is called Jolissaint product).

We assume that there is a bijective

ϕ : G −→ H ×G/H,

g = hgrg 7−→ (hg, rg).

Where ϕ is a group isomorphism if H × G/H is equipped with the Jolissaint
product. Coset representation, ∀g ∈ G, ∃ hg ∈ H, rg ∈ G/H such that g = hgrg
and ∀g′ ∈ G, ∃ hg′ ∈ H, rg′ ∈ G/H such that g′ = hg′rg′ . Since H is normal
subgroup of G, so Hg ∼= gH. Right G action on H ×G/H. Consider

gg′ = (hgrg)
(
hg′rg′

)
= hg

(
rghg′r

−1
g

)
rgrg′

= hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 (
rg ∗ rg′

)
,

where rg ∗ rg′ ∈ R and hg(rghg′r
−1
g ) ∈ H. rg ∗ rg′ and rgrg′ determine the same

coset, so ∃ s ∈ H such that s(rg ∗ rg′) = rgrg′ ,

s = rgrg′
(
rg ∗ rg′

)−1
.

To show that ϕ is a group homomorphism we compute:

gg′ 7−→
{
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
,
(
rg ∗ rg′

)}
= (hg, rg) ∗

(
hg′ , rg′

)
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but
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1 ∈ H.

Since ϕ becomes a group isomorphism ϕ : G −→ H ×G/H, when the space on
the left is equipped with the product

(hg, rg)(hg′ , rg′) =
{
hg
(
rghg′r

−1
g

)
rgrg′

(
rg ∗ rg′

)−1
, rg ∗ rg′

}
.

Therefore H ×G/H is a group. While H is a subgroup of G, N is not subgroup
of G, since, for example if rg = rg′ = e, then (hg, e)(hg′ , e) = (hghg′ , e) or if
hg = hg′ = e, then

(e, rg)(e, rg′) =
{
rgrg′

(
rg ∗ rg′

)−1
, rg ∗ rg′

}
.

Next, we consider the left G action on

G = G/H ×H (This is called Jolissaint product)

We assume that there is a bijective ϕ : G −→ G/H × H. This is a group
isomorphism when the right hand side is equipped with the Jolissaint product
g = rghg 7−→ (rg, hg). Coset representation, ∀g ∈ G ∃ hg ∈ H, rg ∈ G/H such
that g = rghg and ∀g′ ∈ G ∃ hg′ ∈ H, rg′ ∈ G/H such that g′ = rg′hg′ . To
show that ϕ is a group homomorphism, we compute:

gg′ = (rghg)
(
rg′hg′

)
= rgrg′

(
r−1
g′ hgrg′

)
hg′

=
(
rg ∗ rg′

) (
rg ∗ rg′

)−1
rgrg′

(
r−1
g′ hgrg′

)
hg′ .

We have
gg′ 7−→ (rg, hg) ∗

(
rg′ , hg′

)
.

Since ϕ becomes a group isomorphism ϕ : G −→ G/H ×H, when the space on
the right is equipped with the product

(rg, hg)(rg′ , hg′) =
{(
rg ∗ rg′

)
,
(
rg ∗ rg′

)−1
(rgrg′)(rg′)

−1hgrg′hg′
}
.

Therefore, G/H ×H is a group.
While H is a subgroup of G, G/H is not subgroup of G, since, for example

if rg = r′g = e, then

(e, hg)(e, hg′) =
{
(e ∗ e) , (e ∗ e)−1 (ee′)(e)−1hgehg′

}
=
{
e, hghg′

}
or if hg = hg′ = e, then

(rg, e)(rg′ , e) =
{(
rg ∗ rg′

)
,
(
rg ∗ rg′

)−1
(rgrg′)(rg′)

−1rg′
}

=
{(
rg ∗ rg′

)
,
(
rg ∗ rg′

)−1
(rgrg′)

}
.
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G/H is a subgroup when the assignment [r] 7−→ r ∈ R ⊂ G is a group
homormophsim, i.e., when rg ∗ rg′ = rgrg′ .

Next, we show that the main result of this Chapter:

Theorem 3.1. Let G be a discrete group. If H is a finite index normal subgroup
of G with IAP, and

0 −→ H
i−→ G −→ G/H −→ 0,

then G has IAP.

Proof. Since ϕ : G
∼=−→ G/H×H, which is a fact becomes a group isomorphism

when the space on the right is equipped with Jolissaint product [5]. We want
to understand if there is an isomorphism

C∗
u(G)

G ∼= C∗
u(G/H ×H)G/H×H .

Since
ϕ : G

∼=−→ G/H ×H,

we have
C∗
λ(G)

∼=−→ C∗
λ(G/H ×H).

We need to show that
C∗
u(G)

G ∼= C∗
ρ(G).

The left coset decomposition of G

G =
∐
r∈R

rH,

where R is the set of left coset representatives. This space has a natural right
multiplication action by H, as it preserves left cosets. R can be made into a
group (R ⊂ G, a subset of G) with the ∗− product and R is not a subgroup of
G. It follows that there is a corresponding action on

ℓ2 (G) =
⊕
r∈R

ℓ2 (rH) ,

where ℓ2 (rH) is invariant under ρ(H). That is: For every r ∈ R is the set of
left coset representatives

ℓ2 (rH) = span {δrh | r ∈ R, h ∈ H} ,

we have s ∈ H, ρ(s)δrh = δrhs ∈ ℓ2 (rH) . On the other hand, the bijection ϕ
gives a Hilbert spaces isomorphism ℓ2 (G) = ℓ2 (G/H) ⊗ ℓ2 (H) . But G/H is
finite, so this is just

ℓ2(G) = Cn ⊗ ℓ2(H), n = |R| =
⊕
r∈R

ℓ2(H),
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where
⊕

r∈R ℓ
2 (H) is the n copies of ℓ2 (H). The isomorphism ϕ works by

means of unitary maps
Vr : ℓ

2(rH) −→ ℓ2(H),

δrh 7−→ δh,

the inverse map
V ∗
r : ℓ2(H) −→ ℓ2(rH),

δh 7−→ δrh,

On ℓ2 (G) we can define a family of projections Ps : ℓ2(G) −→ ℓ2(sH), s ∈ H.
Using the decomposition

G =
∐
r∈R

rH.

We can represent each function ζ ∈ ℓ2(G) as a linear combination ζ =
∑

r∈R ζr,
where ζr ∈ ℓ2(rH) (this is understood as a subspace of ℓ2(G) so that ζr is a
function on ℓ2(G) which vanishes outside rH) Ps(ζ) = ζs (it seems that this
works for infinite G/H as well). Note that Ps commutes with ρ(h), h ∈ H
s ∈ R. So:

ρ(h)ζ(t) =
∑
r∈R

ζr(th).

We have (Psρ(h)ζ)(t) = ρ(h)ζs(t) = ζs(th) = (ρ(h)Psζ)(t). Now, take T ∈
C∗
u(G). With respect to the decomposition

G =
∐
r∈R

rH,

this can be represented as

T =
∑

r,r′∈R
PrTPr′

where PrTPr′ : ℓ2(rH) −→ ℓ2(r′H). In other words, T can be represented as
matrix 

...
· · · PrTPr′ · · ·

...

 .

The points is that this decomposition is invariant with respect to the action of
ρ(H):

∀ h, h′ ∈ H Pr′ρ(h
′)Tρ(h)Pr = ρ(h′)Pr′TPrρ(h).

Note that in particular PeTPe : C∗
ρ(G) −→ C∗

ρ(G) and is a conditional expec-
tation. Note also that ∀s ∈ R, the unitary operator Vs : ℓ2(sH) −→ ℓ2(H)
commute with ρ(H)

ρ(h′)δsh = δs(hh′)
Vs7−→ δhh′ = ρ(h′)Vsδsh.
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We want to understand the right regular representation ρ of H in terms of the

bijection G
∼=−→ G/H ×H or G

∼=−→ H ×G/H. If we use left cosets of G, then

ϕ : G −→ G/H ×H.

Now, we call the isomorphism Φ : C∗
u(G)

∼=−→ C∗
u(G/H)⊗ C∗

u(H) given by

Φ : T =
∑
r,s∈R

PrTPs 7−→
∑
r,s∈R

Er,s ⊗ VrPrTPsV
∗
s ,

where

Vr : ℓ
2(rH) −→ ℓ2(H)

and

Pr : ℓ
2(G) =

⊕
r∈R

ℓ2(rH) −→ ℓ2(rH).

This commutes with the action of ρ(H). Note that H is a subgroup of G/H×H

h 7−→ (e, h).

We have

(r, h)(e, h′) = ((r ∗ e), (r ∗ e)−1(re)(e)−1heh′) = (r, r−1rhh′) = (r, hh′).

So, (e, h′) acts trivially on the first factor in G/H × H. Next, we show the
following important proposition, which is used for the main result (Theorem
3.1) of this Chapter.

Proposition 3.2. The isomorphism Φ commutes with the adjoint action Adρ
of H.

Proof. ∀ h ∈ H

Φ(Adρ(h)T ) = Φ(
∑
r,s∈R

PrAdρ(h)TPs)

=
∑
r,s∈R

(Er,s ⊗ VrPrAdρ(h)TPsV
∗
s )

=
∑
r,s∈R

Er,s ⊗Adρ(h) (VrPrTPsV
∗
s )

= Adρ(h)

∑
r,s∈R

Er,s ⊗ VrPrTPsV
∗
s


= Adρ(h)Φ(T ).
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Conclusion 3.3. Since G/H ×H is the right equipped with Jolissaint product
[5], taking the induce action of H on both side, we have

C∗
u(G)

H ∼= C∗
u(G/H ×H)H ∼= C∗

u(G/H)H ⊗ C∗
u(G)

H .

So, if H has the IAP:

C∗
u(G)

H ∼= C∗
u(G/H)⊗ C∗

λ(H) =Mn(C
∗
λ(H)),

then, we know
C∗
u(G)

G ⊆ C∗
u(G)

H ⊆Mn(C
∗
λ(H)).

Proposition 3.4. If T ∈ C∗
u(G) is H− invariant then

∑
r∈RAdρ(r)T is a G−

invariant .

Proof. Take g ∈ G, such that g = rghg, where rg ∈ R and hg ∈ H. We have

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

g(rTr−1)g−1

=
∑
r∈R

(rghg) rTr
−1(rghg)

−1

=
∑
r∈R

rghgrTr
−1h−1

g r−1
g .

If we take hgr ∈ G ∃ s ∈ R, h ∈ H such that hgr = sh. Then

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

rghgrTr
−1h−1

g r−1
g

=
∑
r∈R

rgshTr
−1h−1s−1r−1

g

=
∑
r∈R

rgsTr
−1s−1r−1

g .

We need to claim that rgs runs through R and hgr = r(r−1hgr). So:

Adρ(g)

(∑
r∈R

Adρ(r)T

)
=

∑
r∈R

rghgrTr
−1h−1

g r−1
g

=
∑
r∈R

rgr(r
−1hgr)Tr

−1h−1
g r−1

g

=
∑
r∈R

rgrT (rgr)
−1

=
∑
r∈R

(rg ∗ r)(rg ∗ r)−1rgrT (rgr)
−1(rg ∗ r)(rg ∗ r)−1

=
∑
r∈R

(rg ∗ r)T (rg ∗ r)−1

=
∑
s∈R

rsTr
−1
s .
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When we define C∗
u(G)

G, we consider the right action of G on ℓ2(G) which
induces the Adρ− action on C∗

u(G). Take g ∈ G, such that g = rghg, where
rg ∈ R and hg ∈ H

Adρ(g)T=ρ(rghg)Tρ(rghg)
∗=ρ(rg)ρ(hg)Tρ(hg)

−1ρ(rg)
−1=Adρ(rg)(Adρ(hg)T ).

It seems that when T ∈
(
C∗
u(G)

H
)G/H

(which still needs to be defined) then

Adρ(hg)T = T, and Adρ(rg) (Adρ(hg)T ) = T.

So, Adρ(g)T = T. Consider C∗
u(G)

H . Take r, t ∈ R, T ∈ C∗
u(G)

H . We have

Adρ(rt)T = Ad
(
ρ(r ∗ t)(r ∗ t)−1rt

)
T

= Adρ(r ∗ t)
(
Ad(ρ(r ∗ t)−1rt)T

)
= Adρ(r ∗ t)T.

Conclusion 3.5. We seem to have an R− action G/H on C∗
u(G)

H . If this is
so, this could imply that

C∗
u(G)

G ∼=
(
C∗
u(G)

H
)G/H

.

We define
(
C∗
u(G)

H
)G/H

:a possible action of R on C∗
u(G)

H . R ⊂ G, so it
makes sense to consider Adρ(r)T , for any r ∈ R, T ∈ C∗

u(G), where ρ is the
right regular representation of G. Since ρ(r)ρ(s) ̸= ρ(r ∗ s)r, s ∈ R, then for
T ∈ C∗

u(G)
H , we have:

Adρ(r)Adρ(s)T = Adρ(r) (Adρ(s)T )

= ρ(r)
(
ρ(s)Tρ(s)−1

)
ρ(r)−1

= ρ(rs)Tρ(rs)−1

= ρ(r ∗ s)ρ
(
(r ∗ s)−1rs

)
Tρ
(
(r ∗ s)−1rs

)−1
ρ(r ∗ s)−1

= Adρ(r ∗ s)T.

We obtain the following important proposition, which is used for the main result
(Theorem 3.1) of this Chapter.

Proposition 3.6. The group (R, ∗) ∼= G/H acts on C∗
u(G)

H , and the action is
induced by the right regular representation ρ of G.

We need to show that

C∗
u(G)

G ∼=
{
C∗
u(G)

H
}G/H

.

If T ∈
(
C∗
u(G)

H
)G/H

, then T ∈ C∗
u(G)

G. Since for every g ∈ G, such that g =
rghg and

Adρ(rghg)T = Adρ(rg)Adρ(hg)T = T
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So,
(
C∗
u(G)

H
)G/H ⊆ C∗

u(G)
G. We also have C∗

u(G)
G ⊆ C∗

u(G)
H . If T ∈ C∗

u(G)
G

then T ∈ C∗
u(G)

H . Since, for every g ∈ G, g = rghg. Then Adρ(hg)T = T. We
have Adρ(rg)(Adρ(hg)T ) = ρ(rg)(ρ(hgTρ(h

−1
g )ρ(rg)

−1 = ρ(rghg)Tρ(rghg)
−1 =

Adρ(g)T. So, C∗
u(G)

G ⊆
(
C∗
u(G)

H
)G/H

. Which would give

C∗
u(G)

G ∼=
(
C∗
u(G)

H
)G/H

.

Next, we need to show that:(
(C∗

u(G/H)⊗ C∗
u(H))H

)G/H ∼= C∗
u(G/H)G/H ⊗ C∗

u(H)H .

We denote by Pi the projection onto ℓ2(Hi);

Pi : ℓ
2(G) −→ ℓ2(Hi).

For every r ∈ R, there is also a unitary isomorphism Vi : ℓ2(Hi) −→ ℓ2(H),
induced by the map hi 7−→ h,∀h ∈ H. We have

(Piρ(r))(Piρ(r))
∗ = Piρ(r)ρ(r)

∗P ∗
i = PiP

∗
i = Pi

and
ρ(s)Pi : ℓ

2(Hr) −→ ℓ2(H(r ∗ s)),

(ρ(s)Pr)
∗(ρ(s)Pr) = P ∗

r ρ(r)
∗ρ(r)Pr = P ∗

r Pr = Pr = idHr

we get the unitary isomorphsim Piρ(r)
∗ : Hs

∼=−→ Hi, i = s ∗ r−1. Then

ρ(r)(PiV
∗
i TVjPj)ρ(r)

∗ :ℓ2(Hs)
Pjρ(r)

∗

−→ ℓ2(Hj)
Vj−→ ℓ2(H)

V ∗
i−→

ℓ2(Hi)
ρ(r)Pi−→ ℓ2(H(i ∗ r)).

Thus
ρ(r)(PiV

∗
i TVjPj)ρ(r)

∗ : ℓ2(Hs) −→ ℓ2(H(i ∗ r)).

We get Ei∗r,j∗r = AdρG/H
Ei,j . Then T ⊗ Ei,j 7−→ T ⊗ Ei∗r,j∗r. Therefore,(

(C∗
u(G/H)⊗ C∗

u(H))H
)G/H ∼= C∗

u(G/H)G/H ⊗ C∗
u(H)H .

We know that the isomorphsim

Φ : C∗
u(G)

∼=−→ C∗
u(G/H)⊗ C∗

u(H)

is H− equivariant so that

C∗
u(G)

H ∼= C∗
u(G/H ×H)H ∼= C∗

u(G/H)⊗ C∗
u(H)H .

The isomorphsim uses that H is a subgroup of G/H ×H and acts trivially on
G/H. We now need to understand the action ρG/H×H on C∗

u(G/H) ⊗ C∗
u(H).
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We obtain the following: we want to understand the right regular representation

ρ of G in terms of the bijection G
∼=−→ G/H ×H or G

∼=−→ H ×G/H, we have

C∗
u(G)

G ∼=
(
C∗
u(G)

H
)G/H

∼=
(
C∗
u(G/H)⊗ C∗

u(H)H
)G/H

.

Taking invariants with respect to G/H.

(
C∗
u(G)

H
)G/H ∼=

(
(C∗

u(G/H)⊗ C∗
u(H))H

)G/H

∼= C∗
u(G/H)G/H ⊗ C∗

u(H)H .

Since H has IAP. Then

C∗
u(G/H)G/H ⊗ C∗

u(H)H = C∗
u(G/H)G/H ⊗ C∗

λ(H).

Since G/H is finite group, every finite group is amenable group. Roe shows that
the amenable group has IAP [14]. Thus,

C∗
u(G)

G ∼=
(
C∗
u(G)

H
)G/H

∼= C∗
u(G/H)G/H ⊗ C∗

λ(H)H

∼= C∗
λ(G/H)⊗ C∗

λ(H).

Next, we need to show that the following Proposition:

Proposition 3.7. The left regular representation λG on ℓ2(G) is isomorphic to
the left regular representation λH ⊗ λG/H on ℓ2(H)⊗ ℓ2(G/H).

Proof. Let R be the set of right coset representation. We have a bijection

G =
∐
r∈R

Hr

which induces the Hilbert space isomorphism

ℓ2(G) =
∐
r∈R

ℓ2(Hr).

We denote by Pr the projection onto ℓ2(Hr);

Pr : ℓ
2(G) −→ ℓ2(Hr).

For every r ∈ R there is also a unitary isomorphism Vr : ℓ2(Hr) −→ ℓ2(H),
induced by the map hr 7−→ h,∀h ∈ H. As we have seen before, the coset
decomposition of G induces a bijection

ϕ : G
∼=−→ H ×G/H
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and a Hilbert space isomorphism ℓ2(G) −→ ℓ2(H)⊗ ℓ2(G/H). This gives a rise
to the C∗− algebra isomorphism

Φ : C∗
u(G)

∼=−→ C∗
u(H)⊗ C∗

u(G/H)

given by

T 7−→
∑

r′,r∈R
Vr′Pr′TPrV

∗
r ⊗ Er′r.

The direct sum decomposition of ℓ2(G) allows one to respect it operators in
C∗
u(G) as matrices of size |R| × |R| whose entries are operators

ℓ2(Hr) −→ ℓ2(Hr′), for r′, r ∈ R.

This induces an analogous matrix decomposition of element of C∗
λ(G), and we

shall now use this representation to constrict an isomorphism λG ∼= λH ⊗λG/H .

We have a bijection

sHr ∼= (sHs−1)sr(s ∗ r)−1 ∼= H(s ∗ r),

∀ s, r ∈ R, α(s, r) : H −→ (sHs−1)sr(s ∗ r)−1 ∈ H

h 7−→ (shs−1)sr(s ∗ r)−1.

This is a bijection, which induces a unitary isomorphism

Uα(s,r) : ℓ
2(H) −→ ℓ2(H)

given by (Uα(s,r)ξ)(t) = ξ(α(s, r)t). We extend it to a map

H(s ∗ r) −→ H(s ∗ r),

h(s ∗ r) 7−→ (α(s, r)h)(s ∗ r).

We have

(α(s, r)H)(s ∗ r) ∼= sHr,

where α(s, r) is a composition of ad(s) with ρ(sr(s ∗ r)−1),

ad(s) : H −→ H

is a group isomorphism. And ad(s)(h) = shs−1 and ρ(h′)(h) = hh′. ad(s)H is
an isomorphism of H, while ρ(h′) commutes with the left action of H.

Let g = hs ∈ G, where h ∈ H, s ∈ R. When restricted to ℓ2(Hr)(
by means of projection Pr ), λG(hs) can be explicitly computed as follows :
Thanks to isomorphism ℓ2(G) −→ ℓ2(H) ⊗ ℓ2(G/H). We know that the set of
linear combinations of functions on G of the form ηγ, where η ∈ ℓ2 (H) and
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γ ∈ ℓ2 (G/H) is dense in ℓ2(G). We can therefore assume that ζ ∈ ℓ2(G) is of
the form ζ = ηγ. Then, for every t ∈ H r ∈ R and ξ ∈ ℓ2(Hr).

(λG(hs)ξ(tr)) = ξ
(
s−1h−1tr

)
= ξ

(
s−1(h−1t)ss−1r(s−1 ∗ r)−1(s−1 ∗ r)

)
= ξ

(
α(s−1, r)(h−1t)(s−1 ∗ r)

)
= η

(
α(s−1, r)(h−1t)

)
γ
(
(s−1 ∗ r)

)
.

Now, the operator of multiplication on the left by α(s−1, r) ∈ H induces a
unitary isomorphism

Uα(s,r) : ℓ
2(H) −→ ℓ2(H)

given by
η 7−→ (Uα(s−1,r)η)(t) = η(α(s−1, r)t).

Thus, we have (λG(hs)ξ(tr)) =
(
λH(h)U(s−1,r)η

)
(t)(λG/H(s)γ). Next, we need

to show that the following Lemma:

Lemma 3.8. With the above notations λH(h)Uα(s,r) = Uα(s,r)λH(ad(s)h).

Proof. (
λH(h)Uα(s,r)ζ

)
(t) = Uα(s,r)ζ(h

−1t)

= ζ(α(s, r)(h−1t))

= ζ(s(h−1t)s−1sr(s ∗ r)−1)

= ζ(s(h−1s−1)sts−1sr(s ∗ r)−1)

= ζ(ad(s)(h−1)α(s, r)(t))

= Uα(s,r)λH
(
(ad(s)h−1)−1ζ

)
(t)

= Uα(s,r)λH ((ad(s)h)ζ) (t).

We have λH(h)Uα(s−1,r)ζ = (Uα(s−1,r)λH(ad(s)h))ζ.

Here the Lemma:

Lemma 3.9. The following diagram commutes: r, s ∈ R

ℓ2(G) ℓ2(H)⊗ ℓ2(G/H)

ℓ2(g) ℓ2(H)⊗ ℓ2(G/H)

-
Vs−1∗r

6
Ps−1∗rλG(hs)Pr

-
Vr

6
λH(h)U(s−1,r)⊗λG/H(h)

Proof. Since we have s, r ∈ R

λH(h)Uα(s−1,r)ζ = (Uα(s
−1, r)λH(ad(s)h))ζ.
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The following diagram commutes

ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H)

ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H) ℓ2(H)⊗ ℓ2(G/H)

-
Vs−1∗r

-
∼=

6
λH(h)U(s−1,r)⊗λG/H(h)

-
Vr

6
U(s−1,r)λH(ad(s)h)⊗λG/H(s)

-
∼=

6
λH(ad(s−1)h)⊗λG/H(s)

We have proved:

Ps−1∗rλG(hs)Pr
∼= λH(h)U(s−1, r)⊗ λG/H(h)

∼= U(s−1, r)λH(ad(s)h)⊗ λG/H(h)

∼= λH(ad(s−1)h)⊗ λG/H(s).

On the other hand, next we need to find (e, s)−1 ∈ H × G/H: The inverse
of s ∈ R ∼= G/H will be denoted by s. If (e, s) and (h, s) ∈ H ×G/H: we have

(e, s) ∗ (h, s) =
{
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

}
.

If (e, s)−1 = (h, s), then{
(shs−1)(ss)(s ∗ s)−1, (s ∗ s)

}
= (e, e).

If s ∗ s = e = s ∗ s, then s = s−1t, for some t ∈ H ⇐⇒ ss = t and

(shs−1)t = e⇐⇒ t−1 = shs−1 ⇐⇒ t = sh−1s−1,

thus s = s−1t = h−1s−1 ⇐⇒ h = (ss)−1. Thus (e, s)−1 = (h, s) = ((ss)−1, s). If
(e, s) and (h, r) ∈ H ×G/H and ξ ∈ ℓ2(H)⊗ ℓ2(G/H):(

λH×G/H(e, s)ξ
)
(h, r) = ξ

(
(e, s)−1(h′, k′)

)
= ξ

(
((ss)−1, s)(h, r)

)
= ξ

{
(ss)−1(shs−1)(sr)(s ∗ r)−1, (s ∗ r)

}
,

but (shs−1)(sr)(s ∗ r)−1 is an automorphism of H and s ∈ R 7−→ ss ∈ H. But,
then λG(hs)ℓ

2(Hr) will be isomorphic to λH(h) ⊗ λG/H(s) acting on ℓ2(H) ⊗
ℓ2(G/H) via the composition of the map ϕ with the isomorphism. We have the
isomorphism C∗

λ(H)⊗ C∗
λ(G/H) ∼= C∗

λ(G).

We already proved C∗
u(G)

G ∼= C∗
λ(H)⊗C∗

λ(G/H). By using Proposition 3.7,
C∗
u(G)

G ∼= C∗
λ(H ×G/H) ∼= C∗

λ(G). Therefore, G has IAP.
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Abstract. In this paper, the full discrete scheme of mixed finite element approxima-
tion is introduced for second-order nonlinear hyperbolic equation. In order to deal with
the nonlinear mixed-method equations efficiently, a two-grid algorithm is considered.
Numerical stability and error estimate are proved on both the coarse grid and fine grid.
It is shown that the two-grid method can achieve asymptotically optimal approxima-
tion as long as the mesh sizes satisfy h = O(H(2k+1)/(k+1)). Some numerical results are
provided to confirm the theoretical analysis.

Keywords: nonlinear hyperbolic equation, mixed finite element method, two-grid
method, error estimate.

1. Introduction

In this paper, we consider the following nonlinear hyperbolic equation

utt −∇ · (K(u)∇u) = f, (x, t) ∈ Ω× J,(1.1)

u(x, t) = 0, (x, t) ∈ ∂Ω× J,(1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.3)

where Ω ⊂ R2 is a bounded polygonal domain, J = (0, T ], K(u) : Ω×R → R2×2

is a symmetric and uniformly positive definite bounded tensor.
Hyperbolic equations can demonstrate many physical processes and phenom-

ena such as vibrations of a membrane, acoustic vibrations of a gas, hydrody-
namics, displacement problems in porous media, etc. Lots of numerical methods
have been developed for solving these model problems. Such as finite difference

*. Corresponding author
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methods [1, 2], finite element methods [3, 4, 15, 18], mixed finite element meth-
ods [5-7] and so on. In this paper, we consider a mixed element method for
nonlinear hyperbolic equation in which the coefficient K is nonlinear.

The mixed finite element method (MFEM), as a type of powerful numeri-
cal tool for solving differential problems, was extensively used in the analysis
of engineering and scientific computation. In the past decades, the theoretical
framework and the basic tools for the analysis of the MFEM have been de-
veloped. Perhaps the most important property of the MFEM is that it can
simultaneously approximate both the scalar (pressure) and vector (flux) func-
tions. The advantage of this approach has attracted many researchers to do
research in this field. For example, there are some papers such as [8, 11, 19] on
elliptic equations and parabolic equations. There are also some papers such as
[5-7] on the MFEM for the linear and semilinear hyperbolic problems.

For the mixed method, the problem (1.1) is often rewritten by introducing
a new variable

z = −K(u)∇u,

or equivalently

κ(u)z = −∇u,(1.4)

as

utt +∇ · z = f,(1.5)

where κ(u) = K−1(u) is a square-integrable, symmetric, uniformly positive-
definite tensor defined on Ω, and there exist constants K∗, K

∗ > 0, such that

K∗|y|2 ≤ yTκ(u)y ≤ K∗|y|2, y ∈ R2.(1.6)

As we know, the resulting algebraic system of equations is a large systems
of nonlinear equations. Therefore, it is necessary for us to study an effective
algorithm for this essential system. We will consider a two-grid method inspired
by Xu [9, 10]. The key feature of this method is that it can reduce the complexity
of the original problem and save the computational time. Thus, many articles
utilize this method to numerically solve differential equations and developed
some new numerical techniques based on the idea of two-grid algorithm [11-
18]. Now, the two-grid methods have been proved to be efficient discretization
techniques for the complicated problems (nonsymmetric indefinite or nonlinear,
etc.) of various type.

For the hyperbolic equations, Chen et al. [16] discussed a two-grid method
for semilinear problem by using finite volume element method. Later on, they
also investigate this method for the nonlinear case [17]. Recently, in [18], the two-
grid method was presented to solve the two-dimensional nonlinear hyperbolic
equation by the bilinear finite element. In this work, we use a two-grid method
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based on MFEM to approximate the solution of (1.1). We first solve a nonlinear
MFE system on a coarse grid, then we use the known coarse grid solution
and a Taylor expansion to get the solution of a linear system on the fine grid.
As shown in [9, 10], the coarse mesh can be quite coarse and still maintain
a good accuracy approximation. The novelty and major achievement of this
paper is that we successfully extend the two-grid method to solve the nonlinear
hyperbolic problems by the MFEM. Convergence rate in both time and space
is proved.

This paper is organized as follows. In Section 2, we present a two-grid
algorithm combined with the fully discrete MFEM for (1.1). In Section 3, we
carry out the stability analysis for two-grid method. In Section 4, we deduce
the error estimates for both the coarse grid and fine grid. In Section 5, we give
some numerical experiments to verify the theoretical results.

Throughout this paper, let C denote a generic positive constant independent
of mesh parameters with possibly different values in different contexts. Let
Lp(Ω) for 1 ≤ p < ∞ denote the standard Banach space defined on Ω, with
norm || · ||p. For any nonnegative integer m, let Wm,p(Ω) = {µ ∈ Lp(Ω), Dϑµ ∈
Lp(Ω), |ϑ| ≤ m} denote the Sobolev spaces endowed with the norm ||µ||pm,p =∑

|ϑ|≤m ||Dϑµ||pLp(Ω). When p = 2, we omit the subscript.

2. The two-grid algorithm based on MFEM

Let W = L2(Ω) and V = H(div; Ω). The weak form for the mixed problem
(1.4)-(1.5) is to seek a pair of functions: (u, z) : (0, T ) →W × V satisfying

(utt, w) + (∇ · z, w) = (f, w), ∀w ∈W,(2.7)

(κ(u)z,v)− (∇ · v, u) = 0, ∀v ∈ V ,(2.8)

with u(0) = u0 and ut(0) = u1.

Let Th be a quasi-uniform family of finite element partition of Ω into triangles
or rectangles with the mesh size h. We take finite-dimensional subspaces Wh ×
V h ⊂ W × V , using Raviart-Thomas (RT ) mixed finite element space [19] of
index k, where k is fixed nonnegative integer, associated with Th. The following
inclusion holds for the RTk spaces

∇ · vh ∈Wh, ∀vh ∈ V h.(2.9)

Let Qh be the L2 projection of W onto Wh such that

(α,wh) = (Qhα,wh), ∀wh ∈Wh, α ∈ L2(Ω).(2.10)

Associated with the standard mixed finite element spaces is Fortin projection
Πh : (H1(Ω))2 → V h, such that for q ∈ H(div,Ω)

(2.11) (∇ ·Πhq, wh) = (∇ · q, wh), ∀wh ∈Wh.
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The following approximation properties hold for the projections Qh and Πh
(see [19])

∥Qhα∥0,q ≤ C∥α∥0,q, 2 ≤ q <∞,(2.12)

∥α−Qhα∥0,q ≤ C∥α∥r,qhr, 0 ≤ r ≤ k + 1,(2.13)

∥q −Πhq∥0,q ≤ C∥q∥r,qhr, 1/q < r ≤ k + 1,(2.14)

∥∇ · (q −Πhq)∥0,q ≤ C∥∇ · q∥r,qhr, 0 ≤ r ≤ k + 1.(2.15)

For discretization of time variable, let

tn = n∆t, n = 0, 1, · · · , N,

where ∆t = T/N is the step size of time variable.
For any function φ of time, let φn denote φ(·, tn). Moreover, we describe

some of the notations which will be frequently used in our analysis:

φn+
1
2 =

1

2
(φn+1 + φn), ∂tφ

n+ 1
2 =

1

∆t
(φn+1 − φn),

∂tφ
n =

1

2∆t
(φn+1 − φn−1), ∂ttφ

n =
1

(∆t)2
(φn+1 − 2φn + φn−1),

(2.16)

obviously, we have

∂tφ
n =

1

2
(∂tφ

n+ 1
2 + ∂tφ

n− 1
2 ), ∂ttφ

n =
1

∆t
(∂tφ

n+ 1
2 − ∂tφ

n− 1
2 ).

The fully discrete scheme of (2.7)-(2.8) is as follows: find (un+1
h , zn+1

h ) ∈
Wh × V h such that

(u0h, wh) = (Qhu0, wh), ∀wh ∈Wh,(2.17)

(z0
h,vh) = (z0,vh), ∀vh ∈ V h,(2.18) (
2

∆t
∂tu

1
2
h , wh

)
+ (∇ · z0

h, wh) =

(
f0 +

2

∆t
Qhu1, wh

)
, ∀wh ∈Wh,(2.19)

(∂ttu
n
h, wh) + (∇ · znh, wh) = (fn, wh), ∀wh ∈Wh,(2.20)

(κ(un+1
h )zn+1

h ,vh)− (∇ · vh, un+1
h ) = 0, ∀vh ∈ V h.(2.21)

In order to prove the existence and uniqueness of the discrete problem (2.17)-
(2.21), we rewrite (2.20) as(

1

(∆t)2
un+1
h , wh

)
= −(∇ · znh, wh) +

(
unh − un−1

h

(∆t)2
, wh

)
+ (fn, wh),(2.22)

∀wh ∈Wh.

Let Bu and Bz be bases of Wh and V h, respectively. So, uh = Y · Bu and
zh = X ·Bz, whereX and Y are nodal variables. Let (uh, wh) = (Y ·Bu, α·Bu) =
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α ·LY , where L is the matrix associated with the operator whose quadratic form
is the L2 inner products. Similarly, to L, introduce matrices A, B and D,

(κ(un+1
h )zn+1

h ,vh) = χ ·AX,
−(∇ · vh, un+1

h ) = Bχ · Y = BTY · χ,(
1

(∆t)2
un+1
h , wh

)
= DY · α,

where vh = χ · Bz and wh = α · Bu. Then, the matrix form of (2.17)-(2.21),
relative to the bases Bu and Bz, is[

A BT

0 D

] [
X
Y

]
=

[
0
G

]
.(2.23)

Recalling the assumptions on κ(u), and noting that A and D are positive def-
inite, as required by [20], there exists a unique solution (X,Y ) to the system
(2.23). Therefore, we can deduce that there exists a unique solution (un+1

h , zn+1
h )

to (2.17)-(2.21).
To speed up the scheme (2.17)-(2.21), we present two-grid algorithm for

problem (2.17)-(2.21) based on another mixed finite element space WH × V H

(⊂ Wh × V h), having mesh size h ≪ H < 1. The basic idea in our approach is
to solve the original nonlinear problem on a coarse grid TH(Ω), and then solve
a corresponding linear problem on the fine grid Th(Ω).

Now, we give the two-grid algorithm which has two steps:
Algorithm 2.1.
Step 1. On the coarse grid TH , find (un+1

H , zn+1
H ) ∈ WH × V H , solve the

following nonlinear system:

(u0H , wH) = (QHu0, wH), ∀wH ∈WH ,(2.24)

(z0
H ,vH) = (z0,vH), ∀vH ∈ V H ,(2.25) (
2

∆t
∂tu

1
2
H , wH

)
+ (∇ · z0

H , wH) =

(
f0 +

2

∆t
QHu1, wH

)
,∀wH ∈WH ,(2.26)

(∂ttu
n
H , wH) + (∇ · znH , wH) = (fn, wH), ∀wH ∈WH ,(2.27)

(κ(un+1
H )zn+1

H ,vH)− (∇ · vH , un+1
H ) = 0, ∀vH ∈ V H .(2.28)

Step 2. On the fine grid Th, find (Un+1
h ,Zn+1

h ) ∈Wh×V h, solve the following
linear system:

(U0
h , wh) = (Qhu0, wh), ∀wh ∈Wh,(2.29)

(Z0
h,vh) = (z0,vh), ∀vh ∈ V h,(2.30) (
2

∆t
∂tU

1
2
h , wh

)
+ (∇ ·Z0

h, wh) =

(
f0 +

2

∆t
Qhu1, wh

)
, ∀wh ∈Wh,(2.31)

(∂ttU
n
h , wh) + (∇ ·Zn

h, wh) = (fn, wh), ∀wh ∈Wh,(2.32)

(κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ) + κ(un+1
H )Zn+1

h ,vh)

= (∇ · vh, Un+1
h ),∀vh ∈ V h.(2.33)
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3. Stability analysis

In this section, we will carry out the stability analysis for two-grid scheme (2.24)-
(2.33). We suppose that κ(u) is triple continuously differentiable with bounded
derivatives up to the second order on Ω, i.e., there exists M1, M2 > 0, such that
∥κu∥0,∞ ≤M1, ∥κuu∥0,∞ ≤M2. Moreover, we also assume ∥z∥0,∞ ≤M3, where
M3 > 0. As in [6], we use the ”inverse assumption”, which states that there
exists a constant C0 independent of ℏ, such that

∥∇ · φ∥ ≤ C0ℏ−1∥φ∥,(3.34)

for φ ∈Wℏ, where ℏ is either h or H depending on whether we work on the fine
grid space or coarse grid space.

In order to derive the stability for our two-grid method, we need to obtain
a stability result first for the coarse grid system (2.24)-(2.28).

Theorem 3.1. The scheme defined by (2.24)-(2.28) is stable for ∆t < 2H
C0

, and

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ C(∥u1H∥2 + ∥z1
H∥2 + ∥∂tu

1
2
H∥

2

+ ∥∇ · z0
H∥2) + C∆t

N∑
n=1

max
1≤i≤n

∥f i∥2(3.35)

holds.

Proof. Let

z0
H =

∆t

2
z0
H , znH =

∆t

2
z0
H +∆t

n∑
i=1

ziH .

Summing over time levels and multiplying (2.27) by ∆t, we have

(∂tu
n+ 1

2
H − ∂tu

1
2
H , wH) + (∇ · (znH − z0

H), wH)

=

(
∆t

n∑
i=1

f i, wH

)
, ∀wH ∈WH .(3.36)

We rewrite (2.28) by noting that zn+1
H = ∂tz

n+ 1
2

H , so that

(κ(un+1
H )∂tz

n+ 1
2

H ,vH)− (∇ · vH , un+1
H ) = 0, ∀vH ∈ V H .(3.37)

Let wh = u
n+ 1

2
H and vh = z

n+ 1
2

H are the test functions in (3.36) and (3.37), then
add those equations to get

(un+1
H − unH , u

n+1
H + unH) + (κ(un+1

H )(zn+1
H − znH), z

n+1
H + znH)

+ ∆t(∇ · znH , unH)−∆t(∇ · zn+1
H , un+1

H )(3.38)

= 2∆t

{(
∂tu

1
2
H , u

n+ 1
2

H

)
+

(
∇ · z0

H , u
n+ 1

2
H

)
+

(
∆t

n∑
i=1

f i, u
n+ 1

2
H

)}
.
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Using the Cauchy-Schwarz inequality, the terms on the right-hand side of the
previous inequality are bounded as(

∂tu
1
2
H , u

n+ 1
2

H

)
+

(
∇ · z0

H , u
n+ 1

2
H

)
+

(
∆t

n∑
i=1

f i, u
n+ 1

2
H

)

≤ C(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑
i=1

f i∥)∥un+
1
2

H ∥.
(3.39)

In addition, the first two terms in the left-hand side of (3.38) are evaluated as

(un+1
H − unH , u

n+1
H + unH) + (κ(un+1

H )(zn+1
H − znH), z

n+1
H + znH)

≥ ∥un+1
H ∥2 − ∥unH∥2 +K∗(∥zn+1

H ∥2 − ∥znH∥2).
(3.40)

Summing (3.38) from n = 1, · · · , N , and using (3.39) and (3.40), we get

∥uN+1
H ∥2−∥u1H∥2+∥zN+1

H ∥2−∥z1
H∥2 −∆t

[(
∇ · zN+1

H , uN+1
H )− (∇ · z1

H , u
1
H

)]
≤ C∆t

N∑
n=1

(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑
i=1

f i∥)∥un+
1
2

H ∥.

Employing the Cauchy-Schwarz inequality, the inverse assumption (3.34), and
choosing H and ∆t such that ∆t < 2H

C0
, we obtain

∆t(∇ · zN+1
H , uN+1

H ) ≤∆t∥∇ · zN+1
H ∥ · ∥uN+1

H ∥ ≤ ∆tC0H
−1∥zN+1

H ∥ · ∥uN+1
H ∥

≤∆tC0

2H

(
∥zN+1

H ∥2 + ∥uN+1
H ∥2

)
<∥zN+1

H ∥2 + ∥uN+1
H ∥2.

(3.41)

Thus, we have

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ ∥u1H∥2 + ∥z1
H∥2

+ C∆t

N∑
n=1

(∥∂tu
1
2
H∥+ ∥∇ · z0

H∥+ ∥
n∑
i=1

f i∥)∥un+
1
2

H ∥(3.42)

≤∥u1H∥2+∥z1
H∥2+C∆t

N∑
n=1

(∥un+1
H ∥2+∥∂tu

1
2
H∥

2+∥∇ · z0
H∥2+max

1≤i≤n
∥f i∥2).

Note that ∆t
∑N

n=1 ≤ T , use Gronwall’s lemma to get

∥uN+1
H ∥2 + ∥zN+1

H ∥2 ≤ ∥u1H∥2 + ∥z1
H∥2 + C(∥∂tu

1
2
H∥

2 + ∥∇ · z0
H∥2)

+ C∆t
N∑
n=1

max
1≤i≤n

∥f i∥2.

The desired inequality (3.35) follows from the above inequality, and the proof is
completed.
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Following a similar analysis as that carried above for the coarse grid, we can
obtain the following stability on the fine grid Th.

Theorem 3.2. For the scheme (2.29)-(2.33), we have the following stable in-
equality

∥UN+1
h ∥2 + ∥ZN+1

h ∥2 ≤C(∥u1H∥2 + ∥z1
H∥2 + ∥∂tu

1
2
H∥

2 + ∥∇ · z0
H∥2 + ∥U1

h∥2

+ ∥Z1
h∥2+∥∂tU

1
2
h ∥

2+∥∇ ·Z0
h∥2)+C∆t

N∑
n=1

max
1≤i≤n

∥f i∥2.

Proof. Let

Z
0
h =

∆t

2
Z0
h, Z

n
h =

∆t

2
Z0
h +∆t

n∑
i=1

Zi
h.

Similarly as in Theorem 3.1, we have (cf. (3.38)):

(Un+1
h −Unh , Un+1

h +Unh )+(κ(un+1
H )(Z

n+1
h −Z

n
h),Z

n+1
h +Z

n
h)+∆t(∇ ·Zn

h, U
n
h )

−∆t(∇ ·Zn+1
h , Un+1

h )

= 2∆t{(∂tU
1
2
h , U

n+ 1
2

h ) + (∇ ·Z0
h, U

n+ 1
2

h )− (κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ),Z
n+ 1

2
h

+ (∆t
n∑
i=1

f i, U
n+ 1

2
h )}.

Following a similar analysis as that carried out for (3.42), using the boundedness
assumption on ∥z∥0,∞ ≤M3, we see that

∥UN+1
h ∥2 + ∥ZN+1

h ∥2

≤ ∥U1
h∥2 + ∥Z1

h∥2 + 2∆t
N∑
n=1

(∥∂tU
1
2
h ∥+ ∥∇ ·Z0

h∥+ ∥
n∑
i=1

f i∥)∥Un+
1
2

h ∥

+ C∆t
N∑
n=1

∥zn+1
H ∥0,∞(∥Un+1

h ∥+ ∥un+1
H ∥)∥Zn+ 1

2
h ∥

≤ ∥U1
h∥2+∥Z1

h∥2+C∆t
N∑
n=1

(∥Un+1
h ∥2+∥∂tU

1
2
h ∥

2+∥∇ ·Z0
h∥2+∥Zn+1

h ∥2+∥un+1
H ∥2)

+ C∆t
N∑
n=1

max
1≤i≤n

∥f i∥2.

Noting that ∆t
∑N

n=1 ≤ T , and using Gronwall’s lemma and (3.35), we derive
that

∥UN+1
h ∥2+∥ZN+1

h ∥2≤∥U1
h∥2+∥Z1

h∥2+C(∥∂tU
1
2
h ∥

2+∥∇ ·Z0
h∥2+∥u1H∥2+∥z1

H∥2

+ ∥∂tu
1
2
H∥

2 + ∥∇ · z0
H∥2) + C∆t

N∑
n=1

max
1≤i≤n

∥f i∥2.
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Thus, the proof of this theorem is completed.

4. Error analysis based on two-grid algorithm

In this section, we will prove the optimal a priori error estimate for schemes on
both coarse and fine grids. As in [21], we shall use the following result

(4.43) ∥φ∥0,∞ ≤ Cℏ−1∥φ∥.

The time-space norms ∥ · ∥l∞(L2) and ∥ · ∥Lp(L2) are defined as

∥φ∥l∞(L2) = ∥φ∥l∞(0,T ;L2(Ω)) = max
1≤n≤N

||φn||L2(Ω),

∥φ∥Lp(L2) = ∥φ∥Lp(0,T ;L2(Ω)) =

(∫ T

0
||φ||2L2(Ω)

) 1
p

,

in the case 1 ≤ p < ∞, and in the case p = ∞, the integral is replaced by the
essential supremum.

In order to derive the error estimates for our two-grid method, we need to
obtain an error estimate for the coarse grid system (2.24)-(2.28).

Theorem 4.1. Define (unH , z
n
H) ∈WH × V H by (2.24)-(2.28). If the time step

satisfies ∆t < 2H
C0

, then there exists a positive constant C such that

(4.44) ||u− uH ||l∞(L2) + ||z − zH ||l∞(L2) ≤ C((∆t)2 +Hk+1),

where k is associated with the degree of the finite element polynomial.

Proof. Set ξn = unH − QHu
n, ηn = znH − ΠHz

n, ζn = un − QHu
n and δn =

zn − ΠHz
n. Subtracting (2.7) from (2.27), (2.8) from (2.28), respectively, we

obtain the error equations

(∂ttξ
n, wH)+(∇ · ηn, wH)=(∂ttζ

n, wH)+(untt−∂ttun, wH),∀wH ∈WH ,(4.45)

(κ(un+1
H )ηn+1,vH)− (∇ · vH , ξn+1) = (I,vH), ∀vH ∈ V H ,(4.46)

where

I =(κ(un+1)− κ(un+1
H ))zn+1 − (κ(un+1)− κ(un+1

H ))(zn+1 −ΠHz
n+1)

+ κ(un+1)(zn+1 −ΠHz
n+1) =

3∑
i=1

Ii.

Using (2.17) in (4.45) yields(
∂tξ

n+ 1
2 − ∂tξ

n− 1
2

∆t
, wH

)
+ (∇ · ηn, wH)

=

(
∂tζ

n+ 1
2 − ∂tζ

n− 1
2

∆t
, wH

)
+ (βn1 , wH),(4.47)
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for any wH ∈WH , where

βn1 = untt − ∂ttu
n =

1

6(∆t)2

∫ ∆t

−∆t
(|t| −∆t)3

∂4u

∂t4
(tn + t)dt.

We introduce

ϕ0 =
∆t

2
η0, ϕn =

∆t

2
η0 +∆t

n∑
i=1

ηi.

Summing over time levels and multiplying both sides of (4.47) by ∆t, we find
that

(∂tξ
n+ 1

2 − ∂tξ
1
2 , wH) + (∇ · (ϕn − ϕ0), wH)

= (∂tζ
n+ 1

2 − ∂tζ
1
2 , wH) +

(
∆t

n∑
i=1

βi1, wH

)
, ∀wH ∈WH ,

(4.48)

where ∆t
n∑
i=1

ηi = ϕn − ϕ0. For t = 0, by (2.7), we have

(u0tt, wH) + (∇ · z0, wH) = (f0, wH), ∀wH ∈WH .(4.49)

It is simple to see

1

2∆t

∫ ∆t

0
(∆t− t)2

∂3u

∂t3
(t)dt = −∆t

2
u0tt +

1

∆t

∫ ∆t

0
(∆t− t)

∂2u

∂t2
(t)dt

= −∆t

2
u0tt − u0t −

1

∆t

∫ ∆t

0

∂u

∂t
(t)dt

= −∆t

2
u0tt − u0t −

1

∆t
(u1 − u0)

= −∆t

2
u0tt − u1 − ∂tu

1
2 .

(4.50)

Using the projection operators of QH and ΠH , (2.11), (4.49) and (4.50), (2.26)
can be transformed into the following:

(∂tξ
1
2 , wH) +

∆t

2
(∇ · η0, wH)

= −(∂tQHu
1
2 , wH)−

∆t

2
(∇ ·ΠHz0, wH) +

(
∆t

2
f0 +QHu1, wH

)
= −(∂tQHu

1
2 , wH) +

(
∆t

2
u0tt, wH

)
+ (QHu1, wH)(4.51)

= (∂tζ
1
2 , wH) + (QHu1 − u1, wH) +

(
∆t

2
u0tt + u1 + ∂tu

1
2 , wH

)
= (∂tζ

1
2 , wH) + (QHu1 − u1, wH)−

1

2∆t

∫ ∆t

0
(∆t− t)2

(
∂3u

∂t3
, wH

)
dt,

∀wH ∈WH .



372 KEYAN WANG and QISHENG WANG

Thus, it follows from (4.48) and (4.51) that

(4.52) (∂tξ
n+ 1

2 , wH) + (∇ · ϕn, wH) = (∂tζ
n+ 1

2 , wH) + (βn2 , wH), ∀wH ∈WH ,

where

βn2 = Qhu1 − u1 +∆t

n∑
i=1

βi1 −
1

2∆t

∫ ∆t

0
(∆t− t)2

∂3u

∂t3
(t)dt.

Noting that ηn+1 = ∂tϕ
n+ 1

2 , we rewrite (4.46) as follows:

(4.53) (κ(un+1
H )∂tϕ

n+ 1
2 ,vH)− (∇ · vH , ξn+1) = (I,vH), ∀vH ∈ V H .

Choosing the test functionswH = ξn+
1
2 and vH = ϕn+

1
2 in (4.52) and (4.53),

respectively. Then, multiplying the two resulting equations by 2∆t, we have

(ξn+1 − ξn, ξn+1 + ξn) + ∆t(∇ · ϕn, ξn+1 + ξn)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ),(4.54)

(κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn)−∆t(∇ · (ϕn+1 + ϕn), ξn+1)

= 2∆t(I, ϕn+
1
2 ).(4.55)

Combine (4.54) and (4.55) to obtain

∥ξn+1∥2 − ∥ξn∥2 + (κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn) + ∆t(∇ · ϕn, ξn)

−∆t(∇ · ϕn+1, ξn+1)(4.56)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ) + 2∆t(I, ϕn+
1
2 ).

Using (1.6), the third term on the left-hand side of (4.56) can be bounded as

(κ(un+1
H )(ϕn+1 − ϕn), ϕn+1 + ϕn) ≥ K∗(∥ϕn+1∥2 − ∥ϕn∥2).(4.57)

Next, we estimate the right-hand terms of (4.56). For the first term, using the
Cauchy-Schwarz inequality, we have the following estimation

(∂tζ
n+ 1

2 + βn2 , ξ
n+ 1

2 ) ≤ (∥∂tζn+
1
2 ∥+ ∥βn2 ∥)∥ξn+

1
2 ∥.(4.58)

For the second term, by the assumptions on κ(u) and z, the inverse inequality
and the Cauchy-Schwarz inequality, we have

|(I1, ϕn+
1
2 )| = |((κ(un+1)− κ(QHu

n+1) + κ(QHu
n+1)− κ(un+1

H ))zn+1, ϕn+
1
2 )|

≤ C(∥ξn+1∥+ ∥ζn+1∥)∥ϕn+
1
2 ∥,

|(I2, ϕn+
1
2 )| = |((κ(un+1)− κ(QHu

n+1) + κ(QHu
n+1)

− κ(un+1
H ))(zn+1 −ΠHz

n+1), ϕn+
1
2 )|

≤ C(∥ξn+1∥0,∞ + ∥ζn+1∥0,∞)∥δn+1∥ · ∥ϕn+
1
2 ∥

≤ CH−1(∥ξn+1∥+ ∥ζn+1∥)∥δn+1∥ · ∥ϕn+
1
2 ∥,

|(I3, ϕn+
1
2 )| = |(κ(un+1)(zn+1 −ΠHz

n+1), ϕn+
1
2 )|

≤ C∥δn+1∥ · ∥ϕn+
1
2 ∥.
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Hence, by (4.43), we conclude that

|(I, ϕn+
1
2 )| ≤ C

[
∥ζn+1∥+ ∥ξn+1∥+H−1(∥ξn+1∥+ ∥ζn+1∥)∥δn+1∥

+∥δn+1∥
]
∥ϕn+

1
2 ∥.(4.59)

Summing (4.56) over time levels, and using (4.57)-(4.59), we derive

∥ξn+1∥2−∥ξ0∥2+∥ϕn+1∥2−∥ϕ0∥2−∆t
[(
∇ · ϕn+1, ξn+1)−(∇ · ϕ0, ξ0

)]
≤ 2∆t

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ξi+

1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥(4.60)

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥]∥ϕi+
1
2 ∥.

After imposing the initial conditions (2.24) and (2.25) in (4.60), we have

∥ξn+1∥2 + ∥ϕn+1∥2 −∆t
(
∇ · ϕn+1, ξn+1

)
≤ 2∆t

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ξi+

1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥]∥ϕi+
1
2 ∥.

Similar to (3.41), we have

∆t(∇ · ϕn+1, ξn+1) ≤∆t∥∇ · ϕn+1∥ · ∥ξn+1∥ ≤ ∆tC0H
−1∥ϕn+1∥ · ∥ξn+1∥

≤∆tC0

2H

(
∥ϕn+1∥2 + ∥ξn+1∥2

)
<∥ϕn+1∥2 + ∥ξn+1∥2.

Thus, we obtain

∥ξn+1∥2 + ∥ϕn+1∥2 ≤ ∆t
n∑
i=0

(∥∂tζi+
1
2 ∥

+ ∥βi2∥)∥ξi+
1
2 ∥+ C∆t

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥

+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥

+ ∥δi+1∥]∥ϕi+
1
2 ∥ ≤ C∆t∥ξ∥l∞(L2)

n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)

+ C∆t∥ϕ∥l∞(L2)

n∑
i=0

[∥ζi+1∥+ ∥ξi+1∥
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+H−1(∥ξi+1∥+ ∥ζi+1∥)∥δi+1∥+ ∥δi+1∥] ≤ 1

4
∥ξ∥2l∞(L2)(4.61)

+ C

(
∆t

n∑
i=0

∥∂tζi+
1
2 ∥

)2

+ C

(
∆t

n∑
i=0

∥βi2∥

)2

+
1

4
∥ϕ∥2l∞(L2)

+ C

(
∆t

n∑
i=0

∥ξi∥

)2

+ C

(
∆t

n∑
i=0

∥δi∥

)2

+ C

(
∆t

n∑
i=0

∥ζi∥

)2

,

since ∥ξi+
1
2 ∥ ≤ ∥ξ∥l∞(L2) and ∥ϕi+

1
2 ∥ ≤ ∥ϕ∥l∞(L2). Taking the supremum on n

on the left-hand side of (4.61), we have

∥ξ∥2l∞(L2) + ∥ϕ∥2l∞(L2)

≤ C

(
∆t

n∑
i=0

∥∂tζi+
1
2 ∥

)2

+ C

(
∆t

n∑
i=0

∥βi2∥

)2

+ C

(
∆t

n∑
i=0

∥ζi∥

)2

(4.62)

+ C

(
∆t

n∑
i=0

∥δi∥

)2

+ C

(
∆t

n∑
i=0

∥ξi∥

)2

.

In the following, we analyse the right-hand side of (4.62). A direct bound shows
that

(4.63) ∆t

n∑
i=0

∥∂tζi+
1
2 ∥ ≤ C

(
Hk+1∥u∥L∞(Hk+1(Ω)) + (∆t)2

∥∥∥∥∂3u∂t3
∥∥∥∥
L1(L2)

)
.

By (2.13), we have

∥βi2∥ ≤ ∆t

n∑
i=1

∥βi1∥+ ∥QHu1 − u1∥+
∥∥∥∥ 1

2∆t

∫ ∆t

0
(∆t− t)3

∂3u

∂t3
(t)dt

∥∥∥∥
≤ C(∆t)2

∥∥∥∥∂4u∂t4
∥∥∥∥
L∞(L2)

+ CHk+1 + C(∆t)2
∥∥∥∥∂3u∂t3

∥∥∥∥
L∞(L2)

≤ C(Hk+1 + (∆t)2),

and hence

∆t

n∑
i=0

∥βi2∥ ≤ C∥β2∥l∞(L2) ≤ C(Hk+1 + (∆t)2).(4.64)

Using (2.13), (2.14) (4.63) and (4.64) in (4.62), and applying discrete Gronwall’s
inequality, we know that for ∆t and H sufficiently small

∥ξ∥2l∞(L2) + ∥ϕ∥2l∞(L2) ≤ C((∆t)4 +H2k+2).(4.65)

Finally, by (2.13), (2.14), (4.65) and the triangle inequality, we can
derive (4.44).
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Now, we can prove the following theorem for the solution of the fine grid.

Theorem 4.2. Let (Unh ,Z
n
h) ∈Wh×V h be the solution of the two-grid algorithm

of step 2 for solving the MFE scheme (2.29)-(2.33). If ∆t < 2h
C0

, then there is a
positive constant C such that

(4.66) ||u− Uh||l∞(L2) + ||z −Zh||l∞(L2) ≤ C((∆t)2 + hk+1 +H2k+1),

where k is associated with the degree of the finite element polynomial.

Proof. Set ρn = Unh−Qhun and γn = Zn
h−Πhz

n. Let us first note the following
error equations from (2.7)-(2.8) and (2.32)-(2.33),

(∂ttρ
n, wh) + (∇ · γn, wh) = (∂ttζ

n, wh) + (βn1 , wh), ∀wh ∈Wh,(4.67)

(E,vh)− (∇ · vh, ρn+1) = 0, ∀vh ∈ V h,(4.68)

where βn1 is defined by (4.47),

E =κ′(un+1
H )zn+1

H (Un+1
h − un+1

H ) + κ(un+1
H )Zn+1

h − κ(un+1)zn+1

+ κ(un+1)Πhz
n+1 − κ(un+1)Πhz

n+1,

applying the Taylor expansions to κ(un+1) at un+1
H , i.e.

κ(un+1) = κ(un+1
H ) + κ′(un+1

H )(un+1 − un+1
H ) +

1

2
κ′′(u∗)(un+1 − un+1

H )2,

where κ′′(u∗) means κ′′(u) evaluated at a point u∗ between un+1 and un+1
H .

Then, we have

E =κ(un+1)(Πhz
n+1 − zn+1)− κ(un+1

H )(Πhz
n+1 −Zn+1

h )

+ κ′(un+1
H )(Un+1

h −Qhu
n+1 +Qhu

n+1 − un+1)zn+1
H

+ κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1)

− 1

2
κ′′(u∗)(un+1 − un+1

H )2(Πhz
n+1 − zn+1 + zn+1 − zn+1

H )

− 1

2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H .

(4.69)

By (4.68) and (4.69), we get

(κ(un+1
H )γn+1,vh)− (∇ · vh, ρn+1) = (F,vh), ∀vh ∈ V h,

where

(F,vh) =(κ(un+1)δn+1,vh)− (κ′(un+1
H )(ρn+1 − ζn+1)zn+1

H ,vh)

− (κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1),vh)

+ (
1

2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1),vh)

+ (
1

2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H ,vh) =

5∑
i=1

Ti.
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Let us define

ψ0 =
∆t

2
γ0, ψn =

∆t

2
γ0 +∆t

n∑
i=1

γi.

By the center difference operator ∂ttφ
n = 1

∆t(∂tφ
n+ 1

2 − ∂tφ
n− 1

2 ), we obtain(
∂tρ

n+ 1
2 − ∂tρ

n− 1
2

∆t
, wh

)
+ (∇ · γn, wh)

=

(
∂tζ

n+ 1
2 − ∂tζ

n− 1
2

∆t
, wh

)
+ (βn1 , wh), ∀wh ∈Wh.(4.70)

Summing over time levels of (4.70) and multiplying through by ∆t, we have

(∂tρ
n+ 1

2 − ∂tρ
1
2 , wh) + (∇ · (ψn − ψ0), wh) = (∂tζ

n+ 1
2 − ∂tζ

1
2 , wh)

+
(
∆t
∑n

i=1 β
i
1, wh

)
, ∀wh ∈Wh,

since ∆t
n∑
i=1

γi = ψn − ψ0. Similar to (4.52), we have

(4.71) (∂tρ
n+ 1

2 , wh) + (∇ · ψn, wh) = (∂tζ
n+ 1

2 , wh) + (βn2 , wh), ∀wh ∈Wh,

where βn2 is defined in (4.52). Observe that γn+1 = ∂tψ
n+ 1

2 , therefore, we get

(4.72) (κ(un+1
H )∂tψ

n+ 1
2 ,vh)− (∇ · vh, ρn+1) = (F,vh), ∀vh ∈ V h.

Choosing wh = ρn+
1
2 and vh = ψn+

1
2 in (4.71) and (4.72), adding them and

multiplying by 2∆t, we find that

∥ρn+1∥2 − ∥ρn∥2 + ∥κ
1
2 (un+1

H )ψn+1∥2 − ∥κ
1
2 (unH)ψ

n∥2

+((κ(unH)− κ(un+1
H ))ψn, ψn)

+∆t(∇ · ψn, ρn)−∆t(∇ · ψn+1, ρn+1)

= 2∆t(∂tζ
n+ 1

2 + βn2 , ρ
n+ 1

2 ) + 2∆t(F,ψn+
1
2 ).(4.73)

Apply the Cauchy-Schwarz inequality, it is easy to get

(∂tζ
n+ 1

2 + βn2 , ρ
n+ 1

2 ) ≤ (∥∂tζn+
1
2 ∥+ ∥βn2 ∥)∥ρn+

1
2 ∥.(4.74)

Using (2.13)-(2.15), (4.44), and the assumptions on κ(u) and z, we have

|T1| = |(κ(un+1)δn+1, ψn+
1
2 )| ≤ Chk+1∥ψn+

1
2 ∥,

|T2| ≤ |(κ′(un+1
H )(ρn+1 + ζn+1)zn+1

H , ψn+
1
2 )|
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≤ C(∥ρn+1∥+ ∥ζn+1∥)∥zn+1
H ∥0,∞∥ψn+

1
2 ∥

≤ C(∥ρn+1∥+ hk+1)∥ψn+
1
2 ∥,

|T3| = |(κ′(un+1
H )(un+1 − un+1

H )(zn+1
H −Πhz

n+1), ψn+
1
2 )|

≤ C∥(un+1 − un+1
H )(zn+1

H −Πhz
n+1)∥ · ∥ψn+

1
2 ∥

≤ C∥un+1 − un+1
H ∥0,4∥zn+1 −Πhz

n+1∥0,4∥ψn+
1
2 ∥

+ C∥un+1 − un+1
H ∥0,4∥zn+1

H − zn+1∥0,4∥ψn+
1
2 ∥

≤ C(∥un+1 − un+1
H ∥20,4 + ∥zn+1 −Πhz

n+1∥20,4
+ ∥zn+1

H − zn+1∥20,4)∥ψn+
1
2 ∥

≤ C(H2k+1 + h2k+2 +∆t4)∥ψn+
1
2 ∥,(4.75)

|T4| = |(1
2
κ′′(u∗)(un+1 − un+1

H )2zn+1
H , ψn+

1
2 )|

≤ C∥un+1 − un+1
H ∥20,4∥zn+1

H ∥0,∞∥ψn+
1
2 ∥

≤ CH2k+1∥ψn+
1
2 ∥,

|T5| = |(1
2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1), ψn+

1
2 )|

≤ C∥(1
2
κ′′(u∗)(un+1 − un+1

H )2(zn+1 − zn+1
H − δn+1)∥ · ∥ψn+

1
2 ∥

≤ C∥un+1 − un+1
H ∥20,8∥zn+1 − zn+1

H ∥0,4∥ψn+
1
2 ∥

+ C∥un+1 − un+1
H ∥20,8∥δn+1∥0,4∥ψn+

1
2 ∥

≤ C(H2k+1 + h2k+2)∥ψn+
1
2 ∥.

It follows from (4.75) that

(4.76) |(F,ψn+
1
2 )| ≤ C(hk+1 +H2k+1 + (∆t)2 + ∥ρn+1∥)∥ψn+

1
2 ∥.

Using (4.74) and (4.76), and summing (4.73) over time levels, we have

∥ρn+1∥2 + ∥ψn+1∥2 −∆t(∇ · ψn+1, ρn+1)

≤ 2C∆t
n∑
i=0

(hk+1 +H2k+1 + (∆t)2 + ∥ρi+1∥)∥ψi+
1
2 ∥

+ 2∆t
n∑
i=0

(∥∂tζi+
1
2 ∥+ ∥βi2∥)∥ρi+

1
2 ∥,

where we used ρ0 = 0 and ψ0 = 0 since the initial conditions (2.29) and (2.30).
In the following, similarly as the proof of (4.65), we deduce that

∥ρ∥2l∞(L2) + ∥ψ∥2l∞(L2) ≤ C((∆t)4 + h2k+2 +H4k+2).(4.77)

Thus, applying (2.13), (2.14), (4.77) and the triangle inequality, we can derive
(4.66).
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Remark 4.1. From Theorem 4.2, we see that the optimal error estimate is

O((∆t)2 + hk+1) by taking H = O(h
k+1
2k+1 ), which is coincide with the error

result (4.44) obtained for the original MFE system (2.17)-(2.21).

5. Numerical experiments

In the section, we consider the following second-order nonlinear hyperbolic prob-
lem:

utt −∇ · (K(u)∇u) = f, (x, t) ∈ Ω× J,

u(x, t) = 0, (x, t) ∈ ∂Ω× J,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω = [0, 1]2, J = [0, 1], x = (x1, x2)
T ,

K(u) =

(
1 + sin2(u) 0

0 1 + sin2(u)

)
,

the functions f , u0 and u1 are chosen so that the exact solution u(x, t) =
etx1x2(1− x1)(1− x2) or u(x, t) = et sin(πx1) sin(πx2).

We use the Raviart-Thomas spaces (RT1) with k = 1. J is uniformly divided
so that △t is a constant. We present the two-grid discretization error with
coarse and fine mesh size pairs (H,h)=(1/4, 1/8), (1/9, 1/27), (1/16, 1/64)
which satisfy the relation h = H3/2. When the exact solution is chosen as
u(x, t) = etx1x2(1 − x1)(1 − x2), we take the time step ∆t = 1.0e − 3, the
error results, convergence rates and computational time of MEFM and two-grid
method are demonstrated in Tabs. 1 and 2. When the exact solution is chosen
as u(x, t) = et sin(πx1) sin(πx2), we couple the time step with spatial mesh as
∆t = h, the numerical results of MEFM and two-grid method are presented in
Tabs. 3 and 4.

Table 1: Numerical results by MFEM with u(x, t) = etx1x2(1− x1)(1− x2).

h ||u− uh|| ||z − zh|| Computing time (s)

1/8 1.5826e-03 4.1845e-03 1.52
1/27 1.4147e-04 3.7821e-04 16.33
1/64 2.4891e-05 6.7930e-04 70.65
Rates 2.0 2.0

Table 2: Numerical results by two-grid method with u(x, t)=etx1x2(1−x1)(1−x2).
(H , h) ||u− Uh|| ||z −Zh|| Computing time (s)

(1/4,1/8) 1.6114e-03 4.5097e-03 1.71
(1/9,1/27) 1.4475e-04 4.0349e-04 9.47
(1/16,1/64) 2.5978e-05 7.2536e-04 22.54

Rates 2.0 2.0
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Table 3: Numerical results by MFEM with u(x, t) = et sin(πx1) sin(πx2).

h = ∆t ||u− uh|| ||z − zh|| Computing time (s)

1/8 3.2017e-03 9.6503e-03 0.12
1/27 2.9004e-04 8.8632e-04 3.97
1/64 5.1916e-05 1.5965e-04 19.32
Rates 2.0 2.0

Table 4: Numerical results by two-grid method with u(x, t) = et sin(πx1) sin(πx2).

(H , h = ∆t) ||u− Uh|| ||z −Zh|| Computing time (s)

(1/4,1/8) 3.5235e-03 1.1218e-02 0.19
(1/9,1/27) 3.1622e-04 9.9945e-04 2.08
(1/16,1/64) 5.6992e-05 1.8016e-04 8.46

Rates 2.0 2.0

From the numerical results in Tabs. 1-4, we observe that the proposed two
methods are of second-order accuracy, which is coincided with our theoretical
analysis. Moreover, we also observe that the two-grid method spends less time
than the usual MFEM. Thus, we can see that two-grid algorithm is a very
effective algorithm when it comes to deal with the nonlinear problems.

6. Conclusions

In this paper, we develop a two-grid mixed finite element method for a class of
nonlinear hyperbolic equation. We prove the stability and the error estimate for
the two-grid scheme. It is shown theoretically and numerically that when the
coarse and fine mesh sizes satisfy h = O(H(2k+1)/(k+1)), the two-grid solution
can achieve the same accuracy as the mixed finite element solution.
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Abstract. In the present research article, we construct a new sequence of bivariate
(p, q) hybrid type operators using (p, q)− beta functions via Dunkl analogue. In the sub-
section sequence, we investigate the rate of convergence and the order of approximation
for these sequences positive linear operators. Further, we study local approximation re-
sults in various class of functions. In the last section, we give the global approximation
results using weight function.

Keywords: (p, q)-Bernstein operators; Rate of convergence; Order of approximation;
(p, q)- beta operators; weighted spaces.

1. Introduction

The operator theory is an active research area for the last one century. Bern-
stein was the first who gave the first positive linear operator named as Bernstein
operator to approximate the class of continuous functions over [a, b]. The motive
of Bernstein was to give the elegant proof of Weierstrass approximation theorem
using binomial distribution as follows.

Bn(f(x);x) =
n∑

k=0

bn,k(x)f(x),(1)

*. Corresponding author
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where bn,k(x) =

(
n
k

)
xk(1 − x)n−k and f is a bounded function defined in

C([0, 1]). To improve the rate of convergence of the operators defined by (1), the
q-analogues of Bernstein operators were independently given by Lupaş [19] and
Phillips [21] using quantum calculus. The (p, q)-analogue of Bernstein operators
was given by Mursaleen et al. [29] which improves the Bezier curves and radius
of convergence of the complex disk due to p-parametres (see Mursaleen and
Khan [26]), Khan and Lobiyal [27]. Recently, a Dunkl type generalization [17]
of Szász operators [24] via post-quantum calculus was studied by Alotaibi et al.
[15]. For more details and research motivation in Dunkl type generalizations,
we mention here some research articles [4, 11, 8, 12, 20, 22, 23, 28, 29, 30, 31].

Let f ∈ C[0, 1] denote the space of all continuous functions on [0, 1]. For all
f ∈ C[0, 1], x ≧ 0, τ > −1

2 and n ∈ N, the (p, q)-Dunkl analogue of Szász
operators [15] (see also [11]) is defined as follows:

(2) Dµ
n(h;u, p, q) =

1

eµ,p,q([n]p,qu)

∞∑
k=0

([n]p,qu)
k

γµ,p,q(k)
p

k(k−1)
2 f

(
pk+2µθk − qk+2µθk

pk−1(pn − qn)

)
,

where [n]p,q is the (p, q)-integer defined as:

(3) [n]p,q = pn−1 + qpn−3 + . . .+ qn−1 =



pn − qn

p− q
, (p ̸= q ̸= 1),

1− qn

1− q
, (p = 1),

n, (p = q = 1),

(au+ bv)np,q :=
n∑

k=0

p
(n−k)(n−k−1)

2 q
k(k−1)

2

[
n
k

]
p,q

an−kbkun−kvk,

(1− u)np,q = (1− u)(p− qu)(p2 − q2u) . . . (pn−1 − qn−1u),

(x− y)np,q =


n−1∏
j=0

(pjx− qjy), if n ∈ N,

1, if n = 0.

The (p, q)-power basis is explained as

(u⊕ v)np,q = (u+ v)(pu+ qv)(p2u+ q2v) . . . (pn−1u+ qn−1v).

Furthermore, the (p, q)-analogues of the exponential function are defined by

ep,q(u) =

∞∑
k=0

p
k(k−1)

2
uk

[k]p,q!
, Ep,q(u) =

∞∑
k=0

q
k(k−1)

2
uk

[k]p,q!
;
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Moreover, the (p, q)-Dunkl analogue of the exponential function is defined by

(4) eµ,p,q(u) =
∞∑
k=0

p
k(k−1)

2
uk

γµ,p,q(k)
,

(5) γµ,p,q(k) =

∏[ k+1
2

]−1

i=0 p2µ(−1)i+1+1((p2)ip2µ+1

− (q2)iq2µ+1)
∏[ k

2
]−1

j=0 p2µ(−1)j+1((p2)jp2 − (q2)jq2)

(p− q)k
,

(6) γµ,p,q(k + 1) =
p2µ(−1)k+1+1(p2µθk+1+k+1 − q2µθk+1+k+1)

(p− q)
γµ,p,q(k),

(7) θk =

{
0, for k = 2m, m = 0, 1, 2, . . . ,

1, for k = 2m+ 1, m = 0, 1, 2, . . . .

For m = 0, 1, 2, . . . n, the number [m2 ] denotes the greatest integer function.

In this section, we construct a class of (p, q)-Bivariate of Szász-beta operators
of second kind generated by an exponential function via Dunkl generalization
1.1. This type of the construction of operators are a generalized version of the
operators studied in [25].

Definition 1.1. Let f ∈ C([0, 1]) = {f(t) : f(t) = O(tρ), t → ∞, f ∈
C[0,∞)} such as x ∈ [0,∞), ρ > n,m and n,m ∈ N. Then for all 0 < q < p ≦
1, µ > −1

2 , ν > −1
2 and θℓ1 , θℓ2 defined by (7), we define

Let I1× I2 = [0, Dn]× [0, Dm] and (x, y) ∈ I1× I2. Then, for a function f ∈
C(I1×I2), the (p, q)-Bivariate of Szász-beta operators of second kind generated by
an exponential function via Dunkl generalization 1.1, Dµ,ν

n,m(f ;x, y, p1,2, q1,2) =
Dµ,ν

n,m(f ;x, y, p1, p2, q1, q2) are defined as follows:

Dµ,ν
n,m(f ;x, y, p1,2, q1,2)

=

∞∑
ℓ1=0

∞∑
ℓ2=0

Pµ,l1
n,p1,q1(x)Q

ν,l2
m,p2,q2(y)

∫ ∞

0

∫ ∞

0

t
ℓ1+2µθℓ1
1

(1⊕ p1t1)
ℓ1+2µθℓ1+n+1
p1,q1

(8)

× t
ℓ2+2νθℓ2
2

(1⊕ p2t2)
ℓ2+2νθℓ2+m+1
p2,q2

f(t1, t2)dp1,q1t1, dp2,q2t2,

where

Pµ,l1
n,p1,q1(x) =

1

eµ,p1,q1([n]p1,q1x)

([n]p1,q1x)
ℓ1

γµ,p1,q1(ℓ1)
p

ℓ1(ℓ1−1)
2

1

1

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)
,
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Qν,l2
m,p2,q2(y) =

1

eν,p2,q2([m]p2,q2x)

([m]p2,q2y)
ℓ2

γν,p2,q2(ℓ2)
p

ℓ2(ℓ2−1)
2

2

1

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)
,

and Bp1,q1(ℓ1 + 2µθℓ1 + 1, n), Bp2,q2(ℓ2 + 2νθℓ2 + 1,m) are the Beta functions of
second kind in post quantum calculus and is defined by

Bp,q(α, β) =

∫ ∞

0

tα−1

(1⊕ pt)α+β
p,q

dp,qt, α, β ∈ N,(9)

Bp,q(α, β) =
[α− 1]p,q
pα−1[β]p,q

Bp,q(α− 1, β + 1), α, β ∈ N.(10)

Moreover, to obtain the basic estimates here we use the following relations:

[ℓ+ 1 + 2τθℓ]p,q = q[ℓ+ 2τθℓ]p,q + pℓ+2τθℓ ,(11)

[ℓ+ 2 + 2τθℓ]p,q = q2[ℓ+ 2τθℓ]p,q + (p+ q)pℓ+2τθℓ .(12)

For more related results on (p, q)-analogues, we prefer [1, 2, 3, 16, 18, 5, 10, 7, 6].
We have the following inequalities.

Lemma 1.1. Let f(t) = 1, t, t2. Then, the operators Dµ
n( · ; · ) refer to (2) satisfy

Dµ
n(1;x, p, q) = 1 and the following inequalities hold:

(13)

Dµ
n,p,q(f ;x) ≦



[n]p,q
[n− 1]p,q

x+
1

[n− 1]p,q
, for f(t) = t

[n]2p,q
[n− 1]p,q[n− 2]p,q

x2

+
[n]p,q

[n− 1]p,q[n− 2]p,q
(1 + [2]p,q + [1 + 2τ ]p,q)x

+
[2]p,q

[n− 1]p,q[n− 2]p,q
, for f(t) = t2

and

Dµ
n,p,q(f ;x) ≧



q[n]p,q
[n− 1]p,q

x+
1

[n− 1]p,q
, for f(t) = t

q3[n]2p,q
[n− 1]p,q[n− 2]p,q

x2

+
q[n]p,q

[n− 1]p,q[n− 2]p,q

(
q + [2]p,q

+q2+2τ [1− 2τ ]p,q
eτ,p,q

(
q
p [n]p,qx

)
eτ,p,q([n]p,qx)

)
x

+
[2]p,q

[n− 1]p,q[n− 2]p,q
, for f(t) = t2.



386 SHUZAAT ALI KHAN, NADEEM RAO and TAQSEER KHAN

Lemma 1.2. Let ei,j = f(t1, t2) = ti1t
j
2, 0 ≤ i, j ≤ 2. Then, the operators

Dµ,ν
n,m( · ; · ) refer to (??) satisfy Dµ,ν

n,m(e0,0;x, y, p1,2, q1,2) = 1 and the following
inequalities hold:

Dµ,ν
n,m(e1,0;x, y, p1,2, q1,2) ≦

[n]p1,q1
[n− 1]p1,q1

x+
1

[n− 1]p1,q1
,

Dµ,ν
n,m(e0,1;x, y, p1,2, q1,2) ≦

[m]p1,q1
[n− 1]p1,q1

y +
1

[n− 1]p1,q1
,

Dµ,ν
n,m(e2,0;x, y, p1,2, q1,2)

≦
[n]2p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
x2 +

[n]p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

(1 + [2]p1,q1 + [1 + 2µ]p1,q1)x+
[2]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
,

Dµ,ν
n,m(e0,2;x, y, p1,2, q1,2)

≦
[m]2p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
y2 +

[m]p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

(1 + [2]p2,q2 + [1 + 2ν]p2,q2) y +
[2]p2,q2

[m− 1]p2,q2 [n− 2]p2,q2

and

Dµ,ν
n,m(e1,0;x, y, p1,2, q1,2) ≧

q1[n]p1,q1
[n− 1]p1,q1

x+
1

[n− 1]p1,q1
,

Dµ,ν
n,m(e0,1;x, y, p1,2, q1,2) ≧

q2[m]p2,q2
[m− 1]p2,q2

y +
1

[m− 1]p2,q2
,

Dµ,ν
n,m(e2,0;x, y, p1,2, q1,2)

≧
q31[n]

2
p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
x2 +

[2]p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

+
q1[n]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1(
q1 + [2]p1,q1 + q2+2µ

1 [1− 2µ]p1,q1

eµ,p1,q1

(
q1
p1
[n]p1,q1x

)
eµ,p1,q1([n]p1,q1x)

)
x,

Dµ,ν
n,m(e0,2;x, y, p1,2, q1,2)

≧
q32[m]2p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
y2 +

[2]p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

+
q2[m]p2,q2

[m− 1]p2,q2 [m− 2]p2,q2(
q2 + [2]p2,q2 + q2+2ν

2 [1− 2ν]p2,q2

eν,p2,q2

(
q2
p2
[m]p2,q2y

)
eν,p2,q2([m]p2,q2y)

)
y.
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Proof. To prove the results of this Lemma, we use (9)–(12). Take f(t1, t2) = 1.
Then,

Dµ,ν
n,m(e0,0;x, y, p1,2, q1,2)

=
∞∑

ℓ1=0

∞∑
ℓ2=0

Pµ,l1
n,p1,q1(x)Q

ν,l2
m,p2,q2(y)

∫ ∞

0

∫ ∞

0

t
ℓ1+2µθℓ1
1

(1⊕ p1t1)
ℓ1+2µθℓ1+n+1
p1,q1

× t
ℓ2+2νθℓ2
2

(1⊕ p2t2)
ℓ2+2νθℓ2+m+1
p2,q2

dp1,q1t1dp2,q2t2

=
∞∑

ℓ1=0

1

eµ,p1,q1([n]p1,q1x)

([n]p1,q1x)
ℓ1

γµ,p1,q1(ℓ1)
p

ℓ1(ℓ1−1)
2

1

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

×
∞∑

ℓ2=0

1

eν,p2,q2([m]p2,q2x)

([m]p2,q2y)
ℓ2

γν,p2,q2(ℓ2)
p

ℓ2(ℓ2−1)
2

2

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)
= 1.

Dµ,ν
n,m(e1,0;x, y, p1,2, q1,2)

=
∞∑

ℓ1=0

∞∑
ℓ2=0

Pµ,l1
n,p1,q1(x)Q

ν,l2
m,p2,q2(y)

∫ ∞

0

∫ ∞

0

t
ℓ1+2µθℓ1+1

1

(1⊕ p1t1)
ℓ1+2µθℓ1+n+1
p1,q1

× t
ℓ2+2νθℓ2
2

(1⊕ p2t2)
ℓ2+2νθℓ2+m+1
p2,q2

dp1,q1t1dp2,q2t2

=
∞∑

ℓ1=0

Bp1,q1(ℓ1 + 2µθℓ1 + 2, n− 1)

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

∞∑
ℓ2=0

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)

=
q1

[n− 1]p1,q1

∞∑
ℓ=0

1

p
ℓ1+2µθℓ1+1

1

[ℓ1 + 2µθℓ1 ]p1,q1 +
1

p1[n− 1]p1,q1

1

p1[n− 1]p1,q1
+

q1[n]p1,q1
p21[n− 1]p1,q1

∞∑
ℓ1=0

(
p
2ℓ1+2µθ2ℓ1
1 − q

2ℓ1+2µθ2ℓ1
1

p2ℓ1−1
1 (pn1 − qn1 )

)

+
q1[n]p1,q1

p2+2µ
1 [n− 1]p1,q1

∞∑
ℓ1=0

(
p
2ℓ1+1+2µθ2ℓ1+1

1 − q
2ℓ1+1+2µθ2ℓ1+1

1

p2ℓ11 (pn1 − qn1 )

)
.

Clearly, we have

Dµ,ν
n,p1,q1(e1,0;x, y, p1,2, q1,2)

≧
1

[n− 1]p1,q1
+

q1[n]p1,q1
[n− 1]p1,q1

∞∑
ℓ1=0

(
p
ℓ1+2µθℓ1
1 − q

ℓ1+2µθℓ1
1

pℓ1−1
1 (pn1 − qn1 )

)
=

1

[n− 1]p1,q1
+

q1[n]p1,q1
[n− 1]p1,q1

Cn,p1,q1(t1;x)

=
1

[n− 1]p1,q1
+

q1[n]p1,q1
[n− 1]p1,q1

x
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and

Dµ,ν
n,m(t1;x, y, p1,2, q1,2) ≦

1

[n− 1]p1,q1
+

[n]p1,q1
[n− 1]p1,q1

x,

Dµ,ν
n,m(e0,1;x, y, p1,2, q1,2)

=
∞∑

ℓ1=0

∞∑
ℓ2=0

Pµ,l1
n,p1,q1(x)Q

ν,l2
m,p2,q2(y)

∫ ∞

0

∫ ∞

0

t
ℓ1+2µθℓ1
1

(1⊕ p1t1)
ℓ1+2µθℓ1+n+1
p1,q1

× t
ℓ2+2νθℓ2+1

2

(1⊕ p2t2)
ℓ2+2νθℓ2+m+1
p2,q2

dp1,q1t1dp2,q2t2

=
∞∑

ℓ2=0

Bp2,q2(ℓ2 + 2νθℓ2 + 2,m− 1)

Bp2,q1(ℓ2 + 2νθℓ2 + 1,m)

∞∑
ℓ1=0

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

=
q2

[m− 1]p2,q2

∞∑
ℓ2=0

1

p
ℓ2+2νθℓ2+1

2

[ℓ2 + 2νθℓ2 ]p2,q2 +
1

p2[m− 1]p2,q2

=
1

p2[m− 1]p2,q2
+

q2[m]p2,q2
p22[m− 1]p2,q2

∞∑
ℓ2=0

(
p
2ℓ2+2νθ2ℓ2
2 − q

2ℓ2+2νθ2ℓ2
2

p2ℓ2−1
2 (pm2 − qm2 )

)

+
q2[m]p2,q2

p2+2ν
2 [m− 1]p2,q2

∞∑
ℓ2=0

(
p
2ℓ2+1+2νθ2ℓ2+1

2 − q
2ℓ2+1+2νθ2ℓ2+1

2

p2ℓ22 (pm2 − qm2 )

)
.

Clearly, we have

Dµ,ν
n,p1,q1(e0,1;x, y, p1,2, q1,2)

≧
1

[m− 1]p2,q2
+

q2[m]p2,q2
[m− 1]p2,q2

∞∑
ℓ2=0

(
p
ℓ2+2νθℓ2
2 − q

ℓ2+2νθℓ2
2

pℓ2−1
2 (pm2 − qm2 )

)
=

1

[m− 1]p2,q2
+

q2[m]p2,q2
[m− 1]p2,q2

Cm,p2,q2(t2; y)

=
1

[m− 1]p2,q2
+

q2[m]p2,q2
[m− 1]p2,q2

y

and

Dµ,ν
n,m(t2;x, y, p1,2, q1,2) ≦

1

[m− 1]p2,q2
+

[m]p2,q2
[m− 1]p2,q2

y.

Similarly for e2,0 = f(t) = t21, we have

Dµ,ν
n,m(e2,0;x, y, p1,2, q1,2)

=

∞∑
ℓ1=0

Pµ,l1
n,p1,q1(x)

∫ ∞

0

t
ℓ1+2µθℓ1+2

1

(1⊕ p1t1)
ℓ1+2µθℓ1+n+1
p1,q1

dp1,q1t1

=

∞∑
ℓ1=0

Bp1,q1(ℓ1 + 2µθℓ1 + 3, n− 2)

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

∞∑
ℓ2=0

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)
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=

∞∑
ℓ1=0

Bp1,q1(ℓ1 + 2µθℓ1 + 3, n− 2)

Bp1,q1(ℓ1 + 2µθℓ1 + 1, n)

=
1

[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

1

p
3+2ℓ1+4µθℓ1+1

1

[ℓ1+2µθℓ1 + 1]p1,q1 [ℓ1+2µθℓ1 + 2]p1,q1

=
q31[n]

2
p1,q1

[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

1

p
5+4µθℓ1
1

(
p
ℓ1+2µθℓ1
1 − q

ℓ1+2µθℓ1
1

pℓ1−1
1 (pn1 − qn1 )

)2

+
q1(p1 + 2q1)[n]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

1

p
4+2µθℓ1
1

(
p
ℓ1+2µθℓ1
1 − q

ℓ1+2µθℓ1
1

pℓ1−1
1 (pn1 − qn1 )

)

+
(p1 + q1)

p31[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

Pn,p−1,q1(x).

Now, by separating it into even and odd terms and applying θℓ1 from (7), i.e.,
taking ℓ1 = 2r and ℓ1 = 2r + 1 for all r = 0, 1, 2, . . ., we have

Dµ,ν
n,m(te2,0;x, y, p1,2, q1,2) ≧

q31[n]
2
p1,q1

[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

(
p
ℓ1+2µθℓ1
1 − q

ℓ1+2µθℓ1
1

pℓ1−1
1 (pn1 − qn1 )

)2

+
q1(q1 + [2]p1,q1)[n]p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

∞∑
ℓ1=0

(
p
ℓ1+2µθℓ1
1 − q

ℓ1+2µθℓ1
1

pℓ1−1
1 (pn1 − qn1 )

)
+

[2]p1,q1
[n− 1]p1,q1 [n− 2]p1,q2

=
q31[n]

2
p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
Cn,p1,q1(t

2
1;x) +

q1(q1 + [2]p1,q1)[n]p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

Cn,p1,q1(t1;x)

+
[2]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
.

Similarly,

Dµ,ν
n,m(e2,0;x, y, p1,2, q1,2) ≦

[n]2p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

Cn,p1,q1(t
2
1;x)

+
(1 + [2]p1,q1)[n]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
Cn,p1,q1(t1;x) +

[2]p1,q1
[n− 1]p1,q1 [n− 2]p1,q1

.

Similarly, for e0,2 = f(t) = t22, we have

Dµ,ν
n,m(e0,2;x, y, p1,2, q1,2) =

∞∑
ℓ2=0

Qν,l2
m,p2,q2(y)

∫ ∞

0

t
ℓ2+2νθℓ2+2

2

(1⊕ p2t2)
ℓ2+2νθℓ2+m+1
p2,q2

dp2,q2t2

=

∞∑
ℓ2=0

Bp2,q2(ℓ2 + 2νθℓ2 + 3,m− 2)

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)
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=

∞∑
ℓ2=0

Bp2,q2(ℓ2 + 2νθℓ2 + 3,m− 2)

Bp2,q2(ℓ2 + 2νθℓ2 + 1,m)

=
1

[m− 1]p2,q2 [m−2]p2,q2

∞∑
ℓ2=0

1

p
3+2ℓ2+4νθℓ2+1

2

[ℓ2+2νθℓ2 + 1]p2,q2

[ℓ2 + 2νθℓ2 + 2]p2,q2

=
q31[m]2p2,q2

[m− 1]p2,q2 [m− 2]p2,q2

∞∑
ℓ2=0

1

p
5+4νθℓ2
2

(
p
ℓ2+2νθℓ2
2 − q

ℓ2+2νθℓ2
2

pℓ2−1
2 (pm2 − qm2 )

)2

+
q2(p2 + 2q2)[m]p2,q2

[m− 1]p2,q2 [m− 2]p2,q2

∞∑
ℓ2=0

1

p
4+2νθℓ2
2

(
p
ℓ2+2νθℓ2
2 − q

ℓ2+2νθℓ2
2

pℓ2−1
2 (pm2 − qm2 )

)

+
(p2 + q2)

p32[m− 1]p2,q2 [m− 2]p2,q2

∞∑
ℓ2=0

Pm,p−2,q2(y).

Now, by separating it into even and odd terms and applying θℓ2 from (7), i.e.,
taking ℓ2 = 2r and ℓ2 = 2r + 1 for all r = 0, 1, 2, . . ., we have

Dµ,ν
n,m(e0,2;x, y, p1,2, q1,2) ≧

q32[m]2p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

∞∑
ℓ2=0

(
p
ℓ2+2νθℓ2
2 − q

ℓ2+2νθℓ2
2

pℓ2−1
2 (pm2 − qm2 )

)2

+
q2(q2 + [2]p2,q2)[m]p2,q2
[m− 1]21,q2 [m− 2]p2,q2

∞∑
ℓ2=0

(
p
ℓ2+2νθℓ2
2 − q

ℓ2+2νθℓ2
2

pℓ2−1
2 (pm2 − qm2 )

)
+

[2]p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

=
q32[m]2p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
Cm,p2,q2(t

2
2;x, y)

+
q2(q2 + [2]p2,q2)[m]p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

Cm,p2,q2(t2; y)

+
[2]p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
.

Similarly,

Dµ,ν
n,m(e0,2;x, y, p1,2, q1,2) ≦

[m]2p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

Cm,p2,q2(t
2
2; y)

+
(1 + [2]p2,q2)[m]p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
Cm,p2,q2(t2; y) +

[2]p2,q2
[m− 1]p2,q2 [m− 2]p2,q2

.

This completes the proof of Lemma 1.2.
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Lemma 1.3. Let Ψi,j = (t1−x)i(t2−x)j for i, j = 1, 2, then we have following
inequalities:

1. Dµ,ν
n,m(Ψ1,0;x, y, p1,2, q1,2) ≦

(
[n]p1,q1

[n− 1]p1,q1
− 1

)
x+

1

[n− 1]p1,q1
,

for n > 1, n ∈ N

2. Dµ,ν
n,m(Ψ0,1;x, y, p1,2, q1,2) ≦

(
[m]p2,q2

[m− 1]p2,q2
− 1

)
y +

1

[m− 1]p2,q2
,

for n > 1, m ∈ N

3. Dµ,ν
n,m(Ψ2,0;x, y, p1,2, q1,2) ≦

(
[n]2p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
− 2[n]p1,q1

[n− 1]p1,q1
+ 1

)
x2

+
1

[n− 1]p1,q1

(
[n]p1,q1

[n− 2]p1,q1

(
1 + [2]p1,q1 + [1 + 2µ]p1,q1

)
− 2

)
x

+
[2]p1,q1

[n− 1]p1,q1 [n− 2]p1,q1
, for n > 2, n ∈ N.

4. Dµ,ν
n,m(Ψ0,2;x, y, p1,2, q1,2) ≦

(
[m]2p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
− 2[m]p2,q2

[m− 1]p2,q2
+ 1

)
y2

+
1

[m− 1]p2,q2

(
[m]p2,q2

[m− 2]p2,q2

(
1 + [2]p2,q2 + [1 + 2ν]p2,q2

)
− 2

)
y

+
[2]p2,q2

[m− 1]p2,q2 [m− 2]p2,q2
, for m > 2, m ∈ N.

Definition 1.2. Let X,Y ⊂ R be any two given intervals and the set B(X ×
Y ) = {f : X×Y → R|f is bounded on X×Y }. For f ∈ B(X×Y ), let the func-
tion ωtotal(f ; ·, ∗) : [0,∞)× [0,∞) → R, defined for any (δ1, δ2) ∈ [0,∞)× [0,∞)
by ωtotal(f ; δ1, δ2) = sup|x−x′|≤δ1,|y−y′|≤δ2{|f(x, y) − f(x′, y′)| : (x, y), (x′, y′) ∈
[0,∞)× [0,∞)}, is called the first order modulus of smoothness of the function
f or the total modulus of continuity of the function f .

In order to get the rate of convergence and degree of approximation for the
operators Dµ,ν

n,m, we consider p1 = pn, p2 = pm and q1 = qn, q2 = qm such that
0 < qn < pn ≤ 1 and 0 < qm < pm ≤ 1 satisfying

lim
n→∞

qnn → a, lim
m→∞

qmm → b, lim
n→∞

pnn → c, lim
m→∞

pmm → d(14)

and

lim
n→∞

pn → 1, lim
m→∞

pm → 1, lim
n→∞

qn → 1, lim
m→∞

qm → 1,(15)

where 0 ≤ a, b < c, d < 1. Here, we recall the following result due to Volkov [14]:

Theorem 1.1. Let I and J be compact intervals of the real line. Let Ln,m :
C(I × J) → C(I × J), (n,m) ∈ N× N be linear positive operators. If

lim
n,m→∞

Ln,m(eij) = ex,y, (i, j) ∈ {(0, 0), (1, 0), (0, 1)}
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and

lim
n,m→∞

Ln,m(e20 + e02) = e20 + e02,

uniformly on I×J , then the sequence (Ln,mf) converges to f uniformly on I×J
for any f ∈ C(I × J).

Theorem 1.2. Let eij(t1, t2) = ti1t
j
2 (0 ≤ i+j ≤ 2, i, j ∈ N) be the test functions

defined on J1×J2 and (pn), (qn), (pm), (qm) be the sequences defined by (14) and
(15). If

lim
n,m→∞

(Dµ,ν
n,meij)(t1, t2) = eij(t1, t2), (i, j) ∈ {(0, 0), (1, 0), (0, 1)}

and

lim
n,m→∞

(Dµ,ν
n,m(e20 + e02)(t1, t2) = e20(t1, t2) + e02(t1, t2),

uniformly on J1 × J2, then

lim
n,m→∞

(Dµ,ν
n,mf)(t1, t2) = f(t1, t2),

uniformly for any f ∈ C(J1 × J2).

Proof. Using Lemma 1.2, it is obvious for i = j = 0

lim
n,m→∞

(Dµ,ν
n,me00)(t1, t2) = e00(t1, t2).

For i = 1 and j = 0, we have

lim
n,m→∞

(Dµ,ν
n,me10)(t1, t2) = t1,

lim
n,m→∞

(Dµ,ν
n,me10)(t1, t2) = e10(t1, t2),

For i = 0 and j = 1, we have

lim
n,m→∞

(Dµ,ν
n,me01)(t1, t2) = t2,

lim
n,m→∞

(Dµ,ν
n,me01)(t1, t2) = e01(t1, t2),

and

lim
n,m→∞

(Dµ,ν
n,m(e20 + e02)(t1, t2) = lim

n,m→∞

{
pn−1
1 bn
[n]p1,q1

x+
q1[n− 1]p1,q1

[n]p1,q1
x2

+
pm−1
2 bm
[m]p2,q2

y +
q2[m− 1]p2,q2

[n]p2,q2
y2

}
,

lim
n,m→∞

(Dµ,ν
n,m(e20 + e02)(x, y) = e20(x, y) + e02(x, y).

From Theorem 1.1, the proof of theorem 1.2 is completed.
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Theorem 1.3 ([13]). Let L : C([0,∞) × [0,∞)) → B([0,∞) × [0,∞)) be a
linear positive operator. For any f ∈ C(X × Y ), any (x, y) ∈ X × Y and any
δ1, δ2 > 0, the following inequality

|(Lf)(x, y)− f(x, y)| ≤ |Le0,0(x, y)− 1||f(x, y)|+
[
Le0,0(x, y)

+ δ−1
1

√
Le0,0(x, y)(L(· − x))2(x, y)

+ δ−1
2

√
Le0,0(x, y)(L(∗ − y))2(x, y)

+ δ−1
1 δ−1

2

√
(Le0,0)2(x, y)(L(· − x))2(x, y)(L(∗ − y))2(x, y)

]
× ωtotal(f ; δ1, δ2),

holds.

Theorem 1.4. Let f ∈ C(J1 × J2) and (x, y) ∈ J1 × J2. Then, for (n,m) ∈ N
and for any δ1, δ2 > 0, we have

|(Cn,mf)(x, y)− f(x, y)| ≤ 4ωtotal(f ; δ1, δ2),

where δ1 =
√

Dµ,ν
n,m((t1 − x)2, x, y, p12, q12) and δ2 =

√
Dµ,ν

n,m((t2 − y)2, x, y, p12, q12).

Proof. From Theorem 1.3, we have

|(Dµ,ν
n,mf)(x, y)− f(x, y)| ≤

[
1 + +δ−1

1

√
Dµ,ν

n,m((t1 − x)2)(x, y))

+ δ−1
2

√
Dµ,ν

n,m((t2 − y)2)(x, y)

+ δ−1
1 δ−1

2

√
Dµ,ν

n,m((t1 − x)2)(x, y))Dµ,ν
n,m((t2 − y)2)(x, y)

]
× ωtotal(f ; δ1, δ2).

On choosing δ =
√

Dµ,ν
n,m((t1 − x)2)(x, y) and δ2 =

√
Dµ,ν

n,m((t2 − y)2)(x, y), we
get the required result.

Now, we shall investigate degree of approximation for the operators Cn,m in
Lipschitz class. We consider the Lipschitz class LipM (γ1, γ2) in terms of two
variables as follows:

|f(t1, t2)− f(x, y)| ≤M |t1 − x|γ1 |t2 − y|γ2 ,

where M > 0, 0 < γ1, γ2 ≤ 1 and for any (t1, t2), (x, y) ∈ J1 × J2.

Theorem 1.5. For f ∈ LipM (γ1, γ2), we have

|Dµ,ν
n,m(f ; qn, qm, pn, pm;x, y)− f(x, y)| ≤Mδγ1/2n (x)δγ2/2m (y),

where δn(x) = Dµ,ν
n,m((t1 − x)2; qn, qm, pn, pm;x, y) and

δm(y) = Dµ,ν
n,m((t2 − y)2; qn, qm, pn, pm;x, y).
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Proof. Since f ∈ LipM (γ1, γ2), we can write

|Dµ,ν
n,m(f ; qn, qm, pn, pm;x, y)− f(x, y)|

≤ Dµ,ν
n,m(|f(t1, t2)− f(x, y)|; qn, qm, pn, pm;x, y)

≤MDµ,ν
n,m(|t1 − x|γ1 |t2 − y|γ2 ; qn, qm, pn, pm;x, y)

=MDµ,ν
n,m(|t1 − x|γ1 ; qn, qm, pn, pm;x, y)× (|t2 − y|γ2 ; qn, qm, pn, pm;x, y).

Using Hölder inequality with α1 = 2
γ1
, β1 = 2

2−γ1
and α2 = 2

γ2
, β2 = 2

2−γ2
,

respectively, we get

|Dµ,ν
n,m(f ; qn, qm, pn, pm;x, y)−f(x, y)| ≤

{
Dµ,ν

n,m((t1−x)2; qn, qm, pn, pm;x, y)
} γ1

2

×
{
Dµ,ν

n,m(1; qn, qm, pn, pm;x, y)
} 2

2−γ1

×
{
Dµ,ν

n,m((t2−x2)2; qn, qm, pn, pm;x, y)
} γ2

2

×
{
Dµ,ν

n,m(1; qn, qn, pn, pm;x, y)
} 2

2−γ2

=Mδγ1/2n (x)δγ2/2m (y),

which completes the proof of Theorem 1.5.

Here, we discuss degree of approximation in weighted space for the operators
defined by (??). We recall some basic notions from [?] as follows

Bρ([0,∞) × [0,∞)) is the space of all functions defined on R2
+ = [0,∞) ×

[0,∞) with the condition |f(x, y)| ≤Mfρ(x, y), where Mf is a positive constant
depending on f and ρ(x, y) = 1 + x2 + y2 is a weight function. Cρ([0,∞) ×
[0,∞)) = {f : f is a continuous function in to Bρ([0,∞) × [0,∞))} equipped

with the norm ∥f∥ρ = sup(x,y)∈R2
+

|f(x,y)|
ρ(x,y) and Ck

ρ ([0,∞)× [0,∞)) = {f : f ∈ Cρ

and limx,y→∞
|f(x,y)|
ρ(x,y) < k}. For all f ∈ Ck

ρ , the weighted modulus of continuity
is defined as

ωρ(f ; δ1, δ2) = sup
(x,y)∈R2

+

sup
|h1|≤δ1,|h2|≤δ2

|f(x+ h1, y + h2)− f(x, y)|
ρ(x, y)ρ(h1, h2)

and

|f(t1, t2)− f(x, y)| ≤ 8(1 + x2 + y2)ωρ(f ; δn, δm)

×
(
1 +

|t1 − x|
δn

)(
1 +

|t2 − y|
δm

)
(1 + (t1 − x)2)(1 + (t2 − y)2).(16)

Theorem 1.6. If the operators Dµ,ν
n,m(.; .) defined by (??) satisfying the condi-

tions

lim
n,m→∞

∥Dµ,ν
n,m(e0,0; .)− e0,0|∥ = 0,

lim
n,m→∞

∥Dµ,ν
n,m(e1,0; .)− e1,0|∥ = 0,

lim
n,m→∞

∥Dµ,ν
n,m(e0,1; .)− e0,1|∥ = 0,
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and

lim
n,m→∞

∥Dµ,ν
n,m(e2,0 + e0,2; .)− (e2,0 + e0,2)|∥ = 0.

Then

lim
n,m→∞

∥Dµ,ν
n,m(f ; .)− f |∥ = 0,

for each f ∈ Ck
ρ ([0,∞)× [0,∞)).

Proof. In view of Lemma 1.2, we completes the proof of Theorem 1.6.

Theorem 1.7. Let f ∈ Ck
ρ ([0,∞)× [0,∞)). Then,

sup
(x,y)∈R2

+

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|

(1 + x2 + y2)3
≤ Kωρ(f ; δn, δm)

holds for large values of n,m, where

δn = o

(
[n]p1,q1

[n− 1]p1,q1

)
and δm = o

(
[m]p2,q2

[m− 1]p2,q2

)
.

Proof. From (16) and the operators (??), we have

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|

≤ 8(1 + x2 + y2)ωρ(f ; δn, δm)

×
(
1 +

Dµ,ν
n,m(|t1 − x|;x, y, pn, pm, qn, qm)

δn

)
×
(
1 +

Dµ,ν
n,m(|t2 − y|;x, y, pn, pm, qn, qm)

δm

)
× (1 +Dµ,ν

n,m((t1 − x)2;x, y, pn, pm, qn, qm))

× (1 +Dµ,ν
n,m((t2 − y)2;x, y, pn, pm, qn, qm)).

Applying the Cauchy-Schwarz inequality, we get

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|

≤ 8(1 + x2 + y2)ωρ(f ; δn, δm)

[
1 +Dµ,ν

n,m((t1 − x)2;x, y, pn, pm, qn, qm))√
Dµ,ν

n,m((t1 − x)2;x, y, pn, pm, qn, qm))

δn

×

√
Dµ,ν

n,m((t1 − x)2;
x, y, pn, pm, qn, qm))Dµ,ν

n,m((t1 − x)4;x, y, pn, pm, qn, qm))

δn

]
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×

[
1 +Dµ,ν

n,m((t2 − y)2;x, y, pn, pm, qn, qm))(17)

+

√
Dµ,ν

n,m((t2 − y)2;x, y, pn, pm, qn, qm))

δm

×

√
Dµ,ν

n,m((t2 − y)2;x, y, pn, pm, qn, qm))Dµ,ν
n,m((t2 − y)4;

x, y, pn, pm, qn, qm))

δm

]
.

From Lemma 1.2, we have

Dµ,ν
n,m((t1 − x); qn, qm, pn, pm, x, y) ≤o

(
[n]p1,q1

[n− 1]p1,q1

)
x,

Dµ,ν
n,m((t2 − y)2; qn, qm, pn, pm, x, y) ≤o

(
[m]p2,q2

[m− 1]p2,q2

)
y,

Dµ,ν
n,m((t1 − x)2; qn, qm, pn, pm, x, y) ≤o

(
[n]p1,q1

[n− 1]p1,q1

)
(x2 + x),(18)

Dµ,ν
n,m((t2 − x)2; qn, qm, pn, pm, x, y) ≤o

(
[m]p2,q2

[m− 1]p2,q2

)
(y2 + y).

Combining (17) and all identities in (18), we obtain

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|

≤ 8(1 + x2 + y2)ωρ(f ; δn, δm)

[
1 + o

(
[n]p1,q1

[n− 1]p1,q1

)
x

+

√
o

(
[n]p1,q1

[n− 1]p1,q1

)
x

δn
×

√
o

(
[n]p1,q1

[n− 1]p1,q1

)
xo () (x2 + x)

δn

]

×

[
1 + o

(
[m]p2,q2

[m− 1]p2,q2

)
y +

√
o

(
[m]p2,q2

[m− 1]p2,q2

)
y

δm

×

√
o

(
[m]p2,q2

[m− 1]p2,q2

)
yo

(
[m]p2,q2

[m− 1]p2,q2

)
(y2 + y)

δn

]
.

Choosing δn = o(
[n]p1,q1

[n−1]p1,q1
) and δm = o(

[m]p2,q2
[m−1]p2,q2

), we find

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|
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≤ 8(1 + x2 + y2)ωρ(f ; δn, δm)

[
1 + δnx+

√
x

√
x(x2 + x)

δn

]

×

[
1 + δmy +

√
y

√
y(y2 + y)

δn

]
.

For sufficiently large values of n and m, we have

sup
(x,y)∈R2

+

|Dµ,ν
n,m(f ;x, y, pn, pm, qn, qm)− f(x, y)|

(1 + x2 + y2)3
≤ Kωρ(f ; δn, δm),

where K is a positive constant independent of n, m and δn < 1, δm < 1.
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Abstract. In this manuscript, we shall prove a common fixed point theorem for four
weakly compatible self-maps P,Q,R and S on a metric space (M,d∗) satisfying the
following generalized (ψ, ϕ)-weak contraction:

ψ(d∗(Ru, Sv)) ≤ ψ(△ (u, v))− ϕ(△ (u, v)),

where

△ (u, v) = max

{
d∗(Ru, Sv), d∗(Ru,Pu), d∗(Sv,Qv),

1

2
[d∗(Pu, Sv) + d∗(Qv,Ru)],

d∗(Pu,Ru)d∗(Qv, Sv)

1 + d∗(Ru, Sv)
,
d∗(Pu, Sv)d∗(Qv,Ru)

1 + d∗(Ru, Sv)
,

d∗(Ru,Pu)[
1 + d∗(Ru,Qv) + d∗(Sv, Pu)

1 + d∗(Ru,Pu) + d∗(Sv,Qv)
]

}
.

Also, we have proved common fixed point theorems for the above mentioned contraction
using weakly compatible self-maps along with E.A. property and (CLR) property. An
illustrative example is also provided to support our results.

*. Corresponding author
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Keywords: fixed point, weakly compatible maps, E.A. property, (CLR) property,
generalized (ψ, ϕ)-weak contraction.

1. Introduction

Definition 1.1. A coincidence point of a pair of self-maps P,Q :M →M is a
point u ∈M for which Pu = Qu.

A common fixed point of a pair of self-maps P,Q :M →M is a point u ∈M
for which Pu = Qu = u.

In 1996, Jungck [2] introduced the concept of weakly compatible maps to
study common fixed point theorems:

Definition 1.2. Let (M,d∗) be a metric space. A pair of self-maps P,Q :M →
M is weakly compatible if they commute at their coincidence points, that is, if
there exists u ∈ M such that PQu = QPu, where u is coincidence point of P
and Q.

In 2002, Aamri and Moutawakil [1] introduced the notion of E.A. property
as follows:

Definition 1.3. Let (M,d∗) be a metric space. Two self-maps P and Q on M
are said to satisfy the E.A. property, if there exists a sequence {un} in M such
that limn→∞ Pun = limn→∞Qun = t, for some t ∈M .

In 2011, Sintunavarat et al. [5] introduced the notion of (CLR) property as
follows:

Definition 1.4. Let (M,d∗) be a metric space. Two self-maps P and Q on M
are said to satisfy the (CLRP ) property, if there exists a sequence {un} in M
such that limn→∞ Pun = limn→∞Qun = Pt, for some t ∈M .

2. Main results

In this section, we prove some common fixed point theorems for weakly com-
patible four self maps along with (E.A.) property and (CLR) property.

Theorem 2.1. Let (M,d∗) be a metric space and let P,Q,R and S be self-maps
on M satisfying the followings:

RM ⊆ QM,SM ⊆ PM,(1)

For all u, v ∈ M , there exist right continuous functions ψ, ϕ : R+ → R+, with
ψ(0) = 0 = ϕ(0) and ψ(a) < a for a > 0 such that:

ψ(d∗(Ru, Sv) ≤ ψ(△ (u, v))− ϕ(△ (u, v)),(2)
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where

△ (u, v) = max{d∗(Ru, Sv), d∗(Ru,Pu), d∗(Sv,Qv),
1

2
[d∗(Pu, Sv) + d∗(Qv,Ru)],

d∗(Pu,Ru)d∗(Qv, Sv)

1 + d∗(Ru, Sv)
,
d∗(Pu, Sv)d∗(Qv,Ru)

1 + d∗(Ru, Sv)
,

d∗(Ru,Pu)[
1 + d∗(Ru,Qv) + d∗(Sv, Pu)

1 + d∗(Ru,Pu) + d∗(Sv,Qv)
]}.

If one of PM ,QM ,RM or SM is complete subspace of M , then the pair (P,R)
or (Q,S) have a coincidence point. Moreover, if the pairs (P,R) and (Q,S) are
weakly compatible, then P,Q,R and S have a unique common fixed point.

Proof. Let u0 ∈ M be an arbitrary point of M . From (2), we can construct a
sequence {vn} in M as follows:

v2n+1 = Ru2n = Qu2n+1, v2n+2 = Su2n+1 = Pu2n+2,(3)

for all n = 0, 1, 2, .... Now, we define d∗n = d∗(vn, vn+1). If d∗2n = 0 for some n,
then d∗(v2n, v2n+2) = 0. Then v2n = v2n+1, that is, Su2n−1 = Pu2n = Ru2n =
Qu2n+1 and P and R have a coincidence point. Similarly, if d∗2n+1 = 0, then Q
and S have a coincidence point. Assume that d∗n ̸= 0 for each n.

On putting u = u2n and v = u2n+1 in (2), we get

ψ(d∗(Ru2n, Su2n+1)) ≤ ψ(△ (u2n, u2n+1))− ϕ(△ (u2n, u2n+1)),(4)

where

△ (u2n, u2n+1) = max{d∗(Ru2n, Su2n+1), d
∗(Ru2n, Pu2n), d

∗(Su2n+1, Qu2n+1),

1

2
[d∗(Pu2n, Su2n+1) + d∗(Qu2n+1, Ru2n)],

d∗(Pu2n, Ru2n) · d∗(Qu2n+1, Su2n+1)

1 + d∗(Ru2n, Su2n+1)
,

d∗(Pu2n, Su2n+1) · d∗(Qu2n+1, Ru2n)

1 + d∗(Ru2n, Su2n+1)
,

d∗(Ru2n, Pu2n)
1 + d∗(Ru2n, Qu2n+1) + d∗(Su2n+1, Pu2n)

1 + d∗(Ru2n, Pu2n) + d∗(Su2n+1, Qu2n+1)
}

= max{d∗(v2n+1, v2n+2), d
∗(v2n+1, v2n), d

∗(v2n, v2n+1),

1

2
[d∗(v2n, v2n+2) + d∗(v2n+1, v2n+1)],

d∗(v2n, v2n+1) · d∗(v2n+1, v2n+2)

1 + d∗(v2n+1, v2n+2)
,

d∗(v2n, v2n+2) · d∗(v2n+1, v2n+1)

1 + d∗v2n+1, v2n+2)
,

d∗(v2n+1, v2n)
1 + d∗(v2n+1, v2n+1) + d∗(v2n+2, v2n)

1 + d∗(v2n+1, v2n) + d∗(v2n+2, v2n+1)
}
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= max{d∗2n+1, d
∗
2n, d

∗
2n+1,

1

2
[d∗2n + d∗2n+1 + 0],

d∗2n · d∗2n+1

1 + d∗2n+1

,

0, d∗2n
1 + d∗2n + d∗2n+1

1 + d∗2n + d∗2n+1

},

that is

(5) △ (u2n, u2n+1) = max{d∗2n, d∗2n+1}.

Now, from (4), we have

(6) ψ(d∗(v2n+1, v2n+2)) ≤ ψ(max{d∗2n, d∗2n+1})− ϕ(max{d∗2n, d∗2n+1}),

Now, if d∗2n+1 ≥ d∗2n for some n, then from (6), we get

ψ(d∗2n+1) ≤ ψ(d∗2n+1)− ϕ(d∗2n+1)

< ψ(d∗2n+1),(7)

which is a contradiction. Thus, d∗2n > d∗2n+1 for all n, and so, from (6), we have

ψ(d∗2n+1) ≤ ψ(d∗2n)− ϕ(d∗2n) for all n ∈ N.(8)

Similarly,

ψ(d∗2n) ≤ ψ(d∗2n−1)− ϕ(d∗2n−1),

ψ(d∗2n−1) ≤ ψ(d∗2n−2)− ϕ(d∗2n−2).

In general, we have for all n = 1, 2, 3. . . .

ψ(d∗n) ≤ ψ(d∗n−1)− ϕ(d∗n−1)

< ψ(d∗n−1).(9)

Hence, sequence {ψ(d∗n)} is monotonically decreasing and bounded below. Thus,
there exists s ≥ 0, such that

lim
n→∞

ψ(d∗n) = s.(10)

From (9), we deduce that

0 ≤ ϕ(d∗n−1) ≤ ψ(d∗n−1)− ψ(d∗n)

Taking limit as n→∞ and using (10), we get

lim
n→∞

ϕ(d∗n−1) = 0,

this implies that

lim
n→∞

ϕ(d∗n−1) = lim
n→∞

ϕ(d∗(vn−1, vn)) = 0.(11)
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lim
n→∞

d∗n = lim
n→∞

d∗(vn, vn+1) = 0.(12)

Now, we claim that {vn} is a Cauchy sequence. For this, it is sufficient to
show that {v2n} is a Cauchy sequence. Let, if possible, {v2n} is not a Cauchy
sequence. Then there exists an ϵ > 0, such that for each even integer 2a there
exists even integers 2m(a) > 2n(a) > 2a such that

d∗(v2n(a), v2m(a)) ≥ ϵ.(13)

for every even integer 2a, suppose that 2m(a) be the least positive integer ex-
ceeding 2n(a) satisfying (13), such that

d∗(v2n(a), v2m(a)−2) < ϵ.(14)

From (13), we get

ϵ ≤ d∗(v2n(a), v2m(a))

≤ d∗(v2n(a), v2m(a)−2) + d∗(v2m(a)−2, v2m(a)−1) + d∗(v2m(a)−1, v2m(a)).

Using (12) and (14) in the above inequality, we get

lim
n→∞

d∗(v2n(a), v2m(a)) = ϵ.(15)

Also, by the triangular inequality,

|d∗(v2n(a)+1, v2m(a)−1)) + d∗(v2n(a), v2m(a))| ≤ d∗2m(a)−1 + d∗2m(a).(16)

Using (12), we have

lim
n→∞

d∗(v2n(a), v2m(a)−1) = lim
n→∞

d∗(v2n(a)+1, v2m(a)−1) = ϵ.(17)

Now, from (2), we have

ψ(d∗(Ru2n(a), Su2m(a)−1)) ≤ ψ(△ (u2n(a), u2m(a)−1))

− ϕ(△ (u2n(a), u2m(a)−1)),(18)

where

△ (u2n(a), u2m(a)−1)

= max{d∗(Ru2n(a), Su2m(a)−1), d
∗(Ru2n(a), Pu2n(a)),

d∗(Su2m(a)−1, Qu2m(a)−1),

1

2
[d∗(Pu2n(a), Su2m(a)−1) + d∗(Qu2m(a)−1, Ru2m(a))],
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d∗(Pu2n(a), Ru2n(a)) · d∗(Qu2m(a)−1, Su2m(a)−1)

1 + d∗(Ru2m(a), Su2m(a)−1)
,

d∗(Pu2m(a), Su2m(a)−1) · d∗(Qu2m(a)−1, Ru2n(a))

1 + d∗(Ru2m(a), Su2m(a)−1)
,

d∗(Ru2n(a), Pu2n(a))
1 + d∗(Ru2n(a), Qu2m(a)−1) + d∗(Su2m(a)−1, Pu2n(a))

1 + d∗(Ru2n(a), Pu2n(a)) + d∗(Su2m(a)−1, Qu2m(a)−1)
}

= max{d∗(v2n(a)+1, v2m(a)), d
∗(v2n(a)+1, v2m(a)), d

∗(v2m(a), v2m(a)−1),

1

2
[d∗(v2n(a), v2m(a)) + d∗(v2m(a)−1, v2m(a)+1)],

d∗(v2n(a), v2n(a)+1) · d∗(v2m(a)−1, v2m(a))

1 + d∗(v2n(a)+1, v2m(a))
,

d∗(v2n(a), v2n(a)+1) · d∗(v2m(a)−1, v2m(a))

1 + d∗(v2n(a)+1, v2m(a))
,

d∗(v2n(a)+1, v2n(a))
1 + d∗(v2n(a)+1, v2m(a)−1) + d∗(v2m(a), v2n(a))

1 + d∗(v2n(a)+1, v2n(a)) + d∗(v2m(a), v2m(a)−1)
}.

Now, taking limit as a → ∞ and using equations (12), (14), (15) and (17), we
get △ (u2n(a), u2m(a)−1) = max{ϵ, 0, 0, 12(ϵ+ ϵ), 0, ϵ·ϵ

1+ϵ , 0}, that is

△ (u2n(a), u2m(a)−1) = ϵ.

Now, by (18), we have
ψ(ϵ) ≤ ψ(ϵ)− ϕ(ϵ),

which is a contradiction, since ϵ > 0. Thus, {v2n} is a Cauchy sequence. So,
{vn} is a Cauchy sequence. Now, suppose that PM is complete. Since {v2n}
is contained in PM and has limit in PM say p, that is, limn→∞ v2n = p. Let
q ∈ P−1(p) then Pq = p.

Now, we shall prove that Rq = p.
Let, if possible, Rq ̸= p that is, d∗(Rq, p) = k > 0. On putting u = q,v =

u2n−1 in (2), we have

ψ(d∗(Rq, Su2n−1)) ≤ ψ(△ (q, u2n−1))− ϕ(△ (q, u2n−1)),(19)

where

△ (q, u2n−1) = max{d∗(Rq, Su2n−1), d
∗(Rq, Pq), d∗(Su2n−1, Qu2n−1),

1

2
[d∗(Pq, Su2n−1)+d

∗(Qu2n−1, Rq)],
d∗(Pq,Rq) · d∗(Qu2n−1, Su2n−1)

1+d∗(Rq, Su2n−1)
,

(Pq, Su2n−1) · d∗(Qu2n−1, Rq)

1 + d∗(Rq, Su2n−1)
,

d∗(Rq, Pq)
1 + d∗(Rq,Qu2n−1) + d∗(Su2n−1, P q)

1 + d∗(Rq, Pq) + d∗(Su2n−1, Qu2n−1)
}.
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Taking limit as n→∞, we get

lim
n→∞

△ (q, u2n−1) = lim
n→∞

max{d∗(Rq, Su2n−1), d
∗(Rq, Pq), d∗(Su2n−1, Qu2n−1),

1

2
[d∗(Pq, Su2n−1) + d∗(Qu2n−1, Rq)],

d∗(Pq,Rq) · d∗(Qu2n−1, Su2n−1)

1 + d∗(Rq, Su2n−1)
,

d∗(Pq, Su2n−1) · d∗(Qu2n−1, Rq)

1 + d∗(Rq, Su2n−1)
,

d∗(Rq, Pq)
1 + d∗(Rq,Qu2n−1) + d∗(Su2n−1, P q)

1 + d∗(Rq, Pq) + d∗(Su2n−1, Qu2n−1)
}

= max{d∗(Rq, p), d∗(Rq, p), d∗(p, p), 1
2
[d∗(Pq, p) + d∗(p,Rq)],

d∗(p,Rq) · d∗(p, p)
1 + d∗(Rq, p)

,
d∗(p, p) · d∗(p,Rq)

1 + d∗(Rq, p)
, d∗(Rq, p)

1 + d∗(Rq, p) + d∗(p, p)

1 + d∗(Rq, p) + d∗(p, p)
}.

lim
n→∞

△ (q, u2n−1) = d∗(p,Rq) = k.

Thus, from (19),we have ψ(d∗(Rq, p)) ≤ ψ(k)−ϕ(k), ψ(k) ≤ ψ(k)−ϕ(k), which
is a contradiction, since k > 0. Thus, Rq = Pq = p. Hence, q is coincidence
point of the pair (P,R). Since RM ⊆ QM , Rq = p implies that, p ∈ QM . Let
w ∈ B−1p. Then Bw = p. By using the same arguments as above, we can easily
verify that S w = p = Qw, that is, w is the coincidence point of the pair (Q,S).
Similarly, we can prove the result if QM is complete subspace of M instead of
PM . Now, if SM is complete then by (1), p ∈ SM ⊆ PM . In the same manner
if RM is complete then p ∈ RM ⊆ QM . Now, since the pair (P,R) and (Q,S)
are weakly compatible, so

p = Rq = Pq = Sw = Qw,

Pp = PRq = RPq = Rp,

Qp = QSw = SQw = Sp.(20)

Now, we shall prove that Sp = p. Let, if possible, Sp ̸= p. From (2), we
have

ψ(d∗(p, Sp)) = ψ(d∗(Rq, Sp)) ≤ ψ(△ (q, p))− ϕ(△ (q, p)),

where

△ (q, p) = max{d∗(Rq, Sp), d∗(Rq, Pq), d∗(Sp,Qp), 1
2
[d∗(Pq, Sp) + d∗(Qp,Rq)],

d∗(Pq,Rq) · d∗(Qp, Sp)
1 + d∗(Rq, Sp)

,
d∗(Pq, Sp) · d∗(Qp,Rq)

1 + d∗(Rq, Sp)
,

d∗(Rq, Pq)
1 + d∗(Rq,Qp) + d∗(Sp, Pq)

1 + d∗(Rq, Pq) + d∗(Sp,Qp)
}.

Using (20), we have

△ (q, p)=max{d∗(p, Sp), 0, 0, 1
2
[d∗(p, Sp)+d∗(Sp, p)], 0,

d∗(Pq, Sp)·d∗(Qp,Rq)
1+d∗(Rq, Sp)

, 0}

△ (q, p) = d∗(p, Sp).
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Thus, we have

ψ(d∗(p, Sp)) ≤ ψ(d∗(p, Sp))− ϕ(d∗(p, Sp)) < ψ(d∗(p, Sp)),

which is a contradiction. So, Sp = p. Similarly, Rp = p. Thus, we get Pp =
Rp = Qp = Sp = p. Hence, p is the common fixed point of P,Q,R and S. For
the uniqueness, let t be another common fixed point of P,Q,R and S.

Now, we claim that t = p. Let, if possible t ̸= p. From (2), we have

ψ(d∗(p, t)) = ψ(d∗(Rp, St)) ≤ ψ(△ (p, t))− ϕ(△ (p, t))

= ψ(d∗(p, t))− ϕ(d∗(p, t)) since △ (p, t) = d∗(p, t) < ψ(d∗(p, t)),

which is a contradiction. Thus, t = p, and hence the uniqueness follows. This
completes the proof of the theorem.

Theorem 2.2. Let (M,d∗) be a metric space and P,Q,R and S be self-maps
on M satisfying (1) and (2) and the followings:

Pairs (P,R) and (Q,S) areweakly compatible.(21)

Pair (P,R) or (Q,S) satisfy theE.A. property.(22)

If any one of PM,QM,RM or SM is a complete subspace of M , then P,Q,R
and S have a unique common fixed point.

Proof. Suppose that the pair (P,R) satisfies the E.A. property. Then, there
exists a sequence {un} in M , such that limn→∞ Pun = limn→∞Run = p, for
some p in M . Since RM ⊆ QM , there exists a sequence {vn} in M such that
R{un} = Q{vn}. Hence, limn→∞Qvn = p.

We shall show that limn→∞ Svn = p.

Let, if possible, Svn = q ̸= p. From (2), we have

ψ(d∗(Run, Svn)) ≤ ψ(△ (un, vn))− ϕ(△ (un, vn)).

Now, taking limit as n→∞, we get

(23) lim
n→∞

ψ(d∗(Run, Svn)) ≤ lim
n→∞

ψ(△ (un, vn))− lim
n→∞

ϕ(△ (un, vn)),

where

lim
n→∞

△ (un, vn) = lim
n→∞

max{d∗(Run, Svn), d∗(Run, Pun), d∗(Svn, Qvn),

1

2
[d∗(Pun, Svn) + d∗(Qvn, Run)],

d∗(Pun, Run) · d∗(Qvn, Svn)
1 + d∗(Run, Svn)

,
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d∗(Pun, Svn) · d∗(Qvn, Run)
1 + d∗(Run, Svn)

,

d∗(Run, Pun)
1 + d∗(Run, Qvn) + d∗(Svn, Pun)

1 + d∗(Run, Pun) + d∗(Svn, Qvn)
}

= max{d∗(p, q), d∗(p, p), d∗(q, p), 1
2
[d∗(p, q) + d∗(p, p)],

d∗(p, p) · d∗(p, q)
1 + d∗(p, q)

,
d∗(p, p) · d∗(p, q)

1 + d∗(p, q)
,

d∗(p, p)[
1 + d∗(p, p) + d∗(q, p)

1 + d∗(p, p) + d∗(q, p)
]}

= d∗(p, q).

From (23), we have

ψ(d∗(p, q)) ≤ ψ(d∗(p, q))− ϕ(d∗(p, q)) < ψ(d∗(p, q)),

which is a contradiction. Therefore, p = q, that is limn→∞ Svn = p. Suppose
that QM is a complete subspace of M . Then p = Qa for some a ∈ M . Subse-
quently, we have limn→∞ Svn = limn→∞Run = limn→∞ Pun = limn→∞Qvn =
p = Qa. Now, we shall show that Sa = Qa. Let, if possible Sa ̸= Qa.

From (2), we have

ψ(d∗(Run, Sa)) ≤ ψ(△ (un, a))− ϕ(△ (un, a)).

Taking limit as n→∞, we have

(24) lim
n→∞

ψ(d∗(Run, Sa)) ≤ lim
n→∞

ψ(△ (un, a))− lim
n→∞

ϕ(△ (un, a)),

where

lim
n→∞

△ (un, a) = lim
n→∞

max{d∗(Run, Sa), d∗(Run, Pun), d∗(Sa,Qa),

1

2
[d∗(Pun, Sa) + d∗(Qa,Run)],

d∗(Pun, Run) · d∗(Qa, Sa)
1 + d∗(Run, Sa)

,

d∗(Pun, Sa) · d∗(Qa,Run)
1 + d∗(Rq, Sa)

,

d∗(Run, Pun)
1 + d∗(Run, Qa) + d∗(Sa, Pun)

1 + d∗(Run, Pun) + d∗(Sa,Qa)
}

= max{d∗(p, Sa), d∗(p, p), d∗(Sa, p), 1
2
[d∗(p, Sa) + d∗(p, p)],

d∗(p, p) · d∗(p, Sa)
1 + d∗(p, Sa)

,
d∗(p, p) · d∗(p, Sa)

1 + d∗(p, Sa)
,

d∗(p, p)[
1 + d∗(p, p) + d∗(Sa, p)

1 + d∗(p, p) + d∗(Sa, p)
]}

= d∗(Sa, p).
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Thus, from (24), we have

ψ(d∗(p, Sa)) ≤ ψ(d∗(p, Sa))− ϕ(d∗(p, Sa)) < ψ(d∗(p, Sa)),

which is a contradiction. Therefore, Sa = p = Qa. Since Q and S are weakly
compatible, therefore, QSa = SQa, implies that, SSa = SQa = QSa = QQa.
Since SM ⊆ PM , there exists b ∈M , such that, Sa = Pb.

Now, we claim that Pb = Rb. Let, if possible, Pb ̸= Rb. From (2), we have

ψ(d∗(Rb, Sa)) ≤ ψ(△ (b, a))− ϕ(△ (b, a)),(25)

where

△ (b, a) = max{d∗(Rb, Sa), d∗(Rb, Pb), d∗(Sa,Qa),
1

2
[d∗(Pb, Sa) + d∗(Qa,Rb)],

d∗(Pb,Rb) · d∗(Qa, Sa)
1 + d∗(Rb, Sa)

,

d∗(Pb, Sa) · d∗(Qa,Rb)
1 + d∗(Rb, Sa)

,

d∗(Rb, Pb)
1 + d∗(Rb,Qa) + d∗(Sa, Pb)

1 + d∗(Rb, Pb) + d∗(Sa,Qa)
}

= d∗(Rb, Sa).

From (25), we have

ψ(d∗(Rb, Sa)) ≤ ψ(d∗(Rb, Sa))− ϕ(d∗(Rb, Sa)) < ψ(d∗(Rb, Sa)),

which is a contradiction. Therefore, Rb = Sa = Pb. Now, since (P,R) is weakly
compatible. This implies that PRb = RPb = RRb = PPb.

Now, we claim that Sa is common fixed point of P,Q,R and S. Let, if
possible, SSa ̸= Sa. From (2), we have

ψ(d∗(Sa, SSa)) = ψ(d∗(Rb, SSa)) ≤ ψ(△ (b, Sa))− ϕ(△ (b, Sa)),(26)

where

△ (b, Sa) = max{d∗(Rb, SSa), d∗(Rb, Pb), d∗(SSa,QSa),
1

2
[d∗(Pb, SSa) + d∗(QSa,Rb)],

d∗(Pb,Rb) · d∗(QSa, SSa)
1 + d∗(Rb, SSa)

,

d∗(Pb, SSa) · d∗(QSa,Rb)
1 + d∗(Rb, SSa)

,

d∗(Rb, Pb)
1 + d∗(Rb,QSa) + d∗(SSa, Pb)

1 + d∗(Rb, Pb) + d∗(SSa,QSa)
}

= d∗(Sa, SSa).
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Thus, from (26), we have

ψ(d∗(Sa, SSa)) ≤ ψ(d∗(Sa, SSa))− ϕ(d∗(Sa, SSa)) < ψ(d∗(Sa, SSa)),

which is a contradiction. Therefore, Sa = SSa = QSa. Hence, Sa is the common
fixed point of Q and S. Similarly, we can prove that Rb is common fixed point
of R and P . Since Sa = Rb, Sa is the common fixed point of P,Q,R and S. If
we assume RM is complete subspace of M , the proof is similar. Similarly we
can prove the theorem for cases when PM or QM is a complete subspace of M .
Since SM ⊆ PM and RM ⊆ QM .

Now, we shall prove the uniqueness of common fixed point. If possible, let c
and d be two common fixed points of P,Q,R and S, such that c ̸= d. From (2),
we have

ψ(d∗(c, d)) = ψ(d∗(Rc, Sd)) ≤ ψ(△ (c, d))− ϕ(△ (c, d)),(27)

where

△ (c, d) = max{d∗(Rc, Sd), d∗(Rc, Pc), d∗(Sd,Qd),
1

2
[d∗(Pc, Sd) + d∗(Qd,Rc)],

d∗(Pc,Rd) · d∗(Qd,Rc)
1 + d∗(Rc, Sd)

,

d∗(Pc, Sd) · d∗(Qd,Rc)
1 + d∗(Rc, Sd)

,

d∗(Rc, Pc)
1 + d∗(Rc,Qd) + d∗(Sd, Pc)

1 + d∗(Rc, Pc) + d∗(Sd,Qd)
}

= d∗(c, d).

From (27), we have

ψ(d∗(c, d)) ≤ ψ(d∗(c, d))− ϕ(d∗(c, d)) < ψ(d∗(c, d)),

which is a contradiction. Therefore, c = d and this follows the uniqueness and
completes the proof of the theorem.

Theorem 2.3. Let (M,d∗) be a metric space. Let P,Q,R and S be self maps
on M satisfying (1), (2), (21) and the followings:

RM ⊆ QM and the pair (P,R) satisfies (CLRP ) property,(28)

SM ⊆ PM and the pair (Q,S) satisfies (CLRQ) property.

Then P,Q,R and S have unique common fixed point.

Proof. Without loss of generality, assume that RM ⊆ QM and the pair (P,R)
satisfies the (CLRP ) property. Then, there exists a sequence {un} in M such
that limn→∞ Pun = limn→∞Run = Pp, for some p in M .
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Since RM ⊆ QM , there exists a sequence {vn} in M such that R{un} =
Q{vn}.

Hence, limn→∞Qvn = Pp. Now, we shall show that limn→∞ Svn = Pp. Let
if possible, limn→∞ Svn = q ̸= Pp. From (2), we have

ψ(d∗(Run, Svn)) ≤ ψ(△ (un, vn))− ϕ(△ (un, vn)).

Now, taking limit as n→∞, we have

(29) lim
n→∞

ψ(d∗(Run, Svn)) ≤ lim
n→∞

ψ(△ (un, vn))− lim
n→∞

ϕ(△ (un, vn)),

where

lim
n→∞

△ (un, vn) = lim
n→∞

max{d∗(Run, Svn), d∗(Run, Pun), d∗(Svn, Qvn),

1

2
[d∗(Pun, Svn) + d∗(Qvn, Run)],

d∗(Pun, Run) · d∗(QVn, Svn)
1 + d∗(Run, Svn)

,

d∗(Pun, Svn) · d∗(Qvn, Run)
1 + d∗(Run, Svn)

,

d∗(Run, Pun)
1 + d∗(Run, Qvn)+d

∗(Svn, Pun)

1+d∗(Run, Pun)+d∗(Svn, Qvn)
}

= max{d∗(Pq, q), d∗(Pp, Pp), d∗(q, Pp), 1
2
[d∗(Pp, q)+d∗(Pp, Pp)],

d∗(Pq, q) · d∗(Pp, Pp)
1 + d∗(Pp, q)

,
d∗(Pp, Pp) · d∗(Pp, q)

1 + d∗(Pp, q)
,

d∗(Pp, Pp)[
1 + d∗(Pp, Pp) + d∗(q, Pp)

1 + d∗(Pp, Pp) + d∗(q, Pp)
]}

= d∗(Pp, q).

From (29), we have

ψ(d∗(Pp, q)) ≤ ψ(d∗(Pp, q))− ϕ(d∗(Pp, q)) < ψ(d∗(Pp, q)),

which is a contradiction. Therefore, Pp = q, that is, limn→∞ Svn = Pp = q.

Subsequently, we have limn→∞ Svn = limn→∞Run = limn→∞ Pun
= limn→∞Qvn = Pp = q. Now, we shall show that Rp = q. Let, if possi-
ble, Rp ̸= q. From (2), we have

ψ(d∗(Rp, Svn)) ≤ ψ(△ (p, vn))− ϕ(△ (p, vn)).

Now, taking limit as n→∞, we have

(30) lim
n→∞

ψ(d∗(Rp, Svn)) ≤ lim
n→∞

ψ(△ (p, vn))− lim
n→∞

ϕ(△ (p, vn)),
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where

lim
n→∞

△ (p, vn) = lim
n→∞

max{d∗(Rp, Svn), d∗(Rp, Pp), d∗(Svn, Qvn),

1

2
[d∗(Pp, Svn) + d∗(Qvn, Rp)],

d∗(Pp,Rp) · d∗(QVn, Svn)
1 + d∗(Rp, Svn)

,

d∗(Pp, Svn) · d∗(Qvn, Rp)
1 + d∗(Rp, Svn)

,

d∗(Rp, Pp)
1 + d∗(Rp,Qvn) + d∗(Svn, Pp)

1 + d∗(Rp, Pp) + d∗(Svn, Qvn)
}

= max{d∗(Rp, q), d∗(Rp, q), d∗(q, q), 1
2
[d∗(q, q) + d∗(q,Rp)],

d∗(q,Rp) · d∗(q, q)
1 + d∗(Rp, q)

,
d∗(q, q) · d∗(q,Rp)

1 + d∗(Rp, q)
,

d∗(Rp, q)[
1 + d∗(Rp, q) + d∗(q, q)

1 + d∗(Rp, q) + d∗(q, q)
]}

= d∗(Rp, q).

Thus, from (30), we get

ψ(d∗(Rp, q)) ≤ ψ(d∗(Rp, q))− ϕ(d∗(Rp, q)) < ψ(d∗(Rp, q)),

which is a contradiction. Therefore, Rp = q = Pp. Since the pair (P,R) is
weakly compatible, it follows that Pq = Rq. Also, since RM ⊆ QM , there
exists some r in M , such that, Rp = Qr, that is, Qr = q. Now, we show that
Sr = q. Let, if possible Sr ̸= q. From (2), we have

ψ(d∗(Run, Sr)) ≤ ψ(△ (un, r))− ϕ(△ (un, r)).

Now, taking limit as n→∞, we have

(31) lim
n→∞

ψ(d∗(Run, Sr)) ≤ lim
n→∞

ψ(△ (un, r))− lim
n→∞

ϕ(△ (un, r)),

where

lim
n→∞

△ (un, r) = lim
n→∞

max{d∗(Run, Sr), d∗(Run, Pun), d∗(Sr,Qr),

1

2
[d∗(Pun, Sr) + d∗(Qr,Run)],

d∗(Pun, Run) · d∗(Qr, Sr)
1 + d∗(Run, Sr)

,
d∗(Pun, Sr) · d∗(Qr,Run)

1 + d∗(Run, Sr)
,

d∗(Run, Pun)
1 + d∗(Run, Qr) + d∗(Sr, Pun)

1 + d∗(Run, Pun) + d∗(Sr,Qr)
}

= max{d∗(q, Sr), d∗(q, q), d∗(Sr, q), 1
2
[d∗(q, Sr) + d∗(q, q)],
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d∗(q, q) · d∗(q, Sr)
1 + d∗(q, Sr)

,
d∗(q, Sr) · d∗(q, q)

1 + d∗(q, Sr)
,

d∗(q, q)[
1 + d∗(q, q) + d∗(Sr, q)

1 + d∗(q, q) + d∗(Sr, q)
]}

= d∗(Sr, q).

Thus, from (31), we get

ψ(d∗(q, Sr)) ≤ ψ(d∗(q, Sr))− ϕ(d∗(q, Sr)) < ψ(d∗(q, Sr)),

which is a contradiction. Therefore, Sr = q = Qr. Since the pair (Q,S) is
weakly compatible, it follows that Sq = Qq. Now, we claim that Rq = Sq. Let,
if possible, Rq ̸= Sq. From (2), we have

(32) ψ(d∗(Rq, Sq)) ≤ ψ(△ (q, q))− ϕ(△ (△ (q, q)),

where

△ (q, q) = max{d∗(Rq, Sq), d∗(Rq, Pq), d∗(Sq,Qq), 1
2
[d∗(Pq, Sq) + d∗(Qq,Rq)],

d∗(Pq,Rq) · d∗(Qq, Sq)
1 + d∗(Rq, Sq)

,
d∗(Pq, Sq) · d∗(Qq,Rq)

1 + d∗(Rq, Sq)
,

d∗(Rq, Pq)
1 + d∗(Rq,Qq) + d∗(Sq, Pq)

1 + d∗(Rq, Pq) + d∗(Sq,Qq)
}

= d∗(Sq,Rq).

From (32), we have

ψ(d∗(Rq, Sq)) ≤ ψ(d∗(Rq, Sq))− ϕ(d∗(Rq, Sq)) < ψ(d∗(Rq, Sq)),

which is a contradiction. Thus, Rq = Sq, that is, Pq = Rq = Sq = Qq. Now,
we shall show that q = Sq. Let, if possible, q ̸= Sq. From (2), we have

(33) ψ(d∗(Rp, Sq)) ≤ ψ(△ (p, q))− ϕ(△ (p, q)),

where

△ (p, q) = max{d∗(Rp, Sq), d∗(Rp, Pp), d∗(Sq,Qq), 1
2
[d∗(Pp, Sq) + d∗(Qq,Rp)],

d∗(Pp,Rp) · d∗(Qq, Sq)
1 + d∗(Rp, Sq)

,
d∗(Pp, Sq) · d∗(Qq,Rp)

1 + d∗(Rp, Sq)
,

d∗(Rp, Pp)
1 + d∗(Rp,Qq) + d∗(Sq, Pp)

1 + d∗(Rp, Pp) + d∗(Sq,Qq)
}

= d∗(Sq,Rp).

From (33), we have

ψ(d∗(Rp, Sq)) ≤ ψ(d∗(Rp, Sq))− ϕ(d∗(Rp, Sq)) < ψ(d∗(Rp, Sq)),



414 MANOJ KUMAR, PREETI and POONAM

which is a contradiction. Therefore, q = Sq = Qq = Pq = Rq. Hence, q is the
common fixed point of P,Q,R and S.

Now, we shall prove the uniqueness of common fixed point. Let c and d be
two common fixed point of P,Q,R and S. Let, if possible, c ̸= d. From (2), we
have

ψ(d∗(c, d)) = ψ(d∗(Rc, Sd)) ≤ ψ(△ (c, d))− ϕ(△ (c, d)) = ψ(d∗(c, d))− ϕ(d∗(c, d))
< ψ(d∗(c, d)),

which is a contradiction. Therefore, c = d. This proves the uniqueness of
common fixed point.

Example 2.1. Let M = [0, 1] be endowed with the Euclidean metric d∗(u, v) =
|u− v|. Let the self maps P,Q,R and S be defined by

Ru =
u

9
, Qu =

u

6
, Su =

u

3
, Pu = u.

Clearly, RM = [0, 19 ] ⊆ [0, 16 ] = QM , SM = [0, 13 ] ⊆ [0, 1] = PM . Also, PM is
complete subspace of M and pair (P,R), (Q,S) are weakly compatible.

Now,

d∗(Ru, Sv) = |u
9
− v

3
| = 1

9
|u− 3v|,

d∗(Pu,Qv) = |u− v

6
| = 1

6
|6u− v|,

d∗(Ru,Pu) = |u
9
− u| = 8u

9
,

d∗(Qv, Sv) = |v
6
− v

3
| = v

6
,

d∗(Ru, Su) = |u
9
− u

3
| = 2u

9
,

d∗(Pu, Su) = |u− u

3
| = 2u

3
,

d∗(Qu,Rv) = |u
6
− v

9
| = 1

18
|3u− 2v|,

1

2
[d∗(Pu, Su) + d∗(Qu,Rv)] =

1

2
[
2u

3
+

1

18
|3u− 2v|] = 1

36
|15u− 2v|,

(d∗(Pv,Ru) · d∗(Qu, Su)
(1 + d∗(Rv, Su)

=
8v
9 ·

u
6

1 + 1
9 |3v − u|

=
4uv

3(9 + 3v − u)
,

1 + d∗(Rv,Qu) + d∗(Su, Pv)

1 + d∗(Rv, Pv) + d∗(Su,Qu)
=

1 + 1
18(3u− 2v) + 1

9(u− 9v)

1 + 8v
9 + u

6

=
|18 + 5u− 20v|
|18 + 16v + 3u|

.

Let ψ(a) = a
2 and ϕ(a) = a

4 . Thus, we have

ψ(d∗(Ru, Sv)) = ψ(
u

9
− v

3
) =

1

2
|u
9
− v

3
| = 1

18
|u− 3v|,
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△ (u, v) = max{d∗(Ru, Sv), d∗(Ru,Pu), d∗(Sv,Qv),
1

2
[d∗(Pu, Sv) + d∗(Qv,Ru)],

d∗(Pu,Ru) · d∗(Qv, Sv)
1 + d∗(Ru, Sv)

,
d∗(Pu, Sv) · d∗(Qv,Ru)

1 + d∗(Ru, Sv)
,

d∗(Ru,Pu)
1 + d∗(Ru,Qv) + d∗(Sv, Pu)

1 + d∗(Ru,Pu) + d∗(Sv,Qv)
} = d∗(Ru,Pu),

ψ(△ (u, v)) = ψ(d∗(Ru,Pu)) = ψ(
8u

9
) =

1

2
· 8u
9

=
4u

9
,

ϕ(△ (u, v)) = ϕ(d∗(Ru,Pu)) = ϕ(
8u

9
) =

1

4
· 8u
9

=
2u

9
.

Thus, we have

ψ(△ (u, v))− ϕ(△ (u, v)) =
4u

9
− 2u

9
=

2u

9
.

Hence

ψ(d∗(Ru, Sv)) ≤ ψ(△ (u, v))− ϕ(△ (u, v)).

This satisfies (2). If we consider the sequence {un} = { 1
2n}, then

lim
n→∞

Pun = lim
n→∞

un = lim
n→∞

1

2n
= 0, lim

n→∞
Run = lim

n→∞

un
9

= lim
n→∞

1

2n× 9
= 0.

Therefore,

lim
n→∞

Pun = lim
n→∞

Run = 0, where 0 ∈M.

So, the pair (P,R) satisfied the E.A. property. Also,

lim
n→∞

Pun = lim
n→∞

Run = 0 = P (0).

So, the pair (P,R) satisfies the (CLRP ) property. Hence, all the conditions
of above Theorems are satisfied. Therefore, P,Q,R and S must have unique
common fixed point. Here 0 is the unique common fixed point of P,Q,R and S.
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Abstract. The non-cancellation set of a groupG, denoted by χ(G), is defined to be the
set of all isomorphism classes of groups H such that G×Z ∼= H×Z. While investigating
when Z can be cancelled in this direct product, χ(G) has become the focus of many
studies. For the semidirect product Gi = Zni

⋊ωi
Z, i = 1, 2, methods for computation

of the non-cancellation groups χ(G1 × G2), χ(G
k
i ), k ∈ N and χ(Gi, hi) have been

developed. We present in this study, a general method of computing χ(G1 × G2, h),
where h : F ↪→ G1 ⊆ G1 ×G2 and F a finite group.

Keywords: localization, non cancellation, restricted genus, groups under a finite
group.

1. Introduction

The theory of π-localization of groups, where π is a family of primes, appears to
have been first discussed in [7, 8] by Mal’cev and Lazard. In the 1970s, Hilton
and Mislin became interested, through their work on the localization of nilpotent
spaces, in the localization of nilpotent groups. Mislin [11] define the genus G(N)
of a finitely generated nilpotent group N to be the set of isomorphism classes
of finitely generated nilpotent groups M such that the localizations Mp and Np

are isomorphic at every prime p. This version of genus became known as the
Mislin genus, and other very useful variations of this concept came into being.

In [3] Hilton and Mislin define an abelian group structure on the genus set
G(N) of a finitely generated nilpotent group N with finite commutator sub-
group. Throughout this study, finitely generated group with finite commutator
subgroup will be called χ0-group.

*. Corresponding author
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For nilpotent groups which belong to class K (of semidirect products of the
form T ⋊ Zk, where T is a finite abelian group and k is a positive integer),
many computations of the genus groups appear in the literature. Indeed, the
groups considered in [1, 4, 5, 14] all belong to this class. The groups used in the
computation method developed in this paper are χo-groups belonging to K and
will be called K0-groups.

For a non-nilpotent χo-groups, the kernel of the localizing homomorphism
maybe be bigger than what it is required. So, for such χ0-groups, the idea of
genus can be generalized through non-cancellation.

For a χo-group G, the non-cancellation set denoted by χ(G) is defined to be
the set of all isomorphism classes of groupsH such thatG×Z ∼= H×Z. Scevenels
and Witbooi in [15], gave an alternate description of the non-cancellation group
of K0-groups. This enables them to make some computations. Warfield [17]
proved that, if N is a nilpotent χo-group, then G(N) = χ(N). In [18], the
author showed that for a χo-group G the non- cancellation set χ(G) has a
group structure similar to the group structure on the Mislin genus of a nilpotent
χo-group. For any two χo- groups H and G, O’Sullivan in [12] proved that
H × Z ∼= G× Z if and only if for every finite set π of primes, we have Hπ

∼= Gπ

(π-localizations are isomorphic). To illuminate our understanding of genera of
groups, the restricted genus of a χ0-group under a finite group F was introduced
in [10]. More precisely, for a fixed morphism h : F → G, the restricted genus
χ(G, h)1 is the set of isomorphism classes of morphisms F → H, which are
π-equivalent to h at every finite set of primes π. For a well-defined integer n
depending on G, in [10] an epimorphism ζ : (Z/n)∗/±1 → χ(G, h) is established
and it is shown that there exist natural epimorphisms χ(G, h) → χ(G/h(F ))
(provided h(F ) is normal in G) and χ(G, h) → χ(G, h◦ i)) (provided i : F0 → F
is a morphism), which are compatible with the various involved maps ζ.

Having such homomorphisms is not always given. In [10], computation meth-
ods of χ(G, h) in the special case G is a semidirect product T ⋊ω Zk are used in
a very particular example to provide a concrete computation of χ(G, h), where
T is a finite abelian group. We extend this result to compute the restricted
genus χ(G1 ×G2, h) of the direct product G1 ×G2, where Gi = Zmi ⋊ωi Z and
h : F ↪→ G1 ×G2 a monomorphism, with F a finite group.

The rest of the paper is organized as follows: Section 2 is on preliminar-
ies, Section 3 presents the group structure on the restricted genus χ(G, h) and
Section 4 is on the computation method for χ(G1 ×G2, h).

2. Preliminaries

2.1 Definitions and notations

An interesting topic in the theory of nilpotent groups is the extraction of roots.
A group G is said to be a rational group if n-th roots exist in G, for all positive

1. For the special case F is trivial (F = ∗), χ(G, ∗ → G) = χ(G)
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integers n. A group which has unique extraction of roots is torsion-free. Roots
are unique in torsion-free nilpotent groups. However, extraction of roots is not
usually possible in such groups. For example, extraction of roots is not possible
in the additive group of integers Z. However, this group can be embedded in
the rational group Q. Mal’cev [9] generalized this by showing that any torsion-
free nilpotent group G can be embedded in a rational nilpotent group G0. The
extraction of roots is unique in G0 and every element of G0 has a positive power
in G. Moreover, G0 is unique up to isomorphism.

Given any set of primes π, let π′ be the set of natural numbers which are
relatively prime to elements of π. Let Gπ denote the subgroup of G0 generated
by G and its m-th roots whenever the prime divisors of m are in π′.

A group G is said to be π-local if for each n ∈ π′, the function g 7→ gn of G
into itself is a bijection.

The group Gπ is called the π-localization of G and has the universal property
that given any homomorphism ϕ : G → H, where H is a π-local group, there
exists a unique ϕπ : Gπ → H such that ϕ = ϕπφπ where φπ is the π-localizing
homomorphism G→ Gπ. If π = {p}, then Gπ is simply denoted by Gp.

The genus of a finitely generated nilpotent groupG denoted by G(G) (known
as Mislin genus, [11]), is the set of all isomorphism classes of finitely generated
nilpotent groups H such that Gp

∼= Hp for every prime number p.

The set τf (G) of all isomorphism classes of finitely generated group H such
that Gπ

∼= Hπ for every finite set of primes π is called the restricted genus of
G.

When localizing non-nilpotent groups, it may happen that the kernel of the
localizing homomorphism is bigger than what we would require. For a non-
nilpotent finitely generated group G with finite commutator subgroup, the idea
of the genus is generalized through non-cancellation, rather than considering
localizations.

For groups, we know that cancellation holds in the category of finitely gen-
erated abelian groups. If G is a finitely generated abelian group, then for any
abelian groups H and K, G ⊕ H ∼= G ⊕ K implies H ∼= K. Thus, finitely
generated abelian group is cancellable in the category of all abelian groups. The
abelian group Z is cancellable in the category of abelian groups. However, it is
known that Z is not cancellable in the category of groups in general. This was
shown by an example of William Scott, which was included in [16]. Another
example was given independently by Hirshon [6]. Our study of cancellation
property of a group G is examined through the isomorphism of direct products
G × Z ∼= H × Z. For a group G, the non-cancellation set χ(G) measures to
what extend Z can be cancelled in G × Z ∼= H × Z for some group H. For
some type of groups G, the computation of χ(G) have been the object of many
studies. For Ko-groups, methods for computation of the non-cancellation groups
χ(G1 × G2) and χ(Gk

i ), k ∈ N were developed in [19] and [2] respectively. In
these construction, the integer n(G) described below play a central role.
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Given a X0-group G. Let n1 be the exponent of TG, n2 the exponent of the
group Aut(TG) and n3 the exponent of the torsion subgroup of the centre of
G. Consider n(G) = n1n2n3. The integer n = n(G) has the property that the
subgroup G(n) = ⟨gn : g ∈ G⟩ of G belongs to the centre of G and G/G(n) is a
finite group.

Aspects of localization as in groups and related categories have been studied
in a unified way in a categorical setting, see [13] for instance. The following
subsection give a more specific presentation.

2.2 Category of groups under a finite group F

Fix a finite group F and let h : F −→ G be a monomorphism. We denote by
GrpF the category of groups under F as in [10]. For the category GrpF, the
objects denoted by (G1, h1), (G2, h2) are group homomorphisms h1 : F −→ G2

and h2 : F −→ G2 and a morphism in GrpF is a group homomorphism β :
G1 −→ G2 such that β ◦ h1 = h2.

The π-localization of an object h : F −→ G is the object hπ : F −→ Gπ

where π is a set of primes. Denote by XF the full subcategory of χo- groups
under F . Then, the restricted genus χ(G, h) is the set of isomorphism classes k
such that kπ is isomorphic to hπ for k ∈ XF . If F is a trivial group, then XF is
identified with χo-groups.

The restricted genus χ(G, h) has been computed in [10] and has been shown
that χ(G, h) coincides with χ(G) if F is a trivial group.

Let K be the class of groups of the form T ⋊ω F where F is a finite rank
free abelian group and T a finite abelian group. For a pair of relatively prime
natural numbers m,u, the symbol G(m,u) denotes the group H = Zm ⋊ν Z. H
is a K- group and KF determines a full subcategory of GrpF, see [10].

Let Gi = Zmi ⋊ωi Z and let h : F ↪→ G1 ×G2 where h is a monomorphism
and F is a finite group.

In this paper we develop a general method for computing χ(G1 ×G2, h).

3. Group structure on the restricted genus

Recall from ([18], Section 2), to a χo-group G assign a natural number n(G) =
n1n2n3 where n1 is the exponent of the torsion subgroup TG, n2 the exponent of
Aut(TG) and n3 the exponent of the torsion of the center TZG

. It was shown in
[18] that for a χo-group G whose subgroups H are of finite index with TG = TH ,
the non-cancellation set χ(G) has a group structure and is given by χ(G) =
Z∗
n/{1, −1}. For a pair of relatively prime natural numbers m,u, let H =

Zm ⋊ν Z, where ν : Z −→ Aut(Zm) is the automorphism of Zm defined by
ν(1)(t) = ut. Methods of computing χ(H) and χ(Hr) for r a natural number
were developed in [2], [15] and [19]. It is shown in [15] that χ(H) = Z∗

d/{1, −1},
where d is the multiplicative order of umodulom. For a direct productHr which
can be considered to be Zr

m⋊ω Zr, the authors in [2] showed that there is a well
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defined surjective homomorphism Γ : χ(H) −→ χ(Hr) given by K 7→ K×Hr−1

where K is a group such that K × Z ≃ H × Z. Thus, in order to compute the
group χ(Hr), one needs only to compute the kernel of the homomorphism Γ.

Let Gi = G(mi, ui) for some mi, ui ∈ N with gcd(mi, ui) = 1 and let di
be the multiplicative order of ui modulo mi. Consider the direct product G =
G1×G2 = (Zm1 ×Zm2)⋊ω Z2 and h : F ↪→ G1 ×G2 be the inclusion map. Let
t = d(G) be the smallest invariant factors of Imω. Note that, if gcd(d1, d2) = 1
then t = d1d2 and if gcd(d1, d2) ̸= 1 then t = gcd(d1, d2). For an object
(G1 × G2, h) in KF , we obtain an epimorphism Υ : Z∗

t −→ χ(G1 × G2, h),
where d depends exclusively on Imω [10]. Thus, in order to find χ(G1×G2, h),
one only needs to find the kernel of Υ. Note that t divides the exponent of
Aut(Zm1 × Zm2), and so t divides n(G).

Following ([10], Lemma 3.2), we have the following Lemma:

Lemma 3.1. Given objects (G, h) and (K, k) in KF with G = (Zm1×Zm2)⋊ωZ2

and K = (Zn1 × Zn2) ⋊ν Z2, then a morphism α : (G, h) −→ (K, k) is an
isomorphism if and only if there exist group isomorphisms θ : (Zm1 × Zm2)⋊ω

Z2 −→ (Zn1 × Zn2) ⋊ν Z2 and β : Z2 −→ Z2 with θ ◦ h = k such that for any
z ∈ Z2 and t ∈ (Zm1 × Zm2), (ν ◦ β(z))(θ(t)) = θ(ω(z)(t)).

Notation 3.1. We will follow the notation introduced in [10]. Let G be a χo-
group, n = n(G) and let X(n) = {u ∈ N : (u, n) = 1}. Let Y (G, h) be the
set of all u ∈ X(n) for which there exists a subgroup K of G with [G : K] = u
and the object (K, hK) is a member in χ(G, h). Let Gu be a subgroup of G
such that TG ⊆ Gu and [G : Gu] = u for each u ∈ Y (G, h). Define the induced
homomorphism hu : x 7→ h(x) and a morphism ς : Y (G, h) −→ χ(G, h). Let
Y ∗(G, h) be the image of Y (G, h) in Z∗

n. From ([10], Theorem 2.5) we have
Y ∗(G, h) is a subgroup of Z∗

n and Y ∗(G, h)/± 1 ∼= χ(G, h). Now for any object
(G, h) of KF denote by V (G, h) the set of all u ∈ X(t) for which there exist a
subgroup K of G with [G : K] = u and (K,hK) is a member of χ(G, h). Let
V ∗(G, h) be the image of V (G, h) in Z∗

t . Choose a subgroup K of G such that
(K,hK) represents a member in χ(G, h) and [G : K] = u. We obtain a function
V (G, h) −→ χ(G, h) given by u 7→ [K,hK ]. Since t |n we have the following
([10], Proposition 3.4)

Proposition 3.1. Let n = n(G) and ρ : Y (G, h) −→ χ(G, h) be the epi-
morphism that takes a residue modn and reduces it mod t. The epimorphism
ζ : Y ∗(G, h) −→ χ(G, h) factorises through the epimorphism ξ′:

Y ∗(G, h)

ρ

��

ζ
// χ(G, h)

V ∗(G, h)

ξ′

99

The kernel of V ∗(G, h) −→ χ(G, h) is caculated through the following theo-
rem ([10], Theorem 3.5)
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Theorem 3.1. For m ∈ V (G, h), the following conditions are equivalent:

(a) m ∈ ker[V ∗(G, h) −→ χ(G, h)].

(b) There exists α ∈ Aut (T ) with v ◦ h = h such that α ∈ NAutT Imω and
for an automorphism

∧
: Imω −→ Imω defined by v 7→ α vα−1, we have

det(
∧
) = ±m−1 ∈ V ∗(G, h).

4. Computation

1. For a pair of relatively prime natural numbers m, u, define a group
G(m, u) =< a, b : am = 1, bab−1 = au >. The group G(m, u) can be
considered to be the semidirect product Zm⋊ωZ where ω : Z −→ Aut(Zm)
is such that ω(1) is the automorphism of Zm given by ω(1)(t) = ut.

2. Let q be the product of all distinct prime divisors of m and assume that
q2 divides m.

3. Let Gi = G(mi, ui) for some mi, ui ∈ N with gcd(m1,m2) = 1, gcd(mi, uj)
= 1, i, j = 1, 2 and let di be the multiplicative order of ui modulo mi.
Let d = lcm(d1, d2) and m = lcm(m1,m2). If gcd(d1, d2) = 1 let t = d1d2
and if gcd(d1, d2) ̸= 1 let t = gcd(d1, d2).

4. Consider the direct product G1×G2 = (Zm1×Zm2)⋊ωZ2 where ω : Z2 −→
Aut(Zm1 × Zm2) is such that ω(ϵi) = ωi : (t1, t2) 7→ (u

δ(i,1)
1 t1, u

δ(i,2)
2 t2)

where δ(i, j) is the Kronecker function and {ϵ1, ϵ2} is the standard basis
of Z2.

5. Write ω(ϵ1) = ω1 and ω(ϵ2) = ω2. Each automorphism ωi is of order
di and Im(ω) is the direct product of the cyclic subgroups < ωi > of
Aut(Zm1 × Zm2). By [10], there is an epimorphism Z∗

t −→ χ(G1 × G2)
where t is the smallest of the invariant factors of Imω.

6. Let J be the subgroup of Aut(TG1×G2) generated by {ω1, ω2} that is,
J = Imω =< ω1, ω2 >. Note that:

� J = Imω =< ω1, ω2 > is a free Zd-module.

� The determinant of an endomorphism of J is defined and is an ele-
ment of Zd.

Consider J∗ = NAut(TG1×G2
)J . For any α ∈ Aut(TG1×G2), let

∧
α be the

inner automorphism such that
∧

α : v 7→ α v α−1.

7. Let q2 be a multiple of q such that q2q divides m. Let e1 = (1, 0), e2 =
(0, 1) be elements of TG1×G2 and let F = {aq2e2 : a ∈ Z} be a subgroup
of TG1×G2 and h : F ↪→ G1 ×G2 be the inclusion map.
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4.1 Inner automorphism of Aut (TG1×G2)

Fix α ∈ J∗ such that α(x) = x for all x ∈ F . There exists a 2 × 2 matrix
(αij) of integers such that α(ei) =

∑2
j=1 αjiej . Suppose that

∧
is the inner

automorphism of J determined by α.

Proposition 4.1. For the matrix (αij), αii is a unit modulo m for i = 1, 2.

Proof. We note that α(0, q2) = (0, q2) since (0, q2) ∈ F . Also α(0, q2) =
(q2α12, q2α22). Thus (0, q2) = (q2α12, q2α22) and we have that m divides α12. In
particular q divides α12 while α22 is a unit modulo m. Therefore the matrix of

α is of the form

(
α11 tq
α21 u

)
where t, u ∈ Z. Now det(α) = α11u− α21tq.

We claim that α11 is a unit modulom. Suppose that α11 is not a unit modulo
m then let p be a common prime divisor of α11 and m. Then p divides q and
p divides det(α) which is a contradiction since det(α) is a unit modulo m (α is
an automorphism). Thus α11 is a unit modulo m.

Proposition 4.2. The inner automorphism
∧

of J coincides with the identity
automorphism of J .

Proof. For the inner automorphism
∧

induced by α, there exists a matrix (
∧

ij)

of integers such that
∧
ωi = ω

∧
1i

1 ω
∧

2i
2 for each i. Let

∧
ωi = vi. Then

∧
ωi =

αωiα
−1 = vi and αωi = viα. On one hand αωi(ei) = α(uiei) =

∑2
j=1 u

δ(i,j)
i αjiej

and on the other hand viα(ei) = vi

(∑2
j=1 αjiej

)
=
∑2

j=1 αjiu
δ(i,j)

∧
ji

i ej . That

is,
∑2

j=1 u
δ(i,j)
i αjiej =

∑2
j=1 αjiu

δ(i,j)
∧

ji

i ej .

For j = i, we have from , that αii is a unit modulo m, therefore u
∧

ii
i ≡

uimodm. Thus
∧

ii ≡ 1mod d and consequently
∧

ii ≡ 1mod t.

For the case j ̸= i, we have αωi(ej) = α(ej) =
∑2

k=1 αkjek and viα(ej) =∑2
k=1 αkju

∧
ki

k ek. Therefore
∑2

k=1 αkjek =
∑2

k=1 αkju
∧

ki
k ek. For the case k = j.

Since αjj is a unit modulo m then u
∧

ji

j ≡ 1modm, that is,
∧

ji
∼= 0mod d.

Consequently
∧

ji ≡ 0mod t. Thus det (
∧
) = 1 and

∧
is coincides with the

identity automorphism on J .

Proposition 4.3. Let Gi = G(mi, ui), i = 1, 2 and (G1×G2, h) be an object of
KF . Let di be the multiplicative order of ui modulo mi. Then, χ(G1 ×G2, h) ∼=
Z∗
t /± 1, where (t = d1d2, if (d1, d2) = 1) or (t = (d1, d2), otherwise).

Proof. The Proposition follows from Theorem 3.1 and Proposition 4.2.

This construction can be generalized to compute χ(G1 × · · · × Gn, h) and
χ(Gk

i , l). This will be done in our future work.
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On the semiring variety generated by B0, (B0)∗, N2, T2, Z2,W2
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Abstract. In this paper, we study the semiring variety generated by B0, (B0)∗, N2,
T2, Z2,W2. We prove that this variety is finitely based and prove that the lattice of
subvarieties of this variety is a distributive lattice of order 1014. Moreover, we deduce
this variety is hereditarily finite based.

Keywords: semiring, variety, lattice, identity, hereditarily finite based.

1. Introduction

A semiring is an algebra with two associative binary operations +, ·, in which
+ is commutative and · distributive over + from the left and right. Such an
algebra is a common generalization of both rings and distributive lattice. It has
broad applications in information science and theoretical computer science (see
[5], [6]). In this paper, we shall investigate some small-order semirings which
will paly a crucial role in subsequent follows.

The semiring B with addition and multiplication table

+ a b c

a a b c
b b b b
c c b c

· a b c

a a a a
b b b b
c a b c

Eight 2-element semirings with addition and multiplication table

*. Corresponding author
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Semiring + · Semiring + ·

L2
0 1
1 1

0 0
1 1

R2
0 1
1 1

0 1
0 1

M2
0 1
1 1

0 1
1 1

D2
0 1
1 1

0 0
0 1

N2
0 1
1 1

0 0
0 0

T2
0 1
1 1

1 1
1 1

Z2
0 0
0 0

0 0
0 0

W2
0 0
0 0

0 0
0 1

For any semiring S, we denote by S0 the semiring obtained from S by adding
an extra element 0 and where a = 0 + a = a + 0, 0 = 0a = a0 for every
a ∈ S. For any semiring S, S∗ will denote the (multiplicative) left-right dual
of S. Pastijn et al. [4, 10] studied the semiring variety generated by B0 and
(B0)∗. They showed that the lattice of subvarieties of this variety is distributive
and contains 78 varieties precisely. Moreover, each of these is finitely based. It
is obvious that the variety generated by L2, R2,M2, D2 is properly contained
in the variety generated by B0 and (B0)∗, that is, HSP(L2, R2,M2, D2) ⫋
HSP(B0, (B0)∗). In 2016, Shao and Ren [14] studied the variety generated
by L2, R2,M2, D2, N2, T2. They showed that the lattice of subvarieties of this
variety is distributive and contains 64 varieties precisely. Moreover, each of these
is finitely based. Recently, Ren and Zeng [13] studied the variety generated by
B0, (B0)∗, N2, T2. They proved that the lattice of subvarieties of this variety
is a distributive lattice of order 312 and that each subvarieties of its is finitely
based. It is easy to check

HSP(B0, (B0)∗) ⫋ HSP(B0, (B0)∗, N2, T2) ⫋ HSP(B0, (B0)∗, N2, T2, Z2,W2).

So, the variety HSP(B0, (B0)∗, N2, T2) is a proper subvariety of the variety
HSP(B0, (B0)∗, N2, T2, Z2,W2). The main purpose of this paper is to study the
variety HSP(B0, (B0)∗, N2, T2, Z2,W2). We show that the lattice of subvarieties
of this variety is a distributive lattice of order 1014. Moreover, we show this
variety is hereditarily finitely based.

2. Preliminaries

Let V be a variety, L(V) denote the lattice of subvarieties of V and IdV(X)
denote the set of all identities defining V. If V can be defined by finitely many
identities, then we say that V is finitely based. In other words, V is said to
be finitely based if there exists a finite subset Σ of IdV(X) such that for any
p ≈ q ∈ IdV(X), p ≈ q can be derived from Σ, i.e., Σ ⊢ p ≈ q. Otherwise, we
say that V is nonfinitely based. Recall that V is said to be heredirarily finitely
based if all members of L(V) are finitely based. If a variety V is finitely based
and L(V) is a finite lattice, then V is hereditarily finite based (see [13]).
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The variety of all semirings is denoted by SR. A semiring is called an
additively idempotent semiring (ai-semiring for short) if its additive reduct is
a semilattice, i.e., a commutative idempotent semigroup. It is also called a
semilattice-order semigroup (see [3], [8], [12]). The variety of all ai-semirings
is denoted by AI. Let X denote a fixed countably infinite set of variables and
X+ the free semigroup on X. A semiring identity (SR-identity for short) is an
expression of the form u ≈ v, where u and v are terms with u = u1 + · · ·+ uk,
v = v1 + · · · + vℓ, where ui, vj ∈ X+ (An ai-semiring identity denoted by AI-
identity). Let k denote the set {1, 2, . . . , k} for a positive integer k, Σ be a
set of identities which include the identities determining AI and u ≈ v be an
AI-identity. It is easy to check that the ai-semiring variety defined by u ≈ v
coincides with the ai-semiring variety defined by the identities u ≈ u + vj , v ≈
v + ui, i ∈ k, j ∈ ℓ. Thus, in order to show that u ≈ v is derivable from Σ, we
only need to show that u ≈ u + vj , v ≈ v + ui, i ∈ k, j ∈ ℓ can be derived from
Σ.

To solve the word problem for the variety HSP(B0, (B0)∗, N2, T2, Z2,W2),
the following notions and notations are needed. Let q be an element of X+.
Then

� the head of q, denoted by h(q), is the first variable occurring in q;

� the tail of q, denoted by t(q), is the last variable occurring in q;

� the content of q, denoted by c(q), is the set of variables occurring in q;

� the length of q, denoted by |q|, is the number of variables occurring in q
counting multiplicities;

� the initial part of q, denoted by i(q), is the word obtained from q by
retaining only the first occurrence of each variable;

� the final part of q, denoted by f(q), is the word obtained from q by re-
taining only the last occurrence of each variable.

The basis for each one of N2, T2, Z2,W2 can be found from [11] (See Table
1).

Table 1. Bases for N2, T2, Z2,W2

Semiring Basis

N2 xy ≈ zt, x+ x2 ≈ x
T2 xy ≈ zt, x+ x2 ≈ x2
Z2 x+ y ≈ z + u, xy ≈ x+ y
W2 x+ y ≈ z + u, x2 ≈ x, xy ≈ yx

By [14, Lemma 1.1] and the bases for Z2,W2 in the above Table 1, we have



ON THE SEMIRING VARIETY GENERATED BY B0, (B0)∗, N2, T2, Z2,W2 429

Lemma 2.1. Let u ≈ v be a nontrivial SR-identity, where u = u1+u2+· · ·+um,
v = v1+ v2 + · · ·+ vn, ui, vj ∈ X+, i ∈ m, j ∈ n. Then:

(i) N2 satisfies u ≈ v if and only if {ui ∈ u | |ui| = 1} = {vi ∈ v | |vi| = 1};

(ii) T2 satisfies u ≈ v if and only if {ui ∈ u | |ui| ≥ 2} ̸= ϕ, {vi ∈ v | |vi| ≥
2} ≠ ϕ;

(iii) Z2 satisfies u ≈ v if and only if (∀x ∈ X) |u ̸= x, v ̸= x;

(iv) W2 satisfies u ≈ v if and only if m = n = 1, c(u1) = c(v1) or m,n ≥ 2.

Suppose that u = u1 + · · · + um, ui ∈ X+, i ∈ m. Let 1 be a symbol
which is not in X and Y an arbitray subset of

⋃i=m
i=1 c(u1). For any ui in u,

if c(ui) ⊆ Y , put hY (ui) = 1. Otherwise, we shall denote by hY (ui) the first
variable occurring in the word obtained from ui by deleting all variables in Y .
The set {hY (ui)|ui ∈ u} is written HY (u). Dually, we have the notations tY (ui)
and TY (ui). In particular, if Y = ∅, then hY (ui) = h(ui) and tY (ui) = t(ui).
Moreover, if c(ui)∩Y ̸= ∅ for every ui in u, then we write DY (u) = ∅. Otherwise,
DY (u) is the sum of all terms ui in u such that c(ui) ∩ Y = ∅. By [4, Lemma
2.4 and its dual, Lemma 2.5 and 2.6], we have

Lemma 2.2. Let u ≈ u+ q be an AI-identity, where u = u1 + · · ·+ um, ui, q ∈
X+, i ∈ m. If u ≈ u+ q holds in HSP(B0, (B0)∗), then c(q) ⊆

⋃i=m
i=1 c(ui) and

for the set Z =
⋃i=m
i=1 c(ui) \ c(q) and for any subset Y of Z, HY (DZ(u)) =

HY (DZ(u) + q) and TY (DZ(u)) = TY (DZ(u) + q).

For other notations and terminology used in this paper, the read is referred
to [1, 4, 7].

3. Equational basis of HSP(B0, (B0)∗, N2, T2, Z2,W2)

In [13], Ren and Zeng studied the join W of semiring variety HSP(B0, (B0)∗)
and semiring variety HSP(N2, T2) and obtained the following result.

Lemma 3.1 ([13]). L(W) is a 312-element distributive lattice and W is deter-
mined by

2x ≈ x;(1)

x2y ≈ xy;(2)

xy2 ≈ xy;(3)

(xy)2 ≈ xy;(4)

xyzt ≈ xzyt;(5)

x+ yz ≈ x+ yz + x2;(6)

x+ yz ≈ x+ yz + xyz;(7)

x+ yz ≈ x+ yz + yzx;(8)

x+ yz ≈ x+ yz + yxz.(9)
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In the following Theorem, we shall give an Equational basis of HSP(B0,
(B0)∗, N2, T2, Z2,W2). From Lemma 2.1, Z2 and W2 dose not satisfy the identity
2x ≈ x, that is, Z2 and W2 are not ai-semirings. In deed, we have

Theorem 3.1. The semiring variety HSP(B0, (B0)∗, N2, T2, Z2,W2) is deter-
mined by the identities (2)-(9) and the following identity

x+ y ≈ x+ 2y.(10)

Proof of Theorem 3.1. From [4, 10] and Lemma 2.1, both W and HSP(Z2,
W2) satisfy the identities (2)-(10) and so dose HSP(B0, (B0)∗, N2, T2, Z2,W2).

Next, we shall show that every identity that holds in HSP(B0, (B0)∗, N2, T2,
Z2,W2) can be derived from (2)-(10) and the identities determining SR. Let
u ≈ v be such an identity, where u = u1 + u2 + · · ·+ um, v = v1 + v2 + · · ·+ vn,
ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma 2.1 (iv), we only need to consider
the following two cases:
Case 1 m = n = 1 and C(u1) = C(v1). Now that L2, R2, T2, Z2 |= u1 ≈ v1,
it follows that H(u1) = H(v1), T (u1) = T (v1), |u1| ≥ 2 and |v1| ≥ 2. Hence

u1
(2),(3),(5)
≈ v1.

Case 2 m,n ≥ 2. It is easy to verify that u ≈ v and the identity (10) can imply
the identities u ≈ u+ vj , v ≈ v + ui for all i, j such that 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Conversely, the latter m+ n identities can imply u ≈ u+ v ≈ v. Thus, to show
that u ≈ v is derivable from (2)-(10) and the identities determining SR, we only
need to show that the simpler identities u ≈ u + vj , v ≈ v + ui for all i, j such
that 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence, we need to consider the following two cases:
Case 2.1 u ≈ u+ q, where |q| = 1. Since N2 |= u ≈ u+ q, there exists us = q.

Thus u+ q ≈ u′ + us + q ≈ u′ + us + us
(10)
≈ u′ + us ≈ u.

Case 2.2 u ≈ u+ q, where |q| ≥ 2. By (2), (3) and (5), we have

q ≈ i(q)q ≈ i(q)qf(q) ≈ i(q)f(q)

and so

q ≈ i(q)f(q).(11)

Note that c(q) = c(i(q)) = c(f(q)). Since u ≈ u + q holds in T2, it follows
from Lemma 2.1 (ii) that there exists ui in u such that |ui| ≥ 2. Put Z =
(
⋃i=m
i=1 c(ui))\c(q). Assume that DZ(u) = u1+ · · ·+uk. Then

⋃i=k
i=1 c(ui) = c(q).

Moreover, we have

u ≈ u+ ui +DZ(u) (by (10))

≈ u+ ui +DZ(u) + u21 (by (6))

≈ u+ ui +DZ(u) + u21 + u21u2 · · ·uk. (by (8))

Denote p for u21u2 · · ·uk. Thus c(p) = c(q) and we have derived the identity

u ≈ u+ p.(12)
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Now that |p| > 1, by (4), we have

p2 ≈ p.(13)

Suppose that i(q) = x1x2 · · ·xℓ. We shall show by induction on j that for every
1 ≤ j ≤ ℓ, u ≈ u + x1x2 · · ·xℓp is derivable from (2)-(10) and the identities
defining SR.

From Lemma 2.2, there exists ui1 in DZ(u) with c(ui1) ⊆ c(q) such that
h(ui1) = h(q) = x1. Furthermore,

u ≈ u+ ui1 + p (by (12))

≈ u+ ui1 + p+ ui1p (by (7))

≈ u+ ui1 + p+ x1ui1p (by (2))

≈ u+ ui1 + p+ x1ui1p+ x1puiip (by (9))

≈ u+ ui1 + p+ x1ui1p+ x1p. (by(5), (13))

Therefore,

u ≈ u+ x1p.(14)

Assume that, for some 1 < j ≤ ℓ,

u ≈ u+ x1x2 · · ·xj−1p(15)

is derivable from (2)-(10) and the identities defining SR. By Lemma 2.2, there
exists ui in DZ(u) with c(ui) ⊆ c(q) such that ui = ui1xjui2 and c(ui1) ⊆
{x1, x2, . . . , xj−1}. It follows that

u ≈ u+ ui + p

≈ u+ ui + p+ uip (by (7))

≈ u+ ui + p+ ui1xjui2p

≈ u+ ui + p+ ui1xjui2p+ ui1xjpui2p (by (9))

≈ u+ ui + p+ ui1xjui2p+ ui1xjp. (by (5),(13))

Consequently

u ≈ u+ ui1xjp.(16)

Moreover, we have

u ≈ u+ x1x2 · · ·xj−1p+ ui1xjp (by (15),(16))

≈ u+ x1x2 · · ·xj−1p+ ui1xjp+ x1x2 · · ·xj−1ui1xjpp (by (9))

≈ u+ x1x2 · · ·xj−1p+ ui1xjp+ x1x2 · · ·xj−1xjp. (by (2),(5),(13))
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Hence u ≈ u+ x1x2 · · ·xj−1xjp. Using induction we have

u ≈ u+ i(q)p.(17)

Dually,

u ≈ u+ pf(q).(18)

Thus

u ≈ u+ p+ i(q)p+ pf(q) (by (12),(17),(18))

≈ u+ p+ i(q)p+ pf(q) + i(q)ppf(q) (by (7))

≈ u+ p+ i(q)p+ pf(q) + i(q)f(q) (by (2),(3),(4),(5))

≈ u+ p+ i(q)p+ pf(q) + q. (by (11))

It follows that u ≈ u+ q.

4. The lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2))

In this section we characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)).
Throughout this section, t(x1, . . . , xn) denotes the term t which contains no
other variables than x1, . . . , xn (but not necessarily all of them). Let S ∈
HSP(B0, (B0)∗, N2, T2, Z2,W2) and E+(S) denote the set {a ∈ S | 2a = a},
where the elements of E+(S) is said to be additive idempotent of (S,+). Notice
that HSP(B0, (B0)∗, N2, T2, Z2,W2) satisfies the identities

2(x+ y) ≈ 2x+ 2y;(19)

2xy ≈ (x+ x)(y + y).(20)

By (19) and (20), it is easy to verify that E+(S) = {2a | a ∈ S} forms a sub-
semiring of S. To characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)),
we need to consider the following

φ : L(HSP(B0, (B0)∗, N2, T2, Z2,W2))→ L(W),V 7→ V ∩W.(21)

It is easy to prove that φ(V) = {E+(S) |S ∈ V} for each member V of L(W).
If V is the subvariety of W determined by the identities

ui(xi1 , . . . , xin) ≈ vi(xi1 , . . . , xin), i ∈ k,

then V̂ denotes the subvariety of HSP(B0, (B0)∗, N2, T2, Z2,W2) determined by
the identities

ui(2xi1 , . . . , 2xin) ≈ vi(2xi1 , . . . , 2xin), i ∈ k.(22)

Lemma 4.1. Let V be a member of L(W). Then, V̂ = V ∨HSP(Z2,W2).
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Proof of Lemma 4.1. Since V satisfies the identities (22), it follows that V
is a subvariety of V̂. And both Z2 and W2 are members of V̂ and so the join
V ∨ HSP(Z2,W2) ⊆ V̂. To show the converse inclusion, it suffices to show
that every identity that is satisfied by V ∨HSP(Z2,W2) can be derived by the
identities holding in HSP(B0, (B0)∗, N2, T2, Z2,W2) and ui(2xi1 , . . . , 2xin) ≈
vi(2xi1 , . . . , 2xin), i ∈ k, if V is the subvariety of W determined by ui(xi1 , . . . , xin)
≈ vi(xi1 , . . . , xin), i ∈ k. Let u ≈ v be such an identity, where u = u1 + u2 +
· · ·+ um, v = v1 + v2 + · · ·+ vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma
2.1 (8), we only need to consider the following two cases.
Case 1 m,n ≥ 2. By identity (10), HSP(B0, (B0)∗, N2, T2, Z2,W2) satisfies the
identities

2u ≈ u;(23)

2v ≈ v.(24)

Since u ≈ v holds in W, we have that it is derivable from the collection Σ of
ui ≈ vi, i ∈ k and the identities determining W. From [1, Exercise II.14.11], it
follows that there exist t1, t2, . . . , tℓ ∈ Pf (X+) such that

� t1 = u, tℓ = v;

� For any i = 1, 2, . . . , ℓ − 1, there exist pi, qi, ri ∈ Pf (X+) (where pi, qi
and ri may be empty words), a semiring substitution φi and an identity
u′i ≈ v′i ∈ Σ such that

ti = piφi(wi)qi + ri, ti+1 = piφi(si)qi + ri,

where eitherwi = u′i, si = v′i orwi = v′i, si = u′i.

Let Σ′ denote the set {2u ≈ 2v |u ≈ v ∈ Σ}. For any i = 1, 2, . . . , ℓ − 1, we
shall show that 2ti ≈ 2ti+1 is derivable from Σ′ and the identities holding in
HSP(B0, (B0)∗, N2, T2, Z2,W2). In deed, we have

2ti = 2(piφi(wi)qi + ri)

≈ 2(piφi(wi)qi) + 2ri

≈ pi(φi(2wi))qi + 2ri

≈ pi(φi(2si))qi + 2ri

(since 2wi ≈ 2si ∈ Σ′ or 2si ≈ 2wi ∈ Σ′)

≈ 2(piφi(si)qi) + 2ri

≈ 2(piφi(si)qi + ri)

= 2ti+1.

Further,

2u = 2t1 ≈ 2t2 ≈ · · · ≈ 2tℓ = 2v.
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This implies the identity

2u ≈ 2v.(25)

We now have

u
(24)
≈ 2u

(25)
≈ 2v

(24)
≈ v.(26)

Case 2 m = n = 1 and C(u) = C(v). Since Z2 |= u1 ≈ v1, u1 ̸= x, v1 ̸= x, for
every x ∈ X. Since u1 ≈ v1 holds in W, we have that it is derivable from the
collection Σ of ui ≈ vi, i ∈ k and the identities definging W. From [1, Exercise
II.14.11], it follows that there exist t1, t2, . . . , tℓ ∈ Pf (X+) such that

� t1 = u1, tℓ = v1;

� For any i = 1, 2, . . . , ℓ−1, there exist pi, qi ∈ Pf (X+) (where pi and qi may
be empty words), a semiring substitution φi and an identity u′i ≈ v′i ∈ Σ
(where u′i and v′i are words) such that

ti = piφi(wi)qi, ti+1 = piφi(si)qi,

where eitherwi = u′i, si = v′i orwi = v′i, si = u′i.

By Lemma 3.1, u1 ≈ v1 can be derived from (2), (3), (4) and (5), moreover,
by Lemma 3.1, it can be derived from monomial identities holding in HSP(B0,
(B0)∗, N2, T2, Z2,W2). This completes the proof. □

Lemma 4.2. The following equality holds:

(27) L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) =
⋃

V∈L(W)

[V, V̂].

There are 312 intervals in (27), and each interval is a congruence class of the
kernel of the complete epimorphism φ in (21).

Proof of Lemma 4.2. First, we shall show that equality (27) holds. It is easy
to see that

L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) =
⋃

V∈L(W)

φ−1(V).

So it suffices to show that

φ−1(V) = [V, V̂],(28)

for each member V of L(W). If V1 is a member of [V, V̂], then it is routine
to verity that V ⊆ {E+(S) |S ∈ V1} ⊆ V. This implies that {E+(S) |S ∈
V1} = V and so φ(V1) = V. Hence, V1 is a member of φ−1(V) and so
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[V, V̂] ⊆ φ−1(V). Conversely, if V1 is a member of φ−1(V), then V = φ(V1) =
{E+(S) |S ∈ V1} and so φ−1(V) ⊆ [V, V̂]. This shows that (27) holds.

From Lemma 3.1, we know that L(W) is a lattice of order 312. So there are
312 intervals in (27). Next, we show that φ a complete epimorphism. On the
one hand, it is easy to see that φ is a complete ∧-epimorphism. On the other
hand, let (Vi)i∈I be a family of members of L(HSP(B0, (B0)∗, N2, T2, Z2,W2)).

Then, by (21), we have that φ(Vi) ⊆ Vi ⊆ φ̂(Vi) for each i ∈ I. Further,

∨
i∈I
φ(Vi) ⊆

∨
i∈I

Vi ⊆
∨
i∈I
φ̂(Vi) ⊆

∨̂
i∈I
φ(Vi).

This implies that φ(
∨
i∈I Vi) =

∨
i∈I φ(Vi). Thus, φ is a complete ∨-homo-

morphism and so φ is a complete epimorphism. By (28), we deduce that each
interval in (21) is a congruence class of the kernel of the complete epimorphism
φ. □

In order to characterize the lattice L(HSP(B0, (B0)∗, N2, T2, Z2,W2)), by
Lemma 4.2, we only need to describe the interval [V, V̂] for each member V of
L(W). Next, we have

Lemma 4.3. Let V be a member of L(W). Then, V ∨HSP(Z2) is the subva-
riety of V̂ determined by the identity

xy ≈ 2xy.(29)

Proof of Lemma 4.3. It is easy to see that both V and HSP(Z2) satisfy the
identity (29) and so does V ∨HSP(Z2). In the following we prove that every
identity that is satisfied by V∨HSP(Z2) is derivable from (29) and the identities
holding in V̂. Let u ≈ v be such an identity, where u = u1 + u2 + · · ·+ um, v =
v1 + v2 + · · ·+ vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We only need to consider
the following cases.

Case 1. m = n = 1. Since Z2 satisfies u1 ≈ v1, it follows that |u1| ̸= 1 and

|v1| ≠ 1. By Lemma 4.1, V̂ satisfies the identity 2u1 ≈ 2v1. Hence u1
(29)
≈ 2u1 ≈

2v1
(29)
≈ v1.

Case 2. m = 1, n ≥ 2. Since Z2 satisfies u1 ≈ v, it follows that |u1| ̸= 1. By

Lemma 4.1, V̂ satisfies the identity 2u1 ≈ 2v. Hence u1
(29)
≈ 2u1 ≈ 2v

(10)
≈ v.

Case 3. m ≥ 2, n = 1. Similar to case 2.

Case 4. m,n ≥ 2. By Lemma 4.1, V̂ satisfies the identity 2u ≈ 2v. Hence

u
(10)
≈ 2u ≈ 2v

(10)
≈ v. □

Lemma 4.4. Let V be a member of L(HSP(B0, (B0)∗)). Then V∨HSP(W2)
is the subvariety of V̂ determined by the identity

x2 ≈ x.(30)
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Proof of Lemma 4.4. It is easy to see that both V and HSP(W2) satisfy
the identity (30) and so does V ∨HSP(W2). So it suffices to show that every
identity that is satisfied by V∨HSP(W2) is derivable from (30) and the identities
holding in V̂. Let u ≈ v be such an identity, where u = u1 + u2 + · · ·+ um, v =
v1 + v2 + · · ·+ vn, ui, vj ∈ X+, 1 ≤ i ≤ m, 1 ≤ j ≤ n. By Lemma 4.1, V̂ satisfies

the identity u2 ≈ v2. Hence, u
(30)
≈ u2 ≈ v2

(30)
≈ v. □

Lemma 4.5. Let V ∈ L(W). Then the interval [V, V̂] of L(HSP(B0, (B0)∗,
N2, T2, Z2, W2)) is given in Fig.1

�
�
��

@
@

@@

�
�

��

@
@
@@

r
r

r
r

V

V ∨HSP(W2)V ∨HSP(Z2)

V̂

Case. 1 N2, T2 ̸∈ V

@
@

@@

�
�

��

r
r

r

V

V ∨HSP(Z2)

V̂

Case. 2 N2 ∈ V or T2 ∈ V

Fig.1 The interval [V, V̂]

Proof of Lemma 4.5. Suppose that V1 is a member of [V, V̂] such that
V1 ̸= V̂ and V1 ̸= V. Then, there exists a nontrivial identity u ≈ v holding in
V1 such that it is not satisfied by V̂. Also, we have that V1 dose not satisfy
the identity 2x ≈ x. By Lemma 4.1, we only need to consider the following two
cases.
Case 1 HSP(Z2) |= u ≈ v,HSP(W2) ̸|= u ≈ v. Then, u ≈ v satisfies one of
the following three cases:

� m = n = 1, c(u1) ̸= c(v1), |u1| ≠ 1 and |v1| ≠ 1;

� m = 1, n > 1 and |u1| ≠ 1;
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� m > 1, n = 1 and |v1| ≠ 1.

It is easy to see that, in each of the above cases, u ≈ v can imply the identity
xy ≈ 2xy. By Lemma 4.3, we have that V1 is a subvariety of V ∨HSP(Z2).
On the other hand, since V1 |= xy ≈ 2xy and V1 ̸|= 2x ≈ x, it follows that
Z2 is a member of V1 and so V ∨ HSP(Z2) is a subvariety of V1. Thus,
V1 = V ∨HSP(Z2).
Case 2 HSP(Z2) ̸|= u ≈ v,HSP(W2) |= u ≈ v. Then, u ≈ v satisfies one of
the following two cases:

� m = n = 1, c(u1) = c(v1) and |u1| = 1;

� m = n = 1, c(u1) = c(v1) and |v1| = 1.

If N2, T2 ̸∈ V, then, in each of the above cases, u ≈ v can imply the identity
x ≈ x2. By Lemma 4.4, V1 is a subvariety of V ∨ HSP(W2). On the other
hand, since V1 |= x ≈ x2 and V1 ̸|= x ≈ 2x, it follows that W2 is a member of
V1 and so V ∨HSP(W2) is a subvariety of V1. Thus, V1 = V ∨HSP(W2).

If N2 ∈ V, then, by Lemma 2.1 (i), |u1| = |v1| = 1, a contradiction. Thus,
V1 = V̂.

If T2 ∈ V, then, by Lemma 2.1 (ii), |u1| ≥ 2, |v1| ≥ 2, a contradiction. Thus,
V1 = V̂. □

Theorem 4.1. L(HSP(B0, (B0)∗, N2, T2, Z2,W2)) is a distributive lattice of
order 1014.

Proof of Theorem 4.1. By (27) and Lemma 4.5, we can show that L(HSP(B0,
(B0)∗, N2, T2, Z2,W2)) has exactly 1014 elements. Suppose that W1,W2 and
W3 are members of L(W) such that W1 ∨W2 = W1 ∨W3 and W1 ∧W2 =
W1 ∧W3. Then, by Lemma 4.2

φ(W1) ∨ φ(W2) = φ(W1) ∨ φ(W3)

and

φ(W1) ∧ φ(W2) = φ(W1) ∧ φ(W3).

Since L(W) is distributive, it follows that φ(W2) = φ(W3). Write V for
φ(W2). Then both W2,W3 are members of [V, V̂]. By Fig.1, we deduce that
W2 = W3. □

By Theorem 3.1, 4.1 and [13, Corollary 1.2], we now immediately deduce

Corollary 4.1. HSP(B0, (B0)∗, N2, T2, Z2,W2) is hereditarily finitely based.
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Abstract. Recently, a new type of mapping called (ϕ, F )- contraction was introduced
in the literature as a generalization of the concepts of contractive mappings. This
present article extends the new notion in C∗-algebra valued partial metric spaces and
establishing the existence and uniqueness of fixed point for them. Non-trivial examples
are further provided to support the hypotheses of our results.
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1. Introduction

Metric fixed point theory has its roots in methods from the late 19th cen-
tury, when successive approximations were used to establish the existence and
uniqueness of solutions to equations, and especially differential equations. This
approach is particularly associated with the work of Picard, although it was
Stefan Banach who in 1922 in [2] developed the ideas involved in an abstract
setting.

*. Corresponding author
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Banach’s contraction principle is a fundamental result in fixed point the-
ory. Due to its importance, several authors have obtained many interesting
extensions and generalizations (see [1, 3, 5, 10, 12]).

Many generalizations of the concept of metric spaces are defined and some
fixed point theorems were proved in these spaces. In particular, C∗-algebra
valued metric spaces were introduced by Ma et al. [11] as a generalization of
metric spaces they proved certain fixed point theorems, by giving the defini-
tion of C∗-algebra valued contractive mapping analogous to Banach contraction
principle.

In this paper, inspired by the work done in [6, 9], we introduce the notion of
C∗-algebra valued partial (ϕ, F )-contraction and establish some new fixed point
theorems for mappings in the setting of complete C∗-algebra valued partial
metric spaces. Moreover, an illustrative example is presented to support the
obtained results.

2. Preliminaries

Throughout this paper, we denote A an unital C∗-algebra with linear involution
∗, such that for all x, y ∈ A,

(xy)∗ = y∗x∗, x∗∗ = x.

We call an element x ∈ A a positive element, denote it by x ⪰ θ if x ∈ Ah =
{x ∈ A : x = x∗} and σ(x) ⊂ R+, where σ(x) is the spectrum of x.

Using positive element, we can define a partial ordering ⪯ on Ah as follows:

x ⪯ y if and only if y − x ⪰ θ,

where θ means the zero element in A.
We denote the set {x ∈ A : x ⪰ θ} by A+ and |x| = (x∗x)

1
2 .

Remark 2.1. When A is an unital C∗-algebra, then for any x ∈ A+ we have

x ⪯ I ⇐⇒ ∥x∥ ≤ 1.

Definition 2.2 ([8]). Let X be a non-empty set. A mapping p : X×X → A is
called a C∗-algebra valued metric on X if the following conditions are satisfied:

(i) θ ⪯ p(x, y) for all x, y ∈ X and p(x, x) = p(y, y) = p(x, y) if and only if
x = y

(ii) p(x, y) = p(y, x) for all x, y ∈ X;

(iii) p(x, x) ⪯ p(x, y) for all x, y ∈ X

(iv) p(x, y) ⪯ p(x, z) + p(z, y)− p(z, z) for all x, y, z ∈ X.
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Then (X,A+, p) is called a C∗-algebra valued partial metric space.
If we take A = R, then the new notion of C∗-algebra valued partial metric

space becomes equivalent to the definition of the real partial metric space.

Example 2.3. LetX = [0, 1] and x ∈ A be a nonzero element.
Define p(s, t) = max{1 + s, 1 + t}xx∗. Then we can easily show that p :

X ×X → A is a C∗-algebra valued partial metric.

Example 2.4. Let X = [0, 1] and A = R2 with the usual norm is a real Banach
space.

Let p : X ×X → R2 be given as follows:

p(x, y) = (|x− y|, |x− y|).

Then, (X,R2, p) is a complete C∗-algebra valued partial metric.

Definition 2.5 ([7]). Let (X,A, p) be a C∗-algebra valued partial metric space.
Suppose that {xn} ⊂ X and x ∈ X.

(1) {xn} ⊂ X converges to x whenever for every ε > 0 there is a natural
number N such that for all n > N ,

∥p(xn, x)− p(x, x)∥ ≤ ε.

We denote it by
lim
n→∞

p(xn, x)− p(x, x) = θ.

(2) {xn} is a partial Cauchy sequence respect to A, whenever ε > 0 there is a
natural number N such that

(p(xn, xm)− 1

2
p(xn, xn)−

1

2
p(xm, xm))((p(xn, xm)

− 1

2
p(xn, xn)−

1

2
p(xm, xm))∗ ⪯ ε2,

for all n,m > N ;

(3) (X,A+, p) is said to be complete with respect to A if every partial Cauchy
sequence with respect to A converges to a point x in X such that

lim
n→∞

(p(xn, x)−
1

2
p(xn, xn)−

1

2
p(x, x)) = θ.

From given C∗-algebra-valued partial metric, we can obtain a C∗- algebra-valued
metric. Put

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y).

Then, ps is a C∗− algebra -valued metric.

Lemma 2.6 ([7]). Let (X,A, p) be a C∗- algebra- valued partial metric space.
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(1) {xn} is a partial Cauchy sequence in (X,A, p) if and only if it is Cauchy
in the C∗- algebra -valued metric (X,A, ps).

(2) A C∗- algebra- valued partial metric space (X,A, p) is complete if and only
if C∗- algebra- valued metric space (X,A, ps) is complete. Furthermore,

lim
n→∞

ps(xn, x) = θ ⇔ lim
n→∞

(2p(xn, x)− p(xn, xn)− p(x, x)) = θ

or

lim
n→∞

ps(xn, x) = θ ⇔ lim
n→∞

p(xn, x)− p(xn, xn) = θ, lim
n→∞

p(xn, x)− p(x, x) = θ.

Lemma 2.7 ([7]). Assume that xn → x and yn → y as n → ∞ in a C∗−
algebra valued partial metric space (X,A, p). Then

lim
n→∞

(p(xn, yn)− p(xn, xn)) = p(x, y)− p(x, x)

and

lim
n→∞

(p(xn, yn)− p(yn, yn)) = p(x, y)− p(y, y).

Definition 2.8 ([14]). Let the function ϕ : A+ → A+ be positive if having the
following constraints:

(i) ϕ is continuous and nondecreasing;

(ii) ϕ(a) = θ if and only if a = θ;

(iii) limn→∞ ϕn(a) = θ.

Definition 2.9 ([14]). Suppose that A and B are C∗-algebra. A mapping
ϕ : A→ B is said to be C∗- homomorphism if:

(i) ϕ(ax+ by) = aϕ(x) + bϕ(y) for all a, b ∈ C and x, y ∈ A;

(ii) ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A;

(iii) ϕ(x∗) = ϕ(x)∗ for all x ∈ A;

(iv) ϕ maps the unit in A to the unit in B.

Definition 2.10 ([14]). Let A and B be C∗-algebra spaces and let ϕ : A → B
be a homomorphism, then ϕ is called an ∗− homomorphism if it is one to one
∗− homomorphism. A C∗-algebra A is ∗−isomorphic to a C∗-algebra B if there
exists ∗− isomorphism of A onto B.

Lemma 2.11 ([13]). Let A and B be C∗-algebra spaces and ϕ : A → B is a
C∗− homomorphism for all x ∈ A we have

σ(ϕ(x)) ⊂ σ(x), ∥ϕ(x)∥ ≤ ∥ϕ∥.
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Corollary 2.12 ([14]). Every C∗− homomorphism is bounded.

Corollary 2.13 ([14]). Suppose that ϕ is C∗− isomorphism from A to B, then
σ(ϕ(x)) = σ(x) and ∥ϕ(x)∥ = ∥ϕ∥ for all x ∈ A.

Lemma 2.14 ([14]). Every ∗− homomorphism is positive.

The following definition was given by D. Wardowski in [4].

Definition 2.15 ([10]). Let F : R+ → R and ϕ : R+ → R+ be a mapping
satisfying:

(i) F is strictly increasing, for α, β ∈ R+ such that α < β, F (α) < F (β).

(ii) For each sequence {xn}n∈N of positive numbers

lim
n→0

xn = 0, if and only if lim
n→∞

F (xn) = −∞.

(iii) lim infs→α+ ϕ(s) > 0, for all s > 0.

(iv) There exists k ∈ ]0, 1[ such that limx→0 x
kF (x) = 0. A mapping T : X →

X is said to be an (ϕ, F )-contraction in partial metric space if

∀x, y ∈ X; p(Tx, Ty) ≥ 0 ⇒ ϕ(p(x, y)) + F (p(Tx, Ty) ⩽ F (p(x, y)).

Definition 2.16 ([10]). Let (X, p) be a complete partial metric space. A map-
ping T : X → X is called an (ϕ, F )− contraction on (X, p) if there exists F and
ϕ defined in Definition 2.15 such that

(p(Tx, Ty) > 0 ⇒ F (p(Tx, Ty) + ϕ(p(x, y)) ⩽ F (p(x, y)),

for all x, y ∈ X for which Tx ̸= Ty.

Theorem 2.17. Let (X, p) be a complete partial metric space and T : X → X
be an (ϕ, F )− contraction. Then T has a unique fixed point.

3. Main result

Aspired by Wardowski in [10], we introduce the notion of (ϕ, F ) − C∗-valued
partial contraction.

Definition 3.1. Let F : A+ → A+ a function satisfying:

(i) F is continuous and nondecreasing.

(ii) F (T ) = θ if and only if T = θ.

1. A mapping T : X → X is said to be a (ϕ, F ) C∗ valued partial contraction
of type (I) if there exists ϕ : A+ → A+ an ∗− homomorphism such that

(1) ∀x, y ∈ X; (p(Tx, Ty) ⪰ θ ⇒ F (p(Tx, Ty))+ϕ(p(x, y)) ⪯ F (p(x, y)).
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2. A mapping T : X → X is said to be a (ϕ, F ) C∗ valued partial contraction
of type (II) if there exists ϕ : A+ → A+ an ∗− homomorphism satisfying:

(a) ϕ(a) ≺ a for a ∈ A+.

(b) Either ϕ(a) ⪯ p(x, y) or p(x, y) ⪯ ϕ(a), where a ∈ A+ and x, y ∈ X.

(c) F (a) ≺ ϕ(a). Such that

(p(Tx, Ty) ⪰ θ ⇒ F (p(Tx, Ty) + ϕ(p(x, y)) ⪯ F (M(x, y)),

where M(x, y) = a1p(x, y) + a2[p(Tx, y) + p(Ty, x)] + a3[p(Tx, x) +
p(Ty, y)], with a1, a2, a3 ≥ 0, a1 + 2a2 + 2a3 ≤ 1.

3. T is said to be (ϕ, F )- Kannan-type C∗− valued contraction if there exist
ϕ satisfy (a), (b) and (c) such that p(Tx, Ty) ⪰ θ, we have

F (p(Tx, Ty) + ϕ(p(x, y)) ⪯ F (
p(x, Tx) + p(y, Ty)

2
).

4. T is said to be (ϕ, F )- Reich-type C∗− valued partial contraction if there
exist ϕ satisfy (a), (b) and (c) such that p(Tx, Ty) ⪰ θ, we have

F (p(Tx, Ty) + ϕ(p(x, y)) ⪯ F (
p(x, y) + p(x, Tx) + p(y, Ty)

3
).

Example 3.2. Let X = [0, 1] and A = R2 Then A is a C∗− algebra with norm
∥.∥ : A → R defined by

∥(x, y)∥ = (x2 + y2)
1
2 .

Define a C∗− algebra valued partial metric p : X ×X → A on X by p(x, y) =
(x+ y, x+ y), with ordering on A by

(a, b) ⪯ (c, d) ⇔ a ≤ c and b ≤ d.

A mapping T : X → X given by Tx = x− 1
2x

2 is continuous with respect to A.
Let F : A+ → A+. Defined by F (x, y) = (x, y).

It is clear that F satisfies (i) and (ii).

We have F (p(Tx, Ty)) = p(Tx, Ty) = (x− 1
2x

2+ y− 1
2y

2, x− 1
2x

2+ y− 1
2y

2)
and F (p(Tx, Ty)) − F (p(x, y)) ≤ −(14(x + y)2, 14(x + y)2). Therefore, T is a
C∗-algebra valued partial F -contraction with ϕ(x, y) = (14(x+ y)2, 14(x+ y)2).

Example 3.3. Let X = [0, 1] ∪ {2, 3, 4, ...} and A = C with a norm || z ||=| z |
be a C∗− algebra. We define C+ = {z = (x, y) ∈ C; x = Re(z) ≥ 0, y =
Im(z) ≥ 0}.

The partial order ≤ with respect to the C∗− algebra C is the partial order
in C, z1 ≤ z2 if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2) for any two elements
z1, z2 in C.
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Let p : X ×X → C

p(x, y) =


(|x− y| , |x− y|), if x, y ∈ [0, 1], x ̸= y,

(x+ y, x+ y), if at least one ofx or y ̸∈ [0, 1] and x ̸= y,

(0, 0), if x = y.

Then, (X,A, p) be a complete C∗-algebra valued metric space.

Let F : C+ → C be defined as

F (t) =

{
t, if t ∈ [0, 1],

t2, if t > 1.

It is clear that F satisfies (i) and (ii) Let T : X → X be defined as

T (x) =

{
x− 1

2x
2, if x ∈ [0, 1],

x− 1, if x ∈ {2, 3, 4, ...}.

Without loss of generality, we assume that x > y and discuss the following cases:

Case 1. (x ∈ [0; 1]). Then

F (p(Tx, Ty)) = ((x− 1

2
x2)− (y − 1

2
y2), (x− 1

2
x2)− (y − 1

2
y2))

= ((x− y)− 1

2
(x− y)(x+ y), (x− y)− 1

2
(x− y)(x+ y))

≤ ((x− y)− 1

2
((x− y))2, (x− y)− 1

2
((x− y))2)

= p(x, y)− 1

2
(p(x, y))2

= F (p(x, y))− 1

2
(p(x, y))2.

Then, there exists ϕ such ϕ(x, y) = 1
2(p(x, y))

2 and ∀x, y ∈ X, p(Tx, Ty) ≥ 0 ⇒
ϕ(x, y) + F (p(Tx, Ty)) ≤ F (p(x, y)).

Case 2. (x ∈ {3, 4, ...}), then

p(Tx, Ty) = p(x− 1, y − 1

2
y2) if y ∈ [0, 1]

or

p(Tx, Ty) = (x− 1 + y − 1

2
y2, x− 1 + y − 1

2
y2) ≤ (x+ y − 1, x+ y − 1),

p(Tx, Ty) = p(x− 1, y − 1) if y ∈ {2, 3, 4, ...}

or

p(Tx, Ty) = (x+ y − 2, x+ y − 2) < (x+ y − 1, x+ y − 1).
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Consequently,

F (p(Tx, Ty)) = (p(Tx, Ty))2 ≤ ((x+ y − 1)2, (x+ y − 1)2)

< ((x+ y − 1)(x+ y + 1), (x+ y − 1)(x+ y + 1))

= ((x+ y)2 − 1, (x+ y)2 − 1) < ((x+ y)2 − 1

2
, (x+ y)2 − 1

2
)

= F (p(x, y))− 1

2
.

Case 3. (x = 2), then y ∈ [0, 1], Tx = 1 and

p(Tx, Ty) = (1− (y − 1

2
y2), 1− (y − 1

2
y2)).

So, we have F (p(Tx, Ty)) ≤ F (1) = 1. Again, p(x, y) = (2 + y, 2 + y). So,
1 = F (p(Tx, Ty)) ≤ F (p(x, y))− 1

2 .

Theorem 3.4. Let (X,A, p) be a complete C∗-algebra valued partial metric
space and let T : X → X be a (ϕ, F ) C∗- valued partial contraction mapping
of type (I). Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X a
sequence {Tnx0}n∈N is convergent to x∗.

Proof. First, let us observe that T has at most one fixed point. Indeed if

x∗1;x
∗
2 ∈ X, Tx∗1 = x∗1 ̸= x∗2 = Tx∗2

then, we get

ϕ(p(x, y)) ⪯ F (p(x∗1;x
∗
2))− F (p(Tx∗1;Tx

∗
2)) = θ

which is a contradiction.
In order to show that thas a fixed point let x0 ∈ X be arbitrary and fixed

we define a sequence {xn}n∈N ⊂ X; xn+1 = Txn, n = 0, 1, 2, . . . denote pn =
p(xn+1;xn), n = 0, 1, 2, . . . if there exists n0 ∈ N for which xn0+1 = xn0 then
Txn0 = xn0 and the proof is finished.

Suppose now, that xn+1 ̸= xn, for every n ∈ X then pn ≻ θ, for all n ∈ N
and using (1) the following holds, for every n ∈ N

(2) F (pn) ⪯ F (pn−1)− ϕ(pn−1) ≺ F (pn−1).

Hence, F is non decreasing and so the sequence (pn) is monotonically decreasing
in A+. So, there exists θ ⪯ t ∈ A+ such that

p(xn, xn+1) → t as n→ ∞.

From (2) we obtain limn→∞ F (pn) = θ that together with (ii) gives

(3) lim
n→∞

pn = θ.
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Now, we shall show that {xn} is a Cauchy sequence in (X,A, p). By
Lemma 2.6 it is sufficient To prove that {xn} is a Cauchy sequence in (X,A, ps),
we have proved limn→∞ pn = θ. Keeping in mind that θ ⪯ p(xn, xn) ⪯
p(xn, xn+1), we get

(4) lim
n→∞

p(xn, xn) = θ.

Also, θ ⪯ p(xn+1, xn+1) ⪯ p(xn, xn+1) this implies

(5) lim
n→∞

p(xn+1, xn+1) = θ.

Assume that {xn} is not a Cauchy sequence in (X,A, ps). Then, exist ε > 0 and
subsequences {xmk

} and {xnk
} with nk > mk > k such that

∥ps(xmk
, xnk

)∥ > ε.

Now, corresponding to mk , we can choose nk such that it is the smallest integer
with nk > mk and satisfying above inequality. Hence, ∥ps(xmk

, xnk−1)∥ ≤ ε. So,
we have

ε ≤ ∥ps(xmk
, xnk

)∥ ≤ ∥ps(xmk
, xnk−1 + ps(xnk−1, xnk

)− ps(xnk−1, xnk−1)∥
≤ ∥ps(xmk

, xnk−1)∥+ ∥ps(xnk−1, xnk
)∥ ≤ ε+ ∥ps(xnk−1, xnk

)∥.(6)

We know that

(7) ps(xnk−1, xnk
) = 2p(xnk−1, xnk

)− ps(xnk−1, xnk−1)− ps(xnk
, xnk

).

Using (3), (4), (5) and (7) we have

ε ⪯ lim
k→∞

∥ps(xnk−1, xnk
)∥ < ε+ θ.

This implies

(8) lim
k→∞

∥ps(xmk
, xnk

)∥ = ε.

Again,

∥ps(xnk
, xmk

)∥ ≤ ∥ps(xnk
, xnk−1) + ps(xnk−1, xmk

)− ps(xnk−1, xnk−1)∥
≤ ∥ps(xnk

, xnk−1)∥+ ∥ps(xnk−1, xmk
)∥

≤ ∥ps(xnk
, xnk−1)∥+ ∥ps(xnk−1, xmk−1)

+ ps(xmk−1, xmk
)− ps(xmk−1, xmk−1)∥(9)

≤ ∥ps(xnk
, xnk−1)∥+ ∥ps(xnk−1, xmk−1)∥+ ∥ps(xmk−1, xmk

)∥.

Also,

∥ps(xnk−1, xmk−1)∥ ≤ ∥ps(xnk−1, xnk
) + ps(xnk

, xmk−1)− ps(xnk
, xmk

)∥
≤ ∥ps(xnk−1, xnk

)∥+ ∥ps(xnk
, xmk−1)∥

≤ ∥ps(xnk−1, xnk)∥+ ∥ps(xnk
, xmk

)

+ ps(xmk
, xmk−1)− ps(xmk

, xmk
)∥(10)

≤ ∥ps(xnk−1, xnk)∥+ ∥ps(xnk
, xmk

)∥+ ∥ps(xmk
, xmk−1)∥.
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Letting k → ∞ in (9) and (10) and using (4) and (8) we have

lim
k→∞

∥ps(xnk−1, xmk−1)∥ = ε.

Thus,

lim
k→∞

∥p(xnk−1, xmk−1)∥ =
1

2
lim
k→∞

∥2ps(xnk−1, xmk−1)

− ps(xnk−1, xnk−1)− ps(xmk−1, xmk−1)∥

=
1

2
lim
k→∞

∥ps(xnk−1, xmk−1)∥ =
ε

2
.

Since p(xnk−1, xmk−1) , p(xnk
, xmk

) ∈ A+ and

lim
k→∞

∥p(xnk−1, xmk−1)∥ = lim
k→∞

∥p(xnk
, xmk

)∥ =
ε

2

there is exists s ∈ A+ with ∥s∥ = ε such that

(11) lim
k→∞

∥p(xnk−1, xmk−1)∥ = lim
k→∞

∥p(xnk
, xmk

)∥ = s

by (7) we have

F (s) = lim
k→∞

F (p(xnk
, xmk

)) ⪯ lim
k→∞

F (p(xnk−1
, xmk−1

)).

Therefore, F (s) ≺ F (s). Thus, F (s) = θ and so s = θ which is a contradiction.
Hence, {xn} is a Cauchy sequence in (X,A, ps) and so {xn} is partially Cauchy
in the complete C∗−algebra-valued partial metric space (X,A, p). Hence, there
exist z ∈ X such that limn→∞ p(xn, z)− p(xn, xn) = θ.

Using (4), we get limn→∞ p(xn, z) = θ and thus p(z, z) = θ
Now, we shall show that z is fixed point of T . Using (1), we get θ ⪯

F (p(Tz, Tz)) ≺ F (p(z, z)) = F (θ) = θ. Thus, F (p(Tz, Tz)) = θ which implies
p(Tv, Tv) = θ. On the other hand, F (p(xn, T z)) ≺ F (p(xn−1, z)).

Letting n → ∞ and using the concept of continuity of the function of T .
We have p(z, Tz) = θ. Hence, by Definition 2.2, we have p(z, z) = p(Tz, Tz) =
p(z, Tz) = θ, then Tz = z, which completes the proof.

Example 3.5. Considering all cases in Example 3.3, we conclude that inequality
(1) remains valid for F and T constructed as above and consequently by an
application of Theorem 3.3, T has a unique fixed point. It is seen that 0 is the
unique fixed point of T .

Theorem 3.6. Let (X,A, p) be a complete C∗-algebra valued partial metric
space.

Let T : X → X be a (ϕ, F ) of type (II), i.e, there exist F and ϕ two ∗−
homomorphisms such that for any x, y ∈ X we have

p(Tx, Ty) ⪰ θ ⇒ F (p(Tx, Ty)) + ϕ(p(x, y)) ⪯ F (M(x, y)),

where M(x, y) = a1p(x, y) + a2[p(Tx, y) + p(Ty, x)] + a3[p(Tx, x) + p(Ty, y)],
with a1, a2, a3 ≥ 0 ,a1 + 2a2 + 2a3 ≤ 1. Then, T has a fixed point.
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Proof. Let x0 ∈ X and define x1 = Tx0, x2 = Tx1, ..., xn = Txn−1. We have

F (p(xn+2, xn+1)) = F (p(Txn+1, Txn)) ⪯ F (M(xn+1, xn)) + ϕ(p(xn+1, xn))

= F (a1p(xn+1, xn) + a2[p(xn+2, xn) + p(xn+1, xn+1)]

+ a3[p(xn+2, xn+1) + p(xn+1, xn)])− ϕ(p(xn+1, xn)).

Then, we have

F (p(xn+2, xn+1)) ⪯ F (a1p(xn+1, xn) + a2[p(xn+2, xn) + p(xn+1, xn+1)]

+ a3[p(xn+2, xn+1) + p(xn+1, xn)]).

Using the strongly monotone property of F , we have

p(xn+2, xn+1) ⪯ a1p(xn+1, xn) + a2[p(xn+2, xn) + p(xn+1, xn+1)]

+ a3[p(xn+2, xn+1) + p(xn+1, xn)].

That is

(1− a2 − a3)p(Txn+1, Txn) ⪯ (a1 + a2 + a3)p(xn+1, xn).

Therefore,

p(xn+2, xn+1) ⪯
a1 + a2 + a3
1− a2 − a3

p(xn+1, xn).

Which implies that
p(xn+2, xn+1) ⪯ p(xn+1, xn).

Since
a1 + a2 + a3
1− a2 − a3

< 1.

Therefore, {p(xn+1, xn)} is monotone decreasing sequence. There exists, u ∈ A+

such that d(xn+1, xn) → u as n→ ∞. Taking n→ ∞ in

F (p(xn+2, xn+1)) ⪯ F (a1p(xn+1, xn) + a2[p(xn+2, xn) + p(xn+1, xn+1)]

+ a3[p(xn+2, xn+1) + p(xn+1, xn)]).

Using the continuities of F and ϕ, we have

F (u) ⪯ F ((a1 + 2a2 + 2a3)u)− ϕ(u)

which implies that F (u) ⪯ F (u)−ϕ(u) since a1+2a2+2a3 ≤ 1 and F is strongly
monotonic increasing wich is a contradiction unless u = θ. Hence,

(12) p(xn+1, xn) → θ as n→ ∞.

Next, we show that {xn} is a Cauchy sequence.
If {xn} is not a Cauchy sequence then there exists c ∈ A such that ∀n0 ∈

N, ∃n,m ∈ N with n > m ≥ n0, F (c) ⪯ p(xn, xm). Therefore, there exists
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sequences {mk} and {nk} in N such that for all positive integers k, nk > mk > k
and p(xn(k)

, xm(k)
) ⪰ ϕ(c) and p(xn(k)−1, xm(k)

) ⪯ ϕ(c) then

ϕ(c) ⪯ p(xn(k)
, xm(k)

) ⪯ p(xn(k)
, xn(k)−1) + p(xn(k)−1, xm(k)

)

that is ϕ(c) ⪯ p(xn(k)
, xm(k)

) ⪯ p(xn(k)
, xn(k)−1) + ϕ(c) letting k → ∞, we have

(13) lim
k→∞

p(xn(k)
, xm(k)

) = ϕ(c)

again

p(xn(k)
, xm(k)

) ⪯ [p(xn(k)
, xn(k)+1) + p(xn(k)+1, xm(k)

)− p(xn(k)+1, xn(k)+1)]

and

p(xn(k)+1, xm(k)+1) ⪯ [p(xn(k)+1, xn(k)
) + p(xn(k)

, xm(k)+1)− p(xn(k)
, xn(k)

)]

letting k → ∞ in above inequalities, we have

(14) lim
k→∞

p(xn(k)+1
, xm(k)+1

) = ϕ(c).

Again

p(xn(k)
, xm(k)+1) ⪯ [p(xn(k)

, xm(k)
) + p(xm(k)

, xm(k)+1)]

and

p(xn(k)+1, xm(k)
) ⪯ [p(xn(k)+1, xn(k)

) + p(xn(k)
, xm(k)

)− p(xn(k)
, xn(k)

)].

Further,

p(xn(k)+1, xm(k)
) ⪯ [p(xn(k)+1, xn(k)

) + p(xn(k)
, xm(k)

)]

and

p(xn(k)
, xm(k)

) ⪯ [p(xn(k)
, xn(k)+1) + p(xn(k)+1, xm(k)

)].

Letting k → ∞ in the above four inequalities we have

lim
k→∞

p(xn(k)
, xm(k)+1) = ϕ(c),(15)

lim
k→∞

p(xn(k)+1, xm(k)
) = ϕ(c).(16)

Using (12), (13), (15) and (16) we have

lim
k→∞

M(xn(k)
, xm(k)

) = lim
k→∞

a1p(xn(k)
, xm(k)

) + a2[p(xn(k)
, xm(k)

)

+ p(xm(k)
, xm(k)+1)] + a3[p(xn(k)

, xm(k)+1)

+ p(xm(k)
, xn(k)+1)] = (a1 + 2a2)ϕ(c).(17)
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Clearly xmk
⪯ xnk

. Putting x = xn(k)
,y = xm(k)

F (p(xn(k)+1, xm(k)+1)) = F (p(Txn(k)
, Txm(k)

)) ⪯ F (M(xn(k)
, xm(k)

))

− ϕ(xn(k)
, xm(k)

).

Letting k → ∞ in the above inequality using (13), (14) and (17) and the con-
tinuities of F and ϕ, we have F (ϕ(c)) ⪯ F ((a1 + 2a2)ϕ(c)) − ϕ(ϕ(c)) that is
F (ϕ(c)) ⪯ F (ϕ(c)) − ϕ(ϕ(c)), (since (a1 + 2a2) < 1) and F is strongly mono-
tonic increasing. Which a contradiction by virtue of a proprety of ϕ. Hence
{xn} is a Cauchy sequence. From the completeness of X, there exists z ∈ X
such that xn → z as n→ ∞.

Since T is continuous and Txn → Tz as n→ ∞ that is limn→∞ xn+1 = Tz,
that is z = Tz. Hence, z is a fixed point of T .

Example 3.7. Let X = [0, 1] and A = C with a norm || z ||=| z | be a C∗−
algebra.

We define C+ = {z = (x, y) ∈ C;x = Re (z) ≥ 0, y = Im(z) ≥ 0}.
The partial order ≤ with respect to the C∗− algebra C is the partial order

in C, z1 ≤ z2 if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2) for any two elements
z1, z2 in C.

Let p : X ×X → C. Suppose that p(x, y) = (| x− y |, | x− y |) for x, y ∈ X.
Then, (X,C, p) is a C∗− algebra valued metric space with the required properties
of Theorem 3.6.

Let F, ϕ : C+ → C+ such that they can defined as follows: for t = (x, y) ∈
C+,

F (t) =


(x, y), if x ≤ 1, y ≤ 1,

(x2, y), if x > 1, y ≤ 1,

(x, y2), if x ≤ 1, y > 1,

(x2, y2), if x > 1, y > 1

and for s = (s1, s2) ∈ C+ with v = min{s1, s2},

ϕ =


(
v2

2
,
v2

2

)
, if v ≤ 1,(

1

2
,
1

2

)
, if v > 1.

Then, F and ϕ have the propreties mentioned in Definitions 2.8 and 2.9. Let

T : X → X be defined as follows: T (x) =

{
0, if 0 ≤ x ≤ 1

2 ,
1
16 , if 1

2 < x ≤ 1.
Then, T has the

required properties mentioned in Theorem 3.6.
Let a1 = 1

2 , a2 = 1
8 and a3 = 1

8 . It can be verified that F (p(Tx, Ty)) ⪯
F (M(x, y)) − ϕ(p(x, y)), for all x, y ∈ X with y ⪯ x the conditions of Theo-
rem 3.6 are satisfied. Here, it is seen that 0 is a fixed point of T .
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Theorem 3.8. Let (X,A, p) be a complete C∗-algebra valued partial metric
space. Let T : X → X be a (ϕ, F )- Kannan-type C∗− valued partial contrac-
tion.Then T has a unique fixed point.

Proof. Since T is a (ϕ, F )- Kannan-type C∗− valued partial contraction, then
exist F and ϕ such that

F (p(Tx, Ty)) + ϕ(p(x, y)) ⪯ F (
p(x, Tx) + p(y, Ty)

2
) ⪯ F (M(x, y)),

where M(x, y) = a1p(x, y) + a2[p(Tx, y) + p(Ty, x)] + a3[p(Tx, x) + p(Ty, y)]
with a1 = 0, a2 = 0 and a3 = 1

2 . As in the proof of Theorem 3.6, T has a fixed
point.

Theorem 3.9. Let (X,A, p) be a complete C∗-algebra valued partial metric
space. Let T : X → X be a (ϕ, F )- Reich-type C∗− valued partial contraction.
Then T has a unique fixed point.

Proof. By taking a1 =
1
3 , a2 = 0 and a3 =

1
3 , we have

F (p(Tx, Ty)) + ϕ(p(x, y)) ⪯ F (M(x, y)) = F (
p(x, y) + p(x, Tx) + p(y, Ty)

3
).

As in the proof of Theorem 3.6 T has a fixed point.
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Abstract. In 1940, Philip Hall introduced the concept of isoclinism among all groups,
and it is generalized to a more general notion called isologism. This concept is isoclinism
with respect to a given variety of groups. The equivalence relation of isologism partitions
the class of all groups into families.

In this article, we introduce a kind of isoclinism with respect to θ-centre, Zθ(G),
and right θ-commutator subgroup Kθ(G), for some automorphism θ of the group G,
and we investigate some of its properties.
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1. Introduction

One of the most classical notions playing a fundamental role in classifying groups
is the notion of isomorphism among all groups. However, in many cases this
notion is too strong. For instance, in the case of finite groups one would like to
consider abelian groups being classified as a one family.

P. Hall in 1940 introduced the concept of isoclinism [3]. This is an equivalence
relation on the class of all groups, which is weaker than isomorphism and such
that all abelian groups fall into one equivalence class, namely they are equivalent
to the trivial group. Roughly speaking two groups are isoclinic if and only if
there exists an isomorphism between their central quotients, which induces an
isomorphism between their commutator subgroups.

In [2], the second and third authors introduced and studied the concept of
right and left α-commutator, as follows:

Definition 1.1. For arbitrary elements x and y in a given group G and α ∈
Aut(G), we say x and y commute under the automorphism α whenever yx = xyα

or yϕx = yα, where ϕx is the inner automorphism induced by x.
Moreover, [x, y]α = x−1y−1xyα is called right α-commutator of x and y.

Also, α[x, y] = (x−1)αy−1xy is called left α-commutator of x and y.

For n ⩾ 3, we may define inductively right and left α-commutator of weight
n as follows:

[x1, x2, · · · , xn]α = [[x1, x2, · · · , xn−1]α, xn]α,

α[x1, x2, · · · , xn] = α[α[x1, x2, · · · , xn−1], xn],

for all xi ∈ G and 1 ⩽ i ⩽ n. It is clear that, if α is the identity automorphism
of G or xi’s are in CG(α) then we have ordinary commutator [x1, x2, · · · , xn] of
weight n, where

CG(α) = {x ∈ G | [x, α] = x−1xα = x−1α(x) = 1},

is the centralizer of α in G.
For a given group G and automorphisms α and β in Aut(G) we consider,

αβ = β−1αβ. The following lemma is very useful in our further investigations.

Lemma 1.1. Let x, y and z be elements of a group G and α, β ∈ Aut(G). Then
the following identities hold:

(i) [x, y]α = [x, y][y, α];

(ii) [x, x]α = [x, α];

(iii) ([x, y]α)
α = [xα, yα]α;

(iv) [x, y−1]α = [x, y]
−(yα)−1

α ;

(v) ([x, y]αβ )β = [xβ, yβ]α;
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(vi) [xy, z]α = ([x, z]α)
y[y, zα];

(vii) [x, yz]α = [x, z]α([x, y]α)
zα ;

(viii) ([[x, y−1]α, z]α)
yα = [x, y−1, z]y[zy, α].

Proof. All parts follow using the definition of right α-commutator and the
above notation.

One can easily see that [x, y]−1
α = α[y, x], hence we may state similar re-

lations, as the above lemma, for left α-commutator. Here we work with right
α-commutators in the rest of article.

Remark 1. For an automorphism α of a group G, the action ψ : G × G → G
given by ψ(x, y) = y−1xyα, partitions the group G into α-conjugacy classes,
which we denote it by xGα , i.e.

xGα = {y−1xyα | y ∈ G}.

Note that the number of α-conjugacy classes is equal with the number of
ordinary conjugacy classes, which are invariant under α and it is also equal to
the number of irreducible characters which are invariant under α (see [7, 9] for
more details).

Now, we recall that the following subgroup is called α-centre of the group G

Zα(G) =
⋂
x∈G

CαG(x) = {y ∈ G | [x, y]α = 1,∀x ∈ G},

where CαG(x) = {y ∈ G | [x, y]α = 1} and |xGα | = [G : CαG(x)] (see [1, 9] for
more information). One can easily check that Zα(G) = Z(G) ∩ CG(α) and so
Zα(G)⊴G. Also, L(G) =

⋂
α∈Aut(G) Z

α(G), and hence

L(G) ⊆ Zα(G) ⫋ Z(G),

as [x, y]α = [x, y][y, α] = 1, for all x ∈ G and y ∈ Zα(G), while [y, x]α =
[y, x][x, α] ̸= 1.

Now, one may define α-commutator subgroup of G as follows

Kα(G) = ⟨[x, y]α | x, y ∈ G⟩.

Clearly, Lemma 1.2 (i) and (ii) imply that G′ ⊆ Kα(G) ⊆ K(G), where
K(G) is the autocommutator subgroup of G (see [4]). Note that, Lemma 1.2
(iii) implies that Kα(G) is an α-invariant subgroup of G.

Let α be an automorphism of the group G and for any x ∈ G, then α is called
class preserving if xα ∈ xG. Clearly, if α is class preserving automorphism of a
group G then xα = xg for some g ∈ G, and hence [g, x]α = 1. This topic has
been studied by many authors (see [5, 6, 10], for more details).
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2. Main results

Clearly α-commutator subgroup Kα(G) of an abelian group G is always normal
in G, for any automorphism α ∈ Aut(G). In the following, we show that Kα(G)
is a normal subgroup in a non abelian group G, for any automorphism α of G.

One may define the action of a group G on Aut(G) given by αg = αφg =
φg−1 ◦ α ◦ φg and the action of Aut(G) on G given by gα = α(g), for all g ∈ G,
α ∈ Aut(G) and φg ∈ Inn(G) (see also [8]).

Theorem 2.1. Let α be any automorphism of a given group G, then Kα(G) is
always a normal subgroup of G.

Proof. Take α to be any automorphism of the group G and for any x, y, g ∈ G,
Lemma 1.2 (i) implies that

[x, y]gα = [x, y]g[y, α]g = [xg, yg][y, α]g

= [xg, yg]g−1y−1α(y)g
= [xg, yg][g, y]α[α(y), g] ∈ Kα(G).

Hence, Kα(G)⊴G.

Here the notion of (θ1, θ2)-isoclinism between two groups is introduced and
we study some of its properties.

Definition 2.1. Let G1 and G2 be two groups, θ1 and θ2 be suitable automor-
phisms of G1 and G2, respectively, such that there exist α : G1

Zθ1 (G1)
→ G2

Zθ2 (G2)

and β : Kθ1(G1) → Kθ2(G2) so that the following diagram is commutative

G1

Zθ1 (G1)
× G1

Zθ1 (G1)

α×α
// G2

Zθ2 (G2)
× G2

Zθ2 (G2)

(g1Z
θ1(G1), g2Z

θ1(G1))
� //

ρ

��

(g′1Z
θ2(G2), g

′
2Z

θ2(G2))

ψ

��

[g1, g2]θ1
// [g′1, g

′
2]θ2

Kθ1(G1)
β

// Kθ2(G2)

where α(giZ
θ1(G1)) = g′iZ

θ2(G2) and g′i ∈ α(gi)Z
θ2(G2) for every gi ∈ G1 and

g′i ∈ G2 (i = 1, 2). Moreover, β([g1, g2]θ1) = [g′1, g
′
2]θ2, i.e. the commutative

diagram is compatible.

Then the pair (α, β) is called (θ1, θ2)-isoclinism from G1 to G2 and denoted

by G1
(θ1,θ2)∼ G2. In this case, G1 and G2 are called (θ1, θ2)-isoclinic.



458 A.M.Z. MEHRJERDI, M.R.R. MOGHADDAM and M.A. ROSTAMYARI

Observe that the above notion generalizes the concept of isoclinism (see [3]).
In fact, if θ1 and θ2 are identities, then the above definition is the concept of
ordinary isoclinism of groups.

Example 2.2. (i) There are no automorphisms θ1 and θ2 of the groups Z4 and

Z6, respectively, such that Z4
(θ1,θ2)∼ Z6. As, for any automorphisms θ1 and θ2

of Z4 and Z6, we have | Z4

Zθ1 (Z4)
| = 2 and | Z6

Zθ2 (Z6)
| = 3.

(ii) Consider the cyclic groups Z4(x) and Z8(y) of orders 4 and 8 with gene-
rators x and y, and take the automorphisms θ1 : x 7→ x3 and θ2 : y 7→ y5. Then
one can easily check that Zθ1(Z4(x)) = {1, x2}, Kθ1(Z4(x)) = {1, x2}. Also,
Zθ2(Z8(y)) = {1, y2, y4, y6} and Kθ2(Z8(y)) = {1, y4}. Now, it is easy to verify

that Z4(x)

Zθ1 (Z4(x))
∼= Z8(y)

Zθ2 (Z8(y))
and Kθ1(Z4(x)) ∼= Kθ2(Z8(y)), hence Z4(x)

(θ1,θ2)∼
Z8(y).

(iii) Assume D8 = ⟨x, y : x4 = y2 = 1, xy = x−1⟩ and Q8 = ⟨x, y : x4 =
1, x2 = y2, xy = x−1⟩ are Dihedral and Quaternion groups of orders 8. Also,
take the automorphisms θ1 and θ2 both given by: x 7→ x3, y 7→ x2y of D8 and
Q8, respectively. One can calculate that Zθ1(D8) ∼= Zθ2(Q8) = {1, x2} and

Kθ1(D8) ∼= Kθ2(Q8) = {1, x2}. Hence, D8
(θ1,θ2)∼ Q8.

Now, the question arises that; ”In what cases, there exist some suitable
automorphisms θ1 and θ2 in arbitrary finite cyclic groups, which force them to
be (θ1, θ2)-isoclinic?”

In the following, we give a complete answer to the above question, for finite
cyclic groups.

Remark 2. (i) Let Zm(x1) and Zn(x2) be cyclic groups with a common divisor
pr of m and n, where p is a prime number and r ⩾ 2.

Assumem=prpr22 · · · prss and n=prq
r′2
2 · · · qr

′
t
t . Clearly θ1 : x1 7→ x

pr−1p
r2
2 ···prss +1

1

and θ2 : x2 7→ x
pr−1q

r′2
2 ···qr

′
t

t +1
2 are automorphisms of cyclic groups of orders m

and n, respectively.

As m and m
p + 1 are co-prime, then Kθ1(Zm) = ⟨x

m
p

1 ⟩ and

Zθ1(Zm) = {xp1, x
2p
1 , · · · , x

m
p
p

1 = 1}.

The same argument implies that |Kθ1(Zm)|=| Zm

Zθ1 (Zm)
|=|Kθ2(Zn)| = | Zn

Zθ2 (Zn)
| =

p, and hence Zm(x1)
(θ1,θ2)∼ Zn(x2). Such as Z12 and Z20.

(ii) If the orders of cyclic groups are with different prime decomposition
factors, then they can not be (θ1, θ2)-isoclinic, for any automorphisms θ1 and
θ2. Such as Z6 and Z35 .

(iii) Consider the cyclic groups Zm1(x1) and Zm2(x2) with (m1,m2) = p.
Clearly, if (kimi

p ,mi) = 1, for i = 1, 2 and 1 ≤ ki < p, then

θ : xi 7→ x
kimi

p
+1

i ,
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is an automorphism of the cyclic group Zmi(xi). Now,

Kθi(Zmi(xi)) = ⟨[xi, θi] = x−1
i xθi⟩ = ⟨x

kimi
p ⟩,

which is a cyclic group of order p, for i = 1, 2; i.e. Kθ1(Zm1(x1))
∼= Kθ2(Zm2(x2)).

On the other hand, we have

Zθi(Zmi(xi)) = {xri | [xi, xri ]θi = [xri , θi] = x
rkimi

p

i = 1}.

Hence, p|r and |Zθi(Zmi(xi))| = mi
p , which implies that

Zm1(x1)

Zθ1(Zm1(x1))
∼=

Zm2(x2)

Zθ2(Zm2(x2))

and so Zm1(x1)
(θ1,θ2)∼ Zm2(x2).

Using the technique of Remark 2 (iii), we have the following examples.

Example 2.3. (i) Consider Z15(x1) and Z21(x2). One notes that (153 +1, 15) ̸=
1, while (303 + 1, 15) = 1. Also, (213 + 1, 21) = 1. Hence, θ1 : x1 7→ x111 and
θ2 : x2 7→ x82 are automorphisms of Z15(x1) and Z21(x2), respectively. These

automorphisms guaranty that Z15(x1)
(θ1,θ2)∼ Z21(x2).

(ii) Consider Z6(x1) and Z15(x2). we observe that (63 + 1, 6) ̸= 1 and (153 +
1, 15) ̸= 1, while (123 +1, 6) = 1 and (303 +1, 15) = 1. Hence, the automorphisms

θ1 : x1 7→ x51 and θ2 : x2 7→ x112 will do the job and so Z6(x1)
(θ1,θ2)∼ Z15(x2).

(iii) Z6

(θ1,θ2)

̸∼ Z10, since there are no suitable automorphisms, as the above.

In case of 1-isoclinism, P. Hall [3] showed that in every family there exists a
group S with the property that Z(S) ⊆ γ2(S). Such a group is called stemgroup.
In the case of finite groups, the stemgroups in a given family are characterized
by the fact that they are just the groups of smallest order in that family. They
play an essential role in classification problem.

Clearly, (θi, θj)-isoclinism forms an equivalence relation on the pair of groups.
Hence, such relation partitions the group into equivalence classes, or family of
(θi, θj)-isoclinism of groups.

Here, we introduce α-stemgroup in the case of (θi, θj)-isoclinism of groups.

Definition 2.2. Let C be a family of (θi, θj)-isoclinism of groups. If there exists

a group S with the property that Gr
(θi,θj)∼ S and Zα(S) ⊆ Kα(S), where Gr ∈ C

and α is an automorphism of the group S. Then such a group S is said to be
α-stem group. In finite case, the α-stem group S has the least possible order
among all other groups in the family.
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Example 2.4. Consider a famiy of finite cyclic groups, which their orders have
a common prime divisor pr, where r ⩾ 2. Then it is clear that α : x 7→ xp+1

is an automorphism of Zp2(x) and Kα(Zp2(x)) = Zα(Zp2(x)) = ⟨xp⟩. Therefore
Remark 2 and Definition 2.5 imply that Zp2(x) is the α-stem group.

The above example shows that in a family of finite cyclic groups, for which
pr, (r ⩾ 2), is a common divisor of their orders, the cyclic group Zp2 is α-stem
group with smallest order in such family of groups.

Our final result gives a useful criterion for two groups to be (θ1, θ2)-isoclinic.

Proposition 2.1. Let A ≤ Zθ1(G) and B ≤ Zθ2(H). Also, assume α : G/A→
H/B and β : Kθ1(G) → Kθ2(H) are isomorphisms so that α(gZθ1(G)) =
hZθ2(H) and β([g, g′]θ1) = [h, h′]θ2, for all g, g′ ∈ G and h, h′ ∈ H. Then
G and H are (θ1, θ2)-isoclinic.

Proof. We must show that α induces an isomorphism from G/Zθ1(G) onto
H/Zθ2(H).

Since G/Zθ1(G)≃(G/A)/(Zθ1(G)/A) and H/Zθ1(H)≃(H/B)/(Zθ2(H)/B),
it is sufficient to show that α(Zθ1(G)/A) = Zθ2(H)/B. So for any g ∈ Zθ1(G),
we have [g′, g]θ1 = 1 for all g′ in G. Then there exists h in H such that [h′, h]θ2 =
1 for all h′ ∈ H, as β is an isomorphism. Thus h ∈ Zθ2(H) and α(Zθ1(G)/A) ≤
Zθ2(H)/B.

On the other hand, if h0 ∈ Zθ2(H) is an arbitrary element, then there
exists an element g0 ∈ G such that α(g0A) = h0B, as α is surjective. Now,
β([g, g0]θ1) = [h, h0]θ2 and hence g0 ∈ Zθ1(G), as β is isomorphism. Therefore
α(Zθ1(G)/A) ≥ Zθ2(H)/B, which completes the proof.

The following corollary is obtained by replacing G = H1, H = H2, A =
Zθ1(G1) and B = Zθ2(G2) in the above proposition.

Corollary 2.1. Let (α, β) be (θ1, θ2)-isoclinism between two groups G1 and G2

and Hi be a characteristic subgroup of Gi for i = 1, 2. If Zθ1(G1) ≤ H1 ≤ G1

and α(H1/Z
θ1(G1)) = H2/Z

θ2(G2), then H1 and H2 are also (θ1, θ2)-isoclinic,
where Zθ2(G2) ≤ H2 ≤ G2.
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Abstract. Cryptographic algorithms perform essential functions to generate data
from digital form to comprehensible patterns such that the permitted user is the only
one who can understand the message. In this study, we propose Hyper BCK-Hashing
(HBCK-HASHING) Algorithm based on a hyper BCK-valued function and hash func-
tion (SHA-2). It targets to enhance the Secure Hash algorithms (SHA-2) with an algo-
rithm of hyper BCK-valued function which based on the redundant encoding to max-
imize the security level of the cryptographic process of n-ary block codes (U) through
maximize the quantity of information with the fewest number of visible characteristics.
The redundant encoding based on making a unique - identified HBCK-algebra (H) for
n-ary block codes (U) with applying the hyper BCK-valued function on (H) to gen-
erate n-ary block codes(UH). In addition, we perform the computational Secure Hash
algorithms on (UH) to map the size of n-ary block codes (UH) into a fixed size. The
proposed algorithm was evaluated by using the avalanche effect parameter in compar-
ison with the Secure Hash algorithm (512 and 256). Experimental outcomes indicate
that the HBCK-HASHING algorithm shows a significant-high.

Keywords: Hyper BCK-algebras, N-ary block codes, secure Hash algorithm(SHA-2),
avalanche effect.

1. Introduction

1.1 Logical algebras and its applications on block codes and Hyper
structure approach

Logic algebra indicates a conveying for characteristics and conditions from logic
to algebra. Logic algebra fulfills methods for the main assignment of artificial
intelligence in elucidating the basics of keeping a computer simulates a human
in dealing with data. There are numerous attempts to study emerging charac-
teristics of logic algebras like [1, 2, 3, 4]. Recently, there are abundant research
papers studied the relationship between logical algebras and block codes. Block
codes mirror an essential class of error-correcting codes Which considered effec-
tive to encode data in blocks. Error-control codes allow increasing the security
of data transmission over noisy communication channels. Luis Hernandez Enci-
nas [5] introduced the notion of R0- valued function with related features and
examined the generating of binary block codes by R0- valued function. Cristina
Flaut [6] examined the relationships between binary block-codes and Hilbert
algebras. Also, she suggested other characteristics associated with Hilbert alge-
bras. Samy M. Mostafa et al. [7, 8, 9] offered an efficient method to produce
a KU-algebra from binary block code and introduced the notion of KU- valued
function with producing binary code from KU- function. Also, they constructed
codes by soft sets PU-valued functions. A.B. Saeid et al. [10] presented an algo-
rithm to generate BCK-algebra from n-ary block code. Numerous applications
of Hyper structures are employed in pure and applied sciences. Hyper structures
approach adapted to the logical algebraic structure BCK-algebra and consisted
the concept of Hyper BCK-algebra.

Y. B. Jun et al. [11] clarified that the generalization of BCK-algebra is
Hyper BCK-algebra. Authors defined Hyper BCK-algebra and studied some
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relevant properties. Atamewouetsafacksurdive et al. [12] stated the concept of
hyper BCK-function with some properties related, and generated binary codes
by the hyper BCK-function through an algorithm allows constructing a hyper
BCK-algebra from binary block code.

In the following, we introduce some results associated with hyper BCK-
algebras and algebraic structures applications in coding theory that will be
applied effectively in the study.

1.2 Secure Hash Algorithms (SHA-512 and SHA-256)

National Institute of Standards and Technology (NIST) announced Secure Hash
Algorithms which indicates SHA. It was developed in 1993 as a federal informa-
tion processing standard. [14]. After discovering a few weaknesses, an insecure
hash algorithm called SHA-0 was withdrawn. SHA-1 procedure has a hash
value of 20 bytes (160 bits). SHA-2 is a more powerful version than its ances-
tors (SHA-0, SHA-1). SHA-256 is a member of the SHA-2 group, yielding alike
functionality with more security like SHA-384 and SHA-512. It is an iterative
and one-way function. SHA-512 is a member of SHA with a message digest
512- bit of length less than 2128. When the length of any message less than
2128 bits is an input to a hash algorithm, the result is a fixed message digest
size (512). Also, SHA-256 is a version of SHA with a 256- bit message digest
of length less than 264. When the length of any message less than 264 bits is
input to a hash algorithm, the result is a fixed message digest size (256). These
algorithms allow the purpose of information’s integrity. Any modification in
the message will make a modified message digest with a high probability [15].A
cryptographic hash function directs to ensure different features, which provides
high value for message safety. The hash function requires to satisfy the following
features [17, 18]:

1. Compression: hash function maps the input message of uncertain finite-
size to a value of fixed size.

2. Security of calculation: the hash value of an input message is simple to
compute.

3. Pre-image resistance (one-way): it is obstinate to obtain only one input
message which hashed to a determined hash value.

4. Weak collision resistance: it is obstinate to detect other messages that
have an equal hash value.

5. Strong collision resistance: it is obstinate to detect two separated input
messages hashed to the alike hash value.

Currently, countless applications through unrestricted networks require end-
to-end protected connections to support authentication and data privacy [1].
Consequently, Cryptography algorithms are necessary for information security.
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One of the cryptography algorithms families that the encrypter and decrypter
utilize the same secret key is Symmetric-Key Cryptography. These algorithms
depend on the agreement on a key from the sender and receiver before transfer-
ring their information. These algorithms use a unique key for encryption and
decryption. Some popular patterns of Symmetric-Key encryption algorithms
are Advanced Encryption Standard, Data Encryption Standard, Rivest Cipher
5, 3DES, Blowfish, etc.

1.3 Applications of Secure Hash Algorithms

To create a protected cryptographic process, the described algorithm must be
trusted, time-examined, and peer-reviewed extensively. A hash function is an
algorithm that receives input data and forms a data digest. In this paper, we
utilized SHA-2 (SHA-256 and SHA-512). One of the most important reasons
for using SHA-2 in our implementation (SHA-256 and SHA-512) is, providing
more outcomes (512b and 256b sequentially) than SHA-1 (160b), such that the
increased output intensity of SHA-2 is the main reason behind attack defense.
Next, present the most vital applications of SHA.

1.3.1 BlockChain Technology

Blockchain technology is an extremely and advanced invention. It empowers
digital data to remain distributed but not replicated [19]. Blockchain controls
the modern crypto-currency named Bitcoin (digital gold). The expression of
“blockchain” indicates structures of data, systems, or networks. It is a listing
of ordered blocks, every block includes transactions and communicated to prior
one, carrying the hashed value from prior block. Consequently, the transaction
history cannot be removed without removing the contents of chain [20]. This is
the main reason for saving blockchain from hackers.

Information stored on the blockchain, encrypted by applying HASH func-
tions [22]. Bitcoin utilizes SHA-256. It is one of the most secure functions since
every encrypted data give a fully different hash value. The encryption level is
a firm such that brute attacks demand various endeavors and still find different
input values. Blockchain has principal features as follows [21].

1. Decentralization. Third parties are not needed to confirm activities. Agree-
ment algorithms are employed to keep data on blockchain networks.

2. Persistency. Valid Transactions are quickly, and invalid transactions are
not accepted. Therefore, it is infeasible to remove transactions that have
already happened.

3. Anonymity: On a blockchain network, the user communicates with others
through a produced address. So, the real identification of the user is not
represented during the communication.
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4. Auditability. Every transaction on the blockchain network indicates the
prior transaction. So, each transaction is confirmed easily and followed.

1.3.2 Internet of Things(IoT)

Internet of Things is great employment of the Internet to manage devices that
are utilized daily, identified (things) through sensors within the Internet. IOT is
defined as a network system of associated various devices (things) that empower
us to interact using the protocol of machine-to-machine transmission [23].

Multiple safety vulnerabilities have been identified in the associated devices.
Many users have concerned about safety issues, they worry about their data be-
ing removed or stolen, or misused [24].Advanced Encryption System (AES-256),
SHA-1. SHA-256, etc. are security tools employed in IoT systems to secure the
data [25]. IoT is a principle for future Internet development. IoT has managed
and the base of emergent technologies like WoT defined as the Web of Things
[26]. WOT technology is designed to perform our lives simpler and best. The
accelerated growth of IoT led to appear various obstacles, like the vulnerability
to cyber-attacks [24, 30]. It is difficult to make safe IoT devices because several
security systems are broken to make IoT devices small in size, easy to use, and
cheap. One technique that can be arranged to increase the security of IoT is the
utilization of blockchain technology [27, 28, 29, 31]. Ronglin Hao et al. [32] an
algebraic fault attack on the SHA-256 compression function introduced under
the word-oriented random fault pattern. Throughout the attack, the automated
Segmentation, Targeting and Positioning (STP) Model is employed, which forms
binary representations for the word-based operations in the SHA-256 compres-
sion function and then requests a Satisfiability Problem (SAT) solver to resolve
the equations. M. Sumathi et al. [33] announced a software framework for the
implementation of data security algorithms. AES, RC5 and SHA algorithms
have been used in this investigation and examined their implementations in
Quartus – II software. They designed the encryption and decryption using Ver-
ilog HDL and simulated using ModelSim. With these algorithms, SHA-256 is
more cooperative for preparing long data and it produces extraordinary security.
The system meets all conditions and the results confirmed its reliability for data
transmission. Fırat Artuğer and Fatih Özkaynak [34] offered a new technique
to improve the performance of chaos-based substitution box structures. Substi-
tution box structures have a special role in block cipher algorithms since they
are the only non-linear elements in substitution permutation network designs.
The analysis outcomes explain that the recommended approach can increase the
performance standards. The quality of these results is that chaos-based designs
may give chances for other applications in addition to the arrest of side-channel
attacks.
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2. HBCK-HASHING Algorithm

We describe the steps of HBCK – HASHING algorithm, initiated by the step of
preparing N -ary block codes (U) as input message to generate square associated
matrix of U by using specific notations. Next, we describe a multiplication
operation i ◦ j = βij towards making HBCK-algebra (H, ◦, 0). Subsequently, we
construct N -ary block codes UH with code words of length q for every HBCK-
valued function such that UH have U inside with redundancy. Moreover, we
apply the steps of the secure hash algorithms (SHA-2), starting from the step
of Appending bits, Length, and Initialize hash buffer step. Then, divide the
message into blocks. Lastly, output the final value as a cipher text.

Step 1. Pre-processing the input N-ary block codes U={d1,. . . ,dm}. Consider
a finite set L′

n= {1,2,. . . , n-1}. After lexicographic order, ascending order U of
length q. Let di = di1, di2, . . . , diq, dij ∈ L′

n and dij ordered descending.
Step 2. Constructing the associated matrix T ∈ tr(Ln) of hyper BCK-algebra

of U.We generate an associated matrix T ofN -ary codes U such that T ∈ tr(Ln),
r = m+ q + 1. we define the following equation 2.1:

(2.1)



βs0 = s, β0t = 0, s ∈ {0, 1, 2, . . . , r − 1},
βst = 0, if s ≤ t,

for q<s ≤ r − 1,we suppose βst = d(q+i);

i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , q},
for q<s ≤ r − 1, q<t<r − 1, s>t, βst = 1.

If T is the related matrix of U defined on L′
n and Lr = {0, 1, 2, . . . , r − 1} is a

non-empty set. Then, by using the previous schemes 2.1, we defined on Lr the
following operation i◦ j = βij .

Step 3. Applying the HBCK-valued function on T to get UH . We construct
N -ary block codes Lr = {d0,d1,. . . ,dr} with length q for every HBCK- func-
tion such that UH have U inside with redundancy. Suppose that we have the
following:

Finite hyper BCK-algebra (H ,◦ ,0) with elements (n), finite non-empty set
(L) and Ln as a finite set, where H = {r0,r1,. . . ,rn−1}, L = {a0, a1,. . . ,am−1}.

The map f : L→ H is a hyper BCK-function, and the generalized function
cutted of f is

frj : L→ Ln; rj ∈ H, frj (ai) = k

⇔ rj ◦ f(ai) = (ai) =


[0, rk],

(0, rk],

{rk}.
∀rj , rk ∈ H, ai ∈ L(2.2)

k, j, i ∈ {0, 1, 2, ....., n− 1}.
We suppose ∀r ∈ H, the generalized cut function fr: L → Ln. Every

generalized cut fun, we construct the following code word dr, with digits belong
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to the set Lnas the following:

(2.3) dr = d0, d1, . . . , dm−1, di = j, j ∈ Ln ⇔ fr(ai) = j; r ◦ f(ai) =


[0, rj ],

(0, rj ],

{rj}.

Enlightenment:

1. (Lr, ◦, 0) is a unique identified hyper BCK-algebras since it was obtained
by using T , which was a unique identified by U .

2. Let dX = {X1, X2, . . . , Xq}, dY = {Y1, Y2, . . . , Yq} ∈ UH . We define the
relation of order ≤c on UH by the following dx ≤c dy ⇔ xi ≤ yi, i ∈
{1, 2, . . . , q}.

3. On H we define the following:

(2.4) x ◦ y =


θ, if x ≤c y,∀x, y ∈ H,

(θ, y], if x >c y, y ̸= 0, x, y ∈ H,

{X}, if y = 0,

{θ}, if x = 0.

Where, it gets a hyper BCK-algebra structure.Next steps, we have an
exchange between applying SHA-512 or SHA-256, in case of selecting one
of them. The following stages concerning applying steps of SHA-512.

Step 4. Appending bits on UH . It consists of a single 1-bit accompanied by
the required amount of 0-bits so that its range is matching to 896 modulo 1024
[range = 896(mod 1024)]. Padding is always added to the N-ary block codes
UH , even if UH is already of the desired range.

Step 5. Appending length on UH . A block of 128 bits [unsigned 128-bit
integer].

Step 6. Initialize hash buffer. Buffer of 512-bit is utilized to operate in-
between and last result of HBCK-HASHING algorithm. Registers of eight 64-
bit (a, b, c, d, e, f, g, h) represents the buffer. These records are initialized to
the next 64-bit integers (hexadecimal values): a = 6A09E667F3BCC908, b =
BB67AE8584CAA73B, c = 3C6EF372FE94F82B, d = A54FF53A5F1D36F1, e
= 510E527FADE682D1, f = 9B05688C2B3E6C1F, g = 1F83D9ABFB41BD6B,
h = 5BE0CD19137E2179.

Step 7. Divide the message into blocks of 1024-bit with 80 rounds. The
module of 80 rounds is identified g. Every round income the input of 512-bit
buffer ( Hi), and appraises the fillings of the buffer. The value of the eightieth
round is joined to the input to the first round ( Hi−1) to create Hi, the increase
is made separately for every of the eight-word in the buffer with each of the
similar words in Hi−1 using addition modulo 264.

Step 8. Output the final desired cipher text.
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3. Structure of HBCK-HASHING Algorithm

To understand the proposed HBCK-HASHING algorithm, it is essential to
present the model of construction as shown in Figure 1. This model shows
the structure of the proposed algorithm through HBCK-valued function as a
pre-processing stage that applied on the associated matrix T of the input N-ary
block codes U. This function changes the input N-ary block code U to N-ary
block codes UH with redundancy. It aims to maximize the quantity of informa-
tion with the fewest number of visible characteristics during enlarging the size
of U from n×m to r× r with the same length q [35].

Figure 1: Model of HBCK-HASHING construction

Besides, the structure of the model demonstrates the subsequent steps which
including adding padding and length to the N-ary block codes UH with dividing
the UH into blocks of 1024-bit (in case of using SHA-512) and512-bit (in case
of using SHA-256) to get the cipher text value of the N-ary block codes U. The
compression Function g, in the construction model, represents

(3.1) g : {0, 1}s × {0, 1}|Ui| → {0, 1}s.

Receives an input code Hi (i = 0, ..., r -2) of size S bits and Ui (i = 0, ..., r-1)
of size Ui bits, to get the renewed cipher text variable Hi (i = 1, ..., r-1) of size
S bits. Consequently, to support the rule of input code of uncertain length, the
construction requires padding to transform the input code into a padded code of
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length a multiple of Ui bits. Simple padding makes unsafe constructed Cipher
text. So that, the construction utilizes a padding function, which attaches the
value of code length S at the end of Ui to produce the expanded code Ui.

(3.2) H i = H i−1 + giU (H
i−1),

where, g is the compression function of SHA, + is word by word edition mod
264 and H is the cipher text of U .

4. Evaluation parameter

We evaluated the strength of HBCK-HASHING by calculating Avalanche Effect
for every N-ary block codes. It has computed over small changes on the plaintext
that contains 20 digits. These should provide a meaningful difference in cipher
text. Particularly, changing an only bit in the plaintext, fixing the key, should
change every bit in cipher text with probability (¿ 50%) ([16]).

Figure 2: Process of Cryptographing (21) 6-ary block codes

We selected (21) 6-ary block codes with ascending ordered after lexicographic
order and descending ordered for bits of each block inside the 6-ary block code.
Each block code with4 code words of length 5. i.e., 20 bits in each 6-ary block
code. Figure2 shows the process of Cryptographing (21) 6-ary block codes by
using SHA-512 or SHA-256 directly, and also with applying HBCK-HASHING
to compare the cipher texts and calculate the avalanche effect as an evaluation
parameter. We implement HBCK-HASHING on P1 in the case of picking up
SHA-512 through constructing a unique identified HBCK-algebra(H)and apply-
ing the function of HBCK f: L → H given by[

a1 a2 a3 a4 a5
1 2 3 4 5

]
to generate 6-ary block codes with a redundant encoding UH = 00000, 10000,
11000, 11100, 11110, 43221, 53321, 54321, 5431,as stated by step 1, step 2,
and step 3 of HBCK-HASHING algorithm. In addition, we implement the
Secure Hash Algorithm 512 on UH to generate the first cipher text of P1. On
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the same way, we implemented HBCK-HASHING algorithm on another (20) 6-
block codes by using the same HBCK-valued function f: L → H , and calculated
the Avalanche Effect as shown in 4. To calculate the Avalanche Effect of (21)
6-ary block codes, we compared the cipher text of them after applying HBCK-
HASHING, as shown in 5 with the cipher texts of (21)6-ary block code after
applying the secure hash algorithm 512, as shown in 5, through the division of
Number of flipped bits in the cipher text after applying HBCK-HASHING over
number of bits in the cipher texts, as shown in 4.

6-ary No. of Flipped Bits No. of Total Avalanche Effect(%)
Block in Cipher Texts of Bits in Cipher Texts
Codes 6-ary Block Codes

after Applying
HBCK-HASHING

P1 121 128 94.53125
P2 117 128 91.40625
P3 118 128 92.1875
P4 120 128 93.75
P5 124 128 96.875
P6 117 128 91.40625
P7 119 128 92.96875
P8 124 128 96.875
P9 119 128 92.96875
P10 115 128 89.84375
P11 114 128 89.0625
P12 119 128 92.96875
P13 115 128 89.84375
P14 116 128 90.625
P15 122 128 95.3125
P16 121 128 94.53125
P17 121 128 94.53125
P18 121 128 94.53125
P19 121 128 94.53125
P20 121 128 94.53125
P21 124 128 96.875

Table 1: Value of Avalanche Effect of (21) 6-ary block codes after applying
HBCK-HASHING in case of using SHA-512.

we perform HBCK-HASHING algorithm, in the case of picking up SHA-256,
on P1 and compared the cipher text of P1 after applying HBCK-HASHING,
as shown in 5 with the cipher text of the same 6-ary block codes(P1) after
the implementation of SHA-256, as shown in 5. Further, we measured the
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Avalanche Effect, as shown in 4. On the same way, we implemented HBCK-
HASHING algorithm on another (20) 6-block codes by using the same hyper
BCK-valued function f: L → H, and calculated the Avalanche Effect as shown
in 4. To calculate the Avalanche Effect of (21) 6-ary block codes, we compared
the cipher text of them after applying HBCK-HASHING, as shown in 5with
the cipher texts of (21)6-ary block code after applying SHA-512, as shown in 5,
through the division of Number of flipped bits in the cipher text after applying
HBCK-HASHING over number of bits in the cipher texts, as shown in 4.

6-ary No. of Flipped Bits No. of Total Avalanche Effect(%)
Block in Cipher Texts of Bits in Cipher Texts
Codes 6-ary Block Codes

after Applying
HBCK-HASHING

P1 60 64 93.75
P2 60 64 93.75
P3 60 64 93.75
P4 62 64 96.875
P5 58 64 90.625
P6 60 64 93.75
P7 60 64 93.75
P8 60 64 93.75
P9 59 64 92.1875
P10 62 64 96.875
P11 63 64 98.4375
P12 59 64 92.1875
P13 61 64 95.3125
P14 57 64 89.0625
P15 62 64 96.875
P16 60 64 93.75
P17 61 64 95.3125
P18 60 64 93.75
P19 60 64 93.75
P20 60 64 93.75
P21 60 64 93.75

Table 2: Value of Avalanche Effect of 6-ary block codes (U) after applying
HBCK-HASHING in case of using SHA-256.

5. Experimental results and analysis

In the following, we have promising results regarding the algorithm of HBCK-
HASHING, in case of using SHA-512. 5 shows cipher texts of (21) 6-ary block
codes after applying the algorithm and 5 shows cipher texts of (21) 6-ary block
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codes after applying SHA-512 only.we calculate the Avalanche Effect of (21) 6-
ary block codes by computing number of flipped bits in cipher texts, as shown in
4 and representing the values of Avalanche Effect on a graph of (21)6-ary block
codes, as shown in Figure 3. We noticed that the maximum value of Avalanche
Effect was 96.875% in P5, P8 and P21, where the number of flipped bits in
the cipher texts increased to 124, and the least value of Avalanche Effect was
89.0625% in P11, where the number of flipped bits decreased to 114. Addition,
the trending line of all values of Avalanche Effect lies between 92% and 94% as
shown in Figure 4.

The increasing of Avalanche Effect probabilities lead to increase the security
level and the complexity of break through the system.

Figure 3: Avalanche Effect of 6-ary block codes (U) after applying HBCK-
HASHING in case of using 512

Similarly, in the case of joining SHA-256 with HBCK-HASHING. 5 shows
cipher texts of (21) 6-ary block codes after HBCK-HASHING, in case of using
SHA-256, and 5 shows cipher texts of (21) 6-ary block codes subsequent im-
plementing SHA-256 only. After computing the Avalanche Effect of (21) 6-ary
block codes , as shown in 4 , and representing the values of Avalanche Effect on
a graph of (21) 6-ary block codes, as shown in Figure 4. In the case of attaching
SHA-256, especially in 4,the highest percentage of Avalanche Effect is 98.4375
in P11, wherever the quantity of flipped bits in the cipher texts following uti-
lizing HBCK-HASHING raised to 63, and the smallest percentage of Avalanche
Effect was 89.0625 in P14, wherever the number of flipped bits reduced to 57.
In addition, the trending range of all values of Avalanche Effect rest between
93% and 95% as shown in Figure 4.
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Figure 4: Avalanche Effect of 6-ary block codes (U) after applying HBCK-
HASHING in case of using SHA-256.

6-ary Block 6-ary Block Codes Cipher Texts of 6-ary Block Codes with a
Codes (U) with a Redundant Redundant Encoding by Using SHA (512)

Encoding (UH)
P1 4322153321 000001000011000 dc228680e90ec2f6a285518e5ee23e5611b0872

5432155431 111001111043221 bb20f05d559d524aa1dbf2c474ea259eaa917c74
533215432155431 5cf12c68ec1408f40854e4fbc76cbc7e1e3ffa416

1178463b
P2 5322153321 000001000011000 5e779c9152f7af033cec0d01bab8a74954c448bf

5432155431 111001111053221 43d5c3be58187a1c77c29cb489f3466b95892ff0
533215432155431 43d5c3be58187a1c77c29cb489f3466b95892ff0

8b54e3e03
P3 4422153321 000001000011000 a9bab493ff75ff08506e0670a8252065aed839ed

5432155431 111001111044221 78184a70fee3bd285d0e274b796eb991bf3ef666
533215432155431 58cd262511790e3f928532ada54e4a8e5cbda12

2ae4da427
P4 4352153321 000001000011000 b921b1265dd55fdc4e461c4be657afb1bc3c796

5432155431 111001111043521 b5ccd4678c848b81c96e6dcb691afb50e190043
533215432155431 e1dc504882094a8fc4c1c14aaaa131ab133cb222

73bc0d51af
P5 4324153321 000001000011000 182922bf9a7fcdadf82ec275fd0d83586989c78e

5432155431 111001111043241 58f864e49ecf944eb9c46fdbb4914f574f52eacd2
533215432155431 a6416acdc68b64f442d561f04c59b7476f3def1d

749d45c
P6 4322553321 000001000011000 1dc0c82129a07348c123e97c6e4c912c6dd1ea9

5432155431 111001111043225 53dfbd76a8f9eaee28f31c58394c50d9bbe3ac80
533215432155431 57ac2008b5fef45ff04146343a1671cd2a1c6c2b

a608aba86
P7 4322163321 000001000011000 5e228a9948c55bb44900c811758ed4bbde9cbd2

5432155431 111001111043221 1484d16ae706a2993cf1b7dc2304ee182cf76060
633215432155431 85f8bf973e0a44d1646d23ae34c752b9c5140de

1c8498615
P8 43221543321 000001000011000 7bf8d3a918bf70eab23308c379e64671468c9dd

5432155431 111001111043221 102b1fdc401d098f3111550e05e8df82cb373f0d
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543215432155431 60838c84fd60f7bffe4c9bf625512ee0649687ec
d2e7fbf08

P9 4322153621 000001000011000 87e21431a04822155db9e3595b2e5998fc52747
5432155431 111001111043221 9cd4a8c08b3600de59b2ad24f4c6ab55df03b29c

536215432155431 6bbff88dcc355b3bdbef62e9c8e30d651ba387cc
8ac3da53c

P10 4322153341 000001000011000 d615749b41bd75d9967accf44e8ca754ed93a47
5432155431 111001111043221 7a8274c35620f976466ca985893ffbdddfdefcc1

533415432155431 8440ebd3012c2e0830fbbe158e7a4fc0aec33a05
df073cb89

P11 4322153325 000001000011000 b8795773db70c087ab42aa679724a6e72201b14
5432155431 111001111043221 1772cb8b4c530f31cd87c3571bf91e3169d617b

533255432155431 69d45749c92b7bd599c65bb4765740fee97f0c6
ac691e7190

P12 4322153321 000001000011000 1a3f80d12198d196290f83653aae952e2bed62a
3432155431 111001111043221 b5b6f70b6334b5d20c6629e247de28ad657bb87

533213432155431 54a331f17a2c9e23f2a067c3ec9ba2ead740b022
9b3828f148

P13 4322153321 000001000011000 726b1e4b5ec8a9f803726336c9784b02cec50ad
5532155431 111001111043221 72dbd57a13853526b449d8e05c1bba4c779206f

533215532155431 20bc7a00a79bc36807b0a2dfebd59a0756237c3
d19fba54f2

P14 4322153321 000001000011000 d7e30f3505cc4281a35666379e4cd11cab617bfc
5422155431 111001111043221 726f6b705c2cfef33ac18b4723aa5dd330a77c5c

533215422155431 8874b1328155a4d2b18007ce7c26683be82f331
7af6382fc

P15 4322153321 000001000011000 7c9cf687d470ba75efdf63ebd4a3797249f28fce0
5435155431 111001111043221 c9af5a46081e16a7652741ac597f5531ebbafd69

533215435155431 13d3619895bf6c837e071ac6ecc90538d40c6c3
185ef084

P16 4322153321 000001000011000 5d37540ddae4f63eb8b2ecc60735e07150dd5cc
5432355431 111001111043221 5ca2d723514041543d7804af93e5b681978fa4e

533215432355431 bedf1305fef5d4624804d17039ee52ca67027886
dfa42e409e

P17 4322153321 000001000011000 3f88ff4f061ffed2caab9226c377bafb8a83c2c92
5432165431 111001111043221 7487650deeb38c9e0b021c6c0eba016bc0d1d10

533215432165431 4e9e0f9ea0c3a6cdeaf4449f58d15368c6cc1393
bbd822d5

P18 4322153321 000001000011000 51a56ddffaea5df9ab884e07ff5d5ba12591bd2d
5432154431 111001111043221 4883cbdadf0d0a018b0eff4b5799232dfcd92ab4

533215432154431 0f743ddc615c4c8507fdc84ce67aa83aee7939b6
48ad5897

P19 4322153321 000001000011000 6d3e924bee5c38e20c01aa7b2a37321821a8a1c
5432155331 111001111043221 eb353b7b08bf40ab756fc87c24c2eda761c1efcb

533215432155331 4a0d59bd2676243db2f244f2e0469dc2477a4a5
56b735b2fa

P20 4322153321 000001000011000 8e9b1debb8fc55df828969595cbd69c1a53571d
5432155421 111001111043221 138d5f4221c5b2d4416afad15b34504b86a18fd

533215432155421 b4921beee6b94673b244f170b4406be9c2a85e5
6bae6b2936

P21 4322153321 000001000011000 1d6598a24e464832be5da6fb679272c5f35916b
5432155432 111001111043221 b0c612715236275fc4af33cdafb8d46e595f5fa7

533215432155432 04ec1655448918c4ca3bb1ac1c7d855cf9131a9f
f49c2a8b4

Table 3: Cipher texts of 6-ary block codes by using HBCK-HASHING algo-
rithm in the case of using SHA-512



476 HUSSEIN A. JAD et. al

6-ary Block Codes Cipher texts
(U)

P1 4322153321 8dff689bfca583e6734665c695ce8db3163909380af6bbd72d6d716da
5432155431 ff7f5c5ec9e913ea89b630be957eedbc20246e7ee3d07345d7fc526f81

49cd72391d73d
P2 5322153321 8ac6818ec798fd2511525516b2ebadd6434d485d5fff70b6657befb67

5432155431 f5c7b1d547e0c07a7225236392729046cd617ea5e1418d12c1b9041a
e9beb7cfe99f205

P3 4422153321 3ef9b78088b2ac2109f363fd3c81e1bb7d413c1c4055b72ffce42e772
5432155431 239c916bc5a151ebc37822da23e741be300529152703d81a484f8b11

acdddc653518e1c
P4 4352153321 872f5ade38a10c8998e07bf29556ebbb239e4cb4e5f3f2c09a30b4f2f0

5432155431 7443daa26abe1f0cce4b5c360c68c53db221231b2c95a10294225047
46b82a27fbe73d

P5 4324153321 56dd4f42da49f779b73faec92f62fe23556d21e70376f08cfa390c1fd1
5432155431 3446b5205c75a29351508778512e06fe53373913cdffcc9899633f983

9c4384417bfcb
P6 4322553321 d0e0c0ab89bce182aee4736f053d013ce209911bce82d8810b9812c7

5432155431 d308e5e2cc464ae241c898e22cc6a7a8f9d10f2ea4724ccb36b0cd344
74175e6177e98c2

P7 4322163321 4f26287098b573d4e56c8dfba84afe1d778d5432939b9ec89cd7629bb
5432155431 bbfb4026f998122ad8e1435acffc496ce828ee2f4b6eccbb09f260ed76

e6a7d0eebc79d
P8 4322154321 ecaeaf191c7375c85982365a31a4544215d2a18cb1f6a52695fa8b0c8

5432155431 2a9213e00a36303fc17221e4c6121a8a168c5ba642144c400b653e1fc
a6644019b5c39f

P9 4322153621 2ec54eb37462d87c01608e009b460aed68aa243e5cd41d0fb807d05fb
5432155431 3dde000a3da2ab02be006dfb2c2b9592bc0981c0ac9ae599d26bf0b1a

cbc084f97b5505
P10 4322153341 6ced46ed192444df99e8def15733ef9f1daea1107037fb0d184045765

5432155431 49a9e7c1adbb5dd97898fda9744ec732a226aca533bd4b2da9a281f5d
cdc97649f4b35f

P11 4322153325 dc99a1583fb7f1eca60212a4aadc6cd2a2064904636c93b8acfc6abd4
5432155431 25e6f31492d216bcbf0425ec51b2bc524486e096d6e5506bac8e7d4c9

2427cb4a881fa7
P12 4322153321 bce45b51b6b57c003815439c1ceb938df4fdc4ef565ddb01211b045f5

3432155431 53cb364d85e986a4cfab9d30c405403c816ba37935b6cf77412397f6c
dc64f431fe0387

P13 4322153321 b201af458c161044b203fe38ad2be39fb649a0943c2e43e65b2f1cf8b
5532155431 d277d77eb85146220b00a36bc8e726560a6e804e046f331f79aa6533

8c5829175ce22fc
P14 4322153321 dffb5af0dc513e321caef73feeede9fc7204420b278b4365f70addb7abe

5422155431 1b1471fa4e508f733eb3cdb161ea84c40b8f41c4e58c6651541353e2d
089d7212d780

P15 4322153321 37f794ec81ff5963f329ab167a6e2a9210fdd77ac5222bcf3e578a8f14
5435155431 0816bebb5efbb32dd7f0bf84498d9eba0cfbf3def9512eed9b0d82303e

3c2a23ec9819
P16 4322153321 9a762eba83a1249a2842ca5b668a26e9522a3118fef745c29b716e3db

5432355431 c37402842e7ea8ec6324ccabc2c41386a459563452a6d5c1af831c84a
cd26d3f5a032f6

P17 4322153321 3b2e53f31d329878685ccc9a11972dc65fad1b872d520b1d10ba499f9
5432165431 2a54fbafdc879ec135f041f936ad3b3a5f518acfb780441b99527e183b

4ca2cb6b66b62
P18 4322153321 d2a5b248e9aec7ad19a100832f3555d8accb70f98b2befb092e2def9aa

5432154431 a90e2d501f6b25ed6275d573e36b9700ab133fd860d87bf563b31cc7
50d67acfca620f

P19 4322153321 5e231249bad007f2008330441281f8d7c4e5f212a6b22be64948470b
5432155331 a1147cc33dd4849e1278c8ca214aa5e13d2daabd5c5d8e75ffefdf7335

390205e1a99139
P20 4322153321 2c958aa35c81a73ceaa79fe89e9326099e7643289646a8638f6045156

5432155421 775f5cd2ccd0018b742aba1c8151c6bfc91458f1d9f15b1b23da4c96b
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2e2f78046baf77
P21 4322153321 025de2e020e7f67796e31c417cd6921416620c4d0fb31815883c98e5f

5432155432 f8e633655e6e74f8246811a9c591f2aceab9b9219175dd5bd738f578c
69e4a1f4a75d6a

Table 4: Cipher texts of 6-ary block codes by using SHA-512

6-ary Block 6-ary Block Codes Cipher Texts of 6-ary Block Codes with a
Codes (U) with a Redundant Redundant Encoding by Using SHA (256)

Encoding (UH)
P1 4322153321 000001000011000 c443e90b301d4b313ed9f15135550a8f52cfcd1

5432155431 111001111043221 e1f271b50df3ee20651c39c31
533215432155431

P2 5322153321 000001000011000 1a5f25ab34f89787fb650b632d523969b889967
5432155431 111001111053221 6ff67e0c9545bb1b211e9f90b

533215432155431
P3 4422153321 000001000011000 8e24467b41ec0b64ae9301c90d97d0b6a1ba4f1

5432155431 111001111044221 a234b9c4e9898cbff8a56fc7d
533215432155431

P4 4352153321 000001000011000 15e571900d38fe7cefd68226891c3ee95067253
5432155431 111001111043521 c975e831aea6201c85d3a44f1

533215432155431
P5 4324153321 000001000011000 6579148a6c847e16ccfd06cb4d6aaa2e117dac6

5432155431 111001111043241 97e18dcade7e9c52f7cd0efc4
533215432155431

P6 4322553321 000001000011000 b56ce6bf6f383011285fb14170553112108d94f
5432155431 111001111043225 8a836a325cf2a29f6f20a46a7

533215432155431
P7 4322163321 000001000011000 b5ba82dbefb13902140c9f29214defc17d5d34b

5432155431 111001111043221 f4e5c202f053e72a54eb1687d
633215432155431

P8 43221543321 000001000011000 e8b36d7c026609584b524b1af624e3c2d43ea8a
5432155431 111001111043221 29dd28eb03ad9046744a36bd1

543215432155431
P9 4322153621 000001000011000 638371974ee28e81a6dcede48c739111dcc41ef

5432155431 111001111043221 4946de646615b15dda4206fbd
536215432155431

P10 4322153341 000001000011000 edebbc31e7d02f45d459fdedf6ab6cfcf47e4761
5432155431 111001111043221 7d47b8c7a3ad5d1d37f968d1

533415432155431
P11 4322153325 000001000011000 fbebdf9b610ca90e3e47d6098557f3d623b34e3

5432155431 111001111043221 9f4d9d7c5699cbcc8e0157d49
533255432155431

P12 4322153321 000001000011000 54a7a28ca927b7c6bbf8df27572d887a7fcd994
3432155431 111001111043221 436f89543818dc533b96d192f

533213432155431
P13 4322153321 000001000011000 4c1ea6391bcb8ae9580b2d9cc4cb9e1c8a85778

5532155431 111001111043221 b6c3413e0fcb3c42a784544ff
533215532155431

P14 4322153321 000001000011000 e9faf3a45b983203a57a81fd1092447b083ffc0e
5422155431 111001111043221 d8d90cc1e07b785d7c0c701f

533215422155431
P15 4322153321 000001000011000 0472c022839276a1c8a9c2e06cce663e57a6985

5435155431 111001111043221 d00163e49de43bb49531f0c68
533215435155431

P16 4322153321 000001000011000 cd8034033603933af5d5f15b8d06e06ebc6fef0
5432355431 111001111043221 65498d115eb90a15ce41b376f

533215432355431
P17 4322153321 000001000011000 d75972576f0b7168e053332a824f8010aaaff16

5432165431 111001111043221 59592642e2177a87a214171a7
533215432165431
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P18 4322153321 000001000011000 c8c49737513ae92869caee869864ad73cd38552
5432154431 111001111043221 bb0e93a0d9a4c0e278b6cedf6

533215432154431
P19 4322153321 000001000011000 7b63c9f8810434bdcc388f1acb0bb80cbd98dd8

5432155331 111001111043221 8a418ebbae3f12cb104a8899d
533215432155331

P20 4322153321 000001000011000 cf1460cf18c4f7cdc94420cf87390133b24bc074
5432155421 111001111043221 5085c6b01e87130072edaeae

533215432155421
P21 4322153321 000001000011000 75a6a221dbb141d6ff31a9224508c4db28b5f03

5432155432 111001111043221 e4251d6dc6c856632157ed98b
533215432155432

Table 5: Cipher texts of 6-ary block codes by using HBCK-HASHING algo-
rithm in the case of using SHA- 256

6-ary Block Codes Cipher texts
(U)

P1 4322153321 615cdff092a7b8bc9eead08549ea60c12776e2dc9cd9818
5432155431 c187e29b6f16f685e

P2 5322153321 3f8f2609bc1a7c2c1efea2efa82fd744c4f407f312af611cb
5432155431 e87b3d0f1a0371d

P3 4422153321 247324ce62b2922a4472bcc1e532d74e3cfb029d955a0ff
5432155431 390ac62f83c22c94e

P4 4352153321 575d73533b24b2d6c1be9d2844d3e42c174e7ee4ba43eff
5432155431 df1d5839f7594b71f

P5 4324153321 9557f68e556c735534fe1631188b540582e4d49a7cdca03
5432155431 c222377c6f11a530e

P6 4322553321 476451d83f3e15f940687fab0ecffc6ca6664b0809241d4
5432155431 9e3a1909e57e48376

P7 4322163321 0e69e71b6a96cc120ca694a4d2732e3a0643ef919d56888
5432155431 d77a4847c09737b9a

P8 4322154321 57481836aabf4dbe63dad0e49642bc74d0edaa972baac8e
5432155431 33777475bd8d095c2

P9 4322153621 52ffbc60a39bddf7ac2e5ad9e2d443b8cff807595df3d6d9
5432155431 91895a3ba4b3904a

P10 4322153341 92983647186b1f3fee7651fb9fb110553c9df676e5bf5adf
5432155431 e17964aff4ec2ec1

P11 4322153325 53aa730d5d39758401b968b6e8e1e0ce731172fd975eae
5432155431 58816338ba149698be

P12 4322153321 16ce0b01b68906d484fdf732ad63bf4f05e111e238413c3
3432155431 31685685a79354db7

P13 4322153321 3b24ca7468d9baf78affb2ad02d0182056e260b5d6c827f
5532155431 097285a5d741dbf8e

P14 4322153321 d1b2f630399cc0e1cd89d1495957ef9862aec559f236b8c
5422155431 191122ea57a01ffd5

P15 4322153321 6768bb0ce52c1004fc38d5ceff78245932a78783963fad0
5435155431 003e4db5c8291d345

P16 4322153321 c696a68e8731c21dc5c34356865a79bd25c5788730aefe8
5432355431 df754f0783c95a90b

P17 4322153321 53d111ae10641bf1ede879fdb569b3c7c1d03768fadf267
5432165431 0e4e79a496a03f8ff

P18 4322153321 6f0f830a57f359cd03b13874cb9864e646f8dfe2f236315e
5432154431 c7bda9e2c5ea9b0a

P19 4322153321 625d8332bafcc1f8130449a89ac0bd9a040b04181719ec1
5432155331 6c988ca842ac498bf

P20 4322153321 339f041f012a6b016ae073158c7f5ff15ac594a495abf20d
5432155421 a142a61721301eed

P21 4322153321 e2a00587de1c3434e014082ce6e2da337daad81b5e91e5
5432155432 5bab430deaf80c0aa1
Table 6: Cipher texts of 6-ary block codes by using SHA-256
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1. Introduction

Throughout this article, R be a prime ring with involution and Qr will be the
right Martindale quotient ring of R. For any x, y ∈ R, the symbol [x, y] will
denote the commutator xy − yx, while the symbol x ◦ y will stand for the anti-
commutator xy+yx. R is said to be 2-torsion free if whenever 2x = 0; with x ∈ R
implies x = 0. R is prime if xRy = (0), where x, y ∈ R, implies x = 0 or y = 0
and is called a semiprime ring in case xRx = (0) implies x = 0. A derivation
on R is an additive mapping d : R → R such that d(xy) = d(x)y + xd(y),
for all x, y ∈ R. A derivation d is said to be inner if there exists a ∈ R
such that d(x) = ax − xa, for all x ∈ R. Following Brešar [9], an additive
mapping F : R→ R is called a generalized derivation if there exists a derivation
d : R → R such that F (xy) = F (x)y + xd(y), for all x, y ∈ R. Basic examples
are derivations and generalized inner derivations are maps of type x 7→ ax+ xb
for some a, b ∈ R.

Many results in the literature indicate how the global structure of a ring R is
often tightly connected to the behavior of additive mappings defined on R. Many
results in this direction can be found in [1, 5, 6, 7, 8, 9, 10, 15, 16, 17]. Very
recently Koşan and Lee [14] introduced the new concept of left b-generalized
derivation as follows: Let d : R → Qr be an additive mapping and b ∈ Qr.
An additive mapping F : R → Qr is called a left b-generalized derivation,
with an associated mapping d, if F (xy) = F (x)y + bxd(y), for all x, y ∈ R.
Moreover, it is prove that if R is a prime ring, then d is a derivation of R. In the
present paper, this mapping F will be called a b-generalized derivation with an
associated derivation d. It is easy to see that every generalized derivation is a 1-
generalized derivation. For instance for any x ∈ R, the mapping x :→ ax+ bxc
for a, b, c ∈ Q is a b-generalized derivation of R, which is known as inner b-
generalized derivation of R.

An additive mapping ∗ : R → R is called an involution if ∗ is an anti-
automorphism of order 2, that is (x∗)∗ = x, for all x ∈ R. A ring equipped with
an involution ∗ is called an involution ring. Very recently, many authors have
studied certain additive mappings like derivations, generalized derivations in the
setting of rings with involution (see [2, 3, 4, 11, 12] for references). They not
only characterized these mappings but also found that there is a close connection
between the commutativity of R and these mappings. Here our emphasis will
be more in the direction of the a special type of mapping defined on R, which
were first studied in [18].

In fact, our motivations comes from [ [13], Theorem 4.1.2], which stated
as: Let R be a simple ring with involution of characteristic not 2, such that
dimZR > 4. Let d : R → R be such that d(xx∗) = d(x)x∗ + xd(x∗), for all
x ∈ R. Then d is a derivation of R. We prove the following results.

Theorem 1.1. Let R be a 2-torsion free semiprime ∗−ring with involution such
that R has a commutator which is not a zero divisor. If there exists an additive
mapping F : R → R associated with a nonzero derivation d : R → R such that
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F (xx∗) = F (x)x∗ + bxd(x∗), for all x ∈ R, where b is a fixed element of R.
Then F is a b-generalized derivation.

Theorem 1.2. Let R be a 2-torsion free semiprime ∗−ring and let R has a
commutator which is not a zero divisor. If there exists an additive mapping
F : R→ R associated with a nonzero derivation d : R→ R such that F (xy∗x) =
F (x)y∗x + bxd(y∗)x + bxy∗d(x), for all x, y ∈ R and b is a fixed element of R.
Then F is a b-generalized derivation.

2. Main results

To prove the above results we need the following lemma.

Lemma 2.1. Let R be a 2-torsion free ring and let F : R → R be an additive
mapping associated with a nonzero derivation d : R → R such that F (x2) =
F (x)x + bxd(x), where b is a fixed element of R. Then, for all x, y, z ∈ R, the
following statements hold:

(i) F (xy + yx) = F (x)y + F (y)x+ bxd(y) + byd(x);

(ii) F (xyx) = F (x)yx+ bxd(y)x+ bxyd(x);

(iii) F (xyz+zyx) = F (x)yz+F (z)yx+bxd(y)z+bxyd(z)+bzd(y)x+bzyd(x);

(iv) δ(x, y)[x, y] = 0, where δ(x, y) = F (xy)− F (x)y − bxd(y).

Proof. (i) We have

(1) F (x2) = F (x)x+ bxd(x), for all x ∈ R.

Replacing x by x+ y and using (1), we get

(2) F (xy + yx) = F (x)y + F (y)x+ bxd(y) + byd(x), for all x, y ∈ R.

(ii) Taking y = xy + yx in (2) and using it, we arrive at

F (x2y + yx2) + 2F (xyx) = F (x)xy + F (x)yx+ F (x)yx

+ F (y)x2 + bxd(y)x+ byd(x)x

+ bxd(x)y + bx2d(y) + bxd(y)x+ bxy(x)(3)

+ bxyd(x) + byxd(x), for all x, y ∈ R.

Replacing x by x2 in (2) and using (3) and the fact that R is 2-torsion free, we
obtain

(4) F (xyx) = F (x)yx+ bxd(y)x+ bxyd(x), for all x, y ∈ R.

There by proving (ii).
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(iii) Replacing x by x+ z in (4) and using (4), we get

(5) F (xyz+zyx) = F (x)yz+F (z)yx+ bxd(y)z+ bzd(y)x+ bxyd(z)+ bzyd(x),

for all x, y ∈ R. Thus proves (iii).
(iv) On substituting xy− yx in place of z in (5), we get δ(x, y)[x, y] = 0, for

all x, y ∈ R, where δ(x, y) = F (xy)−F (x)y− bxd(y). This completes the proof
of Lemma.

Proof of Theorem 1.1. We have

(6) F (xx∗) = F (x)x∗ + bxd(x∗), for all x ∈ R.

On linearizing (6), we get

(7) F (xy∗ + yx∗) = F (x)y∗ + F (y)x∗ + byd(x∗) + bxd(y∗), for all x, y ∈ R.

Taking y = x∗ in (7), we have

F (x2 + (x∗)2) + F (x)x+ F (x∗)x∗ + bx∗d(x∗) + bxd(x), for all x ∈ R.

This can be further written as

(8) B(x) +B(x∗) = 0, for all x ∈ R,

where B(x) = F (x2)− F (x)x− bxd(x), for all x ∈ R. Replacing y by xy∗ + yx∗

in (7), we obtain

F (x(y+ y∗)x∗) = −B(x)y∗ +F (x)(y+ y∗)x∗ + bxd(y+ y∗)x∗, for all x, y ∈ R.

Using y − y∗ for y, we get

(9) B(x)y = B(x)y∗, for all x, y ∈ R.

In view of [[19], Lemma 1], we get B(x) ∈ Z(R), for all x ∈ R. Taking y = y∗

in (7), we arrive at

(10) F (xy + y∗x∗) = F (x)y + F (y∗)x∗ + by∗d(x∗) + bxd(y), for all x, y ∈ R.

Replacing y by xy in (10), we get

(11) F (x2y+y∗(x∗)2) = F (x)xy+F (y∗x∗)x∗+bxd(x)y+bx2d(y)+by∗x∗d(x∗),

for all x, y ∈ R. Taking x = x2 in (10), we obtain

(12) F (x2y + y∗(x∗)2) = F (x2)y + F (y∗)(x∗)2 + bx2d(y) + by∗d((x∗)2),

for all x, y ∈ R. Using (11) and (12), we get

(F (x2)−F (x)x−bxd(x))y+(F (y)x∗−F (y∗x∗)+by∗d(x∗))x∗ = 0, for all x, y ∈ R.
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Replacing y by x, we have

(F (x2)−F (x)x−bxd(x))x−(F ((x∗)2−F (x∗)x∗−bx∗d(x∗))x∗ = 0, for all x ∈ R.

This implies that

B(x)x−B(x∗)x∗ = 0, for all x ∈ R.

By (8), we arrive at

(13) B(x)(x+ x∗) = 0, for all x ∈ R.

Taking y = x in (9), we get

(14) B(x)(x− x∗) = 0, for all x ∈ R.

Thus in view of (13) and (14), we get 2B(x)x = 0, for all x ∈ R. Since R is
2-torsion free, we obtain

(15) B(x)x = 0, for all x ∈ R.

Since B(x) is in Z(R), this implies that xB(x) = 0, for all x ∈ R. Linearizing
(15), we get

(16) B(x)y +B(y)x+ σ(x, y)x+ σ(x, y)y = 0, for all x, y ∈ R,

where σ(x, y) = F (xy+ yx)−F (x)y−F (y)x− bxd(y)− byd(x), for all x, y ∈ R.
Taking x = −x in (16), we have

(17) B(x)y −B(y)x+ σ(x, y)x− σ(x, y)y = 0, for all x, y ∈ R.

Using (16) and (17), we arrive at B(x)y + σ(x, y)x = 0, for all x, y ∈ R. Right
multiplying by B(x), we get B(x)yB(x) + σ(x, y)xB(x) = 0, for all x, y ∈ R.
This implies that B(x)yB(x) = 0, for all x, y ∈ R. Since R is a semiprime ring,
we obtain B(x) = 0, for all x ∈ R. This implies that

(18) F (x2) = F (x)x+ bxd(x), for all x ∈ R.

Let u, v be fixed element of R such that w[u, v] = 0 or [u, v]w = 0. Then in view
of Lemma 2.1 (iv) and hypothesis

(19) δ(u, v) = 0,

we have to show that δ(x, y) = 0, for all x, y ∈ R. Again in view of Lemma 2.1
(iv), we have

(20) δ(x, y)[x, y] = 0.
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Replacing x by x+ u and using (20), we get

(21) δ(x, y)[u, y] + δ(u, y)[x, y] = 0, for all x, y ∈ R.

On substituting y by y + v and using (19) and (20), we have

(22) δ(x, y)[u, v]+δ(x, v)[u, y]+δ(x, v)[u, v]+δ(u, y)[x, v] = 0, for all x, y ∈ R.

Taking x = u in (22) and making use of (19), we obtain 2δ(u, y)[u, v] = 0, for
all y ∈ R. Since R is 2-torsion free and using the given assumption, we have

(23) δ(u, y) = 0, for all y ∈ R.

Again replacing y by v in (21) and using (19), we get δ(x, v)[u, v] = 0, for all
x, y ∈ R. Since [u, v] is not a zero divisor, we get

(24) δ(x, v) = 0, for all x ∈ R.

Thus by (22), (23) and (24) we get δ(x, y)[u, v] = 0, for all x, y ∈ R. This implies
that δ(x, y) = 0, for all x, y ∈ R i.e., F (xy) = F (x)y + bxd(y), for all x, y ∈ R,
which completes the proof.

Proof of Theorem 1.2. By the given hypothesis, we have

(25) F (xy∗x) = F (x)y∗x+ bxd(y∗)x+ bxy∗d(x), for all x, y ∈ R.

On substituting x by x+ z and on solving, we have

F (xy∗z + zy∗x) = F (x)y∗z + F (z)y∗x+ bxd(y∗)z

+ bzd(y∗)x+ bxy∗d(z) + bzy∗d(x),(26)

for all x, y, z ∈ R. Replacing z by x2 in (26), we get

F (xy∗x2 + x2y∗x) = F (x)y∗x2 + F (x2)y∗x+ bxd(y∗)x2 + bx2d(y∗)x

+ bxy∗d(x)x+ bxy∗xd(x) + bx2y∗d(x), for all x, y ∈ R.(27)

Taking y as x∗y + yx∗ in (25), we obtain

F (xy∗x2 + x2y∗x) = F (x)y∗x2 + F (x)xy∗x+ bxd(y∗)x2

+ bxy∗d(x)x+ bxd(x)y∗x(28)

+ bx2d(y∗)x+ bxy∗xd(x) + bx2y∗d(x), for all x, y ∈ R.

On comparing (27) and (28), we arrive at

(29) (F (x2)− F (x)x− bxd(x))y∗x = 0, for all x, y ∈ R.

This can be further written as

(30) ϕ(x)y∗x = 0, for all x, y ∈ R,
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where ϕ(x) = F (x2) − F (x)x − bxd(x). Replacing y by y∗x∗ in (30), we get
ϕ(x)xyx = 0. Now replacing y by zϕ(x), we get ϕ(x)xzϕ(x)x = 0, for all
x, z ∈ R. Using the semiprimeness of R, we obtain

(31) ϕ(x)x = 0, for all x ∈ R.

Taking x = x+ y, we get

(32) ϕ(x)y + β(x, y)x+ ϕ(y)x+ β(x, y)y = 0, for all x, y ∈ R,

where β(x, y) = F (xy+ yx)−F (x)y−F (y)x− bxd(y)− byd(x). Replacing x by
−x in (32) and making use of (32), we get

2(ϕ(x)y + β(x, y)x) = 0, for all x, y ∈ R.

Since R is 2-torsion free, we arrive at

(33) ϕ(x)y + β(x, y) = 0, for all x, y ∈ R.

Multiplying (33) by ϕ(x) on the right side, we get

(34) ϕ(x)yϕ(x) + β(x, y)xϕ(x) = 0, for all x, y ∈ R.

Taking y = y∗ in (30), we get ϕ(x)yx = 0, for all x, y ∈ R. This further implies
that xϕ(x)yxϕ(x) = 0, for all x, y ∈ R. Thus by the semiprimeness of R, we get
xϕ(x) = 0, for all x ∈ R. Using this in (34), we obtain ϕ(x) = 0, for all x ∈ R.
Hence F (x2) = F (x)x + bxd(x), for all x ∈ R. Now, following on similar lines
as after (18), we get the required result.
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[7] M. Brešar, Centralizing mappings and derivations in prime rings, J. Alge-
bra, 156 (1993), 385-394.
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Abstract. We start this paper by introducing the concept of quasi-metric hyper-
groups. We show that the product of two quasi-metric hypergroups is a quasi-metric
hypergroup. Quasi-metric hyperdynamical systems are defined, and a method for con-
structing quasi-metric hyperdynamical systems via two given quasi-metric hyperdynam-
ical systems, is deduced. Attracting sets for quasi-metric hyperdynamical systems are
considered. A method for constructing quasi-metric hyperdynamical systems with at-
tracting sets via two given quasi-metric hyperdynamical systems with attracting sets,
is presented.

Keywords: quasi-metric hypergroup, quasi-metric hyperdynamical system, time hy-
pergroup, attracting set.

1. Introduction

The notion of quasi-metric spaces has been studied first by Stolenberg as an
extension of the metric spaces [7, 8]. Quasi-metric spaces are more compatible
with some of realistic structures. In fact symmetry is an ideal property for soft
computing, but in the realistic case we do not have such property, for example
according to traffic rules the time for going from point a to point b in a city is
not equal to the time for going from b to a. In section three we introduce quasi-
metric hypergroups by adding a kind of continuity to the join operation via a

*. Corresponding author
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quasi-metric on it, and we show that there is a quasi-metric on the product of
two quasi-metric hypergroups to make it a quasi-metric hypergroup. In section
four we define quasi-metric hyperdynamical systems via two conditions. The
first condition makes it an evolution operator and the second condition put
continuity on its time evolution. We show that the product of two quasi-metric
hyperdynamical systems is a quasi-metric hyperdynamical system. In section
five we consider attracting sets for a quasi-metric hyperdynamical system as an
invariant set of it which attracts any bounded set which is near it. We show
that if two given quasi-metric hyperdynamical systems have attracting sets, then
their product has an attracting set.

2. Basic notions

According to Stolenberg definition [7] ifM is a non-empty set, then a function q :
M ×M −→ [0,∞) is called a quasi-metric if it satisfies the following conditions.

(1) q(x, y) = 0⇔ x = y.

(2) q(x, z) ≤ q(x, y) + q(y, z), for all x, y, z ∈M

In this case (M, q) is called a quasi-metric space or a q-metric space.
The topology τ(q) induced by a quasi-metric q on M is the topology de-

termined by the basis consisting of all r-balls Bq
r (p)= {m ∈M : q(p,m) < r }

where p ∈M and r ∈ [0,∞) (see, [7, 6]).
A join operation on the nonempty set H ([1, 2]) is a mapping from H ×H

to the set P∗(H) which is the set of all nonempty subsets of H. If x, y ∈ H,
then we denote their joins by xy. A join operation on H creates an operation
from P∗(H)× P∗(H) to P∗(H) by (X,Y ) 7→ XY , where XY =

⋃
(x,y)∈X×Y xy.

For simplicity {x}Y and Y {x} are denoted by xY and Y x respectively.
H with a join operation is called a hypergroup ([4]) if for all x, y, z ∈ H we

have x(yz) = (xy)z and xH = Hx = H.

3. Quasi-metric hypergroups

We assume H is a hypergroup and q is a quasi-metric on it.

Definition 3.1. (H, q) is said to be a quasi-metric hypergroup or a q-hypergroup
if for given x, y ∈ H and for all r > 0 and z ∈ xy, there is d > 0 such that
hs ∩Bq

r (z) ̸= ∅, for all h ∈ Bq
d(x) and s ∈ B

q
d(y).

Now, we show that the product of two quasi-metric hypergroups is a quasi-
metric hypergroup.

Theorem 3.1. If (H1, q1) and (H2, q2) are two quasi-metric hypergroups, then
(H1 ×H2, q) is a quasi-metric hypergroup, where q is the following map:

q : (H1 ×H2, q) −→ [0,∞),

((h1, h2), (s1, s2)) 7−→ q1(h1, s1) + q2(h2, s2),
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and the join operation of H1 ×H2 is the following operation:

. : (H1 ×H2)× (H1 ×H2) −→ P∗(H1 ×H2),

((h1, h2), (s1, s2)) 7−→ (h1s1)× (h2s2).

Proof. We first show that (H1 ×H2, q) is a quasi-metric space. We see that:

q((h1, h2), (s1, s2)) = 0⇔
q1(h1, s1) + q2(h2, s2) = 0⇔
q1(h1, s1) = 0 and q2(h2, s2) = 0⇔
h1 = s1 and h2 = s2.

For (h1, h2), (t1, t2), (s1, s2) ∈ H1 ×H2 we have:

q((h1, h2), (s1, s2)) = q1(h1, s1) + q2(h2, s2)

≤ q1(h1, t1) + q1(t1, s1) + q2(h2, t2) + q2(t2, s2)

≤ q((h1, h2), (t1, t2)) + q((t1, t2), (s1, s2)).

Thus, (H1 × H2, q) is a quasi-metric space. For all (x1, x2), (y1, y2), (z1, z2) ∈
H1 ×H2 we have:

(x1, x2)((y1, y2)(z1, z2)) = (x1(y1z1), x2(y2z2))

= ((x1y1)z1, (x2y2)z2) = ((x1, x2)(y1, y2))(z1, z2),

and

(x1, x2)H1 ×H2 = x1H1 × x2H2 = H1 ×H2 = H1x1 ×H2x2 = H1 ×H2(x1, x2).

Hence H1 ×H2 is a hypergroup.
Let (x1, x2), (y1, y2) ∈ H1 × H2, r > 0, and (z1, z2) ∈ (x1, x2)(y1, y2) be

given. Since z1 ∈ x1y1 and z2 ∈ x2y2, then there exist d1 > 0 and d2 > 0
such that h1s1 ∩ Bq1

r
2
(z1) ̸= ∅ and h2s2 ∩ Bq2

r
2
(z2) ̸= ∅, for all h1 ∈ Bq1

d1
(x1),

s1 ∈ Bq1
d1
(y1), h2 ∈ Bq2

d2
(x2), and s2 ∈ Bq2

d2
(y2). The definition of q implies that

Bq1
r
2
(z1) × Bq2

r
2
(z2) ⊆ Bq

r (z1, z2), so, for all (h1, h2) ∈ Bq1
d1
(x1) × Bq2

d2
(x2) and

(s1, s2) ∈ Bq1
d1
(y1) × Bq2

d2
(y2), we have (h1s1 × h2s2) ∩ Bq

r (z1, z2) ̸= ∅. If we
take d = min{d1, d2} then Bq

d(x1, x2) ⊆ Bq1
d1
(x1) × Bq2

d2
(x2) and Bq

d(y1, y2) ⊆
Bq1

d1
(y1) × Bq2

d2
(y2). Thus, for all (h1, h2) ∈ Bq

d(x1, x2) and (s1, s2) ∈ Bq
d(y1, y2)

we have (h1s1 × h2s2) ∩ Bq
r (z1, z2) ̸= ∅. Hence (H1 × H2, q) is a quasi-metric

hypergroup.

4. Quasi-metric hyperdynamical systems

Let (M, q1) be a q-metric space and let (H, q2) be a q-hypergroup. Moreover,
let φ : H ×M −→M be a mapping. With these assumptions we have the next
definition.
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Definition 4.1. The 5-tuple (M, q1, φ,H, q2) is said to be a quasi-metric hyper-
dynamical system, if it satisfies the following conditions:

(i) If h1, h2 ∈ H and m ∈ M , then φ(h1, φ(h2,m)) ∈ φ(h1h2,m), where
φ(h1h2,m)= {φ(h,m): h ∈ h1h2 };

(ii) φ : H×M −→M is a (q2, q1) continuous map i.e., for all V ∈ τq1, there
exist W ∈ τq2 and Z ∈ τq1 such that φ(W × Z) ⊆ V .

Now, we assume that (M, q1, φ,H, d1) and (N, q2, ψ, S, d2) are two quasi-
metric hyperdynamical systems. We take quasi-metrics q and d on M ×N and
H × S as in Theorem 3.1 respectively. Moreover, we take the join operation on
H × S as in Theorem 3.1. With these assumptions we have the next theorem.

Theorem 4.1. (M × N, q, φ × ψ,H × S, d) is a quasi-metric hyperdynamical
system.

Proof. If (h1, s1), (h2, s2) ∈ H × S and (m,n) ∈M ×N , then

(φ× ψ)((h1, s1), (φ× ψ)(h2, s2), (m,n)) = (φ× ψ)((h1, s1), (φ(h2,m), ψ(s2, n)))

= (φ(h1, φ(h2,m)), ψ(s1, ψ(s2, n))) ∈ φ(h1h2,m)× ψ(s1s2, n)
= (φ× ψ)(h1h2 × s1s2, (m,n)).

Let the nonempty set V ∈ τq be given. Then, there is (m,n) ∈ V and r > 0
such that Bq

r (m,n) ⊆ V . Since Bq1
r
2
(m) ∈ τq1 and Bq2

r
2
(n) ∈ τq2 , then there exist

W1 ∈ τd1 , Z1 ∈ τq1 , W2 ∈ τd2 , and Z2 ∈ τq2 such that φ(W1, Z1) ⊆ Bq1
r
2
(m) and

ψ(W2, Z2) ⊆ Bq2
r
2
(n). Hence we have

(φ× ψ)(W1 ×W2, Z1 × Z2) = φ(W1, Z1)× ψ(W2, Zψ2)

⊆ Bq1
r
2
(m)×Bq2

r
2
(n) ⊆ Bq

r (m,n) ⊆ V.

Thus, φ× ψ is a (d, q) continuous map.

5. Attracting sets

We begin this section by recalling the definition of time hypergroup (see, [5]). A
hypergroup H is called a time hypergroup with zero time e ∈ H ([5]) if (H,<)
is a partially ordered hypergroup with the following two properties:

(1) h ∈ he and h ∈ eh, for all h ∈ H;

(2) If h ∈ H, then h < e or h > e or h = e.

In this section we assume that H is a time hypergroup, and (M, q1, φ,H, q2)
is a quasi-metric hyperdynamical system.

A subset A ofM is called an invariant set for (M, q1, φ,H, q2) if φ(H,A) ⊆ A.
If A,B ⊆M the distance of A to B is defined by

dist(A,B) = sup
a∈A

inf
b∈B

q1(a, b).
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Definition 5.1. A non-empty invariant subset A is said to be an attracting set
for (M, q1, φ,H, q2) if there is an open subset B of M containing A such that
for each bounded subset C of B we have: limn→∞ dist(φ(hn, C), A) = 0 for each
h > e.

We see that any attracting set of (M, q1, φ,H, q2) attracts any bounded sub-
set which is near it, under the iterations of positive times.

Suppose H and S are two time hypergroups with the zero times e1 and e2
and partial orders <1 and <2 respectively. On H × S we define a partial order
< by: (h, s) < (e1, e2) if h <1 e1, and s <2 e2; (e1, e2) < (r, t) if e1 <1 r, or
e2 <2 t; (h, s) < (r, t) if (h, s) < (e1, e2) < (r, t).

We see that H × S with this partial order is a time hypergroup. Now,
we also assume that (M, q1, φ,H, d1) and (N, q2, ψ, S, d2) are two quasi-metric
hyperdynamical systems with attracting sets A1 and A2 respectively. Moreover,
we assume that (M ×N, q, φ×ψ,H × S, d) is the quasi-metric hyperdynamical
system which is constructed via the assumptions of Theorem 4.1. With these
assumptions we have the next theorem.

Theorem 5.1. A1 ×A2 is an attracting set for (M ×N, q, φ× ψ,H × S, d).

Proof. There exist open sets U and V in M and N corresponding to (M, q1, φ,
H, d1) and (N, q2, ψ, S, d2) for A1 and A2 respectively. We show that the open
set U ×V satisfies the condition of Definition 5.1 for A1×A2. If C is a bounded
set in U × V , then it means there is r > 0, and (m,n) ∈ M × N such that
C ⊆ Bq

r (m,n). Thus, C ⊆ Bq1
r (m) × Bq2

r (n). Hence C ⊆ C1 × C2, where
C1 = Bq1

r (m) ∩ U and C2 = Bq2
r (n) ∩ V . If h = (h1, h2) > (e1, e2), then h1 > e1

and h2 > e2, and we have:

lim
n→∞

dist((φ× ψ)(hn, C), A1 ×A2) ≤ lim
n→∞

dist((φ× ψ)(hn, C1 × C2), A1 ×A2)

= lim
n→∞

dist(φ(hn1 , C1)× ψ(hn2 , C2), A1 ×A2)

= lim
n→∞

dist(φ(hn1 , C1), A1) + lim
n→∞

dist(ψ(hn2 , C2), A2) = 0.

Thus, the invariant set A1 × A2 is an attracting set for (M ×N, q, φ × ψ,H ×
S, d).

Conclusion

We have considered quasi-metric hyperdynamical systems as an extension of
metric dynamical systems. In fact we extend the phase spaces to quasi-metric
spaces and we also extend the time sets to hypergroups. By using of time hyper-
group we have considered attracting sets for the quasi-metric hyperdynamical
systems. If H and S are two times hypergroups, then we have introduced a par-
tial order on H × S which make it a time hypergroup and able us to construct
new attracting sets via the product of their quasi-metric hyperdynamical sys-
tems. One must pay attention to this point that we can define another partial
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order on H × S which make it a time hypergroup, but Theorem 5.1 is not valid
for it. For example by refer to [5] one can see the partial order < on H × S
which has been defined by: (h1, s1) < (h2, s2) if h1 <1 h2, and when h1 = h2
then s1 <2 s2, where <1 and <2 are partial orders on H and S respectively.
With this partial order Theorem 5.1 is not valid.
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Abstract. This paper considered an innovative procedure to numerically approximate
higher–order Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs).
The proposed method is a one-step, self-starting Block integrator method employed to
approximate higherorder (Third, Fourth, and Fifth-order) IVPs without reduction to
lower order. The method was developed through collocation and interpolation approach.
The basic properties of the method such as convergence, consistency, zero stability, order
and error constant are well investigated. The accuracy of the method over existing
methods are validated by numeral experiments. The method produces more interesting
and superior results when compared to some existing numerical methods in terms of
accuracy and absolute errors.

Keywords: accuracy, block method, collocation and interpolation, higher-order
ODEs, Initial Value Problems (IVPs).

1. Introduction

The pursuit of translating various scientific, engineering, modeling and real life
problems to differential equations which can be ordinary differential equations
or partial differential equations in nature has given rise to the development
of several numerical methods to provide an approximate solution to resulting
higher order differential equations coupled with its initial or boundary condi-
tions that may be rigorous to solve or has no analytical solutions. Researchers
have suggested methods of solving higher order ODEs directly (Jena and Mo-
hanty 2019, Yap and Ismail 2015, Waeleh et al., 2011, Suleiman et al., 2011).
Oftentimes, developing numerical methods has been to convalesce the efficiency

*. Corresponding author
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and convergence of the method. Adeyefa & Kuboye (2020)

y′′(x) = f(x, y, y′, y′′), y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2,

y′v(x) = f(x, y, y′, y′′, y′′′), y(x0) = y0, y
′(x0) = y1, y

′′(x0)

= y2, y
′′′(x0) = y3,(1)

yv(x) = f(x, y, y′, y′′, y′′′, y′v), y(x0) = y0, y
′(x0) = y1, y

′(x0)

= y2, y
′′′(x0) = y3, y

′v(x0) = y4.

In literature, researchers have proposed block methods for the direct integration
of (1) without necessarily reducing it to system of first order ODEs (Khataybeh
et al., 2019, Adoghe et al., 2016, Agboola et al., 2015, Kuboye and Omar 2015a,
Kuboye and Omar 2015b, Hussain et al. 2015). These authors developed differ-
ent method to handle various higher-order of ODEs with focus only on pth order
of equation. Adeyefa & Kuboye (2020), developed a method that is capable of
handling two different orders of ODEs using the block approach. The developed
method was capable of solving second and third-order ODEs. Our interest in
this work is to develop a method that will be capable of handling three different
systems of pth, (p+ 1)th and (p+ 2)th orders IVPs for direct solution of ODEs
where p = 3.

2. The method

We consider the formulation of our proposed method for pth, (p+ 1)th and

y(x) =
k+9∑
j=0

ajx
j(2)

(p+ 2)th by adopting a power series of the form: for k = 1, as the approximate
solution of (1), interpolating (2) at x = xn+τ , τ = 2

5 ,
3
5 ,

4
5 , and collocating the

third, fourth, and fifth derivative of (2) at x = xn+ς , ς = 0, 15 ,
2
5 ,

3
5 ,

4
5 , 1, x =

xn+ε, ε = 0 and x = xn+ω, ω = 1, respectively. This subsequently resulted into
systems of linear equations of the form:

k+9∑
j=0

ajx
n+τ = yn+τ ,

k+9∑
j=2

j(j − 1)(j − 2)ajx
j−2
n+ς = fn+ς ,

k+9∑
j=3

j(j − 1)(j − 2)(j − 3)ajx
j−5
n+ε = gn+ε,(3)

k+9∑
j=4

j(j − 1)(j − 2)(j − 3)(j − 4)ajx
j−5
n+ω = mn+ω,

where f, g and m are the third, fourth, and fifth derivatives of (2) respectively.
Gaussian’s elimination method is applied to find the values of as’ in (3) and
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then substituted into (2) to produce a continuous implicit method:

α 2
5
(t)yn 2

5
+ α

3

5
(t)yn+ 3

5
+ α 4

5
(t)yn+ 4

5
= h3(β0(t)fn+β 1

5
(t)fn+ 1

5
+β 2

5
(t)fn+ 2

5
(4)

+β 3
5
(t)fn+ 3

5
+β 4

5
(t)fn+ 4

5
+β1(t)fn+1) + h4(γ0(t)gn) + h5(ω 1

5
(t)mn+ 1

5
),

for t = x−xn
h ,

α 2
5

α 3
5

α 4
5

 (t) = [Φ]

t0t1
t2

 ,



β0
β 1

5

β 2
5

β 3
5

β 4
5

β1


(t)=h3[γ]



t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10



(γ0)(t)=h
4[Ψ]



t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10



,
(
ω 1

5

)
(t)=h5[Π]



t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10


where

γ =



499699

37800000
− 8987

315000
− 2099

630000
− 457

33750

559

2520000

61

1575000

− 20688119

453600000

99251

756000

49547

1512000

31447

567000

4327

6048000

383

2700000
90163

90163
−15367

43200

4397

120960
− 15917

226800

1067

345600
− 107

302400
1

6
0 0 0 0 0

0 0 0 0 0 0

−208879

8640

1075

24
−575

24

425

108
−125

192

7

120
924719

6912
−924719

576

78025

576
−19075

864

8375

2304
−187

576

−1872425

6048

1170875

2016
−22625

72

152875

3024
−2375

288

1475

2016
2194375

6048

3659375

5376

246875

672
−1403125

24192

3125

336
−625

768

−3855625

18144

9640625

24192
−1296875

6048

171875

5184
−15625

3024

10625

24192
2050625

41472
−640625

6912

171875

3456
−78125

10368

15625

15625
− 625

6912



,
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Ψ =



281
450000
− 11941

5400000
431

86400
0
1
24
−917

720
3787
576
−1075

72
625
36
−4375

432
8125
3456



,Π =



−43750
13

39
35000
− 373

126000
0
0
1
2
−137

48
375
56

−10625
1344

3125
672
−625

576


and

Φ =

 3 −8 6
−25

2 30 35
1

25
2 −25 25

2

 .

Evaluating (4) at x = xn+η, η = 1, 15 , 0 to produce a discrete scheme of the
form: yn+1

yn+ 1
5

yn

−
 3 1 3
−3 −3 −8
1 3 6


yn+ 4

5

yn+ 3
5

yn+ 2
5



= h3[A]


fn+1

fn+ 4
5

fn+ 3
5

fn+ 2
5

fn

+ h4

 301
900000

31
100000
281

450000

 (gn) + h5

− 167
1050000
− 31

210000
− 13

43750

(mn+ 1
5

)
(5)

for

A =



3546

75600000
− 482

25200000
− 1464

37800000
293745

75600000

3585

25200000

8385

37800000
259420

75600000
− 123340

25200000
− 511840

37800000
509220

75600000

62660

25200000
− 125940

37800000

− 999030

75600000
− 310290

25200000
− 107844

37800000
537899

75600000

166267

25200000

499699

37800000



.

The first two derivative of equation (4) yields equations (6) and (7) respec-
tively.
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α′
2
5

(t)yn+ 2
5
+ α′

3
5

(t)yn+ 3
5
+ α′

4
5

(t) = h2(β′0(t)fn + β′1
5

(t)fn+ 1
5
+ β′2

5

(t)f 2
5

+ β′3
5

(t)fn+ 3
5
+ β′4

5

(t)fn+ 4
5
+ β′1fn+1) + h3(γ0(t)gn) + h4(ω′

1
5

(t)mn+ 1
5
)(6)

α′′
2
5

(t)yn+ 2
5
+ α′′

3
5

(t)yn+ 3
5
+ α′′

4
5

(t) = h(β′′0 (t)fn + β′′1
5

(t)fn+ 1
5
+ β′′2

5

(t)f 2
5

+ β′′3
5

(t)fn+ 3
5
+ β′′4

5

(t)fn+ 4
5
+ β′′1fn+1) + h2(γ0(t)gn) + h3(ω′′

1
5

(t)mn+ 1
5
)(7)

Evaluating equations (6) and (7) at x = xn+θ, θ = 1, 45 ,
3
5 ,

2
5 ,

1
5 , 0 and x =

xn+ψ, ψ = 1, 45 ,
3
5 ,

2
5 ,

1
5 , 0 to produce the derivatives as:

y′n+1

y′

n+
4

5

y′

n+
3

5

y′

n+
2

5

y′

n+
1

5

y′n



− 1

h
[B]



y
n+

4

5

y
n+

3

5

y
n+

2

5


= h2[C]



fn+1

f
n+

4

5

f
n+

3

5

f
n+

3

5

f
n+

2

5

fn



+ h3



− 3040044

453600000

− 32768

151200000

− 104412

453600000

− 332556

453600000

− 238980

151200000

− 1003044

453600000



(gn) + h4



1419840

453600000

− 154464

151200000
48816

453600000
159264

453600000
112224

151200000
505440

453600000



(
m
n+

1

5

)
(8)

where

B =


5670000000
453600000

113400000
151200000

1134000000
453600000 −1134000000

453600000 −1134000000
151200000 −5670000000

453600000

−9072000000
453600000 −1512000000

151200000 0 4536000000
453600000

3024000000
151200000

13608000000
453600000

3402000000
453600000

37800000
151200000 −1134000000

453600000 −3402000000
453600000 −189000000

151200000 −7938000000
453600000
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C =



1280844
453600000 − 31384

151200000
11712

453600000
1965

453600000
1478

151200000
64344

453600000
17710725
453600000

613125
151200000 − 229575

453600000 − 135375
453600000

85425
151200000 − 324525

453600000
2211460

453600000
692000

151200000 − 235120
453600000

528400
453600000 − 5128200

151200000
25157600
453600000

− 63855900
453600000

6749500
151200000 − 2390700

453600000 − 5080500
453600000

118270
151200000

14864100
453600000

120281100
453600000

12957000
151200000

4144800
453600000

13047000
453600000

9920700
151200000

59550600
453600000

− 64267369
453600000

694975
151200000 − 220903

453600000 − 7086781
453600000 − 5072955

151200000 − 20688119
453600000





y′′n+1

y′′
n+ 4

5

y′′
n+ 3

5

y′′
n+ 2

5

y′′
n+ 1

5

y′′n


− 1

h2
[D]

yn+ 4
5

yn+ 3
5

yn+ 2
5

 = h[E]



fn+1

fn+ 4
5

fn+ 3
5

fn+ 3
5

fn+ 2
5

fn



+ h2



− 146874

9072000
697116

18144000

− 89796

9072000
253596

18144000

− 49476

9072000
181020

18144000



(gn) + h3



688788

9072000

− 32860

18144000
42516

9072000

− 12124

18144000
25236

9072000

− 107424

18144000



(
mn+ 1

5

)
(9)

where

D =

 226800000
9072000

453600000
18144000

226800000
9072000

453600000
18144000

226800000
9072000

453600000
18144000

−453600000
9072000 −907200000

18144000 −453600000
9072000 −907200000

18144000 −453600000
9072000 −907200000

18144000
226800000
9072000

453600000
18144000

226800000
9072000

453600000
18144000

226800000
9072000

453600000
18144000



E =



604455
9072000 − 68136

18144000
7431

9072000 − 16296
18144000

3111
9072000 − 12840

18144000
1954455
9072000

1701795
18144000 − 106185

9072000
150915

18144000 − 50025
9072000

112035
18144000

4632890
9072000

463840
18144000

217850
9072000 − 2788640

18144000 − 635590
9072000 − 2546720

18144000
−30561900

9072000
14308260
18144000 −1756140

9072000
3577380
18144000 −3190380

9072000
1313700
18144000

58092735
9072000 −27561720

18144000
3544095
9072000 − 9953400

18144000
1310655
9072000 −12908280

18144000
−31093835

9072000
14784761
18144000 −1907051

9072000
5401241
18144000 −1066571

9072000
3155705
18144000

 .
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The fusing of equations (5), (8) and (9) in matrix form by matrix inversion
gives a block method written explicitly as

I


yn+ 1

5

yn+ 2
5

yn+ 3
5

yn+ 4
5

yn+1

 = L


yn− 1

5

yn− 2
5

yn− 3
5

yn− 4
5

yn

+ h(K)



y′
n− 1

5

y′
n− 2

5

y′
n− 3

5

y′
n− 4

5

y′n


+ h2(R)



y′′
n− 1

5

y′′
n− 2

5

y′′
n− 3

5

y′′
n− 4

5

y′′n



+ h3(P )


fn− 1

5

fn− 2
5

fn− 3
5

fn− 4
5

fn

+ h3(V )


fn+ 1

5

fn+ 2
5

fn+ 3
5

fn+ 4
5

fn+1

+ h4(T )


gn− 1

5

gn− 2
5

gn− 3
5

gn− 4
5

gn

+ h5(Z)


mn− 1

5

mn− 2
5

mn− 3
5

mn− 4
5

mn

(10)

I



y′
n+ 1

5

y′
n+ 2

5

y′
n+ 3

5

y′
n+ 4

5

y′n+1


= L



y′
n− 1

5

y′
n− 2

5

y′
n− 3

5

y′
n− 4

5

y′n


+ h(K)



y′′
n− 1

5

y′′
n− 2

5

y′′
n− 3

5

y′′
n− 4

5

y′′n


+ h2(N̄)


fn− 1

5

fn− 2
5

fn− 3
5

fn− 4
5

fn



+ h2(W̄ )


fn+ 1

5

fn+ 2
5

fn+ 3
5

fn+ 4
5

fn+1

+ h3(D̄)


gn− 1

5

gn− 2
5

gn− 3
5

gn− 4
5

gn

+ h4(Ē)


mn− 1

5

mn− 2
5

mn− 3
5

mn− 4
5

mn

(11)

I



y′′
n+ 1

5

y′′
n+ 2

5

y′′
n+ 3

5

y′′
n+ 4

5

y′n+1


= L



y′′
n− 1

5

y′′
n− 2

5

y′′
n− 3

5

y′′
n− 4

5

y′′n


+ h(Ŝ)


fn− 1

5

fn− 2
5

fn− 3
5

fn− 4
5

fn



+ h(Q̂)


fn+ 1

5

fn+ 2
5

fn+ 3
5

fn+ 4
5

fn+1

+ h2(Ẑ)


gn− 1

5

gn− 2
5

gn− 3
5

gn− 4
5

gn

+ h3(P̂ )


mn− 1

5

mn− 2
5

mn− 3
5

mn− 4
5

mn

(12)
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(see Appendix for the values of the terms).

Equations (10) to (12) are applied as the block integrators to provide solu-
tions to problems.

3. Investigation of the basic properties of the block method

We investigate the order, error constant, and zero stability as well as the con-
sistency of the block method as demonstrated below:

3.1 Order of accuracy and Local Truncation Error (LTE)

We describe a linear difference operators related to the block in (10), described
as

L[y(x) : h] =

k∑
j=0

[ajy(xn + jh)− h3βjf(xn + jh)

− h4γjg(xn + jh)− h5ωjm(xn + jh)],(13)

where y(x) is continuously differentiable function on [a, b]. Expanding (10) by
Taylor series, collecting their terms in powers of h produces

L[y(x) : h] = C0y(x) + C1hy
′(x)C2hy

′′(x) + · · ·+ Cqh
q(x) + (hq+1),

where Ci are constants. Then, if the first Cp+2 disappears, we have Co = C1 =
C2 = · · · = Cp = Cp+2 = 0 and Cp+3 ̸=. Thus, where p is called the order of
the method. Then, Cp+3h

p+3yp+3(x) is the principal Local Truncation Error if
the order p and error constant Cp+3 are known. Lambert (1973). Therefore, for
our block method,p = [8, 8, 8, 8, 8]T and

Cp+3 =

[
5323

413437500000000
,− 26141

58179453100
,− 17291

53634509200
,

− 22341

8172494600
,− 23451

817965200

]T
.

3.2 Zero stability

The block method (10) is said to be zero stable if no root of the first characteristic
polynomial ρ(r) has modulus greater than one and if every root of modulus one
has ρ(r) = det(rA0 − A1) = rm(r − 1) multiplicity not greater than the order
of the differential equation (Lambert 1973). It follows that the integrators are
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normalized to give the first characteristic polynomial ρ(r) as with

A0 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


and

Ai =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1


.

The roots of ρ(r) = 0 satisfy |rj | ≤ 1. Hence, the block method is zero-stable.

3.3 Consistency

A block method is said to be consistent if it has order p ≥ 1. Hence, our
block method is consistent, sincep = 8 A linear multistep method is said to be
convergent, if it is consistent and zero stable (see Lambert, 1973). Hence, our
method is convergent satisfying the above condition.

4. Numerical experiments

Experiment 1

y′′′ = 3 sinx y(0) = 1, y′(0) = 0, y′′(0) = −2, h = 0.1. The experiment above
which is a special third-order initial value problem was solved by Kuboye &
Omar (2015a) using a block method of step-length k = 7 order p = 8 and
h = 0.1

The analytical solution:

y(x) = 3 cosx+ x2

2 −2 proposed block method is also used to solve the same ex-
periment. The results are displayed in Table 1 and comparison of their absolute
errors shown in Fig. 1.

Experiment 2

y′′′ = y′(2xy′′ + y′), y(0) = 1, y′(0) = 1
2 , y

′′(0) = 0, h = 0.01.
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Analytical solution

y(x) = 1 + 1
2 ln

(
2+x
2−x

)
Experiment 2 solved by our new block method is a non-linear third-order

problem previously solved by Adoghe et al., (2016) using Taylor’s series approach
with step-length k = 5,order p = 9 and h = 0.1. The numerical results are
displayed in Table 2 and their absolute errors shown in Fig. 2.

Experiment 3

y′′′ = y′′ − y′ + y y(0) = 1, y′(0) = 0, y′′(0) = −1, h = 0, 01; 0 ≤ x ≤ 1

Analytical solution

y(x) = cosx Experiment 3 above is a linear third-order initial value problem
solved by our proposed block method and Khataybeh et al., (2019). Table 3
displayed the numerical results and the comparison of their absolute errors can
be seen in Fig. 3.

Experiment 4

y′v = (y′)2 − y(y′′)− 4x2 + ex
(
1− 4x+ x2

)
y(0) = 1, y′(0) = 1, y′′(0) = 3,
y′′′(0) = 1, h = 0.01; 0 ≤ x ≤ 1.

Analytical solution

y(x) = x2+ ex The experiment above is a non-linear third-order problem solved
by Kuboye & Omar (2015b) where a 6-step bock method of order p = 7 with h =
0.01 was developed. Our proposed method is used to solve the same experiment
and our results are compared together as displayed in Table 4 and the absolute
error for both methods can be seen in Fig. 4.

Experiment 5

yv = −(cosx+ sinx),
y(0) = 1, y′(0) = 1, y′′(0) = −2
y′′′(0) = 1, y′v(0) = 2, h = 0.1; 0 ≤ x ≤ 1.

Exact solution

y(x) = 2x− 1
2x

2 + 1
24x

4 + cosx− sinx

The special fifth order experiment above was solved by Jena & Mohanty
(2019) with a step -length of k = 7,order p = 7 and h − 0.1 . We also used
our proposed method to solve the same experiment with the results generated
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compared together (see Table 5) and the graphical performance of their absolute
error demonstrated in Fig. 5.

5. Numerical results and comparison

Table 1: Comparison of the new block method results with the
results of Kuboye & Omar (2015a)

x Analytical Results Numerical Results Error
in New
Method

Error in
Adoghe et
al.,2016

0.1 0.99001249583
407730

0.990012495834
079360

2.0600E -
15

1.7430E-
14

0.2 0.96019973352
372489

0.96019973352
3687974

2.9051E -
14

1.0824E-
13

0.3 0.91100946737
681806

0.91100946737
6764056

5.4004E-
14

2.7111E-
13

0.4 0.84318298200
865525

0.84318298200
8574846

8.0404E-
14

5.0792E-
13

0.5 0.75774768567
111815

0.7577476856
71090550

2.7600E-
14

8.1645E-
13

0.6 0.65600684472
903489

0.65600684472
9236145

2.0125E-
13

1.1997E-
12

0.7 0.53952656185
346528

0.53952656185
4197778

7.3249E-
13

1.6543E-
12

0.8 0.41012012804
149626

0.41012012804
3217003

1.7207E-
12

1.6746E-
10

0.9 0.26982990481
199337

0.2698299048
15340641

3.3472E-
12

3.3363E-
10

1.0 0.12090691760
441915

0.12090691761
0237425

5.8182E-
12

5.0017E-
10
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Table 2: Comparison of the new block method results with the
results of Adoghe et al., (2016)

x Analytical Results Numerical Results Error
in New
Method

Error in
Adoghe et
al.,2016

0.1 0.91482908192
435238

0.91482908192
4352375

5.0000E-18 0.9148E
+00

0.2 0.85859724183
983017

0.85859724183
9830167

3.0000E-18 0.8585E
+00

0.3 0.83014119242
399690

0.83014119242
3996896

4.0000E-18 0.8301E+00

0.4 0.82817530235
872968

0.82817530235
8729681

1.0000E-18 0.8281E
+00

0.5 0.8512787292
9987185

0.85127872929
9871852

2.0000E-18 0.8512E
+00

0.6 0.89788119960
949103

0.8978811996
09491024

6.0000E-18 0.8978E
+00

0.7 0.96624729252
952348

0.9662472925
29523477

3.0000E-18 0.9662E
+00

0.8 1.05445907150
753240

1.0544590715
07532390

1.0000E-17 0.1054E
+01

0.9 1.16039688884
305034

1.1603968888
43050330

1.0000E-17 0.1160E
+01

1.0 1.28171817154
095476

1.281718171
54095475

1.0000E-17 0.1281E
+01
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Table 3: Comparison of the new block method results with the
results of Khataybeh et al., (2019)

x Analytical Results Numerical Results Error
in New
Method

Khataybeh
et al.,
(2019)

0.1 0.99995000041
6665278

0.99995000041
6665282

4.0000E-18 5.84E-18

0.2 0.99980000666
6577778

0.99980000666
6577783

5.0000E-18 2.85E-17

0.3 0.99955003374
8987516

0.99955003374
8987521

5.0000E-18 6.86E-17

0.4 0.99920010666
0977940

0.99920010666
0977944

4.0000E-18 1.23E-16

0.5 0.99875026039
4966247

0.99875026039
4966250

3.0000E-18 1.83E-16

0.6 0.99820053993
5204166

0.99820053993
5204169

3.0000E-18 2.24E-16

0.7 0.99755100025
3279575

0.99755100025
3279578

3.0000E-18 1.97E-16

0.8 0.99680170630
2619385

0.99680170630
2619386

1.0000E-18 3.01E-17

0.9 0.99595273301
1994253

0.99595273301
1994252

1.0000E-18 8.53E-16

1.0 0.99500416527
8025766

0.995004165278
025764

2.0000E-18 3.45E-15

Table 4: Comparison of the new block method results with the
results of Kuboye & Omar (2015b)

x Analytical Results Numerical Results Error in New
Method

Error in
Kuboye &
Omar (2015b)

0.01 0.0002000000000000000.0002000000000000000.00000000E+00 2.220446E-16
0.02 0.0004000000000000000.0004000000000000000.00000000E+00 0.000000E+00
0.03 0.0006000000000000010.0006000000000000010.00000000E+00 0.000000E+00
0.04 0.0008000000000000030.0008000000000000030.00000000E+00 0.000000E+00
0.05 0.0010000000000000080.0010000000000000080.00000000E+00 0.000000E+00
0.06 0.0012000000000000210.0012000000000000101.12757026E-

17
0.000000E+00

0.07 0.0014000000000000450.0014000000000000202.51534904E-
17

1.043610E-14

0.08 0.0016000000000000870.0016000000000000424.53196508E-
17

3.463896E-14

0.09 0.0018000000000001570.0018000000000000896.83047369E-
17

7.882583E-14

0.10 0.0020000000000002670.0020000000000001689.84455573E-
17

1.505462E-13
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Table 5: Comparison of the new block method results with the
results of Jena & Mohanty (2019)

x Analytical Results Numerical Results Error
in New
Method

Error in
Jena &
Mohanty
(2019)

0.1 1.0002599324029298001.0002599324029298000.0000E+00 4 .8849E-
15

0.2 1.0002799216036591001.0002799216036593002.2204E-
16

9.1038E-
15

0.3 1.0002999100045007001.0002999100045009002.2204E-
16

1.7763E-
15

0.4 1.0003198976054621001.0003198976054624002.2204E-
16

7.7049E-
14

0.5 1.0003398844065519001.0003398844065521002.2204E-
16

9.9920E-
15

0.6 1.0003598704077776001.0003598704077779002.2204E-
16

1.1990E-
14

0.7 1.0003798556091470001.0003798556091474004.4408E-
16

1.9095E-
14

0.8 1.0003998400106688001.0003998400106695006.6613E-
16

1.11022E-
15

0.9 1.0004198236123505001.0004198236123514008.8817E-
16

5.9952E-
15

1.0 1.0004398064142004001.0004398064142015001.1102E-
15

6.1062E-
14

6. Conclusion

A new single step self-starting implicit block method has been presented in
this paper for solving higher-order (Third, Fourth, and Fifth-order) initial value
problems of ordinary differential equations. The solutions of the numerical ex-
periments obtained are accurate and superior to the existing methods in terms
of performance and accuracy as demonstrated in Tables (1 to 5) and Figures (1
to 5). Hence, this method has given rise to more accurate and superior conver-
gent results which is a good approach to provide solution to higher order initial
value problems.
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Appendix

Appendix 1

Figure 1: Comparison of Absolute Error with Error in Kuboye & Omar (2015a)

Figure 2: Comparison of Absolute Error with Adoghe et al., (2016)
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Figure 3: Comparison of Absolute Error with Khataybeh et al., (2019)

Figure 4: Comparison of Absolute Error with Kuboye & Omar (2015b)

Appendix 2

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, L =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

, K =


0 0 0 0 1

5
0 0 0 0 2

5
0 0 0 0 3

5
0 0 0 0 4

5
0 0 0 0 1

, R =


0 0 0 0 1

50
0 0 0 0 2

25
0 0 0 0 9

50
0 0 0 0 8

25
0 0 0 0 1

2

,

P =


0 0 0 0 − 493123

504000000
0 0 0 0 − 315043

35437500
0 0 0 0 − 961011

56000000
0 0 0 0 − 13664

421875
0 0 0 0 − 9841

207360

, V =


377

90000
778

23625
21789
280000

1984
13125

725
3024

− 33017
15120000

− 613
39375

− 2349
80000

− 1088
23625

475
8064

13
36000

916
354375

387
70000

1664
118125

575
18144

− 403
6720000

− 29
67500

− 81
89600

− 64
39375

125
96768

509
94500000

38
984375

81
1000000

64
421875

1
3360

, T =


0 0 0 0 − 1291

18000000
0 0 0 0 − 227

421875
0 0 0 0 − 2187

2000000
0 0 0 0 − 32

15625
0 0 0 0 − 53

17280

,



512 E. OLUSEYE ADEYEFA and O. OLAYEMI OLANEGAN

Z =


0 0 0 0 71

1575000
0 0 0 0 64

196875
0 0 0 0 243

350000
0 0 0 0 256

196875
0 0 0 0 1

504

, N̄ =


0 0 0 0 − 1472753

64800000
0 0 0 0 − 140279

3543750
0 0 0 0 − 356253

56000000
0 0 0 0 − 84284

1771875
0 0 0 0 − 39191

145152

, W̄ =


16549
216000

4301
23625

2133
7000

1664
4725

− 10222
12096

− 11923
302400

− 1723
23625

− 4563
56000

− 1088
23625

− 425
1728

14803
2268000

874
70875

33
1400

4352
70875

2425
18144

− 937
864000

− 97
47250

− 783
224000

− 4
23625

− 1625
48384

3683
37800000

109
590625

27
87500

128
590625

− 41
12096

,

D̄ =


0 0 0 0 − 7369

5400000
0 0 0 0 − 212

84375
0 0 0 0 − 801

200000
0 0 0 0 − 304

84375
0 0 0 0 − 25

1728

,Ē =


0 0 0 0 1279

1575000
0 0 0 0 316

196875
0 0 0 0 891

350000
0 0 0 0 512

196875
0 0 0 0 − 1

126

, Ŝ =


0 0 0 0 − 1762949

6048000
0 0 0 0 2599

21000
0 0 0 0 − 86047

224000
0 0 0 0 15142

23625
0 0 0 0 − 19361

5376

,Ẑ =


0 0 0 0 − 1111

72000
0 0 0 0 1

250
0 0 0 0 − 159

8000
0 0 0 0 32

1125
0 0 0 0 − 11

64

, Q̂ =


57517
67200

57
350

24687
22400

− 424
525

− 6375
896

− 14249
33600

131
1050

− 2979
11200

376
525

− 4625
1344

3037
43200

− 1
75

263
1600

112
675

125
192

− 1571
134400

3
1400

− 801
44800

46
525

375
1792

353
336000

1
5250

171
112000

− 8
2625

− 181
2688

, P̂ =


0 0 0 0 731

84000
0 0 0 0 − 2

2625
0 0 0 0 297

28000
0 0 0 0 − 32

2625
0 0 0 0 55

672
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Abstract. In this present paper, we consider a class of Lorentzian almost paracontact
metric manifolds namely Lorentzian para-Kenmotsu (briefly LP -Kenmotsu) manifolds
admitting a pseudo-projective curvature tensor W (X,Y ). We study and have shown
that the scalar curvature of Lorentzian para-Kenmotsu manifold is constant if and only if
the time like vector field ξ is harmonic, whenever the LP -Kenmotsu manifold satisfying
R(X,Y ) ·W = 0 is not an Einstein manifold. Further we have shown that Lorentzian
para-Kenmotsu manifolds admitting an irrotational pseudo-projective curvature tensor
and a conservative pseudo-projective curvature tensor are an Einstein manifolds of
constant scalar curvature. At the end, we construct an example of a 3-dimensional
LP -Kenmotsu manifold admitting a pseudo-projective curvature tensor which verifies
the results discussed in the present work.

Keywords: Lorentzian para-Kenmotsu manifolds, pseudo-projective curvature tensor,
harmonic vector field, irrotational and conservative vector fields.

1. Introduction

In 1989, Matsumoto [8] introduced the notion of Lorentzian paracontact met-
ric manifolds and defined Lorentzian para-Sasakian (LP -Sasakian) manifolds,
which are regarded as a special kind of these Lorentzian paracontact manifolds.
Further, these manifolds have been widely studied by many geometers such as

*. Corresponding author
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De, Matsumoto and Shaikh [7], Matsumoto and Mihai [9], Mihai and Rosca [10],
Mihai, Shaikh and De [11], Venkatesha and Bagewadi [16], Venkatesha, Pradeep
Kumar and Bagewadi [17] and obtained several results on these manifolds.

In 1995, Sinha and Sai Prasad [15] defined a class of almost paracontact
metric manifolds namely para-Kenmotsu (briefly P -Kenmotsu) and special para-
Kenmotsu (briefly SP -Kenmotsu) manifolds in similar to P -Sasakian and SP -
Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra Prasad defined a
class of Lorentzian almost paracontact metric manifolds namely Lorentzian
para-Kenmotsu (briefly LP -Kenmotsu) manifolds [1] and they studied ϕ-semi-
symmetric LP -Kenmotsu manifolds with a quarter-symmetric non-metric con-
nection admitting Ricci solitons [13].

On the other hand, in 1970 [12], Pokhariyal and Mishra introduced new
tensor fields, called the Weyl-projective curvature tensor W2 of type (1, 3) and
the tensor field E on a Riemannian manifold. In our earlier work, we consider
LP -Kenmotsu manifolds admitting the Weyl-projective curvature tensorW2 and
shown that these manifolds admitting a Weyl-flat projective curvature tensor, an
irrotational Weyl-projective curvature tensor and a conservative Weyl-projective
curvature tensor are an Einstein manifolds of constant scalar curvature [14].

The idea of Weyl-projective curvature tensor has been extended by Bhagawat
Prasad [6], and in 2002 he defined the pseudo-projective curvature tensor W on
a Riemannian manifold Mn of dimension n as:

(1)
W (X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y ]

− r

n

[ a

n− 1
+ b
]
[g(Y,Z)X − g(X,Z)Y ],

where a and b are constants such that a, b ̸= 0. In the above expression R(X,Y )
is known to be the Riemannian curvature tensor, S is the Ricci tensor and r is
the scalar curvature with respect to the Levi-Civita connection.

The pseudo-projective curvature tensor on a Riemannian manifold was widely
studied by Bagewadi et al., [2], Bagewadi and Venkatesha [3, 4] and by many
geometers. In 2008, Bagewadi et al., [5] have extended these concepts to
Lorentzian paracontact structures and studied LP -Sasakian manifolds admit-
ting this tensor field of particular type. They have shown that the LP -Sasakian
manifold is an Einstein manifold if the pseudo projective curvature tensor ad-
mitted by the manifold is irrotational.

Motivated by these studies, in the present paper, we explore the geometrical
significance of LP -Kenmotsu manifolds admitting the pseudo-projective curva-
ture tensor. The present paper is organized as follows: Section 2 is equipped
with some prerequisites about Lorentzian para-Kenmotsu manifolds. In section
3, we consider Lorentzian para-Kenmotsu manifolds admitting R(X,Y ) ·W = 0
and shown that it is an η-Einstein manifold of constant scalar curvature n(n−1).
As a special case, we have shown that the scalar curvature of Lorentzian para-
Kenmotsu manifold is constant if and only if the time like vector field ξ is
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harmonic, whenever the LP -Kenmotsu manifold satisfying R(X,Y ) ·W = 0 is
not an Einstein manifold.

In the sections 4 and 5, we study geometrical properties of these manifolds,
and in particular, we have shown that Lorentzian para-Kenmotsu manifolds
admitting an irrotational pseudo-projective curvature tensor and a conservative
pseudo-projective curvature tensor are an Einstein manifolds of constant scalar
curvature. Finally, in section 6, we construct an example of a 3-dimensional LP -
Kenmotsu manifold admitting pseudo-projective curvature tensor which verifies
the results discussed in the present work.

2. Preliminaries

An n-dimensional differentiable manifold Mn admitting a (1, 1) tensor field
ϕ, contravariant vector field ξ, a 1-form η and the Lorentzian metric g(X,Y )
satisfying

(2) ϕ2X = X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

and

(3) η(ξ) = −1, ϕξ = 0, η(ϕX) = 0, g(X, ξ) = η(X), rank ϕ = n− 1,

for arbitrary vector fields X, Y on Mn, is called Lorentzian almost paracontact
manifold [8].

In a Lorentzian almost paracontact manifold, for any vector fields X, Y on
Mn, we have

(4) Φ(X,Y ) = Φ(Y,X),

where Φ(X,Y ) = g(X,ϕY ) is a symmetric (0, 2) tensor field.
A Lorentzian almost paracontact manifold Mn is called Lorentzian para-

Kenmotsu manifold if [1]

(5) (∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX,

for all X, Y ∈ χ(Mn), where χ(Mn) is the set of all differentiable vector fields on
Mn and ∇ is known to be the operator of covariant differentiation with respect
to the Lorentzian metric g.

In a Lorentzian para-Kenmotsu manifold, the following relations hold good [1]:

∇Xξ = −ϕ2X = −X − η(X)ξ,(6)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ),(7)

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y,Z)η(X)− g(X,Z)η(Y ),(8)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X,(9)

R(X,Y )ξ = η(Y )X − η(X)Y,(10)

S(X, ξ) = (n− 1)η(X)(11)
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and

(12) S(ϕX, ϕY ) = S(X,Y ) + (n− 1)η(X)η(Y ),

for any vector fields X, Y and Z on Mn.

By putting Z = ξ in (1) and on simplification by using (3), (10) and (11),
we get

(13) W (X,Y )ξ = [a+ (n− 1)b]
[
1− r

n(n− 1)

]
[η(Y )X − η(X)Y ].

The above expression can be written as:

(14) W (X,Y )ξ = k[η(Y )X − η(X)Y ],

where

k = [a+ (n− 1)b]
[
1− r

n(n− 1)

]
.

3. Pseudo-projective semisymmetric LP -Kenmotsu manifolds

Let us consider an LP -Kenmotsu manifold (Mn, g) satisfying the condition [3, 4]

(15) R(X,Y ) ·W = 0,

for any arbitrary vector fields X, Y on Mn. Then the manifold Mn is called as
the pseudo-projective semisymmetric LP -Kenmotsu manifold (or) simply called
as W -semisymmetric LP -Kenmotsu manifold.

On the other hand, we have

(16)
(R(X,Y ) ·W )(U, V )Z =R(X,Y )W (U, V )Z −W (R(X,Y )U, V )Z

−W (U,R(X,Y )V )Z −W (U, V )R(X,Y )Z,

for any vector fields X, Y , Z, U , V ∈ χ(Mn). Then, from (15) and (16), we
have

(17)
g(R(ξ, Y )W (U, V )Z, ξ)− g(W (R(ξ, Y )U, V )Z, ξ)

− g(W (U,R(ξ, Y )V )Z, ξ)− g(W (U, V )(R(ξ, Y )Z, ξ)) = 0.

By virtue of (8) and (9), we get each term of the above expression as:

(18)

(a) g(R(ξ, Y )W (U, V )Z, ξ) = −W ′
(U, V, Z, Y )− η(Y )η(W (U, V )Z),

(b) g(W (R(ξ, Y )U, V )Z, ξ) = g(Y,U)η(W (ξ, V )Z)− η(U)η(W (Y, V )Z),

(c) g(W (U,R(ξ, Y )V )Z, ξ) = η(V )η(W (U, Y )Z)− g(Y, V )η(W (U, ξ)Z),

(d) g(W (U, V )(R(ξ, Y )Z, ξ)) = g(Y,Z)η(W (U, V )ξ)

− η(Z)η(W (U, V )Y ) = 0,
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for arbitrary vector fields U , V , Z, Y ∈ χ(Mn), where

W
′
(U, V, Z, Y ) = g(W (U, V )Z, Y ).

By substituting the above values from (18) in (17), we obtain that

(19)

−W ′
(U, V, Z, Y )− η(Y )η(W (U, V )Z)− g(Y,U)η(W (ξ, V )Z)

+ η(U)η(W (Y, V )Z)− g(Y, V )η(W (U, ξ)Z) + η(V )η(W (U, Y )Z)

− g(Y, Z)η(W (U, V )ξ) + η(Z)η(W (U, V )Y ) = 0.

Clearly it follows from (13) that

(20) η(W (U, V )ξ) = 0,

where U , V ∈ χ(Mn).

Now, by using (20) in (19), we get

(21)

−W ′
(U, V, Z, Y )− η(Y )η(W (U, V )Z)− g(Y,U)η(W (ξ, V )Z)

+ η(U)η(W (Y, V )Z)− g(Y, V )η(W (U, ξ)Z) + η(V )η(W (U, Y )Z)

+ η(Z)η(W (U, V )Y ) = 0,

for any vector fields U , V , Z, Y ∈ χ(Mn).

Let {ei = 1 : i = 1, 2, 3, · · · , n} be an orthonormal basis of the tangent space
at any point of the manifold.

By putting U = Y = ei in (21) we get that

W
′
(ei, V, Z, ei) + g(ei, ei)η(W (ξ, V )Z) + η(V )η(W (ei, ξ)Z)

− η(V )η(W (ei, ei)Z)− η(Z)η(W (ei, V )ei) = 0.(22)

On further simplification of the above equation, we have

(23) W
′
(ei, V, Z, ei) + g(ei, ei)η(W (ξ, V )Z)− η(Z)η(W (ei, V )ei) = 0,

as η(W (ei, ei)Z) = 0.

Now, by taking summation over 1 ≤ i ≤ n in (23), we get

(24)

n∑
i=1

ϵiW
′
(ei, V, Z, ei)+(n−1)η(W (ξ, V )Z)−η(Z)

n∑
i=1

ϵiη(W (ei, V )ei) = 0,

where ϵi = g(ei, ei).



ON A CLASS OF LORENTZIAN PARACONTACT METRIC MANIFOLDS 519

Now, by using (9) and (1), the terms of the above expression are obtained
as:

(25)

(a)
n∑

i=1

ϵiW
′
(ei, V, Z, ei) = [a+ (n− 1)b]S(V,Z)

− r

n

[
a+ (n− 1)b

]
g(V,Z),

(b) η(W (ξ, V )Z) =
[
− a+ r

n

( a

n− 1
+ b
)]

[g(V,Z) + η(V )η(Z)

− bS(V,Z)− b(n− 1)η(V )η(Z)],

(c)

n∑
i=1

ϵiη(W (ei, V )ei) = [a− b]
[ r
n
− (n− 1)

]
η(V ).

By substituting the above values in (24), we get

(26) aS(V,Z)− a(n− 1)g(V,Z) + b[r − n(n− 1)]η(V )η(Z) = 0,

which can be written as

(27) S(V,Z) = (n− 1)g(V,Z)− b

a
[r − n(n− 1)]η(V )η(Z),

for any vector fields V and Z on Mn. Thus, we have the following assertion.

Theorem 3.1. An LP -Kenmotsu manifold (Mn, g) satisfying the condition
R(X,Y ) ·W = 0 is an η-Einstein manifold.

Further, by taking Z = ξ in (27) and on simplification by using (3) and (11),
we obtain that r = n(n− 1) and this leads to the following assertion.

Corollary 3.1. An LP -Kenmotsu manifold (Mn, g) satisfying the condition
R(X,Y ) ·W = 0 is of constant scalar curvature n(n− 1).

Now, let us consider a special case in which the LP -Kenmotsu manifold
admitting R(X,Y ) · W = 0 is not an Einstein manifold. Then, from (27) it
follows that r ̸= n(n− 1); otherwise it is an Einstein manifold.

On differentiating (27) covariantly along X and then on using (7), we get

(∇XS)(V,Z) = −
b

a
dr(X)η(V )η(Z)

− b

a
[r − n(n− 1)][g(X,V )η(Z) + g(X,Z)η(V ) + 2η(X)η(V )η(Z)].(28)

By putting X = Z = ei in the above expression and on taking summation
for 1 ≤ i ≤ n, we obtain that

(29) dr(V ) =
b

a

[
dr(ξ)− [r − n(n− 1)Ψ]

]
η(V ),

where Ψ = 1 +
∑n

i=1 ϵig(ei, ei).
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On replacing V with ξ in the above expression (29), we get that

(30) dr(ξ) =
b

a+ b
[r − n(n− 1)]Ψ.

From (29) and (30) we obtain

(31) dr(V ) =
b

a+ b
[n(n− 1)− r]Ψη(V ).

If r is constant then (31) yields either r = n(n−1) or Ψ = 0. But as r ̸= n(n−1),
we must have Ψ = 0, which means that the vector field ξ is harmonic.

Again, if Ψ = 0, then from (31) it follows that r is constant. Thus we can
state the following:

Theorem 3.2. If the LP -Kenmotsu manifold admitting the condition R(X,Y ) ·
W = 0 is not an Einstein manifold, then the scalar curvature of the manifold is
constant if and only if the time like vector field ξ is harmonic.

4. Irrotational pseudo-projective curvature tensor in LP -Kenmotsu
manifolds

Definition 4.1. The rotation (curl) of pseudo-projective curvature tensor W
on a Riemannian manifold is given by [2]

Rot W = (∇UW )(X,Y )Z + (∇XW )(U, Y )Z

+ (∇YW )(X,U)Z − (∇ZW )(X,Y )U,(32)

for all X, Y , U , Z ∈ χ(Mn).
In virtue of Bianchi’s second identity, we have

(33) (∇UW )(X,Y )Z + (∇XW )(U, Y )Z + (∇YW )(X,U)Z = 0.

Therefore, (32) reduces to

(34) Rot W = −(∇ZW )(X,Y )U,

for all X, Y , U , Z ∈ χ(Mn).
Now, let us suppose that the pseudo-projective curvature tensor is irrota-

tional. Then curl W = 0 and so by (34) we get

−(∇ZW )(X,Y )U = 0,

which implies the following:

(35) ∇Z(W (X,Y )U) =W (∇ZX,Y ) +W (X,∇ZY )U +W (X,Y )∇ZU

for any arbitrary vector fields X, Y , U , Z ∈ χ(Mn).
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By replacing U = ξ in (35), we have

(36) ∇Z(W (X,Y )ξ) =W (∇ZX,Y )ξ +W (X,∇ZY )ξ +W (X,Y )∇Zξ.

Using (14) in (36) and on simplifying by making use of (6), we get

(37) W (X,Y )ϕ2Z = −k[g(Z, ϕY )X − g(Z, ϕX)Y ],

which on further simplification by using (2) and (14), we get

(38) W (X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ],

for any vector fields X, Y , Z ∈ χ(Mn). Thus, we can state:

Lemma 4.1. If the pseudo-projective curvature tensor W in an LP -Kenmotsu
manifold is irrotational, then W is given by the expression (38).

Further, in view of (1) and (38) we get

aR(X,Y )W = [a+ (n− 1)b][g(Y,W )X − g(X,W )Y ]

− b[S(Y,W )X − S(X,W )Y ],(39)

where X, Y , Z ∈ χ(Mn).

Let {ei = 1 : i = 1, 2, 3, · · · , n} be an orthonormal basis of the tangent space
at any point of the manifold. Then, by putting Y = Z = ei in (39), we get that

aR(X, ei)W = [a+ (n− 1)b][η(W )X − g(X,W )ei]

− b[S(ei,W )X − S(X,W )ei].(40)

By taking the inner product of (40) with W and on taking summation over
1 ≤ i ≤ n we get

(41) S(X,W ) = (n− 1)g(X,W ).

This proves that the manifold is Einstein.

Finally, by taking X = W = ei in (41) and on taking summation from 1 to
n we obtain

(42) r = n(n− 1).

Hence we can state that:

Theorem 4.1. If the pseudo-projective curvature tensor in an LP -Kenmotsu
manifold is irrotational, then the manifold is Einstein and the scalar curvature
under such conditions is given by n(n− 1).
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5. Conservative pseudo-projective curvature tensor in LP -Kenmotsu
manifolds

On differentiating (1) with respect to U , we get

(∇UW )(X,Y )Z = a(∇UR)(X,Y )Z + b[(∇US)(Y,Z)X − (∇US)(X,Z)Y ]

− dr(U)

n

[ a

n− 1
+ b
]
[g(Y,Z)X − g(X,Z)Y ],(43)

which on contraction with respect to U becomes

(div W )(X,Y )Z = a[(divR)(X,Y )Z] + b[(∇XS)(Y,Z)− (∇Y S)(X,Z)]

− 1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(X)− g(X,Z)dr(Y )],(44)

for arbitrary vector fields X, Y , Z, U ∈ χ(Mn).
Let us suppose that the pseudo-projective curvature tensor is conservative,

i. e., div W = 0. Then, (44) can be written as:

(a+ b)[(∇XS)(Y, Z)− (∇Y S)(X,Z)]

=
1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(X)− g(X,Z)dr(Y )].(45)

By putting X = ξ in (45), we have

(a+ b)[(∇ξS)(Y, Z)− (∇Y S)(ξ, Z)]

=
1

n(n− 1)
[a+ (n− 1)b][g(Y,Z)dr(ξ)− g(ξ, Z)dr(Y )].(46)

On the other hand, since ξ is a Killing vector and the scalar curvature r remains
invariant, we have dr(ξ) = 0.

Also, we have

(∇ξS)(Y,Z) = ξS(Y,Z)− S(∇ξY,Z)− S(Y,∇ξZ),

and
(∇Y S)(ξ, Z) = ∇Y S(ξ, Z)− S(∇Y ξ, Z)− S(ξ,∇Y Z),

for any vector fields Y , Z ∈ χ(Mn).
By virtue of the above, the relation (46) becomes

(a+ b)[−∇Y (S(ξ, Z)) + S(∇Y ξ, Z) + S(ξ,∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(47)

which on using (6) reduces to

(a+ b)[−∇Y {(n− 1)η(Z)}+ S(−ϕ2Y,Z) + (n− 1)η(∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(48)
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and further it is simplified to

(a+ b)[−(n− 1)∇Y {η(Z)} − S(ϕY, ϕZ) + (n− 1)η(∇Y Z)]

=
1

n(n− 1)
[a+ (n− 1)b][−η(Z)dr(Y )],(49)

for arbitrary vector fields Y , Z ∈ χ(Mn).
By putting Z = ϕZ in (49), we get

(50) (a+ b)[−S(ϕY, ϕ2Z) + (n− 1)η(∇Y (ϕZ))] = 0.

If a+ b ̸= 0, then (50) becomes

(51) S(ϕY,Z) = (n− 1)g(ϕY,Z).

By putting Z = ϕZ in (51), we get

(52) S(ϕY, ϕZ) = (n− 1)g(ϕY, ϕZ),

and this implies that

(53) S(Y,Z) = (n− 1)g(Y, Z),

which on contracting gives

(54) r = n(n− 1), where

(55) r =

3∑
i=1

ϵi S(ei, ei) and ϵi = g(ei, ei), which is constant.

So, one can state that:

Theorem 5.1. An LP -Kenmotsu manifold admitting a conservative pseudo-
projective curvature tensor is an Einstein manifold and it is of constant scalar
curvature.

6. Example

Example 6.1. We consider a 3-dimensional manifold M3 = {(x, y, z) ∈ R3},
where (x, y, z) are the standard coordinates in R3. Let e1, e2 and e3 be the
vector fields on M3 given by

(56) e1 = x
∂

∂x
= ξ, e2 = x

∂

∂y
, e3 = x

∂

∂z
.

Clearly, {e1, e2, e3} is a set of linearly independent vectors for each point of M3

and hence form a basis of χ(M3).
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The Lorentzian metric g(X,Y ) is defined by:

g(ei, ej) =


−1, if i = j = 1

1, if i = j = 2 or 3

0, if i ̸= j; i, j = 1, 2, 3.

Let η be the 1-form defined by:

η(Z) = g(Z, e1), for any Z ∈ χ(M3).

Let ϕ be a (1, 1)-tensor field on M3 defined by:

ϕ(e1) = 0, ϕ(e2) = −e2, ϕ(e3) = −e3 and ϕ2(e1) = 0, ϕ2(e2) = e2, ϕ
2(e3) = e3.

The linearity of ϕ and g(X,Y ) yields that

η(e1) = −1, ϕ2(Z) = Z + η(Z)e1 and g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y ),

for any vector fields X, Y, Z ∈ χ(M3). Thus, for e1 = ξ, the structure (ϕ, ξ, η, g)
defines a Lorentzian almost paracontact structure on M3.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g. Then, we have [14][

e1, e2
]
= e2, [e1, e3] = e3, [e2, e3] = 0.

The Koszul’s formula is defined by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).(57)

By using the above Koszul’s formula and on taking e1 = ξ, we get the follow-
ing [14]:

∇e1e1 = 0,∇e1e2 = 0,∇e1e3 = 0,

∇e2e1 = −e2,∇e2e2 = −e1,∇e2e3 = 0,(58)

∇e3e1 = −e3,∇e3e2 = 0,∇e3e3 = −e1.

From the above calculations, we see that the manifold under consideration
satisfies all the properties of Lorentzian para-Kenmotsu manifold i.e., ∇Xξ =
−ϕ2X = −X − η(X)ξ and (∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX, for all e1 = ξ.
Thus, the manifold M3 under consideration with the structure (ϕ, ξ, η, g) is a
3-dimensional Lorentzian para-Kenmotsu manifold [14].

It is known that

(59) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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Then, by using (58) and (59), the non-vanishing components of the curvature
tensor are obtained as [14]:

(60)
R(e1, e2)e1 = e2, R(e1, e2)e2 = e1, R(e1, e3)e1 = e3,

R(e1, e3)e3 = e1, R(e2, e3)e2 = −e3, R(e2, e3)e3 = e2.

With the help of above expressions of the curvature tensors, it follows that

(61) R(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

This proves that the 3-dimensional manifold M3 under consideration is an LP -
Kenmotsu manifold and it admits a pseudo-projective curvature tensor.

Let X, Y and Z be any three vector fields given by:

(62) X = a1e1 + a2e2 + a3e3, Y = b1e1 + b2e2 + b3e3, Z = c1e1 + c2e2 + c3e3;

where ai, bi, ci are all non-zero real numbers, for all i = 1, 2, 3.
By putting Z = ξ = e1 in (61) and on using (62), we get that

R(X,Y )ξ = η(Y )X − η(X)Y = a1b2e2 + a1b3e3 − a2b1e2 − a3b1e3.

Further, in view of (61) and (62), we get

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y = (c1e2 + c2e1)(a1b2 − a2b1)
+ (a1b3 − a3b1)(c1e3 + c3e1) + (a2b3 − a3b2)(c3e2 − c2e3)

and hence from (1) we have

(63)
W (X,Y )Z = [a+ (n− 1)b]

[
1− r

n(n− 1)

]
(c1e2 + c2e1)(a1b2 − a2b1)

+ (a1b3 − a3b1)(c1e3 + c3e1) + (a2b3 − a3b2)(c3e2 − c2e3),

and

W (X,Y )ξ

= [a+ (n− 1)b]
[
1− r

n(n− 1)

]
(a1b2e2 + a1b3e3 − a2b1e2 − a3b1e3).(64)

Hence, we can say thatW (X,Y )Z = 0 (or)W (X,Y )ξ = 0, only if a1
b1

= a2
b2

= a3
b3
.

This proves that the manifold M3 under consideration is an LP -Kenmotsu
manifold and it admits a flat pseudo-projective curvature tensor, provided the
above condition is satisfied.

Further, by using (60), we obtain the Ricci tensors and scalar curvatures as
follows: S(e1, e1) = −2, S(e2, e2) = 2, S(e3, e3) = 2 and r = 6, where

S(X,Y ) =
3∑

i=1

ϵi g(R(ei, X)Y, ei),

r =

3∑
i=1

ϵi S(ei, ei) and ϵi = g(ei, ei).

The above arguments verifies the results discussed in sections 4 and 5.
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7. Conclusions

The present work explores the geometrical significance of a new class of Lorentzian
paracontact metric manifolds namely Lorentzian para-Kenmotsu manifolds when-
ever a pseudo-projective curvature tensor admitted by these manifolds exhibits
the physical phenomena, i.e., the curvature tensor is either irrotational or con-
servative.
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Abstract. In this study we discuss the concept of rough soft sets over a semigroup.
Basic results of the lower and upper approximations of soft semigroups , soft ideals,
soft bi-ideals and soft interior ideals over a semigroup with a congruence relation are
introduced. Finally, topological structures of rough soft sets are presented.

Keywords: soft sets, soft semigroups, soft ideals, rough soft sets.

1. Introduction

A lot of concepts like fuzzy sets [9], rough sets [14], soft sets [8] are presented to
deal mathematically with uncertain knowledge. In 1982, Pawlak [14] introduced
the rough set theory as an extension of ordinary set theory, in which a pair of
ordinary sets namely the lower approximation and upper approximation are
associated to a subset of a universe. A connection between algebraic systems
and rough sets are studied by some authors. One of these algebraic systems
is semigroup theory, which is the main interest of this study. Kuroki in [7],
presented the concept of a rough ideal in a semigroup. Since Molodtsov [8]
intoduced the theory of soft sets, the literature of soft algebraic systems has
grown rapidly. For example, Aktas and Cagman [1] initiated the concept of soft
groups, Ali et al. [2] applied the notion of soft sets to the semigroup theory, and

*. Corresponding author
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introduced the concept of soft semigroups and soft ideals. Following, the present
authors defined several types of soft ideals over a semigroup in [10, 11, 12]. In
2010, Feng et al. [3] studied the relation between soft sets and rough sets by
introducing the concept of rough soft set. Ghosh and Samanta [4] discussed the
main properties of rough soft sets and defined rough soft groups. In this paper,
we deal with rough soft set theory by giving the universal set the structure of a
semigroup and examine some basic properties of rough soft sets with illustrative
examples. Then, we study the roughness of soft semigroups, soft left (right)
ideals, soft bi-ideals and soft interior ideals over a semigroup. Finally, some
topological spaces induced by rough soft sets are studied.

2. Preliminaries

A nonempty subset ϕ ̸= B ⊆ S of a semigroup S is called a bi-ideal (an interior
ideal) of S if it is subsemigroup of S and BSB ⊆ B(SBS ⊆ B) (see, [5]).

Definition 2.1 ([8]). Let E be a set of parameters, P (S) the power set of S
and A ⊆ E. The pair (F,A) is called a soft set over S, where F is a mapping
F : A −→ P (S).

The soft set (F,A) is called a nonempty soft set,(F,A) ̸= ϕ, if and only if
F (a) ̸= ϕ, for all a ∈ A. Here, we fix A as the set of parameters and denote the
set of all soft sets over a semigroup S by T (S).

Definition 2.2 ([2]). Let (F,A), (G,A) ∈ T (S), then (G,A) is called a soft
subset of (F,A), denoted by (G,A) ⊑ (F,A) if G(a) ⊆ F (a), for all a ∈ A. The
two sets (F,A) and (G,A) are equal iff (G,A) ⊑ (F,A) and (F,A) ⊑ (G,A).

Definition 2.3 ([2]). Let (F,A), (G,A) ∈ T (S), the intersection of (F,A) and
(G,A) is the soft set (F ⊓G,A) such that F ⊓G(a) = F (a)∩G(a), for all a ∈ A.

Definition 2.4 ([2]). Let (F,A), (G,A) ∈ T (S), the union of (F,A) and (G,A)
is the soft set (F ⊔G,A) such that F ⊔G(a) = F (a) ∪G(a) for all a ∈ A.

Definition 2.5 ([2]). Let (F,A), (G,A) ∈ T (S). The soft product (F,A)•(G,A)
is defined as the soft set (FG,A) where FG(a) = F (a)G(a), for all a ∈ A.

Definition 2.6 ([2]). A soft set (F,A) over a semigroup S is called a soft
semigroup if (F,A) • (F,A) ⊑ (F,A).

Definition 2.7 ([2]). A soft set (F,A) over S is called a soft left [right] ideal
over S, if (S,A) • (F,A) ⊑ (F,A) [(F,A) • (S,A) ⊑ (F,A)], where (S,A) is a
soft set over S defined by S(a) = S ∀a ∈ A. A soft set (F,A) is called a soft
ideal if it is both a soft left and a soft right ideal over S.

Proposition 2.1 ([2]). A soft set (F,A) is a soft semigroup (ideal) over S if
and only if ∀a ∈ A, F (a) ̸= ϕ is a subsemigroup (an ideal) of S.
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Definition 2.8 ([2, 11]). A soft set (F,A) over a semigroup S is called a soft
bi-ideal (interior ideal) if and only if ∀a ∈ A, F (a) ̸= ϕ is a bi-ideal (interior
ideal) of S.

Definition 2.9 ([13]). A collection T of soft sets over S is called a soft topology
on S if:

(i) (ϕ,A), (S,A) ∈ T where ϕ(a) = ϕ and S(a) = S, for all a ∈ A,

(ii) the intersection of any two soft sets in T belongs to T ,

(iii) the union of any number of soft sets in T belongs to T .

The triplet (S, T , A) is called a soft topological space over S.

3. Approximation of soft sets over a semigroup

Let (S, θ) be a Pawlak approximation space (PAS), that is, θ is an equivalence
relation on a semigroup S. The lower approximation θ⋆(X) and upper approxi-
mation θ⋆(X) of X ⊆ S are defined by[14]

θ⋆(X) = {x ∈ S : [x] ⊆ X},

θ⋆(X) = {x ∈ S : [x] ∩X ̸= ϕ}.

Definition 3.1 ([3]). Let (S, θ) be PAS and (F,A) be a soft set over S. The
lower approximation (F ,A) and upper approximation (F ,A) of (F,A) are soft
sets over S defined by

F (a) = θ⋆(F (a)) = {x ∈ S : [x] ⊆ F (a)},
F (a) = θ⋆(F (a)) = {x ∈ S : [x] ∩ F (a) ̸= ϕ},

for all a ∈ A. If (F ,A) = (F ,A), then (F,A) is called definable; otherwise
(F,A) is called a rough soft set.

The following properties of rough soft sets are due to [3]. We shall give a
proof for completeness.

Theorem 3.1. Suppose that (S, θ) is PAS. If (F,A), (G,A) ∈ T (S), then the
following hold:

(1) (F ,A) ⊑ (F,A) ⊑ (F ,A);

(2) (F ⊔G,A) = (F ,A) ⊔ (G,A);

(3) (F ⊓G,A) = (F ,A) ⊓ (G,A);

(4) If (F,A) ⊑ (G,A) =⇒ (F ,A) ⊑ (G,A) and (F ,A) ⊑ (G,A);
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(5) (F ⊓G,A) ⊑ (F ,A) ⊓ (G,A);

(6) (F ⊔G,A) ⊒ (F ,A) ⊔ (G,A);

(7) (F ,A) = (F ,A);

(8) (F ,A) = (F ,A).

Proof. (1) Let u ∈ F (a) then u ∈ [u] ⊆ F (a), for all a ∈ A. Thus, (F ,A) ⊑
(F,A). If u ∈ F (a) ⇒ [u] ∩ F (a) ̸= ϕ, that is, u ∈ θ⋆(F (a)) = F (a). Hence,
(F,A) ⊑ (F ,A).

(2) Let u ∈ F ⊔G(a) = θ⋆((F ⊔ G)(a)) = θ⋆(F (a) ∪ G(a)) = θ⋆(F (a)) ∪
θ⋆(G(a)) = F (a) ∪G(a). Thus, (F ⊔G,A) = (F ,A) ⊔ (G,A).

(3) Let u ∈ F ⊓G(a) = θ⋆((F ⊓ G)(a)) = θ⋆(F (a) ∩ G(a)) = θ⋆(F (a)) ∩
θ⋆(G(a)) = F (a) ∩G(a). Thus, (F ⊓G,A) = (F ,A) ⊓ (G,A).

(4) Let u ∈ F (a) = θ⋆(F (a)) ⊆ θ⋆(G(a)) = G(a), since F (a) ⊆ G(a), for all
∈ A. Hence, (F ,A) ⊑ (G,A). Similarly, we show that (F ,A) ⊑ (G,A).

(5) Let u ∈ F ⊓G(a) = θ⋆(F ⊓ G(a)) = θ⋆(F (a) ∩ G(a)) ⊆ θ⋆(F (a)) ∩
θ⋆(G(a)) = F (a) ∩G(a). Therefore, (F ⊓G,A) ⊑ (F ,A) ⊓ (G,A).

(6) Let u ∈ F ⊔G(a) = θ⋆(F ⊔ G(a)) = θ⋆(F (a) ∪ G(a)) ⊇ θ⋆(F (a)) ∪
θ⋆(G(a)) = F (a) ∪G(a). Therefore, (F ⊔G,A) ⊒ (F ,A) ⊔ (G,A).

(7), (8) see items (4,6) in Theorem 3 [3]. □

Definition 3.2 ([7]). An equivalence relation θ on a semigroup S is called a
congruence on S if (a, b) ∈ θ implies (ax, bx) ∈ θ and (xa, xb) ∈ θ, for all x ∈ S.
A congruence θ on S is called complete if [x][y] = [xy], for all x, y ∈ S.

Theorem 3.2. Let θ be a congruence relation on S. If (F,A) and (G,A) are
nonempty soft sets over S, then

(F ,A) • (G,A) ⊑ (FG,A).

Proof. By applying Theorem 2.2 in [7], we have

F (a)G(a) = θ⋆(F (a))θ⋆(G(a))

⊆ θ⋆(F (a)G(a)) = θ⋆(FG(a)) = FG(a).

Then, F (a)G(a) ⊆ FG(a), for all a ∈ A. Thus, we have (F ,A) • (G,A) ⊑
(FG,A). □

The following theorem comes as a direct application of Theorem 2.3 in [7].

Theorem 3.3. Let θ be a complete congruence relation on S. If (F,A) and
(G,A) are nonempty soft sets over S, then

(F ,A) • (G,A) ⊑ (FG,A).

Proposition 3.1 ([2]). A soft set (F,A) is a soft semigroup over S if and only
if ∀a ∈ A, F (a) ̸= ϕ is a subsemigroup of S.
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Theorem 3.4. Let θ be a congruence relation on a semigroup S. Then:

(1) (F,A) is a soft semigroup =⇒ (F ,A) is a soft semigroup;

(2) (F,A) is a soft ideal =⇒ (F ,A) is a soft ideal.

Proof. (1) Assume that (F,A) is a soft semigroup over S, then F (a) is a
subsemigroup of S, for all a ∈ A. Since (F ,A) is nonempty soft set then Theorem
3.2 implies that

(F ,A) • (F ,A) ⊑ (FF ,A).

That is, F (a)F (a) ⊆ FF (a), for all a ∈ A. By Theorem 3.1, we obtain

F (a)F (a) ⊆ FF (a) = θ⋆(FF (a)) = θ⋆(F (a)F (a)) ⊆ θ⋆(F (a)) = F (a).

Thus, F (a) is a subsemigroup of S, for all a ∈ A. Therefore, (F ,A) is a soft
semigroup over S.

(2) Assume that (F,A) is a soft left ideal over S, then F (a) is a left ideal of
S, for all a ∈ A. Note that θ⋆(S) = S. Then, Theorem 3.2 implies

(S,A) • (F ,A) ⊑ (SF ,A).

That is, S(a)F (a) ⊆ SF (a), for all a ∈ A. By Theorem 3.1, we obtain

S(a)F (a) ⊆ SF (a) = θ⋆(SF (a)) ⊆ θ⋆(F (a)) = F (a).

Thus, F (a) is a left ideal of S, for all a ∈ A. Therefore, (F ,A) is a soft left ideal
over S. In a similar way, it can be shown that (F ,A) is a soft right ideal over S
whenever (F,A) is. This completes the proof. □

Theorem 3.4 shows that every soft semigroup (soft ideal) (F,A) over a semi-
group S can be extended to the largest soft semigroup (soft ideal) (F ,A). Gener-
ally, the converse of the above theorem does not hold, as shown in the following
example.

Example 3.1. Let S = {a, b, c, d} be a semigroup with the following table [7]:

* a b c d

a a b c d
b b b b b
c c c c c
d d c b a

Suppose S is partitioned by a congruence relation θ into the classes: {a}, {d}, {b, c}
Let A = {e1, e2} and (F,A) be a soft set over S defined by

F (e1) = {b}, F (e2) = S.

Then, the upper approximation (F ,A) of (F,A) is defined as follows:

F (e1) = θ⋆({b}) = {b, c}, F (e2) = θ⋆(S) = S.

It is clear that (F ,A) is a soft ideal over S while (F,A) is not.
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The below result is an application to Theorem 3.2 in [7].

Theorem 3.5. Let θ be a complete congruence relation on S. Then

(1) (F,A) is a soft semigroup =⇒ (F ,A) ̸= ϕ is a soft semigroup;

(2) (F,A) is a soft ideal =⇒ (F ,A) ̸= ϕ is a soft ideal.

Proof. (1) Suppose that (F,A) is a soft semigroup over S, then F (a) is a
subsemigroup of S, for all a ∈ A. Since (F ,A) is nonempty soft set then Theorem
3.3 implies that

(F ,A) • (F ,A) ⊑ (FF ,A).

That is, F (a)F (a) ⊆ FF (a), for all a ∈ A. By Theorem 3.1, we obtain

F (a)F (a) ⊆ FF (a) = θ⋆(FF (a)) = θ⋆(F (a)F (a)) ⊆ θ⋆(F (a)) = F (a).

Thus, F (a) is a subsemigroup of S, for all a ∈ A. Therefore, (F ,A) is a soft
semigroup over S.

(2) Assume that (F,A) is a soft left ideal over S, then F (a) is a left ideal of
S, for all a ∈ A. Note that θ⋆(S) = S. Then, Theorem 3.1 implies

(S,A) • (F ,A) ⊑ (SF ,A).

That is, S(a)F (a) ⊆ SF (a), for all a ∈ A. By Theorem 3.3, we obtain

S(a)F (a) ⊆ SF (a) = θ⋆(SF (a)) ⊆ θ⋆(F (a)) = F (a).

Thus, F (a) is a a left ideal of S, for all a ∈ A. Therefore, (F ,A) is a soft left
ideal over S. In a similar way, (F ,A) is a soft right ideal over S whenever (F,A)
is. This completes the proof. □

Theorem 3.6. Let θ be a congruence relation on S. Then, (F ,A) is a soft
bi-ideal over S if (F,A) is a soft bi-ideal.

Proof. Let (F,A) be a soft bi-ideal over S then (F,A) is a soft semigroup over
S and by theorem 3.4, (F ,A) is a soft semigroup. By applying Theorem 3.2
more times, we have

F (a)S(a)F (a)) = θ⋆(F (a))θ⋆(S(a))θ⋆(F (a))

⊆ θ⋆(F (a))θ⋆(S(a)F (a))

⊆ θ⋆(F (a)S(a)F (a))

⊆ θ⋆(F (a)) = F (a).

Thus F (a) is a bi-ideal of S, for all a ∈ A. Therefore,(F ,A) is a soft bi-ideal
over S. □

Theorem 3.7. Let θ be a complete congruence relation on S. Then, (F ,A) ̸= ϕ
is a soft bi-ideal over S if (F,A) is a soft bi-ideal.
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Proof. It is immediate by applying Theorem 3.3 and Theorem 3.5. □

Theorem 3.8. Let θ be a congruence relation on S. Then, (F ,A) is a soft
interior ideal over S if (F,A) is a soft interior ideal.

Proof. Let (F,A) be a soft interior ideal over S then (F,A) is a soft semigroup
over S and by theorem 3.4, (F ,A) is a soft semigroup. By applying Theorem
3.2 , we have

SF (a)S = S(a)F (a)S(a) = θ⋆(S(a))θ⋆(F (a))θ⋆(S(a))

⊆ θ⋆(S(a))θ⋆(F (a)S(a))

⊆ θ⋆(S(a)F (a)S(a))

⊆ θ⋆(F (a)) = F (a).

Thus, F (a) is an interior ideal of S, for all a ∈ A. Therefore, (F ,A) is a soft
interior ideal over S. □

Theorem 3.9. Let θ be a complete congruence relation on S. Then, (F ,A) ̸= ϕ
is a soft interior ideal over S if (F,A) is a soft interior ideal.

Proof. It is immediate by applying Theorem 3.3 and Theorem 3.5. □

Theorem 3.10. Let θ be a congruence relation on S. (F,A) and (G,A) are a
soft right ideal and a soft left ideal over S, respectively, then:

(i) (FG,A) ⊑ (F ,A) ⊓ (G,A);

(ii) (FG,A) ⊑ (F ,A) ⊓ (G,A).

Proof. (i) By hypotheses, F (a) is a right ideal of S and G(a) is a left ideal of
S, for all a ∈ A. Then, we have

F (a)G(a) ⊆ F (a)S ⊆ F (a), F (a)G(a) ⊆ SG(a) ⊆ G(a).

Thus, F (a)G(a) ⊆ F (a) ∩G(a), for all a ∈ A. Theorem 3.1 verifies that

(FG,A) ⊑ (F ⊓G,A) ⊑ (F ,A) ⊓ (G,A).

(ii) Similar to item (i). This completes the proof. □
Assume θ and ρ are congruence relations on S. Then, the composition

θ ◦ ρ = {(x, y) : (x, z) ∈ θ, (z, y) ∈ ρ}

is a congruence relation on S iff θ ◦ ρ = ρ ◦ θ (see, [7]).

Theorem 3.11. Let θ and ρ be congruence relations on S such that θ◦ρ = ρ◦θ.
If (F,A) is a soft semigroup over S, then

(F θ, A) • (F ρ, A) ⊑ (F θ◦ρ, A).
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Proof. Let c ∈ F θ(a)F ρ(a) then there exist x ∈ F θ(a) = θ⋆(F (a)) and y ∈
F ρ(a) = ρ⋆(F (a)) such that c = xy ∈ θ⋆(F (a))ρ⋆(F (a)) ⊆ S. From definition of
the upper approximation, there exist z, w ∈ S such that

z ∈ [x]θ ∩ F (a), w ∈ [y]ρ ∩ F (a).

That is, (z, x) ∈ θ and (w, y) ∈ ρ. Since θ and ρ are congruence relations on
S, then (zw, xw) ∈ θ and (xw, xy) ∈ ρ. This implies that (zw, xy) ∈ θ ◦ ρ.
Since F (a) is a subsemigroup of S, for all a ∈ A, zw ∈ F (a). Therefore we have
zw ∈ [xy]θ◦ρ ∩F (a) which implies xy ∈ (θ ◦ ρ)⋆(F (a)) = F θ◦ρ(a). Thus, we have

(F θ, A) • (F ρ, A) ⊑ (F θ◦ρ, A).

4. Topological structures on rough soft sets

In this section, some topological spaces induced by rough soft sets are discussed.
Throughout this section, S is a semigroup, θ is an equivalence relation on S.

4.1 Topological semigroups Vs soft sets

Topologies versus rough sets are studied by M. Kondo [6].

Proposition 4.1 ([6]). Tθ = {X ⊆ S : θ⋆(X) = X} is a topology on S.

Furthermore, we show that the pair (S, Tθ) is a topological semigroup.

Theorem 4.1. If θ is a complete congruence relation on S, (S, Tθ) is a topo-
logical semigroup.

Proof. Let x, y ∈ S and U ∈ Tθ be an open set containing the element p = xy.
Then, xy ∈ U = θ⋆(U) which implies [xy] ⊆ U. By completeness of θ, we have
[x][y] = [xy] ⊆ U. Since, [x], [y] are open sets containing x, y respectively such
that [x][y] ⊆ U then we conclude that the multiplication . : S × S → S of S is
a continuous mapping. Therefore, (S, Tθ) is a topological semigroup. □

Theorem 4.2. Let θ be a complete congruence relation on S, and (F,A) be a
soft semigroup over S. Then, for all a ∈ A, the pair (F (a), TF (a)) is a topological
semigroup, where TF (a) is the relative topology on F (a) induced from Tθ.

Proof. By Theorem 4.1,(S, Tθ) is a topological semigroup. Since (F,A) is
a soft semigroup over S, then F (a) is a subsemigroup of S, for all a ∈ A.
Let x, y ∈ F (a) and W ∈ TF (a) containing the element xy. From definition of
TF (a), there exists an open set U ∈ Tθ such that xy ∈ W = F (a) ∩ U. Hence,
xy ∈ U = θ⋆(U) that is, [xy] ⊆ U. Since the classes [x], [y] ∈ Tθ, the two sets
F (a) ∩ [x], F (a) ∩ [y] are open sets in F (a) and containing x, y respectively.
Then, we obtain

(F (a) ∩ [x])(F (a) ∩ [y]) ⊆ F (a) ∩ [x][y] = F (a) ∩ [xy] ⊆ F (a) ∩ U =W.

Thus, for all a ∈ A, the pair (F (a), TF (a)) is a topological semigroup. □
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4.2 Soft topologies Vs rough soft sets

Let (F,A) be a soft set over S. Denote

TB = {(F,A) ∈ T (S) : (F ,A) = (F ,A)},

TE = {(F,A) ∈ T (S) : (F ,A) = (F,A)}, TL = {(F ,A) : (F,A) ∈ T (S)}.
By using items (7),(8) in Theorem 3.1, the proof of the following result is a

clear matter.

Proposition 4.2. TB = TE = TL.

Notatios:. The complement of (F,A) ∈ T (S) is a soft set (H,A) ∈ T (S)
such that H(a) = F (a)c = S − F (a), for all a ∈ A.

Proposition 4.3. Let (S, θ) be PAS. Then, for all (F,A) ∈ T (S),

(F ,A) = (F,A) ⇐⇒ (H,A) = (H,A).

Proof. (⇒) Suppose that (F ,A) = (F,A). That is, F (a) = θ⋆(F (a)), for all
a ∈ A. From Propostion 5 in [6], we have

H(a) = F (a)c = θ⋆(F (a)
c) = θ⋆(H(a)) = H(a).

This means that (H,A) = (H,A).
(⇐) Proof of the converse statement is similar. □

Theorem 4.3. Let (S, θ) be PAS, then:

(i) (S, TE , A) is a soft topological space.

(ii) (F,A) ∈ TE ⇐⇒ (H,A) ∈ TE .

Proof. (i) Since S(a) = θ⋆(S(a)) = θ⋆(S) = S, for all a ∈ A, then the whole
soft set (S,A) ∈ TE . Similarly the empty soft set (ϕ,A) ∈ TE . Assume that
(F,A) and (G,A) are arbitrary elements in TE , then, by Theorem 3.1, we have

F ⊓G(a) = F ⊓G(a) = F (a) ∩G(a) = F (a) ∩G(a) = F ⊓G(a)

Thus, (F,A) ⊓ (G,A) is an element in TE .
Let {(Fi, A) : i ∈ J} ⊂ TE be a family of soft open sets over S, then, by

item(1) in Theorem 3.1, we have

(⊔i∈JFi, A) ⊑ (⊔i∈JFi, A).

Since (Fi, A) = (Fi, A) ∀i ∈ J and by Propostion 2 in [6], we have

⊔i∈JFi(a) =
⋃
i∈J

Fi(a) ⊆ θ⋆(
⋃
i∈J

Fi(a)) = θ⋆(⊔i∈JFi(a)) = ⊔i∈JFi(a),

for all a ∈ A. Then, (⊔i∈JFi, A) = (⊔i∈JFi, A). So (⊔i∈JFi, A) is an element in
TE . Therefore, (S, TE , A) is a soft topological space.

(ii) Let (F,A) ∈ TE ⇔ (F ,A) = (F,A). Then, Proposition 4.3 implies that
(H,A) = (H,A) and so (H,A) ∈ TE . Thus, (F,A) is soft closed.



ROUGHNESS OF SOFT SETS OVER A SEMIGROUP 537

Acknowledgements

The authors would like to thank the referees for their valuable suggestions to
improve this paper.

References

[1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007),
2726-2735.

[2] I.M. Ali, M. Shabir, P.K. Shum, On soft ideals over semigroups, Southeast
Asian Bulletin of Mathematics, 34 (2010),595-610.

[3] F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets
and rough sets: a tentative approach, Soft Comput., 14 (2010), 899-911.

[4] J. Ghosh, T. K. Samanta, Rough soft sets and rough soft groups, Journal
of Hyperstructures, 2 (2013), 18-29.

[5] M.J. Howie, An introduction to semigroup theory, Academic Press, 1976.

[6] M. Kondo, On the structure of generalized rough sets, Information Sciences,
176 (2006), 589-600

[7] N. Kuroki, Rough ideals in semigroups, Inform. Sci., 100 (1997), 139-163.

[8] A.D. Molodtsov, Soft set theory first results, Comput. Math, Appl, 37
(1999), 19-31.

[9] N.J. Mordeson, S.D. Malik, N. Kuroki, Fuzzy semigroups, Springer-Verlag,
Berlin Heidelberg, 2003.

[10] A. Ramadan, A. Halil, E. Hamouda, A. Seif, soft ideals over a semigroup
generated by a soft set, J. of New Theory, 17 (2017), 94-102.

[11] A. Ramadan, E. Hamouda, A. Seif, Soft interior ideals over semigroups,
Ital. J. Pure Appl. Math., 46 (2021), 874-884.

[12] A. Ramadan, E. Hamouda, A. Seif, Generalized soft bi-ideals over semi-
groups, International Journal of Mathematics and Computer Science, 16
(2021), 1-9.

[13] M. Shabir, M. Naz, On soft toplogical spaces, Comput. Math. Appl., 61
(2011), 1786-1799.

[14] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341-356.

Accepted: November 29, 2021



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 49–2023 (538–548) 538

On the primary-like dimension of modules

Fatemeh Rashedi
Department of Mathematics

Technical and Vocational University (TVU)

Tehran

Iran

frashedi@tvu.ac.ir

rashedi f@yahoo.com

Abstract. Let R be a ring and let M be a left R-module. In this article, we intro-
duce and study the primary-like dimension of M was defined to be the supremum of
the lengths of all strong-like chains of primary-like submodules of M and denoted by
P.L.dim(M).
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1. Introduction

In this paper, all rings are associative rings with identity, and all modules are
unital and left modules. The symbol ⊆ denotes containment and ⊂ proper con-
tainment for sets. If Q is a submodule of M , then we denote the left annihilator
of a factor module M/N of M by (Q : M). We call M faithful if (0 : M) = 0.
Recall that a left R-module M is said to be prime if Ann(Q) = Ann(M) for
every nonzero submodule Q ofM . A proper submodule Q ofM is called a prime
submodule if the quotient module M/Q is a prime module, i.e., if IN ⊆ Q ,
where N is a submodule of M and I is an ideal of R, then either N ⊆ Q or
IM ⊆ Q. The collection of all prime submodules of M is denoted by Spec(M).
This notion of prime submodule was first introduced and systematically studied
in [4] and recently it has received a good deal of attention from several authors,
see, for example, [1, 2, 10, 11, 15, 18, 20] and many others. There is already a
generalization of classical Krull dimension for modules via prime dimension. In
fact, the notion of prime dimension of a module dim(M) over a commutative
ring dim(M) (denoted by dim(M)), was introduced by Marcelo and Masqué
[14], as the maximum length of the chains of prime submodules of M (see also
[13, 19] for some known results about the prime dimension of modules). A sub-
module Q of M is said to be primary-like if Q ̸= M and whenever rm ∈ Q
(where r ∈ R and m ∈ M) implies r ∈ (Q : M) or m ∈ radQ [5, 6]. An
R-module M is said to be primeful if either M = (0) or M ̸= (0) and the
map ψ : Spec(M) −→ Spec(R/Ann(M)) defined by Q 7−→ (Q : M)/Ann(M)
is surjective[12]. If M/Q is a primeful over R, then

√
(Q :M) = (radQ : M)

[12, Proposition 5.3]. It is easily seen that, if Q is a primary-like submodule
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of Q such that M/Q is a primeful over R, then (Q : M) is a primary ideal of
R and so P =

√
(Q :M) is a prime ideal of R, and in this case Q is called

a P -primary-like submodule of M . The primary-like spectrum of M denoted
by SpecL(M) is defined to be the set of all primary-like submodules Q of M ,
where M/Q is primeful. In this article, when we say that Q is a primary-like
submodue of M , it means that Q is primary-like submodule of M , where M/Q
is primeful; i. e. Q ∈ SpecL(M). Let M be a left R-module and Q,Q′ be two
submodules of M . We say that Q is strongly-like properly contained in Q′, and
write Q ⊂sl Q

′, if Q ⊂ Q′ and also
√

(Q :M) ⊂
√
(Q′ :M). In this case, we

also say that Q′ strongly-like properly contains Q. Also, Q ⊆sl Q
′ means that

Q ⊂sl Q
′ or Q = Q′. A submodule Q of M will be called virtually maximal

primary-like if Q is primary-like and there is no primary-like submodule Q′ such
that Q ⊂sl Q

′.

Let R be a ring and M be a left R-module such that every primary-like
submodule of M is contained in a virtually maximal primary-like submodule.
We define, by transfinite induction, sets Xα of primary-like submodules of M .
To start with, let X−1 be the empty set. Next, consider an ordinal α ≥ 0; if
Xβ has been defined, for all ordinals β < α, let Xα be the set of those primary-
like submodules Q in M such that all primary-like submodules strongly-like
properly containing Q belong to

⋃
β<αXβ. (In particular, X0 is the set of

virtually maximal primary-like submodules of M .) If some Xγ contains all
primary-like submodules of M , we say that P.L.dim(M) exists, and we set
P.L.dim(M)-the primary-like dimension of M -equal to the smallest such γ. We
write P.L.dim(M) = γ as an abbreviation for the statement that P.L.dim(M)
exists and equals γ.

In Section 2, we introduce the notion of a virtual-like chain condition on sub-
modules of a module. In Section 3, the meaning of the primary-like dimension
of modules and related topics are studied.

2. Virtual-like chain conditions

In this section we introduce the notion of virtual-like chain condition on sub-
modules of a module.

Definition 2.1. Let R be a ring and M be a left R-module. A submodule Q of
M will be called:

(1) maximal primary-like if Q is a primary-like submodule of M and there is
no primary-like submodule Q′ of M such that Q ⊂ Q′;

(2) virtually maximal primary-like if Q is a primary-like submodule of M and
there is no primary-like submodule Q′ of M such that Q ⊂sl Q

′ (i.e., Q is
a primary-like submodule of M and for any primary-like submodule Q′ of
M , such that Q ⊆ Q′, we have

√
(Q :M) =

√
(Q′ :M));
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(3) virtually maximal if the factor module M/Q is a homogeneous semisimple
module (see also [16], for definition).

Example 2.1. Let M = Q
⊕

Zp, where Zp is the cyclic group of order p. Then
Spec(M) = {Q

⊕
0, 0

⊕
Zp} by [17, Example 2.6]. Clearly, if N is a submodule

ofM such that N ⊈ Q
⊕

0 or N ⊈ 0
⊕

Zp , then N does not satisfy the primeful
property. Also, If N ⊆ 0

⊕
Zp, then (N :M) = 0 and so N dose not satisfy the

primeful property. Consider the only remaining case N ⊆ Q
⊕

0. In this case,
if (N : M) = pZ, then N = Q

⊕
0 and so Q

⊕
0 ∈ SpecL(M). If (N : M) = 0,

then N does not satisfy the primeful property. The finial case is 0 ⊂ (N :
M) ⊂ pZ. In this case if N is a primary-like submodule satisfying the primeful
property, then (N : M) = piZ for some i ≥ 1, since (N : M) is a primary ideal
of R. Assume i ̸= 1 and (0, b) ∈M\Q

⊕
0. Now, p(0, b) = (0, 0), follows p ∈ piZ

which is a contradiction. Therefore, SpecL(M) = {Q
⊕

0}. Hence, Q
⊕

0 is
maximal primary-like and virtually maximal primary-like submodule.

Definition 2.2. Let R be a ring and M be a left R-module. Then, the chain
Q1 ⊆sl Q2 ⊆sl Q3 ⊆sl · · · of submodules of M is called a strong-like ascending
chain. Also, the chain Q1 sl⊇ Q2 sl⊇ Q3 sl⊇ · · · of submodules of M is called
a strong-like descending chain.

Definition 2.3. Let R be a ring. A left R-module M is said to satisfy the
virtual-like ascending chain condition on submodules (or to be virtually-like
Noetherian or virtual-like acc) if for every strong-like chain Q1 ⊆sl Q2 ⊆sl

Q3 ⊆sl · · · of submodules of M , there is an integer n such that Qi = Qn, for
all i ≥ n. Also, a left R-module M is said to satisfy the virtual-like descending
chain condition on submodules (or to be virtually-like Artinian or virtual-like
dcc) if for every strong-like chain Q1 sl⊇ Q2 sl⊇ Q3 sl⊇ · · · of submodules of
M , there is an integer n such that Qi = Qn, for all i ≥ n.

It is clear that every Noetherian (respectively, Artinian) module is virtually-
like Noetherian (respectively, virtually-like Artinian). In general, the converse
is not true. See the following example

Example 2.2. 1) Let R be a commutative Noetherian (respectively, Artinian)
ring. Then, every R-module is virtually-like Noetherian (respectively, virtually-
like Artinian).

2) For a prime number p, Z(p∞) as a Z-module is virtually-like Noetherian,
since every proper submodule of Z-module Z(p∞) is primary-like. However
SpecL(Z(p∞)) = Spec(Z(p∞)) = ∅. But it is not a Noetherian Z-module.

3) For Z-module Q, Spec(Q) = {0} and SpecL(Q) = ∅, because Q have no
submodules satisfying the primeful property. Therefore, Q as a Z-module is
virtually-like Artinian, but it is not an Artinian Z-module.

4) For a vector space V over a field F , SpecL(V ) = Spec(V )= the set of
all proper vector subspaces of V . Hence, every vector space over a field is both
virtually-like Noetherian and virtually-like Artinian.
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Proposition 2.1. Let M be a left R-module and Q be a proper submodule of
M . Then

Q is max and M/Q is primeful +3

��

Q is max primary-like

��

Q is virtually max +3 Q is max virtually primary-like

��

Q is primary-like

Proof. Assume that Q is maximal. Then M/Q is a simple module, and it
follows that Q is a maximal primary-like submodule. Also, it is clear that every
maximal submodule of M is virtually maximal but, the converse is not true
(for example, every proper submodule of a homogeneous semisimple module is
virtually maximal but it is not necessarily maximal). Clearly, if Q is a maximal
primary-like submodule of M , then Q is virtually maximal primary-like. Now,
if Q is virtually maximal, then M/Q is a homogeneous semisimple module.
Clearly, for every proper submodule Q′ of M ,

√
(Q :M) =

√
(Q′ :M) and it

follows that Q is a virtually maximal primary-like submodule. Finally, it is clear
that every virtually maximal primary-like submodule is primary-like.

LetM be a left R-module andN,L ≤M . We say thatN is strongly properly
contained in L, and write N ⊂s L, if N ⊂ L and also (N : M) ⊂ (L : M). A
submodule Q of is said to be virtually maximal prime if Q is a prime submodule
of M and there is no prime submodule Q′ of Q′ such that Q ⊂s⊂ Q′ (i.e.,
Q is a prime submodule of M and for any prime submodule Q′ of M , such
that Q ⊆ Q′, we have (Q : M) = (Q′ : M)). A left R-module M is said to
satisfy the virtual ascending chain condition on submodules (or to be virtually
Noetherian or virtual acc) if for every strong chain Q1 ⊆s Q2 ⊆s Q3 ⊆s · · · of
submodules of M , there is an integer n such that Qi = Qn, for all i ≥ n. Also,
a left R-module M is said to satisfy the virtual descending chain condition on
submodules (or to be virtually Artinian or virtual dcc) if for every strong chain
Q1 s⊇ Q2 s⊇ Q3 s⊇ · · · of submodules of M , there is an integer n such that
Qi = Qn, for all i ≥ n (see [3]).

Proposition 2.2. Let R be a ring. Then, the following statements are equiva-
lent:

1) R has acc (respectively, dcc) on two-sided ideals;

2) each R-module is virtually-like Noetherian (respectively, virtually-lkie Arti-
nian);

3) the left R-module R is virtually-like Noetherian (respectively, virtually-like
Artinian);
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4) the left R-module R is virtually Noetherian (respectively, virtually Arti-
nian);

5) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

6) each R-module is virtually Noetherian (respectively, virtually Artinian).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is clrear.

(1) ⇔ (4) ⇔ (5) ⇔ (6) follows from [3, Proposition 2.1].

Corollary 2.1. Let R be a commutative ring. Then, the following statements
are equivalent:

1) R is Noetherian (respectively, Artinian);

2) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

3) the R-module R is virtually-like Noetherian (respectively, virtually-like
Artinian);

4) the R-module R is virtually Noetherian (respectively, virtually Artinian);

5) each R-module is virtually-like Noetherian (respectively, virtually-like Arti-
nian);

6) each R-module is virtually Noetherian (respectively, virtually Artinian).

Proof. Follows from Proposition 2.2.

Definition 2.4. An R-module M is said to satisfy the virtual-like maximum
condition (respectively, virtual-like minimum condition) on submodules if every
nonempty set of submodules of M contains a maximal (respectively, minimal)
element with respect to strong inclusion ⊆sl (respectively, sl⊇).

Proposition 2.3. An R-module M is virtually-like Noetherian (respectively,
virtually-like Artinian) if and only if M satisfies virtual-like maximum condition
(respectively, virtual-like minimum condition) on submodules.

Proof. Is clear.

Proposition 2.4. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence
of modules. Then, M2 is virtually-like Noetherian (respectively, virtually-like
Artinian) if and only if M1 and M2 are virtually-like Noetherian (respectively,
virtually-like Artinian).

Proof. Is clear.
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Corollary 2.2. Let N be a submodule of an R-module M . Then, M satisfies
the strong-like ascending (respectively, descending) chain condition if and only
if so do N and M/N .

Proof. Apply Proposition 2.4 to the sequence

0 → N
⊆→M →M/N → 0.

Corollary 2.3. Let M1,M2, · · · ,Mn be modules. Then, the direct sum M1 ⊕
M2⊕· · ·⊕Mn satisfies the strong-like ascending (respectively, descending) chain
condition on submodules if and only if so does each Mi.

Proof. Use induction on n. If n = 2, apply Proposition 2.4 to the following
sequence

0 →M1
ι1→M1 ⊕M2

π2→M2 → 0.

3. Primary-like dimension for modules

In this section, we introduce and study a new generalization of the Krull dimen-
sion for modules.

Definition 3.1. Let R be a ring and M be a left R-module such that every
primary-like submodule of M is contained in a virtually maximal primary-like
submodule. We define, by transfinite induction, sets Xα of primary-like sub-
modules of M . To start with, let X−1 be the empty set. Next, consider an
ordinal α ≥ 0; if Xβ has been defined, for all ordinals β < α, let Xα be the set
of those primary-like submodules Q in M such that all primary-like submodules
strongly-like properly containing Q belong to

⋃
β<αXβ. (In particular, X0 is the

set of virtually maximal primary-like submodules of M .) If some Xγ contains
all primary-like submodules of M , we say that P.L.dim(M) exists, and we set
P.L.dim(M)-the primary-like dimension of M -equal to the smallest such γ. We
write P.L.dim(M) = γ as an abbreviation for the statement that P.L.dim(M)
exists and equals γ.

Proposition 3.1. Let R be a ring andM be a left R-module with the virtual-like
acc on primary-like submodules. Then P.L.dim(M) exists.

Proof. Define the sets Xγ of primary-like submodules as in the definition above
of primary-like dimension. Since there is a bound the cardinalities of these sets
(e.g., 2cardM ), the transfinite chain X−1 ⊆ X0 ⊆ X1 ⊆ · · · cannot be properly
increasing forever. Hence, there exists an ordinal γ such that Xγ = Xγ+1.
If P.L.dim(M) dose not exist, then Xγ dose not contain all the primary-like
submodules ofM . Using the virtual-like acc on primary-like submodules, there is
a primary-like submodule Q of M virtually maximal with respect to the property
Q /∈ Xγ . Hence, all primary-like submodules strongly-like properly containing
Q lie in Xγ . But, then Q ∈ Xγ+1 = Xγ , a contradiction.



544 FATEMEH RASHEDI

Corollary 3.1. Let R be aring and M be a left R-module such that the set
{P ∈ Spec(R)|P =

√
(Q :M), Q ∈ SpecL(M)} has acc. Then P.L.dim(M)

exists.

Proof. Follows from Proposition 3.1.

Lemma 3.1. Let M be an R-module for which P.L.dim(M) exists. Then, for
any submodule N ofM , P.L.dim(M/N) exists and is no larger than P.L.dim(M).

Proof. Note submodule Q/N of M/N is primary-like if and only if submodule
Q of M is primary-like and N ⊆ Q.

Corollary 3.2. Let M be an R-module for which P.L.dim(M) exists. If Q and
Q′ are primary-like submodules ofM such that Q ⊂sl Q

′, then P.L.dim(M/Q′) ≤
P.L.dim(M/Q).

Proof. Follows from Lemm 3.1.

Theorem 3.1. Let M be a left R-module. Then, P.L.dim(M) exists if and only
if M has virtual-like acc on primary-like submodules.

Proof. Suppose that P.L.dim(M) = γ, where γ is an ordinal number. If Q1 ⊂sl

Q2 ⊂sl Q3 ⊂sl · · · is a strong-like assenting chain of primary-like submodules of
M , then by Lemma 3.1 and Corollary 3.2, we have

· · · < P.L.dim(M/Q3) < P.L.dim(M/Q2) < P.L.dim(M/Q1) < γ,

which is impossible. Therefore, M has virtual-like acc on primary-like submod-
ules. The converse is immediate from Proposition 3.1.

Suppose that the module M contains a primary-like submodule Q. Then,
the virtual-like height of Q, denoted by vl.ht(Q), is the greatest nonnegative
integer n such that there exists a strong-like chain of primary-like submodules
of M

Q0 ⊂sl Q1 ⊂sl · · · ⊂sl Qn = Q,

and vl.ht(Q) = ∞ if no such n exists.
A prime ring R is called left bounded if for each regular element r in R there

exists an ideal I of R and a regular element s such that Rs ⊆ I ⊆ Rr. A general
ring R is called left fully bounded if every prime homomorphic image of R is
left bounded. A ring R is called a left FBN-ring if R is left fully bounded and
left Noetherian. It is well known that if R is a PI-ring (ring with polynomial
identity) and P is a prime ideal of R, then the ring R/P is (left and right)
bounded and (left and right) Goldie [18, 13.6.6].

Proposition 3.2. Let R be a PI-ring (or an FBN-ring) and let M be an R-
module such that every primary-like submodule of M is contained in a maximal
submodule of M . If P.L.dim(M) = n <∞, then for each primary-like submod-
ule Q of M such that vl.ht(Q) = n, the factor module M/Q is homogeneous
semisimple.
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Proof. Suppose that Q is a primary-like submodule of M with vl.ht(Q) = n
and Q′ is a maximal submodule of M such that Q ⊆ Q′. Since P.L.dim(M) = n,
so that P =

√
(Q :M) =

√
(Q′ :M) is a maximal ideal of R and M/Q′ is a

faithful simple R/P -module. The ring R/P is left bounded, left Goldie, thus,
[7, Proposition 8.7] gives that R/P embeds as a left R-module in a finite direct
sum of copies ofM/Q′. It follows that the ring R/P is left Artinian, and, hence,
R/P is simple Artinian. Thus, the left R/P -module M/Q is a direct sum of
isomorphic simple modules. It follows that M/Q is a homogeneous semisimple
R-module.

Corollary 3.3. Let R be a PI-ring and M be a finitely generated R-module
such that P.L.dim(M) = n < ∞. Then, for each primary-like submodule Q of
M such that vl.ht(Q) = n, the factor module M/Q is homogeneous semisimple.

Proof. It follows from Proposition 3.2.

Lemma 3.2. Let M be an R-module. Then, P.L.dim(M) = 0 if and only if
SpecL(M) ̸= ∅; and every primary-like submodule of M is a virtually maximal
primary-like submodule.

Proof. Is clear.

A ring R is called a left FBN-ring if R is left fully bounded and left Noethe-
rian.

A submodule Q of M is said to be virtually maximal prime if Q is a prime
submodule of M and there is no prime submodule Q′ of M such that Q ⊂s Q

′

(i.e., Q is a prime submodule of M and for any prime submodule Q′ of M , such
that Q ⊆ Q′, we have (Q :M) = (Q′ :M)).

Lemma 3.3. Let R be a PI-ring (or an FBN-ring) and let M be an R-module
in which every proper submodule is contained in a maximal submodule. Then,
for each proper submodule Q of M such that M/Q is primeful, the following
statements are equivalent.

1) Q is a virtually maximal submodule.

2) Q is a virtually maximal prime submodule.

3) Q is a virtually maximal primary-like submodule.

Proof. (1) ⇒ (2) ⇒ (3) is clear.

(3) ⇒ (1) Assume that Q is a virtually maximal primary-like submodule of
M . Then, there exists a maximal submodule Q′ of M such that Q ⊂ Q′. It
follows that

√
(Q :M) =

√
(Q′ :M) = P and M/Q′ is a simple R/P -module.

Since R is a PI-ring (or an FBN-ring), then the ring R/P is a left bounded, left
Goldie ring. Now, by [7, Proposition 8.7] we have that R/P embeds as a left
R-module in a finite direct sum of copies of M/Q′. It follows that the ring R/P
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is left Artinian, and, hence, R/P is simple Artinian. Thus, the left R/P -module
M/Q is a direct sum of isomorphic simple modules. It follows that M/Q is a
homogeneous semisimple R-module; i.e., Q is a virtually maximal submodule of
M .

Corollary 3.4. Let R be a PI-ring (or an FBN-ring) and let M be an R-
module in which every proper submodule is contained in a maximal submodule
and SpecL(M) ̸= ∅. Then, for each proper submodule Q of M such that M/Q
is primeful, the following statements are equivalent.

1) Q is a virtually maximal submodule.

2) Q is a virtually maximal prime submodule.

3) Q is a virtually maximal primary-like submodule.

4) P.L.dim(M) = 0.

Proof. Follows from Lemmas 3.2 and 3.3.

4. Conclusion

In this paper, we introduced the notion of virtual-like ascending and descending
chains condition on submodules of a module where every Noetherian (respec-
tively, Artinian) module is virtually-like Noetherian (respectively, virtually-like
Artinian) and it is shown that the converse is not generally true Example 2.2.

The connections between maximal, virtually maximal, maximal primary-
like, maximal virtually primary-like and primary-like submodules are investi-
gated Proposition 2.1. Also, exact sequences of modules, the quotient structure
and the direct sum of modules are considered and studied under this concept
Proposition 2.4 and Corollaries 2.2 and 2.3.

Moreover, the primary-like dimension of a module is defined and shown that
it there exists for every left R-module with the virtual-like acc on primary-like
submodules Proposition 3.1. Furthermore, links of the primary-like dimension
of a module and the related quotient structure and also primary-like submodules
are investigated and it is shown that existence of the primary-like dimension of a
module is depended to existence of virtual-like acc on primary-like submodules
Theorem 3.1. And the connection between the finiteness of the primary-like
dimension of modules and homogeneity and semi-simplicity of the related factor
modules Proposition 3.2. Finally the connection between virtually maximal,
virtually maximal prime and virtually maximal primary-like submodules in R-
modules with a PI-ring (or an FBN-ring) R is indicated Proposition 3.3.

References

[1] M. Behboodi, O. A. S. Karamzadeh, H. Koohy, Modules whose certain
submodules are prime, Vietnam J. Math., 32 (2004), 303-317.



ON THE PRIMARY-LIKE DIMENSION OF MODULES 547

[2] M. Behboodi, H. Koohy, On minimal prime submodules, Far East J. Math.
Sci., 6 (2002), 83-90.

[3] M. Behboodi, A generalization of the classical Krull dimension for modules,
Journal of Algebra, 305 (2006), 1128-1148.

[4] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.

[5] H. Fazaeli Moghimi, F. Rashedi, Primary-like submodules and scheme over
the primary-like spectrum of modules, Miskolc Mathematical Notes, 18
(2017), 961-974.

[6] H. Fazaeli Moghimi, F. Rashedi, Modules whose primary-like spectra with
the Zariski-like topology are Noetherian spaces, Italian Journal of Pure and
Applied Mathematics, 37 (2017), 273-288.

[7] K. R. Goodearl and R. B. Warfield, An introduction to non-commutative
Noetherian rings (second edition), London Math. Soc. Student Texts 16,
Cambridge University Press, Cambridge, 2004.

[8] R. Hamsher, Commutative rings over which every modules has a maximal
submodule, Proc. Amer. Math. Soc., 18 (1967), 1133-1137.

[9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer.
Math. Soc., 137 (1969), 43-60.

[10] C. P. Lu, Prime submodule of modules, Comment. Math. Univ. St. Pauli,
33 (1984), 61-69.

[11] C. P. Lu, Spectra of modules, Comm. Algebra, 23 (1995), 3741-3752.

[12] C. P. Lu, A module whose prime spectrum has the surjective natural map,
Houston J. Math., 33 (2007) 125-143.

[13] H. Man, P. F. Smith, On chains of prime submodules, Israel J. Math., 127
(2002), 131-155.
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Abstract. Let G be a finite group and cd(G) be the set of irreducible character
degree of G. In this paper we prove that if p is a prime number, then the simple group
PSL(4,p2) are uniquely determined by its order and some its character degrees.

Keywords: character degrees, order, projective special linear group.

1. Introduction

All groups considered are finite and all characters are complex characters. Let
G be a group. Denote by Irr(G) the set of all irreducible characters of G. Let
cd(G) be the set of all irreducible character degree of G.

Many authors were recently concerned with the following question:

What can be said about the structures of a finite group G , if some informa-
tion is known about the arithmetical structure of the degree of the irreducible
characters of G (see, [17,18]). A finite group G is called a K3-group if |G| has
exactly three distinct prime divisors.

Yan et al. [17] and [18] proved that all simple k3-group and the Mathieu
groups are uniquely determined by their orders and some its character degrees.

Also, Khosravi et al. in [9] and [10] proved that the simple groups PSL(2, p)
and PSL(2, p2) are uniquely determined by its order and its largest and second
largest irreducible character degrees, where p is an odd prime. Also, Hung

*. Corresponding author
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and Thomson in [13] proved that the simple group PSL(4, q) whit q ≥ 13 are
determined by the set of their character degrees.

Let p be an odd prime number. In [14] the authors proved that the simple
group PSL(4, p) is uniquely by its order and some character degrees.

The goal of this paper is to introduce a new characterization for the finite
group PSL(4, p2), where p is prime, by its order and some its character degrees.
In fact we prove the following theorem.

Theorem 1.1 (Main Theorem). Let p > 7 be a prime. If G is a finite group
such that the following statements hold, then G is isomorphic to PSL(4, p2).

(i) |G| = |PSL(4, p2)|.
(ii) kp12 ∈ cd(G) if only if k = 1, where k is an integer number.

(iii) p2(p4 + p2 + 1) is the smallest nonlinear character degree of G.

(iv) {p2(p2 + 1)2(p4 + 1), (p2 + 1)(p4 + 1)} ⊂ cd(PSL(4, p2)).

2. Notation and preliminary

We know that if p is an odd prime, then

|PSL(4, p2)| = p12(p4 − 1)(p6 − 1)(p8 − 1)

(4, p2 − 1)

and let Φk denote the kth cyclotomic polynomial evaluated at p2. In particular,

Φ1 = p2 − 1,Φ2 = p2 + 1,Φ3 = p4 + p2 + 1,Φ4 = p4 + 1.

The data in [18] gives the character degree of PSL(4, q). From there, we are
able to extract the character degree of PSL(4, p2).These degrees are given in
Table 1. The word “possible” in the second column means that the condition
for the existence of corresponding degree in fairly complicated

{p12, p2Φ3, p
2Φ2

2Φ4,Φ2Φ4} ⊂ cd(PSL(4,2 p))

and the smallest nonlinear character degrees of PSL(4, p2) is p2Φ3.

If n is an integer and r is a prime number, then we write rα||n, when rα|n
but rα+1 | n. All other notations are standard and we refer to [1].

If N ⊴ G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ)={g ∈ G
| θg=θ }.

Lemma 2.1 (Thompson, [14], Lemma 2.3). Suppos that p is a prime and p |
χ(1) for every nonlinear χ ∈ Irr(G). Then, G has a normal p-complement.

Lemma 2.2 (Ghallgher’s Theorem, [8], Corollary 6.17). Let N ⊴ G and let
χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then, the characters βχ for β ∈
Irr(GN ) are irreducible and distinct for distinct β and are all of the irreducible
constituents of θG.
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Lemma 2.3 (Ito’s Theorem, [3], Corollary 6.15). Let A ⊴ G be abelian. Then,
χ(1) divides |G : A| for all χ ∈ Irr(G).

Lemma 2.4 ([3], Theorems 6.2, 6.8, 11.29). Let N ⊴ G and let χ ∈ Irr(G). Let
θ be an irreducible constituent of χN , and suppose θ1 = θ,..,θt are the distinct
conjugates of θ in G. Then, χN=e

∑t
i=1 eiχi, where e=[χN , θ] and t=[G:IG

(θ)]. Also, θ(1)|χ(1) and χ(1)/θ(1)||G:N|.

Lemma 2.5 ([17], Lemma). Let G be nonsolvable group. Then, G has a normal
series 1 ⊴ H ⊴ K ⊴ G such that K/H is a direct product of isomorphic
nonabelian simple group and |G/K|||Out(K/H)|.

Lemma 2.6 ([3], Lemma 12.3 and Theorem 12.4). Let N ⊴ G be maximal such
that G/N is solvable and nonabelian. Then, one of the following holds.

(i) G/N is a r-group for some prime r. If χ ∈ Irr(G) and r | χ(1), then χτ
∈ Irr(G) for all τ ∈ Irr(G/N).

(ii) G/N is a Frobenius group with an elementary abelian Frobenius kennel
F/N .

Thus, |G : F | ∈ cd (G), |F : N | = rα, where a is the smallest integer such
that |G : F | | rα − 1. For every ψ ∈ Irr(F ), either |G : F |ψ(1) ∈ cd(G) or
|F : N ||ψ(1)2. If no proper multiple of |G : F | is in cd(G), then χ(1)||G : F | for
all χ ∈ Irr(G) such that r | χ(1).

Lemma 2.7 ([16], Lemma 2.3). In the context of (ii) of Lemma 2.5, we have

(i) If χ ∈ Irr(G) such that lcm(χ(1),|G : F |) does not divide any character
degree of G, then rα | χ(1)2

(ii) If χ ∈ Irr(G) such that no proper multiple of χ(1) is a degree of G, then
either |G : F | | χ(1) or rα|χ(1)2. Moreover if χ(1) is divisible by no nontrivial
proper character degree in G then |G : F | = χ(1) or ra|χ(1)2.

3. Proof of the main theorem

In this section we present the proof of Main theorem. In fact, we prove this
theorem by two steps:

Step 1. First we prove that G is a nonsolvable group.We show that G′ = G′′.
Assume by contradiction that G′ ̸= G′′ and let N ⊴ G be maximal such that
G/N is solvable and nonabelian.By Lemma 2.6, G/N is an r-group for some
prime r or G/N is a Frobenius group with an elementary abelian Frobenius
kernel F/N .

Case 1. G/N is an r-group for some prime r. Since G/N is nonabelian, there is
ψ ∈ Irr(G/N) such that ψ(1) = ra > 1. From the classification of prime power
degree representations of quasi-simple group in [12], we deduce that ψ(1) = ra

must be equal to the degree of the Steinberg character of H of degree p12 and
thus ra = p12, which implies that r = p. By Lemma 2.1, G possesses a nontrivial
irreducible character χ with p | χ(1). Lemma 2.4 implies that χN ∈ Irr(N).
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Using Ghallagher’s lemma, we deduce that χ(1)ψ(1) = p12χ(1) is a character
degree of G, which is impossible with the condition (ii) of main theorem.

Case 2. G/N is a Frobenius group whit an elementary abelian Frobenius kernel
F/N . Thus according to Lemma 2.6, |G : F | ∈ cd(G), |F : N | = ra, where a
is the smallest integer such that |G : F ||ra − 1. Let χ be a character of G of
degree p12. As no proper multiple of p12 is in cd(G), Lemma 2.6 implies that
either |G : F ||p12 or r = p. We consider two following subcases.

(a) |G : F ||p6. Then, |G : F | ∈ cd(G), by the assumption of the theorem,
this implies that no multiple of |G : F | is in cd(G). Therefore, by Lemma 2.6,
for every ψ ∈ Irr(G) either ψ(1)|p12 or r|ψ(1). Taking ψ to be characters of
degree p2Φ3 and p2Φ2

2Φ4, we obtain that r|ψ(1).This implies that r divides both
p2Φ3 and p2Φ2

2Φ4. This leads us to a contradiction since ( Φ3 , Φ2
2Φ4)=1.

(b) r = p. Thus |F : N | = pa and |G : F ||pa − 1. Let χ be a charac-
ter of G of degree p2Φ2

2Φ4 and ψ be a character of degree Φ2Φ4). It follows
that ψ(1)|χ(1) so that by Lemma 2.7, |G : F | = p2Φ2

2Φ4 or pa|p4Φ2
2Φ

2
4 which

implies that a ≤ 4, |G : F | ≤ p4 − 1. This leads us to a contradiction since
min{χ(1)|χ(1) > 1, χ ∈ Irr(G)} = p2Φ3.

Therefore, G is not a solvable group.

Step 2. Now, we prove that G is isomorphic to PSL(4, p2).

By the above discussion and using Lemma 2.5, we get that G has a normal
series 1 ⊴ H ⊴ K ⊴ G such that K/H is a direct product of m copies of a
nonabelian simple group S and |G/K|||Out(K/H)|. Also, p is a prime divisor of
|G| such that p12∥|G|

First, we prove that p ∤ |G/K|. On the contrary, let p||G/K|. We know
that Out(K/H) ∼= Out(S) ≀ Sm, which implies that p||Sm| or p||Out(S)|. If
P ||Sm|, then m ≥ p and so p12(p4 − 1)(p6 − 1)(p8 − 1) ≥ |K/H| ≥ 60p, which is
impossible. Hence p||Out(S)|. According to the orders of automorphism group
of alternating group and sporadic simple group, we implies that S is a simple
group of Lie type over GF (q), where q = pf0 . By assumption, p||Out(S)| = dfg,
where d, f , and g ≤ 3 are the orders of diagonal, field, and graph automorphisms
of S respectively. Using [2], we know that if S is a simple group of Lie type over
GF (q), then q(q2 − 1) ≤ S and so if p|f , then 2p(22p − 1) ≤ q(q2 − 1) ≤ |S| ≤
p12(p4− 1)(p6− 1)(p8− 1), which is a contradiction. Hence p|d. Since p > 7, we
get that S = An(q) and d = (n+ 1, q− 1) or S =2 An(q) and d = (n+ 1, q+ 1).
In each case we get that p|q − 1 and n ≥ 6 or p|q + 1 and n ≥ 6. Then, p13||S|,
which is a contradiction. Therefore, p ∤ |G/K|.

Now, we prove that p ∤ |H|. On the contrary, let p||H|. So there exist twelve
possibilities, pi∥|H| where 1 ≤ i ≤ 12.

Case 1. First, suppose that p∥|H|. Using the classification of finite simple
group we determine all simple groups S such that p5||S|5. Now, we consider two
subcases:

(i) Let m = 1. Then, p11||S| and |S||p11(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then p ≤ n and n!|p12(p4−1)(p6−1)(p8−1). Which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these condition.
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If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple groups, we get that, there is no Lie group
satisfying these conditions.

Since the proofs for the other simple groups are similar, we state the proof
only for a few of them for convenience.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.

If S ∼= Bn(q), where n ≥ 2, then p|q2j − 1, for some 1 ≤ j ≤ n. Therefore,
p ≤ qn + 1. Then, since q2i−1 ≤ q2i − 1, we get that

qn
2
.q2(1+2+...+n)−n ≤ |S| < p23 ≤ (qn + 1)23 ≤ q23n+23,

which implies that 2n2 < 23(n + 1). Therefore, n ∈ {2, 3, 4, ..., 12}. First let
n = 2. Then, p11|q4(q2 − 1)(q4 − 1).It implies that p11|(q − 1)2 or p11|(q + 1)2

or p11|q2 + 1, and so p11 < 2q2. On the other hand q4|(p− 1)3 or q4|(p+ 1)3 or
q4|(p2+1)2 or q4|(p2+p+1) or q4|(p2−p+1) , and so q4 < p5. Therefore, easily
we get a contradiction. If n ∈ {3, 4, 5, ..., 12}, similarly we get a contradiction.
If S ∼= Cn(q), where n ≥ 4, then withe the same manner we get a contradiction.

If S ∼= An(q), then similarly to the above, we get n ∈ {1, 2, ..., 15}. For
example, let n = 5. Then,

p11|(q − 1)5(q + 1)3(q2 + q + 1)2(q2 − q + 1)(q4 + q3 + q2 + q + 1)

so, p11 < 5q4. On the other hand q15|(p−1)3(p+1)3(p2+1)2(p2−p+1)(p2+p+1)
so q15 < p7. Therefore, we get a contradiction. For other case, similarly we get
a contradiction. If S ∼=2 An(q), with the same manner we get a contradiction.

If S ∼= Dn(q), where n ≥ 4, then p11||S|, Therefore, p|q2i − 1, for some
1 ≤ i ≤ n− 1 or p|(qn − 1). Therefore, p < qn, and since q2i−1 < q2i − 1, we get
that

qn(n−1)qn−1(q2(1+2+...+(n−1)−(n−1)) < |S| < p23

and so q(2n(n−1) < |S| < p23. On the other hand, p < qn and hence 2(n−1) < 23.
Therefore, n ∈ {4, 5, 6, ..., 12}. Let n = 6. Then, p11|(q − 1)6(q + 1)6(q2 + q +
1)2(q2 − q + 1)2(q2 + 1)2(q4 + 1)(q4 + q3 + q2 + q + 1)(q4 − q3 + q2 − q + 1) and
so p11 < q7. On the other hand

q30|(p− 1)3(p+ 1)3(p2 + 1)2(p2 + p+ 1)(p2 − p+ 1)

and so, q30 < p7. Therefore, we get a contradiction. Fore some other cases,
similarly we get a contradiction. If S ∼=2 Dn(q), with the same manner we get
a contradiction.

If S ∼= G2(q), then p
11||S|, and hence p11 < q3. On the other hand,

q6|(p− 1)3(p+ 1)3(p2 + 1)2(p2 + p+ 1)(p2 − p+ 1)

so, q6 < p7. Therefore, we get a contradiction. If S ∼= F4(q),
2 F4(q), E6(q), E7(q)

or E8(q), we get a contradiction similarly.
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If S ∼=2 B2(q), where q = 22n+1, then p11|q−1 or p11|q2+1. If p11|q−1, then
|S| < p23 < (q − 1)5, wiche is impossible. If p11|(q2 + 1), then p11|(q2 + 1)/5, so
p11 < q2. On the other hand

q2|4(p− 1)3(p+ 1)3(
p2 + 1

2
)2(p2 + p+ 1)(p2 − p+ 1)

therefore, q2|16(p− 1)3 or q2|16(p+ 1)3, so q < p3, which is impossible.
If S ∼=2 G2(q), where q = 32n+1, then p11||S|, therefore p11|q− 1 or p11|q+1

or p11|q2 − q + 1 orp11|q2 + q + 1, it follows that p11 < q2. On the other hand,
q3|6(p−1)3(p+1)3 or q3|(p2+1)/2 or q3|(p2+p+1) orq3|(p2−p+1) , it follows
that q3 < p7, which is impossible.

Therefore, m ̸= 1.
(ii) m = 11. Then, p||S| and |S|11|p11(p4 − 1)(p6 − 1)(p8 − 1).
Similarly, to the previous case we get a contradiction.

Case 2. Suppose that p2∥|H|. Therefore, p10||K/H|, since K/H is m is a
direct product of m copies of a nonabelian simple group S, it follows that,
m ∈ {1, 2, 5, 10}. Now we consider four subcases:

(i) Let m = 1. Then, p10||S| and |S||p10(p4 − 1)(p6 − 1)(p8 − 1). We claim
that there is no simple group satisfying these conditions.

If S ∼= An, then p < n and n!|p10(p4− 1)(p6− 1)(p8− 1), which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

Similarl to case 1, we deduce that, there is no nonababelian simple group of
Lie type over a field GF (q), where p ∤ q, satisfying the above conditions.

Hence, m ̸= 1.
(ii) Let m = 2
Similarly to last case, we deduce S ≇ An. Also, there is no sporadic simple

group satisfying these condition.
If S is a nonabelian simple group of Lie type over a field of characteristic

p, using the order of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 2
(iii) Let m = 5. Then, p2||S| and |S|5|p10(p4 − 1)(p6 − 1)(p8 − 1). Using

the classification of finite simple group, we show that, there is no simple group
satisfying these conditions. If S is a nonabelian simple group of Lie type over a
field of characteristic p, using the order of the simple group, we get that, there
is no simple group satisfying the above conditions.

If S ∼= An, then p ≤ n and (n!)5|p10(p4−1)(p6−1)(p8−1), which is impossible
since p > 7. Also, there is no sporadic simple group satisfying these conditions.
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If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 5.

(iv) Let m = 10. Then, p||S| and |S|10|p12(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then p ≤ n and (n!)10|p12(p4 − 1)(p6 − 1)(p8 − 1), which is
impossible since p > 7. Also, there is no sporadic simple group satisfying these
conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic p,
using the orders of the simple groups, we get that, the only possibility cases are
A1(p) and A2(p).

(A) If S ∼= A1(p), then p10(p2 − 1)10|p12(p − 1)3(p + 1)3(p2 + 1)2(p2 + p +
1)(p2− p+1), therefore (p− 1)7(p+1)7|(p2 +1)2(p2 + p+1)(p2− p+1), which
is impossible.

(B) If S ∼= A2(p), then |S|10 ≤ p12(p4−1)(p6−1)(p8−1), which is impossible.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 10.

Case 3. If p3∥|H|. Therefore, p9||K/H|, since K/H is m is a direct product of
m copies of a nonabelian simple group S, it follows that, m ∈ {1, 3, 9}. Now we
consider three subcases:

(i) Let m = 1. Then, p9∥|S| and |S||p3(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 1.

(ii) Let m = 3. Then, p3||S| and |S|3|p3(p4 − 1)(p6)(p8 − 1)

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above condition.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence m ̸= 3.

(iii) Let m = 9. Then, p||S| and |S|9|p11(p4 − 1)(p6 − 1)(p8 − 1).
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If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above condition.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 9.

Case 4. If p4∥|H|. Therefore, p8||K/H|, since K/H is m is a direct product
of m copies of a nonabelian simple group S, it follows that, m ∈ {1, 2, 4, 8}.
Now we consider two subcases:

(i) Let m = 1. Then, p8∥|S| and |S||p4(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then similar to Case 1, we get a contradiction. Also, there is no
sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 1.

(ii) Let m = 2. Then, p6∥|S| and |S|2|p6(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 2.

(iii) Let m = 4. Then, p3||S| and |S|3|p9(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 4.

(iv) Let m = 8. Then, p∥|S| and |S|8|p11(p4 − 1)(p6 − 1)(p8 − 1).
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If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction.

Hence, m ̸= 8.

Case 5. If p5∥|H|. Therefore, p7||K/H|, since K/H is m is a direct product of
m copies of a nonabelian simple group S, it follows that, m ∈ {1, 7}.

(i) Let m = 1. Then, p7∥|S| and |S||p5(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An Similarly to the case1, we get a contradiction. Also, there is no
sporadic simple group satisfying these condition.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction. (ii)Let m = 7. Then, p∥|S|
and |S|7|p11(p4 − 1)(p6 − 1)(p8 − 1).

If S ∼= An, then similar to Case 1, we get a contradiction. Also, there is no
sporadic simple group satisfying these conditions.

If S is a nonabelian simple group of Lie type over a field of characteristic
p, using the orders of the simple group, we get that, there is no simple group
satisfying the above conditions.

If S be a nonababelian simple group of Lie type over a field GF (q), where
p ∤ q. We claim that there is no simple group satisfying the above conditions.
Now argue as in (case1), we obtain a contradiction. Where 6 ≤ i ≤ 11, then
withe the same manner we get contradiction.

If i = 12 then p12||H|, choos χ ∈ Irr(G), such that χ(1) = p12. Let θ be
an irreducible constituent of χH , then χ(1)/θ(1)||G : H|, which implies that
θ(1) = p12. Therefore, χH = θ and by Gallagher’s theorem βχ ∈ Irr(G), for
each β ∈ Irr(G/H). Hence p12β(1) ∈ cd(G), which is contradiction.

By the above discussion, we get that p12||K/H|. Since p12∥|G|, it follows
that K/H is a nonabelian simple group say S, such that p12∥|S| and |S||p12(p4−
1)(p6−1)(p8−1) or K/H ∼= S×S and p6∥|S| and |S|2|p12(p4−1)(p6−1)(p8−1)
or K/H ∼=

∏3
i=1 S and |S|4|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=

∏4
i=1 S and

p3∥|S| and |S|4|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=
∏6

i=1 S and p2∥|S| and
|S|6|p12(p4 − 1)(p6 − 1)(p8 − 1) or K/H ∼=

∏12
i=1 S and p∥|S| and |S|12|p12(p4 −

1)(p6 − 1)(p8 − 1).

Now, using the classification of finite simple groups and similar to the above
argument, we get K/H ∼= PSL(4, p2). Therefore, |H||G/K| = 1, and hence,
H = 1 and G/K = 1. Hence G ∼= PSL(4, p2), and the main theorem is proved.
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Abstract. The separability of Hamiltonian integrable systems has been the object of a
considerable amount of attention in the last decades. Over the years several techniques
have been proposed to deal with this difficult problem. In this paper we make use of the
method of the Kowalewski’s Conditions. To illustrate the effectiveness of the method
we consider the Hénon-Heiles system known as HH4 1:6:8. This system is integrable
in two cases. For one of them, separated only in some particular cases, we provide the
separation coordinates in the generic form. The other case remains unsolved.

Keywords: integrable systems, separation of coordinates, integration in quadratures.

1. Introduction

Hénon-Heiles (HH) systems are Hamiltonian systems in R4 endowed with the
standard symplectic form dp1 ∧ dx + dp2 ∧ dy. The Hamiltonian function has
the form

H =
1

2
(p1

2 + p2
2) + V (x, y),

where V is a polynomial function. There are four nontrivial integral cases with
quartic potential that can be “generalized” adding inverse terms without de-
stroying the integrability in the Liouville sense. This means that every one
of these systems possesses an integral of the motion called K. The most gen-
eral forms of H and K, for all the integrable HH systems, have been given by
Hietarinta [3].

Once proved the Liouville integrability of these systems, the question arises
of an explicit integration of the equations of motion. The most efficient way
to bring the systems to quadratures is to find coordinates that separate the
Hamilton-Jacobi equation. This is such a difficult task that, after decades of
efforts, only one of the four quartic systems has been separated in the generic
form [2]. In this paper we will deal with the so called HH4 1:6:8 system only (1,
6, 8 are the coefficients of the quartic monomials). The Hamiltonian function is

(1) H =
p1

2

2
+
p2

2

2
+ x4 +6x2y2 +8 y4 +ω

(
x2 + 4 y2

)
+
a

y2
+
b2

x2
− c2

2x6
+ ey,

where ω, a, b, c and e are arbitrary constants.
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The function K for this system is quite complicated [3]:

K = p1
4 + 2 p1

2

(
2x4 + 12x2y2 + 2ω x2 + 2

b2

x2
− c2

x6
+ 2ey

)
− 4xp1p2

(
4x2y + e

)
+ 4x4p2

2

+ 4
b4

x4
+ 8 b2x2 + 16 b2y2 + 4ω2x4 + 8ω x6 + 16ω x4y2 + 4x8(2)

+ 16x6y2 + 16x4y4 + 8
ax4

y2
− c2

(
4
b2

x8
− c2

x12
+ 4

ω

x4
+ 4

1

x2
+ 24

y2

x4

)
+ 2e

(
4
b2y

x2
− ex2 − 4x4y − 8x2y3 − 4ω x2y

)
.

The reader can easily check that the Poisson bracket of H and K is

{H,K} = −
4e
(
2ax8p1 − 3 c2xy3p2 + 6 c2y4p1

)
x7y3

and this lets us with two cases of integrability:

� Case I: a = c = 0

� Case II: e = 0.

The first case has been solved only under the additional hypothesis be = 0
[13] and e = 2

√
2 b [12]; the separation coordinates for the generic case remain

unknown.
Case II has been studied in the particular case e = c = ab = 0 [8]. The

authors wrote, about adding the term in x−6 or the linear term: “it would be
interesting to extend our approach to these cases although we anticipate serious
technical difficulties”. The aim of this paper is to show that these difficulties
can be bypassed looking at the problem from a different perspective. Using
the method of the Kowalewski Conditions (KC) we will be able to provide the
separation coordinates, for Case II, in the generic form.

2. The method of the vector field Z

Let’s introduce quickly the method adopted in the following calculations. A
comprehensive presentation, with all the necessary proofs that are omitted here,
can be found in [7] and [10].

Separable Hamiltonian systems come equipped with a torsionless recursive
tensor N (Nijenhuis tensor), compatible with the Poisson tensor P , i.e. forming
a so called PN manifold. If the manifold is 4-dimensional and N has two
functionally independent eigenvalues, then they are the separation coordinates
of the system (under suitable hypotheses, see below and [5]).

The explicit calculation of the tensor N can be quite cumbersome except in
some simple cases [11]. Nevertheless, the essential remark is that N acts on the
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vector fields tangent to the Lagrangian foliation given by H = c1 and K = c2,
so that one can simply calculate the eigenvalues of the restriction of N to the
bi-dimensional foliation. This restricted tensor, given a basis on the leaves,
reduces to a 2x2 matrix M called the Control Matrix. In the basis associated
with the flows of the Hamiltonian vector fields XH and XK , this matrix has the

form M =

(
m1 m2

m3 m4

)
. The Kowalewski Conditions (KC), introduced by F.

Magri in [6], characterize the entries of the matrix M . These functions verify
four differential constraints if and only if1 the eigenvalues of M are separation
coordinates:

(3)

XH(m3) = XK(m1)

XH(m4) = XK(m2)

XH(m1m3 +m3m4) = XK(m2
1 +m2m3)

XH(m2m3 +m2
4) = XK(m1m2 +m2m4)

and the involutivity of the trace and the determinant if we want the eigenvalues
of M to be canonical coordinates:

(4) {m1 +m4,m1m4 −m2m3} = 0.

This is a system of 5 differential equations in 4 unknown functions and it
is, in general, difficult to solve. A possible strategy to attack this problem is
outlined in the following steps:

1. We start looking for two “Fundamental Functions” F and G verifying

(5) XH(G) = XK(F )

and
dF ∧ dG ∧ dH ∧ dK ̸= 0.

We can see (F,G,H,K) as non-canonical coordinates associated to the
Lagrangian foliation. We use these coordinates to write the Control Matrix
in the simplified form:

(6) M =

(
AF +B 1
AG+ C D

)
where A, B, C and D are constant of the motion. In this way the first two
equations in (3) are automatically satisfied and the constants A, B, C, D
have to be chosen in such a way that the other equations are verified too.
One could say that the method of the Fundamental Functions reduces the
problem to the search of two functions only: F and G. An example of
application of this method can be found in [9].

1. There are some additional technical conditions that are clearly verified in the present case.
The complete Theorem can be found in [6] or [9].
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2. The next step consists in introducing a “potential function” V and the
canonical vector field Z associated to V : Z = XV . The functions F and
G can be generated by V in the following way:

(7) F = Z(H) G = Z(K)

and equation (5) is still verified for any choice of V [10].

3. Unfortunately the method of the potential function seems excessively re-
strictive and many interesting problems don’t fall under this scheme (sev-
eral examples are given in [10]). The set of all possible fields Z must
be enlarged. The idea is to use the constants a, b and c present in the
Hamiltonian functions as variables, and turn the symplectic system into a
Poisson one in R7 with coordinates (p1, p2, x, y, a, b, c). This is easily ob-
tained adding three lines and columns of zeros to the matrix representing
the standard Poisson tensor and extending the canonical vector field Xf ,

associated to a function f , to X̃f :

X̃f =

(
−∂f
∂x
,−∂f

∂y
,
∂f

∂p1
,
∂f

∂p2
, 0, 0, 0

)T

.

In this framework, the vector field Z can be extended with extra terms in
this way

(8) Z = XV + w1
∂

∂a
+ w2

∂

∂b
+ w3

∂

∂c

where w1, w2 and w3 are constants.

At the end of the process, the problem is reduced to the determination of a
single function V and, eventually, a few constants w1, w2 and w3.
We are now ready to solve the generic Case II.

3. The separation coordinates for Case II

According to the discussion in the Introduction we replace e = 0 in (1) and (2).
Our problem is to calculate the separation coordinates of this system without
imposing any additional restriction to the remaining constants a, b and c.

Writing Z in the extended form (8), we can calculate the Fundamental Func-
tions with (7) and finally obtain the Control Matrix in the simplified form (6).

Now, we have to replace m1, . . . ,m4 into the KC (3). The first two equations
are verified for any choice of the potential function and constants [10]. The
second couple of KC are verified with V = c/(2x2) and the constant w1 =
0, w2 = b/2 and w3 = c. Therefore, the vector field Z has the simple form

(9) Z =
c

x3
∂

∂p1
+
b

2

∂

∂b
+ c

∂

∂c
.
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This vector field contains all the essential information needed to separate
the system. Finally we still have to choose the constants of motion A, B, C
and D in order to verify (4). The results can be summarized in the following

Theorem 3.1. Consider the integrable Hamiltonian system (1)-(2) with e = 0.
Let Z be the vector field in (9) and F and G the functions in (7). Then, the
Control Matrix of the system takes the form

(10) M =

(
−16F + 8H 1
−16G+ 16K 8H

)
i.e. the eigenvalues of (10) are canonical separation coordinates for both H and
K.

Proof. The functions F and G can be calculated directly with (7):

F =
b2x4 + p1cx

3 − c2

x6

and

G =
1

x12

[
8 b2x14 + 8 cx13p1 +

(
16 b2y2 − 16 cyp2

)
x12 + 8 c

(
6y2 + ω

)
p1x

11

+
(
4 b2p1

2 − 8 c2
)
x10 + 4 cx9p1

3 +
(
−48 c2y2 − 8ωc2 + 8 b4

)
x8

+ 8 b2cx7p1 − 4 c2x6p1
2 − 12 c2b2x4 − 4 c3x3p1 + 4 c4

]
.

Replacing these functions in (10) one can find the explicit form ofm1, . . . ,m4.
According to the results in [6], it is enough to prove that these functions verify
the KC (3), as well as the condition of canonicity (4). All these conditions can
be easily checked with a software like Maple.

Remark 3.1. Different Control Matrices can be obtained using more compli-
cated entries, for instance quadratic functions in F and G:

M ′ =

(
−16F 2 +G F

−16FG+ 16KF G

)
.

The eigenvalues of M ′ provide a different set of separation coordinates. These
coordinates reduce to the ones found by Ravoson et al. [8] in the case a = c = 0.

A similar method can be applied to Case I too and provides an alternative
way to calculate the separation coordinates for the degenerate cases be = 0
[10]. In [12] we find the separation coordinates under the particular condition
e = 2

√
2 b. The idea was to guess the form of the potential function V tak-

ing example from these particular cases. However the application of the theory
to the general case presents some difficulties: it seems that neither linear nor
quadratic functions in F and G verify all conditions (3) and (4). Finding sepa-
ration coordinates for Case I in the generic form remains an open problem.
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On the other hand, separation coordinates in Case II could be found without
any additional condition on the coefficients and the potential function is as
simple as V = c/(2x2). This system represents, in our opinion, one of the
most convincing examples of the effectiveness of the method of the KC. The
complete separation of the system goes beyond the scopes of the paper and
requires additional work. Nevertheless this paper could be considered as a first
step in that direction.
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Abstract. Corona-virus disease (COVID-19) is caused by the novel-virus (SARS-
COV2). This disease mainly targets human respiratory system. COVID-19 (Coron-
avirus) has affected day to day life and is slowing down the global economy. This
pandemic has affected thousands of peoples, who are either sick or are being killed due
to the spread of this disease. In this paper we developed an eight compartmental model
with quarantine and treatment of COVID-19. After proposing the model, we analysed
the qualitative behaviors of the model, like the disease free and endemic equilibrium
points and their stability analysis. Moreover, we obtained the basic reproduction num-
ber using next-generation matrix method and we performed the sensitivity analysis
to identify the most affecting parameters in terms of disease control and spreed. To
investigate the detail effect of each major parameters, we performed numerical simula-
tion. We obtained that using both quarantine and treatment is best way to combating
COVID-19 in the community. Therefore, stakeholders and policy makers should work
both quarantine and treatment simultaneously in combating the pandemic from the
population.
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1. Introduction

Since the outbreak in Wuhan, China, December, 2019, coronavirus disease
(COVID-19) caused by the novel coronavirus, has now become a global pan-
demic as declared by World Health Organization (WHO) [1] and the world is
presently battling with it [1, 2, 3]. The most common symptoms of COVID-19
are fever, fatigue, and dry cough [1]. Some patients may have ache and discom-
fort, nasal congestion, runny nose, sore throat, or diarrhea [3]. Such symptoms
occurs 2-14 days after exposure, most usually about 5 days [4].

The pandemic can be transmitted directly or indirectly from an infectious
person to a healthy person through the eyes, nose, mouth, and sometimes
through the ears through moisture content when coughing or sneezing [3]. Ac-
cording to the data reported by WHO (World Health Organization), on 13
August 2020, the reported laboratory confirmed that the number of affected
humans reached more than 25.9 million including more than 0.86 million death
cases and more than 18.2 million recovers are recorded [5]. The government
of different countries have been implementing diverse control measures such
as imposing strict, mandatory lockdowns other measures such as individuals
maintaining individual social distancing, avoiding crowded events, imposing a
maximum number on individuals in any religious and social, the use of face
masks while in public, use of sanitizers in any contact many in the markets and
etc [6, 7, 8] to mitigate the spread of this pandemic.

Mathematical models have long been used as tools in gaining insight into
the dynamics of infectious diseases [9, 10]. Several mathematical models have
already been formulated for the population dynamics of COVID-19 in several
countries [4, 11, 12, 6, 13, 14]. From this studies, Tang et al. [15] consid-
ered, an SEIR-type mathematical model to estimate the transmission risk of
COVID-19 and its implication. The study in [6] , formulated a model for novel
coronavirus disease 2019 (COVID-19) in Lagos, Nigeria and shown the effect of
control measures, specifically the common social distancing, use of face mask
and case detection on the dynamics of COVID-19. Khan et.al,[16], formulated
a fractional mathematical model for the dynamics of COVID-19 with quaran-
tine and isolation. D.K Mamo [13], developed SHEIQRD coronavirus pandemic
spread model. He Identified that isolation of exposed and infected individuals,
reduction of transmission, and stay-at-home return rate can mitigate COVID-
19 pandemic. In this study, we developed a model by incorporating the hos-
pitalize/quarantine and home treatment subclasses as well as home quarantine
subclasses.

2. Model description and formulation

In this study the total population, N(t), at time, t is divided into eight subpopu-
lations; Susceptible,S(t),Stay-home susceptables, Sh(t), Exposed, E(t), Asymp-
tomatic, A(t), Infected, I(t), home Treatment, T (t), Hospitalized/quarantine,
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Q(t) and Recovered, R(t). The Susceptible are recruited into the population
at a constant rate, Π. It is assumed that β1 and β2 are the contact rate of
susceptible individuals with asymptomatic and infected individuals respectively
and they move to the exposed compartment. We also assumed that suscepti-
ble individuals stay at home at a rate of υ and at a rate of τ peoples move
from stay at home for due to different reasons and susceptible to the pandemic.
Finishing the incubation period, the exposed individuals becomes infected at a
rate of γ. From this αγ proportion become asymptomatic and the rest (1−α)γ
become infectious. Through diagnosis σδ proportion asymptomatic individuals
got positive and join quarantine/hospitalized. The rest (1 − σ)δ proportion of
asymptomatic individuals recover from the disease. Also from infected indi-
viduals, cε fraction of individuals move to hospitalized. The others are taking
treatment at their home at a rate (1− c)ε. However, when the pandemic for the
treated individuals become savior ϕρ fraction move the quarantine/hospitalized.
The remaining fractions recovers with the home treatment. Infected individuals
recover at a rate of ω and quarantine individuals recover from the pandemic a
rate k. The asymptomatic, infectious, treated and quarantine individuals die
due to the disease at a rate ϱ1, ϱ2, ϱ3, ϱ4 respectively. The whole population have
an average death rate of µ. For more information, Table 2 shows the descrip-
tion of model parameters. The flow diagram of the model is shown in Figure 1
below. Therefore, based on the above asumptions, the model is governed by the

Figure 1: Compartmental flow diagram of the pandemic COVID 19 transmission
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following system of differential equation:

(1)



dS

dt
= Π+ τSh − (β1A+ β2I)S − (υ + µ)S,

dSh
dt

= υ S − (τ + µ)Sh,

dE

dt
= (β1A+ β2I)S − (γ + µ)E,

dA

dt
= αγ E − (ϱ1 + δ + µ)A,

dI

dt
= (1− α) γ E − (ϱ2 + ω + ε+ µ) I,

dT

dt
= (1− c) ε I − (ϱ3 + ρ+ µ)T,

dQ

dt
= σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q,

dR

dt
= ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR,

with the initial condition

(2) S(0) = S0 ≥ 0, E(0) = E0 ≥ 0 I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

3. Model analysis

3.1 Invariant region

In this section, a region in which solutions of the model are uniformlly bounded
is the proper subset of Ω ∈ R8

+. The total population at any time t is given by
N = S+Sh+E+A+I+T +Q+R and dN

dt = Π−ϱ1A−ϱ2I−ϱ3T −ϱ4Q−µN .
In the absence of mortality due to COVID-19 pandemic, it becomes

(3)
dN

dt
≤ Π− µN.

Solving equation (3), we obtain 0 ≤ N ≤ Π
µ . Therefore, the feasible solution set

of the system in equation (1) is the region given by:

(4) Ω =

{
(S, Sh, E,A, I, T,Q,R) ∈ R8

+ : N ≤ Π

µ

}
.

3.2 Positivity of solutions

Theorem 3.1. If the initial conditions of the model are nonnegative in the
feasible set Ω, then the solution set (S(t), Sh(t), E(t), A(t), I(t), Q(t), T (t), R(t))
of system (1) is positive for future time t ≥ 0.
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Proof. We let τ = sup{t > 0 : S0(ζ) ≥ 0, Sh0(ζ) ≥ 0, E0(ζ) ≥ 0, A0(ζ) ≥
0, I0(ζ) ≥ 0, T0(ζ) ≥ 0, Q0(ζ) ≥ 0, R0(ζ) ≥ 0 for all ζ ∈ [0, t]}. Since S0(t) ≥
0, Sh0(t) ≥ 0, E0(t) ≥ 0, A0(t) ≥ 0, I0(t) ≥ 0, T0(t) ≥ 0, Q0(t) ≥ 0, R0(t) ≥ 0
then τ > 0. If τ < ∞, then automaticaly S0(t) or Sh0(t) or E0(t) or A0(t) or
I0(t) or T0(t) or Q0(t) or R0(t) is equal to zero at τ . Taking the first equation
of the model (1)

(5)
dS

dt
= Π− (β1A+ β2I)S − (υ + µ)S.

Then, using the variation of constants formula the solution of equation (5) at τ
is given by:

S(τ) = S(0) exp

[
−
∫ τ

0
((β1A+ β2I)S + (υ + µ)S) (S)dS

]
+

∫ τ

0
Π. exp

[
−
∫ τ

S
((β1A+ β2I)S + (υ + µ)S) (ζ)dζ

]
dS > 0.

Moreover, since all the variables are positive in [0, τ ], hence, S(τ) > 0. It can
be shown in a similar way that Sh(τ) > 0, E(τ) > 0, A(τ) > 0 I(τ) > 0, T (τ) >
0, Q(τ) > 0 and R(τ) > 0. Which is a contradiction. Hence, τ = ∞. Therefore,
all the solution sets are positive for t ≥ 0.

3.3 COVID-19 Free Equilibrium Point (CFEP)

COVID-19 free equilibrium point is the state at which the infection is not present
in the population and note that it has been eradicated. In the case of COVID 19
free the compartments E = I = A = 0. Hence, equating zero for the remaining
equations in (1) leads the COVID-19 free equilibrium point and given by:

(6) E0 = (
π

µ
,

υπ

µ(γ + µ)
, 0, 0, 0, 0, 0, 0).

3.4 Basic reproduction number

To analyze the stability of the equilibrium points, the basic reproduction number
R0 of the model is important. It is obtained using the next-generation matrix
method [17, 18]. The first step is rewrite the model equations, starting with
newly infective classes:

(7)



dE
dt = (β1A+ β2I)S − (γ + µ)E,
dA
dt = αγ E − (ϱ1 + δ + µ)A,
dI
dt = (1− α) γ E − (ϱ2 + ω + ε+ µ) I,
dT
dt = (1− c) ε I − (ϱ3 + ρ+ µ)T,
dQ
dt = σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q,
dR
dt = ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR.
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Then, by the principle of next-generation matrix, the Jacobian matrices at DFE
is given by

F =



0 β1Π
µ

β2Π
µ 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V =



γ + µ 0 0 0 0 0
−αγ ψ1 0 0 0 0

− (1− α) γ 0 ψ2 0 0 0
0 0 − (1− c) ϵ ψ3 0 0
0 −σ δ −cϵ 0 ψ4 0
0 − (1− σ) δ −ω −ϕ ρ −k µ


,

where

ψ1 = ϱ1 + δ + µ, ψ2 = ϱ2 + ω + ϵ+ µ,

ψ3 = ϱ3 + θ + µ+ φ+ ϵ+ µ, ψ4 = ϱ4 + k + ρ+ µ.

Therefore, the basic reproduction number is the spectral radius of the next-
generation matrix FV−1, is given us

(8) R0 =
((1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1) γΠ

µ (γ + µ+ υ) (δ + ϱ1 + µ) (ϵ+ ω + ϱ2 + µ)
.

Which is a threshold parameter that represents the average number of infection
caused by one infectious individual when introduced in the susceptible popula-
tion [17] in its infectious life time.

3.5 Local stability of DFEP

Theorem 3.2. The DFEP point is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. The Jacobian matrix, evaluated at the disease-free equilibrium E0, we
get:

J =



−µ− υ τ 0 − β1(τ+µ)Π
(τ+µ+υ)µ − β2(τ+µ)Π

(τ+µ+υ)µ 0 0 0

υ −τ − µ 0 0 0 0 0 0

0 0 −γ − µ β1(τ+µ)Π
(τ+µ+υ)µ

β2(τ+µ)Π
(τ+µ+υ)µ 0 0 0

0 0 αγ −ψ1 0 0 0 0
0 0 (1− α) γ 0 −ψ2 0 0 0
0 0 0 0 (1− c) ϵ −ψ3 0 0
0 0 0 σ δ cϵ ϕ ρ −ψ4 0
0 0 0 (1− σ) δ ω (1− ϕ) ρ k −µ


,
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where

ψ1 = ϱ1 + δ + µ, ψ2 = ϱ2 + ω + ϵ+ µ,

ψ3 = ϱ3 + θ + µ+ φ+ ϵ+ µ, ψ4 = ϱ4 + k + ρ+ µ.

The first five eigenvalues are listed as:

−µ,−(τ + µ),−ψ3,−ψ4,−µ.

The other eigenvalues are obtained from the characteristic polynomial:

P(λ) = λ3 + φ1λ
2 + φ2λ+ φ3 = 0.(9)

where

φ1 = ψ1 + ψ2 + γ + µ,

φ2 =
−Παγ β1 + (1− α)Π γ β2 + γ µψ1 + γ µψ2 + ψ1µ

2 + ψ2µ
2 + ψ2µψ1

µ
,

φ3 = −Παγ β1ψ2 −Παγ β2ψ1 +Π γ β2ψ1 − γ µψ1ψ2 − µ2ψ1ψ2

µ
.

To check the positivity of the eigenvalues, We used Routh-Hurwitz criteria and
by this principle equation (9) has strictly negative real root iff ψ1 > 0 , ψ2 > 0
and ψ3 > 0. Clearly we see that ψ1 > 0 and ψ2 > 0 because they are the sum
of positive parameters. Then taking the third equation,

ψ3 = (ε+ ρ+ µ) (δ + µ) [1−R0] > 0

Hence the DFEP is locally asymptotically stable if R0 < 1.

3.6 Global stability of DFEP

In this section, we investigate global asymptotic stability of the disease free
equilibrium using the theorem of Castillo-Chavez [19, 14]. We rewrite model in
equation (1) as:

(10)

{
dZ
dt = F (Z, Y ),
dY
dt = G(Z, Y ), G(Z, 0) = 0,

where Z=(S, Sh, R) ∈ R3 denotes uninfected populations and Y = (E,A, I, T,Q)
∈ R5 denotes the infected population. E0 = (Z∗, 0) represents the DFEP of this
system. List two conditions as:

(i) For dZ
dt = F (Z, 0), Z∗ is globally asymptotically stable.

(ii) dY
dt = DYG(Z, 0)Y,−Ĝ(Z, Y ), Ĝ(Z, Y ) ≥ 0 for all (Z, Y ) ∈ Ω.
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If DFEP satisfies the above two conditions, we conclude that E0 is globally
asymptotically stable and according to Castillo-Chavez [19] and the following
theorem holds.

Theorem 3.3. The equilibrium point E0 = (Z∗, 0) of the system (10) is globally
asymptotically stable if R0 < 1 and the conditions (i) and (ii) are satisfied.

Proof. We start the proof by defining new variables and dividing the system
into subsystems. Z = (S,R,Q) and Y = (E,A). From equation (10) we have
two functions G(Z, Y ) and F (Z, Y ) given by:

F(X,Y) =

 Π+ φSh − (β1A+ β2I)S − (υ + µ)S
υ S − (τ + µ)Sh

ωI + (1− σ) δ A+ kQ+ (1− ϕ)ρ T − µR


and

G(Z,Y) =


(β1A+ β2I)S − (γ + µ)E
αγ E − (ϱ1 + δ + µ)A

(1− α) γ E − (ϱ2 + ω + ε+ µ) I
(1− c) ε I − (ϱ3 + ρ+ µ)T

σ δ A+ cεI + ϕρT − (ϱ4 + k + µ)Q

 .

Now, we consider the reduced system dZ
dt = F (Z, 0) from condition (i)

(11)


dS
dt = Π+ τSh − (υ + µ)S,
dSh
dt = υ S − (τ + µ)Sh,
dR
dt = −µR.

We note that this asymptomatic dynamics is independent of the initial condi-
tions in Ω , therefore the convergence of the solutions of the reduced system
equation (11) is global in Ω. We compute

G(Z, Y ) = DYG(Z
∗, 0)Y − Ĝ(Z;Y )

and show that Ĝ(Z;Y ) ≥ 0. Now,

DYG(Z
∗, 0)

=


−γ − µ β1(τ+µ)Π

(τ+µ+υ)µ
β2(τ+µ)Π
(τ+µ+υ)µ 0 0

αγ −ϱ1 − δ − µ 0 0 0

(1− α) γ 0 −ϱ2 − φ− ω − ϵ− µ 0 0
0 0 (1− c) ϵ −ϱ3 − ρ− µ 0
0 σ δ cϵ ϕ ρ −ϱ4 − k − µ

 .

And, we get

Ĝ(X,Y ) =



(
Π
µ − S

)
(β1A+ β2I)

0
0
0
0

 .
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Here, since Π
µ = S0 ≥ S, Hence, it is clear that Ĝ(Z, Y ) ≥ 0 for all (Z,Y)

∈ Ω. Therefore, by LaSalle’s invariance principle [20] this proves that DFE is
globally asymptotically stable for R0 < 1. From this result, we can say that the
model exhabits forward bifurication. In other words, for R0 < 1 the DFEP and
EEP does not co-exist.

3.7 The endemic equilibrium point (EEP)

For endemic equilibrium point of the model we denote it by E∗ and E∗ =
(S∗, S∗

h, E
∗, A∗, I∗, T ∗, Q∗, R∗) ≥ 0. The COVID-19 pandemic model has a

unique endemic equilibrium and it can be obtained by equating each equation
of the model equal to zero. i.e

dS

dt
=
dSh
dt

=
dA

dt
=
dI

dt
=
dT

dt
=
dQ

dt
=
dR

dt
= 0.

Then, we obtain

(12)



S∗ = (γ+µ)[δ(ε+ω+ϱ2+µ)+µ(ω+ϱ1+ϱ2+µ)+ε(ϱ1+µ)+ϱ1(ω+ϱ2)]
γ[(1−α)(δ+ϱ1+µ)β2+(ε+ω+ϱ2+µ)αβ1]

S∗
h = υ(γ+µ)[δ(ε+ω+φ+ϱ2+µ)+µ(ω+ϱ1+ϱ2+µ)+ε(ϱ1+µ)+ϱ1(ω+ϱ2)]

γ(τ+µ)[(1−α)(δ+ϱ1+µ)β2+(ε+ω+ϱ2+µ)αβ1]

E∗ = ξ1
γξ2

A∗ = αξ1
(ϱ1+δ+µ)ξ2

I∗ = (1−α)ξ1
(ϱ2+ω+ε+µ)ξ2

T ∗ = (α−1)(c−1)εξ1
(ϱ2+ω+ε+µ)(ρ+ϱ3+µ)ξ2

Q∗ = σδA∗+cεI∗+ϕρT ∗

ϱ4+k+µ

R∗ = ωI∗+(1−α)δA∗+kQ∗+(1−ϕ)ρT ∗

µ ,

where

ξ1 = (δ + ϱ1 + µ)(α− 1)Πγβ2 − (ε+ ω + ϱ2 + µ)Παγβ1

+ µ(γ + µ)[δ(ε+ ω + ϱ2 + µ) + ε(ϱ1 + µ) + µ(ω + ϱ1 + ϱ2 + µ)

+ ϱ1(ω + φ+ ϱ2)],

ξ2 = (γ + µ)[δβ2(α− 1)− αεβ1]− (ω + ϱ2 + µ)(γ + µ)αβ1

+ (α− 1)(γ + µ)(ϱ1 + µ)β2.

3.8 Sensitivity analysis

We used the normalized forward sensitivity index definition to go through sensi-
tivity analysis on the basic parameters [21] as done in [22, 23]. The Normalized
forward sensitivity index of a variable, R0, that depends differentiably on a
parameter, p, is defined as: ΛR0

p = ∂R0
∂p × p

R0
for p represents all the basic

parameters. Here, we have R0 = ((1−α)(δ+ϱ1+µ)β2+(ϵ+ω+ϱ2+µ)αβ1)γΠ
µ(γ+µ+υ)(δ+ϱ1+µ)(ϵ+ω+ϱ2+µ) . For the
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sensitivity index of R0 to the parameters:

ΛR0
β1

=
∂R0

∂β1
× β1

R0
=

(ϵ+ ω + ϱ2 + µ)αβ1
(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1

> 0,

ΛR0
β2

=
∂R0

∂β2
× β2

R0
=

(1− α) (δ + ϱ1 + µ)β2
(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1

> 0,

ΛR0
α =

∂R0

∂α
× α

R0
=

α (− (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)β1)

(1− α) (δ + ϱ1 + µ)β2 + (ϵ+ ω + ϱ2 + µ)αβ1
< 0.

Similarly, we can work for the other parameters. The sensitivity indices of the
basic reproductive number with respect to main parameters are found in Table 1.

Table 1: Sensitivity indecies table.

Parameter symbol Sensitivity indecies

β1 +ve
β2 +ve
γ +ve
σ1 -ve
σ2 -ve
k -ve
ε -ve
δ -ve
ω -ve
µ -ve

4. Numerical simulations

Analytic studies cannot be complete without numerical verification of the re-
sults. In this section, we present computer simulation of some solutions of the
system (1). Besides verification of our analytical outcomes, these numerical
simulations are very significant from practical point of view. To illustrate the
results, we used parameter values in the Table 2 .

From Figure 2, we find the positve indices parameters. These parameters
(β1, β2, and γ) show that they have great impact on expanding the disease
in the community if their values are increasing. This is because that the ba-
sic reproduction number increases as their values increase, so that the average
number of secondary cases of infection increases in the community. Therfore,
stakeholders should take action to decrease the effect of the pandemic.
Figure 3, shows those parameters in which their sensitivity indices are negative
(δ, ω, ε, k, and µ) and the increment of the parameters have an effect of mini-
mizing the burden of the disease in the community. Therefore, research advice
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Table 2: Description of parameters of the model (1)

Parameter Description Value Source
Π Ricuirement rate of individuals 150 Assumed
β1 Transmission rate from asymptomatic to susceptible individuals 0.00000115 [16]
β2 Transmission rate from infected to susceptible individuals 0.003 [16]
ρ Individuals who leave from treatment subpopulation 0.2 [16]
δ Proportion of exposed individuals leaving the compartment 0.2 [16]
ε Individuals who leave leave from the infected subpopulation 0.001 [16]
τ Proportion of exposed individuals who join infected compartment 0.07 [13, 24]
υ Proportion of exposed individuals who join infected compartment 0.005 [13]
µ Natural death rate the population 0.016 [13]
k Recovery rate of individuals under quarantine 0.2 [16]
ϱ1 Induced death rate of asymptomatic individuals 0.002 Assumed
ϱ2 Induced death rate of infected individuals 0.0002 [16, 24]
ϱ3 Induced death rate of individuals under treatment 0.0303 Assumed
ϱ4 Induced death rate of individuals under quarantine 0.0103 [16]
γ Exposed individuals that become infectious 0.143 [16, 24]
ϕ Proportion of individuals under treatment who join quarantine 0.3 [16]
c Proportion of infected individuals who join quarantine 0.5 [16]
ω Fraction of infected individuals that are immune 0.00023 [16]
σ Fraction of asymptomatic individuals that are immune 0.01 [16]
α Fraction of exposed individuals that become asymptomatic 0.1 [16]

(a) (b)

(c)

Figure 2: The positive indices parametres

for stakeholders to work on increasing negative indices parameters to fight the
pandemic persistence.
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(a) (b)

(c) (d)

Figure 3: The negative indices parameters

4.1 Impact of γ on infected population

From Figure 4, as we incease the rate of the number of exposed population to
infected and asymptomatic stage increases the number of total infected individ-
uals in the population. Thus, the closing of government offices fully or partially
was an important decision to control the spread of the pandemic.

4.2 Impact of hospitalizing and treatment (ε) on infected population

As we see from the Figure 5, by increasing the value of ε, the number of infected
people is decreasing due to an increase number of hospitalize/quarantine and
treantment of infectives at home. This is due to the reason that infectious
individuals plays an important role in the infection generation, and therefore,
the people should use every control mechanisms and should be educated to
avoid the interaction with such people and ready for testing. Therefore, the
government should work testing and diagnosis to reduce the infectious number
from the population by quarantine/ hospitalize or and treantment of infectives
at home.
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Figure 4: Impact of γ on Infected population

Figure 5: Impact of ε on Infected population

Figure 6, presents the dynamics of the mode with and without quaran-
tine/hospitalize and treatment. From the figure, one can see that, using quaran-
tine/hospitalize and treatment, it is possible to increase the number of recovered
individuals. Therefore, here stakeholders should work on using those combating
ways to fight the pandemic. A comparison figure is shown to see the effects on th
number of total recovered individuals, as seen in the Figure 7. It is evident from
figure that from the individual management techniques hospitalize/quarantine
infective individuals is better than taking treatment at home. However, instead
of using them separately, it is best to use the integration of both techniques to
produce a big number of recovered population from the pandemic.
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Figure 6: Comparison between with and without quarantine & Treatment

Figure 7: Comparison between quarantine only, Treatment only, with and with-
out quarantine & Treatment

5. Conclusions

In this paper an SEAIR deterministic model with quarantine and treatment
for the transmission dynamics of the pandemic COVID-19 was formulated. The
mathematical results for the model were shown. The basic reproduction number
R0 was computed and the stability of equilibria points was investigated. Using
Castillo-Chavez theorem, the disease free equilibrium point globally asymptot-
ically stable whenever the R0 < 1 was proven. We consider some parameters
and their effect on the model graphically, which can be regarded as the con-
trols for disease eradication. Also we show the effect of using quarantine and
treatment in geting better number of recovered individuals. Therefore, as it is
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shown in the figure, stakeholders should apply both quarantine and treatment
simultaneously in cambating the pandemic.
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1. Introduction

It is well known that there exist no Einstein real hypersurfaces in a nonflat
complex space form Mn(c) (cf. [2, 12]). Here by a nonflat complex space form
Mn(c) we refer to a complete and connected Kähler manifold with constant
holomorphic sectional curvature c ̸= 0 of complex dimension n ≥ 2. It is complex
analytically isometric to a complex projective space CPn(c) if c > 0 or a complex
hyperbolic space CHn(c) if c < 0. In geometry of real hypersurface, it has been
an active and interesting problem for a long time to research the existence and
classification of some geometric conditions which generalize Einstein condition.
For example, in 1979, Kon in [10] introduced pseudo-Einstein hypersurfaces and
later they became an important research subject (see many references related
with these hypersurfaces in [2, 12]). In 2009, Cho and Kimura in [4] first initiated
the study of Ricci soliton on real hypersurfaces. Here by a Ricci soliton defined
on a Riemannian manifold (M, g), we mean a triple (g, V, λ) (or shortly, a metric
g) satisfying

(1)
1

2
LV g +Ric = λg,

where V is a non-zero vector field, L is the Lie derivative and λ is a constant.
When V is a Killing vector field, then a Ricci soliton becomes an Einstein metric.
In particular, if V is the gradient of a smooth function f , then (1) becomes

(2) Hessf +Ric = λg,

and it is called a gradient Ricci soliton, where Hess denotes the Hessian operator.
Ricci solitons are fixed points of the Ricci flow and play very important roles in
modern differential geometry.
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It was proved by Cho and Kimura in [5] that there exist no Hopf hyper-
surfaces which admits a gradient Ricci soliton in a nonflat complex space form.
Some other studies involving Ricci solitons on real hypersurfaces can be seen
in [1, 8, 11]. These results motivate many other research in which some other
extensions of Einstein metrics were discussed. Next we exhibit some of them. A
Riemannian manifold (M, g) is said to admit a Miao-Tam critical metric if on
M there exists a smooth function f such that

(3) Hessf − (△f)g − fRic = g.

Note that (3) reduces to an Einstein metric when f is a nonzero constant, just
like that case in a gradient Ricci soliton. Applying Cho and Kimura’s techniques
in [5], Chen in [3] proved that there exist no Hopf real hypersurfaces with Miao-
Tam critical metric in a nonflat complex space form. Similarly, a Riemannian
manifold (M, g) is said to admit an m-quasi-Einstein metric if on M there exists
a smooth function f such that

(4) Hessf − 1

m
df ⊗ df +Ric = λg,

where m denotes a positive constant. Note that (4) reduces to still an Einstein
metric if f is a constant. Applying those techniques in [5], Cui and Chen in [6]
proved that there exist no Hopf real hypersurfaces with m-quasi Einstein metric
in nonflat complex space forms. A Riemannian manifold (M, g) is said to admit
Fischer-Marsden metric if on M there exists a smooth function f such that

(5) Hessf − fRic = (∆f)g,

The well known Fischer-Marsden conjecture states that a compact Riemannian
manifold is Einstein if it admits a non-trivial solution to equation (5) (cf. [7]).
In view of this, Fischer-Marsden equation (5) is also a nice extension of Einstein
metrics. Applying those techniques in [5], Venkatesha et al. in [13] proved that
there exist no complete Hopf hypersurfaces satisfying Fischer-Marsden equation
in a nonflat complex space form. In addition, Venkatesha et al. in [13] proposed
an open question:

Are there real hypersurfaces in nonflat complex space forms satisfying
Fischer-Marsden equation?

The present paper aims to investigate the above problem on a special hyper-
surface. We prove that there exist no ruled hypersurfaces in a nonflat complex
space form satisfying Fischer-Marsden equation. The proof of this result is given
in the last section of the paper.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N
be a unit normal vector field of M . We denote by ∇ the Levi-Civita connection
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of the metric g of Mn(c) and J the complex structure. Let g and ∇ be the
induced metric from the ambient space and the Levi-Civita connection of g
respectively. Then the Gauss and Weingarten formulas are given respectively
as the following:

(6) ∇XY = ∇XY + g(AX,Y )N, ∇XN = −AX,

for any X,Y ∈ X(M), where A denotes the shape operator of M in Mn(c). For
any vector field X tangent to M , we put

(7) JX = ϕX + η(X)N, JN = −ξ.

We can define on M an almost contact metric structure (ϕ, ξ, η, g) satisfying

ϕ2 = −id + η ⊗ ξ, η(ξ) = 1, ϕξ = 0,(8)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),(9)

for anyX,Y ∈ X(M). If the structure vector field ξ is principal, that is, Aξ = αξ
at each point, where α = η(Aξ), then M is called a Hopf hypersurface and α is
called Hopf principal curvature.

Moreover, applying the parallelism of the complex structure (i.e., ∇J = 0)
of Mn(c) and using (6), (7) we have

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,(10)

∇Xξ = ϕAX,(11)

for anyX,Y ∈ X(M). Let R be the Riemannian curvature tensor ofM . Because
Mn(c) is of constant holomorphic sectional curvature c, the Gauss and Codazzi
equations of M in Mn(c) are given respectively as the following:

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,
(12)

(13) (∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},

for any X,Y ∈ X(M). From the Gauss equation, the Ricci operator is given by

(14) Q =
c

4
((2n+ 1)id− 3η ⊗ ξ) + (traceA)A−A2.

3. Main results

Taking a regular curve γ in a nonflat complex space form Mn(c) with tangent
vector field X. There is a unique complex projective or hyperbolic hyperplane
at each point of γ such that it cuts γ so as to be orthogonal to both X and JX.
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The union of these hyperplanes is said to be a ruled real hypersurface ([9, 12]).
A ruled hypersurface cannot be Hopf and has some interesting characterizations.
For example, a real hypersurface in a nonflat complex space form is ruled if and
only if g(AX,Y ) = 0, for any vector fields X and Y orthogonal to ξ (cf. [9]). It
follows that

Aξ = αξ + βU,

AU = βξ,

AZ = 0, ∀ Z ∈ {ξ, U}⊥,
(15)

where α = g(Aξ, ξ), β is a smooth nowhere vanishing function and U is a unit
vector field parallel to ϕ∇ξξ. Putting (15) into (14) we have

Qξ =

(
1

2
(n− 1)c− β2

)
ξ,

QU =

(
1

4
(2n+ 1)c− β2

)
U,

QZ =
1

4
(2n+ 1)cZ, ∀ Z ∈ {ξ, U}⊥.

(16)

It follows directly that the scalar curvature is r = (n2 − 1)c − 2β2. We collect
some necessary properties of ruled hypersurfaces (cf. [9]) in the following lemma.

Lemma 3.1. On a ruled hypersurface the following relations are valid:

∇UϕU =

(
c

4β
− β

)
U, ∇ϕUU = 0,

U(β) = 0, ϕU(β) = β2 +
c

4
, W (β) = 0, ∀ W ∈ {ξ, U, ϕU}⊥.

(17)

Lemma 3.2. On a real hypersurface in a noflat complex space form satisfying
Fischer-Marsden equation, the following relation is valid:(

1

2(n− 1)
Y (fr)− c

4
Y (f)

)
X −

(
1

2(n− 1)
X(fr)− c

4
X(f)

)
Y

+ (X(f)QY − Y (f)QX) + f((∇XQ)Y − (∇Y Q)X)− c

2
g(X,ϕY )ϕDf(18)

+
c

4
(ϕX(f)ϕY − ϕY (f)ϕX) +AX(f)AY −AY (f)AX = 0,

for any vector field X,Y , where Df denotes the gradient of function f .

Proof. Note that the Fischer-Marsden equation (5) can be transformed into
the following

∇XDf = (∆f)X + fQX,

for any vector field X. Contracting the above equality over X gives that ∆f =
− fr

2(n−1) . Putting this into the above equality gives

∇XDf = − fr

2(n− 1)
X + fQX.
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Taking the derivative of this equality we obtain

∇Y ∇XDf = − 1

2(n− 1)
Y (fr)X − fr

2(n− 1)
∇Y X + Y (f)QX + f∇Y (QX),

for any vector fields X,Y . Applying this equality and previous one in definition
of the curvature tensor we have

R(X,Y )Df =
1

2(n− 1)
(Y (fr)X −X(fr)Y )

+X(f)QY − Y (f)QX + f(∇XQ)Y − f(∇Y Q)X.

(19)

On the other hand, replacing Z by Df in (12) we get

R(X,Y )Df =
c

4
(Y (f)X −X(f)Y + ϕY (f)ϕX − ϕX(f)ϕY )

+
c

2
g(X,ϕY )ϕDf +AY (f)AX −AX(f)AY.

Comparing the above equality with (19) gives (18).

With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇ξQ)U − (∇UQ)ξ = −2βξ(β)U − β2∇ξU.

Note that we have applied∇ξU ∈ {ξ, U}⊥ due to g(∇ξU, ξ) = 0 and g(∇ξU,U) =
0. Form now on, suppose that a real hypersurface in a nonflat complex space
form satisfies Fischer-Marsden equation. In (18), replacing X and Y by ξ and
U , respectively, we obtain an equality. Taking the ξ-component of this equality
gives

1

2(n− 1)
U(fr)− c

4
U(f)−

(
n− 1

2
c− β2

)
U(f) + β2U(f) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get(

2n− 3

n− 1
β2 +

3

4
c

)
U(f) = 0.

Suppose that there exists a point p on the hypersurface such that U(f) ̸= 0
at p and hence on an open neighborhood Ω around p. Thus, working on Ω we
obtain 2n−3

n−1 β
2 + 3

4c = 0. Then β is a constant. Applying (17) again we obtain

β2 + c
4 = 0. Putting this into the previous one reduces to either n = 0 or c = 0,

a contradiction. Therefore, U(f) = 0 holds on the whole of the hypersurface.
With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇ξQ)ϕU − (∇ϕUQ)ξ =
2n+ 1

4
c∇ξϕU −Q∇ξϕU + 2β

(
β2 +

c

4

)
ξ.
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In (18), replacing X and Y by ξ and ϕU , respectively, we obtain an equality.
Taking the ξ-component of this equality gives

1

2(n− 1)
ϕU(fr)− c

4
ϕU(f)−

(
n− 1

2
c− β2

)
ϕU(f)

+
2n+ 1

4
cfg(∇ξϕU, ξ)− fg(Q∇ξϕU, ξ) + 2fβ(β2 +

c

4
) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get

(20)

(
n− 2

n− 1
β2 +

3

4
c

)
ϕU(f) +

n− 3

n− 1
fβ3 − n+ 1

4(n− 1)
cfβ = 0.

With the help of (15), (16) and Lemma 3.1, by a direct calculation we have

(∇UQ)ϕU − (∇ϕUQ)U = β
(
β2 +

c

2

)
U.

In (18), replacing X and Y by U and ϕU , respectively, we obtain an equality.
Applying the fact U(f) = 0 and taking the U -component of this equality gives

1

2(n− 1)
ϕU(fr)− c

4
ϕU(f)−

(
2n+ 1

4
c− β2

)
ϕU(f)

+ fβ
(
β2 +

c

2

)
− c

4
ϕU(f)− c

2
ϕU(f) = 0.

Substituting the scalar curvature r = (n2 − 1)c − 2β2 into the above equality
and applying Lemma 3.1, we get

(21)

(
n− 2

n− 1
β2 − 3

4
c

)
ϕU(f) +

n− 3

n− 1
fβ3 +

n+ 1

2(n− 1)
cfβ = 0.

Subtracting (20) from (21) we obtain ϕU(f) = 1
2fβ because of c ̸= 0. Sub-

stituting this into (20) we get

3n− 8

2(n− 1)
β2 +

3

8
c− n+ 1

4(n− 1)
c = 0.

This means that β is a constant, and hence from Lemma 3.1 we have β2+ c
4 = 0.

Putting this into the above equality we arrive at a contradiction. Therefore, we
obtain the following result.

Theorem 3.1. There are no ruled hypersurfaces in nonflat complex space forms
satisfying Fischer-Marsden equation.

Remark 3.1. Hopf and ruled hypersurfaces are ones of the most classical real
hypersurfaces in a nonflat complex space form. Except for this two types of real
hypersurfaces, the existence and classification problems of general non-Hopf real
hypersurfaces satisfying Fischer-Marsden equation are still open questions.
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Abstract. In this paper, by introducing the incomplete beta function, we establish
a multi-parameter integral inequality via s-convex functions, which provides a unified
generalization and refinement of Hermite-Hadamard-type and Simpson-type inequal-
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1. Introduction

The theory of inequalities has been greatly developed since Jensen introduced
the concept of convex functions 100 years ago. There are a large number of
inequalities which are established by the convexity of functions (see, [1, 2, 3, 4]).
Among these results, the Hermite-Hadamard inequality is one of the best known
results in the literature, which is stated as follows:

Let f : [a, b]→ R be a convex function with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.(1)

Nowadays, the Hermite-Hadamard inequality has been studied extensively
both in theory and in practical applications, see, e.g., [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17] and the references cited therein.

*. Corresponding author
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Recently, it has attracted our attention that an extraordinary generalization
of Hermite-Hadamard-type inequality was posted by Deng and Wu in [18], in
which the Hermite-Hadamard type inequality was generalized by the way of
n-time differentiable functions, as follows:

∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx−

n−1∑
k=2

(k − 1)(b− a)k

2(k + 1)!
f (k)(a)

∣∣∣∣∣
≤ (|n− 2|+ 1)(b− a)n

2(|n− 2|+ 3)n!
(2)

×

[
( (n+ 1) |n− 2|+ n)

∣∣f (n)(a)∣∣q + (|n− 2|+ 2)
∣∣f (n)(b)∣∣q

(n+ 2)( |n− 2|+ 1 )

] 1
q

,

where f (n) is integrable and |f (n)|q is convex on [a, b], n ≥ 1, q ≥ 1.

The main role of above-mentioned inequality is to provides an estimation to
the difference between the middle and rightmost terms in the Hermite-Hadamard
inequality (1). This result also leads us to pay attention to another famous
inequality, called Simpson’s inequality, which gives the estimate of the error
term in the quadrature formula [19], i.e.,∣∣∣∣∣16[f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣ ≤ (b− a)4

2880
∥f (4)∥∞,(3)

where f : [a, b]→ R is a four times continuously differentiable function on (a, b)
and ∥f (4)∥∞ = supx∈(a,b) |f (4)(x)| <∞.

Motivated by the above-mentioned results, in this paper, by introducing
more parameters, we establish a multi-parameter integral inequality via s-convex
functions, which provides a unified generalization and refinement of inequalities
(2) and (3). The methods used are mainly based on the representation of inte-
gral using the incomplete beta function and the extension of convexity via the
s-convex functions.

The remaining parts of this paper are organized as follows. In Section 2, we
present some definitions and lemmas which are essential in the proof of the main
results. In Sections 3, we establish our main result, in which a unified generaliza-
tion and refinement of inequalities (2) and (3) is proved. In Sections 3 and 4, we
explain the applications of our main result with two aspects corresponding to the
two types of integral inequalities, we show that a lot of Hermite-Hadamard-type
and Simpson-type inequalities can be derived respectively when some suitable
values are assigned to the parameters.
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2. Definitions and lemmas

We begin with introducing some essential definitions and lemmas in preparation
for the proof of our main result.

Definition 2.1 ([5]). Let I ⊆ R be an interval. Then a real-valued function
f : I → R is said to be convex on I if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)(4)

holds for all x, y ∈ I and λ ∈ [0, 1].

In [20], Hudzik and Maligranda introduced the class of functions which are
s-convex in the second sense, as follows:

Definition 2.2. A real-valued function f : [0,∞)→ R is said to be s-convex in
the second sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)(5)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1].

It can be easily observed that for s = 1 s-convexity reduces to ordinary
convexity of functions defined on [0,∞).

Below are two lemmas, we will give a representation of integral via the
incomplete beta function and establish an integral identity.

Lemma 2.1. Let σ > 0, υ > 0, ζ ≥ 0, 0 < τ ≤ 1. Then we have

N (τ, σ, υ, ζ) :=

∫ τ

0
xσ−1(1− x)υ−1|ζ − x|dx

=


ζBτ (σ, υ)−Bτ (σ + 1, υ), ζ ≥ τ,
2ζBζ(σ, υ)− 2Bζ(σ + 1, υ)

−ζBτ (σ, υ) +Bτ (σ + 1, υ), 0 ≤ ζ < τ

(6)

where Bt(κ, ι) (0 < t < 1) and B1(κ, ι) denote respectively the incomplete beta
function and the beta function [21], i.e.,

Bt(κ, ι) =

∫ t

0
xκ−1(1− x)ι−1dx, κ, ι > 0,

B1(κ, ι) =

∫ 1

0
xκ−1(1− x)ι−1dx, κ, ι > 0.
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Proof. We compute the integral N (τ, σ, υ, ζ) by discussing separately two cases
of ζ ≥ τ and 0 ≤ ζ < τ , it follows that

N (τ, σ, υ, ζ) =

∫ τ

0
xσ−1(1− x)υ−1|ζ − x|dx

=



∫ τ

0
xσ−1(1− x)υ−1(ζ − x)dx, ζ ≥ τ,∫ ζ

0
xσ−1(1− x)υ−1(ζ − x)dx

+

∫ τ

ζ
xσ−1(1− x)υ−1(x− ζ)dx, 0 ≤ ζ < τ.

=



∫ τ

0
xσ−1(1− x)υ−1(ζ − x)dx, ζ ≥ τ,

2

∫ ζ

0
xσ−1(1− x)υ−1(ζ − x)dx

−
∫ τ

0
xσ−1(1− x)υ−1(ζ − x)dx, 0 ≤ ζ < τ

=



∫ τ

0
ζxσ−1(1− x)υ−1dx

−
∫ τ

0
xσ(1− x)υ−1dx, ζ ≥ τ,

2

∫ ζ

0
ζxσ−1(1− x)υ−1dx

−2
∫ ζ

0
xσ(1− x)υ−1dx

−
∫ τ

0
ζxσ−1(1− x)υ−1dx

+

∫ τ

0
xσ(1− x)υ−1dx, 0 ≤ ζ < τ

=


ζBτ (σ, υ)−Bτ (σ + 1, υ), ζ ≥ τ,
2ζBζ(σ, υ)− 2Bζ(σ + 1, υ)

−ζBτ (σ, υ) +Bτ (σ + 1, υ), 0 ≤ ζ < τ.

The proof of Lemma 2.1 is complete.

Lemma 2.2. Let f : [a, b] → R, and let f (n) (n ≥ 1) be integrable on [a, b].
Then for µ, λ ∈ R and θ ∈ [0, 1], we have the following identity:

(b− a)n

n!

[∫ θ

0
xn−1(nλ− x)f (n)(xa+ (1− x)b)dx

−
∫ 1

θ
(x− 1)n−1(nµ+ x− 1)f (n)(xa+ (1− x)b)dx

]
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= µf(a) + λf(b)− (λ+ µ− 1)f(θa+ (1− θ)b)− 1

b− a

∫ b

a
f(x)dx(7)

−
n−1∑
k=1

(b− a)k

(k + 1)!

[
λ(k + 1)θk − θk+1 + µ(k + 1)(θ − 1)k + (θ − 1)k+1

]
× f (k)(θa+ (1− θ)b).

Proof. Using integration by parts for n− 1 times, we obtain

I =

∫ θ

0
xn−1(nλ− x)f (n)(xa+ (1− x)b)dx

−
∫ 1

θ
(x− 1)n−1(nµ+ x− 1)f (n)(xa+ (1− x)b)dx

=
n−1∑
j=1

f (n−j)(θa+ (1− θ)b)
(b− a)j

n!

(n+ 1− j)!

[
(θn+1−j − (n+ 1− j)λθn−j)

− ((θ − 1)n+1−j + (n+ 1− j)µ(θ − 1)n−j)
]
+

n!

(b− a)n−1

×

[∫ θ

0
(λ− x)f ′(xa+ (1− x)b)dx−

∫ 1

θ
(µ+ x− 1)f ′(xa+ (1− x)b)dx

]
.

Again, using integration by parts again yields

I =
n−1∑
j=1

f (n−j)(θa+ (1− θ)b)
(b− a)j

n!

(n+ 1− j)!

[
(θn+1−j − (n+ 1− j)λθn−j)

− ((θ − 1)n+1−j + (n+ 1− j)µ(θ − 1)n−j)
]
− n!

(b− a)n+1

∫ b

a
f(x)dx

+
n!
(
µf(a) + λf(b)− (λ+ µ− 1)f(θa+ (1− θ)b

)
(b− a)n

.

Performing a substitution j → n− k gives

I =
n−1∑
k=1

f (k)(θa+ (1− θ)b)
(b− a)n−k

n!

(k + 1)!

[
(θk+1 − (k + 1)λθk)

− ((θ − 1)k+1 + (k + 1)µ(θ − 1)k)
]
− n!

(b− a)n+1

∫ b

a
f(x)dx

+
n!
(
µf(a) + λf(b)− (λ+ µ− 1)f(θa+ (1− θ)b

)
(b− a)n

.

Multiplying both side of the above equation by (b − a)n/n! leads to the
desired identity (7). This completes the proof of Lemma 2.2.
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3. Main result

Our main result is stated in the following theorem, which provides a unified
generalization and refinement of inequalities (2) and (3).

Theorem 3.1. Let f : [0,∞) → R be n-time differentiable function and a, b ∈
[0,∞) with a < b. If f (n) is integrable and |f (n)|q is s-convex on [a, b], n ≥ 1,
q ≥ 1, 0 < s ≤ 1 and θ, λ, µ ∈ [0, 1], then∣∣∣∣∣µf(a)+λf(b)−(λ+µ−1)f(θa+(1−θ)b)− 1

b−a

∫ b

a
f(x)dx−

n−1∑
k=1

(b−a)k

(k+1)!

×
[
λ(k+1)θk−θk+1+µ(k+1)(θ−1)k+(θ−1)k+1

]
f (k)(θa+(1−θ)b)

∣∣∣∣∣
≤ (b− a)n

n!

[
(N (θ, n, 1, nλ))

1− 1
q

(
N (θ, n+ s, 1, nλ)|f (n)(a)|q(8)

+N (θ, n, s+ 1, nλ)|f (n)(b)|q
) 1

q
+ (N (1− θ, n, 1, nµ))1−

1
q

×
(
N (1− θ, n, s+ 1, nµ)|f (n)(a)|q +N (1− θ, n+ s, 1, nµ)|f (n)(b)|q

) 1
q

]

≤ (b− a)n

n!
(N (θ, n, 1, nλ) +N (1− θ, n, 1, nµ))1−

1
q(9)

×

[(
N (θ, n+ s, 1, nλ) +N (1− θ, n, s+ 1, nµ)

)
|f (n)(a)|q

+
(
N (θ, n, s+ 1, nλ) +N (1− θ, n+ s, 1, nµ)

)
|f (n)(b)|q

] 1
q

,

where N (θ, n, 1, nλ), N (θ, n + s, 1, nλ), N (θ, n, s + 1, nλ), N (1 − θ, n, 1, nµ),
N (1− θ, n, s+ 1, nµ), N (1− θ, n+ s, 1, nµ) are given by the formula (6).

Proof. Let

H(θ, n, λ, µ) := µf(a) + λf(b)− (λ+ µ− 1)f(θa+ (1− θ)b)

− 1

b− a

∫ b

a
f(x)dx−

n−1∑
k=1

(b− a)k

(k + 1)!

×
[
λ(k + 1)θk − θk+1 + µ(k + 1)(θ − 1)k + (θ − 1)k+1

]
f (k)(θa+ (1− θ)b).

Then, form Lemma 2.2, one has

|H(θ, n, λ, µ)| = (b− a)n

n!

∣∣∣∣∣
∫ θ

0
xn−1(nλ− x)f (n)(xa+ (1− x)b)dx
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−
∫ 1

θ
(x− 1)n−1(nµ+ x− 1)f (n)(xa+ (1− x)b)dx

∣∣∣∣∣
≤ (b− a)n

n!

[∫ θ

0

∣∣∣xn−1(nλ− x)f (n)(xa+ (1− x)b)
∣∣∣dx

+

∫ 1

θ

∣∣∣(x− 1)n−1(nµ+ x− 1)f (n)(xa+ (1− x)b)
∣∣∣dx].

Using the Hölder integral inequality, we obtain

|H(θ, n, λ, µ))| ≤ (b− a)n

n!

[(∫ θ

0
|xn−1(nλ− x)|dx

)1− 1
q

×
(∫ θ

0
|xn−1(nλ− x)||f (n)(xa+ (1− x)b)|qdx

) 1
q

+
(∫ 1

θ
|(x− 1)n−1(nµ+ x− 1)|dx

)1− 1
q

×
(∫ 1

θ
|(x− 1)n−1(nµ+ x− 1)||f (n)(xa+ (1− x)b)|qdx

) 1
q

]
.

Further, utilizing the s-convexity of |f (n)(x)|q, we deduce that

|H(θ, n, λ, µ))| ≤ (b− a)n

n!

[(∫ θ

0
|xn−1(nλ− x)|dx

)1− 1
q

×
(∫ θ

0

(
xn+s−1|nλ− x||f (n)(a)|q + xn−1(1− x)s|nλ− x||f (n)(b)|q

)
dx
) 1

q

+
(∫ 1

θ
|(x− 1)n−1(nµ+ x− 1)|dx

)1− 1
q

×
(∫ 1

θ

(
(1− x)n−1xs|(nµ+ x− 1)||f (n)(a)|q

+ (1− x)n+s−1|(nµ+ x− 1)||f (n)(b)|q
)
dx
) 1

q

]

=
(b− a)n

n!

[(∫ θ

0
|xn−1(nλ− x)|dx

)1− 1
q

×
(∫ θ

0
xn+s−1|nλ− x||f (n)(a)|qdx+

∫ θ

0
xn−1(1− x)s|nλ− x||f (n)(b)|qdx

) 1
q

+
(∫ 1−θ

0
xn−1|(nµ− x)|dx

)1− 1
q
(∫ 1−θ

0
xn−1(1− x)s|(nµ− x)||f (n)(a)|qdx

+

∫ 1−θ

0
xn+s−1|(nµ− x)||f (n)(b)|qdx

) 1
q

]
.
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Now, by means of the integral representation via the incomplete beta func-
tion described in Lemma 2.1, we obtain

|H(θ, n, λ, µ))| ≤ (b− a)n

n!

[
(N (θ, n, 1, nλ))

1− 1
q

(
N (θ, n+ s, 1, nλ)|f (n)(a)|q

+N (θ, n, s+ 1, nλ)|f (n)(b)|q
) 1

q
+ (N (1− θ, n, 1, nµ))1−

1
q

×
(
N (1− θ, n, s+ 1, nµ)|f (n)(a)|q +N (1− θ, n+ s, 1, nµ)|f (n)(b)|q

) 1
q

]
,

which is the desired inequality (8).
Now, let us turn to the proof of inequality (9). In fact, the inequality (9)

can be derived directly from the following discrete Hölder inequality

x
1− 1

q

1 x
1
q

2 + y
1− 1

q

1 y
1
q

2 ≤ (x1 + y1)
1− 1

q (x2 + y2)
1
q (q ≥ 1)

with a choice of

x1 = N (θ, n, 1, nλ),

x2 = N (1− θ, n, 1, nµ),
y1 = N (θ, n+ s, 1, nλ)|f (n)(a)|q +N (θ, n, s+ 1, nλ)|f (n)(b)|q,
y2 = N (1− θ, n, s+ 1, nµ)|f (n)(a)|q +N (1− θ, n+ s, 1, nµ)|f (n)(b)|q.

The proof of Theorem 3.1 is complete.

4. Applications to the establishing of Hermite-Hadamard-type
inequalities

In this section, we illustrate that some Hermite-Hadamard-type inequalities can
be derived from the special cases of Theorem 3.1.

Putting λ = µ = 1
2 and θ = 1 in the inequalities of Theorem 3.1, we obtain

a generalization of Hermite-Hadamard-type inequality (2), as follows:

Corollary 4.1. Let f : [0,∞)→ R be n-time differentiable function and a, b ∈
[0,∞) with a < b. If f (n) is integrable and |f (n)|q is s-convex on [a, b], n ≥ 1,
q ≥ 1, 0 < s ≤ 1, then∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx−

n−1∑
k=2

(k − 1)(b− a)k

2(k + 1)!
f (k)(a)

∣∣∣∣∣
≤ (b− a)n

n!

(
N
(
1, n, 1,

n

2

))1− 1
q

(10)

×

[(
N
(
1, n+ s, 1,

n

2

))
|f (n)(a)|q +

(
N
(
1, n, s+ 1,

n

2

))
|f (n)(b)|q

] 1
q

,
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where N (1, n, 1, n2 ), N (1, n + s, 1, n2 ), N (1, n, s + 1, n2 ) are given by the for-
mula (6).

If we take n = 1 and n = 2 in inequality (10) respectively, we obtain∣∣∣∣∣f(a)+f(b)2
− 1

b−a

∫ b

a
f(x)dx

∣∣∣∣∣≤ (b− a)

4× (2s+ 21−s)
− 1

q

[
|f ′(a)|q + |f ′(b)|q

(s+ 1)(s+ 2)

] 1
q

,(11) ∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣ ≤ (b− a)2

2× 6
1− 1

q

[
|f ′′(a)|q + |f ′′(b)|q

(s+ 2)(s+ 3)

] 1
q

.(12)

Setting s = 1 in (10), we get

Corollary 4.2. Let f : [0,∞)→ R be n-time differentiable function and a, b ∈
[0,∞) with a < b. If f (n) is integrable and |f (n)|q is convex on [a, b], n ≥ 1,
q ≥ 1, then∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx−

n−1∑
k=2

(k − 1)(b− a)k

2(k + 1)!
f (k)(a)

∣∣∣∣∣
≤ (b− a)n

n!

(
N
(
1, n, 1,

n

2

))1− 1
q

(13)

×

[(
N
(
1, n+ 1, 1,

n

2

))
|f (n)(a)|q +

(
N
(
1, n, 2,

n

2

))
|f (n)(b)|q

] 1
q

.

For n = 1, inequality (13) becomes∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣ ≤ (b− a)
4

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.(14)

For n = 2, inequality (13) reduces to∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣ ≤ (b− a)2

12

[
|f ′′(a)|q + |f ′′(b)|q

2

] 1
q

.(15)

Especially, for n ≥ 2, a simple computation gives

N
(
1, n, 1,

n

2

)
=

n− 1

2(n+ 1)
,

N
(
1, n+ 1, 1,

n

2

)
=

n2 − 2

2(n+ 1)(n+ 2)
,

N
(
1, n, 2,

n

2

)
=

n

2(n+ 1)(n+ 2)
,



600 YITING WU and QIUYUE LI

and then substituting them into inequality (13), we get∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx−

n−1∑
k=2

(k − 1)(b− a)k

2(k + 1)!
f (k)(a)

∣∣∣∣∣
≤ (n− 1)(b− a)n

2(n+ 1)!

[
(n2 − 2)

∣∣f (n)(a)∣∣q + n
∣∣f (n)(b)∣∣q

(n− 1)(n+ 2)

] 1
q

,(16)

which is equivalent to the inequality (2) (n ≥ 2) that we have mentioned at the
beginning section.

5. Applications to the establishing of Simpson-type inequalities

In this section, we show that some Simpson-type inequalities can be derived
from the special cases of Theorem 3.1.

Putting λ = µ = 1
6 and θ = 1

2 in the inequalities of Theorem 3.1, we obtain
a generalization of Simpson’s inequality (3), as follows:

Corollary 5.1. Let f : [0,∞)→ R be n-time differentiable function and a, b ∈
[0,∞) with a < b. If f (n) is integrable and |f (n)|q is s-convex on [a, b], n ≥ 1,
q ≥ 1, 0 < s ≤ 1, then∣∣∣∣∣16[f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

−
n−1∑
k=1

k − 2

6

[(
− 1

2

)k
+
(1
2

)k](b− a)k
(k + 1)!

f (k)
(a+ b

2

)∣∣∣∣∣
≤ (b− a)n

n!

(
2N
(1
2
, n, 1,

n

6

))1− 1
q

(17)

×
(
N
(1
2
, n+ s, 1,

n

6

)
+N

(1
2
, n, s+ 1,

n

6

)) 1
q
[
|f (n)(a)|q + |f (n)(b)|q

] 1
q
,

where N (12 , n, 1,
n
6 ), N (12 , n + s, 1, n6 ), N (12 , n, s + 1, n6 ) are given by the for-

mula (6).

If we take n = 1 in inequality (17), we obtain∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣(18)

≤ 5(b− a)
36

[
(s− 4)6s+1 + 2× 5s+2 − 2× 3s+2 + 2

5× 6s(s+ 1)(s+ 2)

] 1
q [
|f ′(a)|q + |f ′(b)|q

] 1
q
.

Setting s = 1 in (17), we get
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Corollary 5.2. Let f : [0,∞)→ R be n-time differentiable function and a, b ∈
[0,∞) with a < b. If f (n) is integrable and |f (n)|q is convex on [a, b], n ≥ 1,
q ≥ 1, then

∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

−
n−1∑
k=1

k − 2

6

[(
− 1

2

)k
+
(1
2

)k](b− a)k
(k + 1)!

f (k)
(a+ b

2

)∣∣∣∣∣
≤ (b− a)n

n!

(
2N
(1
2
, n, 1,

n

6

))1− 1
q

(19)

×
(
N
(1
2
, n+ 1, 1,

n

6

)
+N

(1
2
, n, 2,

n

6

)) 1
q
[
|f (n)(a)|q + |f (n)(b)|q

] 1
q
.

Choosing n = 1 in inequality (19) yields

∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣
≤ 5(b− a)

36

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.(20)

Choosing n = 2 in inequality (19), we obtain

∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣
≤ (b− a)2

81

[
|f ′′(a)|q + |f ′′(b)|q

2

] 1
q

.(21)

Especially, for n ≥ 3, a simple computation gives

N
(1
2
, n, 1,

n

6

)
=

n− 2

6(n+ 1)

(
1

2

)n

,

N
(1
2
, n+ 1, 1,

n

6

)
=

n2 − n− 3

3 (n+ 2) (n+ 1)

(
1

2

)n+2

,

N
(1
2
, n, 2,

n

6

)
=

n2 + n− 5

3 (n+ 2) (n+ 1)

(
1

2

)n+2

,
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and then substituting them into inequality (19), we get∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

−
n−1∑
k=1

k − 2

6

[(
− 1

2

)k
+
(1
2

)k](b− a)k
(k + 1)!

f (k)
(a+ b

2

)∣∣∣∣∣
≤ (n− 2)(b− a)n

3× 2n(n+ 1)!

[
|f (n)(a)|q + |f (n)(b)|q

2

] 1
q

.(22)

For n = 3, inequality (22) reduces to∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣
≤ (b− a)3

576

[
|f ′′′(a)|q + |f ′′′(b)|q

2

] 1
q

.(23)

For n = 4, inequality (22) becomes∣∣∣∣∣16[f(a) + f(b) + 4f
(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣
≤ (b− a)4

2880

[
|f (4)(a)|q + |f (4)(b)|q

2

] 1
q

.(24)

Inequality (24) is just the Simpson’s inequality (3) that we have mentioned in
the introduction section.

6. Concluding remarks

In Sections 3 and 4, we have shown the applications of our main result in es-
tablishing some generalizations of Hermite-Hadamard-type and Simpson-type
inequalities, respectively. Here, we demonstrate that our main result given by
Theorem 3.1 can also generate some refined inequalities of Hermite-Hadamard
and Simpson type when some suitable values are assigned to the parameters.
For example, if we take s = 1, θ = 1

2 and λ = µ = 1
6 in Theorem 3.1, then, under

the assumptions of Corollary 5.2, we have the following refinement of Simpson’s
inequalities: ∣∣∣∣∣16[f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

−
n−1∑
k=1

k − 2

6

[(
− 1

2

)k
+
(1
2

)k](b− a)k
(k + 1)!

f (k)
(a+ b

2

)∣∣∣∣∣
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≤ (b− a)n

n!

(
N
(1
2
, n, 1,

n

6

))1− 1
q

(25)

×

[(
N
(1
2
, n+ 1, 1,

n

6

)
|f (n)(a)|q +N

(1
2
, n, 2,

n

6

)
|f (n)(b)|q

) 1
q

+
(
N
(1
2
, n, 2,

n

6

)
|f (n)(a)|q +N

(1
2
, n+ 1, 1,

n

6

)
|f (n)(b)|q

) 1
q

]

≤ (b− a)n

n!

(
2N
(1
2
, n, 1,

n

6

))1− 1
q

(26)

×
(
N
(1
2
, n+ 1, 1,

n

6

)
+N

(1
2
, n, 2,

n

6

)) 1
q
[
|f (n)(a)|q + |f (n)(b)|q

] 1
q
.

Especially, when n ≥ 3, the above inequalities reduce to the following refined
inequalities of Simpson type.∣∣∣∣∣16[f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

−
n−1∑
k=1

k − 2

6

[(
− 1

2

)k
+
(1
2

)k](b− a)k
(k + 1)!

f (k)
(a+ b

2

)∣∣∣∣∣
≤ (n− 2)(b− a)n

3× 2n+1(n+ 1)!
×

[(n2 − n− 3

2n2 − 8
|f (n)(a)|q + n2 + n− 5

2n2 − 8
|f (n)(b)|q

) 1
q

(27)

+
(n2 + n− 5

2n2 − 8
|f (n)(a)|q + n2 − n− 3

2n2 − 8
|f (n)(b)|q

) 1
q

]

≤ (n− 2)(b− a)n

3× 2n(n+ 1)!

[
|f (n)(a)|q + |f (n)(b)|q

2

] 1
q

.(28)

As a direct consequence, a refinement of Simpson’s inequality can be derived
by taking n = 4 in the above inequalities, i.e.,∣∣∣∣∣16[f(a) + f(b) + 4f

(a+ b

2

)]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣∣
≤ (b− a)4

5760

[(
3

8
|f (4)(a)|q + 5

8
|f (4)(b)|q

) 1
q

(29)

+

(
5

8
|f (4)(a)|q + 3

8
|f (4)(b)|q

) 1
q
]

≤ (b− a)4

2880

[
|f (4)(a)|q + |f (4)(b)|q

2

] 1
q

.(30)
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Abstract. In this paper, we prove some properties of oscillation for a class of fractional
damped differential equations using generalized Riccati transformation and inequality
technique, we prove some new oscillatory criteria. Recent results in the literature are
generalized and significant improved. Example is shown to illustrate our main results.

Keywords: oscillatory criteria, fractional derivative, fractional damped differential
equation.

1. Introduction

Consider the oscillation of the following fractional damped differential equations

(1.1) [r(t)(Dα
−y)

η(t)]′ − p(t)(Dα
−y)

η(t)− q(t)f(
∫ ∞

t
(v − t)−αy(v)dv) = 0,

where α ∈ (0, 1) is a constant, and η > 0 is a quotient of odd positive integers.
The differential operator Dα

−y is the Liouville right-sided fractional derivation

*. Corresponding author
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of order α for y defined by (Dα
−y)(t) = − 1

Γ(1−α) ·
d
dt

∫∞
t (v − t)−αy(v)dv for

t ∈ R+ := (0,+∞). Here Γ is the gamma function Γ(t) =
∫∞
0 vt−1e−vdv for

t ∈ R+. We assume that conditions hold:

(H1) r(t), p(t) and q(t) are positive continuous functions on [t0,∞) for a cer-

tain t0 > 0. The functionf : R → R is a continuous function such that f(u)
uη ≥

G for a certain constant for G > 0 and for all u ̸= 0.

By a solution of (1.1) we mean a nontrivial function y ∈ C(R+, R) such
that

∫∞
t (v − t)−αy(v)dv ∈ C1(R+, R), r(t)(D

α
−y)

η(t) ∈ C1(R+, R) and (1.1)
hold for t > 0. We focus on those solutions of (1.1) which exist on R+ such
that sup{|y(t)| : t > t∗} > 0 for any t∗ ≥ 0. A solution y of (1.1) is said to
be called oscillatory if it is neither eventually positive nor eventually negative.
Otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.

Due to its important applications on many fields, such as viscoelasticity,
electrochemistry, control, porous media, electromagnetic, etc, (see, forexample,
[1− 12]), in last decade, a lot of attentions has been focused on the study of the
stability and properties of solutions for fractional differential equations, see, for
example, [13-21].

In particular, Chen [2] studied oscillatory properties of solutions to the fol-
lowing fractional differential equations

(∗) [r(t)(Dα
−y)

η(t)]′ − q(t)f(
∫ ∞

t
(v − t)−αy(v)dv) = 0,

for t > 0, where Dα
−y denotes the Liouville right-sided fractional derivative of

order α with the form

(Dα
−y)(t) =

1

Γ(1− α)
· d
dt

∫ ∞

t
(v − t)−αy(v)dv,

for t ∈ R+ := (0,∞). By using Riccati transformation technique the authors
obtained some sufficient conditions, which guarantee that every solution of the
equation is oscillatory.

Zhang [18] considered the oscillation of the nonlinear fractional damped frac-
tional differential equations

[a(t)(Dα
−x(t))

γ ]′ + p(t)(Dα
−x(t))

γ − q(t)f(
∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞),

where Dα
−x(t) denotes the Liouville right-sided fractional derivative of order α

of x. By using a generalized Riccati function and the inequality technique, he
established some new criteria.

Qi and Huang [19] studied the oscillation behavior of the equation:

(a(t)[r(t)Dα
−x(t)]

′)′ + p(t)[r(t)Dα
−x(t)]

′ − q(t)f(
∫ ∞

t
(ξ − t)−αx(ξ)dξ) = 0,
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where Dα
−x(t) also denotes the Liouville right-sided fractional derivative and

established some sufficient conditions for the oscillation of the equation.
However, as much as we know, very little is known on the oscillation of frac-

tional damped differential equations. Only a few of papers have been published
on the oscillation theory of fractional damped differential equations, such as
[3,4,16-18].

In this paper, we will establish some new oscillation criteria for (1.1), by a
class of new function Φ(t, s, l) and H(t), generalized Riccati transformation and
inequality technique.

2. Preliminaries

In this section,we present the definitions of fractional integrals, fractional deriva-
tives and function Φ, which are used throughout this article. We also, give
several lemmas, which are useful in establishing our results.

Definition 2.1 (KiLbas et al. [7]). The Liouville right-sided fractional integral
of order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(2.1) (Iβ−g)(t) :=
1

Γ(β)

∫ ∞

t
(v − t)β−1g(v)dv,

for t > 0, provided the right-hand side is pontwise defined on R+, where Γ is
the gamma function.

Definition 2.2 (Kilbas et al. [7]). The Liouville right-sided fractional derivative
of order β > 0 of a function g : R+ → R on the half-axis R+ is given by

(Dβ
−g)(t) = (−1)[β] d

[β]

dt[β]
(I

[β]−β
− g)(t)

= (−1)[β] 1

Γ([β]− β)
· d

[β]

dt[β]

∫ ∞

t
(v − t)[β]−β−1g(v)dv,(2.2)

for t > 0, provided the right-hand side is pointwise defined on R+,where[β] :=
min{z ∈ Z : z ≥ β} is the ceilling function.

Definition 2.3 (Sun et al. [15]). We say that a function Φ = Φ(t, s, l) belongs
to the function class Y , denoted by Φ ∈ Y , if Φ ∈ (E,R), where E = {(t, s, l) :
t0 ≤ l ≤ s ≤ t < ∞},which satisfies Φ(t, t, l) = 0,Φ(t, l, l) = 0,Φ(t, s, l) ̸=
0 for l < s < t, and has the partial derivative ∂Φ

∂s on E such that ∂Φ
∂s is locally

integrable with respect to s in E.

Definition 2.4 (Sun et al. [15]). Let Φ ∈ Y, g ∈ C1([t0,+∞), R), the operator
T [∗; l, t] is defined by

(2.3) T [g; l, t] =

∫ t

l
Φ2(t, s, l)g(s)ds,
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for t ≥ s ≥ l ≥ t0 and g(s) ∈ C[t0,∞),and the function φ = φ(t, s, l) is defined
by

(2.4)
∂Φ(t, s, l)

∂s
= φ(t, s, l)Φ(t, s, l).

It is easy to verify that T [∗; l, t] is a linear operator and satisfies

(2.5) T [g′; l, t] = −2T [gφ; l, t].

Lemma 2.1. Let y be a solution of (1.1) and

(2.6) A(t) :=

∫ ∞

t
(v − t)−αy(v)dv,B(t) = e

∫∞
t

p(s)
r(s)

ds
,

for α ∈ (0, 1) and t > 0, then

(2.7) [A(t)B(t)]′ = −Γ(1− α)(Dα
−y)(t)B(t)− p(t)

r(t)
A(t)B(t),

for α ∈ (0, 1) and t > 0.

Proof. From(2.6) and(2.2), for α ∈ (0, 1) and t > 0, we obtain

[A(t)B(t)]′ = A′(t)B(t) +A(t)B′(t)

= Γ(1− α) · 1

Γ(1− α)
d

dt

∫ ∞

t
(v − t)−αy(v)dv.B(t)

−
∫ ∞

t
(v − t)−αy(v)dv · p(t)

r(t)
.B(t)

= −Γ(1− α)[(−1)[α] 1

Γ([α]− α)
· d

[α]

dt[α]

∫ ∞

t
(v − t)[α]−α−1y(v)dv]B(t)

− p(t)

r(t)
A(t)B(t)

= −Γ(1− α)(Dα
−y)(t)B(t)− p(t)

r(t)
A(t)B(t).

The proof is complete.

Lemma 2.2 (Hardy et al. [15]). If X and Y are nonnegative, then

mXY m−1 −Xm ≤ (m− 1)Y m,

for m > 1, where the equality holds if and only if X = Y .
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3. Main result

Theorem 3.1. Suppose that (H1) and

(3.1)

∫ ∞

t0

r
− 1

η (s)B
1− 1

η (s)ds =∞

hold. Furthermore, assume that there exists a positive function b(t) ∈ C1[t0,∞)
such that

(3.2) lim
t→∞

sup

∫ t

t0

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds =∞,

where b
′
+(s) = max{b′(s), 0}, then every solution of (1.1) is oscillatory.

Proof. Suppose that y is a non-oscillatory solution of (1.1). Without loss of
generality, we may assume that y(t) is an eventually positive solution of(1.1).
Then, there exists t1 ∈ [t0,∞) such that

(3.3) y(t) > 0 and A(t)B(t) > 0,

for t ∈ [t1,∞), where A(t), B(t) is defined as in (2.6). Therefore, it follows from
(1.1) that

[r(t)(Dα
−y)

η(t)B(t)]′ = [r(t)(Dα
−y)

η(t)]′B(t)− p(t)(Dα
−y)

η(t)B(t)

= q(t)f(A(t))B(t) > 0,(3.4)

for t ∈ [t1,∞).
Thus, r(t)(Dα

−y)
η(t)B(t) is strictly increasing on [t1,∞) and is eventually

of one sign. Since r(t) > 0, B(t) > 0 for t ∈ [t1,∞) and η > 0 is a quotient of
odd positive integers,we see that (Dα

−y)(t) is eventually of one sign. We now
claim

(Dα
−y)(t) < 0,

for t ∈ [t1,∞).
If not, then (Dα

−y)(t) is eventually positive and there exists t2 ∈ [t1,∞) such
that (Dα

−y)(t2) > 0. Since r(t)(Dα
−y)

η(t)B(t) is strictly increasing on [t1,∞), it
is clear that

r(t)(Dα
−y)

η(t)B(t) ≥ r(t2)(Dα
−y)

η(t2)B(t2) := a1 > 0,

for t ∈ [t2,∞). Therefore, from (2.4), we have

− [A(t)B(t)]′

Γ(1− α)B(t)
= −
−Γ(1− α)(Dα

−y)(t)B(t)− p(t)
r(t)A(t)B(t)

Γ(1− α)B(t)

= (Dα
−y)(t) +

A(t)p(t)

Γ(1− α)r(t)

≥ (Dα
−y)(t) ≥ (

a1
r(t)B(t)

)
1
η = a

1
η

1 r
− 1

η (t)B
− 1

η (t),
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and, then, we have

− [A(t)B(t)]′

Γ(1− α)
≥ a

1
η

1 r
− 1

η (t)B
1− 1

η (t),

for t ∈ [t2,∞).
Integrating both sides of the last inequality from t2 to t, we have∫ t

t2

r
− 1

η (s)B
1− 1

η (s)ds ≤ −A(t)B(t)−A(t2)B(t2)

a
1
η

1 Γ(1− α)
≤ A(t2)B(t2)

a
1
η

1 Γ(1− α)
<∞,

for t ∈ [t2,∞).
Letting t→∞, we see∫ ∞

t2

r
− 1

η (s)B
1− 1

η (s)ds ≤ A(t2)B(t2)

a
1
η

1 Γ(1− α)
<∞.

This contradicts (3.1). Hence, (3.5) holds. Define the function w(t) by the
generalized Riccati substitution

(3.6) w(t) = b(t) ·
−r(t)(Dα

−y)
η(t)B(t)

(A(t))η
,

for t ∈ [t1,∞).
Then, we have w(t) > 0 for t ∈ [t1,∞). From (3.6),(1.1),(3.4) and (H1), it

follows that

w′(t) = b′(t) ·
−r(t)(Dα

−y)
η(t)B(t)

(A(t))η
+ b(t)[

−r(t)(Dα
−y)

η(t)B(t)

(A(t))η
]′

≤b′+(t) ·
−r(t)(Dα

−y)
η(t)B(t)

(A(t))η

+ b(t) ·

[−r(t)(Dα
−y)

η(t)B(t)]′(A(t))η

+ r(t)(Dα
−y)

η(t)B(t)η(A(t))η−1(−Γ(1− α)(Dα
−y)(t))

(A(t))2η

=
b
′
+(t)

b(t)
w(t) + b(t)[

−q(t)f(A(t))B(t)

(A(t))η

+ r(t)(Dα
−y)

η(t) ·
ηB(t)[−Γ(1− α)(Dα

−y)(t)]

(A(t))η+1

≤
b
′
+(t)

b(t)
w(t)−Gq(t)b(t)B(t)− ηΓ(1− α)b(t)r(t)B(t)[

w(t)

b(t)r(t)B(t)
]
1+ 1

η

= −Gq(t)b(t)B(t) +
b
′
+(t)

b(t)
w(t)− ηΓ(1− α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t),(3.7)

for t ≥ t1, where b
′
+(t) is defined as in Theorem 3.1.
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Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)]
1
mw(t)

[b(t)r(t)B(t)]
1

η+1

and

Y =
[
b
′
+(t)

b(t) ]
η[b(t)r(t)B(t)]

1
m

mη[ηΓ(1− α)]
η
m

,

from (3.7) and Lemma 2.2, we conclude that

w′(t) ≤ −Gq(t)b(t)B(t) +
r(t)B(t)[b

′
+]

η+1

(η + 1)η+1[Γ(1− α)b(t)]
,

for t ∈ [t1,∞).

Integrating both sides of the last inequality from t1 to t, we have∫ t

t1

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds ≤ w(t1)− w(t) < w(t1),

for t ∈ [t1,∞).

Letting

lim
t→∞

sup

∫ t

t1

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds < w(t1) <∞,

which contradicts (3.2). The proof is complete.

Remark 3.1. Theorem 3.1 in [2] is a special case of Theorem 3.1 with p(t) = 0,
respectively. Theorem 3.1 improves and extend the results of Theorem 3.1.

Theorem 3.2. Suppose that (H1) and (3.1) hold. Let T0 ≥ t0,then there
exist a and b such that b > a > T0. Let

D(a, b) = {U(t) ∈ C1[a, b] : U(t) ̸= 0, t ∈ (a, b), U(a) = U(b) = 0}.

If there exist a function H(t) ∈ D(a, b) such that the following condition that
holds:

(3.8)

∫ b

a
Gb(s)q(s)B(s)ds >

∫ b

a

[Hη(s)(H ′(s) +
b
′
+(s)

(η+1)b(s))]
η+1b(s)r(s)B(s)

[Γ(1− α)Hη+1(s)]η
ds.

Then equation (1.1) is oscillatory.

Proof. Suppose that y(t) is a non-oscillatory solution of (1.1), Without loss of
generality, we may suppose that y(t) is an eventually positive solution of (1.1).
We proceed as in proof of Theorem 3.1 to get that (3.7) holds.



OSCILLATION CRITERIA OF FRACTIONAL DAMPED DIFFERENTIAL EQUATIONS 613

Multiplying both sides of (3.7) by Hη+1(t) and integrating from a to b, by
H(a) = H(b) = 0, we obtain

∫ b

a
Hη+1(s)w′(s)ds ≤ −

∫ b

a
Gb(s)r(s)B(s)Hη+1(s)ds

+

∫ b

a

b
′
+(s)H

η+1(s)w(s)

b(s)
ds

−
∫ b

a
ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]

− 1
ηw

1+ 1
η (s)ds(3.9)

and then we get

∫ b

a
Gb(s)r(s)B(s)Hη+1(s)ds ≤

∫ b

a
(η + 1)Hη(s)H ′(s)w(s)ds

+

∫ b

a

b
′
+(s)H

η+1(s)w(s)

b(s)
ds

−
∫ b

a
ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]

− 1
ηw

1+ 1
η (s)ds

=

∫ b

a
[(η + 1)Hη(s)w(s)(H ′(s) +

b
′
+(s)H(s)

(η + 1)b(s)
)

− ηΓ(1− α)Hη+1(s)[b(s)r(s)B(s)]
− 1

ηw
1+ 1

η (s)]ds.(3.10)

Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)Hη+1(s)]
1
mw(s)

[b(s)r(s)B(s)]
1

η+1

and

Y =
[(η + 1)Hη(s)(H ′(s) +

b
′
+(s)H(s)

(η+1)b(s) )]
η[b(s)r(s)B(s)]

1
m

mη[ηΓ(1− α)Hη+1(s)]
η
m

,

by (3.10) and Lemma2.2, we conclude that

(3.11)

∫ b

a
Gb(s)q(s)B(s)ds≤

∫ b

a

[Hη(s)(H ′(s)+
b
′
+(s)H(s)

(η+1)b(s) )]
η+1b(s)r(s)B(s)

[Γ(1−α)Hη+1(s)]η
ds,

which contradicts the condition (3.8). The proof is complete.

Remark 3.2. Theorem 3.2 is new because we introduce a new class of functions
H(t).
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Theorem 3.3. Suppose that (H1) and (3.1) hold. There exist a function Φ ∈
Y . Such that

lim
t→∞

sup

∫
−lt[Gq(s)b(s)B(s)

−
1
η [2φ+

b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds > 0(3.12)

for each l ≥ T0 ≥ t0, where operator T defined by (2.3) and the function
φ = φ(t, s, l) is defined by (2.4). Then every solution y of (1.1) is oscillatory.

Proof. Suppose that y is a non-oscillatory solution of (1.1). Without loss of
generality,we can assume thatyis an eventually positive solution of (1.1). Simi-
larly in the proof of Theorem 3.1 to get (3.7) hold, and then we have

(3.13) Gq(t)b(t)B(t) ≤ −w′(t)+
b
′
+(t)

b(t)
w(t)−ηΓ(1−α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t).

Applying T [∗;T0, t] to (3.13), we have

T [Gq(t)b(t)B(t);T0, t]

≤ T [−w′(t) +
b
′
+(t)

b(t)
w(t)− ηΓ(1− α)[b(t)r(t)B(t)]

− 1
ηw

1+ 1
η (t);T0, t]

= 2T [w(t)φ(t, s, l);T0, t] + T [
b
′
+(t)

b(t)
w(t)

− ηΓ(1− α)[b(t)r(t)B(t)]
− 1

ηw
1+ 1

η (t);T0, t]

= T [(2φ(t, s, l) +
b
′
+(t)

b(t)
)w(t)

− ηΓ(1− α)[b(t)r(t)B(t)]
− 1

ηw
1+ 1

η (t);T0, t],(3.14)

for t ∈ [T0,∞).
Taking

m = 1 +
1

η
, X =

[ηΓ(1− α)]
η

1+ηw(t)

[b(t)r(t)B(t)]
1

η+1

and

Y =
[2φ(t, s, l) +

b
′
+(t)

b(t) ]
η[b(t)r(t)B(t)]

η
η+1

(1+η
η )η[ηΓ(1− α)]

η2

1+η

,

by (3.14) and Lemma 2.2, we conclude that

T [Gq(t)b(t)B(t);T0, t]≤T [
1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t].
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Noting that (2.3) and then we have

T [Gq(t)b(t)B(t)−
1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t] ≤ 0.

Letting t→ +∞, we have

lim
t→+∞

supT [Gq(t)b(t)B(t)−
1
η [2φ(t, s, l) +

b
′
+(t)

b(t) ]
η+1b(t)r(t)B(t)

(1+η
η )η+1[ηΓ(1− α)]η

;T0, t] ≤ 0,

and then

lim
t→∞

sup

∫ t

l
[Gq(s)b(s)B(s)−

1
η [2φ+

b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds ≤ 0.

Which is a contradiction to (3.12). The proof is complete.

If we chose Φ(t, s, l) = ρ(s)(t−s)α(s− l)β for α, β > 1
2 and ρ(t) ∈ C1([t0,∞),

(0,∞)), then, we have

φ(t, s, l) =
ρ′(s)

ρ(s)
+
βt− (α+ β)s+ αl

(t− s)(s− l)
.

Thus, by Theorem 3.3, we have the following corollary.

Corollary 3.4. Suppose that(H1) and (3.1) hold. For each l ≥ t0, there exist
a function ρ(t) ∈ C1([t0,∞), R) and two constants α, β > 1

2 , such that

lim
t→∞

sup

∫ t

l
ρ2(s)(t− s)2α(s− l)2β[Gq(s)b(s)B(s)

−
1
η [2(

ρ′(s)
ρ(s) + βt−(α+β)s+αl

(t−s)(s−l) ) +
b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds] > 0.(3.15)

All solutions of (1.1) is oscillatory.
Define

R(t) =

∫ t

l

p(s)

r(s)
ds, t ≥ l ≥ t0.

If we chose Φ(t, s, l) = ρ(s)(R(t) − R(s))α(R(s) − R(l))β for α, β > 1
2 and

ρ(t) ∈ C1([t0,∞), (0,∞)), then, we have

φ(t, s, l) =
ρ′(s)

ρ(s)
+
p(t)[βR(t)− (α+ β)R(s) + αR(l)]

r(s)(R(t)−R(s))(R(s)−R(l))
.

Thus, by Theorem 3.3, we have the following Theorem.
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Theorem 3.5. Suppose that(H1) and (3.1) hold. For each l ≥ t0, there exist
a function ρ(t) ∈ C1([t0,∞), R) and two constants α, β > 1

2 , such that

lim
t→∞

sup

∫ t

l
ρ2(s)(R(t)−R(s))2α(R(s)−R(l))2β[Gq(s)b(s)B(s)

−

1
η [2(

ρ′(s)
ρ(s) + βR(t)−(α+β)R(s)+αR(l)

(R(t)−R(s))(R(s)−R(l)) )

+
b
′
+(s)

b(s) ]
η+1b(s)r(s)B(s)

(1+η
η )η+1[ηΓ(1− α)]η

]Φ2(t, s, l)ds] > 0.(3.16)

The every solution of (1.1) is oscillatory.

Remark 3.4. Theorems 3.3-3.5 are new because we introduce a class of kernel
functions Φ = Φ(t, s, l) which is basically a product H(t, s)H(s, l) for a kernel
H(t, s) of Philos’type. On the other hand, when Eq. (1.1) becomes Eq. (*),
conditions (3.12), (3.15), (3.16) become simpler, and they are stronger (in many
case) than many exist oscillation conditions. Theorems 3.3, 3.4 improve and
extend the results Theorems 3.2, 3.3 in [2].

4. Examples

Example 4.1. Consider the fractional differential equation

(4.1) [
1

t6
(D

1
2
−y)

η(t)]′ − 1

t7
(D

1
2
−y)

η(t)− 1

t2
(

∫ ∞

t
(v − t)−

1
2 y(v)dv) = 0, t > 0,

where α = 1
2 , η > 0 is a quotient of odd positive integers and (η+1)η+1(Γ(12))

η >
1. In (4.1),r(t) = t−6, p(t) = t−7, q(t) = t−2, f(u) = u. Take t0 > 0, G = 1. Since

B(s) = exp(−
∫ t

t0

p(s)

r(s)
ds) = exp(−

∫ t

t0

1

s
ds) =

t0
t
,∫ ∞

t0

r
− 1

η (s)B
1− 1

η (s)ds =

∫ ∞

t0

s
6
η (
t0
s
)
1− 1

η ds = t
1− 1

η

0

∫ ∞

t0

s
7
η
−1
ds =∞,

we find that(H1) and (3.1) hold. We will apply Theorem 3.1, and it remains to
satisfy the condition (3.2), taking b(s) = s2, we obtain

lim
t→∞

sup

∫ t

t0

[Gb(s)q(s)B(s)−
r(s)B(s)[b

′
+(s)]

η+1

(η + 1)(η+1)[Γ(1− α)b(s)]η
]ds

= lim
t→∞

sup

∫ t

t0

[s2 · 1
s2
· t0
s
−

s−6 · t0s · (2s)
η+1

(η + 1)(η+1)[Γ(12) · s2]η
]ds

= lim
t→∞

sup

∫ t

t0

[
t0
s
− s−η−6 · 2η+1 · t0

(η + 1)(η+1)[Γ(12)]
η
]ds =∞

which implies that (3.2) hold. Therefore, by Theorem3.1 every solution of(4.1)
is oscillatory.
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Abstract. In this paper, we introduce the notions of multiplicative interior operators
(mi-operators, for short), additive closure operators (ac-operators, for short) and hedges
in quasi-pseudo-MV algebras which will generalize the related contents in pseudo-MV
algebras. First we discuss the relationship between mi-operators and ac-operators in
a quasi-pseudo-MV algebra and investigate the properties of mi-operators in quasi-
pseudo-MV algebras. Second we define and study hedges in quasi-pseudo-MV algebras.
We also show that mi-operators are hedges. Finally, the properties of filters and weak
filters in a quasi-pseudo-MV algebra with hedge are discussed.

Keywords: quasi-pseudo-MV algebras, Hedges, multiplicative interior operators, fil-
ters.

1. Introduction

Quasi-pseudo-MV algebras (qpMV-algebras, for short) were introduced in [4]
as the generalizations of both pseudo-MV algebras [9] and quasi-MV algebras
[11]. Considering that qpMV-algebras may play an important role in studying
many-valued fuzzy logic and quantum computational logic, many properties of
qpMV-algebras have been investigated in [3, 4, 5, 6, 7].

The notions of hedges were defined as operators acting on fuzzy subsets by
Zadeh in order to describe linguistic hedges such as “very”, “more or less”,
“much”, and so on [18]. In his paper, some examples were given to handle how
to define hedges as operators. However, any sort of axiomatization was not con-
sidered. In [1], authors defined a hedge as operator on a complete lattice. The

*. Corresponding author
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hedge in their definition is a mapping f which needs satisfy four axioms: (1)
f(1) = 1, (2) f(x) ≤ x, (3) f(x → y) ≤ f(x) → f(y) and (4) f(f(x)) = x. Au-
thors also pointed out that this definition of hedge was indeed a truth function
of logical connective “very true”. On the other hand, the concepts of very true
operators (vt-operators, for short) were introduced by Hajek on BL-algebras
and the algebraic structures were called BLvt-algebras [10]. A vt-operator is
a mapping f which also contains four axioms: (1) f(1) = 1, (2) f(x) ≤ x,
(3) f(x → y) ≤ f(x) → f(y) and (4′) f(x ∨ y) ≤ f(x) ∨ f(y). A compari-
son of these two definitions indicates that they have the same axioms except
the last one. Hence, a mapping which satisfies the axioms (1)(2)(3) is called
a weak vt-operator [13, 15]. Moreover, on any commutative residuated lattice,
Liu and Wang defined a vt-operator which is a weak vt-operator with the axiom
(4′) and a hedge which is a weak vt-operator with the axiom (4), respectively
[13]. Consequently, the concepts of vt-operators and hedges had been extended
to other logical algebras such as pseudo-MV algebras [12], basic algebras [2],
MTL-algebras [17], equality algebras [16], pseudo-BCK algebras [8] and so on.
We need to point out that although authors named after vt-operators on some
algebras, these operators are defined to satisfy the axiom (4), in other words,
they are indeed “hedges” following the idea in [13]. In addition, the notions of
multiplicative interior operators and additive closure operators were introduced
to MV-algebras as the generalizations of topological Boolean algebras [14]. In-
dependent of their original motivation, any multiplicative interior operator is a
hedge in an MV-algebra from the purely algebraic viewpoint. Thus, it is natu-
ral to ask whether the concepts of multiplicative interior operators and hedges
can be generalized to a qpMV-algebra for the more general results and new
applications.

In this paper, we introduce the notions of multiplicative interior operators,
additive closure operators and hedges on a qpMV-algebra and investigate the
new algebraic structure. The paper is organized as follows. In Section 2, we
recall some definitions and results which will be used in what follows. In Section
3, we introduce the notions of multiplicative interior operators (mi-operators,
for short) and additive closure operators (ac-operators, for short) in qpMV-
algebras which will generalize the related contents in pseudo-MV algebras. We
discuss the relationship between mi-operators and ac-operators and investigate
some properties of mi-operators in qpMV-algebras. In Section 4, we define and
study hedges in qpMV-algebras. We also show that mi-operators are hedges.
The properties of filters and weak filters in a qpMV-algebra with hedge are
discussed.

2. Preliminary

In this section, we recall some definitions and results which will be used in the
following. We list the definition and the related properties of a quasi-pseudo-MV
algebra and recall the hedges on residuated lattices.
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Definition 2.1 ([4]). An algebra A = ⟨A;⊕,− ,∼ , 0⟩ of type ⟨2, 1, 1, 0⟩ is called a
quasi-pseudo-MV algebra (qpMV-algebra, for short), if it satisfies the following
axioms, for any x, y, z ∈ A,

(QPMV 1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(QPMV 2) 0− = 0∼;

(QPMV 3) x⊕ 0 = 0⊕ x;

(QPMV 4) x⊕ 0− = 0− = 0− ⊕ x;

(QPMV 5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(QPMV 6) x−∼ = x = x∼−;

(QPMV 7) y⊕ (x−⊕ y)∼ = (y⊕x∼)−⊕ y = x⊕ (y−⊕x)∼ = (x⊕ y∼)−⊕x;

(QPMV 8) (x⊕ 0)− = x− ⊕ 0 and (x⊕ 0)∼ = x∼ ⊕ 0;

(QPMV 9) x⊕ y ⊕ 0 = x⊕ y.

A qpMV-algebra in which the binary operation ⊕ is commutative and the
unary operations − and ∼ coincide, is a quasi-MV algebra (qMV-algebra, for
short). On the other hand, a qpMV-algebra satisfying the axiom x⊕ 0 = x is a
pseudo-MV algebra (psMV-algebra, for short).

On any qpMV-algebra A, we can define some operations, for any x, y ∈ A:

x⊙ y = (x− ⊕ y−)∼;
x ∨ y = x⊕ (y− ⊕ x)∼;
x ∧ y = (x− ∨ y−)∼;
x → y = x− ⊕ y;
x⇝ y = y ⊕ x∼.

We can also define a relation x ≤ y iff x∨y = y⊕0, or equivalently, x∧y = x⊕0.
This is a quasi-ordering relation [4]. Moreover, if x ≤ y and y ≤ x, then
x⊕ 0 = y ⊕ 0.

Below we list some properties of these operations and the relation. The
proofs can be seen in [3, 4].

Proposition 2.1. Let A be a qpMV-algebra. Then, for any x, y, z ∈ A,

(P1) 0⊕ 0 = 0 and 1⊕ 0 = 1;

(P2) x ∧ y = (x → y)⊙ x = x⊙ (x⇝ y);

(P3) 1 → x = 1⇝ x;

(P4) x ∨ y = (x ∨ y)⊕ 0 = (x⊕ 0) ∨ y = x ∨ (y ⊕ 0),

x ∧ y = (x ∧ y)⊕ 0 = (x⊕ 0) ∧ y = x ∧ (y ⊕ 0);

(P5) x → y = (x → y)⊕ 0 = (x⊕ 0) → y = x → (y ⊕ 0),

x⇝ y = (x⇝ y)⊕ 0 = (x⊕ 0)⇝ y = x⇝ (y ⊕ 0);

(P6) x ≤ y iff x → y = 1 iff x⇝ y = 1;

(P7) 0 ≤ x ≤ 1;

(P8) x ≤ 1 → x and 1 → x ≤ x;

(P9) x ≤ y iff y− ≤ x− iff y∼ ≤ x∼;

(P10) x → y ≤ (y → z)⇝ (x → z) and x⇝ y ≤ (y ⇝ z) → (x⇝ z);

(P11) x → y ≤ (z → x) → (z → y) and x⇝ y ≤ (z ⇝ x)⇝ (z ⇝ y);
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(P12) x ≤ y → x and x ≤ y ⇝ x;
(P13) x⊙ y ≤ z iff x ≤ y → z iff y ≤ x⇝ z;
(P14) If x ≤ y, then y → z ≤ x → z and y ⇝ z ≤ x⇝ z;
(P15) If x ≤ y, then z → x ≤ z → y and z ⇝ x ≤ z ⇝ y;
(P16) (x ∨ y)− = x− ∧ y− and (x ∨ y)∼ = x∼ ∧ y∼,

(x ∧ y)− = x− ∨ y− and (x ∧ y)∼ = x∼ ∨ y∼;
(P17) (x∨y) → z = (x → z)∧ (y → z) and (x∨y)⇝ z = (x⇝ z)∧ (y ⇝ z),

z → (x∨y) = (z → x)∨(z → y) and z ⇝ (x∨y) = (z ⇝ x)∨(z ⇝ y);
(P18) z → (x∧y) = (z → x)∧ (z → y) and z ⇝ (x∧y) = (z ⇝ x)∧ (z ⇝ y),

(x∧y) → z = (x → z)∨(y → z) and (x∧y)⇝ z = (x⇝ z)∨(y ⇝ z).

Given that A is a qpMV-algebra and consider the set R(A) = {x ∈ A|x⊕0 =
x}. Then, we have that R(A) is a non-empty subset of A by Proposition 2.1
and elements in R(A) are called regular. Moreover, RA = ⟨R(A);⊕,− ,∼ , 0⟩ is
a pseudo-MV subalgebra of A. We recall that a qpMV-algebra in which 0 = 1
is called flat. Then, we can show the following result.

Theorem 2.1 ([4]). For any qpMV-algebra A, there exist a pseudo-MV algebra
M and a flat qpMV-algebra F such that A can be embedded into the direct
product M× F.

Let A be a qpMV-algebra. A non-empty subset F of A is called a filter
of A, if, for any x, y ∈ A, the following conditions are satisfied (F1) 1 ∈ F ;
(F2) if x, y ∈ F , then x ⊙ y ∈ F ; (F3) if x ∈ F and y ∈ A with x ≤ y, then
y ∈ F . A non-empty subset F of A is called a weak filter of A, if, for any
x, y ∈ A, the following conditions are satisfied (WF1) 1 ∈ F ; (WF2) if x, y ∈ F ,
then x ⊙ y ∈ F ; (WF3) if x ∈ F and y ∈ A, then y ⊕ x ∈ F and x ⊕ y ∈ F .
Moreover, a (weak) filter F is called normal, if x → y ∈ F iff x⇝ y ∈ F , for any
x, y ∈ A. Finally, we recall that a congruence θ on A is called filter congruence,
if ⟨x⊙ 1, y ⊙ 1⟩ ∈ θ can imply ⟨x, y⟩ ∈ θ, for any x, y ∈ A.

The filter is the dual notion of an ideal in any qpMV-algebra. In [6], we have
proved that there exists a bijective correspondence between normal ideals and
ideal congruences on a qpMV-algebra. On the basis of the proof, we can get the
following result.

Theorem 2.2. Let A be a qpMV-algebra, F be a normal filter of A and θ be a
filter congruence on A. Then,

(1) f(F ) = {⟨x, y⟩ ∈ A2|x → y ∈ Fand y → x ∈ F} is a filter congruence
on A;

(2) g(θ) = {x ∈ A|⟨x, 1⟩ ∈ θ} is a normal filter of A;
(3) g(f(F )) = F ;
(4) f(g(θ)) = θ.

3. Interior and closed operators

MV-algebras with multiplicative interior operators (interior MV-algebras) or
additive closure operators (closure MV-algebras) were introduced in [14]. In fact,
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a multiplicative interior operator (or an additive closure operator) on an MV-
algebra generalizes that of a topological interior operator (or closure operator)
on a Boolean algebra. In this section, we generalize these notions to qpMV-
algebras.

Definition 3.1. Let A be a qpMV-algebra and f : A → A be a mapping. Then,
f is called a multiplicative interior operator (mi-operator, for short) on A, if
the following conditions are satisfied, for any x, y ∈ A,

(MI1) f(1) = 1;

(MI2) f(x) ≤ x;

(MI3) f(x⊙ y) = f(x)⊙ f(y);

(MI4) f(f(x)) = f(x).

The pair (A, f) is called an interior qpMV-algebra. For any x ∈ A, the
element f(x) is called the interior of x. An element x ∈ A is called open, if
f(x) = x.

Similarly, we have the following definition.

Definition 3.2. Let A be a qpMV-algebra and g : A → A be a mapping. Then,
g is called an additive closure operator ( ac-operator, for short) on A, if the
following conditions are satisfied, for any x, y ∈ A,

(AC1) g(0) = 0;

(AC2) x ≤ g(x);

(AC3) g(x⊕ y) = g(x)⊕ g(y);

(AC4) g(g(x)) = g(x).

The pair (A, g) is called a closure qpMV-algebra. For any x ∈ A, the element
g(x) is called the closure of x. An element x ∈ A is called closed, if g(x) = x.

Proposition 3.1. Let A be a qpMV-algebra and f be an mi-operator on A.
Then, the mappings f−

∼ defined by f−
∼ (x) = (f(x∼))− and f∼

− defined by f∼
− (x) =

(f(x−))∼, for any x ∈ A, are ac-operators on A.

Proof. We only check the case of f−
∼ . The other can be proved similarly.

(AC1) We have f−
∼ (0) = (f(0∼))− = (f(1))− = 1− = 0.

(AC2) Since f−
∼ (x) = (f(x∼))− and f(x∼) ≤ x∼ by (MI2), we have x ≤

f−
∼ (x) by (P10).

(AC3) We have f−
∼ (x ⊕ y) = (f((x ⊕ y)∼))− = (f(x∼ ⊙ y∼))− = (f(x∼) ⊙

f(y∼))− = (f(x∼))− ⊕ (f(y∼))− = f−
∼ (x)⊕ f−

∼ (y).

(AC4) We have f−
∼ (f−

∼ (x)) = f−
∼ ((f(x∼))−) = (f(f(x∼)))− = (f(x∼))− =

f−
∼ (x).

Dually, we get the following result.

Proposition 3.2. Let A be a qpMV-algebra and g be an ac-operator on A.
Then, the mappings g−∼ defined by g−∼(x) = (g(x∼))− and g∼− defined by g∼−(x) =
(g(x−))∼, for any x ∈ A, are mi-operators on A.
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As shown above, there exist the corresponding relations between mi-operators
and ac-operators on a qpMV-algebra, thus we will only discuss mi-operators in
the rest.

Proposition 3.3. Let A be a qpMV-algebra and f be an mi-operator on A.
Then, for any x, y ∈ A,

(1) f keeps regular elements, i.e., if x = x⊕ 0, then f(x) = f(x)⊕ 0;

(2) f(0) = 0;

(3) f(x−) ≤ (f(x))− and f(x∼) ≤ (f(x))∼;

(4) If x ≤ y, then f(x) ≤ f(y);

(5) f(x → y) ≤ f(x) → f(y) and f(x⇝ y) ≤ f(x)⇝ f(y).

Proof. (1) Since x = x ⊕ 0 iff x = x ⊙ 1, for any x ∈ A, we get the result by
(MI3) and (MI1).

(2) Since 0 ≤ f(0) ≤ 0 by (MI2), we have f(0)⊕ 0 = 0⊕ 0. Note that 0 is a
regular element, it turns out that f(0) = 0 by (1).

(3) By (MI2), we have f(x) ≤ x, so x− ≤ (f(x))−. Using (MI2) again, we
have f(x−) ≤ x−, it turns out that f(x−) ≤ (f(x))− by the transitivity. The
other can be proved similarly.

(4) If x ≤ y, then x ⊙ 1 = x ∧ y = y ⊙ (y ⇝ x). On the one hand, we have
f(x ⊙ 1) = f(x) ⊙ f(1) = f(x) ⊙ 1 ≥ f(x) by (MI3) and (MI1). On the other
hand, we have f(x∧ y) = f(y⊙ (y ⇝ x)) = f(y)⊙ f(y ⇝ x) ≤ f(y)⊙ 1 ≤ f(y).
Hence, f(x) ≤ f(y).

(5) Since (x → y) ⊙ x = x ∧ y ≤ y, we have f((x → y) ⊙ x) = f(x →
y)⊙ f(x) ≤ f(y) by (MI3) and (4), so f(x → y) ≤ f(x) → f(y). The other can
be proved similarly.

Proposition 3.4. Let A be a qpMV-algebra and f be an mi-operator on RA.
Then, f can be extended to an mi-operator on A.

Proof. For any x ∈ A, define f̄(x) =

{
f(x), x ∈ R(A),

f(x⊕ 0), x ∈ A \R(A).
Then, f̄ is

an mi-operator on A. Indeed, f̄(1) = f(1) = 1, so the condition (MI1) is true.
Now, we check the conditions (MI2)-(MI4).

(MI2) If x ∈ R(A), then f̄(x) = f(x) ≤ x. If x /∈ R(A), then f̄(x) =
f(x⊕ 0) ≤ x⊕ 0 ≤ x.

(MI3) If x, y ∈ R(A), then f̄(x⊙ y) = f(x⊙ y) = f(x)⊙ f(y) = f̄(x)⊙ f̄(y).
If x ∈ R(A) and y /∈ R(A), then f̄(x ⊙ y) = f(x ⊙ y) = f(x ⊙ (y ⊕ 0)) =
f(x)⊙ f(y ⊕ 0) = f̄(x)⊙ f̄(y). If x /∈ R(A) and y ∈ R(A), the proof is similar
as above. If x, y /∈ R(A), then f̄(x ⊙ y) = f(x ⊙ y) = f((x ⊕ 0) ⊙ (y ⊕ 0)) =
f(x⊕ 0)⊙ f(y ⊕ 0) = f̄(x)⊙ f̄(y).

(MI4) If x ∈ R(A), then f̄(f̄(x)) = f(f(x)) = f(x) = f̄(x). If x /∈ R(A),
then f̄(x) = f(x⊕0) = f(f(x⊕0)) and f̄(f̄(x)) = f̄(f(x⊕0)) = f(f(x⊕0)⊕0) =
f(f(x⊕ 0)), so f̄(f̄(x)) = f̄(x).
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In [14], authors showed that for a complete MV-algebra, every topological
closure operator on the Boolean algebra of additively idempotent elements can
be extended to a closure operator on the whole MV-algebra. Since the set of
additively idempotent elements in a pseudo-MV algebra is also a Boolean algebra
[9], we can extend the result to a complete pseudo-MV algebra. Suppose that
M = ⟨M ;⊕,− ,∼ , 0, 1⟩ is a pseudo-MV algebra and denote B(M) = the set
of additive idempotent elements in M . Then, B(M) = ⟨B(M);∨,∧, 0, 1⟩ is a
Boolean algebra, where x ∨ y = x⊕ (y− ⊕ x)∼ and x ∧ y = (x− ∨ y−)∼, for any
x, y ∈ B(M).

Lemma 3.1. Let M be a interior complete pseudo-MV algebra and f be a
topological interior operator on B(M). Then, there is an mi-operator on M
such that its restriction on B(M) is equal to f .

Proposition 3.5. Let A be a qpMV-algebra and RA be its interior complete
pseudo-subalgebra of A. If f is a topological interior operator on the Boolean
algebra B(RA), then there is an mi-operator on A such that its restriction on
B(R(A)) is equal to f .

Proof. Follows from Proposition 3.4 and Lemma 3.1.

Proposition 3.6. Let A be a qpMV-algebra and f1, f2 be mi-operators on A.
Then, f1 ≤ f2 iff f1f2|R(A) = f1|R(A).

Proof. Suppose that f1 ≤ f2. Then, for any x ∈ A, we have f1(x) ≤ f2(x).
By (MI4) and Proposition 3.3(4), f1(x) = f1(f1(x)) ≤ f1(f2(x)) = (f1f2)(x).
Meanwhile, since f2(x) ≤ x, it follows that (f1f2)(x) = f1(f2(x)) ≤ f1(x) using
Proposition 3.3(4) again. Thus, f1(x)⊕ 0 = f1f2(x)⊕ 0. By Proposition 2.1(1),
if x ∈ R(A), then (f1f2)(x) = f1(x), i.e., f1f2|R(A) = f1|R(A). Conversely,
if f1f2|R(A) = f1|R(A), then, for any x ∈ A, we have f1(x) ≤ f1(x ⊕ 0) =
(f1f2)(x⊕ 0) ≤ f2(x⊕ 0) ≤ f2(x), so f1 ≤ f2.

Following the proof of Proposition 3.6, we can get the result.

Proposition 3.7. Let A be a qpMV-algebra and f1, f2 be isotone mappings on
A. If f1 and f2 restricted on RA are mi-operators, then f1 ≤ f2 iff f1f2|R(A) =
f1|R(A).

Proposition 3.8. Let A be a qpMV-algebra and f1, f2 be isotone mappings on
A. If f1 and f2 restricted on RA are mi-operators, then the following conditions
are equivalent:

(1) f1f2|R(A) = f2f1|R(A);
(2) f1f2|R(A) and f2f1|R(A) are mi-operators;
(3) f1f2f1f2|R(A) = f1f2|R(A) and f2f1f2f1|R(A) = f2f1|R(A).

Proof. (1)⇒(2) For any x ∈ R(A), we have (f1f2)(1) = 1 and (f1f2)(x) ≤
f2(x) ≤ x. Moreover, (f1f2)(x⊙ y) = f1(f2(x)⊙ f2(y)) = (f1f2)(x)⊙ (f1f2)(y)
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and (f1f2)((f1f2)(x)) = (f1f2f1f2)(x)) = (f1f1)(f2f2)(x) = (f1f2)(x). Hence,
f1f2|R(A) is an mi-operator. The case of f2f1|R(A) can be proved similarly.

(2)⇒(3) Since f1f2 ≤ f1f2 and f2f1 ≤ f2f1, we have the result by Proposi-
tion 3.7.

(3)⇒(1) On the one hand, for any x∈R(A), we have (f1f2)(x)=(f1f2f1f2)(x)
≤ (f2f1f2)(x) ≤ (f2f1)(x). On the other hand, for any x ∈ R(A), we have
(f2f1)(x) = (f2f1f2f1)(x) ≤ (f1f2f1)(x) ≤ (f1f2)(x). Hence, we get f1f2|R(A) =
f2f1|R(A).

Let A be a qpMV-algebra and f be any mi-operator on A. We denote the
set of all open elements of A by Of (A) = {x ∈ A|f(x) = x}.

Theorem 3.1. Let A be a qpMV-algebra and f1, f2 be mi-operators on A. If
Of1(A) = Of2(A), then f1|R(A) = f2|R(A).

Proof. For any x ∈ A, since f1(f1(x)) = f1(x), we have f1(x) ∈ Of1(A) =
Of2(A), it follows that f2(f1(x)) = f1(x). Similarly, we have f1(f2(x)) = f2(x).
Since f1(x) ≤ x, we get f2(f1(x)) ≤ f2(x), it turns out that f1(x) ≤ f2(x).
Meanwhile, since f2(x) ≤ x, we get f1(f2(x)) ≤ f1(x), it turns out that f2(x) ≤
f1(x). Hence, f1(x)⊕ 0 = f2(x)⊕ 0 which means that f1(x⊕ 0) = f2(x⊕ 0) and
then we get f1|R(A) = f2|R(A).

4. Hedges in quasi-pseudo-MV algebras

In this section, we introduce the notion of hedge in a qpMV-algebra and show
some basic properties of it. We also investigate some properties of (weak) fil-
ters in qpMV-algebras with hedges and discuss the relationship between normal
filters and filter congruences on qpMV-algebras with hedges.

Definition 4.1. Let A be a qpMV-algebra and h : A → A be a mapping. Then,
h is called a weak hedge in A, if the following conditions are satisfied, for any
x, y ∈ A,

(H1) h(1) = 1;
(H2) h(x) ≤ x;
(H3) h(x → y) ≤ h(x) → h(y) and h(x⇝ y) ≤ h(x)⇝ h(y).
If a weak hedge h satisfies (H4) h(h(x)) = h(x), then it is called a hedge

in A. The pair (A, h) is called a qpMV-algebra with hedge. Moreover, if a
hedge h keeps regular elements, then it is called a strong hedge in A and the
pair (A, h) is called a qpMV-algebra with strong hedge.

Example 4.1. Let F be a flat qpMV-algebra and h : F → F be a mapping
satisfying h(1) = 1 and h(x) ≤ x, for any x ∈ F . Then, h is a weak hedge in F.
In fact, since 1 = 0 and x⊕ y = x⊕ y⊕ 0 = x⊕ y⊕ 1 = 1, we have that x → y,
x⇝ y, h(x) → h(y) and h(x)⇝ h(y) are equal to 1. Hence, the condition (H3)
is satisfied. Moreover, if the condition (H4) is also satisfied, then it is a hedge
in F and also a strong hedge in F.
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Example 4.2. Let A be a qpMV-algebra. It is easy to see that the identity
mapping IdA is a hedge in A. That is to say that any qpMV-algebra can be
regarded as a qpMV-algebra with hedge.

Example 4.3. Let A be a qpMV-algebra and satisfy x ≤ y or y ≤ x, for any
x, y ∈ A. We define a mapping h : A → A by h(1) = 1 and h(x) = 0, for any
x < 1. Then, h is a hedge in A.

Example 4.4. Let A be a qpMV-algebra in which the operations are defined

as follows:

⊕ 0 a b 1
0 0 b b 1
a b 1 1 1
b b 1 1 1
1 1 1 1 1

and

′

0 1
a a
b b
1 0

. In fact, it is a quasi-MV algebra

[11]. Define h(1) = 1, h(0) = 0, h(a) = h(b) = a. Then, h is a hedge in A.

Example 4.5. Let (M, h1) be a pseudo-MV algebra with hedge and (F, h2) be
a flat qpMV-algebra with hedge. Then, M×F is a qpMV-algebra. If we define
h(⟨x, y⟩) = (h1(x), h2(y)), for any ⟨x, y⟩ ∈ M × F , then h is a hedge in M× F.

Remark 4.1. Following from Proposition 3.3, it is immediate to see that any
mi-operator on a qpMV-algebra is a hedge. However, the converse is not true in
general. In Example 4.4, we calculate h(b⊙ 1) = h(b⊕ 0) = a and h(b)⊙h(1) =
a ⊙ 1 = a ⊕ 0 = b, which imply that h(b ⊙ 1) ̸= h(b) ⊙ h(1), so h is not an
mi-operator on A.

Proposition 4.1. Let A be a qpMV-algebra and h be a weak hedge in A. Then,
for any x, y ∈ A,

(1) h(0)⊕ 0 = 0;
(2) If h(x) = 1, then x⊕ 0 = 1;
(3) If x ≤ y, then h(x) ≤ h(y);
(4) If h(x) ≤ h(y), then h(x) ≤ y;
(5) h(x−) ≤ (h(x))− and h(x∼) ≤ (h(x))∼;
(6) h(x)⊙ h(y) ≤ h(x⊙ y);
(7) h(x⊕ 0)⊕ 0 = h(x)⊕ 0.
If h is a hedge in A, then
(8) h(x) ≤ h(y) iff h(x) ≤ y;
(9) Im(h) = Fixh(A) = {x ∈ A|h(x) = x};
(10) If h is surjective, then h = IdA.

Proof. (1) By (H2), we have h(0) ≤ 0. And 0 ≤ h(0), it turns out that
h(0)⊕ 0 = 0.

(2) Since 1 = h(x) ≤ x and x ≤ 1, we have x⊕ 0 = 1.
(3) Since x ≤ y, we have x → y = 1. By (H1) and (H3), we get 1 = h(1) =

h(x → y) ≤ h(x) → h(y). Note that, h(x) → h(y) is a regular element and
h(x) → h(y) ≤ 1, we have h(x) → h(y) = 1, so h(x) ≤ h(y).
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(4) Since h(x) ≤ h(y) and h(y) ≤ y by (H2), we have h(x) ≤ y.

(5) Since x− ≤ (1 → x)− = (1 → x) → 0, we have h(x−) ≤ h((1 → x) →
0) ≤ h(1 → x) → h(0) ≤ h(x) → h(0) = h(x) → (h(0) ⊕ 0) = h(x) → 0 ≤
(h(x))− using (H3) and (1). The other can be proved similarly.

(6) Since x⊙ y ≤ x⊙ y, we have x ≤ y → (x⊙ y), it turns out that h(x) ≤
h(y → (x⊙ y)) ≤ h(y) → h(x⊙ y) by (3) and (H3), so h(x)⊙ h(y) ≤ h(x⊙ y).

(7) Since x ≤ x⊕0 and x⊕0 ≤ x, we have h(x) ≤ h(x⊕0) and h(x⊕0) ≤ h(x)
by (3), so h(x)⊕ 0 = h(x⊕ 0)⊕ 0.

(8) If h(x) ≤ y, then h(x) = h(h(x)) ≤ h(y) by (3). The converse follows
from (4).

(9) For any x ∈ Im(h), then there exists a ∈ A such that x = h(a), it
follows that h(x) = h(h(a)) = h(a) = x, so x ∈ Fixh(A). Conversely, for any
x ∈ Fixh(A), then h(x) = x, we have x ∈ Im(h).

(10) If h is surjective, then Im(h) = A = Fixh(A) by (9), it follows that
h(x) = x = IdA(x), for any x ∈ A, so h = IdA.

Proposition 4.2. Let A be a qpMV-algebra and h be a hedge in RA. Then, h
can be extended to a hedge in A.

Proof. For any x ∈ A, define h̄(x) =

{
h(x), x ∈ R(A);
h(x⊕ 0), x ∈ A \R(A).

Then, h̄ is

a hedge in A. Indeed, h̄(1) = h(1) = 1, so the condition (H1) is true. Now, we
check the conditions (H2)-(H4).

(H2) For any x ∈ A, if x ∈ R(A), then h̄(x) = h(x) ≤ x. If x /∈ R(A), then
h̄(x) = h(x⊕ 0) ≤ x⊕ 0 ≤ x. Hence, h̄(x) ≤ x.

(H3) We only prove the first one. The other can be proved similarly. If
x, y ∈ R(A), then h̄(x → y) = h(x → y) ≤ h(x) → h(y) = h̄(x) → h̄(y). If
x ∈ R(A) and y /∈ R(A), then h̄(x → y) = h(x → y) = h(x → (y ⊕ 0)) ≤
h(x) → h(y⊕ 0) = h̄(x) → h̄(y). If x /∈ R(A) and y ∈ R(A), the proof is similar
as above. If x, y /∈ R(A), then h̄(x → y) = h(x → y) = h((x⊕ 0) → (y ⊕ 0)) ≤
h(x⊕ 0) → h(y ⊕ 0) = h̄(x) → h̄(y).

(H4) If x ∈ R(A), then h̄(h̄(x)) = h(h(x)) = h(x) = h̄(x). If x /∈ R(A), then
h̄(x) = h(x ⊕ 0) = h(h(x ⊕ 0)) and h̄h̄(x) = h̄(h(x ⊕ 0)) = h(h(x ⊕ 0) ⊕ 0) =
h(h(x⊕ 0)), so h̄(h̄(x)) = h̄(x).

Definition 4.2. Let (A, h) be a qpMV-algebra with hedge and F be a (weak)
filter of A. Then, F is called an (weak) h-filter of (A, h), if h(F ) ⊆ F . In
addition, if F is a (weak) h-filter of (A, h) and satisfies x → y ∈ F iff x⇝ y ∈
F , for any x, y ∈ A, then it is called a normal (weak) h-filter of (A, h).

Definition 4.3. Let (A, h) be a qpMV-algebra with hedge and θ be a congru-
ence on A. Then, θ is called a congruence on (A, h), if ⟨x, y⟩ ∈ θ implies
⟨h(x), h(y)⟩ ∈ θ, for any x, y ∈ A. In addition, if θ is a congruence on (A, h)
and ⟨x⊙ 1, y ⊙ 1⟩ ∈ θ can imply ⟨x, y⟩ ∈ θ, for any x, y ∈ A, then it is called a
filter congruence on (A, h).
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Theorem 4.1. Let (A, h) be a qpMV-algebra with hedge. Then, there exists a
bijection between normal h-filters and filter congruences on (A, h).

Proof. Let F be a normal h-filter of (A, h). Then, θF = {⟨x, y⟩ ∈ A2|x → y ∈
F and y → x ∈ F} is a filter congruence on A by Proposition 2.2. Moreover,
since F is a h-filter of (A, h), we have h(x → y) ∈ F and h(y → x) ∈ F .
By (H3), we have h(x → y) ≤ h(x) → h(y) and h(y → x) ≤ h(y) → h(x),
it follows that h(x) → h(y) ∈ F and h(y) → h(x) ∈ F , so ⟨h(x), h(y)⟩ ∈ θF .
Conversely, let θ be a filter congruence on (A, h). Then, Fθ = {x ∈ A|⟨x, 1⟩ ∈ θ}
is a normal filter of A using Proposition 2.2 again. Moreover, for any x ∈ Fθ,
we have ⟨h(x), 1⟩ = ⟨h(x), h(1)⟩ ∈ θ, so h(x) ∈ Fθ. The left is obtained by
Proposition 2.2.

Let (A, h) be a qpMV-algebra with hedge and F be a normal h-filter of
(A, h). Then, A/F = {x/F |x ∈ A} where x/F = {y ∈ A|x → y ∈ F and y →
x ∈ F} is a quotient set with respect to F . We define some operations as
follows: (x/F ) ⊕ (y/F ) = (x ⊕ y)/F , (x/F )− = x−/F and (x/F )∼ = x∼/F .
Then, A/F = ⟨A/F ;⊕,− ,∼ , 0/F, 1/F ⟩ is a pseudo-MV algebra by [6].

Theorem 4.2. Let (A, h) be a qpMV-algebra with hedge and F be a normal
h-filter of (A, h). Define h̄ : A/F → A/F by h̄(x/F ) = h(x)/F , for any x ∈ A.
Then, (A/F, h̄) is a pseudo-MV algebra with hedge.

Proof. It is easy to see that h̄ is well-defined. Now, we check that the condi-
tions (H1-H4) are satisfied. Obviously, h̄(1/F ) = h(1)/F = 1/F and h̄(x/F ) =
h(x)/F ≤ x/F . For any x/F, y/F ∈ A/F , we have h̄(x/F → y/F ) = h̄((x →
y)/F ) = h(x → y)/F ≤ (h(x) → h(y))/F = h(x)/F → h(y)/F = h̄(x/F ) →
h̄(y/F ). Similarly, we have h̄(x ⇝ y) ≤ h̄(x) ⇝ h̄(y). Finally, we have
h̄(h̄(x/F )) = h(h(x))/F = h(x)/F = h̄(x/F ).

Proposition 4.3. Let (A, h) be a qpMV-algebra with strong hedge. Then, ker(h)
is a weak h-filter of (A, h).

Proof. Obviously, 1 ∈ ker(h). For any x, y ∈ ker(h), then h(x) = h(y) = 1, we
have h(x⊙y) ≥ h(x)⊙h(y) = 1⊙1 = 1, so h(x⊙y) = 1 and then x⊙y ∈ ker(h).
Let x ∈ ker(h) and y ∈ A. Then, 1 = h(x) ≤ h(x ⊕ y), we have h(x ⊕ y) = 1,
so x ⊕ y ∈ ker(h). Similarly, we have y ⊕ x ∈ ker(h). Hence, ker(h) is a weak
filter of (A, h). Moreover, for any x ∈ ker(h), we have h(h(x)) = h(1) = 1, so
h(x) ∈ ker(h). Hence, ker(h) is a weak h-filter of (A, h).

Since any mi-operator is a strong hedge in a qpMV-algebra, we have the
following result.

Corollary 4.1. Let (A, f) be an interior qpMV-algebra. Then, ker(f) is a weak
f -filter of (A, f).
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Definition 4.4. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and
φ : A → B be a mapping. Then, φ is called a qpMV-algebra with hedge
homomorphism, if it satisfies the following conditions, for any x, y ∈ A,

(HH1) φ(1) = 1;

(HH2) φ(x⊕ y) = φ(x)⊕ φ(y);

(HH3) φ(x−) = (φ(x))−;

(HH4) φ(x∼) = (φ(x))∼;

(HH5) φ(h1(x)) = h2(φ(x)).

Proposition 4.4. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and φ
be a homomorphism from (A, h1) to (B, h2). Then, the following conditions are
equivalent:

(1) φ(x⊕ y) = φ(x)⊕ φ(y);

(2) φ(x ∨ y) = φ(x) ∨ φ(y);

(3) φ(x ∧ y) = φ(x) ∧ φ(y);

(4) φ(x⊙ y) = φ(x)⊙ φ(y);

(5) φ(x → y) = φ(x) → φ(y);

(6) φ(x⇝ y) = φ(x)⇝ φ(y).

Proof. (1) ⇒ (2) We have φ(x∨y) = φ(y⊕(x−⊕y)∼) = φ(y)⊕φ((x−⊕y)∼) =
φ(y)⊕ (φ(x− ⊕ y))∼ = φ(y)⊕ (φ(x)− ⊕ φ(y))∼ = φ(x) ∨ φ(y).

(2) ⇒ (3) We have φ(x ∧ y) = φ((x− ∨ y−)∼) = (φ(x− ∨ y−))∼ = (φ(x)− ∨
φ(y)−)∼ = φ(x) ∧ φ(y).

(3) ⇒ (1) Since x⊕y = x⊕ (y∧x∼), we have φ(x⊕y) = φ(x)⊕φ(y∧x∼) =
φ(x)⊕ (φ(y) ∧ φ(x)∼) = (φ(x)⊕ φ(y)) ∧ (φ(x)⊕ φ(x)∼) = φ(x)⊕ φ(y).

(1) ⇔ (4) Since x ⊙ y = (x− ⊕ y−)∼ and x ⊕ y = (x− ⊙ y−)∼, we get the
result.

(1) ⇔ (5) Since x → y = x− ⊕ y and x⊕ y = x∼ → y, we get the result.

(1) ⇔ (6) Analogously.

Recall that a h-subalgebra (S, h) of a qpMV-algebra with hedge (A, h), if S
is a subalgebra of A and h(S) ⊆ S.

Theorem 4.3. Let (A, h1) and (B, h2) be qpMV-algebras with hedges and φ be
a homomorphism from (A, h1) to (B, h2). Then,

(1) If (S, h1) is a h1-subalgebra of (A, h1), then (φ(S), h2) is a h2-subalgebra
of (B, h2);

(2) If φ is surjective and F is a weak h1-filter of (A, h1), then φ(F ) is a
weak h2-filter of (B, h2);

(3) If F is a (weak) h2-filter of (B, h2), then φ−1(F ) is a (weak) h1-filter of
(A, h1);

(4) ker(φ) = {x ∈ A|φ(x) = 1} is a normal weak h1-filter of (A, h1).

Proof. (1) It is easy to show that φ(S) is a subalgebra of B. Moreover, for any
φ(x) ∈ φ(S) where x ∈ S, we have h2(φ(x)) = φ(h1(x)) ∈ φ(S).
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(2) Since 1 ∈ F , we have 1 = φ(1) ∈ φ(F ). Let x, y ∈ φ(F ). Then,
there exist m,n ∈ F such that φ(m) = x and φ(n) = y, it turns out that
x ⊙ y = φ(m) ⊙ φ(n) = φ(m ⊙ n) ∈ φ(F ). Now, let x ∈ φ(F ) and y ∈ B.
Because φ is surjective, there exist m ∈ F and n ∈ A such that x = φ(m)
and y = φ(n). We have x ⊕ y = φ(m) ⊕ φ(n) = φ(m ⊕ n) ∈ φ(F ). Similarly,
y ⊕ x = φ(n ⊕ m) ∈ φ(F ). Hence, φ(F ) is a weak filter of (B, h2). For any
φ(x) ∈ φ(F ) where x ∈ F , we have h2(φ(x)) = φ(h1(x)) ∈ φ(F ), so φ(F ) is a
weak h2-filter of (B, h2).

(3) We only prove the case of filters. The case of weak filters can be proved
similarly. Obviously, φ(1) = 1 ∈ F , so 1 ∈ φ−1(F ). For any x, y ∈ φ−1(F ),
then there exist a, b ∈ F such that φ(x) = a and φ(y) = b, it follows that
φ(x ⊙ y) = φ(x) ⊙ φ(y) = a ⊙ b ∈ F , so x ⊙ y ∈ φ−1(F ). Let x ∈ φ−1(F )
and y ∈ A with x ≤ y. Then, there exists a ∈ F such that φ(x) = a and
a = φ(x) ≤ φ(y). Because a ∈ F , we have φ(y) ∈ F , so y ∈ φ−1(F ). For any
x ∈ φ−1(F ), there exists a ∈ F such that φ(x) = a, then we have φ(h1(x)) =
h2(φ(x)) = h2(a) ∈ F , so h1(x) ∈ φ−1(F ). Hence, φ−1(F ) is a h1-filter of
(A, h1).

(4) Obviously, 1 ∈ ker(φ). For any x, y ∈ ker(φ), we have φ(x ⊙ y) =
φ(x) ⊙ φ(y) = 1 ⊙ 1 = 1, so x ⊙ y ∈ ker(φ). Let x ∈ ker(φ) and y ∈ A. Then,
φ(x⊕y) = φ(x)⊕φ(y) = 1⊕φ(y) = 1 and φ(y⊕x) = φ(y)⊕φ(x) = φ(y)⊕1 = 1,
it follows that x ⊕ y ∈ ker(φ) and y ⊕ x ∈ ker(φ). For x ∈ ker(φ), we have
φ(h1(x)) = h2(φ(x)) = h2(1) = 1, so h1(x) ∈ ker(φ). Hence, ker(φ) is a weak
h1-filter of (A, h1). Finally, for any x, y ∈ A, we have x → y ∈ ker(φ) iff
φ(x → y) = 1 iff φ(x) → φ(y) = 1 iff φ(x) ≤ φ(y) iff φ(x) ⇝ φ(y) = 1 iff
φ(x⇝ y) = 1 iff x⇝ y ∈ ker(φ). So ker(φ) is normal.

Corollary 4.2. Let (A, h1) and (B, h2) be qpMV-algebras with strong hedges
and φ be a homomorphism from (A, h1) to (B, h2). Then,

(1) φ−1(ker(h2)) is a weak h1-filter of (A, h1);

(2) If φ is surjective, φ(kerh1) is a weak h2-filter of (B, h2).

Let (A, h) be a qpMV-algebra with hedge and F be a normal h-filter of
(A, h). Then, (A/F, h̄) is a pseudo-MV algebra with hedge by Theorem 4.2.
Define π : A → A/F by x 7→ x/F , for any x ∈ A. Then, we have the following
result.

Proposition 4.5. Let (A, h) be a qpMV-algebra with hedge and F be a normal
h-filter of (A, h). Then,

(1) π is a homomorphism from (A, h) to (A/F, h̄) and kerπ = F ;

(2) π−1(ker h̄) ⊆ h−1(F );

(3) π(kerh) ⊆ ker(h̄).

Proof. (1) It is easy to check that π is a homomorphism (A, h) to (A/F, h̄).
For any x ∈ ker(π), then π(x) = x/F = 1/F , it turns out that 1 → x ∈ F . Since
1 → x ≤ x, we have x ∈ F , so ker(π) ⊆ F . For any x ∈ F , then 1 → x ∈ F
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and x → 1 = 1 ∈ F , we have 1 ∈ x/F , so 1/F ⊆ x/F . Conversely, for any
y ∈ x/F , then y → x ∈ F and x → y ∈ F . Because x ∈ F , we have y ∈ F , it
turns out that y → 1 = 1 ∈ F and 1 → y ∈ F , so y ∈ 1/F and x/F ⊆ 1/F .
Thus, 1/F = x/F which means that x ∈ ker(π), we have F ⊆ ker(π). Hence,
ker(π) = F .

(2) For any x ∈ π−1(ker h̄), then π(x) ∈ ker(h̄), so 1/F = h̄(π(x)) =
π(h(x)) = h(x)/F and then 1 → h(x) ∈ F . Since 1 → h(x) ≤ h(x), we
have h(x) ∈ F , so x ∈ h−1(F ). Hence, π−1(ker h̄) ⊆ h−1(F ).

(3) For any x ∈ π(ker(h)), there exists m ∈ ker(h) such that π(m) = x, then
we have h̄(x) = h̄(π(m)) = π(h(m)) = π(1) = 1/F , so x ∈ ker(h̄) and then
π(kerh) ⊆ ker(h̄).
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Abstract. Restriction semigroups are common generalizations of ample semigroups
and inverse semigroups. The main aim of this paper is to probe restriction semigroups
with certain congruence properties. In this paper we give some characterizations of
restriction semigroups each of whose proper (2, 1, 1)-congruences are reduced, so called
H-reduced restriction semigroups. In particular, the classification of congruence-free
restriction semigroups is obtained; that is, it is proved that a restriction semigroup is
congruence-free if and only if it is either a simple group or an H-reduced restriction
semigroup without nontrivial reduced restriction monoid (2, 1, 1)-congruences. These
results extend and enrich the related results of inverse semigroups.

Keywords: restriction semigroup, fundamental restriction semigroup, ample semi-
group, congruence.

1. Introduction

Inverse semigroups play an important role in the theory of semigroups. Many
authors have tried to generalize inverse semigroups. Restriction semigroups
are non-regular generalizations of inverse semigroups. They are semigroups
equipped with two additional unary operators which satisfy certain identities. In
particular, each inverse semigroup determines a restriction semigroup in which
the unary operations assign the idempotents aa−1 and a−1a, respectively, to

*. Corresponding author
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any element a. The class of restriction semigroups is just the variety of algebras
generated by these restriction semigroups obtained from inverse semigroups, see
[8]. Restriction semigroups (formerly, called weakly E-ample semigroups) have
arisen from a number of mathematical perspectives. For a detailed introduction
of the history and basic properties of restricted semigroups, please refer to [13]
and [18].

So far, a number of important results of the rich structure theory of inverse
semigroups have been recast in the broader setting of restriction semigroups;
see [11, 9, 10, 21, 25, 16]. In theory of inverse semigroups, congruences play
an important role. Because restriction semigroups are generalizations of inverse
semigroups, it is natural to probe the congruence theory of restriction semi-
groups. This is the main aim of this paper. It is an important property that
any quotient of an inverse semigroup over a congruence is also inverse. This
property is a key to study the congruence theory of inverse semigroups in the
present ways. Unfortunately, the quotient of a restriction semigroup over a gen-
eral congruence need not be still a restriction one (see [15]). So, we only consider
the (2, 1, 1)-congruences on a restriction semigroup. Indeed, we are inspired by
the results of El Qallali in [4] on congruences on an ample semigroup, formerly
called type-A semigroups. This is because any ample semigroup is a special
restriction semigroup.

We proceed as follows: after some preliminaries, in Section 3, we obtain
some trace characterizations of (2, 1, 1)-congruences on a restriction semigroup.
In Section 4, we consider restriction semigroups all of whose proper (2, 1, 1)-
congruences are reduced, called H-reduced restriction semigroups. It is inter-
esting that an H-reduced restriction semigroup must be an ample semigroup.
Moreover, we determine when a restriction semigroup is H-reduced (Theorem
4.1). This result extends those of Tucci in [26] on inverse semigroups all of whose
proper homomorphic images are groups. Section 5 is devoted to congruence-free
restriction semigroups. So-called a congruence-free restriction semigroup is a re-
striction semigroup whose (2, 1, 1)-congrunces are only the identity relation and
the universal relation. Such semigroups are analogue of congruence-free inverse
semigroups. For congruence-free inverse semigroups, see [22, 27]. In [23], Munn
further researched congruence-free regular semigroups. Indeed, any congruence-
free inverse semigroup is fundamental; for fundamental inverse semigroups, see
[20, 24]. It is proved that a semigroup S is a congruence-free restriction semi-
group if and only if S is either a simple group, or an H-reduced restriction
semigroup without nontrivial reduced (2, 1, 1)-congruences (Theorem 5.1). Our
results enrich and extend the related results on inverse semigroups, or ample
semigroups.

2. Preliminaries

We recall some concepts and notations, which are used in the sequel without
mentions.
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2.1 Restriction semigroups

A left restriction semigroup is defined to be an algebra of type (2, 1), more
precisely, an algebra S = (S, ·, +) where (S, ·) is a semigroup and + is a unary
operator such that the following identities are satisfied:

(x+)+ = x+, x+x = x, x+y+ = y+x+,

(x+y)+ = x+y+, (xy)+ = (xy+)+, xy+ = (xy+)+x.
(2.1)

A right restriction semigroup is dually defined, that is, it is an algebra (S, ·, ∗)
satisfying the duals of the identities (2.1). If S = (S, ·, +, ∗) is an algebra of
type (2, 1, 1) where S = (S, ·, +) is a left restriction semigroup and S = (S, ·, ∗)
is a right restriction semigroup and the identities

(2.2) (x+)∗ = x+, (x∗)+ = x∗

hold, then it is called a restriction semigroup. By definition, the defining prop-
erties of a restriction semigroup are left-right dual. Therefore in the sequel dual
definitions and statements will not be explicitly formulated. It is well known
that in a restriction semigroup, we always have

(2.3) (xy)+ = (xy+)+ and (xy)∗ = (x∗y)∗

(for example, see [13]).
Among restriction semigroups, the notions of subalgebra, homomorphism,

congruence and factor algebra are understood in type (2, 1, 1), which is empha-
sised by using the expressions (2, 1, 1)-subsemigroup, (2, 1, 1)-morphism, (2, 1, 1)-
congruence and (2, 1, 1)-factor semigroup, respectively. A restriction semigroup
with identity element 1 and such that 1+ = 1 = 1∗ is also called a restriction
monoid.

Let S be a restriction semigroup. By (2.2), we have

{x+ : x ∈ S} = {x∗ : x ∈ S}.

This set is called the set of projections of S and denoted by P (S). Again by (2.1)
and its dual, P (S) is a (2, 1, 1)-subsemigroup of S which is indeed a semilattice.
We call a restriction semigroup to be reduced if P (S) is a singleton. In this case,
the unique element of P (S) is the identity element of S. As in [16], we define

C = {(u, v) ∈ S × S : u+ = v+, u∗ = v∗}.

2.2 Ample semigroups

The relations R∗ and L∗ are generalizations of the usual Green’s relations R and
L, respectively. Elements a and b of a semigroup T is related byR∗ (respectively,
L∗) if and only if they are related by R (respectively, L) in some oversemigroup
of T . Equivalently, we have

(a, b) ∈ R∗ if and only if xa = ya⇔ xb = yb for any x, y ∈ T 1
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and

(a, b) ∈ L∗ if and only if ax = ay ⇔ bx = by for any x, y ∈ T 1.

A semigroup T is an ample semigroup if the following conditions are satisfied:

(i) for any a ∈ T , the R∗-class R∗
a of T containing a exists uniquely one

idempotent a+;

(ii) for any a ∈ T , the L∗-class L∗
a of T containing a exists uniquely one

idempotent a+;

(iii) the set E(T ) of idempotents of T becomes a commutative subsemigroup;
that is, E(T ) is a semilattice under the multiplication of T ;

(iv) for any a ∈ T, e ∈ E(T ), ea = a(ea)∗ and ae = (ae)+a.

Ample semigroups are formerly called as type A semigroups. It is well known
that any inverse semigroup is an ample semigroup and any ample semigroup
can be viewed as a subsemigroup of some inverse semigroup. Indeed, an inverse
semigroup is just an ample semigroup being regular.

For an ample semigroup T , we have that e+ = e = e∗ for all e ∈ E(T ).
By definition, it is easy to see that T is a restriction semigroup with unary
operators:

+ : T → T ; a 7→ a+

and
∗ : T → T ; a 7→ a∗,

and in this case,

(i) P (T ) = E(T );

(ii) (2, 1, 1)-congruences are just admissible congruences on T ;

(iii) (2, 1, 1)-homomorphisms are just admissible homomorphisms on T ;

(iv) any reduced (2, 1, 1)-congruence is indeed a cancellative monoid congru-
ence;

(v) C = H∗, where H∗ = L∗ ⊓R∗.

Consequently, any ample semigroup is a restriction semigroup S in which for
any a ∈ S, a+R∗aL∗a∗.

In what follows, we view an ample semigroup as a restriction semigroup with
the unary operations as above.

Recall that a left (right) ideal J of a semigroup T is a left (right) ∗-ideal of
T if J = ⊔x∈JL∗

x (J = ⊔y∈JR∗
y), where L

∗
x (R∗

x) is the L∗-class (the R∗-class)
of S containing a. Moreover, an ideal of T is a ∗-ideal of T if it is both a left
∗-ideal and a right ∗-ideal.
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2.3 Unary polynomials

Given a set X of variables, by a term in X we mean a formal expression built
up from the elements of X by means of the operational symbols— the binary
operational sysmbol · and the unary operational symbols + and ∗— in finitely
many steps. For example, the left and right hand sides of equalities in (2.1)-
(2.3) are terms in variables x, y. If we work with an associative binary operation
then we delete the unnecessary parenthesis from terms. If S is a restriction
semigroup then we introduce a nullary operational symbols for every element
s in S, and for simplicity, denote it also by s. By a polynomial of S we mean
an expression obtained in a way similar to terms, but from variables and these
operational symbols. A polynomial can also be interpreted in the way that
such nullary operational symbols are substituted for certain variables in a term.
For simplicity, later on we just say that elements of S are substituted for the
variables. As it is usual for semigroups, we allow to substitute also 1 ∈ S1

for several, but not all, variables to indicate that the variables in question be
deleted from the term. For example, if 1 is substituted for variable y in the terms
xyz and zy∗(x∗y)+ then the terms obtained are xz and z(x∗)+, respectively. A
unary polynomial of S is a polynomial with at most one variable. Their set is
denoted by P1(S).

If t = t(x1, x2, · · · , xn) is a term or p = p(x1, x2, · · · , xn) is a polynomial
in the variables x1, x2, · · · , xn, and we substitute elements s1, s2, · · · , sn of S1

with {s1, · · · , sn} ∩ S ̸= ∅ for the variables, then we can evaluate the expres-
sion so obtained in S1. The result is an element of S which is denoted by
tS(s1, s2, · · · , sn) and pS(s1, s2, · · · , sn), respectively. Notice that the evalu-
ation is compatible with the interpretation of the substitution of 1 ∈ S1 for
variables. The polynomial function of S corresponding to the polynomial p is
the mapping

pS : Sn → S, (s1, s2, · · · , sn) 7→ p(s1, s2, · · · , sn),

which is also denoted by pS(x1, x2, · · · , xn).
An identity is a formal equality t = u of two terms, considered with a

common set of variables. A restriction semigroup satisfies the identity t = u if

tS(s1, s2, · · · , sn) = uS(s1, s2, · · · , sn),

for any s1, s2, · · · , sn ∈ S.
Let τ be a relation on a restriction semigroup S. If c, d ∈ S are such that

c = pS(a), d = pS(b),

for some p ∈ P1(S), where either (a, b) or (b, a) belongs to τ , we say that c is

connected to d by a polynomial τ -transition, in notation, c
p→ d. We denote by

τ# the (2, 1, 1)-congruence on S generated by τ .
A well-known universal algebraic fact implies the following description, due

to Szendrei (see [25]).
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Lemma 2.1. Let S be a restriction semigroup and τ a relation on S. Then for
any c, d ∈ S, cτ#d if and only if c = d or there is a sequence

c = c1
p→ c2

p→ · · · p→ cn = d

of polynomial τ -transitions.

3. Congruences

In this section, we need to obtain some characterizations of (2, 1, 1)-congruence
on restricted semigroups. Let S be a restriction semigroup. For a (2, 1, 1)-
congruence ρ on S, we have the restriction ρ|P (S) of ρ to P (S) which is called
the projection trace of ρ, denoted by Ptrρ. It is easy to see that Ptrρ is a
congruence on P (S).

Definition 3.1. A congruence τ on P (S) is projection-normal if for any e, f ∈
P (S) and x ∈ S, (ex)∗τ(fx)∗ and (xe)+τ(xf)+ whenever eτf .

Corollary 3.1. If ρ is a (2, 1, 1)-congruence on S, then Ptrρ is projection-
normal.

Proof. Let e, f ∈ P (S) and x ∈ S. If eρf , then exρfx, xeρxf , so that

(ex)∗ρ(fx)∗, (xe)+ρ(xf)+,

therefore Ptrρ is projection-normal.

Lemma 3.1. Let τ be a projection-normal congruence on P (S) and u, v ∈ S.
Then the following statements are equivalent:

(i) u∗τv∗, ue = ve for some e ∈ P (S), eτu∗;

(ii) u+τv+, fu = fv for some f ∈ P (S), fτu+.

Proof. (i)⇒(ii). Because S is a restriction semigroup, ue = ve implies that
(ue)+u = (ve)+v and (ue)+ = (ve)+. And, by the normality of τ , eτu∗ im-
plies that (ue)+τ(uu∗)+ = u+; similarly, (ve)+τv+. Together with the foregoing
proof: (ue)+ = (ve)+, we have u+τv+ and (ii) holds.

(ii)⇒(i). It is similar as (i)⇒(ii).

Proposition 3.1. For a projection-normal congruence τ on P (S), the relation

τmin = {(u, v) ∈ S × S : u∗τv∗, ue = ve for some e ∈ P (S), eτu∗}

is the smallest (2, 1, 1)-congruence on S such that Ptrτmin = τ .
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Proof. It is routine to check that τmin is an equivalence relation. Let u, v, t ∈ S
with (u, v) ∈ τmin, then u

∗τ v∗, ue = ve for some e ∈ P (S) and eτ u∗, so that
tue = tve. Moreover,

(tu)∗ = (tu)∗u∗τ(tu)∗e = (tue)∗ = (tve)∗ = (tv)∗e

and (tv)∗ = (tv)∗v∗τ(tv)∗e. Therefore, (tu)∗τ(tv)∗. Notice that

(tu)∗e = (tue)∗ = (tve)∗ = (tv)∗e,

we observe that

(tu)(tu)∗e = tue = tve = (tv)(tv)∗e = (tv)(tu)∗e.

Together with (tu)∗e ∈ P (S), we have now proved that (tu, tv) ∈ τmin. On the
other side, we have

ue = ve⇒ uet = vet⇒ ut(et)∗ = vt(et)∗.

By the normality of τ , eτu∗ implies that (et)∗τ(u∗t)∗ = (ut)∗, so that (et)∗τ(ut)∗.
Similarly, (et)∗τ(vt)∗. Therefore (ut)∗τ(vt)∗. We have now proved that (ut, vt) ∈
τmin. Therefore, τmin is congruence.

Also, (u∗)∗ = u∗τv∗ = (v∗)∗, u∗e = (ue)∗ = (ve)∗ = u∗e and eτu∗ = (u∗)∗.
By definition, these three formula can derive that u∗τminv

∗. Similarly, by Lemma
3.1, u+τminv

+. Consequently, τmin is indeed a (2, 1, 1)-congruence.
For any e, f ∈ P (S), if eτf , then by the normality of τ , (eu)∗τ(fu)∗ and

(ue)+τ(uf)+. Notice that efτe and eef = fef , we can observe that eτminf .
Conversely, if eτminf then by definition, eτf. Hence, Ptrτmin = τ .

Suppose now that ρ is a (2, 1, 1)-congruence on S such that Ptrρ = τ , and
(u, v) ∈ τmin for some u, v ∈ S, then u∗τv∗, ue = ve for some e ∈ P (S), eτu∗.
It follows that (u∗, e), (v∗, e) ∈ ρ. Therefore, u = uu∗ρue = veρvv∗ = v. Hence
τmin ⊆ ρ and τmin is the smallest (2, 1, 1)-congruence on S such that Ptrτmin =
τ .

By Lemma 3.1, the following corollary is an immediate consequence of Propo-
sition 3.1.

Corollary 3.2. The congruence τmin of Proposition 3.4 has also the following
from:

τmin = {(u, v) ∈ S × S : u+τv+, fu = fv for some f ∈ P (S), fτu+}.

By a projection separating (2, 1, 1)-congruence on S, we mean a (2, 1, 1)-
congruence ρ on S in which for any e, f ∈ P (S), if eρf , then e = f . Gould [11]
pointed out that for a restriction semigroup S, the relation

µS = {(u, v) ∈ S × S : u+ = v+ and (eu)∗ = (ev)∗ for all e ∈ P (S)}
= {(u, v) ∈ S × S : u∗ = v∗ and (uf)+ = (vf)+ for all f ∈ P (S)}
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is the greatest projection separating (2, 1, 1)-congruence on S and µS ⊆ C.
Sometime, we write also µS as µ(S). By definition, a (2, 1, 1)-congruence ρ
on S is projection-separating if and only if Ptrρ = idP (S) where idP (S) denotes
the identity relation on P (S).

For a projection-normal congruence τ on P (S), we define

τmax = {(u, v) ∈ S × S : (eu)∗τ(ev)∗ and (ue)+τ(ve)+ for any e ∈ P (S)}.

Lemma 3.2. Let τ be a projection-normal congruence on P (S). Then for any
u, v ∈ S, the following statements are equivalent:

(i) (u, v) ∈ τmax;

(ii) (eu)∗τ(fv)∗ and (ue)+τ(vf)+, for any e, f ∈ P (S) with eτf ;

(iii) (uτmin, vτmin) ∈ µS/τmin
.

Proof. (i)⇒(ii). For any e, f ∈ P (S) with eτf , we have (ev)∗τ(fv)∗ by normal-
ity. If (u, v) ∈ τmax, then (eu)∗τ(ev)∗ so that (eu)∗τ(fv)∗; similarly, (ue)+τ(vf)+.

(ii)⇒(i). It is clear.

(i)⇔(iii). It follows from the following implications:

(u, v) ∈ τmax ⇔ (eu)∗τ(ev)∗ and (ue)+τ(ve)+ for any e ∈ P (S);
⇔ (eu)∗τmin = (ev)∗τmin and (ue)+τmin = (ve)+τmin

for any e ∈ P (S);
⇔ ((eu)τmin)

∗ = ((ev)τmin)
∗ and ((ue)τmin)

+ = ((ve)τmin)
+

for any e ∈ P (S);
⇔ (eτmin · uτmin)

∗ = (eτmin · bτmin)
∗ and

(uτmin · eτmin)
+ = (vτmin · eτmin)

+ for all e ∈ P (S);
⇔ (uτmin, vτmin) ∈ µ(S/τmin).

We complete the proof.

Proposition 3.2. Let τ be a projection-normal congruence on P (S). Then,
τmax is the greatest (2, 1, 1)-congruence on S such that Ptrτmax = τ .

Proof. It is routine to check that τmax is an equivalence relation. Let u, v, t ∈ S
with (u, v) ∈ τmax, e ∈ P (S). Then (eu)∗τ(ev)∗ and by the normality of τ , it
follows that

(eut)∗ = ((eu)∗t)∗τ((ev)∗t)∗ = (evt)∗.

Notice that (te)† ∈ P (S), we have

(ute)+ = (u(te)+)+τ(v(te)+)+ = (vte)+.

Therefore, (ut, vt) ∈ τmax; similarly, (tu, tv) ∈ τmax. Hence, τmax is a congruence.
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It is obvious that τ ⊆ τmax. Let e, f, g ∈ P (S). If fτmaxg, then efτeg.
Take in turn e = f and e = g to get fτfg, gfτg. As fg = gf, now fτg. Thus,
Ptrτmax = τ .

If (u, v) ∈ τmax, then (uτmin, vτmin) ∈ µ(S/τmin). But, µ(S/τmin) and τmin

are (2, 1, 1)-congruence, so (u∗τmin, v
∗τmin) ∈ µ(S/τmin) and (u+τmin, v

+τmin) ∈
µ(S/τmin). By Lemma 3.2, these show that (u∗, v∗) ∈ τmax and (u+, v+) ∈ τmax.
Therefore, τmax is a (2, 1, 1)-congruence.

Finally, we let ρ be a (2, 1, 1)-congruence on S such that Ptrρ = τ . If
(u, v) ∈ ρ, then for any e ∈ P (S), (eu, ev) ∈ ρ and (ue, ve) ∈ ρ. It follows
that ((eu)∗, (ev)∗), ((ue)+, (ve)+) ∈ ρ. Thus (eu)∗τ(ev)∗, (ue)+τ(ve)+. Hence
ρ ⊆ τmax and the proof is completed.

In what follows, we call a (2, 1, 1)-congrunce ρ on S a reduced (2, 1, 1)-
congruence if S/ρ is a reduced restriction monoid. The following proposition
gives a characterization of reduced (2, 1, 1)-congruences.

Proposition 3.3. Let ρ be a (2, 1, 1)-congruence on S. Then ρ is a reduced
(2, 1, 1)-congruence on S if and only if Ptrρ = P (S)× P (S).

Proof. Suppose that ρ is a reduced (2, 1, 1)-congruence on S, then S/ρ is a
reduced restriction monoid. This means that |P (S/ρ)| = 1. Obviously, for any
e, f ∈ P (S), eρ = fρ. Thus P (S)× P (S) ⊆ Ptrρ. Hence Ptrρ = P (S)× P (S).

Conversely, suppose that Ptrρ = P (S) × P (S), then for any e, f ∈ P (S),
eρ = fρ. This shows that |{eρ : e ∈ P (S)}| = 1. On the other hand, if
aρ (a ∈ S) is a projection of S/ρ, then as ρ is a (2, 1, 1)-congruence on S,
aρ = (aρ)+ = a+ρ. So, P (S/ρ) = {eρ : e ∈ P (S)}. Therefore |P (S/ρ)| = 1, and
so S/ρ is a reduced restriction monoid. Hence ρ is a reduced (2, 1, 1)-congruence
on S.

Denote ω = P (S) × P (S). It is obvious that ω is a normal congruence
on P (S). So, by Proposition 3.3, ωmin and ωmax are both reduced (2, 1, 1)-
congruences. Again by Propositions 3.1 and 3.2, we have the following corollary.

Corollary 3.3. Let S be a restriction semigroup. Then

(i) ωmin is the smallest reduced (2, 1, 1)-congruence on S;

(ii) ωmax = S × S.

Evidently, the identity relation ∆ on P (S) is a normal congruence on P (S).
It is not difficult to see that for a restriction semigroup S, we have

(i) ∆min is the identity relation on S;

(ii) ∆max = µS .

Proposition 3.4. Let S be a restriction semigroup. If ρ is a (2, 1, 1)-congruence
on S, then P (S/ρ) = {eρ : e ∈ P (S)}.
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Proof. Obviously, {eρ : e ∈ P (S)} ⊆ P (S/ρ). If aρ (a ∈ S) is a projection of
S/ρ, then aρ = (aρ)+ = a+ρ, so that P (S/ρ) ⊆ {eρ : e ∈ P (S)}. Therefore,
P (S/ρ) = {eρ : e ∈ P (S)}.

4. H-reduced restriction semigroups

In this section, we give the definition of H-reduced restricted semigroups.

Definition 4.1. A semigroup S is an H-reduced restriction semigroup if

(i) S is not a reduced restriction monoid;

(ii) |S| ≥ 2;

(iii) any (2, 1, 1)-congruence ρ on S is either the identical relation or a reduced
(2, 1, 1)-congruence.

Notice that a restriction semigroup is reduced if and only if its set of pro-
jections is a singleton. So, it is easy to know that for any H-reduced restriction
semigroup S, we have always |P (S)| ≥ 2.

By a 0-J ∗-simple semigroup, we mean a semigroup with zero element 0 and
satisfying the conditions as follows:

(i) S2 ̸= {0};

(ii) S and {0} are the only ∗-ideals of S.

And, we call a 0-J ∗-simple semigroup having no zero element to be a J ∗-simple
semigroup. Equivalently, a semigroup S with zero element is 0-J ∗-simple if and
only if S2 ̸= {0} and

J ∗ = {(0, 0)} ⊔ (S\{0})× (S\{0});

if and only if S2 ̸= {0} and aJ ∗b for any nonzero elements a, b of S. Also, it
is easy to see that a semigroup is J ∗-simple if and only if J ∗ is the universal
relation on S.

Take after Gould, we call a restriction semigroup S to be fundamental if the
maximum projection-separating (2, 1, 1)-congruence µ is the identity relation.
In [11], Gould proved that any fundamental restriction semigroup is isomorphic
to some full (2, 1, 1)-subsemigroup of the Munn semigroup on its projection
semilattice. According to a result of Fountain in [6], any full subsemigroup of an
inverse semigroup must be an ample semigroup. Because any Munn semigroup
is an inverse semigroup, this shows that any fundamental restriction semigroup
is always an ample semigroup.

By Definition 4.1, we have the following corollary.

Corollary 4.1. Any H-reduced restriction semigroup is a 0-J ∗-simple ample
semigroup which is fundamental.
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Proof. Let S be an H-reduced restriction semigroup. If the projection sepa-
rating (2, 1, 1)-congruence µS is not the identity relation, then µS is a reduced
(2, 1, 1)-congruence, and by Proposition 3.4, |P (S/µS)| = |{eµS : e ∈ P (S)}|.
But µS is projection-separating, so |{eµS : e ∈ P (S)}| = |P (S)|. Therefore
1 = |P (S/µS)| = |P (S)|, so that P (S) is a singleton. It follows that S is a re-
duced restriction semigroup, contrary to Definition 4.1. Thus µS is the identity
relation on S, so that S is a fundamental restriction semigroup. Now by the
foregoing arguments before Corollary 4.1, S is an ample semigroup.

Now let U be a ∗-ideal of S and U ̸= S. Then by [14, Lemma 2.2], the Rees
congruence RU := U × U ⊔ idS is a (2, 1, 1)-congruence on S, where idS is the
identity relation on S.

(i) When the Rees congruence RU is the identity relation. In this case, U =
{0}.

(ii) If RU is not the identity relation, then by hypothesis, RU is a reduced
(2, 1, 1)-congruence, and so S/RU is a trivial semigroup, since S/RU is a
restriction semigroup with zero element and the projection set of a reduced
restriction semigroup is a singleton. Therefore U = S.

However S has only two ∗-ideals: {0} and S. This means that S is a 0-J ∗-simple
semigroup.

We arrive now at the main result of this section.

Theorem 4.1. Let S be a restriction semigroup such that |P (S)| > 1. Then
S is an H-reduced restriction semigroup if and only if the following statements
hold:

(FA) S is a fundamental ample semigroup;

(HR) for any e, f, h ∈ P (S) with e > f , there is a sequence

e = e1
p→ e2

p→ · · · p→ en = h

of polynomial τ -transitions, where

(i) e1, e2, · · · , en ∈ P (S);
(ii) τ = {(e, f)}.

Proof. Suppose that Conditions (FA) and (HR) hold. Let ρ be a (2, 1, 1)-
congruence on S, and ρ ̸= S × S. We consider the following two cases:

(1) If Ptrρ = idP (S), then ρ is a projection-separating (2, 1, 1)-congruence, so
ρ ⊆ µS . But S is fundamental, then µS = idS and thus ρ is the identity
congruence on S.
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(2) Assume that Ptrρ ̸= idP (S). Then there is e, h ∈ P (S) such that e ̸= h
and (e, h) ∈ ρ. It follows that (e, eh) ∈ ρ.

(a) If e = eh, then e < h. Now by Lemma 2.1, Condition (HR) implies
that for any g ∈ P (S), (h, g) ∈ τ# where τ = {(h, e)}. But τ ⊆ ρ, so
τ# ⊆ ρ. Accordingly, (g, h) ∈ ρ. This means that P (S)× P (S) ⊆ ρ.
Now by Proposition 3.3, ρ is a reduced (2, 1, 1)-congruence on S.

(b) Assume that e ̸= eh. We have that eh < e. Applying the arguments
on e, h to e, eh, we can get that ρ is a reduced (2, 1, 1)-congruence
on S.

Consequently, S is an H-reduced restriction semigroup.
Conversely, suppose that S is an H-reduced restriction semigroup. Notice

that µS is a (2, 1, 1)-congruence on S. By hypothesis, µS = idS or µS is reduced.

(A) If the first case holds, then S is a fundamental restriction semigroup. So,
S is isomorphic to a full subsemigroup of the Munn semigroup on P (S).
But the Munn semigroup is an inverse semigroup, so any full subsemigroup
of the Munn semigroup is always an ample semigroup. Therefore S is a
fundamental ample semigroup.

(B) If the second case is true, then PtrµS is the universal relation on P (S).
But µS is projection-separating, so |P (S)| = 1, contrary to the hypothesis
that |P (S)| ≥ 2.

However, S is a fundamental ample semigroup.
Let e, f, h ∈ P (S) be such that e > f . Consider the relation τ = {(e, f)}

on S, we know easily that τ# is not the identity on S. By definition, τ# is a
reduced (2, 1, 1)-congruence on S. It follows that (e, h) ∈ τ#. Now by Lemma
2.1, there is a sequence

e = c1
p→ c2

p→ · · · p→ cn = h

of polynomial τ -transitions. Let pi ∈ P1(S) with i = 1, 2, · · · , n and such that

c1 =p
S
1 (a1), p

S
1 (b1) = c2 = pS2 (a2), p

S
2 (b2) = c3 = pS3 (a3), · · ·

pSn−1(bn−1) = cn−1 = pSn(an), p
S
n(bn) = cn,

(4.1)

where either (ai, bi) or (bi, ai) belong to τ . Now let qi(x) = (pi(x))
+. Obviously,

qi(x) ∈ P1(S). Notice that e = e+ = c+1 and h = h+ = c+n . By (4.1), we can
obtain that

c+1 =(pS1 (a1))
+, (pS1 (b1))

+ = c+2 = (pS2 (a2))
+, (pS2 (b2))

+ = c+3 = (pS3 (a3))
+, · · ·

(pSn−1(bn−1))
+ = c+n−1 = (pSn(an))

+, (pSn(bn))
+ = c+n ;

that is,

e = c+1 =qS1 (a1), q
S
1 (b1) = c+2 = qS2 (a2), q

S
2 (b2) = c+3 = qS3 (a3), · · ·

qSn−1(bn−1) = c+n−1 = qSn (an), q
S
n (bn) = c+n = h,

(4.2)
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where qSk (x) = (p+k (x))
+ ∈ P1(S) for k = 1, 2, · · · , n. It results Condition

(HR).

By a proper congruence on S, we mean a congruence ρ on S with ρ ̸= S×S.
Let S be an inverse semigroup. It is easy to see that any congruence on S is

always a (2, 1, 1)-congruence on S. Notice that for any congruence ρ on S, ρ is
a group congruence on S if and only if E(S)×E(S) ⊆ ρ. We can observe that ρ
is a group congruence if and only if ρ is reduced. Now, the following corollary is
an immediate consequence of Theorem 4.1, which is essentially the main result
in [26].

Corollary 4.2. Let S be an inverse semigroup which is not a group. Then every
proper congruence of S is a group congruence if and only if S is a fundamental
inverse semigroup satisfying Condition (HR).

5. Congruence-free restriction semigroups

In this section, we shall discuss congruence-free restriction semigroups.

Definition 5.1. A restriction semigroup S is congruence-free if any (2, 1, 1)-
congruence on S is either the universal congruence or the identity congruence.

Let S be a congruence-free restriction semigroup. Notice that the universal
relation is a reduced restriction monoid. By definition, any (2, 1, 1)-congruence
on a congruence-free restriction semigroup S is either the identity relation or
a reduced (2, 1, 1)-congruence. So, S is either a reduced restriction semigroup
or an H-reduced restriction semigroup. On the other hand, also by definition,
the greatest projection separating (2, 1, 1)-congruence µS is the identity relation
on S. So, S is a fundamental restriction semigroup. Furthermore, S is a full
(2, 1, 1)-subsemigroup of the Munn semigroup on P (S), so that S is an ample
semigroup. Assume, in addition, that S is a reduced restriction semigroup.
Obviously, S is a monoid with identity 1. Consider that an ample semigroup may
be viewed as a restriction semigroup in which for any element a, a+R∗aL∗a∗,
this shows that for any a ∈ S, aH∗1. That is, S is an H∗-class containing
an idempotent 1. By a result of Fountain in [7], S is a cancellative monoid.
Therefore we have the following corollary.

Corollary 5.1. If S is a congruence-free restriction semigroup, then S is either
a cancellative monoid or an H-reduced restriction semigroup.

Lemma 5.1. Let S be a restriction semigroup. Then every (2, 1, 1)-congruence
on S is either a projection separating (2, 1, 1)-congruence or a reduced (2, 1, 1)-
congruence if and only if S satisfies Condition (HR).

Proof. Suppose that S satisfies (HR). Indeed, in the proof of the sufficiency of
Theorem 4.1, we have proved that any proper (2, 1, 1)-congruence on S is either
projection-separating or reduced. It results the sufficiency.
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Conversely, suppose that every (2, 1, 1)-congruence on S is either a projection-
separating (2, 1, 1)-congruence or a reduce (2, 1, 1)-congruence. For e, f, g ∈
P (S) with e > f , we consider the relation τ = {e, f}. It is easy to see that τ# is
not a projection-separating (2, 1, 1)-congruence on S, since the projection trace
of a projection-separating congruence on S is the identity relation on P (S).
Furthermore, τ# is a reduced (2, 1, 1)-congruence on S. Again by the proof of
the necessity of Theorem 4.1, we may obtain that S satisfies Condition (HR).
The proof is finished.

Lemma 5.2. Let T be a cancellative monoid with identity 1. Then T is a
congruence-free restriction semigroup if and only if T is a simple group.

Proof. Suppose that T is a congruence-free restriction semigroup, and denote
by U(T ) the set of all units of T . Then U(T ) is a subgroup of T , and T\U(T )
is an ideal of T . It is easy to see that ρ = (T\U(T )) × (T\U(T )) ⊔ idU(T )

is a (2, 1, 1)-congruence on T . But T is congruence-free, so ρ is the identity
relation on T . It follows that T\U(T ) is the zero element of T . This means
that T = U(T )0 (the semigroup obtained from U(T ) by adjoining a zero). Thus
T = U(T ) since T is cancellative. Moreover by [19, Proposition 8.2 (i), p.32], T
is a simple group.

Conversely, by [19, Proposition 8.2 (i), p.32], it is clear that a simple group
is a congruence-free restriction semigroup.

We now give the main result of this section.

Theorem 5.1. A semigroup S is a congruence-free restriction semigroup if and
only if S is either a simple group or an H-reduced restriction semigroup without
nontrivial reduced (2, 1, 1)-congruences.

Proof. Suppose that S is congruence-free. By Corollary 5.1, S is either a
cancellative monoid or an H-reduced restriction semigroup. If S is a cancellative
monoid, then by Lemma 5.2, S is a simple group. If S is an H-reduced restriction
semigroup, then any (2, 1, 1)-congruence on S is either the identity relation or
a reduced (2, 1, 1)-congruence (including the universal relation), so that S has
no nontrivial reduced (2, 1, 1)-congruences.

Conversely, if S is an H-reduced restriction semigroup without nontrivial
reduced (2, 1, 1)-congruences, then S has only the identity relation and the uni-
versal relation. It follows that S is congruence-free. Assume that S is a simple
group. By [19, Proposition 8.2 (i), p.32], any congruence on S is of the form:
ρN = {(g, h) ∈ S × S : gh−1 ∈ N} where N is a normal subgroup of S. This
shows that S is congruence-free.

By definition, a restriction semigroup is inverse if and only if it is regular.
The following corollary is an easy consequence of Theorem 5.1 and essentially
the main result of Munn in [22].
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Corollary 5.2. A semigroup S is a congruence-free inverse semigroup if and
only if S is either a simple group or a fundamental inverse semigroup satisfying
Condition (HR) and without nontrivial group congruences.

The following example is due to Tucci; for detail, see [26].

Example 5.1. Let N be the set of all non-negative integers. On S = N × N,
define a multiplication by

(m,n)(p, q) = (m− n+max(n, p), q − p+max(n, p)).

It is well known that under the above multiplication, S is an inverse semigroup.
Indeed, S is the bicyclic semigroup. By [26, Corollary 7], S is a congruence-free
restriction semigroup.

6. Conclusion

With the development of semigroup theory, restriction semigroups have become
a hot topic in semigroup theory. This paper is based on Tucci ’s inverse semi-
groups all of whose proper homomorphic images are groups in [26]. Moreover,
EI Qallali’s results in [4] on congruences on an ample semigroups give us great
inspiration. In this paper, we discuss the properties of some congruences on re-
striction semigroups and obtain the classification of congruence-free restriction
semigroups. Finally, we hope these conclusions will be helpful to the study of
restriction semigroups.
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Abstract. In this paper, a one-step hybrid block method with generalized three off-
step points for solving general fourth order ordinary differential equations is developed
using power series of order eight as a basis function. The technique employed for the
derivation of this method are to interpolate the power series at xn and all off-step
points and to collocate the fourth derivative of the basis function at all points in the
selected interval. The method derived is proven to be zero stable, consistent and then
convergent. The performance of the method is tested by solving linear and non-linear
fourth order initial value problems.

Keywords: one step, hybrid method, block method, fourth order differential equation,
power series, three generalized off step points.

1. Introduction

In this article, we consider the numerical solution of the fourth order IVPs of
the form

(1) y′′′′ = f(x, y, y′, y′′, y′′′), x ∈ [a, b]

with initial conditions

y(a) = ω0, y
′(a) = ω1, y

′′(a) = ω2, y
′′′(a) = ω3.

Generally, equation (1) can be solved by converting it into system of four
equations of first-order IVPs and then appropriate numerical method is applied.
Another alternative approach, for solving equation (1) directly which can avoid
computational burden has been discussed by Awoyemi, (1992). This approach

*. Corresponding author
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has been widely used for solving high order IVPs by many researchers. Some of
these researchers are Omar, et al. (2015), Jator (2010), Fasasi et al. (2014) and
Raft Abdelrahim (2021). Recently, hybrid block method for solving equation
(1) directly have been proposed by Kayode et al. (2014), Adesanya (2012),
Omar et al. (2004), Kayode (2008a) and Kuboye et al. (2015a). Avoiding the
disadvantages in reduction method and employing the features of both block and
hybrid methods which include generating numerical solutions simultaneously
(Lambert, 1973) and overcoming zero stability barrier of linear multistep method
are the aims of this new paper.

2. Methodology

In order to derive the new hybrid block method, the power series in equation
(2) below is used.

(2) y(x) =
d+c−1∑
i=0

ai

(
x− xn
h

)i

, n = 0, 1, 2, ..., N − 1, x ∈ [xn, xn+1],

where c = 5 and d = 4 represent the number of collocation and interpolation
points, h = xn − xn−1 and a = x0 < x1 < ... < xN−1 < xN = b. Interpolating
(2) at xn, xn+s1 , xn+s2 , xn+s3 and collocating the forth derivative of (2) at all
points in the interval i.e at xn, xn+s1 , xn+s2 , xn+s3 and xn+1. This leads to
system equations as shown below:

(3)



1 0 0 0 0 0 0 0 0
1 s1 s21 s31 s41 s51 s61 s71 s81
1 s2 s22 s32 s42 s52 s62 s72 s82
1 s3 s23 s33 s43 s53 s63 s72 s83
0 0 0 0 24

h4 0 0 0 0

0 0 0 0 24
h4

120s1
h4

360s21
h4

840s31
h4

1680s41
h4

0 0 0 0 24
h4

120s2
h4

360s22
h4

840s32
h4

1680s42
h4

0 0 0 0 24
h4

120s3
h4

360s23
h4

840s33
h4

1680s43
h4

0 0 0 0 24
h4

120
h4

360
h4

840
h4

1680
h4





a0
a1
a2
a3
a4
a5
a6
a7
a8


=



yn
yn+s1

yn+s2

yn+s3

fn
fn+s1

fn+s2

fn+s3

fn+1


.

System above is solved by Gaussian Elimination Method to find a′is, i = 0(1)8.
Secondly, substituting the values of a′is into equation (2) yields a continuous
implicit scheme of the form:

y(x) = α0(x) +

3∑
i=1

(αsi(x)yn+Si + βsi(x)fn+si) +

1∑
i=0

βi(x)fn+i.(4)
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The first, second and third derivatives of equation (4) are

y′(x) =
∂

∂x
α0(x) +

3∑
i=1

∂

∂x
(αsi(x)yn+si + βsi(x)fn+si) +

1∑
i=0

∂

∂x
βi(x)fn+i,

y′′(x) =
∂2

∂x2
α0(x) +

3∑
i=1

∂2

∂x2
(αsi(x)yn+si + βsi(x)fn+si) +

1∑
i=0

∂2

∂x2
βi(x)fn+i,

y′′′(x) =
∂3

∂x3
α0(x) +

3∑
i=1

∂3

∂x3
(αsi(x)yn+si + βsi(x)fn+si) +

1∑
i=0

∂3

∂x3
βi(x)fn+i,

where,

α0 =
(xn − x+ hs3)(xn − x+ hs1)(xn − x+ hs2)

(h3s1s2s3)
,

αs1 =
(x− xn)(xn − x+ hs3)(xn − x+ hs2)

(h3s1(s1 − s3)(s1 − s2)
,

αs2 =
(x− xn)(x− xn − hs3)(xn − x+ hs1)

(h3s2(s2 − s3)(s1 − s2))
,

αs3 =
(x− xn)(xn − x+ hs2)(xn − x+ hs1)

(h3s3(s2 − s3)(s1 − s3)
,

β0 = −(x− xn)(xn − x+ hs1)(xn − x+ hs2)(xn − x+ hs3)

(5040h4s1s2s3)
(3h4s41 − 5h4s31s2,

− 5h4s31s3 − 8h4s31 − 5h4s21s
2
2 + 15h4s21s2s3 + 20h4s21s2 − 5h4s21s

2
3 + 20h4s21s3

− 5h4s1s
3
2 + 15h4s1s

2
2s3 + 20h4s1s

2
2 + 15h4s1s2s

2
3 − 120h4s1s2s3 − 5h4s1s

3
3

+ 20h4s1s
2
3 + 3h4s42 − 5h4s32s3 − 8h4s32 − 5h4s22s

2
3 + 20h4s22s3 − 5h4s2s

3
3

+ 20h4s2s
2
3 − 8h4s33 + 3h3s31x− 3h3s31xn − 5h3s21s2x+ 5h3s21s2xn + 12x3xn

− 5h3s21s3x+ 5h3s21s3xn − 8h3s21x+ 8h3s21xn − 5h3s1s
2
2x+ 5h3s1s

2
2xn + 3h4s43

− 15h3s1s2s3xn + 20h3s1s2x− 20h3s1s2xn − 5h3s1s
2
3x+ 5h3s1s

2
3xn + 3hs3x

3

− 20h3s1s3xn + 3h3s32x− 3h3s32xn − 5h3s22s3x+ 5h3s22s3xn − 8h3s22x− 3x4n

− 5h3s2s
2
3x+ 5h3s2s

2
3xn + 20h3s2s3x− 20h3s2s3xn + 3h3s33x− 3h3s33xn − 3x4

+ 8h3s23xn + 3h2s21x
2 − 6h2s21xxn + 3h2s21x

2
n − 5h2s1s2x

2 + 10h2s1s2xxn

− 5h2s1s3x
2 + 10h2s1s3xxn − 5h2s1s3x

2
n − 8h2s1x

2 + 16h2s1xxn − 8h2s1x
2
n

− 6h2s22xxn + 3h2s22x
2
n − 5h2s2s3x

2 + 10h2s2s3xxn − 5h2s2s3x
2
n − 8h2s2x

2

− 8h2s2x
2
n + 3h2s23x

2 − 6h2s23xxn + 3h2s23x
2
n − 8h2s3x

2 + 16h2s3xxn − 8h2s3x
2
n

+ 3hs1x
3 − 9hs1x

2xn + 9hs1xx
2
n − 3hs1x

3
n + 3hs2x

3 − 9hs2x
2xn + 9hs2xx

2
n

+ 3h2s22x
2 − 9hs3x

2xn + 9hs3xx
2
n − 3hs3x

3
n + 6hx3 − 18hx2xn + 18hxx2n

+ 20h3s1s3x− 3hs2x
3
n − 5h2s1s2x

2
n + 16h2s2xxn + 15h3s1s2s3x− 8h3s23x

+ 8h3s22xn − 18x2x2n + 12xx3n − 6hx3n),
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βs1 = −((x− xn)(xn − x+ hs1)(xn − x+ hs2)(xn − x+ hs3))

(5040h4s1(s1 − s2)(s1 − s3)(s1 − 1))
(3h4s41 + 3x4

− 3h4s31s3 − 6h4s31 − 3h4s21s
2
2 + 5h4s21s2s3 + 8h4s21s2 − 3h4s21s

2
3 + 8h4s21s3

+ 5h4s1s
2
2s3 + 8h4s1s

2
2 + 5h4s1s2s

2
3 − 20h4s1s2s3 − 3h4s1s

3
3 + 8h4s1s

2
3 − 3h4s42

+ 5h4s32s3 + 8h4s32 + 5h4s22s
2
3 − 20h4s22s3 + 5h4s2s

3
3 − 20h4s2s

2
3 − 3h4s43

+ 3h3s31x− 3h3s31xn − 3h3s21s2x+ 3h3s21s2xn − 3h3s21s3x+ 3h3s21s3xn

+ 6h3s21xn − 3h3s1s
2
2x+ 3h3s1s

2
2xn + 5h3s1s2s3x− 5h3s1s2s3xn + 8h3s1s2x

− 3h3s1s
2
3x+ 3h3s1s

2
3xn + 8h3s1s3x− 8h3s1s3xn − 3h3s32x+ 3h3s32xn + 6hx3n

+ 5h3s2s
2
3x− 5h3s2s

2
3xn − 20h3s2s3x+ 20h3s2s3xn − 3h3s33x+ 3h3s33xn

− 8h3s23xn + 3h2s21x
2 − 6h2s21xxn + 3h2s21x

2
n − 3h2s1s3x

2 + 8h2s2x
2
n

+ 6h2s1s3xxn − 3h2s1s3x
2
n − 6h2s1x

2 + 12h2s1xxn − 6h2s1x
2
n − 3h2s22x

2

− 3h2s22x
2
n + 5h2s2s3x

2 − 10h2s2s3xxn + 5h2s2s3x
2
n + 8h2s2x

2 − 16h2s2xxn

+ 6h2s23xxn − 3h2s23x
2
n + 8h2s3x

2 − 16h2s3xxn + 8h2s3x
2
n + 3hs1x

3 − 9hs1x
2xn

− 3hs2x
3 + 9hs2x

2xn − 9hs2xx
2
n + 3hs2x

3
n − 3hs3x

3 + 9hs3x
2xn

+ 9hs1xx
2
n − 6hx3 − 3h2s23x

2 − 3h2s1s2x
2 + 6h2s1s2xxn − 3h2s1s2x

2
n − 3hs1x

3
n

− 5h3s22s3xn + 8h3s22x− 8h3s22xn + 18hx2xn − 18hxx2n − 12x3xn + 18x2x2n

− 3h4s31s2 − 3h4s1s
3
2 + 5h3s22s3x+ 8h3s23x+ 6h2s22xxn + 3hs3x

3
n + 8h4s33

− 6h3s21x− 12xx3n − 8h3s1s2xn − 9hs3xx
2
n + 3x4n),

βs2 =
(x−xn)(xn−x+hs1)(xn−x+hs2)(xn−x+hs3)

(5040h4s2(s1−s2)(s2−s3)(s2−1))
(3h2s1s2x

2
n+20h4s21s3

− 5h4s31s3−8h4s31+3h4s21s
2
2−5h4s21s2s3−8h4s21s2−5h4s21s

2
3+3h4s43+3h4s31s2

+ 3h4s1s
3
2−5h4s1s

2
2s3−8h4s1s

2
2−5h4s1s2s

2
3+20h4s1s2s3−5h4s1s

3
3−18hx2xn

+ 20h4s1s
2
3−3h4s42+3h4s32s3+6h4s32+3h4s22s

2
3−8h4s22s3+3h4s2s

3
3+18hxx2n

− 8h4s2s
2
3−8h4s33+3h3s31x−3h3s31xn+3h3s21s2x−3h3s21s2xn−3x4+12x3xn

+ 5h3s21s3xn−8h3s21x+8h3s21xn+3h3s1s
2
2x−3h3s1s

2
2xn−5h3s1s2s3x−18x2x2n

+ 5h3s1s2s3xn−8h3s1s2x+8h3s1s2xn−5h3s1s
2
3x+5h3s1s

2
3xn−6hx3n+12xx3n

− 20h3s1s3xn−3h3s32x+3h3s32xn+3h3s22s3x−3h3s22s3xn+6h3s22x−8h2s3x
2

+ 3h3s2s
2
3x−3h3s2s

2
3xn−8h3s2s3x+8h3s2s3xn+3h3s33x−3h3s33xn−8h2s1x

2
n

+ 8h3s23xn+3h2s21x
2−6h2s21xxn+3h2s21x

2
n+3h2s1s2x

2−6h2s1s2xxn+3h4s41

− 5h2s1s3x
2+10h2s1s3xxn−5h2s1s3x

2
n−8h2s1x

2+16h2s1xxn−3x4n−8h3s23x

− 3h2s22x
2+6h2s22xxn−3h2s22x

2
n+3h2s2s3x

2−6h2s2s3xxn+3h2s2s3x
2
n−6h3s22xn

+ 6h2s2x
2−12h2s2xxn+6h2s2x

2
n+3h2s23x

2−6h2s23xxn+3h2s23x
2
n+6hx3+3hs3x

3

− 8h2s3x
2
n+3hs1x

3−9hs1x
2xn+9hs1xx

2
n−3hs1x

3
n−3hs2x

3−3hs3x
3
n+3hs2x

3
n

+ 20h3s1s3x−5h3s21s3x+9hs2x
2xn−9hs2xx

2
n−9hs3x

2xn+9hs3xx
2
n+16h2s3xxn),
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βs3=
−(x−xn)(xn−x+hs1)(xn−x+hs2)(xn−x+hs3))

(5040h4s3(s1−s3)(s2−s3)(s3−1))
(3h4s41−5h4s31s2

+ 3h4s31s3 − 8h4s31 − 5h4s21s
2
2 − 5h4s21s2s3 + 20h4s21s2 + 3h4s21s

2
3 − 8h4s21s3

− 5h4s1s
3
2 − 5h4s1s

2
2s3 + 20h4s1s

2
2 − 5h4s1s2s

2
3 + 20h4s1s2s3 + 3h4s1s

3
3 − 6hx3n

− 8h4s1s
2
3 + 3h4s42 + 3h4s32s3 − 8h4s32 + 3h4s22s

2
3 − 8h4s22s3 + 3h4s2s

3
3 − 8h4s2s

2
3

− 3h4s43 + 6h4s33 + 3h3s31x− 3h3s31xn − 5h3s21s2x+ 5h3s21s2xn + 3h3s21s3x− 3x4

− 3h3s21s3xn − 8h3s21x+ 8h3s21xn − 5h3s1s
2
2x+ 5h3s1s

2
2xn − 5h3s1s2s3x− 3x4n

+ 5h3s1s2s3xn + 20h3s1s2x− 20h3s1s2xn + 3h3s1s
2
3x− 3h3s1s

2
3xn − 8h3s1s3x

+ 8h3s1s3xn + 3h3s32x− 3h3s32xn + 3h3s22s3x− 3h3s22s3xn − 8h3s22x+ 8h3s22xn

+ 3h3s2s
2
3x− 3h3s2s

2
3xn − 8h3s2s3x+ 8h3s2s3xn − 3h3s33x+ 3h3s33xn + 6h3s23x

− 6h3s23xn + 3h2s21x
2 − 6h2s21xxn + 3h2s21x

2
n − 5h2s1s2x

2 + 10h2s1s2xxn + 6hx3

− 5h2s1s2x
2
n + 3h2s1s3x

2 − 6h2s1s3xxn + 3h2s1s3x
2
n − 8h2s1x

2 + 16h2s1xxn

− 8h2s1x
2
n + 3h2s22x

2 − 6h2s22xxn + 3h2s22x
2
n + 3h2s2s3x

2 − 6h2s2s3xxn + 12xx3n

+ 3h2s2s3x
2
n − 8h2s2x

2 + 16h2s2xxn − 8h2s2x
2
n − 3h2s23x

2 + 6h2s23xxn − 3h2s23x
2
n

+ 6h2s3x
2 − 12h2s3xxn + 6h2s3x

2
n + 3hs1x

3 − 9hs1x
2xn + 9hs1xx

2
n − 3hs1x

3
n

+ 3hs2x
3 − 9hs2x

2xn + 9hs2xx
2
n − 3hs2x

3
n − 3hs3x

3 + 9hs3x
2xn − 9hs3xx

2
n

+ 3hs3x
3
n − 18hx2xn + 18hxx2n + 12x3xn − 18x2x2n),

β1 = −(x− xn)(xn − x+ hs3)(xn − x+ hs1)(xn − x+ hs2)

(5040h4(s3 − 1)(s2 − 1)(s1 − 1))
(3h4s41 − 5h4s31s2

− 5h4s31s3 − 5h4s21s
2
2 + 15h4s21s2s3 − 5h4s21s

2
3 − 5h4s1s

3
2 + 15h4s1s

2
2s3 − 3hs3x

3
n

− 5h4s1s
3
3 + 3h4s42 − 5h4s32s3 − 5h4s22s

2
3 − 5h4s2s

3
3 + 3h4s43 + 3h3s31x− 3h3s31xn

− 5h3s21s2x+ 5h3s21s2xn − 5h3s21s3x+ 5h3s21s3xn − 5h3s1s
2
2x+ 5h3s1s

2
2xn − 3x4n

+ 15h3s1s2s3x− 15h3s1s2s3xn − 5h3s1s
2
3x+ 5h3s1s

2
3xn + 3h3s32x− 3h3s32xn

+ 5h3s22s3xn − 5h3s2s
2
3x+ 5h3s2s

2
3xn + 3h3s33x− 3h3s33xn + 3h2s21x

2 − 6h2s21xxn

+ 3h2s21x
2
n − 5h2s1s2x

2 + 10h2s1s2xxn − 5h2s1s2x
2
n − 5h2s1s3x

2 + 10h2s1s3xxn

+ 3h2s22x
2−6h2s22xxn+3h2s22x

2
n−5h2s2s3x

2+10h2s2s3xxn−5h2s2s3x
2
n

− 6h2s23xxn+3h2s23x
2
n+3hs1x

3−9hs1x
2xn+9hs1xx

2
n−3hs1x

3
n+3hs2x

3

− 9hs2x
2xn+3h2s23x

2−5h2s1s3x
2
n−5h3s22s3x+9hs2xx

2
n−3hs2x

3
n+3hs3x

3

+15h4s1s2s
2
3−9hs3x

2xn+9hs3xx
2
n−3x4+12x3xn−18x2x2n+12xx3n).

Equation (4) is evaluated at the non-interpolating point xn+1 while its
derivatives are evaluated at all points in the selected interval to produce the
discreet schemes. Discreet schemes and its derivatives at xn are combined on a
block of the form

A[3]4Y [3]4
m =

4∑
i=1

B
[3]4
i R

[3]4
i + h4[D[3]4R

[3]4
5 + E[3]4R

[3]4
6 ],(5)
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where

A[3]4 =


−(s2−1)(s3−1)

s1(s1−s2)(s1−s3)
(s1−1)(s3−1)

s2(s1−s2)(s2−s3)
−(s1−1)(s2−1)

s3(s1−s3)(s2−s3)
1

−(s2s3)
hs1(s1−s2)(s1−s3)

(s1s3)
(hs2(s1−s2)(s2−s3))

−(s1s2)
hs3(s1−s3)(s2−s3)

0
(2s2+2s3)

h2s1(s1−s2)(s1−s3)
−(2s1+2s3)

h2s2(s1−s2)(s2−s3)
(2s1+2s2)

h2s3(s1−s3)(s2−s3)
0

−6
h3s1(s1−s2)(s1−s3)

6
h3s2(s1−s2)(s2−s3)

−6
h3s3(s1−s3)(s2−s3)

0

 ,

Y [3]4
m =


yn+s1

yn+s2

yn+s3

yn+1

 , B
[3]4
1 =


0 0 0 ((s1−1)(s2−1)(s3−1))

(s1s2s3)

0 0 0 −(s1s2+s1s3+s2s3)
(hs1s2s3)

0 0 0 (2(s1+s2+s3))
(h2s1s2s3)

0 0 0 −6
(h3s1s2s3)

 , R
[3]4
1 =


yn−3

yn−2

yn−1

yn

 ,

B
[3]4
2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 0 0 0

 , R
[3]4
2 =


y′n−3

y′n−2

y′n−1

y′n

 , B
[3]4
3 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 ,

R
[3]4
2 =


y′′n−3

y′′n−2

y′′n−1

y′′n

 , B
[3]4
4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 , R
[3]4
3 =


y′′′n−3

y′′′n−2

y′′′n−1

y′′′n

 R
[3]4
5 =


fn−3

fn−2

fn−1

fn

 ,

R[3]4 =


fn+s1

fn+s2

fn+s3

fn+1

 , D[3]4 =


0 0 0 D

[3]4
14

0 0 0 D
[3]4
24

0 0 0 D
[3]4
34

0 0 0 D
[3]4
44

 ,

E[3]4 =


E

[3]4
11 E

[3]4
12 E

[3]4
13 E

[3]4
14

E
[3]4
21 E

[3]4
22 E

[3]4
23 E

[3]4
24

E
[3]4
31 E

[3]4
32 E

[3]4
33 E

[3]4
34

E
[3]4
41 E

[3]4
42 E

[3]4
43 E

[3]4
44

 .

The elements of D[3]4 and E[3]4 are given in Appendix A.
Multiplying equation (5) by inverse of A[3]4 to have a hybrid block method

of the form

I [3]4Y [3]4
m =

4∑
i=1

B̄
[3]4
i R

[3]4
i + h4[D̄[3]4R

[3]2
5 + Ē[3]2R

[3]4
6 ],(6)

where

I [3]4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , B̄
[3]4
1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , B̄
[3]4
2 =


0 0 0 s1h
0 0 0 s2h
0 0 0 s3h
0 0 0 h

 ,
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B̄
[3]4
3 =


0 0 0

s21
2 h

0 0 0
s22
2 h

0 0 0
s23
2 h

0 0 0 1
2h

 , B̄
[3]4
4 =


0 0 0

s31
6 h

0 0 0
s32
6 h

0 0 0
s33
6 h

0 0 0 1
6h

 , D̄[3]4 =


0 0 0 D̄

[3]4
14

0 0 0 D̄
[3]4
24

0 0 0 D̄
[3]4
34

0 0 0 D̄
[3]4
44



Ē[3]4 =


Ē

[3]4
11 Ē

[3]4
12 Ē

[3]4
13 Ē

[3]4
14

Ē
[3]4
21 Ē

[3]4
22 Ē

[3]4
23 Ē

[3]4
24

Ē
[3]4
31 Ē

[3]4
32 Ē

[3]4
33 Ē

[3]4
34

Ē
[3]4
41 Ē

[3]4
42 Ē

[3]4
43 Ē

[3]4
44


and the non-zero terms of D̄[3]4 and Ē[3]4 are given by

D̄
[3]4
14 = −(s41(28s1s2 + 28s1s3 − 168s2s3 − 8s21s2 − 8s21s3 − 8s21 + 3s31 + 28s1s2s3))

(5040s2s3)
,

D̄
[3]4
14 =

(s42(168s1s3 − 28s1s2 − 28s2s3 + 8s1s
2
2 + 8s22s3 + 8s22 − 3s32 − 28s1s2s3))

(5040s1s3)
,

D̄
[3]4
14 = −(s43(28s1s3 − 168s1s2 + 28s2s3 − 8s1s

2
3 − 8s2s

2
3 − 8s23 + 3s33 + 28s1s2s3))

(5040s1s2)
,

D̄
[3]4
14 =

((8s1 + 8s2 + 8s3 − 28s1s2 − 28s1s3 − 28s2s3 + 168s1s2s3 − 3))

(5040s1s2s3)
,

Ē
[3]4
11 =

(s41(14s1s2 + 14s1s3 − 42s2s3 − 6s21s2 − 6s21s3 − 6s21 + 3s31 + 14s1s2s3))

(5040(s1 − 1)(s1 − s3)(s1 − s2))
,

Ē
[3]4
12 =

(s61(28s3 − 8s1 − 8s1s3 + 3s21))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
,

Ē
[3]4
13 = − (s61(28s2 − 8s1 − 8s1s2 + 3s21))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
,

Ē
[3]4
14 =

(s61(28s2s3 − 8s1s3 − 8s1s2 + 3s21))

(5040(s3 − 1)(s2 − 1)(s1 − 1))
,

Ē
[3]4
21 = − (s62(28s3 − 8s2 − 8s2s3 + 3s22))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
,

Ē
[3]4
22 =

(s42(42s1s3 − 14s1s2 − 14s2s3 + 6s1s
2
2 + 6s22s3 + 6s22 − 3s32 − 14s1s2s3))

(5040(s2 − 1)(s2 − s3)(s1 − s2))
,

Ē
[3]4
23 =

(s62(8s2 − 28s1 + 8s1s2 − 3s22))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
,

Ē
[3]4
24 = −(s62(8s1s2 − 28s1s3 + 8s2s3 − 3s22))

(5040(s3 − 1)(s1 − 1)(s2 − 1))
,

Ē
[3]4
31 =

(s63(8s3 − 28s2 + 8s2s3 − 3s23))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
,

Ē
[3]4
32 = − (h4s63(8s3 − 28s1 + 8s1s3 − 3s23))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
,
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Ē
[3]4
33 =

(s43(14s1s3 − 42s1s2 + 14s2s3 − 6s1s
2
3 − 6s2s

2
3 − 6s23 + 3s33 + 14s1s2s3))

(5040(s3 − 1)(s2 − s3)(s1 − s3))
,

Ē
[3]4
34 =

(s63(28s1s2 − 8s1s3 − 8s2s3 + 3s23))

(5040(s2 − 1)(s1 − 1)(s3 − 1))
,

Ē
[3]4
41 = − ((28s2s3 − 8s3 − 8s2 + 3))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
,

Ē
[3]4
42 =

((28s1s3 − 8s3 − 8s1 + 3))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
,

Ē
[3]4
43 = − ((28s1s2 − 8s2 − 8s1 + 3))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
,

Ē
[3]4
44 =

((6s1 + 6s2 + 6s3 − 14s1s2 − 14s1s3 − 14s2s3 + 42s1s2s3 − 3))

(5040(s3 − 1)(s2 − 1)(s1 − 1))
.

Equation (5) can also be written as

yn+s1 = yn + s1hy
′
n +

s21h
2

2
y′′n +

s31h
3

6
y′′′n

−

(h4s41(28s1s2 + 28s1s3 − 168s2s3 − 8s21s2 − 8s21s3
− 8s21 + 3s31 + 28s1s2s3))

(5040s2s3)
fn

+

(h4s41(14s1s2 + 14s1s3 − 42s2s3 − 6s21s2 − 6s21s3 − 6s21
+ 3s31 + 14s1s2s3))

(5040(s1 − 1)(s1 − s3)(s1 − s2))
fn+s1(7)

+
(h4s61(28s3 − 8s1 − 8s1s3 + 3s21))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
fn+s2

− (h4s61(28s2 − 8s1 − 8s1s2 + 3s21))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
fn+s3

+
(h4s61(28s2s3 − 8s1s3 − 8s1s2 + 3s21))

(5040(s3 − 1)(s2 − 1)(s1 − 1))
fn+1,

yn+s2 = yn + s2hy
′
n +

s22h
2

2
y′′n +

s32h
3

6
y′′′n

+

(h4s42(168s1s3 − 28s1s2 − 28s2s3 + 8s1s
2
2 + 8s22s3

+ 8s22 − 3s32 − 28s1s2s3))

(5040s1s3)
fn

− (h4s62(28s3 − 8s2 − 8s2s3 + 3s22))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
fn+s1

+

(h4s42(42s1s3 − 14s1s2 − 14s2s3 + 6s1s
2
2 + 6s22s3

+ 6s22 − 3s32 − 14s1s2s3))

(5040(s2 − 1)(s2 − s3)(s1 − s2))
fn+s2

+
(h4s62(8s2 − 28s1 + 8s1s2 − 3s22))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
fn+s3
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− (h4s62(8s1s2 − 28s1s3 + 8s2s3 − 3s22))

(5040(s3 − 1)(s1 − 1)(s2 − 1))
fn+1,(8)

yn+s3 = yn − s3hy
′
n − s23h

2

2
y′′n − s33h

3

6
y′′′n

−

(h4s43(28s1s3 − 168s1s2 + 28s2s3 − 8s1s
2
3 − 8s2s

2
3

− 8s23 + 3s33 + 28s1s2s3))

(5040s1s2)
fn

+
(h4s63(8s3 − 28s2 + 8s2s3 − 3s23))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
fn+s1

− (h4s63(8s3 − 28s1 + 8s1s3 − 3s23))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
fn+s2

+

(h4s43(14s1s3 − 42s1s2 + 14s2s3 − 6s1s
2
3 − 6s2s

2
3 − 6s23

+ 3s33 + 14s1s2s3))

(5040(s3 − 1)(s2 − s3)(s1 − s3))
fn+s3

+
(h4s63(28s1s2 − 8s1s3 − 8s2s3 + 3s23))

(5040(s2 − 1)(s1 − 1)(s3 − 1))
fn+1,(9)

yn+1 = yn + hy′n +
h2

2
y′′n +

h3

6
y′′′n

+
(h4(8s1 + 8s2 + 8s3 − 28s1s2 − 28s1s3 − 28s2s3 + 168s1s2s3 − 3))

(5040s1s2s3)
fn

− (h4(28s2s3 − 8s3 − 8s2 + 3))

(5040s1(s1 − 1)(s1 − s3)(s1 − s2))
fn+s1

+
(h4(28s1s3 − 8s3 − 8s1 + 3))

(5040s2(s2 − 1)(s2 − s3)(s1 − s2))
fn+s2

− (h4(28s1s2 − 8s2 − 8s1 + 3))

(5040s3(s3 − 1)(s2 − s3)(s1 − s3))
fn+s3

+
(h4(6s1 + 6s2 + 6s3 − 14s1s2 − 14s1s3 − 14s2s3 + 42s1s2s3 − 3))

(5040(s3 − 1)(s2 − 1)(s1 − 1))
fn+1(10)
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3. Analysis of the method

3.1 Order of method

Applying the process of finding the order of a linear multistep method proposed
by lambert (1973). the order of the method are found by expanding y and
f -function in Taylor series

∑∞
j=0

(s1)jhj

j! yjn − yn − s1hy
′
n − s21h

2

2 y′′n − s31h
3

6 y′′′n

+
(h4s41(28s1s2+28s1s3−168s2s3−8s21s2−8s21s3−8s21+3s31+28s1s2s3))

(5040s2s3)
yivn

− (s41(14s1s2+14s1s3−42s2s3−6s21s2−6s21s3−6s21+3s31+14s1s2s3))
(5040(s1−1)(s1−s3)(s1−s2))

∑∞
j=0

(s1)jhj+4

j! yj+4
n

− (s61(28s3−8s1−8s1s3+3s21))
(5040s2(s2−1)(s2−s3)(s1−s2))

∑∞
j=0

(s2)jhj+4

j! yj+4
n

+
(s61(28s2−8s1−8s1s2+3s21))

(5040s3(s3−1)(s2−s3)(s1−s3))

∑∞
j=0

(s3)jhj+4

j! yj+4
n

− (s61(28s2s3−8s1s3−8s1s2+3s21))
(5040(s3−1)(s2−1)(s1−1))

∑∞
j=0

hj+4

j! y
j+4
n∑∞

j=0
(s2)jhj

j! yjn − yn − s2hy
′
n − s22h

2

2 y′′n − s32h
3

6 y′′′n

− (h4s42(168s1s3−28s1s2−28s2s3+8s1s22+8s22s3+8s22−3s32−28s1s2s3))
(5040s1s3)

yivn

+
(s62(28s3−8s2−8s2s3+3s22))

(5040s1(s1−1)(s1−s3)(s1−s2))

∑∞
j=0

(s1)jhj+4

j! yj+4
n

− (s42(42s1s3−14s1s2−14s2s3+6s1s22+6s22s3+6s22−3s32−14s1s2s3))
(5040(s2−1)(s2−s3)(s1−s2))

∑∞
j=0

(s2)jhj+4

j! yj+4
n

− (s62(8s2−28s1+8s1s2−3s22))
(5040s3(s3−1)(s2−s3)(s1−s3))

∑∞
j=0

(s3)jhj+4

j! yj+4
n

+
(s62(8s1s2−28s1s3+8s2s3−3s22))

(5040(s3−1)(s1−1)(s2−1))

∑∞
j=0

hj+4

j! y
j+4
n∑∞

j=0
(s3)jhj

j! yjn − yn − s3hy
′
n − s23h

2

2 y′′n − s33h
3

6 y′′′n

+
(h4s43(28s1s3−168s1s2+28s2s3−8s1s23−8s2s23−8s23+3s33+28s1s2s3))

(5040s1s2)
yivn

− (s63(8s3−28s2+8s2s3−3s23))
(5040s1(s1−1)(s1−s3)(s1−s2))

∑∞
j=0

(s1)jhj+4

j! yj+4
n

+
(h4s63(8s3−28s1+8s1s3−3s23))
(5040s2(s2−1)(s2−s3)(s1−s2))

∑∞
j=0

(s2)jhj+4

j! yj+4
n

− (s43(14s1s3−42s1s2+14s2s3−6s1s23−6s2s23−6s23+3s33+14s1s2s3))
(5040(s3−1)(s2−s3)(s1−s3))

∑∞
j=0

(s3)jhj+4

j! yj+4
n

− (s63(28s1s2−8s1s3−8s2s3+3s23))
(5040(s2−1)(s1−1)(s3−1))

∑∞
j=0

hj+4

j! y
j+4
n∑∞

j=0
hj

j! y
j
n − yn − hy′n − h2

2 y
′′
n − h3

6 y
′′′
n

− (h4(8s1+8s2+8s3−28s1s2−28s1s3−28s2s3+168s1s2s3−3))
(5040s1s2s3)

yivn

+ ((28s2s3−8s3−8s2+3))
(5040s1(s1−1)(s1−s3)(s1−s2))

∑∞
j=0

(s1)jhj+4

j! yj+4
n

− ((28s1s3−8s3−8s1+3))
(5040s2(s2−1)(s2−s3)(s1−s2))

∑∞
j=0

(s2)jhj+4

j! yj+4
n

+ ((28s1s2−8s2−8s1+3))
(5040s3(s3−1)(s2−s3)(s1−s3))

∑∞
j=0

(s3)jhj+4

j! yj+4
n

− ((6s1+6s2+6s3−14s1s2−14s1s3−14s2s3+42s1s2s3−3))
(5040(s3−1)(s2−1)(s1−1))

∑∞
j=0

hj+4

j! y
j+4
n



=



0

0

0

0



.

Collecting like terms (C̄i
′s ) to h gives C̄0 = C̄1 = C̄2 = · · · = C̄8 = 0, and

C̄5+4 ̸= 0. Hence, the new method is of order[5, 5, 5, 5]T with error constant
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C̄9 =



−(s61(24s1s2 + 24s1s3 − 84s2s3 − 9s21s2 − 9s21s3 − 9s21 + 4s31 + 24s1s2s3))

1814400
(s62(84s1s3 − 24s1s2 − 24s2s3 + 9s1s

2
2 + 9s22s3 + 9s22 − 4s32 − 24s1s2s3))

1814400

−(s63(24s1s3 − 84s1s2 + 24s2s3 − 9s1s
2
3 − 9s2s

2
3 − 9s23 + 4s33 + 24s1s2s3))

1814400
(9s1 + 9s2 + 9s3 − 24s1s2 − 24s1s3 − 24s2s3 + 84s1s2s3 − 4)

1814400


which is true for all

s1, s2, s3 ∈ (0, 1) \ {s2 =
9s21s3 + 9s21 − 4s31 − 24s1s3
24s1 − 84s3 − 9s21 + 24s1s3

}

∪ {s1 =
24s2s3 − 9s22s3 − 9s22 + 4s32
84s3 − 24s2 + 9s22 − 24s2s3

}

∪ {s2 =
−24s1s3 + 9s1s

2
3 + 9s23 − 4s33

−84s2 + 24s3 − 9s23 + 24s1s3
}

∪ {s1 =
−9s2 − 9s3 + 24s2s3 + 4

9− 24s2 − 24s3 + 84s2s3
}.

3.2 Zero stability

In finding the zero stability of the method, definition in Fatunla (1991) is used.
This is

Π(r) = |r I − B̄
[3]4
1 |

=

∣∣∣∣∣∣∣∣z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


∣∣∣∣∣∣∣∣

= r3(r − 1),

which gives r = 0, 0, 0, 1. According to (Fatunla, 1991), (Lambert, 1973) and
(Henrici, 1962) our method is zero stable, consistent and then convergent.

3.3 Region of absolute stability

In this subsection, the locus boundary method is used to confirm the absolute
stability interval. By substituting test equation y′′′′ = −λ4y in (??) where
h̄ = λ4h4 and λ = df

dy . let r = cos θ − i sin θ and considering real part yields the
equation of absolute stability region.

h̄(θ, h) =
60963840000(cos(θ)− 1)

(s31s
3
2s

3
3(20s1 + 20s2 + 20s3 − 10s1s2 − 10s1s3 − 10s2s3 + 4s1s2s3

+ s1s2s3 cos(θ)− 35))

.
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4. Numerical experimental

In this part, the following linear and non-linear IVPs available in the previous
literatures were also solved to specific off step points xn+ 1

4
, xn+ 2

4
and xn+ 3

4

in order to compare the performance of the new method with existing ones.
Computed solution (COP) , exact solution (EXT) and absolute errors (ERR)
were carried out using flexible Matlab code. This is clear in Table 1 and Table 2.

Problem 1:

yiv−(y′)2+yy′′+4x2−ex(1−4x+x2) = 0, y(0) = 1, y′(0) = 1, y′′(0) = 1, h =
1

100
.

Exact solution: y(x) = x2 + ex.

Problem 2:

yiv − x = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0, h =
1

320
.

Exact solution: y(x) = x5

120 + x.

Table 1: Comparison of the new method with (Olabode et al,2015) for
solving problem 1, where h = 1

320

x New method, P = 5 Olabode and Omole (2015), P = 6
EXT 1.0031396535277390 1.003139653527739149

0.0031250 CPS 1.0031396535277390 1.003139653526590265
ERR 0.000000e+00 1.148884e−12

EXT 1.0063086345037620 1.006308634503762010
0.0062500 CPS 1.0063086345037617 1.006308634484910542

ERR 2.220446e−16 1.8851468e−11

EXT 1.0095069735890709 1.009506973589071086
0.0093750 CPS 1.0095069735890709 1.009506973491318106

ERR 0.000000e+00 9.7752980e−11

EXT 1.0127347015406345 1.012734701540634377
0.0125000 CPS 1.0127347015406303 1.0127347015406341

ERR 4.440892e−16 3.15759129e−10

EXT 1.0159918492116857 1.015991849211685747
0.0156250 CPS 1.0159918492116851 1.015991848424806972

Error 6.661338e−16 1.15463e−10
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Table 2: Comparison of the new method with (Kayode et al, 2014) for solving
problem 3, where h = 1

10

x New method, P = 5 (kyode et al,2014), P = 8
EXT 0.100000083333333340 0.100000083333334000

0.1 CPS 0.100000083333333340 0.10000008333351720
ERR 0.000000e+00 1.832e−13

EXT 0.200002666666666690 0.200002666666666900
0.2 CPS 0.200002666666666660 0.20000266667150250

ERR 2.775558e−17 4.835e−12

EXT 0.300020250000000040 0.300020250000000004
0.3 CPS 0.300020249999999990 0.30002025000721480

ERR 5.551115e−17 7.214e−12

EXT 0.400085333333333350 0.400008533333333333
0.4 CPS 0.400085333333333350 0.40000853340160457

ERR 0.000000e+00 6.832e−11

EXT 0.500260416666666650 0.500260416666666665
0.5 CPS 0.500260416666666650 0.50026041674083458

ERR 0.000000e+00 7.416e−11

5. Conclusion

A one step hybrid block method with three generalized off step points for solving
linear and no-linear fourth order initial value problem has been developed in this
article. The numerical properties of the new method are also established. The
method competes better than its counterparts in terms of accuracy when solving
fourth order initial value problems.

Appendix A:

D
[3]4
14 =

−(s1 − 1)(s2 − 1)(s3 − 1)

(5040s1s2s3)
(5s31s2 + 5s31s3 + 5s1 − 15s1s

2
2s3 + 5s23

+ 5s3 − 3s41 + 5s31 + 5s21s
2
2 − 15s21s2s3 − 15s21s2 + 5s21s

2
3 − 15s21s3

+ 5s21 + 5s1s
3
2 − 3s42 + 5s32 − 15s1s

2
2 − 15s1s2s

2
3 − 15s1s2

+ 5s1s
3
3 − 15s1s

2
3 − 15s1s3 + 5s33 − 3s43 + 5s2

+ 105s1s2s3 + 5s32s3 + 5s22s
2
3 − 15s22s3

+ 5s22 + 5s2s
3
3 − 15s2s

2
3 − 15s2s3 − 3),

D
[3]4
24 =

1

5040h
(3s41 − 5s31s2 + 15s1s2s

2
3 − 120s1s2s3 − 5s1s

3
3 + 20s1s

2
3 + 3s42

− 5s32s3 − 8s31 − 5s21s
2
2 + 15s21s2s3 + 20s21s2 − 5s21s

2
3 + 20s21s3

− 5s1s
3
2 + 15s1s

2
2s3 + 20s1s

2
2 − 8s32 − 5s31s3

− 5s22s
2
3 + 3s43 + 20s22s3 − 5s2s

3
3 + 20s2s

2
3 − 8s33),
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D
[3]4
34 =

−1

(2520h2s1s2s3)
(3s51s2 + 3s51s3 − 5s41s

2
2 − 10s41s2s3 − 8s41s2

− 5s41s
2
3 + 20s31s

2
3 − 8s41s3 − 5s31s

3
2 + 10s31s

2
2s3

+ 20s31s
2
2 + 10s31s2s

2
3 + 40s31s2s3 − 5s31s

3
3 − 5s21s

4
2

− 5s22s
4
3 + 10s21s2s

3
3 − 100s21s2s

2
3 − 5s21s

4
3 + 20s21s

3
3

+ 3s1s
5
2 − 10s1s

4
2s3 − 8s1s

4
2 + 10s21s

3
2s3

+ 10s1s
3
2s

2
3 + 40s1s

3
2s3 + 10s1s

2
2s

3
3 − 100s1s

2
2s

2
3 − 10s1s2s

4
3

+ 40s1s2s
3
3 + 20s21s

3
2 + 3s1s

5
3 − 8s1s

4
3 + 3s52s3 − 5s42s

2
3

− 8s42s3 − 5s32s
3
3 + 20s32s

2
3 + 30s21s

2
2s

2
3 − 100s21s

2
2s3

+ 20s22s
3
3 + 3s2s

5
3 − 8s2s

4
3),

D
[3]4
44 =

1

(840h3s1s2s3)
(3s51 − 5s41s2 − 5s41s3 − 8s41 − 5s31s

2
2

+ 15s31s2s3 + 20s22s
2
3 + 20s31s2 − 5s31s

2
3 + 20s31s3

− 5s21s
3
2 + 15s21s

2
2s3 + 20s21s

2
2 + 15s21s2s

2
3 − 120s21s2s3

− 5s21s
3
3 + 20s21s

2
3 − 5s1s

4
2 + 15s1s

3
2s3 + 20s1s

3
2 + 15s1s

2
2s

2
3

− 120s1s
2
2s3 + 15s1s2s

3
3 − 5s2s

4
3 − 120s1s2s

2
3 − 5s1s

4
3

+ 20s1s
3
3 − 5s42s3 − 8s42 − 5s32s

2
3 + 20s32s3 − 5s22s

3
3

+ 20s2s
3
3 + 3s53 − 8s43 + 3s52)

E
[3]4
11 =

−(s2 − 1)(s3 − 1)

5040s1(s1 − s2)(s1 − s3)
(3s41 − 3s31s2 − 3s31s3 − 3s31

− 3s21s
2
2 + 5s21s2s3 + 5s21s2 − 3s21s

2
3 + 5s21s3 − 3s21 − 3s1s

3
2 + 5s1s

2
2s3

+ 5s1s
2
2 + 5s1s2s

2
3 − 15s1s2s3 − 3s1s

3
3 + 5s1s

2
3

+ 5s1s3 − 3s1 − 3s42 + 5s32s3 + 5s32 + 5s22s
2
3 − 15s22s3 + 5s22 + 5s22

+ 5s1s2 + 5s2s
3
3 − 15s2s

2
3 − 15s2s3 + 5s2 − 3s43 + 5s33 + 5s23 + 5s3 − 3),

E
[3]4
12 =

(s1 − 1)(s3 − 1)

5040s2(s1 − s2)(s2 − s3)
(5s31 − 3s41 − 3s31s2

+ 5s31s3 − 3s21s
2
2 + 5s21s2s3 + 5s21s

2
3 − 15s21s3 + 5s21 − 3s1s

3
2 + 5s1s

2
2s3

+ 5s1s
2
2 + 5s1s2s

2
3 − 15s1s2s3 + 5s1s2 + 5s1s

3
3 − 15s1s

2
3 − 15s1s3

+ 5s1 + 3s42 − 3s32s3 − 3s32 − 3s22s
2
3 + 5s22s3 − 3s22 + 5s3

+ 5s21s2 − 3s2s
3
3 + 5s2s

2
3 + 5s2s3 − 3s2 − 3s43 + 5s33 + 5s23 − 3),

E
[3]4
13 = − (s1 − 1)(s2 − 1)

(5040s3(s1 − s3)(s2 − s3)
(−3s41 + 5s31s2 − 3s31s3 + 5s31

+ 5s21s
2
2 + 5s21s2s3 − 15s21s2 − 3s21s

2
3 + 5s21s3 + 5s21 + 5s1s

3
2

+ 5s1s
2
2s3 − 15s1s

2
2 + 5s1s2s

2
3 − 15s1s2s3 − 15s1s2 − 3s1s

3
3

+ 5s1s
2
3 + 5s1s3 + 5s1 − 3s42 − 3s32s3 + 5s32 − 3s22s

2
3 + 5s22s3 + 5s22

− 3s2s
3
3 + 5s2s

2
3 − 3s3 + 5s2s3 + 5s2 + 3s43 − 3s33 − 3s23 − 3),
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E
[3]4
14 =

1

5040
(−3s41 + 5s31s2 + 5s31s3 − 3s31 + 5s21s

2
2 − 15s21s2s3

+ 5s21s2 + 5s21s
2
3 − 3s21 + 5s1s

3
2 − 15s1s

2
2s3 + 5s1s

2
2

− 15s1s2s
2
3 − 15s1s2s3 + 5s1s2 + 5s1s

3
3 + 5s1s

2
3

+ 5s1s3 − 3s1 − 3s42 + 5s32s3 − 3s32 + 5s22s
2
3 + 5s22s3 − 3s22 + 5s2s

3
3 + 5s2s

2
3

+ 5s2s3 + 5s21s3 − 3s2 − 3s43 − 3s33 − 3s23 − 3s3 + 3)

E
[3]4
21 = − s2s3

5040h(s1 − s2)(s1 − s3)(s1 − 1)
(−3s31s2 − 3s31s3 − 3s21s

2
2

+ 8s33 + 5s22s
2
3 + 5s21s2s3 + 8s21s2 − 3s21s

2
3 + 8s21s3 − 3s1s

3
2

+ 5s1s
2
2s3 + 8s1s

2
2 + 5s1s2s

2
3 − 20s1s2s3

+ 3s41 − 6s31 − 3s1s
3
3 + 8s1s

2
3 − 3s42 + 5s32s3 + 8s32 − 20s22s3

+ 5s2s
3
3 − 20s2s

2
3 − 3s43),

E
[3]4
22 =

s1s3
5040h(s1 − s2)(s2 − s3)(s2 − 1)

(5s31s3 − 3s31s2 − 3s21s
2
2

− 3s43 + 5s21s2s3 + 8s31 + 8s21s2 + 5s21s
2
3 − 20s21s3 − 3s1s

3
2 + 5s1s

2
2s3

+ 8s1s
2
2 + 5s1s2s

2
3 − 20s1s2s3 − 3s41 + 5s1s

3
3 − 20s1s

2
3

+ 3s42 − 3s32s3 − 6s32 − 3s22s
2
3 + 8s22s3 − 3s2s

3
3 + 8s2s

2
3 + 8s33),

E
[3]4
23 = − s1s2

5040h(s1 − s3)(s2 − s3)(s3 − 1)
(3s43 + 5s31s2 − 3s31s3

+ 5s21s
2
2 + 5s21s2s3 − 20s21s2 − 3s21s

2
3 + 8s21s3 + 5s1s

3
2 + 5s1s

2
2s3

− 20s1s
2
2 + 5s1s2s

2
3 − 20s1s2s3 − 3s1s

3
3 + 8s31 + 8s1s

2
3

− 3s42 − 3s32s3 + 8s32 − 3s22s
2
3 + 8s22s3 − 3s2s

3
3 + 8s2s

2
3 − 6s33 − 3s41),

E
[3]4
24 =

s1s2s3
5040h(s1 − 1)(s2 − 1)(s3 − 1)

(5s22s
2
35s

3
2s3 − 3s41 + 5s31s2

+ 5s31s3 + 5s21s
2
2 − 15s21s2s3 + 5s21s

2
3 + 5s1s

3
2 − 15s1s

2
2s3 − 15s1s2s

2
3

+ 5s1s
3
3 − 3s42 + 5s2s

3
3 − 3s43),

E
[3]4
31 =

1

(2520h2s1(s1 − s2)(s1 − s3)(s1 − 1))
(3s51s2 + 3s51s3

− 3s41s
2
2 − 6s41s2s3 − 6s41s2 − 3s31s

3
2 + 2s31s

2
2s3 + 8s31s

2
2

+ 2s31s2s
2
3 + 16s31s2s3 − 3s31s

3
3 + 8s31s

2
3 − 3s41s

2
3

− 3s21s
4
2 + 2s21s

3
2s3 + 8s21s

3
2 + 10s21s

2
2s

2
3 − 12s21s

2
2s3

+ 2s21s2s
3
3 − 12s21s2s

2
3 − 6s41s3

− 3s21s
4
3 + 8s21s

3
3 − 3s1s

5
2 + 2s1s

4
2s3 + 8s1s

4
2 + 10s1s

3
2s

2
3

− 12s1s
3
2s3 + 5s42s

2
3 + 10s1s

2
2s

3
3 − 40s1s

2
2s

2
3 + 2s1s2s

4
3

− 12s1s2s
3
3 − 3s1s

5
3 + 8s1s

4
3 − 3s52s3 + 8s42s3

+ 5s32s
3
3 − 20s32s

2
3 + 5s22s

4
3 − 20s22s

3
3 − 3s2s

5
3 + 8s2s

4
3),
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E
[3]4
32 = − 1

(2520h2s2(s1 − s2)(s2 − s3)(s2 − 1))
(−3s51s2 − 3s51s3

− 3s41s
2
2 + 2s41s2s3 + 8s41s2 + 5s41s

2
3 + 8s41s3 − 3s31s

3
2 + 2s31s

2
2s3

+ 8s31s
2
2 + 10s31s2s

2
3 + 2s1s2s

4
3 + 3s1s

5
2 − 12s31s2s3

+ 5s31s
3
3 − 20s31s

2
3 − 3s21s

4
2 + 2s21s

3
2s3

+ 8s21s
3
2 − 3s1s

5
3 + 8s1s

4
3 + 3s52s3 + 10s21s

2
2s

2
3 − 12s21s

2
2s3

+ 10s21s2s
3
3 − 40s21s2s

2
3 + 5s21s

4
3 − 20s21s

3
3 − 3s42s

2
3 − 6s42s3

− 6s1s
4
2s3 − 6s1s

4
2 + 2s1s

3
2s

2
3 + 16s1s

3
2s3 + 2s1s

2
2s

3
3 − 12s1s

2
2s

2
3

− 12s1s2s
3
3 − 3s32s

3
3 + 8s32s

2
3 − 3s22s

4
3 + 8s22s

3
3

− 3s2s
5
3 + 8s2s

4
3),

E
[3]4
33 =

1

(2520h2s3(s1 − s3)(s2 − s3)(s3 − 1))
(−3s51s2 − 3s51s3

+ 5s41s
2
2 + 2s41s2s3 + 8s41s2 − 3s41s

2
3 + 8s41s3 + 5s31s

3
2 + 10s31s

2
2s3

− 20s31s
2
2 + 2s31s2s

2
3 + 3s1s

5
3 − 6s1s

4
3 − 12s31s2s3

− 3s31s
3
3 + 8s31s

2
3 + 5s21s

4
2 + 10s21s

3
2s3

− 20s21s
3
2 + 10s21s

2
2s

2
3 + 16s1s2s

3
3 + 8s42s3 + 2s21s2s

3
3

− 12s21s2s
2
3 − 3s21s

4
3 + 8s21s

3
3 − 3s1s

5
2

+ 2s1s
4
2s3 − 3s32s

3
3 + 8s32s

2
3 + 8s1s

4
2 + 2s1s

3
2s

2
3

− 12s1s
3
2s3 + 2s1s

2
2s

3
3 − 12s1s

2
2s

2
3 − 6s1s2s

4
3 − 3s52s3 − 40s21s

2
2s3

− 3s42s
2
3 − 3s22s

4
3 + 8s22s

3
3 + 3s2s

5
3 − 6s2s

4
3),

E
[3]4
34 =

1

h2(2520s1 − 2520)(s2 − 1)(s3 − 1)
(3s51s2 + 3s51s3 − 5s41s

2
2

+ 3s1s
5
3 + 3s52s3 − 10s41s2s3 − 5s41s

2
3 − 5s31s

3
2

+ 10s31s
2
2s3 + 10s31s2s

2
3 − 5s31s

3
3 − 10s1s

4
2s3 + 10s1s

3
2s

2
3

− 5s21s
4
2 + 10s21s

3
2s3 + 30s21s

2
2s

2
3 + 10s21s2s

3
3 − 5s21s

4
3 + 3s1s

5
2

+ 10s1s
2
2s

3
3 − 10s1s2s

4
3 − 5s42s

2
3 − 5s32s

3
3 − 5s22s

4
3 + 3s2s

5
3),

E
[3]4
41 =

−1

840h3s1(s1 − s2)(s1 − s3)(s1 − 1)
(3s51 − 3s41s2 − 3s41s3 − 6s41

− 3s31s
2
2 − 3s53 + 8s31s2 − 3s31s

2
3 + 8s31s3 − 3s21s

3
2 + 5s21s

2
2s3

+ 8s21s
2
2 + 5s21s2s

2
3 − 20s21s2s3 − 20s22s

2
3

− 3s21s
3
3 + 8s21s

2
3 − 3s1s

4
2 + 5s1s

3
2s3 + 8s1s

3
2 + 5s1s

2
2s

2
3

− 20s1s
2
2s3 + 5s1s2s

3
3 + 5s2s

4
3 − 20s1s2s

2
3 − 3s1s

4
3

+ 8s1s
3
3 − 3s52 + 5s42s3 + 8s42 + 5s32s

2
3 − 20s32s3

+ 5s22s
3
3 − 20s2s

3
3 + 5s31s2s3 + 8s43),
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E
[3]4
42 =

1

840h3s2(s1 − s2)(s2 − s3)(s2 − 1)
(8s43 − 3s51 − 3s41s2 + 5s41s3

− 3s31s
2
2 − 3s53 + 8s31s2 + 5s31s

2
3 − 20s31s3 − 3s21s

3
2 + 5s21s

2
2s3 + 8s21s

2
2

+ 5s21s2s
2
3 − 20s21s2s3 + 8s22s

2
3 + 5s21s

3
3 − 20s21s

2
3 − 3s1s

4
2

+ 5s1s
3
2s3 + 8s1s

3
2 + 5s1s

2
2s

2
3 − 20s1s

2
2s3 + 5s1s2s

3
3

− 20s1s2s
2
3 + 5s1s

4
3 − 20s1s

3
3 + 3s52 − 3s42s3 − 6s42 − 3s32s

2
3 + 8s32s3 − 3s22s

3
3

+ 8s2s
3
3 + 5s31s2s3 + 8s41 − 3s2s

4
3),

E
[3]4
43 =

−1

840h3s3(s1 − s3)(s2 − s3)(s3 − 1)
(5s41s2 − 3s51 − 3s41s3

+ 5s31s
2
2 + 5s31s2s3 − 20s31s2 − 3s31s

2
3 + 8s31s3 + 5s21s

3
2 + 5s21s

2
2s3

− 20s21s
2
2 + 5s21s2s

2
3 − 20s21s2s3 − 3s21s

3
3 + 8s21s

2
3 + 5s1s

4
2

+ 5s1s
3
2s3 − 20s1s

3
2 + 5s1s

2
2s

2
3 − 20s1s

2
2s3 + 5s1s2s

3
3

− 20s1s2s
2
3 − 3s1s

4
3 + 8s1s

3
3 − 3s52 − 3s42s3

+ 8s42 − 3s32s
2
3 + 8s32s3 − 3s22s

3
3 + 8s22s

2
3 − 3s2s

4
3

+ 8s2s
3
3 + 3s53 − 6s43 + 8s41),

E
[3]4
44 =

1

840h3(s1 − 1)(s2 − 1)(s3 − 1)
(5s41s2 − 3s51 + 5s41s3 − 3s53

+ 5s31s
2
3 + 5s31s

2
2 + 5s21s

3
2 − 15s21s

2
2s3 − 15s21s2s

2
3 + 5s21s

3
3 + 5s1s

4
2

− 15s1s
3
2s3 − 15s1s

2
2s

2
3 − 15s1s2s

3
3 − 15s31s2s3 + 5s1s

4
3 + 5s42s3

+ 5s32s
2
3 + 5s22s

3
3 + 5s2s

4
3 − 3s52).
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Abstract. The single acceptance sampling plans (SASP) are one of the main statis-
tical tools in industry and production fields. Both of the customers and producers are
interesting in the product, where the customers want a product of good quality with
long life time and the producers want to keep the quality of the products with minimum
cost and variation. In this study, it is supposed that the lifetime of the products follows
the two parameters Pranav distribution (TPPD) and the mean is taken as a quality
parameter. The necessary tables of the minimum sample size, operating characteristic
(OC) function and the producer’s risk values are obtained for various model parameters.
Also, for applicability investigation of the suggested SASP based on TPPD, a real data
set of failure times of 20 identical components is analyzed and used. It turns out that
the new ASP gives minimum sample sizes and it is recommended for practitioners.
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Keywords: Acceptance sampling plan, two-parameter Pranav distribution, lifetime,
producer’s risk, truncated tests, operating characteristic function.

1. Introduction

The acceptance sampling plans are one of the most commonly used sampling
methods in quality control when the product quality depends on its life time.
It is used to find the optimal plan parameters as the minimum sample size and
its acceptance number to save the time and cost of testing the lots within the
experiment. In such life tests the final decision based on the tested units is to
accept or reject the lot.

Several authors have suggested various types of acceptance sampling plans
using different distributions. In the past few years, much strength is employed
in the studying of acceptance sampling plans under a truncated life test. For
illustration, Jose and Sivadas [17] suggested ASP for negative binomial Marshall-
Olkin Rayleigh distribution; Al-Omari et al. [5,6] for under two-parameter Quasi
Shanker distribution and length-biased weighted Lomax distribution, respec-
tively. Al-Omari et al. [6] for the Akash distribution, Al-Omari et al. (2019)
for two parameter quasi Lindley distribution, Singh et al. (2020) for general-
ized Pareto distribution, Gillariose and Tommy (2020) for extended Birnbaum-
Saunders distribution, Hamurkaroglu et al. (2020) for single and double ASP for
the compound Weibull-Exponential distribution, Al-Nasser et al. (2018) for the
Ishita distribution, Al-Omari (2015, 2018) for generalized inverted exponential
and Garima distributions respectively, Lio et al. (2010) for Burr type XII per-
centiles, Kaviyarasu and Fawaz (2017) for percentiles using Weibull-Poisson dis-
tribution, Gadde and Durgamamba (2021) for group ASP for size biased Lomax
distribution, Chiang et al. (2018) for group ASP based on the Kumaraswamy
Burr XII distribution, Aslam et al. (2009) for group ASP for gamma distribu-
tion, Rao et al. (2019) for percentiles for Type-II generalized log logistic dis-
tribution, Al-Omari and Zamanzade (2017) offered double ASP for transmuted
generalized inverse Weibull distribution.Several authors have suggested various
types of acceptance sampling plans using different distributions. In the past few
years, much strength is employed in the studying of acceptance sampling plans
under a truncated life test. For illustration, Aslam et al. (2009) for group ASP
for gamma distribution, Lio et al. (2010) for Burr type XII percentiles, Jose
and Sivadas [17] suggested ASP for negative binomial Marshall-Olkin Rayleigh
distribution; Al-Omari (2015) for generalized inverted exponential distribution,
Kaviyarasu and Fawaz (2017) for percentiles using Weibull-Poisson distribution,
Al-Omari and Zamanzade (2017) offered double ASP for transmuted general-
ized inverse Weibull distribution, Al-Omari (2018) for Garima distribution, Al-
Nasser et al. (2018) for Quasi Lindley distribution, Al-Nasser et al. (2018)
for Ishita distribution, Al-Omari (2018) for Sushila distribution, Chiang et al.
(2018) for group ASP based on the Kumaraswamy Burr XII distribution, Al-
Nasser et al. (2018) for the Ishita distribution, Al-Omari et al. (2019) for
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two parameter quasi Lindley distribution, Rao et al. (2019) for percentiles for
Type-II generalized log logistic distribution, Al-Omari et al. (2019) for Rama
distribution, Al-Omari et al. (2020) for the Akash distribution, Singh et al.
(2020) for generalized Pareto distribution, Gillariose and Tommy (2020) for ex-
tended Birnbaum-Saunders distribution, Hamurkaroglu et al. (2020) for single
and double ASP for the compound Weibull-Exponential distribution, Singh et
al. (2020) for generalized Pareto distribution. Al-Omari et al. (2021a, b) for
two-parameter Quasi Shanker distribution and length-biased weighted Lomax
distribution, respectively, Gadde and Durgamamba (2021) for group ASP for
size biased Lomax distribution, Al-Nasser and ul Haq (2021) for Lomax distri-
bution.

To the best of our knowledge this work is the first one considered the
SASP based on the two-parameter Pranav distribution. In this article, the
two-parameter Pranav distribution is introduced in Section 2. The proposed
acceptance sampling plan with its main parameters and illustrations are given
in Section 3. Section 4 deals with the tables of minimum sample sizes, OC val-
ues and the minimum ratio of true average life time as well as some illustration
examples are introduced. Section 5 exhibits an application of a real data set in
industry, and some conclusions and recommendations are presented in Section 6.

2. The two-parameter Pranav distribution

Shukla (2018) suggested a one parameter lifetime distribution known as the
Pranav distribution (PD) with probability density function (pdf) given by

fPD(x) =
θ4

6 + θ4
(θ + x3)e−θx, x > 0, θ > 0,(1)

and cumulative distribution function (cdf) defined by

FPD(x) = 1−
(
1 +

6θx+ 3θ2 x2 + θ3x3

6 + θ4

)
e−θx, x > 0, θ > 0.(2)

As a modification of the PD, Umeh and Ibenegbu (2019) proposed a new
distribution of two parameters called as a two-parameter Pranav distribution
(TPPD) with probability density function (pdf) defined as

fTPPD(x) =
θ4

6 + αθ4
(αθ + x3)e−θx, x > 0, α > 0, θ > 0.(3)

Figure 1 shows the pdf of the TPPD plots for some selections of model param-
eters.

The corresponding cumulative distribution function (cdf) of (3) is

(4) FTPPD(x) = 1−
(
1 +

6θx+ 3θ2 x2 + θ4x4

6 + αθ4

)
e−θx, x > 0, α > 0, θ > 0.
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Figure 1: The TPPD pdf plots for some model parameters

The additional parameters to the base PD makes the TPPD more flexible and
applicable model more than the Ishita, Akash, Pranav, Shanker, Lindley, Su-
jatha, and exponential distributions. The flexibility of the TPP distribution is
due that is a mixture of two well-known distributions, which are exponential (θ)

and gamma (4, θ) with a mixture factor A = αθ4

αθ4+6
. The survival function of

the TPPD is given by

STPPD(x) = 1− FTPPD(x) =
(
1 +

6θx+ 3θ2 x2 + θ4x4

6 + αθ4

)
e−θx,(5)

x > 0, α > 0, θ > 0.

Figure 2 presents the survival function of the TPPD for some selected param-
eters. It can be seen that the survival function plots are decreasing for large
values of X.
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Figure 2: The survival function of the TPPD for some model parameters

The mean, hazard rate and mean residual life functions of the TPPD, re-
spectively, are defined as

E(X) =
αθ4 + 24

θ(αθ4 + 6)
,

hTPPD(x) =
fTPPD(x)

1− FTPPD(x)
=

θ4(αθ + x3)

θ3x3 + 3θ2x2 + 6θx+ αθ4 + 6
,(6)

and

mTPPD(x) =
1

1− FTPPD(x)

∫ ∞

x
[1− FTPPD(x)] dv

=
θ3x3 + 6θ2x2 + 18θx+ αθ4 + 24

θ(θ3x3 + 3θ2x2 + 6θx+ αθ4 + 6)
.(7)

Note that, f(0) = h(0) = αθ5

αθ4+6
and m(0) = E(X) = αθ4+6

αθ4+24
. The rth

moment and coefficient of variation (C.V) of the TPPD are

µr =
r!(αθ4 + (r + 1)(r + 2)(r + 3))

θr(6 + αθ4)
, r = 1, 2, ...

and

CV =
α2θ8 + 84αθ4 + 144

θ(24 + αθ4)(6 + αθ4)
.

3. Designing the SASP

In this section, a new SASP is developed supposing that the lifetime distribution
of the products follows the TPPD. A produced lot is considered good if the true
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mean life time of items, say µ, is not less than a identified value µ0. And the
lot is not good if µ < µ0. The test terminates at a pre-specified time t, while
the failures number detected on the time interval given by [0, t] are determined.
The decision to accept the determined mean depends on the number of failures
at the final of the time t that doesn’t exceeds the acceptance number c. It
is assumed that the lot is large enough so to that the mathematical theory of
the binomial distribution can be employed. The rejection of acceptance of the
product are same to the rejection or acceptance of the hypothesis H0 : µ ≥ µ0.
A SASP (n, c, t/µ0) consists of (1). The number of items to be tested, say n, (2)
the acceptance number c, and (3) the ratio t/µ0 −→ t, where µ0 is the indicated
mean lifetime and t is the pre-identified testing time. The producer’s risk which
is known as the probability of acceptance lot classified as a bad is fixed to be at
most 1−p∗, where p∗ is the confidence level in the direction that the probability
of rejecting a lot with a mean µ < µ0 is p∗ at least. At this stage, the researcher
want to obtain the minimum sample size (MSS), n holding the inequality

c∑
i=0

(
n

i

)
pi(1− p)n−i ≤ 1− p∗,(8)

where p = F (t, µ0) is the probability of a failure occurring in time t when the true
mean life is µ0. It depends simply on t/µ0 and this function is a monotonically
increasing in the ratio. Therefore, the experiment requires to determine this
ratio. If the number of failures detected is at most equal to c, then from (8) we
can assert with probability level p∗ that F (t;µ) ≤ F (t;µ0), that implies µ ≥ µ0.
Hence, the mean life of the units can be asserted to be at least equal to their
determined value with predetermined probability p∗. The minimum values of
the sample size favorable (5) are obtained and presented in Table 1 for p∗=0.75,
0.90, 0.95, 0.99, t/µ0=0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712 and
c = 0, 1, 2, ..., 10 when α = 83.7 and θ = 0.092.

The operating characteristic function (OCF) is very important in SASP
where it determine the effectiveness of a statistical hypothesis test structured
to reject or accept a lot. The OCF of any sampling plan, say (n, c, t/µ0) gives
the probability of accepting the lot and it is defined as

L(P ) =

c∑
i=0

(
n

i

)
pi(1− p)n−i,(9)

where p = F (t;µ) is a function of lot quality parameter µ. The OCF is an
increasing function in µ; a decreasing function of p while p is a decreasing
function of µ. Now, for given probability p∗ and ratio t/µ0, the selection of the
MSS n with acceptance number c based on the OCF values. The OCF values
for the proposed SASP are presented in Table 2 for α = 83.7 and θ = 0.092.

The producer’s risk (PR) is the probability of rejecting a lot with µ > µ0.
For the SASP under investigation and a fixed value of the PR η, the researchers
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are involved in determining the value of µ/µ0 that will emphasize the PR is less
than or equal to η. Therefore, the probability function is found as

p = F

(
t

µ0

µ0
µ

)
.(10)

Therefore, µ/µ0 is the lowest positive number for which p fulfills the inequality

c∑
i=0

(
n

i

)
pi(1− p)n−i ≤ η.(11)

For α = 83.7 and θ = 0.092 with a given p∗, the smallest values of the ratio
µ/µ0 satisfying the last inequality (9) are provided in Table 3.

4. Description of tables

Assuming that the life distribution follows the TPPD and Table 1 displayed
the MSS needed to assert that µ is greater than µ0 with probability at least p∗

with c as an acceptance number. For illustration, when p∗ = 0.95, c = 2 and
t/µ0 = 0.942, the corresponding entry table is n = 10. Hence, if out of the 10
items, less than or equal to two fail before time t, then the decision is the lot can
be accepted with a probability of 0.95. This means that out of the 10 items, if
there are two items fail previous the time t, then a 95% upper confidence interval
for µ is (t/0.942,∞). Table 2 devoted to the OCF values for the suggested ASP,
and for the plan (n = 10, c = 2, t/µ0 = 0.942) with p∗ = 0.95 the OCF values
are:

µ/µ0 2 4 6 8 10 12

L(P ) 0.884749 0.999532 0.999990 0.999999 1 1

PR 0.115251 0.000468 0.0001 0.000001 0 0

From this OCF values, it is found that if the real mean life time is twice
the identified mean life, then the producer’s risk is approximately 0.115251 and
zero for big values of µ/µ0.
Table 3 includes the values of the minimum ratio of the true average life to the
identified mean lifetime (µ/µ0) for different choices of c and t/µ0 provided that
the producer’s risk not than 0.05. Hence, for the (n = 10, c = 2, t/µ0 = 0.942),
the value of µ/µ0 is 2.276. This displays that the product must have a mean
life of 2.276 times the determined mean life 1000 hours accept the lot with
probability of at least 0.90.

5. Application of real data

We take a dataset that is already investigated by Murthy (2004). The dataset
represents the failure times of 20 identical components. The observations are:
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15.32, 8.29, 8.09, 11.89, 11.03, 10.54, 4.51, 1.79, 7.93, 6.29, 5.46, 2.87, 11.12,
11.23, 3.58, 9.74, 8.45, 2.99, 3.14, 1.80.

Figure 3 displays the fitted density and cdf for the dataset. Figure 4 provides
the Total test time (TTT) curve and box plot of the estimates for the data set
based on the TPPD, for more details about the TTT see Aarset (1987).
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Figure 3: Fitted pdf for failure times of 20 data and the estimated cumulative
distribution function for the TPPD
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Figure 4: TTT curve and box plot of the estimates for the data set based on
the TPPD

First we test whether the TPPD can be used or not. The maximum likeli-
hood estimation method (MLE) is used to estimatethe unknown TPPD param-
eters. The following criteria consist of the Akaike Information criterion (AIC),
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consistent Akaike information criterion (CAIC), Hannan-Quinn information cri-
terion (HQIC), Bayesian information criterion (BIC), are presented. Also, the
Kolmogorov-Smirnov (KS), Anderson-Darling (A) and Cramer-von-Mises (W)
are obtained and the results are presented in Table 4.

Table 4: Fitting criteria values for the real dataset
Model W A AIC CAIC BIC HQIC Statistic p-value
TPPD 0.09219 0.56157 115.7915 116.4974 117.7829 116.1802 0.15758 0.647

The KS is the distance between the fitted and observed distribution functions is
0.15758 with p-value of 0.647. Thus, the TPPD showed a very good fit. For this
data, it is found that the MLEs of the distribution parameters are θ̂ = 0.5226901,

α̂ = 2.8294078 and hence Ê(X) = (α̂θ̂4+24)

θ̂(α̂θ̂4+6)
= 7.45757.

Assume that the specified mean lifetime is µ0 = 7.45757 and the time test is
t0 = 4.6834. Then, from Table 6 with p∗ = 0.75, the acceptance sampling plan
is (n = 20, c = 8, t/µ0 = 0.628). Thus, for the suggested SASP if more than 8
failures obtained before the time 4.6834 the lot is rejected. Since there are only 7
failures (4.51, 1.79, 2.87, 3.58, 2.99, 3.14, 1.80) before 4.6834, then we accept the
lot.

6. Conclusions

In this paper, a new truncated life single acceptance sampling plan has been in-
troduced when the life time of the test units follows the TPP distribution. The
required tables are presented for the minimum sample size, operating charac-
teristic function values and the minimum ratio for the suggested sampling plan.
An application of a real data for the suggested SASP is presented using the fail-
ure times of 20 identical components data and can be employed excellently in
analyzing the data. The TTPD might entices various applications in reliability
and one can use it for other types of ASP or by using the ranked set sampling
methods (Haq et al. 2013, 2014a,b).
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Table 1: MSS for a given µ0 with p∗ for c with α = 83.7, θ = 0.092 in the
TPPD

t/µ0
p∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 5 2 2 1 1 1 1 1
1 11 5 3 2 2 2 2 2
2 15 7 5 4 3 3 3 3
3 20 9 6 5 4 4 4 4
4 25 11 8 6 5 5 5 5
5 29 13 9 7 6 6 6 6
6 34 16 11 9 7 7 7 7
7 39 18 12 10 8 8 8 8
8 43 20 13 11 9 9 9 9
9 48 22 15 12 10 10 10 10
10 52 24 16 13 11 11 11 11

0.90 0 9 4 2 2 1 1 1 1
1 15 6 4 3 2 2 2 2
2 20 9 6 4 3 3 3 3
3 26 11 7 6 4 4 4 4
4 31 14 9 7 5 5 5 5
5 36 16 10 8 6 6 6 6
6 41 18 12 9 8 7 7 7
7 46 20 13 11 9 8 8 8
8 51 23 15 12 10 9 9 9
9 56 25 16 13 11 10 10 10
10 60 27 18 14 12 11 11 11

0.95 0 11 5 3 2 1 1 1 1
1 18 8 5 3 2 2 2 2
2 24 10 6 5 3 3 3 3
3 30 13 8 6 5 4 4 4
4 35 15 10 7 6 5 5 5
5 40 18 11 9 7 6 6 6
6 46 20 13 10 8 7 7 7
7 51 22 14 11 9 8 8 8
8 56 25 16 13 10 9 9 9
9 61 27 18 14 11 10 10 10
10 66 29 19 15 12 11 11 11

0.99 0 17 7 4 3 2 1 1 1
1 25 10 6 4 3 2 2 2
2 31 13 8 6 4 3 3 3
3 38 16 10 7 5 4 4 4
4 44 19 11 9 6 5 5 5
5 50 21 13 10 7 6 6 6
6 55 24 15 11 8 8 7 7
7 61 26 17 13 9 9 8 8
8 66 29 18 14 11 10 9 9
9 72 31 20 15 12 11 10 10
10 77 33 21 17 13 12 11 11



ACCEPTANCE SAMPLING PLANS FOR TRUNCATED LIFETIME TESTS ... 679

Table 2: OCF values of the sampling plan (n, c = 2, t/µ0) with
α = 83.7, θ = 0.092 in the TPPD

µ/µ0
p∗ m t/µ0 2 4 6 8 10 12
0.75 15 0.628 0.980479 0.999963 0.999999 1 1 1

7 0.942 0.955535 0.999859 0.999997 1 1 1
5 1.257 0.900978 0.999419 0.999986 0.999999 1 1
4 1.571 0.838090 0.998381 0.999955 0.999997 1 1
3 2.356 0.668703 0.990410 0.999572 0.999966 0.999996 0.999999
3 3.141 0.336935 0.943213 0.995854 0.999572 0.999939 0.999989
3 3.927 0.134187 0.831819 0.980719 0.997439 0.999571 0.999911
3 4.712 0.046533 0.668703 0.943180 0.990410 0.998130 0.999572

0.90 20 0.628 0.957714 0.999909 0.999998 1 1 1
9 0.942 0.911507 0.999669 0.999993 1 1 1
6 1.257 0.837326 0.998873 0.999973 0.999998 1 1
4 1.571 0.838090 0.998381 0.999955 0.999997 1 1
3 2.356 0.668703 0.990410 0.999572 0.999966 0.999996 0.999999
3 3.141 0.336935 0.943213 0.995854 0.999572 0.999939 0.999989
3 3.927 0.134187 0.831819 0.980719 0.997439 0.999571 0.999911
3 4.712 0.046533 0.668703 0.943180 0.990410 0.998130 0.999572

0.95 24 0.628 0.933093 0.999840 0.999996 1 1 1
10 0.942 0.884749 0.999532 0.999990 0.999999 1 1
6 1.257 0.837326 0.998873 0.999973 0.999998 1 1
5 1.571 0.708825 0.996180 0.999888 0.999993 0.999999 1
3 2.356 0.668703 0.990410 0.999572 0.999966 0.999996 0.999999
3 3.141 0.336935 0.943213 0.995854 0.999572 0.999939 0.999989
3 3.927 0.134187 0.831819 0.980719 0.997439 0.999571 0.999911
3 4.712 0.046533 0.668703 0.943180 0.990410 0.998130 0.999572

0.99 31 0.628 0.878208 0.999652 0.999991 0.999999 1 1
13 0.942 0.790899 0.998925 0.999977 0.999998 1 1
8 1.257 0.689250 0.997026 0.999926 0.999995 0.999999 1
6 1.571 0.576240 0.992788 0.999781 0.999986 0.999998 1
4 2.356 0.362531 0.967752 0.998384 0.999866 0.999983 0.999997
3 3.141 0.336935 0.943213 0.995854 0.999572 0.999939 0.999989
3 3.927 0.134187 0.831819 0.980719 0.997439 0.999571 0.999911
3 4.712 0.046533 0.668703 0.943180 0.990410 0.998130 0.999572
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Table 3: Minimum ratio of the true mean life to the specified mean lifetime for
suitability of a lot with PR of 0.05 and α = 83.7, θ = 0.092

t/µ0
p∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 3.081 3.469 4.629 4.618 6.925 9.232 11.543 13.85
1 2.115 2.388 2.572 2.608 3.911 5.215 6.519 7.822
2 1.767 1.966 2.244 2.487 3.071 4.094 5.118 6.141
3 1.631 1.764 1.910 2.128 2.659 3.545 4.432 5.318
4 1.550 1.644 1.853 1.909 2.409 3.211 4.014 4.817
5 1.476 1.563 1.697 1.758 2.237 2.982 3.728 4.473

6 1.439 1.555 1.684 1.827 2.110 2.813 3.517 4.220
7 1.410 1.504 1.587 1.727 2.012 2.682 3.354 4.024
8 1.375 1.464 1.508 1.647 1.933 2.577 3.222 3.866
9 1.357 1.432 1.518 1.581 1.868 2.490 3.113 3.736

10 1.332 1.405 1.460 1.525 1.813 2.417 3.022 3.625

0.90 0 3.694 4.313 4.629 5.785 6.925 9.232 11.543 13.85
1 2.346 2.559 2.914 3.214 3.911 5.215 6.519 7.822
2 1.956 2.183 2.449 2.487 3.071 4.094 5.118 6.141
3 1.795 1.929 2.080 2.387 2.659 3.545 4.432 5.318
4 1.679 1.837 1.980 2.132 2.409 3.211 4.014 4.817
5 1.601 1.726 1.810 1.957 2.237 2.982 3.728 4.473
6 1.545 1.646 1.776 1.827 2.471 2.813 3.517 4.220
7 1.503 1.585 1.672 1.864 2.343 2.682 3.354 4.024
8 1.469 1.570 1.660 1.774 2.240 2.577 3.222 3.866
9 1.442 1.528 1.586 1.700 2.155 2.490 3.113 3.736
10 1.410 1.493 1.584 1.637 2.084 2.417 3.022 3.625

0.95 0 3.930 4.621 5.261 5.785 6.925 9.232 11.543 13.85
1 2.490 2.841 3.186 3.214 3.911 5.215 6.519 7.822
2 2.082 2.276 2.449 2.804 3.071 4.094 5.118 6.141
3 1.888 2.069 2.225 2.387 3.191 3.545 4.432 5.318
4 1.754 1.893 2.092 2.132 2.862 3.211 4.014 4.817

5 1.665 1.820 1.911 2.120 2.637 2.982 3.728 4.473
6 1.613 1.728 1.860 1.976 2.471 2.813 3.517 4.220
7 1.562 1.658 1.749 1.864 2.343 2.682 3.354 4.024
8 1.522 1.634 1.727 1.885 2.240 2.577 3.222 3.866
9 1.490 1.586 1.708 1.804 2.155 2.490 3.113 3.736
10 1.463 1.547 1.639 1.736 2.084 2.417 3.022 3.625

0.99 0 4.503 5.127 5.755 6.575 8.676 9.232 11.543 13.85
1 2.767 3.071 3.414 3.642 4.820 5.215 6.519 7.822
2 2.268 2.515 2.776 3.060 3.729 4.094 5.118 6.141
3 2.047 2.248 2.469 2.600 3.191 3.545 4.432 5.318
4 1.901 2.089 2.193 2.474 2.862 3.211 4.014 4.817
5 1.803 1.944 2.086 2.262 2.637 2.982 3.728 4.473
6 1.721 1.872 2.008 2.105 2.471 3.294 3.517 4.220
7 1.669 1.788 1.949 2.089 2.343 3.123 3.354 4.024
8 1.618 1.748 1.847 1.984 2.469 2.986 3.222 3.866
9 1.585 1.691 1.815 1.897 2.370 2.873 3.113 3.736
10 1.551 1.644 1.741 1.905 2.286 2.778 3.022 3.625
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Table 5: MSS of the sampling plans with θ = 0.13 for the real data
t/µ0

p∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 2 2 2 1 1 1 1 1
1 5 4 3 3 2 2 2 2
2 7 6 5 4 4 3 3 3
3 9 7 6 6 5 4 4 4
4 12 9 8 7 6 6 5 5
5 14 11 9 8 7 7 6 6
6 16 12 11 10 8 8 7 7
7 18 14 12 11 10 9 8 8
8 20 16 14 12 11 10 9 9
9 22 17 15 14 12 11 11 10
10 24 19 16 15 13 12 12 11

0.90 0 4 3 2 2 2 1 1 1
1 7 5 4 4 3 3 2 2
2 9 7 6 5 4 4 3 3
3 12 9 7 7 5 5 5 4
4 14 11 9 8 7 6 6 5
5 16 12 11 9 8 7 7 6
6 19 14 12 11 9 8 8 7
7 21 16 14 12 10 9 9 9
8 23 18 15 14 12 11 10 10
9 25 20 17 15 13 12 11 11
10 28 21 18 16 14 13 12 12

0.95 0 5 3 3 2 2 2 1 1
1 8 6 5 4 3 3 3 2
2 10 8 6 6 5 4 4 3
3 13 10 8 7 6 5 5 5
4 16 12 10 9 7 6 6 6
5 18 14 11 10 9 8 7 7
6 20 15 13 12 10 9 8 8
7 23 17 15 13 11 10 9 9
8 25 19 16 15 12 11 10 10
9 27 21 18 16 13 12 11 11
10 30 23 19 17 15 13 12 12

0.99 0 7 5 4 3 3 2 2 2
1 10 8 6 5 4 4 3 3
2 13 10 8 7 6 5 4 4
3 16 12 10 9 7 6 5 5
4 19 14 12 10 8 7 7 6
5 22 16 13 12 10 8 8 7
6 24 18 15 13 11 10 9 8
7 27 20 17 15 12 11 10 9
8 29 22 18 16 14 12 11 10
9 32 24 20 18 15 13 12 12
10 34 26 22 19 16 14 13 13
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Table 6: OCF values of the sampling plan (n, c = 2, t/µ0) with θ = 0.13 for the
real data

µ/µ0
p∗ m t/µ0 2 4 6 8 10 12
0.75 10 0.628 0.621215 0.894689 0.958488 0.97973 0.988658 0.993033

7 0.942 0.499465 0.836512 0.931149 0.965168 0.980076 0.987577
5 1.257 0.480227 0.821326 0.922917 0.960475 0.977198 0.985698
4 1.571 0.555292 0.853886 0.937922 0.968412 0.981861 0.988658
3 2.356 0.330815 0.702311 0.853947 0.919411 0.951274 0.968429
3 3.141 0.503321 0.802751 0.906758 0.949491 0.969798 0.980575
3 3.927 0.389740 0.720743 0.856556 0.918268 0.949470 0.966729
3 4.712 0.298140 0.642183 0.802717 0.882333 0.924960 0.949480

0.90 13 0.628 0.432917 0.805974 0.916977 0.957664 0.975668 0.984780
8 0.942 0.373656 0.764232 0.894689 0.945013 0.967924 0.979730
6 1.257 0.324185 0.722659 0.870911 0.931024 0.959169 0.973936
5 1.571 0.348608 0.733419 0.875575 0.933365 0.960491 0.974748
4 2.356 0.330815 0.702311 0.853947 0.919411 0.951274 0.968429
3 3.141 0.193303 0.555466 0.753876 0.853977 0.907408 0.937967
3 3.927 0.389740 0.720743 0.856556 0.918268 0.949470 0.966729
3 4.712 0.298140 0.642183 0.802717 0.882333 0.924960 0.94948

0.95 15 0.628 0.353110 0.756532 0.891615 0.943547 0.967125 0.979251
10 0.942 0.271793 0.687954 0.852489 0.920566 0.952760 0.969751
7 1.257 0.324185 0.722659 0.870911 0.931024 0.959169 0.973936
6 1.571 0.204691 0.606875 0.799603 0.887273 0.931049 0.954978
4 2.356 0.150183 0.518697 0.733514 0.842380 0.900347 0.933397
3 3.141 0.193303 0.555466 0.753876 0.853977 0.907408 0.937967
3 3.927 0.111852 0.430568 0.651491 0.779480 0.853923 0.899019
3 4.712 0.298140 0.642183 0.802717 0.882333 0.924960 0.949480

0.99 19 0.628 0.178801 0.602600 0.801994 0.890316 0.933615 0.956982
12 0.942 0.134838 0.536994 0.756532 0.860865 0.914086 0.943547
9 1.257 0.131122 0.522558 0.744357 0.852250 0.908078 0.939277
7 1.571 0.114501 0.487240 0.716287 0.832715 0.894544 0.929686
5 2.356 0.062859 0.362634 0.606994 0.751976 0.836375 0.887323
4 3.141 0.064298 0.348790 0.586764 0.733561 0.821488 0.875656
3 3.927 0.111852 0.430568 0.651491 0.779480 0.853923 0.899019
3 4.712 0.063767 0.330815 0.555408 0.702311 0.794793 0.853947
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Table 7: Minimum ratio of the true mean life to the specified mean lifetime for
suitability of a lot with PR of 0.05 and θ = 0.13 for the real data

t/µ0
p∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712
0.75 0 30.161 45.242 60.37 37.636 56.442 75.248 94.078 112.883

1 9.679 11.215 10.525 13.154 11.209 14.943 18.683 22.417
2 5.553 6.886 7.248 6.595 9.890 8.037 10.048 12.056
3 4.121 4.442 4.748 5.934 6.636 5.634 7.044 8.452
4 3.808 3.903 4.390 4.448 5.062 6.748 5.537 6.644
5 3.285 3.560 3.509 3.589 4.140 5.519 4.630 5.556
6 2.941 2.954 3.445 3.677 3.535 4.713 4.023 4.827
7 2.696 2.841 2.968 3.183 3.962 4.142 3.587 4.304
8 2.514 2.749 2.973 2.820 3.528 3.717 3.258 3.909
9 2.373 2.450 2.661 2.938 3.195 3.387 4.234 3.600
10 2.260 2.413 2.416 2.674 2.929 3.123 3.904 3.351

0.90 0 60.392 67.915 60.37 75.45 113.151 75.248 94.078 112.883
1 14.064 14.518 14.966 18.704 19.727 26.299 18.683 22.417
2 7.466 8.329 9.188 9.058 9.890 13.185 10.048 12.056
3 5.843 6.182 5.927 7.408 6.636 8.847 11.061 8.452
4 4.605 5.112 5.208 5.487 6.670 6.748 8.437 6.644
5 3.887 4.018 4.750 4.386 5.382 5.519 6.900 5.556
6 3.660 3.686 3.941 4.306 4.547 4.713 5.892 4.827
7 3.291 3.446 3.790 3.710 3.962 4.142 5.179 6.214
8 3.019 3.263 3.323 3.715 4.229 4.704 4.647 5.575
9 2.810 3.118 3.269 3.326 3.811 4.259 4.234 5.080
10 2.773 2.806 2.955 3.019 3.480 3.905 3.904 4.684

0.95 0 75.508 67.915 90.625 75.45 113.151 150.852 94.078 112.883
1 16.252 17.810 19.373 18.704 19.727 26.299 32.88 22.417
2 8.420 9.766 9.188 11.483 13.584 13.185 16.484 12.056
3 6.414 7.045 7.092 7.408 8.900 8.847 11.061 13.272
4 5.399 5.712 6.017 6.508 6.670 6.748 8.437 10.123
5 4.487 4.927 4.750 5.166 6.577 7.175 6.900 8.279
6 3.899 4.049 4.432 4.925 5.514 6.062 5.892 7.070
7 3.686 3.746 4.195 4.226 4.774 5.281 5.179 6.214
8 3.354 3.517 3.669 4.152 4.229 4.704 4.647 5.575
9 3.101 3.339 3.568 3.708 3.811 4.259 4.234 5.080
10 3.028 3.196 3.220 3.358 4.010 3.905 3.904 4.684

0.99 0 105.739 113.261 120.88 113.263 169.859 150.852 188.601 226.302
1 20.625 24.378 23.766 24.212 28.050 37.395 32.880 39.453
2 11.276 12.63 13.031 13.890 17.221 18.110 16.484 19.78
3 8.125 8.764 9.400 10.309 11.109 11.865 11.061 13.272
4 6.587 6.908 7.623 7.520 8.228 8.892 11.117 10.123
5 5.683 5.831 5.970 6.701 7.748 7.175 8.971 8.279
6 4.851 5.131 5.403 5.538 6.457 7.351 7.579 7.070
7 4.472 4.640 4.998 5.243 5.563 6.364 6.603 6.214
8 4.022 4.277 4.353 4.585 5.572 5.638 5.881 5.575
9 3.824 3.997 4.161 4.459 4.988 5.081 5.325 6.389
10 3.537 3.775 4.005 4.024 4.528 4.639 4.882 5.858
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Abstract. In this note, the investigation of particular inequalities of DVT-type in
integer numbers is continued.

Keywords: real numbers, inequality.

1. Introduction

In [2], A. Drápal and V. Valent proved that in a finite quasigroup Q of order
n the number of associative triples a(Q) ≥ 2n − i(Q) + (δ1 + δ2), where i(Q)
is the number of idempotents in Q, i.e., i(Q) = |{x ∈ Q |xx = x }|, δ1 =
|{ z ∈ Q | zx ̸= x for all x ∈ Q }| and δ2 = |{ z ∈ Q |xz ̸= x for all x ∈ Q }|
(Theorem 2.5). This important result is an easy consequence of the inequality

n∑
i=1

(a2i + b2i + aibi)−
k∑

i=1

(ai + bi) ≥ 3n− 2k + (r + s),

where n ≥ k ≥ 0, a1, . . . , an, b1 . . . , bn are non-negative integers such that
∑
ai =

n =
∑
bi, ai ≥ 1 and bi ≥ 1 for 1 ≤ i ≤ k, r is the number of i with ai = 0

*. Corresponding author
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and s is the number of i with bi = 0 (Proposition 2.4(ii)). The lengthy and
complicated proof of this DVT-inequality (inequality of Drápal-Valent type) in
[2] is based on highly semantically involved insight.

In [3], a very short elementary arithmetical proof of a more general inequal-
ity of this type was found. This inequality is two-dimensional in the sense that
it works with two n-tuples of integers. The approach in [3] opens a road to
investigation of similar inequalities of DVT-type which could be useful in fur-
ther investigations of estimates in non-associative algebra and they are also of
independent interest. Hence they deserve a thorough examination, however the
research is only at its beginning. In [1], the investigation of the one-dimensional
case working with one n-tuple of real numbers was started. This note is an
immediate continuation of [1].

2. Second concepts

Let n ≥ 1 and let α = (a1, . . . , an) be an ordered n-tuple of integers. Let I be
any subset (whether empty or non-empty) of the interval {1, . . . , n}. We put

(1) z(α, a) = |{ i | 1 ≤ i ≤ n, ai = a}| for every a ∈ R;

(2) z(α) = z(α, 0);

(3) z(α,+) =
∑

a>0 z(α, a);

(4) z(α,−) =
∑

a<0 z(α, a);

(5) s(α) =
∑n

i=1 ai;

(6) r(α) =
∑n

i=1 a
2
i ;

(7) q(α) = r(α)− s(α);

(8) t(α) = q(α)− z(α).

(9) I⊥ = {1, . . . , n} \ I;

(10) s(α, I) = −|I|+
∑

i∈I ai (=
∑

i∈I(ai − 1) );

(11) r(α, I,+) =
∑n

i=1 a
2
i +

∑
i∈I ai;

(12) r(α, I,−) =
∑n

i=1 a
2
i −

∑
i∈I ai;

(13) t(α, I) =
∑n

i=1 a
2
i −

∑n
i=1 ai + |I| −

∑
i∈I ai − z(α).

Lemma 2.1. (i) r(α, I,+) ≥ z(α,+).

(ii) r(α, I,+) = z(α,+) if and only if ai ∈ {0,−1} for i ∈ I and ai ∈ {0, 1}
for i ∈ I⊥.
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Proof. Put K1 = { i | ai ≥ 2 }, K2 = { i | ai = 1 }, K3 = { i | ai = 0 }, K4 =
{ i | ai = −1 }, K5 = { i | ai ≤ −2 }. Then r(α)+

∑
i∈I ai ≥ 4|K1 \ I|+6|k1∩ I|+

|k2 \I|+2|K2∩I|+ |K4 \I|+4|K5 \I|+2|K5∩I| ≥ |K1 \I|+ |K1∩I|+ |K2 \I|+
|K2 ∩ I| = |K1|+ |K2| = z(α,+). If r(α, I,+) = z(α,+) then K1 = ∅, K∩I = ∅,
K4 ⊆ I, K5 = ∅, and therefore ai ∈ {0, 1,−1} for every i. Moreover, ai ̸= 1 for
every i ∈ I and ai ̸= −1 for every i ∈ I⊥. These arguments are reversible.

Lemma 2.2. (i) r(α, I,−) ≥ z(α,−).
(ii) r(α, I,−) = z(α,−) if and only if ai ∈ {0, 1} for i ∈ I and ai ∈ {0,−1}

for i ∈ I⊥.

Proof. This follows from 2.1 (ai ↔ −ai).

Lemma 2.3. Let s(α) ≥ 0. Then:
(i) r(α, I,+) ≥ z(α,−) + s(α) ≥ z(α,−).
(ii) r(α, I,+) = z(α,−) + s(α) if and only if ai ∈ {0,−1} for i ∈ I and

ai ∈ {0,−1} for i /∈ I.

Proof. We have r(α, I,+) = r(α) + s(a) −
∑

i/∈I ai = r(α, I⊥,−) + s(α) ≥
z(α,−) + s(α) ≥ r(α,−) by 2.2(i). The rest is clear.

Lemma 2.4. Let s(α) ≤ 0. Then:
(i) r(α, I,−) ≥ z(α,+) + s(α) ≥ z(α,+).
(ii) r(α, I,−) = z(α,+) + s(α) if and only if ai ∈ {0, 1} for i ∈ I and

ai ∈ {0,−1} for i /∈ I.

Proof. This follows from 2.3 (ai ↔ −ai).

Lemma 2.5. (i) If s(α) ≥ 0 then r(α, I,+) ≥ max(z(α,+), z(α,−)).
(ii) If s(α) ≤ 0 then r(α, I,−) ≥ max(z(α,+), z(α,−)).

Proof. Just combine 2.1(i), 2.3(i), 2.2(i) and 2.4(i).

Lemma 2.6. (i) s(α, I) + s(α, I⊥) = s(α)− n.
(ii) r(α, I,+) + r(α, I,−) = 2r(α).
(iii) r(α, I,+) + r(α, I⊥,+) = 2r(α) + s(α).
(iv) r(α, I,−) + r(α, I⊥,−) = 2r(α)− s(α).
(v) t(α, I) + t(α, I⊥) = 2r(α)− 3s(α) + n− 2z(α) = 2t(α) + n− s(α).

Proof. All is obvious.

Lemma 2.7. (i) r(α, I,+)− r(α, I,−) = 2
∑

i∈I ai.
(ii) r(α, I,+)− r(α, I⊥,+) =

∑
i∈I ai −

∑
i∈I⊥ ai.

(iii) r(α, I,−)− r(α, I⊥,−) =
∑
i ∈ I⊥ai −

∑
i∈I ai.

(iv) r(α, I,+)− r(α, I⊥,−)s(α).
(v) r(α, I,−)− r(α, I⊥,+) = −s(α).
(vi) t(α, I)− t(α, I⊥) = |I| − |i⊥|+

∑
i∈I⊥ ai −

∑
i∈I ai = 2|I| − n+ s(α)−

2
∑

i∈I ai = s(α)− n− 2s(α, I).
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Proof. All is obvious.

Lemma 2.8. (i) s(α, ∅) = 0.

(ii) s(α, {1, . . . , n}) = s(α)− n.
(iii) r(α, ∅,+) = r(α).

(iv) r(α, {1, . . . , n},+) = r(a) + s(α).

(v) r(α, ∅,−) = r(α).

(vi) r(α, {1, . . . , n},−) = r(α)− s(α)
(vii) t(α, ∅) = t(α).

(viii) t(α, {1, . . . , n}) = t(α) + n− s(α).

Proof. It is obvious.

3. Technical results

Lemma 3.1. Put β = α− 1 = (a1 − 1, . . . , an − 1). Then:

(i) s(β, I) = s(α, I)− |I|.
(ii) r(β, I,+) = r(α, I,+)− 2s(α) + n− |I|.
(iii) r(β, I,+) = t(α, I⊥) + z(α).

(iv) r(β, I,−) = r(α, I,−)− 2s(α) + n+ |I|.
(v) t(β, I) = t(α, I)− 2s(α) + 2n+ |I|+ z(α)− z(α, 1).
(vi) t(α, I) = r(β) + s(β)−

∑
i∈I bi − z(β,−1).

Proof. (i), (ii), (iii) and (iv) are obvious.

(v) We have t(β, I) =
∑n

i=1(ai − 1)2 −
∑n

i=1(ai − 1) + |I| −
∑

i∈I(ai − 1)−
z(β) =

∑n
i=1 a

2
i − 2

∑n
i=1 ai + n−

∑n
i=1 ai + n+ |I| −

∑
i∈I ai + |I| − z(α, 1) =

t(α, I)− 2s(α) + 2n+ |I|+ z(α)− z(α, 1).
(vi) We have r(β) + s(β)−

∑
i∈I bi − z(β,−1) =

∑n
i=1 a

2
i − 2

∑n
i=1 ai + n+∑n

i=1 an−n+ |I|−
∑

i∈I ai −z(α) =
∑n

i=1 a
2
i −
∑n

i=1 ai+ |I|−
∑

i∈I ai−z(α) =
t(α, I).

Put τ(α) = 2r(α) + 2
∑

i∈J ai − 3z(α,−), where J = { i | 1 ≤ i ≤ n, ai < 0 }.

Lemma 3.2. Let max(α) = 1 and min(α) = −1. Then:

(i) s(α) = z(α,+)− z(α,−).
(ii) s(α) ≥ 0 if and only if z(α,+) ≥ z(α,−).
(iii) r(α) = z(α,+) + z(α,−).
(iv) τ(α) = 2z(α,+)− 3z(α,−).

Proof. All is obvious.

Lemma 3.3. Let max(α) = 1, min(α) ≤ −2. Then:

(i) s(α) ≤ z(α,+)− z(α,−) + 1 +min(α).

(ii) If s(α) ≥ 0 then z(α,+) ≥ z(α,−) + 1.

Proof. It is obvious.



INEQUALITIES OF DVT-TYPE-THE ONE-DIMENSIONAL CASE CONTINUED 691

Lemma 3.4. Let max(α) = 1, min(α) ≤ −2, s(α) ≥ 0) and z(α,+) = z(α,−)+
1. Then:

(i) min(α) = −2 and z(α,min(α)) = 1.
(ii) s(α) = 0.
(iii) r(α) = 2z(α,−) + 4.
(iv) τ(α) = 6− z(a,−).
(v) τ(α) = 0 if and only if z(α,+) = 7 and z(α,−) = 6.

Proof. It follows from 3.3 that 0 ≤ s(α) ≤ 2 + min(α), and so min(α) = −2
and s(α) = 0. The rest is easy.

Lemma 3.5. Let max(α) ≥ 2, min(α) = −1. Then:
(i) s(α) ≥ max(α) + z(α,+)− 1− z(α,−).
(ii) If z(α,−) ≤ z(α,+) + 1 then s(α) ≥ 0.
(iii) r(α) ≥ max(α)2 + z(a,+) + z(α,−)− 1.
(iv) r(α) = max(α)2+z(α,+)+z(α,−)−1 if and only if z(α,+)−z(α, 1) = 1.
(v) τ(α) ≥ 2max(α)2 + 2z(α,+)− 3z(α,−)− 2.
(vi) τ(α) = 2max(α)2 + 2z(α,+) − 3z(α,−) − 2 if and only if z(a,+) −

z(α, 1) = 1.
(vii) If 2z(α,+) ≥ 3z(α,−) then τ(α) ≥ 6.

Proof. It is easy.

Now, assume that n ≥ 2 and choose j, k ∈ {1, . . . , n} such that j ̸= k and
aj = max(α), ak = min(α). Consider the n-tuple β = (b1, . . . , bn) such that
bi = ai for i ̸= j, k, bj = aj − 1 and bk = ak + 1.

Lemma 3.6. Let aj ≥ 1 and ak ≤ −2. Then:
(i) z(α,−) = z(β,−).
(ii) If aj ≥ 2 then z(α,+) = z(β,+).
(iii) If aj = 1 then z(β,+) = z(α,+)− 1.
(iv) If z(α,max(α)) ≥ 2 then max(β) = max(α).
(v) If z(α,max(α)) = 1 then max(β) = max(α)− 1.
(vi) If z(α,min(α)) = 1 then min(β) = min(α) + 1.
(vii) If z(α,min(α)) ≥ 2 then min(β) = min(α).
(viii) τ(α)− τ(β) = 4aj − 4ak − 6 ≥ 6.

Proof. We have r(α) − r(β) = 2(aj − ak − 1) (see [1, 2.8]) and the rest is
easy.

Lemma 3.7. Let aj ≥ 1 and ak = −1. Then:
(i) z(β,−) = z(α,−)− 1.
(ii) If aj ≥ 2 then z(β,+) = z(α,+).
(iii) If aj = 1 then z(β,+) = z(α,+)− 1.
(iv) If z(α,max(α)) ≥ 2 then max(β) = max(α).
(v) If z(α,max(α)) = 1 then max(β) = max(α)− 1.
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(vi) If z(α,−) = z(α,min(α)) = 1 then min(β) = 0.
(vii) If z(α,−) = z(α,min(α)) ≥ 2 then min(β) = −1.
(viii) τ(α) = τ(β) = 4aj − 5 ≥ −1.

Proof. Similar to that of 3.6.

4. The inequalities

Theorem 4.1. Let n ≥ 1 and let a1, . . . , an be integers such that
∑n

i=1 |ai| ≥ n.
Let I ⊆ {1, . . . , n} and let z be the number of indices i ∈ {1, . . . , n} such that
ai = 0. Then:

(1)
n∑

i=1

a2i −
n∑

i=1

ai −
∑
i∈I

(ai − 1) ≥
n∑

i=1

a2i −
n∑

i=1

|ai| −
∑
i∈I

(|ai| − 1) ≥ z,

(2)

n∑
i=1

a2i −
n∑

i=1

|ai| −
∑
i∈I

(|ai| − 1) = z

if and only if
∑n

i=1 |ai| = n, ai ∈ {±1,±2} for i ∈ I and ai ∈ {0,±1} for i /∈ I.

Proof. (1) Since |ai| ≥ ai, we can assume that all the numbers ai are non-
negative. Then

∑n
i=1 ai ≥ n. Put bi = ai − 1 for every i = 1, . . . , n. Evidently,∑n

i=1 bi ≥ 0 and z is now the number of indices i such that bi < 0 (bi = −1 in
fact). By [1, 1.4(i)] we have

∑n
i=1 b

2
i ≥ 2z. Henceforth,

∑n
i=1 a

2
i −

∑n
i=1 ai −∑

i∈I(ai−1)−z =
∑n

i=1(ai−1)2+
∑n

i=1(ai−1)−
∑

i∈I(ai−1)−z =
∑n

i=1 b
2
i +∑

i∈I⊥ bi − z = (
∑n

i=1 b
2
i − 2z) + (z +

∑
i∈I⊥ bi) ≥ z +

∑
i∈I⊥ bi ≥ z − z1 ≥ 0,

where z1 = |{ i ∈ I⊥ | bi = −1 }|. Of course, z ≥ z1 = |{ i ∈ I⊥ | ai = 0 }|.
(2) If

∑n
i=1 a

2
i −

∑n
i=1 ai −

∑
i∈I(ai − 1) − z = 0 then

∑n
i=1 b

2
i = 2z, z +∑

i∈I⊥ bi = 0 and z = z1. First, it follows from [1, 1.4(ii)] that
∑n

i=1 bi = 0
and bi ∈ {0, 1,−1}. It means that

∑n
i=1 ai = n and ai ∈ {0, 1, 2} for every

i = 1, . . . , n. Since z = z1, we have ai ̸= 0 for every i ∈ I. If z2 = |{ i ∈ I⊥ | bi =
1 }| = |{ i ∈ I⊥ | ai = 2 }| then

∑
i∈I⊥ bi = z2−z1 = z2−z. Since z+

∑
i∈I⊥ = 0,

we have z2 = 0. Thus ai ̸= 2 for every i /∈ I.

Example 4.2. (i) Put n = 2, a1 = 2, a2 = 0, I = {1}. Then
∑2

i=1 a
2
i −∑2

i=1 ai − (a1 − 1) = 1 = z (cf. [1, 6.1(i)].
(ii) Put n = 5, a1 = a2 = a3 = 2, a4 = a5 = 0, I = {1, 2, 3}. Then∑5

i=1 a
2
i −
∑5

i=1 ai−
∑3

i=1(ai−1) = 3 and z = 2. We have also
∑5

i=1 b
2
i −2z = 1

and z +
∑5

i=1 bi = 0.

Remark 4.3. Consider the situation from 4.1 (and the proof). Assume that
the numbers ai are non-negative.

(i) If
∑

i∈I⊥ ai ≥ |I⊥| = n − |I| then
∑

i∈I⊥ bi ≥ 0 and we conclude that∑n
i=1 a

2
i −

∑n
i=1 ai −

∑
i∈I(ai − 1) ≥ 2z. For instance, if |I| = n − 1 then the

latter inequality is true provided that aj ̸= 0, where {j} = I⊥.
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(ii) Assume that ai = 0 for every i ∈ I⊥. Then
∑n

i=1 a
2
i−
∑n

i=1 ai−
∑

i∈I(ai−
1) =

∑
i∈I(ai − 1)2 =

∑
i∈I bi =

∑n
i=1 b

2
i − n+ |I| ≥ 2z − n+ |I|. For instance,

if |I| = n− 1 then
∑n

i=1 a
2
i −

∑n
i=1 ai −

∑
i∈I(ai − 1) ≥ 2z − 1.

Assume, moreover, that z1 = |{ i ∈ I | ai = 0 }| ≥ n − |I|. We have z =
z1 + n − |I|, so that z ≥ 2(n − |I|), 4z − 2n + 2|I| ≥ 3z and 2(

∑n
i=1 a

2
i −∑n

i=1 ai −
∑

i∈I(ai − 1)) ≥ 3z.

Proposition 4.4. Let n ≥ 1 and let a1, . . . , an be non-negative integers. De-
note z = |{ i | 1 ≤ i ≤ n, ai = 0 }|, w = |{ i | 1 ≤ i ≤ n, ai ≥ 2 }| and
a = max(a1, . . . , an). Assume that a ≥ 3 and 2a2 − 4a + 2w ≥ 3z. Then,
for every subset I ⊆ {1, . . . , n},

2(
n∑

i=1

a2i −
n∑

i=1

ai −
∑
i∈I

(ai − 1)) ≥ 3z.

Proof. Put α = (a1, . . . , n) and β = α − 1 = (a1 − 1, . . . , an − 1). Then
2r(α) − 2s(α) − 2

∑
i∈I(ai − 1) − 3z = 2(r(β) +

∑
i∈I⊥ bi) − 3z(β,−) (see the

proof of 4.1). Furthermore, a = max(β) + 1, max(β) ≥ 2, w = z(β,+) and
2max(β)2+2z(β,+)−2−3z(β,−) ≥ 0. If (z(β,−) =) z ̸= 0 then min(β) = −1
and 2(r(β)+

∑
i∈J bi)−3z(β,−) ≥ 0 by 3.5(v), where J = { i | bi < 0 } = { i | bi =

−1 } = { i | ai = 0 }. Of course,
∑

i∈I⊥ bi ≥
∑

i∈J bi = −|J | = −z, and hence
2(r(β)+

∑
i∈I⊥ bi)−3z(β,−) ≥ 0. On the other hand, if z = 0 then z(β,−) = 0

and 2(r(β) +
∑

i∈I⊥ bi)− 3z(β,−) ≥ 0 trivially.

Remark 4.5. Let n ≥ 1 and let a1, . . . , an be non-negative integers such that
max(a1, . . . , an) = 2 and α = (a1, . . . , an). Put J = { i | ai = 2 }. Using
3.2(v) and proceeding similarly as in the proof of 4.4, we show that 2(

∑n
i=1 a

2
i −∑n

i=1 ai −
∑

i∈I(ai − 1)) ≥ 3z if and only if 2|J | = 2z(α, 2) ≥ 3z. Of course, we
have s(α) = 2z(α, 2) + z(α, 1) = 2z(α, 2) + n − z(α, 2) − z = z(α, 2) + n − z.
Henceforth, if s(α) ≤ n then 1 ≤ z(α, 2) ≤ z.
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Abstract. A graph is one-regular and arc-transitive if its full automorphism group acts
on its arcs regularly and transitively, respectively. In this paper, we classify connected
one-regular graphs of prime valency and order 20p for each prime p. As a result there
is only one infinite family of such graphs, that is, the cycle C20p with valency two.

Keywords: symmetric graph, arc-transitive graph, one-regular graph.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts and graph-theoretic terms not defined
here we refer the reader to [20, 22] and [1, 2], respectively. Let G be a permu-
tation group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that
is, the subgroup of G fixing the point v. We say that G is semiregular on Ω if
Gv = 1 for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X

char 42 . Corresponding author
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is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all know
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is 1-regular with full automorphism group D2n. Let p and q be two
primes. Classifying s-transitive and s-regular graphs has received considerable
attention. The classification of s-transitive graphs of order p and 2p was given in
[5] and [7], respectively. Liu [15] characterized prime-valent arc-transitive basic
graphs of order 4p or 4p2. Li [14] and Chen [6] classified prime-valent one-regular
graph of order 8p and 12p, respectively. Pan [19] and Huang [13] classified the
pentavalent s-transitive graphs of order 4pq and 4pn for n a positive integer,
respectively. Pan [18] determined heptavalent symmetric graph of order four
times an odd square-free integer. Zhou [24] gave a complete classification of
cubic one-regular graphs of order twice a square-free integer.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic
case, s-transitivity always means s-regularity by Miller [17]. However, for the
other prime-valent case, this is not true, see for example [10] for pentavalent
case and [11] for heptavalent case. Thus, the characterization and classification
of prime-valent s-regular graphs is very interesting and also reveals the s-regular
global and local actions of the permutation groups on s-arcs of such graphs. In
particular, 1-regular action is the most simple and typical situation. In this
paper, we classify prime-valent one-regular graph of order 20p for each prime p.

2. Preliminary results

Let X be a connected G-symmetric graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as
the graph with vertices the orbits of N on V (X) and with two orbits adjacent
if there is an edge in X between those two orbits. In view of [16, Theorem 9],
we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), and the
quotient graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [7], we introduce the graphs
G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
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and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
H(p, q) the unique subgroup of Z∗

p of order q. Define the graph G(2p, q) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order
2p with p, q primes. Then X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q

∣∣ (p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp ⋊ Zq)⋊ Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

Let p ̸= 5 be an odd prime. Then 20p = 4·5·p is four times a square-free
integer. From [18, Theorem 1.1], we have the following characterization about
the full automorphism groups of connected heptavalent symmetric graphs of
order 20p with p ̸= 5.

Proposition 2.3. Let p be an odd prime different from 5 and X a connected
heptavalent symmetric graphs of order 20p. Then, the full automorphism group
Aut(X) ∼= PSL(2, p), PGL(2, p), PSL(2, p)×Z2 or PGL(2, p)×Z2 with p ≡
1(mod 7).

The following proposition is the famous “N/C-Theorem”, see for example
[12, Chapter I, Theorem 4.5]).

Proposition 2.4. The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

From [8, p.12-14] and [21, Theorem 2], we can deduce the non-abelian simple
groups whose orders have at most three different prime divisors.

Proposition 2.5. Let G be a non-abelian simple group. If the order |G| has
exactly three different prime divisors, then G is called K3-simple group and
isomorphic to one of the following groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5

The next proposition is proved originally by John Thompson, but now an
easy consequence of the Classification of Finite Simple Groups (see for example
[23, Chapter 1, Section 2]), that all finite non-abelian simple 3′-groups (whose
order is not divisible by 3) are Suzuki groups. This is well known in the sense
that it is mentioned frequently in the literature.
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Proposition 2.6. Any non-abelian finite simple group whose order is not di-
visible by 3 is isomorphic to a Suzuki group Sz(q) with q = 22n+1 and n ≥ 1. In
particular, the order of Sz(q) is q2(q2 + 1)(q − 1).

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
20p for each prime p. Let q be a prime. In what follows, we always denote
by X a connected q-valent one-regular graph of order 20p. Set A = Aut(X),
v ∈ V (X). Then the vertex stabilizer Av ∼= Zq and hence |A| = 20pq.

Now, we first deal with the special case q ≤ 5. Clearly, any connected graph
of order 20p and valency two is isomorphic to the cycle C20p. Thus, for q = 2,
X ∼= C20p and A ∼= D40p. Let q = 3. By [24, Corollary 3.3], there exists no
cubic one-regular graph of order 4·5·p. Let q = 5. By [19, Theorem 3.1], [15,
Theorem 1.1] and [13], there exists no pentavalent one-regular graph of order
4·5·p. The next lemma is about the case q = 7.

Lemma 3.1. There exists no heptavalent one-regular graph of order 20p

Proof. Let X be a heptavalent one-regular graph of order 20p. Then q = 7
and |A| = 4·5·7·p = 140p. By Proposition 2.3, A ∼= PSL(2, p), PGL(2, p),
PSL(2, p)×Z2 or PGL(2, p)×Z2, where p ≡ 1(mod 7).

Suppose that A = PSL(2, p). Then |A| = 140p = 1
2p(p

2 − 1). It forces
that p2 = 281. Note that p2 is a prime square. However, 281 is a prime, a
contradiction.

Suppose that A = PGL(2, p) or PSL(2, p)×Z2. Then |A| = 140p = p(p2−1).
This implies that p2 = 141 = 3·47, a contradiction.

Suppose that A = PGL(2, p)×Z2. Then |A| = 140p = 2p(p2 − 1). An
easy calculation implies that p2 = 71, contrary to the fact that p2 is a prime
square.

To finish the classification, we treat the general case q > 7.

Lemma 3.2. Let q > 7. Then there exists no q-valent one-regular graph of
order 20p

Proof. Let X be a q-valent one-regular graph of order 20p. Then |A| = 20pq,
|V (X)| = 20p and Av ∼= Zq. If p = 2, then |V (X)| = 40. By [14, Theorem 3.3],
there exists no q-valent one-regular graph of order 40 with q > 7. If p = 3, then
|V (X)| = 60 = 12·5. By [6, Theorem 3.1], there exists no q-valent one-regular
graph of order 60 with q > 7. Next, we deal with p ≥ 5 and separate them into
two cases: p = 5 and p ≥ 7.

Case 1. Suppose that p = 5. Then |V (X)| = 20·5 and |A| = 22·52·q.

Note that q > 7. If A is not solvable, then A has a composition factor
isomorphic to a K3-simple group. By Proposition 2.5, every K3-simple group
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has divisor 3. It forces that 3
∣∣ |A|, a contradiction. Thus, A is solvable. LetN be

a minimal normal subgroup of A. Then N is also solvable and hence isomorphic
to Z2, Z2

2, Z5, Z2
5 or Zq. An easy calculation implies that the number of the

orbits of N acting on V (X) is at least 4. By Proposition 2.1, N is semiregular
on V (X) and so N ̸∼= Zq. Since there exists no regular graph of odd order and
odd valency, we have N ̸∼= Z2

2, and since there is no q-valent graph of order 4
with q > 7, we have that N ̸∼= Z2

5. It follows that N
∼= Z2 or Z5.

Assume that N ∼= Z2. Then XN is a q-valent symmetric graph of order
2·52. Recall that A is solvable. Thus, A/N is also solvable. Since q > 7, we
have that A/N has no normal subgroup of order q by Proposition 2.1, and since
there exists no regular graph of odd order and odd valency, we have that A/N
has no normal subgroup of order 2. The solvability of A/N implies that A/N
has a normal 5-subgroup, say M/N . With an easy calculation, we have that
|M/N | = 52 or 5.

Let |M/N | = 52. Then by Proposition 2.4, M/CM (N) ≲ Aut(N) ∼= Z1

because N ∼= Z2. It forces that M = CM (N). Let P be a Sylow 5-subgroup of
M . Then |P | = 52 and M = P×N . Since P is a normal Sylow 5-subgroup of
M , we have that P is characteristic inM . The normality ofM in A implies that
P is also normal in A. By Proposition 2.1, XP is a q-valent symmetric graph
of order 4. However, any symmetric graphs of order 4 is isomorphic to either
the cycle C4 with valency 2 or the complete graph K4 with valency 3. This is
contrary to the fact that XP has valency q > 7.

Let |M/N | = 5. Then M has order 10. By elementary group theory, any
group of order 10 is isomorphic to either a cyclic group Z10 or a dihedral group
D10. Clearly, the former group has a normal subgroup of order 2 and the latter
group has no normal subgroup of order 2. Since M has a normal subgroup
N ∼= Z2, we have thatM ∼= Z10 andM has a normal subgroup P ∼= Z5. Clearly,
P is a Sylow 5-subgroup of M . The normality of P in M forces that P is
characteristic in M , and since M is normal in A, we have that P is also normal
in A. By Proposition 2.1, XP is a q-valent symmetric graph of order 20 with
q > 7. Checking the list of symmetric graph of order up to 30 in [9], we have
that XP

∼= K20 with q = 19 and A/P ≲ Aut(K20) ∼= S20. An easy calculation
implies that |A/P | = 22·5·19. However, by Magma [3], S20 has no subgroup of
order 22·5·19, a contradiction.

Assume that N ∼= Z5. Then by Proposition 2.1, XN is a q-valent symmetric
graph of order 20, and by [9], XN

∼= K20 with q = 19. A similar argument as
the above paragraph we can deduce a contradiction.

Case 2. Suppose that p ≥ 7. Then |A| = 22·5·p·q with q > 7.

If A is non-solvable, then A must have a composition factor isomorphic to
a non-abelian simple group. Note that the order of A has exactly four different
prime divisors. Thus, this non-solvable composition factor is either K3-simple
group or K4-simple group. Since p ≥ 7 and q > 7, we have that 3 is not a divisor
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of |A|. By Propositions 2.5 and 2.6, the only possibilities are the Suzuki groups
Sz(22n+1) with n ≥ 1. This forces that

|Sz(22n+1)| = (22n+1)2((22n+1)2 + 1)(22n+1 − 1)
∣∣ |A|.

This is contrary to the fact that |A| = 22·5·p·q with p ≥ 7 and q > 7. Thus, A is
solvable. For convenience we still use N to denote a minimal normal subgroup
of A. Clearly, N is also solvable and N ∼= Z2, Z2

2, Z5, Zp, Zq or Z2
p with q = p.

Since |V (X))| = 20p, we have that N is not transitive and has at least 20 orbits
on V (X). By Proposition 2.1, N is semiregular on V (X), and so N ̸∼= Z2

p with
p = q. Since there exists no connected regular graph of odd order and odd
valency, we have that A has no normal subgroup of order 4 and so N ̸∼= Z2

2.
Thus, N ∼= Z2, Z5 or Zp.

Assume that N ∼= Zp. Then XN is a q-valent symmetric graph of order 20
and A/N ≲ Aut(XN ) by Proposition 2.1. Since q > 7, we have that XN

∼= K20

with q = 19 by [9] and A/N ≲ S20. Note that |A/N | = 22·5·19. However, by
Magma [3], S20 has no subgroup of order 22·5·19, a contradiction.

Assume that N ∼= Z5. Then XN is a q-valent symmetric graph of order 4p
and A/N ≲ Aut(XN ) by Proposition 2.1. The solvability of A forces that A/N
is also solvable. Recall that A has no normal subgroup of order 4, q or p2 with
p = q. Thus, A/N has normal subgroup M/N ∼= Zp or Z2. It follows that M is
a normal subgroup of A and has order 5p or 10. Again by Proposition 2.1, XM

is a q-valent symmetric graph of order 4 or 2p. For the former, XM
∼= C4 or

K4. Clearly, this is impossible because XM has valency q > 7. For the latter,
XM
∼= K2p, Kp,p or G(2p, q).

Let XM
∼= K2p. Then q = 2p − 1 and A/M ≲ S2p. Clearly, A/M has

order 2·p·q and is 2-transitive on V (XM ) because q = 2p − 1. By Burnside’s
Theorem [4, p.192, Theorem IX], any 2-transitive permutation group is either
almost simple or affine. The solvability of A forces that A/M is also solvable
and hence affine. It follows that A/M has a normal subgroup K/M ∼= Zp. Since
|M | = 10 and p ≥ 7, we have that K has a normal Sylow p-subgroup P ∼= Zp
by Sylow Theorem. The normality of the Sylow p-subgroup P in K forces that
P is characteristic in K. Thus, P is normal in A. Again by Proposition 2.1,
XP is a q-valent symmetric graph of order 20 and by [9], XP

∼= K20. A similar
argument as the above, we deduce that A/P has order 22·5·19 and can not be
embedded in S20, a contradiction.

Let XM
∼= Kp,p. Then p = q and |A/M | = 2p2. Since q = p > 7, we

have that A/M has a normal Sylow p-subgroup K/M by Sylow Theorem and
|K/M | = p2. It follows that |K| = 10·p2. Let P be a Sylow p-subgroup of
K. Then P has order p2 and again by Slow Theorem, P is normal and hence
characteristic in K. The normality of K in A forces that P is also normal in A.
Since |V (X)| = 20·p, we have that P acting on V (X) has 20 orbits and Pv ∼= Zp.
However, by Proposition 2.1, P must be semiregular on V (X), that is, Pv = 1,
a contradiction.
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Let XM
∼= G(2p, q). Then |A/M | = 2·p·q and by Proposition 2.2, A/M ∼=

(Zp⋊Zq)⋊Z2 with q
∣∣ (p − 1). This implies that A/M has a normal subgroup

K/M ∼= Zp. Since M has order 10, we have that K has a normal Sylow p-
subgroup P ∼= Zp by Sylow Theorem. Thus, P is characteristic in K and hence
normal in A. By Proposition 2.1, XP is a q-valent symmetric graph of order 20
and by [9], XP

∼= K20. Similarly, A/P has order 22·5·19 and by Magma [3], S20
has no subgroup of order 22·5·19, a contradiction.

Assume that N ∼= Z2. Then XN is a q-valent symmetric graph of order
2·5·p, |A/N | = 2·5·p·q and A/N ≲ Aut(XN ). Since A/N has order twice an odd
number, we have that A/N must have a normal subgroup M/N of index two.
Thus, |M/N | = 5·p·q and M also has order twice an odd number. It follows
that M is also has a normal subgroup K of index two and so |K| = 5·p·q. This
implies that |A : K| = 4 and K is also normal in A. Recall that A has no normal
subgroup of order 4, q or p2 with q = p. If p = q, then |K| = 5·p2. Since q > 7,
we have that K must a normal Sylow p-subgroup P by Sylow Theorem. It forces
that P is characteristic in K and hence normal in A. Clearly, P has order p2,
this is impossible. Thus, p ̸= q. Since K is solvable, we have that K must have
a normal subgroup H ∼= Z5, Zp or Zq. Note that 5, p and q are different primes.
Thus, H is characteristic in K and hence normal in A. Since Av ∼= Zq, we have
that H ̸∼= Zq. This implies that A has a normal subgroup H ∼= Z5 or Zp. Similar
arguments as the above, we can deduce that this is impossible.

Combining the above arguments with the cases q = 2, 3, 5, and Lemmas 3.1-
3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular
graph of order 20p. Then X is isomorphic to the cycle C20p with valency 2 and
Aut(X) ∼= D40p.
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Abstract. Let R be a commutative completely primary finite ring with Jacobson
radical J such that J 3 = (0), J 2 ̸= (0) and R/J ∼= GF (pr), the finite field with
pr elements, for any prime p and any positive integer r. Then, characteristic of R is
either p, p2 or p3. In this paper, we determine the structure and generators of the
group of units of the ring R in the special case when the characteristic of R is p3.
We treat the problem by considering fixed dimensions and bases for the vector spaces
J i/J i+1 (i = 1, 2) over the residue field R/J and by fixing the order of the ideal J 2.
This complements the author’s earlier solution to the problem in the case when the
characteristic of R is p or p2 and J 2 ⊆ ann(J ), the annihilator of J .

Keywords: finite commutative rings, unit groups.

1. Introduction

Throughout this paper, all rings are finite and commutative (unless otherwise
stated) with identity element 1 ̸= 0, subrings have the same identity, ring ho-
momorphisms preserve 1 and modules are unital. A finite ring R is called
completely primary if all its zero divisors including the zero element form the
unique maximal ideal J . Completely primary finite rings are precisely local
rings with unique maximal ideals. For a given completely primary finite ring
R, unless otherwise stated, J will denote the Jacobson radical of R, and we
will denote the Galois ring GR(pnr, pn) of characteristic pn and order pnr by
Ro, for a prime integer p and positive integers n, r. We denote the group of
units of R by U(R); if g is an element of U(R), then o(g) denotes its order, and
< g > denotes the cyclic group generated by g. Similarly, if f(x) ∈ R[x], we
shall denote by < f(x) > the ideal generated by f(x). Further, for a subset A
of R or U(R), |A| will denote the number of elements in A. The ring of integers
modulo the number n will be denoted by Zn, and the characteristic of R will be
denoted by charR. The symbol K will denote the residue field R/J and Ko will
denote the set of coset representatives of the maximal ideal J in the ring R. We
denote a direct product of r cyclic groups of Zm by Zr

m or by Zm × · · · × Zm︸ ︷︷ ︸
r

.

If I is an ideal of R generated by the elements a, b, we shall denote this by
I = (a, b).
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Let R be a completely primary finite ring with maximal ideal J . Then, |R| =
pnr, J is the Jacobson radical of R, Jm = (0), where m ⩽ n, |J | = p(n−1)r, and
the residue field R/J ∼= GF (pr), the finite field of pr elements, for some prime
p and positive integers n, r. The characteristic charR of R is equal to R = pk,
where 1 ⩽ k ⩽ m. If k = n, then R = Zpk [b], where b is an element of R of order
pr − 1; J = pR and Aut(R) ∼= Aut(R/pR) (see Proposition 2 in [5]). Such a
ring is called a Galois ring, denoted by GR(pkr, pk), and a concrete model is
the quotient Zpk [x]/ < f(x) >, where f(x) is a monic polynomial of degree r,
irreducible modulo p. Any such polynomial will do: the rings are all isomorphic.
Trivial cases are GR(pn, pn) = Zpn and GR(pn, p) = Fpn . Furthermore, if k < n
and charR = pk, it can be deduced from [4] that R has a coefficient subring Ro of
the form GR(pkr, pk) which is clearly a maximal Galois subring of R. Moreover,
if R

′
o is another coefficient subring of R then there exists an invertible element

x in R such that R
′
o = xRox

−1 (see Theorem 8 in [5]). The maximal ideal of Ro

is
Jo = pRo = J ∩Ro, and Ro/Jo

∼= GF (pr).

Let ψ : Ro −→ Ro/Jo be the canonical map. Since the element b has order
pr − 1 and Jo ⊂ J , we have that ψ(b) is a primitive element of Ro/Jo. Let
Ko =< b > ∪{0} and let Ro = Zpk [b] be a coefficient subring of R of order pkr.
Then, it is easy to show that every element of Ro can be written uniquely as∑k−1

i=0 λip
i, where λi ∈ Ko. Also, there exist elements m1, m2, . . . ,mh ∈ J and

automorphisms σ1, . . . , σh ∈ Aut(Ro) such that

R = Ro ⊕
h∑

i=1

Romi (as Ro −modules), mir = σi(r)mi,

for every r ∈ Ro and any i = 1, . . . , h. Further, σ1, . . . , σh are uniquely deter-
mined by R and Ro. The maximal ideal of R is

J = pRo ⊕
h∑

i=1

Romi.

Let R be a completely primary ring (not necessarily commutative) of order
pnr with unique maximal ideal J . Then, the set R− J consisting of invertible
elements in R forms a group with respect to the multiplication defined on R,
called the group of units of R. The following facts are useful for our purpose
(e.g. see [5, §2]): The group of units U(R) of R contains a cyclic subgroup
< b > of order pr − 1, and it is a semi-direct product of 1 + J by < b >; the
group U(R) is solvable; if G is a subgroup of U(R) of order pr − 1, then G
is conjugate to < b > in U(R); if U(R) contains a normal subgroup of order
pr − 1, then the set Ko =< b > ∪{0} is contained in the center of the ring
R; and (1 + J i)/(1 + J i+1) ∼= J i/J i+1 (the left hand side as a multiplicative
group and the right hand side as an additive group). It is easy to check that
|U(R)| = p(n−1)r(pr − 1) and that |1+J | = p(n−1)r, so that 1 +J is a p-group.
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In [1], the author studied completely primary finite rings with unique maxi-
mal ideals J such that J 3 = (0), J 2 ̸= (0) for all the characteristics. For more
details on the structure and construction of these rings, the interested reader
may refer to [1].

Let R be a commutative completely primary finite ring with Jacobson radical
J such that J 3 = (0) and J 2 ̸= (0) (see, for example, [1]). Then, in view of
the above results, charR is either p, p2 or p3. The ring R contains a coefficient
subring Ro with charRo =charR, and with Ro/pRo equal to R/J . Moreover,
Ro is a Galois ring of the form GR(pkr, pk), k = 1, 2 or 3. Let ann(J ) denote
the two-sided annihilator of J in R. Of course ann(J ) is an ideal of R. Because
J 3 = (0), it follows easily that J 2 ⊆ ann(J ).

From now on, we assume that the characteristic of the ring R is p3. Because
J 3 = (0), we have that p2mi = 0, for all mi ∈ J . Further, pmi = 0 for all mi ∈
ann(J ). In particular, pmi = 0 for all mi ∈ J 2. It is now obvious to see that p
lies in J −J 2, and p2 ∈ J 2. Let B1 = {p, u1, ..., us} denote the set of elements
of J whose images modulo J 2 form a K−basis for J /J 2 so that dimK(J /J 2)
is d1 = 1 + s, and let B2 = {p2, pu1, ..., pud, u21, u1u2, . . . , u2s} denote the set
of elements of J whose images modulo J 3(∼= (0)) form a K−basis for J 2, so
that dimK(J 2) is d2 = 1+d+ t, where t ⩽ s(s+1)/2, i.e. d2 ⩽ (1+s)(2+s)/2.
Then, an arbitrary element in R is of the form

ao + a1p+ a2p
2 +

s∑
i

biui +
d∑

l=1

clpul +
s∑

i,j=1

dijuiuj , (ao, a1, bi, cl, dij ∈ Ko).

Clearly, the products uiuj ∈ J 2. Hence, we conclude that p2, pui and uiuj
(i, j = 1, . . . , s) generate J 2. In fact, we can write any v ∈ J 2 as a linear
combination of p2, pui and uiuj as follows:

v = α0p
2 +

d∑
i=1

αipui +
s∑

i, j=1

αijuiuj ,

where α0, αi, αij ∈ Ro/pRo. Clearly, |R| = p3r · p2dr · p(s−d)r · ptr = p(3+s+d+t)r

and |J | = p(2+s+d+t)r. (Notice that |Roui| = p2r if pui ̸= 0, and |Roui| = pr, if
otherwise.)

In this paper, we determine explicitly the group of units of all commutative
completely primary finite rings R with Jacobson radical J such that J 3 = (0),
J 2 ̸= (0), and of characteristic p3. We treat the problem by considering fixed
dimensions and bases for the vector spaces J i/J i+1 (i = 1, 2) over the residue
field K = R/J and by fixing the order of the ideal J 2. First, if a ring R has
J such that di =dimKJ i/J i+1 (i = 1, 2), then as we shall see later, we may
further classify R according to the behaviour of a generating set for J . In
particular, we determine the group of units of the ring R with dimK(J /J 2) =
1 + s and dimK(J 2) ⩽ (1 + s)(2 + s)/2 under the given conditions (see Section
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2) on the basis elements of J 2 over K. This complements the author’s earlier
solution of the problem [2] in the case when the characteristic of R is p or p2

and J 2 ⊆ ann(J ), the annihilator of J .

2. The group of units

Let R be a commutative completely primary finite ring with Jacobson radical
J such that J 3 = (0), J 2 ̸= (0), and of characteristic p3. Suppose that J =
(p, u1, ..., us) so that dimK(J /J 2) = 1 + s, for any integer s ⩾ 0. As noted
above, the non-zero elements p2, pui (i = 1, . . . , s), uiuj (i, j = 1, . . . , s) span
J 2 over K. If pui = 0, then ui ∈ ann(J ) ⊇ J 2 and as such for every element
x ∈ J , we have uix = xui = 0. In particular, uiuj = 0 (∀i, j = 1, . . . , s).We also
note that pJ ⊆ J 2 is spanned by the non-zero elements p2 and pui (i = 1, . . . , s),
since puiuj = 0 (∀i, j = 1, . . . , s).

Following the above observations, we determine the structure of the group
of units U(R) of the ring R under the conditions listed below:
(i) J = (p, u1, . . . , us), pui = uiuj = 0, so that J 2 = (p2), dimK(J 2) = 1 and
|J 2| = pr;
(ii) J = (p, u1, . . . , us), J 2 = pJ , so that uiuj = 0, dimK(J 2) ⩽ 1 + s and
|J 2| ⩽ p(1+s)r; and
(iii) J = (p, u1, . . . , us), J 2 = (p2, pui, . . . , pus, uiuj) (i, j = 1, . . . , s),
dimK(J 2) ⩽ (s+ 1)(s+ 2)/2 and |J 2| ⩽ p[(s+1)(s+2)/2]r.

One easily verifies that the above cases are all commutative completely pri-
mary finite rings of characteristic p3 with unique maximal ideal J such that
J 3 = (0) and J 2 ̸= (0). Also, to distinguish (iii) from the other two cases, we
assume that pui ̸= 0 for at least one ui, and uiuj ̸= 0 for at least one product.

We know that for a commutative completely primary finite ring R,

U(R) =< b > ·(1 + J ) ∼=< b > ×(1 + J );

a direct product of the p−group 1 + J by the cyclic subgroup < b > . Thus,
since the structure of < b > is basic, it suffices to determine the structure of the
subgroup 1 + J in order to obtain the complete structure of U(R).

There are many important results on the group of units of certain finite
rings. For example, it is well known that the multiplicative group of the finite
field GF (pr) is a cyclic group of order pr − 1, and the multiplicative group of
the finite ring Z/pkZ, the ring of integers modulo pk, for p a prime number, and
k a positive integer, is a cyclic group of order pk−1(p − 1) if p is odd, and is a
direct product of a cyclic group of order 2 and a cyclic group of order 2k−2, if
p = 2.

Let U(Ro) denote the group of units of the Galois ring Ro = GR(pnr, pn).
Then, U(Ro) has the following structure [5]:

Theorem 2.1. U(Ro) =< b > ×(1 + pRo), where < b > is the cyclic group of
order pr − 1 and 1 + pRo is of order p(n−1)r whose structure is described below.
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(i) If (a) p is odd, or (b) p = 2 and n ⩽ 2, then 1+ pRo is the direct product
of r cyclic groups each of order p(n−1).

(ii) When p = 2 and n ⩾ 3, the group 1 + pRo is the direct product of a
cyclic group of order 2, a cyclic group of order 2(n−2) and r − 1 cyclic groups
each of order 2(n−1).

In Propositions 2.2 and 2.3, we will provide detailed proofs for the two types
of rings of this paper, while in Proposition 2.1, we merely state U(R) and their
generators for the other type of rings, as the proofs are very similar and may be
proved by slight modifications of these.

For the rest of this paper, we shall take r elements ε1, . . . , εr in Ro with
ε1 = 1 such that {ε1, . . . , εr} is a basis for the quotient ring Ro/pRo regarded
as a vector space over its prime subfield GF (p).

2.1 The case when J 2 = (p2) and pui = uiuj = 0

Let dimK(J /J 2) = 1+ s and suppose that J = (p, u1, . . . , us), for any integer
s ⩾ 0. Suppose further that pui = uiuj = 0, for every i, j = 1, . . . , s. Then,
J 2 = (p2), dimK(J 2) = 1 and |J 2| = pr. The following result determines the
structure of the group of units of R and its generators.

Proposition 2.1. Let R be a ring of characteristic p3 with maximal ideal J such
that J 3 = {0}, J 2 ̸= {0}. Suppose further that there exist elements u1, . . . , us
in J such that the multiplication in R is defined by pui = 0, uiuj = 0, for every
i, j = 1, . . . , s. Then,

U(R) ∼=


Z2r−1 × Z2 × Z2 × Zr−1

4 × Zr
2 × · · · × Zr

2︸ ︷︷ ︸
s

, if p = 2;

Zpr−1 × Zr
p2 × Zr

p × · · · × Zr
p︸ ︷︷ ︸

s

, if p is odd.

Moreover, if p = 2, then 1 + J is generated by (−1 + 4ε1), (1 + 4ε1), each of
order 2, (r − 1) cyclic groups < 1 + 2εj > (j = 2, . . . , r), each of order 4, and
sr cyclic groups < 1 + εjui >, each of order 2, for i = 1, . . . , s. If p is odd, then
1 + J is generated by 1 + pεj (j = 1, . . . , r), each of order p2, and sr cyclic
groups 1 + εjui (j = 1, . . . , r), each of order p, for i = 1, . . . , s.

2.2 The case when J 2 = pJ

Let dimK(J /J 2) = 1+ s and suppose that J = (p, u1, . . . , us), for any integer
s ⩾ 0. Suppose further that pui ̸= 0 for i = 1, . . . , d ⩽ s and puj = 0 for
j = d+1, . . . , s. Then, uiuj = 0, for every i, j = 1, . . . , s and dimK(J 2) ⩽ 1+s.
The following determines the structure and generators of the group of units of
the ring R.

Proposition 2.2. Let R be a ring of characteristic p3 with maximal ideal J such
that J 3 = {0}, J 2 ̸= {0}. Suppose further that there exist elements u1, . . . , us
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in J such that the multiplication in R is defined by pui ̸= 0, for i = 1, . . . , d ⩽ s,
puj = 0, for j = d+ 1, . . . , s, and uiuj = 0, for every i, j = 1, . . . , s. Then,

U(R) ∼=



Z2r−1 × Z2 × Z2 × Zr−1
4 × Zr

4 × · · · × Zr
4︸ ︷︷ ︸

d

×Zr
2 × · · · × Zr

2︸ ︷︷ ︸
s−d

, if p = 2

Zpr−1 × Zr
p2 × Zr

p2 × · · · × Zr
p2︸ ︷︷ ︸

d

×Zr
p × · · · × Zr

p︸ ︷︷ ︸
s−d

, if p ̸= 2

Moreover, if p is odd, then 1+J is generated by r elements 1+pεk (k = 1, . . . , r),
each of order p2, dr elements 1 + εkui (k = 1, . . . , r), each of order p2, for
i = 1, . . . , d ⩽ s and by (s− d)r elements 1 + εkuj (k = 1, . . . , r), each of order
p, for j = d+ 1, . . . , s.

If p = 2, then 1+J is a direct product of 2 cyclic groups < −1+ 4ε1 > and
< 1+4ε1 >, each of order 2, (r−1) cyclic groups < 1+2εk > (k = 2, . . . , r), each
of order 4, dr cyclic groups < 1 + εkui >, each of order 4, for i = 1, . . . , d ⩽ s
and by (s− d)r cyclic groups < 1+ εkuj >, each of order 2, for j = d+1, . . . , s.

Proof. Suppose pui ̸= 0 for i = 1, . . . , d ⩽ s, puj = 0 for j = d+ 1, . . . , s and
uiuj = 0 for 1 ⩽ i, j ⩽ d ⩽ s. Let a = 1 + x be an element of 1 + J with the
highest possible order and assume that x ∈ J − J 2. Then, o(a) = p2. This is
true because, for any εk (k = 1, . . . , r),

(1 + εkx)
p = 1 + pεkx+

p(p− 1)

2
(εkx)

2 (since x3 = 0).

For every odd prime p, (1 + εkx)
p = 1 + pεkx, since px

2 = 0. Now,

(1 + pεkx)
p = 1 + p2εkx+

p(p− 1)

2
(pεkx)

2

= 1, since p2x = 0 and p3x2 = 0.

Hence, (1 + εkx)
p2 = 1.

For p = 2, (1 + εkx)
2 = 1 + 2εkx + (εkx)

2, and (1 + εkx)
4 = 1, since

4x = 0, 6x2 = 0, 4x3 = 0 and x4 = 0.

For any prime number p and for each k = 1, . . . , r, we see that (1+εkp)
p2 =

1, (1+εkui)
p2 = 1, for i = 1, . . . , d ⩽ s, while (1+εkuj)

p = 1, for j = d+1, . . . , s.

For integers hki ⩽ p2, lkj ⩽ p, we asset that

r∏
k=1

d∏
i=1

(1 + εkui)
hki ·

r∏
k=1

s∏
j=d+1

(1 + εkuj)
lkj = 1,
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will imply hki = p2, for all k = 1, . . . , r and i = 1, . . . , d ⩽ s; lkj = p, for all
k = 1, . . . , r and j = d+ 1, . . . , s.

If we set Dki = {(1 + εkui)
hki : hki = 1, . . . , p2}, Ekj = {(1 + εkuj)

lkj :
lkj = 1, . . . , p}, for all k = 1, . . . , r, we see that Dki, Ekj are all subgroups of
1 +

∑
R0ui ⊕

∑
pR0ui and that Dki are all of order p2 and that Ekj are all

of order p as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dkj ,
and (s − d)r subgroups Eki is direct. Thus, their product will exhaust 1 +∑
R0ui ⊕

∑
pR0ui.

It is straightforward to check that if p = 2, then 1 + J is a direct product
of 2 cyclic groups < −1+ 4ε1 > and < 1+ 4ε1 >, each of order 2, (r− 1) cyclic
groups < 1+2εk > (k = 2, . . . , r), each of order 4, dr cyclic groups < 1+εkui >,
each of order 4, for i = 1, . . . , d ⩽ s and by (s− d)r cyclic groups < 1 + εkuj >,
each of order 2, for j = d+ 1, . . . , s.

Also, if p is odd, then 1+J is generated by r elements 1+pεk (k = 1, . . . , r),
each of order p2, dr elements 1 + εkui (k = 1, . . . , r), each of order p2, for
i = 1, . . . , d ⩽ s and by (s− d)r elements 1 + εkuj (k = 1, . . . , r), each of order
p, for j = d+ 1, . . . , s.

This completes the proof.

2.3 The case when J 2 = (p2, pui, uiuj)

Let dimK(J /J 2) = 1+s and suppose that dimK(J 2) ⩽ (s+1)(s+2)/2. Then,
J 2 = (p2, pui, uiuj). Suppose further that pui ̸= 0, for i = 1, . . . , d ⩽ s and
that puj = 0, for j = d + 1, . . . , s. Then, uiuj ̸= 0 for all i, j = 1, . . . , d ⩽ s
(since in this case ui, uj are not in ann(J )); and uiuj = 0 for all i = 1, . . . , s
and j = d + 1, . . . , s. Recall that if puj = 0, then uj ∈ ann(J ) and as such
ujx = 0 for every x ∈ J . The following describes the structure of U(R) and its
possible generators.

Proposition 2.3. Let R be a ring of characteristic p3 with maximal ideal J such
that J 3 = {0}, J 2 ̸= {0}. Suppose further that there exist elements u1, . . . , us
in J such that the multiplication in R is defined by pui ̸= 0, for i = 1, . . . , d ⩽ s,
and that puj = 0, for j = d+1, . . . , s so that uiuj ̸= 0 for all i, j = 1, . . . , d ⩽ s;
and uiuj = 0 for all i = 1, . . . , s and j = d+ 1, . . . , s. Then,

U(R) ∼=



Z2r−1 × Z2 × Z2 × Zr−1
4 × Zr

4 × · · · Zr
4︸ ︷︷ ︸

d

×Zr
2 × · · · × Zr

2︸ ︷︷ ︸
s−d

×

Zr
2 × · · · × Zr

2︸ ︷︷ ︸
d(d+1)/2

, if p = 2

Zpr−1 × Zr
p2 × Zr

p2 × · · · Zr
p2︸ ︷︷ ︸

d

×Zr
p × · · · × Zr

p︸ ︷︷ ︸
s−d

×

Zr
p × · · · × Zr

p︸ ︷︷ ︸
d(d+1)/2

, if p ̸= 2
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Proof. Suppose pui ̸= 0 for all i = 1, . . . , d ⩽ s and uiuj ̸= 0 for 1 ⩽ i, j ⩽
d ⩽ s. Let a = 1 + x be an element of 1 + J with the highest possible order
and assume that x ∈ J − J 2. Then, o(a) = p2. This is true because, for any
εk (k = 1, . . . , r),

(1 + εkx)
p = 1 + pεkx+

p(p− 1)

2
(εkx)

2 (since x3 = 0).

If p is odd, then (1 + εkx)
p = 1 + pεkx, since px

2 = 0. Now,

(1 + pεkx)
p = 1 + p2εkx+

p(p− 1)

2
(pεkx)

2

= 1, since p2x = 0 and p3x2 = 0.

Hence, (1 + εkx)
p2 = 1.

For any odd prime number p and for each k = 1, . . . , r, we see that
(1 + εkp)

p2 = 1, (1 + εkui)
p2 = 1, for i = 1, . . . , d ⩽ s, while (1 + εkuj)

p =
1, for j = d + 1, . . . , s, and for non-zero elements u2i , uiuj (i ̸= j), we have
(1 + εku

2
i )

p = 1, (1 + εkuiuj)
p = 1.

For integers hki ⩽ p2, lkj ⩽ p, mki and nkij ⩽ p, we asset that

r∏
k=1

d∏
i=1

(1 + εkui)
hki ·

r∏
k=1

s∏
j=d+1

(1 + εkuj)
lkj ·

r∏
k=1

d∏
i=1

(1 + εku
2
i )

mki ·

r∏
k=1

d∏
i, j=1

(1 + εkuiuj)
nkij = 1,

will imply hki = p2, for all k = 1, . . . , r and i = 1, . . . , d; lkj = p, for all
k = 1, . . . , r and j = d+1, . . . , s; mki = p for all k = 1, . . . , r and i = 1, . . . , d;
and nkij = p, for all k = 1, . . . , r and i, j = 1, . . . d.

If we set

Dki = {(1 + εkui)
hki : hki = 1, . . . , p2}

Ekj = {(1 + εkuj)
lkj : lkj = 1, . . . , p},

Fki = {(1 + εku
2
i )

mki : mki = 1, . . . , p},
Gkij = {(1 + εkuiuj)

nkij : nkij = 1, . . . , p},

for all k = 1, . . . , r, we see that Dki, Ekj , Fki and Gkij are all subgroups of
1 +

∑
R0ui ⊕

∑
R0uiuj and that Dki are all of order p2 and the others are all

of order p as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dki,
(s− d)r subgroups Ekj , dr subgroups Fki and the r[d(d+ 1)/2] subgroups Gkij

is direct. Thus, their product will exhaust 1 +
∑
R0ui ⊕

∑
R0uiuj , and we see

that the proof for the case when p is odd is complete.
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Now, assume that p = 2. Then, for each k = 1, . . . , r, we see that (1 +
εkui)

2 = 1+ 2εkui + ε2ku
2
i , (1 + εkui)

4 = 1, for i = 1, . . . , d ⩽ s; (1 + εkuj)
2 = 1,

for j = d+ 1, . . . , s; and (1 + εkuiuj)
2 = 1, for every i ̸= j = 1, . . . , d.

For integers hki ⩽ 4, lkj ⩽ 2, mki and nkij ⩽ 2, we asset that

r∏
k=1

d∏
i=1

(1 + εkui)
hki ·

r∏
k=1

s∏
j=d+1

(1 + εkuj)
lkj ·

r∏
k=1

d∏
i=1

(1 + εku
2
i )

mki ·

r∏
k=1

d∏
i, j=1

(1 + εkuiuj)
nkij = 1,

will imply hki = 4, for all k = 1, . . . , r; and i = 1, . . . , d; lkj = 2, for all
k = 1, . . . , r; and j = d+1, . . . , s;mki = 2 for all k = 1, . . . , r; and i = 1, . . . , d;
and nkij = 2, for all k = 1, . . . , r; and i, j = 1, . . . d.

If we set

Dki = {(1 + εkui)
hki : hki = 1, . . . , 4}

Ekj = {(1 + εkuj)
lkj : lkj = 1, 2},

Fki = {(1 + εku
2
i )

mki : mki = 1, 2},
Gkij = {(1 + εkuiuj)

nkij : nkij = 1, 2},

for all k = 1, . . . , r, we see that Dki, Ekj , Fki and Gkij are all subgroups of
1 +

∑
R0ui ⊕

∑
R0uiuj and that Dki are all of order 4 and the others are all

of order 2 as indicated in their definition. Also, pairwise intersection of these
subgroups is trivial.

The argument above will show that the product of the dr subgroups Dki,
(s− d)r subgroups Ekj , dr subgroups Fki and the r[d(d+ 1)/2] subgroups Gkij

is direct. Thus, their product will exhaust 1 +
∑
R0ui ⊕

∑
R0uiuj , and we see

that the proof for the case when p = 2 is complete.

This completes our investigation of the structure of the group of units of
commutative completely primary finite rings of characteristic p3 with unique
maximal ideals J such that J 3 = (0), J 2 ̸= (0) with given constraints on the
generators for the ideals J and J 2.
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1. Introduction

The introduction of fuzzy sets by Zadeh [32] was a boost to the solution of
uncertainties. With fuzzy sets as foundation, Rosenfeld [27] proposed fuzzy
group as an algebraic structure of fuzzy set. Many authors have extended some
group’s theoretic notions to fuzzy sets as seen in [4, 23, 24]. By a way of
generalization, Yager [31] introduced the notion of fuzzy multiset as a special
fuzzy set that allows the repetitions of membership functions of elements of
a set. Many works have been extensively carried out on fuzzy multisets and
applied to many real-life problems [3, 20, 21, 22, 30].

In a continuation of the study of fuzzy algebra, Shinoj et al. [29] pro-
posed fuzzy multigroup as an application of group theory to fuzzy multisets
and deduced some related results. As a follow up, the analog of subgroups in
fuzzy multigroup context was studied [5]. The notion of commutative fuzzy
multigroups has been studied and a number of results were presented [2, 6].
Some group’s analog notions have been investigated in fuzzy multigroup con-
text [1, 7, 8, 12, 14, 16, 17, 18, 15, 19]. The concept of direct product of fuzzy
multigroups and its generalization have been discussed [9, 13]. To show the con-
nection between fuzzy multigroup and group, the notion of alpha-cuts of fuzzy
multigroups was proposed [10, 11].

Though several concepts of group theory have been extended to fuzzy multi-
groups via fuzzy multisets, the notion of solvable/soluble fuzzy multigroups has
not been investigated in fuzzy multigroup context. This paper seeks to intro-
duce solvable fuzzy multigroup. The concept of solvable groups has been studied
in fuzzy group setting [28, 26]. The rest of the paper is delineated as follows:
Section 2 presents the notions of fuzzy multisets, fuzzy multigroups and certain
existing results, Section 3 presents the concept of solvable fuzzy multigroups
and discusses certain of its properties, and Section 4 summarizes and gives rec-
ommendations for future studies.

2. Preliminaries

We denote a non-empty set as X and a group as G throughout the paper.

Definition 2.1 ([32]). A fuzzy subset F of X is an object characterized by the
form

(1) F = {⟨x, µF (x)⟩ | x ∈ X},

where the function µF : X → [0, 1] defines the membership grade of x in X.

Definition 2.2 ([31]). A fuzzy multiset A of X is a structure of a form

(2) A = {⟨x,CMA(x)⟩ | x ∈ X}

characterized by a count membership function

(3) CMA : X → N I or CMA : X → [0, 1] → N,
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where I = [0, 1], N = {0, 1, 2, · · · } and CMA(x) = (µ1A(x), µ
2
A(x), · · · , µnA(x))

such that µ1A(x) ≥ µ2A(x) ≥ · · · ≥ µnA(x).

Definition 2.3 ([31]). Let A and B be fuzzy multisets of X. Then

(i) A = B ⇐⇒ CMA(x) = CMB(x), ∀x ∈ X,

(ii) A ⊆ B ⇐⇒ CMA(x) ≤ CMB(x), ∀x ∈ X,

(iii) A ∩B =⇒ CMA∩B(x) = min(CMA(x), CMB(x)), ∀x ∈ X,

(iv) A ∪B =⇒ CMA∪B(x) = max(CMA(x), CMB(x)), ∀x ∈ X,

(v) A⊕B =⇒ CMA⊕B(x) = CMA(x)⊕ CMB(x), ∀x ∈ X.

Definition 2.4 ([29]). A fuzzy multiset A of G is a fuzzy multigroup if we
have (i) CMA(xy) ≥ min(CMA(x), CMA(y)), and (ii) CMA(x

−1) = CMA(x),
∀x, y ∈ G. Because

CMA(e) = CMA(xx
−1) ≥ min(CMA(x), CMA(x))

= CMA(x), ∀x ∈ G,

where e is the identity element of G, then CMA(e) is the upper bound of A,
which is called the tip of A.

Definition 2.5 ([29]). Let A be a fuzzy multigroup of G. Then, the support of
A is the set supp(A) = {x ∈ G | CMA(x) ≥ 0}.

Proposition 2.6 ([29]). The support of a fuzzy multigroup A of G is a subgroup
of G.

Definition 2.7 ([5]). Let A and B be fuzzy multigroups of G. Then, the product
A ◦B is defined to be a fuzzy multiset of G as follows:

CMA◦B(x) =


∨
x=yzmin(CMA(y), CMB(z)), if there exist y, z ∈ G such that

x = yz

0, otherwise.

Definition 2.8 ([6]). A fuzzy multigroup A of G is said to be commutative if
CMA(xy) = CMA(yx), ∀x, y ∈ G. Certainly, if G is a commutative group, then
a fuzzy multigroup A of G is commutative.

Definition 2.9 ([5]). Let A and B be fuzzy multigroups of G. We say A is a
fuzzy submultigroup of B if A ⊆ B. Again, A is a proper fuzzy submultigroup
of B if A ⊆ B and A ̸= B.

Definition 2.10 ([7]). Let A be a fuzzy submultigroup of a fuzzy multigroup
B of G. We say A is normal in B if CMA(xy) = CMA(yx) ⇐⇒ CMA(y) =
CMA(x

−1yx), ∀x, y ∈ G, and we write A ◁ B.
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Remark 2.11. Certainly, every normal fuzzy submultigroup is self-normal and
abelian.

Definition 2.12 ([14]). Suppose A is a fuzzy submultigroup of a fuzzy multi-
group B of G. Then, the fuzzy submultiset yA of B for y ∈ G defined by
CMyA(x) = CMA(y

−1x), ∀x ∈ G is called the left fuzzy comultiset of A.
Similarly, the fuzzy submultiset Ay of B for y ∈ G defined by CMAy(x) =
CMA(xy

−1), ∀x ∈ G is called the right fuzzy comultiset of A.

Definition 2.13 ([14]). Suppose A and B are fuzzy multigroups of G and A◁B.
Then, the union of the set of left/right fuzzy comultisets of A such that xA◦yA =
xyA, ∀x, y ∈ G is called a quotient fuzzy multigroup of B by A, denoted by B/A.

3. On solvable fuzzy multigroups

Before investigating the notion of solvability in fuzzy multigroup, we first present
the following results which are helpful in establishing solvable fuzzy multigroups.

Theorem 3.1. (i) Every abelian fuzzy multigroup is self-normal. (ii) If A and
B are fuzzy multigroups of G such that A ◁ B, then A is self-normal.

Proof. Suppose A is an abelian fuzzy multigroup of G. Then

CMA(xy) = CMA(yx), ∀x, y ∈ G,

and so CMA(y) = CMA(x
−1yx). Hence A ◁ A, which proves (i). Again, if

A ◁ B then CMA(x) ≤ CMB(x) for all x ∈ G and CMA(x) > 0 < CMA(y) =⇒
CMA(xy) = CMA(yx), ∀x, y ∈ G. Thus, (ii) holds from (i).

Theorem 3.2. Let A be a fuzzy multigroup of G. Then supp(A) is abelian iff
A is abelian.

Proof. Let x, y ∈ supp(A). If supp(A) is abelian then xy = yx, and so
CMA(xy) = CMA(yx), ∀x, y ∈ G.

Conversely, if A is abelian then CMA(xy) = CMA(yx), ∀x, y ∈ G. Thus
supp(A) is an abelian group because CMA(xy) > 0 < CMA(yx) =⇒ xy = yx,
∀x, y ∈ supp(A).

Theorem 3.3. Let A,B and C be fuzzy multigroups of G such that: (i) B/A
and C/A are both in the canonical form, (ii) B/A◁C/A, and (iii) (C/A)/(B/A)
is abelian. Then, B ◁ C and C/B is abelian.

Proof. Let H,H1 and H2 be the supports of A,B and C, respectively, and let
H ′ be the zone of A and C. Then B/A and C/A are both fuzzy multigroups
of H ′/H. If x ∈ H1, then CMB(x) = CMB/A(xH) ≤ CMC/A(xH) = CMC(x),
and B ⊆ C. Thus CMC(x) > 0 < CMC(y) =⇒ CMC/A(xH) = CMC(x) > 0 <
CMC(y) = CMC/A(yH) =⇒ CMB/A(xyH) = CMB/A(yxH) =⇒ CMB(xy) =
CMB(yx) for all x, y ∈ G, and so B ◁ C.
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Again, we see that, supp(C/B) = H2/H1 is equivalent to (H2/H)/(H1/H) =
supp(C/A)/supp(B/A), and it is abelian. By Theorem 3.2, it follows that C/B
is abelian.

Now, we define the notion of solvability of fuzzy multigroup as follows:

Definition 3.4. If A is a fuzzy multigroup of G, then there must exist a chain
of successive fuzzy submultigroups of A:

(4) A0 ⊆ A1 ⊆ · · · ⊆ An = A,

such that supp(A0) = supp(A1) = · · · = supp(An) = supp(A).

Thus (4) can be rewritten as

(5) CMA0(x) ≤ CMA1(x) ≤ · · · ≤ CMAn(x) = CMA(x) for all x ∈ G.

Albeit, if A is a trivial fuzzy multigroup, we have A0 = A.

Definition 3.5. A fuzzy multigroup A of G is solvable/soluble if there exists a
chain of successive fuzzy submultigroups

(6) A0 ⊆ A1 ⊆ · · · ⊆ An = A,

where Ai ◁ Ai+1 and Ai+1/Ai is abelian for all 0 ≤ i ≤ n− 1.

Thus, such a finite chain of successive fuzzy submultigroups of A is a solv-
able/soluble series for A denoted by Ai. Without contradiction, the solvable
series for A can be written as

(7) A0 ◁ A1 ◁ · · · ◁ An = A.

Theorem 3.6. Let A be a fuzzy multigroup of a group G. Then A is solvable
iff supp(A) is a solvable group.

Proof. Let A be a solvable fuzzy multigroup of G. Then there exists a solvable
series of A as follows:

A0 ◁ A1 ◁ · · · ◁ An = A.

Set H = supp(A), i.e., H is a subgroup of G. Then

{e} = H0 ◁ H1 ◁ · · · ◁ Hn = H

is a solvable series for H since supp(A) = supp(Ai). Thus H is a solvable group.
Conversely, let H = supp(A) be solvable. Then

{e} = H0 ◁ H1 ◁ · · · ◁ Hn = H

is a solvable series for H. Consequently, we have

A0 ◁ A1 ◁ · · · ◁ An = A,

which is a solvable series for A. Hence A is a solvable fuzzy multigroup of G
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Theorem 3.7. Let A and B be fuzzy multigroups of G with the same support
H such that A ⊆ B and A is self-normal. If A is solvable, then B is a solvable
fuzzy multigroup of G.

Proof. Let A0 ◁ A1 ◁ · · · ◁ An = A be a solvable series for A. Because A is
self-normal and supp(A) = supp(B) = H, we get A ◁B. Consequently, we have
supp(B/A) = H/H = H and is abelian. Thus

A0 ◁ A1 ◁ · · · ◁ An = A ◁ B

is a solvable series for B. Hence B is a solvable fuzzy multigroup of G.

Theorem 3.8. Let B be a solvable fuzzy multigroup of G and let A be a self-
normal fuzzy submultigroup of B with A ⊆ Bi. Then A is solvable.

Proof. Let B0 ◁B1 ◁ · · · ◁Bn = B be a solvable series for B since B is solvable.
Because A ⊆ Bi, we have

B0 ∩A ⊆ B1 ∩A ⊆ · · · ⊆ Bn ∩A = A.

Clearly, CMB1∩A(x) > 0 < CMB1∩A(y) =⇒ CMB1(x) > 0 < CMB1(y) and
CMA(x) > 0 < CMA(y) =⇒ CMB1(xy) > 0 < CMB1(yx) and CMA(xy) > 0 <
CMA(yx) =⇒ CMB1∩A(xy) = CMB1∩A(yx) for all x, y ∈ G. Thus

B0 ∩A ◁ B1 ∩A ◁ · · · ◁ Bn ∩A = A.

Again, let Hi = supp(Bi) and H = supp(A). Then we get a quotient (H2 ∩
H)/(H1 ∩H), which is abelian because H2/H1 is abelian. The same logic holds
for the other quotients, and thus

B0 ∩A ⊆ B1 ∩A ⊆ · · · ⊆ Bn ∩A = A

is the solvable series for A. Hence A is solvable.

Theorem 3.9. Let A be a normal fuzzy submultigroup of a fuzzy multigroup B
of G, and let B be self-normal. If A and B/A are solvable, then B is a solvable
fuzzy multigroup of G.

Proof. Let B′/A′ be the canonical form of B/A. Then A ⊆ A′, B ⊆ B′,
supp(A′) = supp(A) = H1 and supp(B′) = supp(B) = H2. Thus, there exists a
solvable series

C0 ◁ C1 ◁ · · · ◁ Cn = B′/A′.

Set A′ = Am and B′ = Bn. Assume there exist fuzzy multigroups Bi of G such
that A′ ◁Bi ◁Bi+1 and Ci = Bi/A

′ in the canonical form for 0 ≤ i ≤ n−1. Thus

B0/A
′ ◁ B1/A

′ ◁ · · · ◁ Bn/A′ = B′/A′
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is a solvable series for B′/A′. Since B0/A
′ is a trivial fuzzy submultigroup of

B′/A′, then it is meet to say that B0 = A′. By Theorem 3.3, we have

(8) A′ = B0 ◁ B1 ◁ · · · ◁ Bn = B′,

where Bi+1/Bi is abelian for 0 ≤ i ≤ n− 1.
Next, A is self-normal by Theorem 3.1, and A′ is solvable by Theorem 3.7.

Thus, there exists a solvable series for A′ as follows:

(9) A0 ◁ A1 ◁ · · · ◁ Am = A′.

By juxtaposing (8) and (9), we have a solvable series for B′. Hence B is solvable
by Theorem 3.8.

4. Conclusion

In this paper, we have defined solvable fuzzy multigroup for the first time as
an algebraic structure in fuzzy multigroup context and obtained some results.
Solvable series of a fuzzy multigroup was defined in such a way that the family
of the fuzzy submultigroups of the considered fuzzy multigroup has the same
support. Certain results in normality and quotient of fuzzy multigroups were
considered. Some results on solvable fuzzy multigroups could still be exploited
and the notion of nilpotency is an interest area to consider in fuzzy multigroup
context.
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Abstract. The calendula graph Clm,n is a graph constructed from a cycle on m
vertices Cm and m copies of Cn which are Cn1 , Cn2 , . . . , Cnm and pasting the i−th
edge of Cm to an edge of Cni

for each i ∈ {1, 2, . . . ,m}. For a simple graph G(V,E)
a labeling of vertices and edges by a mapping Φ : V (G) ∪ E(G) → { 1, 2, . . . , k }
providing that the weights of any two pair of edges are distinct is called an edge irregular
total k−labeling, where the weight of an edge is the sum of the label of the edge itself
and the labels of its two end vertices. If k is minimum and G admits an edge
irregular total k−labeling, then k is called the total edge irregularity strength, tes(G) .
The total k− labeling is called the reflexive edge strength of G if the edge labeling
Φe : E(G) → {1, 2, . . . , ke } and a vertex labeling Φv : V (G) → {0, 2, 4, . . . , 2kv },
where k = max{ke, , 2kv }. In the current paper, we investigate the existence of edge
irregular total k− labeling for the calendula graphs Clm,n and precise the exact value
of total edge irregularity strength of calendula graphs Clm,n . Besides, we explore the
presence of edge reflexive irregular r− labeling for calendula graphs and determine the
perfect value of reflexive edge strength.

Keywords: irregular labeling, total edge irregularity strength, edge irregular reflexive
labeling, reflexive edge strength, calendula graph.

1. Introduction

Graph labeling is one of the fundamental mathematical disciplines in graph
theory. There are numerous applications of graph labeling in multiple areas
such as coding hypothesis, computer science, physics, and astronomy. For more
interesting applications of graph labeling see [1, 2]. A labeling of a graph G =
(V,E) is a mapping that carries graph elements ( edges or vertices, or both ) to

*. Corresponding author
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positive integers subject to certain restrictions. If the domain is the vertex-set or
the edge-set, the labeling is called vertex labeling or edge labeling respectively.
Similarly if the domain is V (G)∪E(G) , then the labeling is called total labeling.
There are many different kinds of graph labeling ( see [3, 4, 5, 6, 7] ) all that
kinds of labeling problem will have the following three common characteristics.
A set of numbers from which vertex or edge labels are chosen, a rule that assigns
a value to each edge or vertex, and a condition that these values must satisfy.
A comprehensive survey of graph labeling is given in [8].

Definition 1.1 ([9]). Let Cm be a cycle of length m with vertices u1, u2, · · · , um.
Let Cni , 1 ≤ i ≤ m be m copies of a cycle of length n, and vij , 1 ≤ i ≤
m, 1 ≤ j ≤ n be the vertices of m copies of Cn. Let ai = uiui+1 denote to the
edge of the cycle Cm for 1 ≤ i ≤ m− 1 and am = umu1. Let eij = vijvi(j+1)

denote to the edges of m copies of Cn for 1 ≤ i ≤ m , 1 ≤ j ≤ n − 1
and ein = vinvi1 for 1 ≤ i ≤ m. The calendula graphs, denoted by Clm,n
obtained by pasting each edge ai of Cm to an edge ein of Cni for each
1 ≤ i ≤ m , i.e., ai ≡ ein , 1 ≤ i ≤ m and ui ≡ vi1 ≡ v(i−1)n, 2 ≤ i ≤ m−1.
It is obvious that the order of Clm,n is m(n − 1) and the size of Clm,n is
mn , see Fig. 1.

u1 u2
u3

um−1

um

C61 C62

C6m

Figure 1: The Calendula graph Clm,6

2. Total edge irregularity strength for calendula graphs

An irregular assignment of G was defined by Chartrand et al. in [10] as a d−
labeling of the edges Θ : E −→ {1, 2, · · · , d} such that the vertex weights
wtΘ(x) =

∑
Θ(xy), where the sum is over all vertices y adjacent to x are

distinctive for all vertices, i.e., wtΘ(x) ̸= wtΘ(y) for all vertices x, y ∈ V (G)
with x ̸= y. The smallest d for which there is an irregular assignment is the
irregularity strength, S(G), this graph parameter S(G) is an invariant for each
graph
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Bača et al. [11] defined the notion of an edge irregular total k− labeling of
a graph G = (V,E) as a labeling of the vertices and edges of G, Φ : V ∪E −→
{1, 2, · · · , k} such that the edge weights wtΦ(xy) = Φ(x) + Φ(y) + Φ(xy) are
different for all edges, i.e., wtΦ(xy) ̸= wtΦ(x

′
y
′
) for all edges xy, x

′
y
′ ∈ E with

xy ̸= x
′
y
′
. They also defined the total edge irregularity strength of G, tes(G), to

be the minimum k for which the graph G has an edge irregular total k−labeling.
Moreover, in [11], for any graph G a lower bound on the total edge irregularity
strength is given by

(1) max

{
⌈ △(G) + 2

3
⌉ , ⌈ |E(G)|+2

3 ⌉
}

≤ tes(G)

where △(G) is the maximum degree of G .
Since then, many researchers try to find exact values for the total edge

irregularity strength of graphs. In [12] Ivanĉo et al. proved that for any tree
T tes(T ) is equal to its lower bound. Results on the total edge irregularity
strength can be found in [13, 14, 15, 16, 17, 18, 19].

before we progress to our main result we discuss the total edge irregularity
strength for a small case.

Theorem 2.1. Let n ≥ 4 be even positive integer and Cl4,n be the calendula
graph. Then

tes(Cl4,n) = ⌈ 4 n+ 2

3
⌉

Proof. The calendula graph Cl4,n has |V (Cl4,n)| = 4(n−1) , |E(Cl4,n) | = 4n
and the maximum degree △(Cl4,n) = 4. Thus, the inequality (1) becomes

⌈ 4 n+ 2

3
⌉ ≤ tes(Cl4,n).

To prove the equality, we need to show that there exist an edge irregularity total
k− labeling, k = ⌈ 4 n+2

3 ⌉ , there are three cases
Case (1). When n ≡ 2 mod 3, n ≥ 4. Suppose that k = ⌈ 4 n+2

3 ⌉, we con-
struct the total k− labeling function Φ : V (Cl4,n) ∪ E(Cl4,n) −→ {1, 2, · · · , k}
as follows:

Φ(v1j) =


1 if j = 1;

j − 1 if 2 ≤ j ≤ n− 2 ;

2n− k − 2 if j = n− 1;

k if j = n.

Φ(v2j) =



2n− k + 2 if j = 2;

n− 2
for 3 ≤ j ≤ n

2 , if n is even ;

or 3 ≤ j ≤ n−1
2 , if n is odd ;

k
for n

2 + 1 ≤ j ≤ n, if n is even ;

or n+1
2 ≤ j ≤ n, if n is odd ;
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Φ(v3j) =



k
for 1 ≤ j ≤ n

2 , if n is even ;

or 1 ≤ j ≤ n+1
2 , if n is odd ;

n− 2
for n

2 + 1 ≤ j ≤ n− 2, if n is even ;

or n+3
2 ≤ j ≤ n− 2, if n is odd ;

2n− k + 3 if j = n− 1;

k if j = n.

Φ(v4j) =


2n− k − 1 if j = 2;

n− j if 3 ≤ j ≤ n− 1;

1 if j = n.

Φ(e1j) =



1 if j = 1;

2 if 2 ≤ j ≤ n− 3;

k − n+ 2 if j = n− 2;

1 if j = n− 1;

k

2
− 2 if j = n.

Φ(e2j) =



1 if j = 1;

k − n+ 5 if j = 2;

5 + 2j
for 3 ≤ j ≤ n

2 − 1, if n is even ;

or 3 ≤ j ≤ n−3
2 , if n is odd ;

2k − 2n− 1 if j = n
2 , and n even;

2k − 2n− 2 if j = n−1
2 , and n odd;

k − 2n+ 2j − 3
for n

2 + 1 ≤ j ≤ n− 1, if n is even ;

or n+1
2 ≤ j ≤ n− 1, if n is odd ;

k − 3 if j = n.

Φ(e3j) =



2(2n− k − j + 1)
for 1 ≤ j ≤ n

2 − 1, if n is even ;

or 1 ≤ j ≤ n−1
2 , if n is odd ;

2n− k + 4 if j = n
2 and n even;

2n− k + 3 if j = n+1
2 and n odd;

2(n− j + 3)
for n

2 + 1 ≤ j ≤ n− 3, if n is even ;

or n+3
2 ≤ j ≤ n− 3, if n is odd ;

k − n+ 5 if j = n− 2;

1 if j = n− 1;

k − 2 if j = n.
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Φ(e4j) =



1 if j = 1;

k − n+ 2 if j = 2;

3 if 3 ≤ j ≤ n− 2;

2 if j = n− 1;

2n− k + 1 if j = n.

Case (2). When n ≡ 0 mod 3. The labeling function Φ : V (Cl4,n) ∪
E(Cl4,n) −→ {1, 2, · · · , k} characterized as in case (1) in all vertices but with
some modifications in edges given by

Φ(e1j) =
k − 3

2
if j = n

Φ(e2j) =



2k − 2n if j = n
2 , and n even;

2k − 2n− 1 if j = n−1
2 , and n odd;

k − 2n+ 2j − 2
for n

2 + 1 ≤ j ≤ n− 1, if n is even ;

or n+1
2 ≤ j ≤ n− 1, if n is odd ;

k − 2 if j = n.

Φ(e3j) = k − 1 if j = n

Case (3). When n ≡ 1 mod 3,

• If n = 4 , the labeling Φ : V (Cl4,4) ∪ E(Cl4,4) −→ {1, 2, · · · , k = 6}
characterized as in Fig. 2.

1 5

66

1 1

5

5

55

1

1
3

6

6

3

1

3

1

1
3

4

5

4

1

1
4

2

Figure 2: The calendula graph Cl4,4 with an edge irregularity total k = 6 labeling

• If n > 4 the labeling function Φ : V (Cl4,n) ∪ E(Cl4,n) −→ {1, 2, · · · , k}
defined as in case (1) in all vertices but with some modifications in edges given
by

Φ(e1j) =
k

2
− 1 if j = n
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Φ(e2j) =



2k − 2n+ 1 if j = n
2 , and n even;

2k − 2n if j = n−1
2 , and n odd;

k − 2n+ 2j − 1
for n

2 + 1 ≤ j ≤ n− 1, if n is even ;

or n+1
2 ≤ j ≤ n− 1, if n is odd ;

k − 1 if j = n.

Φ(e3j) = k if j = n

In all cases, all the vertex and edge labels are at most k = ⌈ 4 n+2
3 ⌉ , also

under the labeling Φ the weights of the edges are given by

∀ i = 1, 2 wtΦ(eij) = 2n(i− 1) + 2j + 1 , 1 ≤ j ≤ n

∀ i = 3, 4 wtΦ(eij) =

{
2n(5− i) + 2− 2j if 1 ≤ j ≤ n− 1;

2n( 5− i) + 2 if j = n.

We can see that the weights of edges in the first half cycles Cn1 , Cn2 form
an increasing sequence of consecutive odd integers from 3 up to 4n+1. For the
second half cycles Cn3 , Cn4 , the weights of edges form a decreasing sequence of
consecutive even integers from 4n+ 2 up to 4. The labeling Φ is the required
edge irregular total k = ⌈ 4 n+2

3 ⌉ labeling. This concludes the proof.

Theorem 2.2. Let n ≥ 4 be even positive integer and Cl5,n be the calendula
graph. Then

tes(Cl5,n) = ⌈ 5 n+ 2

3
⌉ .

Proof. The calendula graph Cl5,n has |V (Cl5,n)| = 5(n−1) , |E(Cl5,n) | = 5n
and the maximum degree △(Clm,n) = 4. Thus, the inequality (1) becomes

⌈ 5 n+ 2

3
⌉ ≤ tes(Cl5,n).

To prove the inverse inequality, we define the function Φ : V (Cl5,n) ∪
E(Cl5,n) −→ {1, 2, · · · , k} to be a total k = ⌈ 5 n+2

3 ⌉ labeling as follows:

Φ(v1j) =

{
1 if j = 1;

j − 1 if 2 ≤ j ≤ n.

Φ(v2j) =



n− 1
for 1 ≤ j ≤ n

2 , if n is even ;

or 1 ≤ j ≤ n+1
2 , if n is odd ;

⌈ 4 n+ 2

3
⌉ − 2

for n
2 + 1 ≤ j ≤ n− 1, if n is even ;

or n+3
2 ≤ j ≤ n− 1, if n is odd ;

k if j = n.

Φ(v3j) = k if 1 ≤ j ≤ n.
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Φ(v4j) =


⌈ 4 n+ 2

3
⌉ − 2

for 2 ≤ j ≤ n
2 , if n even ;

or 2 ≤ j ≤ n−1
2 , if n odd ;

n− 1
for n

2 + 1 ≤ j ≤ n, if n even ;

or n+1
2 ≤ j ≤ n, if n odd.

Φ(v5j) = n− j if 1 ≤ j ≤ n− 1 and Φ(v5n) = 1 .

Φ(e1j) =


1 if j = 1;

2 if 2 ≤ j ≤ n− 1;

n+ 1 if j = n.

Φ(e2j) =



3 + 2j
for 1 ≤ j ≤ n

2 − 1, if n even ;

or 1 ≤ j ≤ n−1
2 , if n odd ;

2n+ 4− ⌈ 4 n+ 2

3
⌉ if j = n

2 , and n even;

2n+ 5− ⌈ 4 n+ 2

3
⌉ if j = n+1

2 , and n odd;

2n+ 2j + 5− 2⌈ 4 n+ 2

3
⌉ for n

2 + 1 ≤ j ≤ n− 2, if n even ;

or n+3
2 ≤ j ≤ n− 2, if n odd ;

4n+ 1− k − ⌈ 4 n+ 2

3
⌉ if j = n− 1;

3n+ 2− k if j = n.

Φ(e3j) =


4n+ 1 + 2j − 2k

for 1 ≤ j ≤ n
2 , if n even ;

or 1 ≤ j ≤ n+1
2 , if n odd ;

6n+ 4− 2j − 2k
for n

2 + 1 ≤ j ≤ n, if n even ;

or n+3
2 ≤ j ≤ n, if n odd.

Φ(e4j) =



4n+ 2− ⌈ 4 n+ 2

3
⌉ − k if j = 1;

4n+ 6− 2j − 2⌈ 4 n+ 2

3
⌉ for 2 ≤ j ≤ n

2 − 1, if n even ;

or 2 ≤ j ≤ n−3
2 , if n odd ;

2n+ 5− ⌈ 4 n+ 2

3
⌉ if j = n

2 and n even;

2n+ 6− ⌈ 4 n+ 2

3
⌉ if j = n−1

2 and n odd;

2n+ 4− 2j
for n

2 + 1 ≤ j ≤ n− 1, if n even ;

or n+1
2 ≤ j ≤ n− 1, if n odd ;

3n+ 3− k if j = n.

Φ(e5j) =


3 if 1 ≤ j ≤ n− 2;

2 if j = n− 1;

n+ 2 if j = n.

Notice that all the vertex and edge labels are at most k = ⌈ 5 n+2
3 ⌉ , moreover

under the labeling Φ the weights of the edges are given by

∀ i = 1, 2 wtΦ(eij) = 2n(i− 1) + 2j + 1 , 1 ≤ j ≤ n
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wtΦ(e3j) =


4n+ 2j + 1

for 1 ≤ j ≤ n
2 , and n is even ;

or 1 ≤ j ≤ n+1
2 , and n is odd ;

6n− 2j + 4
for n

2 + 1 ≤ j ≤ n, and n is even ;

or n+3
2 ≤ j ≤ n, and n is odd ;

∀ i = 4, 5 wtΦ(eij) =

{
2n(6− i) + 2− 2j if 1 ≤ j ≤ n− 1.

2n( 6− i) + 2 if j = n.

The weights of edges in the cycles Cn1
, Cn2

form an increasing sequence of consec-
utive odd integers from 3 up to 4n+ 1 . In the cycle Cn3

the first n
2 edges form an

increasing sequence of consecutive odd integers from 4n + 3 up to 5n + 1, while the
last n

2 edges form a decreasing sequence of consecutive even integers from 5n + 2 up
to 4n+ 4 . For the cycles Cn4 , Cn5 , the weights of edges form a decreasing sequence
of consecutive even integers from 4n+ 2 up to 4 . This complete the proof.

Illustration: The graph Cl5,10 with an edge irregularity total k = 18 labeling
is shown in Fig. 3.
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Figure 3: The calendula graph Cl5,10 with an edge irregularity total k = 18 labeling

Theorem 2.3. Let m ≥ 6 , n ≥ 4 be positive integers and Clm,n be the
calendula graph. Then

tes(Clm,n) = ⌈ m n+ 2

3
⌉
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Proof. The calendula graph Clm,n has |V (Clm,n)| = m(n−1) , |E(Clm,n) | =
mn and the maximum degree △(Clm,n) = 4. Thus, the inequality (1) becomes

⌈ m n+ 2

3
⌉ ≤ tes(Clm,n).

To prove the equality, it suffices to prove the existence of an optimal total
k− labeling Φ : V (Clm,n) ∪ E(Clm,n) −→ {1, 2, · · · , k} is a total k.− labeling,
k = ⌈ m n+2

3 ⌉ , we establish the labeling in the following way:

Φ(v1j) =

{
1 if j = 1;

j − 1 if 2 ≤ j ≤ n.

Φ(v2j) =



n− 1
for 1 ≤ j ≤ n

2 , if n even ;

or 1 ≤ j ≤ n+1
2 , if n odd ;

⌈ 4 n+ 2

3
⌉ − 2

for n
2 + 1 ≤ j ≤ n− 1, if n even ;

or n+3
2 ≤ j ≤ n− 2 , if n odd ;

⌈ 6 n+ 2

3
⌉ if j = n.

∀ 3 ≤ i ≤ m
2 − 1 if m is even, or ∀ 3 ≤ i ≤ m−3

2 if m is odd

Φ(vij) =


⌈ 2ni+ 2

3
⌉ if 1 ≤ j ≤ n− 1;

⌈ 2n(i+ 1) + 2

3
⌉ if j = n.

∀ i = m−1
2 and m is odd

Φ(v(m−1
2

)j) =


⌈ n(m− 1) + 2

3
⌉ if 1 ≤ j ≤ n− 1;

⌈ nm+ 2

3
⌉ if j = n.

∀ i = m
2 , m

2 + 1 and m is even, or ∀ i = m+1
2 and m is odd

Φ(vij) = k = ⌈ nm+ 2

3
⌉ if 1 ≤ j ≤ n.

if m is odd Φ(v(m+3
2

)j) =


⌈ nm+ 2

3
⌉ if j = 1.

⌈ n(m− 1) + 2

3
⌉ if 2 ≤ j ≤ n.

∀ m
2 +2 ≤ i ≤ m− 2 and m even, or ∀ m+5

2 ≤ i ≤ m− 2 and m is odd

Φ(vij) =


⌈ 2n[m− (i− 2) ] + 2

3
⌉ if j = 1 ;

⌈ 2n[m− (i− 1) ] + 2

3
⌉ if 2 ≤ j ≤ n.
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Φ(v(m−1)j) =



⌈ 6n+ 2

3
⌉ if j = 1;

⌈ 4n+ 2

3
⌉ − 2

for 2 ≤ j ≤ n
2 , if n even ;

or 2 ≤ j ≤ n−1
2 , if n odd ;

n− 1
for n

2 + 1 ≤ j ≤ n, if n even ;

or n+1
2 ≤ j ≤ n , if n odd ;

Φ(vmj) = n− j if 1 ≤ j ≤ n− 1 and Φ(vmn) = 1

Φ(e1j) =


1 if j = 1;

2 if 2 ≤ j ≤ n− 1.

n+ 1 if j = n.

Φ(e2j) =



3 + 2j
for 1 ≤ j ≤ n

2 − 1, and n even ;

or 1 ≤ j ≤ n−1
2 , and n odd ;

2n+ 4− ⌈4n+ 2

3
⌉ if j = n

2 and n is even;

2n+ 5− ⌈4n+ 2

3
⌉ if j = n+1

2 and n is odd;

2n+ 2j + 5− 2⌈4n+ 2

3
⌉ for n

2 + 1 ≤ j ≤ n− 2, and n even ;

or n+3
2 ≤ j ≤ n− 2, and n odd ;

4n+ 1− ⌈4n+ 2

3
⌉ − ⌈6n+ 2

3
⌉ if j = n− 1;

3n+ 2− ⌈6n+ 2

3
⌉ if j = n;

∀ 3 ≤ i ≤ m
2 − 1 and m is even, or ∀ 3 ≤ i ≤ m−3

2 and m is odd

Φ(eij) =



2n(i− 1) + 2j + 1− 2 ⌈ 2ni+ 2

3
⌉ if 1 ≤ j ≤ n− 2;

2ni− 1− ⌈ 2ni+ 2

3
⌉ − ⌈ 2n(i+ 1) + 2

3
⌉ if j = n− 1;

2ni+ 1− ⌈ 2ni+ 2

3
⌉ − ⌈ 2n(i+ 1) + 2

3
⌉ if j = n.

Φ(em−1
2 j) =



n(m− 3) + 2j + 1− 2⌈n(m− 1) + 2

3
⌉ if 1 ≤ j ≤ n− 2 and m odd;

n(m− 1)− 1− ⌈n(m− 1) + 2

3
⌉ − k if j = n− 1 and m odd ;

n(m− 1) + 1− ⌈n(m− 1) + 2

3
⌉ − k if j = n and m odd.

Φ(em
2 j) = n(m− 2) + 2j + 1− 2k if 1 ≤ j ≤ n and m is even.



732 M. R. ZEEN EL DEEN and G. ELMAHDY

Φ(em+1
2 j) =


n(m− 1) + 2j + 1− 2k

for 1 ≤ j ≤ n
2 , and n even ;

or 1 ≤ j ≤ n+1
2 , and n odd ;

n(m+ 1)− 2j + 4− 2k
for n

2 + 1 ≤ j ≤ n, and n even ;

or n+3
2 ≤ j ≤ n, and n odd.

Φ(em+3
2

j
) =


n(m− 1)− ⌈n(m− 1) + 2

3
⌉ − ⌈nm+ 2

3
⌉ if j = 1, and m odd;

n(m− 1) + 2(1− j)− 2⌈n(m−1)+2
3

⌉ if 2 ≤ j ≤ n− 1 and m odd;

n(m− 1) + 2− ⌈n(m− 1) + 2

3
⌉ − ⌈nm+ 2

3
⌉ if j = n and m odd.

Φ(e(m
2
+1)j) =

{
n m+ 2− 2(k + j) if 1 ≤ j ≤ n− 1 and m is even ;

n m− 2(k − 1) if j = n and m is even.

∀ m
2
+ 2 ≤ i ≤ m− 2 and m is even, or ∀ m+5

2
≤ i ≤ m− 2 and m is odd

Φ(eij) =



2n(m+ 1− i)− ⌈2n(m− i+ 1) + 2

3
⌉ − ⌈2n(m− i+ 2) + 2

3
⌉ if j = 1;

2n(m+ 1− i) + 2(1− j)− 2⌈2n(m− i+ 1) + 2

3
⌉ 2 ≤ j ≤ n− 1;

2n(m+ 1− i) + 2− ⌈2n(m− i+ 1) + 2

3
⌉ − ⌈2n(m− i+ 2) + 2

3
⌉ if j = n.

Φ(e(m−1)j) =



4n+ 2− ⌈ 4n+2
3 ⌉ − ⌈ 6n+2

3 ⌉ if j = 1;

4n+ 6− 2j − 2⌈ 4n+2
3 ⌉ for 2 ≤ j ≤ n

2 − 1, and n even;

or 2 ≤ j ≤ n−3
2 , and n odd;

2n+ 5− ⌈ 4n+2
3 ⌉ if j = n

2 and n even;

2n+ 6− ⌈ 4n+2
3 ⌉ if j = n−1

2 and n odd;

2n+ 4− 2j
for n

2 + 1 ≤ j ≤ n− 1, and n even;

or n+1
2 ≤ j ≤ n− 1, and n odd;

3n+ 3− ⌈ 6n+2
3 ⌉ if j = n.

Φ(emj) =


3 if 1 ≤ j ≤ n− 2;

2 if j = n− 1;

n+ 2 if j = n.

• If n = m = 5, the labeling Φ : V (Cl5,5)∪E(Cl5,5) −→ {1, 2, · · · , k = 9} defined
as in Fig. 4.

It is evident that all the vertex and edge labels are at most k = ⌈ m n+2
3 ⌉ . Besides,

the weights of edges under the labeling Φ are given by

• If m is even number

∀ 1 ≤ i ≤ m
2 , wtΦ(eij) = 2n(i− 1) + 2j + 1 , 1 ≤ j ≤ n

∀ m
2 + 1 ≤ i ≤ m,
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Figure 4: The calendula graph Cl5,5 with an edge irregularity total k = 9 labeling

wtΦ(eij) =

{
2n(m+ 1− i) + 2− 2j if 1 ≤ j ≤ n− 1;

2n( m+ 1− i) + 2 if j = n.

We can see that weights of edges in the first half cycles Cn1 , Cn2 , · · · , Cnm
2

form an

increasing sequence of consecutive odd integers from 3 up to mn+1 . For the second
half cycles Cnm

2
+1
, Cnm

2
+2
, · · · , Cnm

weights of edges form a decreasing sequence of

consecutive even integers from mn+ 2 up to 4 .

• If m is odd number

∀ 1 ≤ i ≤ m−1
2 wtΦ(eij) = 2n(i− 1) + 2j + 1 , 1 ≤ j ≤ n

wtΦ(e(m+1
2 )j) =


n(m− 1) + 2j + 1

for 1 ≤ j ≤ n
2 , and n is even ;

or 1 ≤ j ≤ n+1
2 , and n is odd ;

n(m+ 1)− 2j + 4
for n

2 + 1 ≤ j ≤ n, and n is even ;

or n+3
2 ≤ j ≤ n, and n is odd.

∀ 1 ≤ i ≤ m+3
2 , · · · , m

wtΦ(eij) =

{
2n(m+ 1− i) + 2− 2j if 1 ≤ j ≤ n− 1;

2n(m+ 1− i) + 2 if j = n.

Since all the edge weights are distinct, the labeling Φ is the required edge irregular
total k = ⌈ m n+2

3 ⌉ labeling. This concludes the proof.

3. Edge irregular reflexive for calendula graphs

The concept of the edge irregular reflexive r− labeling was introduced by Ryan
et al. [20]. For a graph G, an edge labeling Ψe : E(G) −→ {1, 2, · · · , re} and a
vertex labeling Ψv : V (G) −→ {0, 2, 4, · · · , 2rv}, then labeling Ψ defined by

Ψ(x) =

{
Ψv(x) if x ∈ V (G)

Ψe(x) if x ∈ E(G)
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is a total r− labeling where r = max{re, 2rv}. The total r− labeling Ψ is
called an edge irregular reflexive r− labeling of the graph G if distinct edges has
different weights. The smallest value of r for which such labeling exists is called
the reflexive edge strength of the graph G and is denoted by res(G). During
the past few years, res(G) has been inspected for distinctive family of graphs
(see [21, 22, 23, 24, 25, 26]). In this section, we examine the edge irregular
reflexive r− labeling for the calendula graphs.

Let us recall the following lemma proved in [21]

Lemma 3.1. For every graph G,

(2) res(G) ≥


⌈ E(G)

3
⌉ if |E(G)| ̸≡ 2, 3 (mod 6).

⌈ E(G)

3
⌉ + 1 if |E(G)| ≡ 2, 3 (mod 6).

Also, Baća et al. [22] suggested the following conjecture:

Conjecture 3.1 ([22]). Let G be a simple graph with maximum degree △ =
△(G) . Then

res(G) = max{⌊△+ 2

2
⌋, ⌊E(G)

3
⌋+ d},

where d = 1 for |E(G)| ≡ 2, 3 (mod 6), and zero otherwise

Theorem 3.1. Let n ≥ 4 be positive integer and Cl4,n be the calendula graph.
Then

res(Cl4,n) =


⌈ 4 n

3
⌉ if |E(G)| ≡ 0, 4 (mod 6).

⌈ 4 n

3
⌉ + 1 if |E(G)| ≡ 2 (mod 6).

Proof. Since |V (Cl4,n)| = 4(n− 1) , |E(Cl4,n) | = 4n and △(Clm,n) = 4, the
inequality (2) becomes

res(Cl4,n) ≥


⌈ 4 n

3
⌉ if |E(G)| ≡ 0, 4 (mod 6).

⌈ 4 n

3
⌉ + 1 if |E(G)| ≡ 2 (mod 6).

To demonstrate the equality, we have to appear that there exists an edge
irregularity reflexive r = ⌈ 4 n

3 ⌉ labeling, for the calendula graph Cl4,n , there
are three cases:
Case (1). When n ≡ 0mod 3, n ≥ 4, then |E(G)| ≡ 0 (mod 6). Suppose that
r = ⌈ 4 n

3 ⌉, we build the labeling function Ψv : V (Cl4,n)) −→ {0, 2, · · · , 2rv =
r } as follows:
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Ψv(v1j) =



j − 1
for j = 1, 3, 5, · · · , n− 3, if n is even ;

or j = 1, 3, 5, · · · , n− 2, if n is odd ;

j − 2
for j = 2, 4, 6, · · · , n− 2, if n is even ;

or j = 2, 4, 6, · · · , n− 3, if n is odd ;

2n− 4− r if j = n− 1;

r if j = n.

Ψv(v2j) =



r for j=1 and
for n

2 + 1 ≤ j ≤ n, if n is even;

or n+3
2 ≤ j ≤ n, if n is odd;

2n− r if j = 2;

n− 2 if 3 ≤ j ≤ n
2 , n is even;

n− 1 if 3 ≤ j ≤ n+1
2 , n is odd;

Ψv(v3j) =



r
for 1 ≤ j ≤ n

2 , if n is even;

or 1 ≤ j ≤ n−1
2 , if n is odd;

and j= n ;

n− 2 if n
2 + 1 ≤ j ≤ n− 2, n is even ;

n− 1 if n+1
2 ≤ j ≤ n− 2, n is odd ;

2n− r if j = n− 1;

Ψv(v4j) =



r if j = 1;

2n− 4− r if j = 2;

n− j − 1
for j = 3, 5, · · · , n− 1, if n is even ;

or j = 4, 6, · · · , n− 1, if n is odd ;

n− j
for j = 4, 6, · · · , n, if n is even ;

or j = 3, 5, · · · , n, if n is odd ;

For edges, we construct the labeling function Ψe : E(Cl4,n)) −→ {1, 2, · · · , r}
as follows:

Ψe(e1j) =


1 if 1 ≤ j ≤ n− 3, and j = n− 1;

r − n+ 3 if j = n− 2, n is even ;

r − n+ 2 if j = n− 2, n is odd ;

2n− r − 1 if j = n.



736 M. R. ZEEN EL DEEN and G. ELMAHDY

Ψe(e2j) =



1 if j = 1;

r − n+ 5 if j = 2, n is even ;

r − n+ 4 if j = 2, n is odd ;

3 + 2j if 3 ≤ j ≤ n
2 − 1, n is even ;

1 + 2j if 3 ≤ j ≤ n−1
2 , n is odd ;

2n+ 1− r
for j = n

2 , n is even ;

and j = n+1
2 , n is odd ;

2n− 1− 2r + 2j
for n

2 + 1 ≤ j ≤ n, if n is even ;

or n+3
2 ≤ j ≤ n, if n is odd ;

Ψe(e3j) =



4n− 2r − 2j
for 1 ≤ j ≤ n

2 − 1, if n is even ;

or 1 ≤ j ≤ n−3
2 , if n is odd ;

2n+ 2− r
for j = n

2 , n is even ;

and j = n−1
2 , n is odd ;

2n+ 4− 2j if n
2 + 1 ≤ j ≤ n− 3 and n even;

2n+ 2− 2j if n+1
2 ≤ j ≤ n− 3 and n odd;

r − n+ 6 if j = n− 2 and n is even;

r − n+ 5 if j = n− 2 and n is odd;

2 if j = n− 1;

r if j = n.

Ψe(e4j) =


2 if j = 1 and 3 ≤ j ≤ n− 1;

r − n+ 4 if j = 2, n is even ;

r − n+ 3 if j = 2, n is odd ;

2n− r if j = n.

Case (2). When n ≡ 1 mod 3, then |E(G)| ≡ 4 (mod 6). Let r = ⌈ 4 n
3 ⌉, the

labeling functions Ψv and Ψe defined as in case (1) in all vertices and edges
but with some modifications which are given by

Ψv(v1(n−1)) = 2n− 2− r , Ψv(v1n) = r − 2 ,

Ψv(v21) = r − 2 , Ψv(v22) = 2n− r + 2 ,

Ψv(v3(n−1)) = 2n+ 2− r , Ψv(v3n) = r − 2 ,

Ψv(v41) = r − 2 , Ψv(v42) = 2n− r − 2 ,

Ψe(e1j) =


r − n+ 1 if j = n− 2, n even ;

r − n if j = n− 2, n odd ;

2n− r + 1 if j = n.
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Ψe(e2j) =



r − n+ 3 if j = 2, n even ;

r − n+ 2 if j = 2, n odd ;

2n− 1− 2r + 2j
for n

2 + 1 ≤ j ≤ n− 1, if n even ;

or n+3
2 ≤ j ≤ n− 1, if n odd ;

4n− 2r + 1 if j = n.

Ψe(e3j) =

{
r − n+ 4 if j = n− 2 and n even;

r − n+ 3 if j = n− 2 and n odd;

Ψe(e4j) =


r − n+ 2 if j = 2, n even ;

r − n+ 1 if j = 2, n odd ;

2n− r + 2 if j = n.

Case (3). When n ≡ 2 mod 3, then |E(G)| ≡ 2 (mod 6).suppose that
r = ⌈ 4 n

3 ⌉+1 , the labeling functions Ψv and Ψe defined as in case (1) in all
vertices and edges but with some modifications which are given by

Ψv(v1(n−1)) = 2n− r , Ψv(v1n) = r − 4 ,

Ψv(v21) = r − 4 , Ψv(v22) = 2n− r + 4 ,

Ψv(v3(n−1)) = 2n+ 4− r , Ψv(v3n) = r − 4 ,

Ψv(v41) = r − 4 , Ψv(v42) = 2n− r ,

Ψe(e1j) =


r − n− 1 if j = n− 2, n even ;

r − n− 2 if j = n− 2, n odd ;

2n− r + 3 if j = n.

Ψe(e2j) =



r − n+ 1 if j = 2, n even ;

r − n if j = 2, n odd ;

2n− 1− 2r + 2j
for n

2 + 1 ≤ j ≤ n− 1, if n even ;

or n+3
2 ≤ j ≤ n− 1, if n odd ;

4n− 2r + 3 if j = n.

Ψe(e3j) =

{
r − n+ 2 if j = n− 2 and n even;

r − n+ 1 if j = n− 2 and n odd;

Ψe(e4j) =


r − n if j = 2, n even ;

r − n− 1 if j = 2, n odd ;

2n− r + 4 if j = n.

In all cases, notice that all the vertex and edge labels are at most r = ⌈ 4 n
3 ⌉

or r = ⌈ 4 n
3 ⌉ + 1. Moreover under the labeling Ψ the weights of the edges are

given by

∀ i = 1, 2 wtΨ(eij) = 2n(i− 1) + 2j − 1 , 1 ≤ j ≤ n.
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∀ i = 3, 4 wtΨ(eij) =

{
2n(5− i)− 2j if 1 ≤ j ≤ n− 1;

2n(5− i) if j = n.

We can see that weights of edges in the first half cycles Cn1 , Cn2 form an
increasing sequence of consecutive odd integers from 1 up to 4n − 1 . For
the second half cycles Cn3 , Cn4 weights of edges form a decreasing sequence of
consecutive even integers from 4n up to 2 . In this way the labeling Ψ is the
required edge irregularity reflexive r− labeling. This completes the proof.

Illustration: The calendula graph Cl4,12 with an edge irregularity total k = 17
labeling and an edge irregularity reflexive r = 16 labeling are shown in Fig. 5.
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Figure 5: (a) Cl4,12 with k = 17 (b) Cl4,12 with r = 16

Theorem 3.2. Let n ≥ 6 and m be an even positive integer, m ≥ 6 . Then
the calendula graph Clm,n have .

res(Clm,n) =


⌈mn

3
⌉

for n ≡ 0 mod 3;

or n ≡ 1 , 2 mod 3 and |m n| ≡ 0, 4 mod 6;

⌈m n

3
⌉+ 1 if n ≡ 1, 2 mod 3 and |mn| ≡ 2(mod 6).

Proof. Since |V (Clm,n)| = m(n−1) , |E(Clm,n) | = mn and △(Clm,n) = 4.
To illustrate the equality in (2), we have to show up that there exists an edge
edge irregularity reflexive r− labeling, r = ⌈ m n

3 ⌉ , or r = ⌈ m n
3 ⌉+1 , for the

calendula graph Clm,n , there are three cases

Case (1). When n ≡ 0 mod 3 or n ≡ 1 mod 3 and |m n| ̸≡ 2 (mod 6), we
take r = ⌈ m n

3 ⌉.
When n ≡ 1 mod 3 and |m n| ≡ 2 (mod 6), we put r = ⌈ m n

3 ⌉+ 1.



TOTAL EDGE IRREGULARITY STRENGTH AND EDGE IRREGULAR REFLEXIVE ... 739

We construct the labeling function Ψv : V (Clm,n)) −→ {0, 2, · · · , r} as
follows:

(3) Ψv(v1j) =


j − 1

for j = 1, 3, 5, · · · , n− 1, if n even ;

or j = 1, 3, 5, · · · , n, if n odd ;

j − 2
for j = 2, 4, 6, · · · , n, if n even ;

j = 2, 4, 6, · · · , n− 1, if n odd.

(4) Ψv(v2j) =



n− 2 if 1 ≤ j ≤ n
2 , n even ;

n− 1 if 1 ≤ j ≤ n+1
2 , n odd ;

⌈ 4 n

3
⌉

for n
2 + 1 ≤ j ≤ n− 1, if n even ;

or n+3
2 ≤ j ≤ n− 1, if n odd ;

⌈ 6 n

3
⌉ if j = n.

∀ 3 ≤ i ≤ m
2 − 1

If n ≡ 0 mod 3 , or n ≡ 1 mod 3, and i ≡ 2 mod 3,

(5) Ψv(vij) =


⌈ 2 n i

3
⌉ if 1 ≤ j ≤ n− 1;

⌈ 2 n (i+ 1)

3
⌉ if j = n,

If n ≡ 1 mod 3, and i ≡ 0 mod 3,

(6) Ψv(vij) =


⌈ 2 n i

3
⌉ if 1 ≤ j ≤ n− 1;

⌈ 2 n (i+ 1)

3
⌉+ 1 if j = n,

If n ≡ 1 mod 3, and i ≡ 1 mod 3,

(7) Ψv(vij) =


⌈ 2 n i

3
⌉+ 1 if 1 ≤ j ≤ n− 1;

⌈ 2 n (i+ 1)

3
⌉ if j = n,

(8) ∀ i =
m

2
,
m

2
+ 1 , Ψv(vij) = r for 1 ≤ j ≤ n

∀ m
2 + 2 ≤ i ≤ m− 2
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If n ≡ 0 mod 3 or n ≡ 1 mod 3, and i ≡ 1 mod 3,

(9) Ψv(vij) =


⌈ 2 n [m− (i− 2)]

3
⌉ if j = 1;

⌈ 2 n [m− (i− 1)]

3
⌉ if 2 ≤ j ≤ n,

If n ≡ 1 mod 3, and i ≡ 2 mod 3,

(10) Ψv(vij) =


⌈ 2 n [m− (i− 2)]

3
⌉ if j = 1;

⌈ 2 n [m− (i− 1)]

3
⌉+ 1 if 2 ≤ j ≤ n,

If n ≡ 1 mod 3, and i ≡ 0 mod 3,

(11) Ψv(vij) =


⌈ 2 n [m− (i− 2)]

3
⌉+ 1 if j = 1;

⌈ 2 n [m− (i− 1)]

3
⌉ if 2 ≤ j ≤ n,

(12) Ψv(v(m−1)j) =



⌈ 6 n

3
⌉ if j = 1;

⌈ 4 n

3
⌉

for 2 ≤ j ≤ n
2 , if n even ;

or 2 ≤ j ≤ n−1
2 , if n odd ;

n− 2 if n
2 + 1 ≤ j ≤ n, n even ;

n− 1 if n+1
2 ≤ j ≤ n, n odd,

(13) Ψv(vmj) =


n− j − 1

for j = 1, 3, · · · , n− 1, if n even ;

or j = 2, 4, · · · , n− 1, if n odd ;

n− j
for j = 2, 4, · · · , n, if n even ;

j = 1, 3, · · · , n, if n odd,

For the edges, we define the labeling function Ψe : E(Clm,n)) −→ {1, 2, · · · , r}
as follows:

(14) Ψe(e1j) =


1 if 1 ≤ j ≤ n− 1;

n+ 1 if j = n , n even ;

n if j = n, n odd,
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(15) Ψe(e2j) =



2j + 3 if 1 ≤ j ≤ n
2 − 1, n even;

2j + 1 if 1 ≤ j ≤ n−1
2 , n odd ;

2n+ 1− ⌈4n
3
⌉ for j = n

2 if n even;

or j = n+1
2 , if n odd;

2n− 1 + 2j − 2⌈4n
3
⌉ for n

2 + 1 ≤ j ≤ n− 2 if n even;

or n+3
2 ≤ j ≤ n− 2 if n odd;

4n− 3− ⌈4n
3
⌉ − ⌈6n

3
⌉ if j = n− 1.

3n+ 1− ⌈6n
3
⌉ if j = n, n is even.

3n− ⌈ 6n

3
⌉ if j = n, n is odd,

∀ 3 ≤ i ≤ m
2 − 1

If n ≡ 0 mod 3 or n ≡ 1 mod 3, and i ≡ 2 mod 3,

(16) Ψe(eij) =



2n(i− 1) + 2j − 1− 2⌈2ni
3

⌉ if 1 ≤ j ≤ n− 2;

2ni− 3− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n− 1,

2ni− 1− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n,

If n ≡ 1 mod 3, and i ≡ 0 mod 3,

(17) Ψe(eij) =



2n(i− 1) + 2j − 1− 2⌈2ni
3

⌉ if 1 ≤ j ≤ n− 2;

2ni− 4− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n− 1,

2ni− 2− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n,

If n ≡ 1 mod 3, and i ≡ 1 mod 3,

(18) Ψe(eij) =



2n(i− 1) + 2j − 3− 2⌈2ni
3

⌉ if 1 ≤ j ≤ n− 2;

2ni− 4− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n− 1,

2ni− 2− ⌈2ni
3

⌉ − ⌈2n(i+ 1)

3
⌉ if j = n,
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(19) Ψe(em
2
j) = n(m− 2) + 2j − 1− 2r, for 1 ≤ j ≤ n

(20) Ψe(e(m
2
+1)j) =

 nm− 2(r + j) if 1 ≤ j ≤ n− 1 ;

nm− 2r if j = n .

∀ m
2 + 2 ≤ i ≤ m− 2

If n ≡ 0 mod 3 or n ≡ 1 mod 3, and i ≡ 1 mod 3,

(21)

Ψe(eij) =



2n(m+ 1− i)− 2− ⌈2n[m− i+ 1]

3
⌉ − ⌈2n[m− i+ 2]

3
⌉ if j = 1;

2n(m+ 1− i)− 2j − 2⌈2n[m− i+ 1]

3
⌉ if 2 ≤ j ≤ n− 1,

2n(m+ 1− i)− ⌈2n[m− i+ 1]

3
⌉ − ⌈ 2n[m− i+ 2]

3
⌉ if j = n,

If n ≡ 1 mod 3, and i ≡ 2 mod 3,

(22)

Ψe(eij) =



2n(m+ 1− i)− 3− ⌈2n[m− i+ 1]

3
⌉ − ⌈2n[m− i+ 2]

3
⌉ if j = 1;

2n(m+ 1− i)− 2− 2j − 2⌈2n[m− i+ 1]

3
⌉ if 2 ≤ j ≤ n− 1,

2n(m+ 1− i)− 1− ⌈2n[m− i+ 1]

3
⌉ − ⌈2n[m− i+ 2]

3
⌉ if j = n,

If n ≡ 1 mod 3, and i ≡ 0 mod 3,

(23)

Ψe(eij) =



2n(m+ 1− i)− 3− ⌈2n[m− i+ 1]

3
⌉ − ⌈2n[m− i+ 2]

3
⌉ if j = 1;

2n(m+ 1− i)− 2j − 2⌈2n[m− i+ 1]

3
⌉ if 2 ≤ j ≤ n− 1;

2n(m+ 1− i)− 1− ⌈2n[m− i+ 1]

3
⌉ − ⌈2n[m− i+ 2]

3
⌉ if j = n,
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(24) Ψe(e(m−1)j) =



4n− 2− ⌈4n
3
⌉ − ⌈6n

3
⌉ if j = 1;

4n− 2j − 2⌈4n
3
⌉

for 2 ≤ j ≤ n
2
− 1, if n even;

or 2 ≤ j ≤ n−3
2

, if n odd;

2n+ 2− ⌈4n
3
⌉

for j = n
2
, if n even;

or j = n−1
2

, if n odd.

2n+ 4− 2j if n
2
+ 1 ≤ j ≤ n− 1, n is even;

2n+ 2− 2j if n+1
2

≤ j ≤ n− 1, n is odd;

3n+ 2− ⌈6n
3
⌉ if j = n, n is even;

3n+ 1− ⌈6 n

3
⌉ if j = n, n is odd,

(25) Ψe(emj) =


2 if 1 ≤ j ≤ n− 1;

n+ 2 if j = n, n is even ;

n+ 1 if j = n, n is odd

Case (2). When n ≡ 2mod 3 and |m n| ≡ 0 , 4 (mod 6), we choose r = ⌈ m n
3 ⌉,

when n ≡ 2 mod 3 and |m n| ≡ 2 (mod 6), we choose r = ⌈ m n
3 ⌉+ 1.

The labeling function Ψ : V (Clm,n) ∪E(Clm,n) −→ {1, 2, · · · , r} defined as
in case (1) but with some modifications which are given by

Ψv(v2j) = ⌈ 4 n

3
⌉ + 1

for n
2 + 1 ≤ j ≤ n− 1, if n is even ;
or n+3

2 ≤ j ≤ n− 1, if n is odd,

∀ 3 ≤ i ≤ m
2 − 1 ,

If i ≡ 0 mod 3, in this case, the labeling of Ψv(vij) will match as within
Eq.(5).

If i ≡ 1 mod 3, in this case, the labeling of Ψv(vij) will match as within
Eq.(6).

If i ≡ 2 mod 3, in this case, the labeling of Ψv(vij) will match as within
Eq. (7).

∀ m
2 + 2 ≤ i ≤ m− 2 ,

If i ≡ 0 mod 3, in this case, the labeling of Ψv(vij) will match as within
Eq.(9).

If i ≡ 1 mod 3, in this case, the labeling of Ψv(vij) will match as within
Eq.(10).

If i ≡ 2 mod 3, in this case, the labeling of Ψv(vij) will match as
within Eq.(11).
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Ψv(v(m−1)j) = ⌈ 4 n

3
⌉ + 1

for 2 ≤ j ≤ n
2 , if n is even ;

or 2 ≤ j ≤ n−1
2 , if n is odd,

Ψe(e2j) =



2n− ⌈4n
3
⌉ for j = n

2 , if n is even;

or j = n+1
2 , if n is odd;

2n− 3 + 2j − 2⌈4n
3
⌉ for n

2 + 1 ≤ j ≤ n− 2, if n is even;

or n+3
2 ≤ j ≤ n− 2, if n is odd;

4n− 4− ⌈ 4n

3
⌉ − ⌈6n

3
⌉ if j = n− 1.

∀ , 3 ≤ i ≤ m
2 − 1

If i ≡ 0 mod 3 in this case, the labeling of Ψe(eij) will match as within
Eq.(16).

If i ≡ 1 mod 3 in this case, the labeling of Ψe(eij) will match as within
the Eq. (17).

If i ≡ 2 mod 3 in this case, the labeling of Ψe(eij) will match as within
Eq.(18).

∀ , m
2 + 2 ≤ i ≤ m− 2

If i ≡ 0 mod 3 in this case, the labeling of Ψe(eij) will match as within
Eq.(21).

If i ≡ 1 mod 3 in this case, the labeling of Ψe(eij) will match as within
Eq.(22).

If i ≡ 2 mod 3 in this case, the labeling of Ψe(eij) will match as within
Eq.(23).

Ψe(e(m−1)j) =



4n− 3− ⌈4n
3
⌉ − ⌈6 n

3
⌉ if j = 1;

4n− 2j − 2⌈4n
3
⌉ − 2

for 2 ≤ j ≤ n
2 − 1, if n is even;

or 2 ≤ j ≤ n−3
2 , if n is odd;

2n+ 1− ⌈4n
3
⌉ for j = n

2 , if n is even ;

or j = n−1
2 , if n is odd,

In all cases, we can see that all the vertex and edge labels are at most
r = ⌈ m n

3 ⌉ or r = ⌈ m n
3 ⌉ + 1 . Besides, under the labeling Ψ the weights of

the edges are given by

• If m is even number

∀ 1 ≤ i ≤ m
2 wtΨ(eij) = 2n(i− 1) + 2j − 1 , 1 ≤ j ≤ n

∀ m
2 + 1 ≤ i ≤ m

wtΨ(eij) =

{
2n(m+ 1− i)− 2j if 1 ≤ j ≤ n− 1;

2n( m+ 1− i) if j = n.
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We can see that weights of edges in the first half cycles Cn1 , Cn2 , · · · , Cnm
2

form an increasing sequence of consecutive odd integers from 1 up to mn−1 .
For the second half cycles Cnm

2 +1
, Cnm

2 +2
, · · · , Cnm weights of edges form a

decreasing sequence of consecutive even integers from mn up to 2 . This
concludes the proof.

Theorem 3.3. Let n ≥ 6 and m be an odd positive integer, m ≥ 5 . Then
the calendula graph Clm,n have .

res(Clm,n) =



⌈m n

3
⌉

for n ≡ 0 mod 6;

or n ≡ 2, 4 mod 6 and |mn| ≡ 0, 4 mod 6;

or n ≡ 1, 5 mod 6 and |mn| ≡ 1, 5 mod 6;

⌈mn
3

⌉+ 1

for n ≡ 3 mod 6 ;

or n ≡ 2 , 4 mod 6 and |mn| ≡ 2 mod 6;

or n ≡ 1 , 5 mod 6 and |mn| ≡ 3 mod 6.

Proof. Since |V (Clm,n)| = m(n− 1) , |E(Clm,n) | = mn and the maximum
degree △(Clm,n) = 4. Thus, the inequality (2) becomes

res(Clm,n) ≥

 ⌈ m n

3
⌉ if |m n| ̸≡ 2, 3 (mod 6). ;

⌈ m n

3
⌉ + 1 if |m n| ≡ 2, 3 (mod 6).

To prove the inverse inequality, we need to show that there exist an edge
irregularity reflexive r− labeling, r = ⌈ m n

3 ⌉ , or r = ⌈ m n
3 ⌉ + 1 , for the

calendula graph Clm,n . The labeling in the case for m odd is the same as
the case in Theorem 3.2 when m is even, but with some modifications, we list
it in the following:

For vertices and edges when 3 ≤ i ≤ m
2 − 1 ,m is even, the labeling is the

same when 3 ≤ i ≤ m−3
2 , m is odd.

∀ 1 ≤ j ≤ n− 1

Ψv(v(m−1
2 )j) =


⌈ (m− 1)n

3
⌉

for n ≡ 0 mod 3;

or n ≡ 1 mod 3 and m ≡ 1, 5 mod 6;

or n ≡ 2 mod 3 and m ≡ 1, 3 mod 6;

⌈ (m− 1)n

3
⌉+ 1

for n ≡ 1 mod 3 and m ≡ 3 mod 6;

or n ≡ 2 mod 3 and m ≡ 5 mod6,

Ψv(v(m−1
2

)n) =


r

for n ≡ 0 mod 3, or n ≡ 2, 4 mod 6;

or n ≡ 1 mod 6 and m ≡ 3, 5 mod 6;

or n ≡ 5 mod 6 and m ≡ 1, 3 mod 6;

r − 1
for n ≡ 1 mod 6 and m ≡ 1 mod 6;

or n ≡ 5 mod 6 and m ≡ 5 mod 6,
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∀ 1 ≤ j ≤ n

Ψv(v(m+1
2

)j) =


r

for n ≡ 0, 2 mod 3, or n ≡ 4 mod 6;

or n ≡ 1 mod 3 and m ≡ 3, 5 mod 6;

or n ≡ 5 mod 6 and m ≡ 1, 3 mod 6;

r − 1
for n ≡ 1 mod 3 and m ≡ 1 mod 6;

or n ≡ 5 mod 6 and m ≡ 5 mod 6,

Ψv(v(m+3
2

)1) =


r

for n ≡ 0 mod 3, or n ≡ 2, 4 mod 6;

or n ≡ 1 mod 3 and m ≡ 3, 5 mod 6;

or n ≡ 5 mod 6 and m ≡ 1, 3 mod 6;

r − 1
for n ≡ 1 mod 3 and m ≡ 1 mod 6;

or n ≡ 5 mod 6 and m ≡ 5 mod 6,

∀ 2 ≤ j ≤ n

Ψv(v(m+3
2 )j) =


⌈ (m− 1)n

3
⌉

for n ≡ 0 mod 3 ;

or n ≡ 1 mod 3 and m ≡ 1, 5 mod 6;

or n ≡ 2 mod 3 and m ≡ 1, 3 mod 6;

⌈ (m− 1) n

3
⌉+ 1

for n ≡ 1 mod 3 and m ≡ 3 mod 6;

or n ≡ 2 mod 3 and m ≡ 5 mod 6,

∀ m+5
2 ≤ i ≤ m− 2 , there are three cases

Case (1).

If n ≡ 0 mod 3 , or n ≡ 1 mod 3 , m ≡ 1 mod 6 , and i ≡ 0 mod 3,

or n ≡ 1 mod 3 , m ≡ 5 mod 6 , and i ≡ 1 mod 3 ,

or n ≡ 1 mod 3 , m ≡ 3 mod 6 , and i ≡ 2 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 1 mod 6 , and i ≡ 2 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 5 mod 6 , and i ≡ 0 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 3 mod 6 , and i ≡ 1 mod 3 .

In this case, the labeling of vertices Ψv(vij) will match as within Eq.(9).
Also, the labeling of edges Ψe(eij) will match as within Eq.(21).

Case (2).

If n ≡ 1 mod 3 , m ≡ 1 mod 6 , and i ≡ 1 mod 3 ,

or n ≡ 1 mod 3 , m ≡ 5 mod 6 , and i ≡ 2 mod 3 ,

or n ≡ 1 mod 3 , m ≡ 3 mod 6 , and i ≡ 0 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 1 mod 6 , and i ≡ 0 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 5 mod 6 , and i ≡ 1 mod 3 ,

or n ≡ 2 mod 3 , m ≡ 3 mod 6 , and i ≡ 2 mod 3 .

In this case, the labeling of vertices Ψv(vij) will match as within Eq.(10),
and the labeling of edges Ψe(eij) will match as within Eq.(22).

Case (3).

If n ≡ 1 mod 3 , m ≡ 1 mod 6 , and i ≡ 2 mod 3,

or n ≡ 1 mod 3 , m ≡ 5 mod 6 , and i ≡ 0 mod 3,
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or n ≡ 1 mod 3 , m ≡ 3 mod 6 , and i ≡ 1 mod 3,

or n ≡ 2 mod 3 , m ≡ 1 mod 6 , and i ≡ 1 mod 3,

or n ≡ 2 mod 3 , m ≡ 5 mod 6 , and i ≡ 2 mod 3,

or n ≡ 2 mod 3 , m ≡ 3 mod 6 , and i ≡ 0 mod 3.

In this case, the labeling of vertices Ψv(vij) will match as within Eq.(11) and
the labeling of edges Ψe(eij) will match as within Eq.(23).

∀ 1 ≤ j ≤ n− 2

Ψe(e(m−1
2

)j
) =


n(m− 3) + 2j − 1− 2⌈ (m−1)n

3
⌉

for n ≡ 0 mod 3;

or n ≡ 1 mod 3 and m ≡ 1, 5 mod 6;

or n ≡ 2 mod 3 and m ≡ 1, 3 mod 6;

n(m− 3) + 2j − 3− 2⌈ (m−1) n
3

⌉
for n ≡ 1 mod 3 and m ≡ 3 mod 6;

or n ≡ 2 mod 3 and m ≡ 5 mod 6,

Ψe(e(m−1
2

)(n−1)
) =



n(m− 1)− 3− ⌈ (m−1)n
3

⌉ − r

for n ≡ 0 mod 3, or n ≡ 5 mod 6;

or n ≡ 1 mod 6 and m ≡ 5 mod 6;

or n ≡ 2 mod 6 and m ≡ 1, 3 mod 6;

or n ≡ 4 mod 6 and m ≡ 1, 5 mod 6;

n(m− 1)− 4− ⌈ (m−1)n
3

⌉ − r

for n ≡ 1 mod 6 and m ≡ 3 mod 6;

or n ≡ 2 mod 6 and m ≡ 5 mod 6;

or n ≡ 4 mod 6 and m ≡ 3 mod 6;

n(m− 1)− 2− ⌈ (m−1)n
3

⌉ − r if n,m ≡ 1 mod 6

Ψe(e(m−1
2

)n
) =



n(m− 1)− 1− ⌈ (m−1)n
3

⌉ − r

for n ≡ 0 mod3, or n ≡ 5 mod 6;

or n ≡ 1 mod 6 and m ≡ 5 mod 6;

or n ≡ 2 mod 6 and m ≡ 1, 3 mod 6;

or n ≡ 4 mod 6 and m ≡ 1, 5 mod 6;

n(m− 1)− 2− ⌈ (m−1)n
3

⌉ − r

for n ≡ 1 mod 6 and m ≡ 3 mod 6;

or n ≡ 2 mod 6 and m ≡ 5 mod 6;

or n ≡ 4 mod 6 and m ≡ 3 mod 6;

n(m− 1)− ⌈ (m−1)n
3

⌉ − r if n,m ≡ 1 mod 6,

∀ 1 ≤ j ≤ n+1
2 and n is odd, or 1 ≤ j ≤ n

2 and n is even

Ψe(e(m+1
2

)j
) =


n(m− 1) + 2j − 1− 2r

for n ≡ 0 mod 3, or n ≡ 2, 4 mod 6 ;

or n ≡ 1 mod 6 and m ≡ 3, 5 mod 6 ;

or n ≡ 5 mod 6 and m ≡ 1, 3 mod 6 ;

n(m− 1) + 2j + 1− 2r
for n ≡ 1 mod 6 and m ≡ 1 mod 6;

or n ≡ 5 mod 6 and m ≡ 5 mod 6,

∀ n+3
2 ≤ j ≤ n and n is odd, or n

2 + 1 ≤ j ≤ n and n is even
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Ψe(e(m+1
2

)j
) =


n(m+ 1)− 2j + 2− 2r

for n ≡ 0 mod 3 ;

for n ≡ 2, 4 mod 6 ;

or n ≡ 1 mod 6 and m ≡ 3, 5 mod 6;

or n ≡ 5 mod 6 and m ≡ 1, 3 mod 6;

n(m+ 1)− 2j + 4− 2r
for n ≡ 1 mod 6 and m ≡ 1 mod 6;

or n ≡ 5 mod 6 and m ≡ 5 mod 6,

Ψe(e(m+3
2

)1
) =



n(m− 1)− ⌈ (m−1)n
3

⌉ − 2− r

for n ≡ 0 mod 3, or n ≡ 5 mod 6;

or n ≡ 1 mod 6 and m ≡ 5 mod 6;

or n ≡ 2 mod 6 and m ≡ 1, 3 mod 6;

or n ≡ 4 mod 6 and m ≡ 1, 5 mod 6;

n(m− 1)− ⌈ (m−1)n
3

⌉ − 3− r

forn ≡ 1 mod 6 and m ≡ 3 mod 6;

or n ≡ 2 mod 6 and m ≡ 5 mod 6;

or n ≡ 4 mod 6 and m ≡ 3 mod 6;

n(m− 1)− ⌈ (m−1)n
3

⌉ − 1− r if n,m ≡ 1 mod 6,

∀ 2 ≤ j ≤ n− 1

Ψe(e(m+3
2

)j
) =


n(m− 1)− 2j − 2⌈ (m−1)n

3
⌉

for n ≡ 0 mod 3;

or n ≡ 1 mod 3 and m ≡ 1, 5 mod 6;

or n ≡ 2 mod 3 and m ≡ 1, 3 mod 6;

n(m− 1)− 2j − 2⌈ (m−1)n
3

⌉ − 2
for n ≡ 1 mod 3 and m ≡ 3 mod 6;

or n ≡ 2 mod 3 and m ≡ 5 mod 6,

Ψe(e(m+3
2

)n
) =



n(m− 1)− ⌈ (m−1)n
3

⌉ − r

for n ≡ 0 mod 3, or n ≡ 5 mod 6;

or n ≡ 1 mod 6 and m ≡ 5 mod 6;

or n ≡ 2 mod 6 and m ≡ 1, 3 mod 6;

or n ≡ 4 mod 6 and m ≡ 1, 5 mod 6;

n(m− 1)− ⌈ (m−1)n
3

⌉ − 1− r

for n ≡ 1 mod 6 and m ≡ 3 mod 6;

or n ≡ 2 mod 6 and m ≡ 5 mod 6;

or n ≡ 4 mod 6 and m ≡ 3 mod 6;

n(m− 1)− ⌈ (m−1)n
3

⌉+ 1− r if n,m ≡ 1 mod 6.

In all cases, we are able see that all the vertex and edge names are at most
r = ⌈ m n

3 ⌉ or r = ⌈ m n
3 ⌉ + 1 .

When m is odd number, the weight of the edges of the calendula graphs
Clm,n are given by

∀ 1 ≤ i ≤ m−1
2 wtΦ(eij) = 2n(i− 1) + 2j − 1 , 1 ≤ j ≤ n

wtΦ(e(m+1
2

)j) =


n(m− 1) + 2j − 1

for 1 ≤ j ≤ n
2 , n is even;

or 1 ≤ j ≤ n+1
2 , n is odd,

n(m+ 1)− 2j + 2
for n

2 + 1 ≤ j ≤ n, n is even;

or n+3
2 ≤ j ≤ n, n is odd,

∀ m+3
2 ≤ i ≤ m wtΦ(eij) =

{
2n(m+ 1− i)− 2j if 1 ≤ j ≤ n− 1;

2n(m+ 1− i) if j = n.
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We can see that weights of edges in all cycles Cn1 , Cn2 , · · · , Cnm are all
different, this concludes the proof.

Table 1 illustrates the different cases of an edge irregularity reflexive labeling
for the calendula Clm,n graph.

Table 1: The different cases of an edge irregularity reflexive labeling for the
calendula Clm,n

Graph n m E(Clm,n ) r

Clm,n n ≡ 0 mod 6 ∀ m E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 4 mod 6 m ≡ 0 , 3 mod 6 E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 4 mod 6 m ≡ 1 , 4 mod 6 E ≡ 4 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 4 mod 6 m ≡ 2 , 5 mod 6 E ≡ 2 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 2 mod 6 m ≡ 0 , 3 mod 6 E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 2 mod 6 m ≡ 2 , 5 mod 6 E ≡ 4 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 2 mod 6 m ≡ 1 , 4 mod 6 E ≡ 2 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 3 mod 6 m ≡ 0 , 2, 4 mod 6 E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 3 mod 6 m ≡ 1 , 3 , 5 mod 6 E ≡ 3 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 1 mod 6 m ≡ 0 mod 6 E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 1 mod 6 m ≡ 1 mod 6 E ≡ 1 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 1 mod 6 m ≡ 4 mod 6 E ≡ 4 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 1 mod 6 m ≡ 5 mod 6 E ≡ 5 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 1 mod 6 m ≡ 2 mod 6 E ≡ 2 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 1 mod 6 m ≡ 3 mod 6 E ≡ 3 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 5 mod 6 m ≡ 1 mod 6 E ≡ 5 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 5 mod 6 m ≡ 2 mod 6 E ≡ 0 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 5 mod 6 m ≡ 4 mod 6 E ≡ 4 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 5 mod 6 m ≡ 5 mod 6 E ≡ 1 mod 6 ⌈ m n
3 ⌉

Clm,n n ≡ 5 mod 6 m ≡ 0 mod 6 E ≡ 2 mod 6 ⌈ m n
3 ⌉ + 1

Clm,n n ≡ 5 mod 6 m ≡ 3 mod 6 E ≡ 3 mod 6 ⌈ m n
3 ⌉ + 1

Illustration: The calendula graphs Cl10,12 with an edge irregularity total
k = 41 labeling and Cl10,12 with an edge irregularity reflexive r = 40 labeling
are shown in Fig. 6.
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Figure 6: The calendula graphs Cl10,12 with an edge irregularity total k = 41 labeling
and Cl10,12 with an edge irregularity reflexive r = 40 labeling
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Illustration: The calendula graphs Cl9,11 with an edge irregularity total
k = 34 labeling and Cl9,11 with an edge irregularity reflexive r = 34 labeling
are shown in Fig. 7.
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Figure 7: The calendula graphs Cl9,11 with an edge irregularity total k = 34 labeling
and Cl9,11 with an edge irregularity reflexive r = 34 labeling
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4. Conclusion

lately, graph labeling has become a fruitful branch of several research studies
in graph theory. It has massive applications in many disciplines, like coding
theory, X-rays, radar, communication networks, and astronomy. In this work, we
have determined the total edge irregular strength k− and the edge irregularity
reflexive r− for calendula Cl4,n , n ≥ 4, Cl5,n , n ≥ 4. Furthermore, the exact
value of total edge irregular strength k− and the edge irregularity reflexive r−
for a generalized calendula Clm,n was defined.
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Abstract. In the present paper, using linear combination technique, we introduce
an optimal three-step iterative scheme for solving nonlinear equations. We prove the
convergence of the proposed method. In order to demonstrate the performance of newly
developed method, we consider some commonly used nonlinear equations for numerical
as well as graphical comparisons. We also explore polynomiographs in the context of
some complex polynomials.
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1. Introduction

Nonlinear equations and their solutions have been a scorching topic for many
researchers. In this regard, vast literature is available, for examples see [1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and references therein. A fundamental
technique for solving nonlinear equations is the well-known Newton’s method,
which converges quadratically:

(1) xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

*. Corresponding author
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According to Kung and Turab [5] conjecture, an iterative method is called op-
timal if it needs (n+ 1) functional evaluations per iteration and possesses con-
vergence order 2n. S. Abbasbandy [6] using modified Adomian decomposition
method, proposed a fourth-order method which needs three evaluations per it-
eration:

(2) xn+1 = xn −
f(xn)

f ′(xn)
− f2(xn)f

′′(xn)

2f ′3(xn)
− f3(xn)f

′′2(xn)

2f ′5(xn)
,

where yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

Cordero et al. [7], developed the following fourth-order method:

(3) xn+1 = xn −
f(xn) + f(yn)

f ′(xn)
−
[
f(yn)

f ′(xn)

]2 [2f(xn) + f(yn)

f ′(xn)

]
,

where yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .
A second derivative free optimal fourth-order method has been introduced

by Chun et al. [8].

(4) xn+1 = xn −
f(xn)

f ′(xn)

[
1 +

3

4

f ′(xn)− f ′(yn)

f ′(xn)
+

9

8

(
f ′(xn)− f ′(yn)

f ′(xn)

)2
]
,

where yn = xn − 2f(xn)
3f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

In 2015, Sherma and Behl [9], also proposed a second derivative free optimal
fourth-order method:

(5) xn+1 = xn −
[
−1

2
+

9f ′(xn)

8f ′(yn)
+

3f ′(yn)

8f ′(xn)

]
f(xn)

f ′(xn)
,

where yn = xn − 2f(xn)
3f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .
In this paper, having motivation from the above study, we propose a more

effective second derivative free optimal fourth-order iterative method. The ef-
fectiveness of our method is explored by its numerical as well as graphical com-
parisons with some existing methods of the same class. We also investigate the
dynamical behavior of newly constructed method for visualization of the roots
of complex polynomials.

2. Construction of iterative method

Consider the nonlinear equation

(6) f(x) = 0.

Using Taylor’s expansion about γ (initial guess), equation (6) can be written in
the form of the following coupled system:

f(x) ≈ f(γ) + (x− γ)f ′(γ) + g(x) ≈ 0,(7)

g(x) ≈ λf(x)

f ′(γ)
− f(γ)− (x− γ)f ′(γ),(8)
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where λ ∈ R is an auxiliary parameter.
From equation (7), we get

x ≈ γ − f(γ)

f ′(γ)
− g(x)

f ′(γ)
,(9)

= c+N(x),

where

c = γ − f(γ)

f ′(γ)
and(10)

N(x) = − g(x)

f ′(γ)
.(11)

Here, N(x) is a nonlinear operator and can be approximated by using Taylor’s
series expansion about x0 as follows:

(12) N(x) = N(x0) +

∞∑
k=1

(xi − x0)
k

k!
N (k)(x0).

Our aim is to find the series solution of equation (6):

(13) x =

∞∑
i=0

xi.

Which can alternatively be expressed as

(14) x = lim
m→∞

Xm, where Xm = x0 + x1 + . . .+ xm.

From equations (9), (12) and (13), we get

x =

∞∑
i=0

xi =

∞∑
i=0

(c+N(x0) +

∞∑
k=1

(xi − x0)
k

k!
N (k)(x0), which implies

x = c+N(x0) +
∞∑
k=1

(
k∑
i=0

xi − x0)
k

k!
N (k)(x0).(15)

From the last relation, we have the following scheme:

(16)



x0 = c,
x1 = N(x0),
x2 = (x0 + x1 − x0)N

′(x0),

x3 =
(x0+x1+x2−x0)2

2! N
′′
(x0),

...

xm+1 =
(x0+x1+...+xm−x0)m

m! N (m)(x0), m = 0, 1, 2, . . . .
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Thus,

x1 + x2 + . . .+ xm+1 = N(x0) + (x0 + x1 − x0)N
′(x0)

+ . . .+
(x0 + x1 + . . .+ xm − x0)

m

m!
N (m)(x0),(17)

where m = 1, 2, . . . .
Since x0 = c, therefore, equation (15) gives

(18) x = c+

∞∑
i=1

xi.

From equation (10) and the first equation of (16), we have

(19) x0 = c = γ − f(γ)

f ′(γ)
.

Using equation (14) with m = 0 and equation (19), we have

(20) x ≈ X0 = x0 = γ − f(γ)

f ′(γ)
.

This formulation allows us to propose the following iterative method for solving
nonlinear equation (6).

Algorithm. 2.1. For a given x0, compute the approximate solution xn+1 by
the following iterative scheme:

(21) xn+1 = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0, n = 0, 1, 2, . . . ,

which is the well-known Newton’s method.
Now, from equation (19), we have

(22) x0 − γ = − f(γ)

f ′(γ)
.

Using equation (11) and the second equation of (16), we get

(23) x1 = N(x0) = −g(x0)

f ′(γ)
.

Thus, using equation (8), we have

(24) g(x0) =
λf(x0)

f ′(γ)
− f(γ)− (x0 − γ)f ′(γ).

From equations (22), (23) and (24), we obtain

(25) x1 = N(x0) = − λf(x0)

(f ′(γ))2
= −

λf(γ − f(γ)
f ′(γ))

(f ′(γ))2
.
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Using equation (14) with m = 1 along with equations (19) and (25), we obtain

(26) x ≈ X1 = x0 + x1 = γ − f(γ)

f ′(γ)
−

λf(γ − f(γ)
f ′(γ))

(f ′(γ))2
.

This formulation allows us to propose the following iterative method for solving
nonlinear equation (6).

Algorithm 2.2. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme:

(27) xn+1 = yn −
λf(yn)

(f ′(xn))2
,

where yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .
The last algorithm converges cubically for λ = 1 and requires 3 function

evaluations per iteration.
From the third equation of (16), we get

(28) x2 = (x1)N
′(x0) = −x1

g′(x0)

f ′(γ)
.

From equation (8), we have

(29) g′(x0) =
λf ′(x0)

f ′(γ)
− f ′(γ).

Thus from equations (25), (28) and (29), we have

(30) x2 = λ2 f(x0)f
′(x0)

(f ′(γ))4
− λf(x0)

(f ′(γ))2
.

Using equation (14) with m = 2 along with equations (19), (25) and (30), we
obtain

x ≈ X3 = x0 + x1 + x2

= c− 2
λf(x0)

(f ′(γ))2
+ λ2 f(x0)f

′(x0)

(f ′(γ))4

= γ − f(γ)

f ′(γ)
− 2

λf(x0)

(f ′(γ))2
+ λ2 f(x0)f

′(x0)

(f ′(γ))4
.(31)

This formulation allows us to propose the following iterative method for solving
nonlinear equation (6).

Algorithm 2.3. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme:

(32) xn+1 = 2zn − yn − λ(zn − yn)
f ′(yn)

(f ′(xn))2
,



AN EFFICIENT OPTIMAL FOURTH-ORDER ITERATIVE METHOD ... 759

where zn = yn − λf(yn)
(f ′(xn))2

, and yn = xn − f(xn)
f ′(xn)

, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

The above algorithm has convergence order 3 and needs 4 function evaluations
per iteration. In order to reduce the number of function evaluations by one, we
make the following approximation:

(33) f ′(yn) ≈
f(yn)− f(xn)

(yn − xn)
.

Algorithm 2.4. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme:

(34) xn+1 = 2zn − yn − λ(zn − yn)
f(yn)− f(xn)

(yn − xn)(f ′(xn))2
,

where

zn = yn −
λf(yn)

(f ′(xn))2
,

and

yn = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

Which is a three-step iterative method having convergence order three and needs
three function evaluations per iteration.

On the basis of the linear combination of Algorithms 2.2 and 2.4, we suggest
the following new optimal fourth-order iterative scheme:

(35) xn+1 = yn + (1 +
4θ

3
)
λf(yn)

(f ′(xn))2
+

4θ

3
λ(zn − yn)

f(yn)− f(xn)

(yn − xn)(f ′(xn))2
,

where θ ∈ R is the adjusting parameter. Clearly, for θ = 0 and λ = −1, equation
(35) reduces to the method given in equation (27) and for θ = 3/4 and λ = −1,
it reduces to the method defined in equation (34). The performance of newly
suggested method depends upon the appropriate choice of θ.

Taking θ = 1 and λ = −1, the above formulation allows us to suggest the
following optimal fourth-order iterative method:

Algorithm 2.5. For a given x0, compute the approximate solution xn+1 by the
following iterative scheme:

(36) xn+1 = yn − (
7

3
)

f(yn)

(f ′(xn))2
− 4

3
(zn − yn)

f(yn)− f(xn)

(yn − xn)(f ′(xn))2
,

where

zn = yn −
f(yn)

(f ′(xn))2
,

and

yn = xn −
f(xn)

f ′(xn)
, f ′(xn) ̸= 0, n = 0, 1, 2, . . . .

To the best of our knowledge, algorithm 2.5 is a new one to solve the nonlinear
equation (6).
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3. Convergence analysis

In this section, convergence criteria of newly proposed method is studied in the
form of the following theorem.

Theorem 3.1. Assume that the function f : I ⊂ R → R (where I is an open
interval) has a simple root α ∈ I and x0 is sufficiently close to α. Let f(x) be
sufficiently differentiable in the neighborhood of α, then the algorithm 2.5 has
the convergence order 4.

Proof. Let α be a simple zero of f(x). Since f is sufficiently differentiable,
therefore, the Taylor’s series expansions of f(xn) and f ′(xn) about α are given
by

(37) f(xn) = f ′(α){en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n +O

(
e6n
)
},

and

(38) f ′(xn) = f ′(α){1 + 2c2en + 3c3e
2
n + 4c4e

3
4 + 5c5e

4
n + 6c6e

5
n +O

(
e5n
)
},

where en = xn − α and cj = ( 1
j!)

f (j)(α)
f ′(α) , j = 1, 2, 3, . . ..

From equations (37) and (38), we get

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c22 − c3)e

3
n + (−4c32 + 7c2c3 − 3c4)e

4
n

+(8c42 − 20c22c3 + 10c2c4 + 6c23 − 4c5)e
5
n +O

(
e6n
)
.(39)

Using equation (39), we find

yn = xn −
f(xn)

f ′(xn)
= α+ c2e

2
n − 2(c22 − c3)e

3
n + (4c32 − 7c2c3 + 3c4)e

4
n

+(−8c42 + 20c22c3 − 10c2c4 − 6c23 + 4c5)e
5
n +O

(
e6n
)
.(40)

Using equation (40), the Taylor’s series of f(yn) is given as

f(yn) = c2e
2
n − 2(c22 − c3)e

3
n + (5c32 − 7c2c3 + 3c4)e

4
n

+(−12c42 + 24c22c3 − 10c2c4 − 6c23 + 4c5)e
5
n +O

(
e6n
)
.(41)

Using equations (40) and (41), we get

zn = α+ 4c22e
3
n + (−21c32 + 14c2c3)e

4
n

+ (80c42 − 104c22c3 + 20c2c4 + c23)e
5
n +O

(
e6n
)
.(42)

From equations (38), (40) and (41), we obtain

yn −
7f(yn)

3(f ′(xn))2
= α− 4

3
c2e

2
n + (12c22 −

8

3
c3)e

3
n + (−163

3
c32 + 42c2c3 − 4c4)e

4
n

+ (
592

3
c42 −

808

3
c22c3 + 60c2c4 + 36c23 −

16

3
c5)e

5
n +O

(
e6n
)
.(43)
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Using equations (40) and (42), we have

4(zn − yn)
f(yn)− f(xn)

3(yn − xn)(f ′(xn))2
= −4

3
c2e

2
n + (12c22 −

8

3
c3)e

3
n + (−208

3
c32

+
128

3
c2c3 − 4c4)e

4
n + (324c42 − 352c22c3

+
184

3
c2c4 +

112

3
c33 −

16

3
c5)e

5
n +O

(
e6n
)
.(44)

Using equations (43) and (44), the error term for algorithm 2.5 is given as

(45) en+1 = (15c32 −
2

3
c2c3)e

4
n + (−380

3
c42 +

248

3
c22c3 −

4

3
c2c4 −

4

3
c23)e

5
n +O(e6n).

This completes the proof.

4. Numerical examples

In this section, we reveal the validity and efficiency of our proposed iterative
method (AN1) given in algorithm 2.5 by considering the nonlinear equations
from the fields of mathematical sciences. Taking x0 as initial guess, we compare
AN1 with the standard Newton’s method (equation 1) (NM), Abbasbundy’s
method (equation 2) (AM), Cordero et al. method (equation 3) (DM), Chun’s
method (equation 4) (CM), and recently developed method (equation 5) (RM)
by Sharma and Behl. The numerical comparison is presented in the following
table and the graphical behavior is studied in Fig. 1 to Fig. 10 to demonstrate
the performance of the methods. We use Maple 18 and Matlab software for
comparisons, taking |xn+1−xn| as stopping criteria, where ϵ = 10−15 represents
the tolerance. Both the comparative studies show that the newly developed
method i.e. algorithm 2.5 performs better.

In the following table NFE denotes the total number of functional evalua-
tions required to reach the desired result.
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Table
f(x) x◦ Method n xn f(xn) (

∣∣xn+1 − xn
∣∣) NFE

x3 + x2 + 2 1.4

NM
AM
DM
CM
RM
AN1

18
13
50
28
13
6

−1.6956207695598621
−1.6956207695598621
6889.4069728314899
−1.6956207695598621
−1.6956207695598621
−1.6956207695598621

2.228890e−16

2.228890e−16

3.270458e11

2.228890e−16

2.228890e−16

2.228890e−16

3.137243e−09

2.024970e−13

6.870399e+03

1.897249e−14

5.034529e−05

1.071447e−08

36
39
150
84
39
18

esinx + sin(3x) − 1 −0.4

NM
AM
DM
CM
RM
AN1

6
5
4
4
4
3

0.0000000000000000
−1.8736010948989818
0.0000000000000000
3.1415926535897932
0.0000000000000000
0.0000000000000000

1.914154e−27

6.376116e−17

3.782606e−29

1.538506e−16

8.231301e−50

2.659091e−15

6.187332e−14

4.639035e−08

8.934023e−08

7.110410e−07

6.173081e−13

1.031329e−07

12
15
12
12
12
9

x3 − e− sin 4x − 1 1.03

NM
AM
DM
CM
RM
AN1

7
12
8
9
5
4

1.4115624181268047
1.4115624181268047
1.4115624181268047
1.4115624181268047
1.4115624181268047
1.4115624181268047

1.491129e−16

1.491129e−16

1.491129e−16

1.491129e−16

1.491129e−16

1.491129e−16

3.531439e−09

2.139755e−09

8.432900e−15

4.229577e−14

6.641495e−06

7.080969e−09

14
36
24
27
15
12

ln(e−x + x2) 0.28

NM
AM
DM
CM
RM
AN1

6
3
3
5
4
2

−0.0000000000000000
0.0000000000000000
0.0000000000000000
0.7145563847430097
−0.0000000000000000
0.0000000000000000

1.409068e+23

3.426071e+35

0.000000e+00

1.504888e−18

4.431519e−28

0.000000e+00

3.753755e−12

3.247871e−12

8.553213e+03

6.332712e−11

1.073788e−07

3.185195e+02

12
9
9
15
12
6

sin−1x 0.3

NM
AM
DM
CM
RM
AN1

3
3
2
2
2
2

0.0000000000000000
−0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000
0.0000000000000000

6.689713e−21

1.781999e−20

1.673591e−21

1.797242e−23

1.001759e−22

1.362037e−26

2.717542e−07

3.767121e−07

1.246764e−04

5.576293e−05

7.862795e−05

1.297510e−05

6
9
6
6
6
6

sin(5x) −0.22

NM
AM
DM
CM
RM
AN1

5
5
4
7
4
3

0.0000000000000000
−1.2566370614359173
−0.0000000000000000
324.21236185046666
−0.0000000000000000
−0.0000000000000013

1.384135e−20

2.307471e−17

4.183607e−33

1.104672e−14

1.550586e−69

6.732192e−15

6.925692e−08

8.228151e−08

1.192325e−07

1.908201e−05

6.224901e−15

6.506171e−06

10
15
12
21
12
9

ln(x2 + eX ) + x −0.5

NM
AM
DM
CM
RM
AN1

5
9
8
5
4
3

0.0000000000000000
−0.0000000000000000
0.0000000000000000
0.0000000000000011
0.0000000000000000
0.0000000000000000

2.761873e−17

9.183366e−31

2.076011e−21

2.171942e−15

6.932928e−32

7.299088e−26

5.255352e−09

6.739488e−11

6.099432e−06

1.876283e−04

1.590518e−08

6.617743e−13

10
27
24
15
12
9

x + 2x3sin(x) − 1 1.38

NM
AM
DM
CM
RM
AN1

6
18
7
4
9
4

1.5523226989842709
4.7079470507119627
−32504614.839471103
7.0707301317015739
7.0707301317015739
1.5523226989842709

2.951026e−16

9.955880e−15

7.392443e+13

2.403279e−14

2.403279e−14

2.951026e−16

2.008739e−11

4.485377e−12

3.474241e−19

2.078366e−07

2.407384e−14

2.345465e−10

12
54
21
12
27
12

sin(5x) − sin(x) 0.2

NM
AM
DM
CM
RM
AN1

5
20
4
4
4
3

−0.0000000000000000
−67.5442420404298480
0.0000000000000000
−0.5235987755982989
0.0000000000000000
−0.0000000000000000

6.387890e−15

1.656949e−15

1.387071e−20

1.598912e−17

1.897089e−57

2.652270e−18

5.366433e−06

1.958451e−08

3.651889e−05

7.380621e−14

1.559232e−12

5.044085e−07

10
60
12
12
12
9

x3 − x2 − 8 −2.3

NM
AM
DM
CM
RM
AN1

14
14
50
31
17
7

2.3948586738660659
2.3948586738660659
−1.7488390182525641
2.3948586738660659
2.3948586738660659
2.3948586738660659

5.353746e−16

5.353746e−16

1.640715e+01

5.353746e−16

5.353746e−16

5.353746e−16

1.947641e−15

1.580128e−08

2.566501e+00

4.634751e−12

8.595530e−08

4.022589e−15

28
42
150
93
51
21

From the above results, it is clear that each method converges for the con-
sidered test problems but the computational cost of the proposed method is the
least.
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Fig. 1 (f (x ) = x3 + x2 + 2) Fig. 2 (f (x ) = esin x + sin(3x)− 1)

Fig. 3 (f (x ) = x3 − e− sin 4x − 1) Fig. 4 (f (x ) = ln(e−x + x2)

Fig. 5 (f (x ) = sin−1 x) Fig. 6 (f (x ) = sin(5x))
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Fig. 7 (f (x ) = ln(x2 + ex) + x) Fig. 8 (f (x ) = x+ 2x3 sin(x)− 1)

Fig. 9 (f (x ) = sin(5x)− sin(x)) Fig. 10 (f (x ) = x3 − x2 − 8)

5. Dynamical study

Polynomiography is an art and science of visualization of the zeroes of complex
polynomials [12]. It has diverse applications in science, engineering, industries
etc. Particularly, this art is being applied in textile industry for designing and
printing.

In this section, we present some interesting polynomiographs, i.e. Fig. 11 to
Fig. 18 of certain complex polynomials in the context of the newly constructed
optimal fourth-order iterative method. It is obvious from these figures that we
can easily identify the zeros of complex polynomials with remarkable basins of
attraction.
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Fig. 11 Polynomiograph of z2 + 1

Fig. 12 Polynomiograph of z2 − 1
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Fig. 13 Polynomiograph of z3 + 1

Fig. 14 Polynomiograph of z3 + 8
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Fig. 15 Polynomiograph of z4 − z + 16

Fig. 16 Polynomiograph of z3 + z + 1
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Fig. 17 Polynomiograph of z4 + 1

Fig. 18 Polynomiograph of z4 − 4
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Conclusions

A new three-step optimal fourth-order second derivative free iterative method
based on the technique of linear combination has been introduced in this ar-
ticle. The efficiency of the newly developed method has been demonstrated
both numerically and graphically by comparing the same with standard New-
ton’s method and various other methods of the same class. In the context of
the suggested method, the visualization process of the roots of certain complex
polynomials has exhibited some interesting polynomiographs.
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1. Introduction and preliminaries

The field of fuzzy topology plays a pivotal role to obtain significant applica-
tions in the theory of quantum particle physics [40]. Zadeh [47] gave a major
breakthrough in this field by introducing the idea of fuzzy set, afterward many
authors came forward to establish fuzzy analogs of classical theories. Atanassov
([2], [3], [4], [5]) defined intuitionistic fuzzy sets (IFS) and the characteristics of
these IFS are given by Deschrijver and Kerre [13]. Inspired by these notions,
Coker ([9], [10]) introduced intuitionistic fuzzy topological spaces. Saadati and
Park [42, 43] studied these spaces and their generalization which helped them to
obtain the concept of intuitionistic fuzzy normed space(IFNS). Mursaleen [36]
presented the notion of statistical convergence with respect to the intuitionistic
fuzzy norm and proved some fundamental results.

Definition 1.1 ([42]). The five-tuple (X, f1, f2, ∗, ⋄) is said to be an intuition-
istic fuzzy normed space if X is a linear space over a field F , ∗ is a continuous
t-norm, ⋄ is a continuous t-co-norm and f1 & f2 are the fuzzy sets on X×(0,∞)
satisfy the following conditions ∀ y, z ∈ X and s, t > 0 :

(a) f1(y, t) + f2(y, t) ≤ 1;

(b) f1(y, t) > 0;

(c) f1(y, t) = 1 iff y = 0;

(d) f1(cy, t) = f1(y,
t
|c|), ∀c ̸= 0, c ∈ F ;

(e) f1(y, t) ∗ f1(z, s) ≤ f1(y + z, t+ s);

(f) f1(y, t) : (0,∞) → [0, 1] is continuous in t;

(g) limt→∞ f1(y, t) = 1 and limt→0 f1(y, t) = 0;

(i) f2(y, t) > 0;

(j) f2(y, t) = 0 iff y = 0;

(l) f2(cy, t) = f2(y,
t
|c| , ∀c ̸= 0, c ∈ F ;

(m) f2(y, t) ⋄ f2(z, s) ≥ f2(y + z, t+ s);

(n) f2(y, t) : (0,∞) → [0, 1] is continuous in t;

(o) limt→∞ f2(y, t) = 0 and limt→0 f2(y, t) = 1.

In this case, (f1, f2) is called intuitionistc fuzzy norm.

Remark 1.1. Hosseini et al. [22] and many others have defined intuitionistic
fuzzy normed space by a more complete definition. This study can be studied as
a more extended case in this novel setting. The current definition 1.1, however,
simplifies the computational aspects.
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Example 1.1. If (X, || • ||) forms a normed linear space, let for all a, b ∈ [0, 1],
t-norm is defined as a∗b = ab and t-co-norm is defined as a⋄b = min{a+b, 1},
then for any y ∈ X and ∀ t > 0, consider

ϕ(y, t) =
t

t+ ||y||
and ψ(y, t) =

||y||
t+ ||y||

Then, (X,ϕ, ψ, ∗, ⋄) forms an intuitionistic fuzzy normed space.

Lemma 1.1 ([42]). If mi ∈ (0, 1), i = 1 to 7. ∗ and ⋄ are continuous t−norm
and continuous t−conorm, respectively. Then:

(1) If m1 > m2, ∃ m3,m4 ∈ (0, 1) s.t. m1 ∗m3 ≥ m2 and m1 ≥ m2 ⋄m4.

(2) If m5 ∈ (0, 1), ∃ m6,m7 ∈ (0, 1) s.t. m6 ∗m6 ≥ m5 and m5 ≥ m7 ⋄m7.

Definition 1.2 ([42]). In an IFNS (X, f1, f2, ∗, ⋄), a sequence (yk) is said to be
convergent to ζ if for a given ϵ > 0 and t > 0, ∃ k0 ∈ N such that

f1(yk − ζ, t) > 1− ϵ and f2(yk − ζ, t) < ϵ, ∀ k ≥ k0.

Definition 1.3 ([42]). In an IFNS (X, f1, f2, ∗, ⋄), a sequence (yk) is said to be
Cauchy if for a given ϵ > 0 and t > 0, ∃ k0 ∈ N such that

f1(yk − yj , t) > 1− ϵ and f2(yk − yj , t) < ϵ, ∀ j, k ≥ k0.

The notion of convergence of sequence has become a useful notion in the
fundamental theory of functional analysis and plays a key role, especially in
sequence space.

In 1951, Fast [14] gave the concept of statistical convergence which is a very
important extension of usual convergence and is being used widely in different
areas of science and technology. Due to the versatility of this concept, vari-
ous forms of statistical convergence are introduced and these forms are further
defined in different settings, e.g. [35, 36]. In the race of inventing the most
extended form of statistical convergence, Kostyrko et al. [33] introduced the
idea of I -convergence using the notion of ideal defined on N. Nowadays it has
become a more important form than many other forms of convergence (see [33]).
If I ⊂ P (X) of any set X with a) ϕ ∈ I, b) A ∪ B ∈ I for all A,B ∈ I and c)
∀ A ∈ I and B ⊂ A then B ∈ I. Then I is called an ideal. If I ̸= 2X then I is
called non trivial ideal. If {{x} : x ∈ X} ⊂ I then I is called admissible ideal.
If F ⊂ P (X) of a set X then F is called filter if a) ϕ /∈ F , b) A ∩ B ∈ F for
all A,B ∈ F , c) ∀ A ∈ F and A ⊂ B then B ∈ F . Ŝalát et al. [44, 45] studied
the characterization of ideal convergence and also defined the ideal convergence
field. Later, many others (e.g. [15, 24, 25, 39]) further investigated the notion
of I-convergence from the sequence space point of view and linked it with the
summability theory. In addition, numerous researchers are working on the var-
ious extended versions of ideal convergence of sequence and further introduced
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them in several important spaces as Hazarika [18, 19] introduced the ideal con-
vergence for sequence and double sequence in fuzzy normed space and gave the
salient features of this notion in fuzzy norm-setting. Mursaleen and Mohiud-
dine [37, 38] further studied this concept for multiple sequences with respect to
the intuitionistic fuzzy norm as well as probabilistic norm. Moreover, Hazarika
[17, 20, 21] also extended several forms of ideal convergence in different spaces
like random 2−normed space, probabilistic normed space, intuitionistic fuzzy
normed space. Debnath [11, 12] defined ideal convergence via lacunary and
lacunary difference mean in intuitionistic fuzzy normed space and established
key results with respect to IFN. Recently, Khan et al. [26, 27] also studied the
notion of ideal convergence as a domain of the Nörlund matrix and generalized
difference matrix, respectively in intuitionistic fuzzy normed space. Khan et al.
also defined their respective intuitionistic fuzzy ideal convergent sequence spaces
and proved their topological properties. Other important notions with respect
to the intuitionistic fuzzy norm, one can refer to [28, 29, 30, 31, 32].

Proposition 1.1 ([33]). Class F(I) = {A ⊂ X : A = X\B, for some B ∈ I}
is a filter on X, where I ⊂ P (N) is a non trivial ideal.

F(I) is known as the filter associated with the ideal I.

Definition 1.4 ([33]). Let I ⊂ P (N) is a non-trivial ideal, a sequence (yk) ∈ ω
is called to be I−convergent to ζ ∈ R if ∀ ϵ > 0,

{k ∈ N :| yk − ζ |≥ ϵ} ∈ I.

We denote it as I − lim(yk)= ζ.

Definition 1.5 ([33]). Let I ⊂ P (N) is a non-trivial ideal, a sequence (yk) ∈ ω
is called to be I−Cauchy if ∀ ϵ > 0, there exists a K = K(ϵ) such that

{k ∈ N :| yk − yK |≥ ϵ} ∈ I.

Definition 1.6 ([33]). Let I ⊂ P (N) is a non-trivial ideal, I∗−convergence of
a sequence (yk) ∈ ω to number ζ ∈ R(i.e. I∗ − lim y=ζ) is defined as if there
exists a set M ∈ I, s.t. for A = N\M = {ki ∈ N : ki < ki+1, for all i ∈ N} we
have, limk→∞ yik = ζ.

Definition 1.7 ([33]). An admissible ideal I ⊂ P (N) is said to satisfy the
condition (AP) if for every countable family of mutually disjoint sets {A1, A2, ...}
belonging to I, there exists a countable family {B1, B2, ...} in I such that Ai∆Bi
is a finite set for each i ∈ N and B = ∪∞

i=1Bi ∈ I; where ∆ is the symmetric
difference.

As a bounded linear operator on the space of all p-summable sequence lp,
several authors used the riesz matrix Rb

n in the different disciplines of sequence
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space. Recall in [1, 8, 7, 16, 23, 34, 46] for a sequence of positive numbers (bk),
the entries of infinite riesz matrix Rb

j = (rbjk) is defined as

(1) rbjk =


bk
Bj
, 0 ≤ k ≤ j

0, k ≥ j.

where Bj =
∑j

k=0 bk. By (1) clearly, Riesz matrix is lower triangular and is
regular if Bj → ∞ as j → ∞, (see [1, 6, 23, 41]). Recently by using the notion
of I−convergence and domain of Riesz matrix Rb

j , Khan et al. [24] introduced
Riesz I−convergent sequence space

(2) cI(Rb
j) := {y = (yk) ∈ ω : {j ∈ N : |Rb

j(y)− L| ≥ ε for some L ∈ R} ∈ I},

(3) cI
0
(Rb

j) :=
{
y = (yk) ∈ ω : {j ∈ N : |Rb

j(y)| ≥ ε} ∈ I
}
,

where

(4) Rb
j(y) :=

1

Bj

j∑
k=0

bkyk for all j ∈ N.

Clearly, Riesz I–convergent sequence is a more generalized form of ideal conver-
gent sequence and each I–convergent sequence is Riesz I–convergent sequence
but converse is not true.

Example 1.2. Let I is an ideal defined on the set of natural numbers such that
it contains the subsets of natural numbers whose natural density is zero. If we
take sequence (bk) as bk = k for all k and sequence (yk) as

Rb
j(y) =

{
1, if j = m2, (m ∈ N)
0, otherwise.

Then, it is obvious that sequence (yk) is Riesz I–convergent to 0 but sequence
(yk) is not I–convergent.

Since Riesz ideal convergence is a novel and a more extended variant of ideal
convergence and IFNS is a unified and generalized space of various important
spaces so these facts motivate us to define Riesz ideal convergence in intuition-
istic fuzzy norm-setting.

2. Main results

In this particular section, we define Riesz I-convergence in intuitionistic fuzzy
normed space and try to give some theorems about it. Throughout the paper,
we assume that sequence y = (yk) and Rb

j(y) are related as (4) and I is an
admissible ideal of subset of N.
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Definition 2.1. In an IFNS (X, f1, f2, ∗, ⋄), a sequence (yk) is said to be Riesz
I-convergent to ζ if for a given ϵ > 0 and s > 0, the following set

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ} ∈ I.

In this case, we say Riesz I
(f1,f2)− limit of sequence (yk) is ζ and denote it as

Rb
I(f1,f2)

− lim y = ζ.

Proposition 2.1. Let (X, f1, f2, ∗, ⋄) is an IFNS and y = (yk) is a sequence in
X. Then for every ϵ > 0 and s > 0, these following are equivalent:

(a) Rb
I(f1,f2)

− lim y = ζ.

(b) {j ∈ N : f1(Rb
j(y)−ζ, s) ≤ 1−ϵ} ∈ I and {j ∈ N : f2(Rb

j(y)−ζ, s) ≥ ϵ} ∈ I.

(c) {j ∈ N : f1(Rb
j(y)− ζ, s) > 1− ϵ and f2(Rb

j(y)− ζ, s) < ϵ} ∈ F(I).

(d) {j ∈ N : f1(Rb
j(y)− ζ, s) > 1− ϵ} ∈ F(I) and {j ∈ N : f2(Rb

j(y)− ζ, s) <
ϵ} ∈ F(I).

(e) I − limj→∞ f1(Rb
j(y)− ζ, s) = 1 and I − limj→∞ f2(Rb

j(y)− ζ, s) = 0.

Theorem 2.1. Let y = (yk) be a sequence in IFNS (X, f1, f2, ∗, ⋄). If sequence
(yk) is Riesz I−convergent in X, then Riesz I

(f1,f2)− limit of (yk) is unique.

Proof of Theorem 2.1. Let on contrary that ζ1 and ζ2 are two different
elements such that Rb

I(f1,f2)
− lim y = ζ1 and Rb

I(f1,f2)
− lim y = ζ2. For a given

ϵ > 0, choose r > 0 such that (1− r) ∗ (1− r) > 1− ϵ and r ⋄ r < ϵ. For s > 0,
we define

A1 = {j ∈ N : f1(Rb
j(y)− ζ1, s) ≤ 1− r},

A2 = {j ∈ N : f2(Rb
j(y)− ζ1, s) ≥ r},

A3 = {j ∈ N : f1(Rb
j(y)− ζ2, s) ≤ 1− r},

A4 = {j ∈ N : f2(Rb
j(y)− ζ2, s) ≥ r}

and A = (A1 ∪A3) ∩ (A2 ∪A4).

Sets A1, A2, A3, A4 and A must belong to I as (yk) has two different Riesz
I−limit with respect to intuitionistic fuzzy norm (f1, f2) i.e. ζ1 and ζ2. Hence,
Ac ∈ F(I) then Ac is non empty. Let us say some j0 ∈ Ac then either j0 ∈
A1

c ∩A3
c or j0 ∈ A2

c ∩A4
c.

If j0 ∈ A1
c ∩A3

c which implies that

f1

(
Rb
j0(y)− ζ1,

s

2

)
> 1− r and f1

(
Rb
j0(y)− ζ2,

s

2

)
> 1− r.
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Hence,

f1(ζ1 − ζ2, s) ≥ f1

(
Rb
j0(y)− ζ1,

s

2

)
∗ f1

(
Rb
j0(y)− ζ2,

s

2

)
> (1− r) ∗ (1− r) > 1− ϵ.

As ϵ > 0 was arbitrary hence f1(ζ1−ζ2, s) = 1 for all s > 0. So, we have ζ1 = ζ2,
which is a contradiction.

If j0 ∈ A2
c ∩A4

c which implies that

f2

(
Rb
j0(y)− ζ1,

s

2

)
< r and f2

(
Rb
j0(y)− ζ2,

s

2

)
< r.

Hence,

f2(ζ1 − ζ2, s) ≤ f2

(
Rb
j0(y)− ζ1,

s

2

)
⋄ f2

(
Rb
j0(y)− ζ2,

s

2

)
< r ⋄ r < ϵ.

As ϵ > 0 was arbitrary hence f2(ζ1−ζ2, s) = 0 for all s > 0. So, we have ζ1 = ζ2,
which is a contradiction. Hence, y = (yk) has unique Riesz I(f1,f2)−limit.

Theorem 2.2. Let y = (yk) be any sequence in IFNS (X, f1, f2, ∗, ⋄) such that
ordinary Riesz limit w.r.t. IFN (f1, f2) of (yk) is ζ, then Rb

I(f1,f2)
− lim y = ζ.

Proof of Theorem 2.2. As we are given that Rb
(f1,f2)

− lim y = ζ, hence for

any ϵ > 0, and s > 0, we can find a natural number j0 ∈ N in such a way that

f1(Rb
j(y)− ζ, s) > 1− ϵ and f2(Rb

j(y)− ζ, s) < ϵ,

for all j ≥ j0.
Now, let

K = {j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ}.

As K ⊂ {1, 2, ...., j0−1} and I is an admissible ideal so K ∈ I. Hence, Rb
I(f1,f2)

−
lim y = ζ.

Remark 2.1. Converse of Theorem 2.2 may not be hold in general.

Example 2.1. In the Example 1.1, letX=R with usual norm, then (R, f1, f2, ∗, ⋄)
forms an IFNS.

Suppose I = {A ⊂ N : δ(A) = 0}, where δ(A) is the natural density of the
set A in N which is defined as δ(A) = limn→∞

1
n

∑n
i=1 χA(i), where χA is the

characteristic function on A, hence I is a non-trivial admissible ideal.
Now, for a positive sequence of real numbers b = (bk), let us define a sequnece

y = (yk) such that

Rb
j(y) =

{
1, if j = m2, (m ∈ N)
0, otherwise.
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Now, for any ϵ > 0 and s > 0, we define

K(ϵ, s) = {j ∈ N : f1(Rb
j(y), s) ≤ 1− ϵ or f2(Rb

j(y), s) ≥ ϵ}
then,

K(ϵ, s) =

{
j ∈ N :

s

s+ ||Rb
j(y)||

≤ 1− ϵ or
||Rb

j(y)||
s+ ||Rb

j(y)||
≥ ϵ

}
=

{
j ∈ N : |Rb

j(y)| ≥
ϵs

1− ϵ
> 0

}
⊆ {j ∈ N : j = m2, (m ∈ N)}.

Hence, δ(K(ϵ, s)) = 0, which implies that K(ϵ, s) ∈ I. Hence, Rb
I(f1,f2)

− lim y =

0. On the other hand, Rb
j(y) is not convergent with respect to the intuitionistic

fuzzy norm (f1, f2) as Rb
j(y) is not convergent in (R, ||.||).

Theorem 2.3. Let y = (yk) and z = (zk) be any two sequences in IFNS
(X, f1, f2, ∗, ⋄) such that Rb

I(f1,f2)
− lim(y) = ζ1 and Rb

I(f1,f2)
− lim(z) = ζ2

then:

(1) Rb
I(f1,f2)

− lim(y + z) = ζ1 + ζ2.

(2) For any real number α, Rb
I(f1,f2)

− lim(αy) = αζ1.

Proof of Theorem 2.3. (1) For any ϵ > 0, we may find r > 0 such that
(1− r) ∗ (1− r) > 1− ϵ and r ⋄ r < ϵ.

For s > 0, we define

A1 = {j ∈ N : f1(Rb
j(y)− ζ1, s) ≤ 1− r},

A2 = {j ∈ N : f2(Rb
j(y)− ζ1, s) ≥ r},

A3 = {j ∈ N : f1(Rb
j(z)− ζ2, s) ≤ 1− r},

A4 = {j ∈ N : f2(Rb
j(z)− ζ2, s) ≥ r}

and A = (A1 ∪A3) ∩ (A2 ∪A4).

Sets A1, A2, A3, A4 and A must belong to I as Rb
I(f1,f2)

− lim(y) = ζ1 and

Rb
I(f1,f2)

− lim(z) = ζ2. Hence, Ac ∈ F(I) then Ac is non empty. Now, we

show that

Ac ⊂ {j ∈ N : f1(Rb
j(y+z)−(ζ1+ζ2), s) > 1−ϵ and f2(Rb

j(y+z)−(ζ1+ζ2), s) < ϵ}.

To show this we let j0 ∈ Ac. So, we have

f1

(
Rb
j0(y)− ζ1,

s

2

)
> 1− r, f1

(
Rb
j0(z)− ζ2,

s

2

)
> 1− r,

f2

(
Rb
j0(y)− ζ1,

s

2

)
< r and f2

(
Rb
j0(z)− ζ2,

s

2

)
< r.
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Hence, we have

f1(Rb
j0(y + z)− (ζ1 + ζ2), s) ≥ f1

(
Rb
j0(y)− ζ1,

s

2

)
∗ f1

(
Rb
j0(z)− ζ2,

s

2

)
> (1− r) ∗ (1− r)

> 1− ϵ

and

f2(Rb
j0(y + z)− (ζ1 + ζ2), s) ≤ f2

(
Rb
j0(y)− ζ1,

s

2

)
⋄ f2

(
Rb
j0(z)− ζ2,

s

2

)
< r ⋄ r
< ϵ

which implies that

Ac⊂{j ∈ N : f1(Rb
j(y+z)−(ζ1+ζ2), s) > 1−ϵ and f2(Rb

j(y+z)−(ζ1+ζ2), s) < ϵ}.

As Ac ∈ F(I), hence the later set belongs to F(I), which implies that
Rb

I(f1,f2)
− lim(y + z) = ζ1 + ζ2.

(2) If α = 0 then for any ϵ > 0 and s > 0,

f1(Rb
j(0y)− (0ζ1), s) = f1(0, s) = 1 > 1− ϵ

and f2(Rb
j(0y)− (0ζ1), s) = f2(0, s) = 0 < ϵ

which implies that Rb
(f1,f2)

− lim(0y) = θ. Hence, by Theorem 2.3, Rb
I(f1,f2)

−
lim(0y) = θ.

If α( ̸= 0) ∈ R. To prove the result, we will show that for any ϵ > 0 and
s > 0, the set

{j ∈ N : f1(Rb
j(αy)− (αζ1), s) > 1− ϵ and f2(Rb

j(αy)− (αζ1), s) < ϵ} ∈ F(I),

for any α(̸= 0) ∈ R.
As we have given that Rb

I(f1,f2)
− lim(y) = ζ1 so we have for any ϵ > 0 and

s > 0, the set

K = {j ∈ N : f1(Rb
j(y)− ζ1, s) > 1− ϵ and f2(Rb

j(y)− ζ1, s) < ϵ} ∈ F(I).

Choose any j0 ∈ K, hence we have f1(Rb
j0
(y) − ζ1, s) > 1 − ϵ and f2(Rb

j0
(y) −

ζ1, s) < ϵ. Now,

f1(Rb
j0(αy)− (αζ1), s) = f1

(
Rb
j0(y)− ζ1,

s

|α|

)
≥ f1(Rb

j0(y)− ζ1, s) ∗ f1
(
0,

s

|α|
− s

)
= f1(Rb

j0(y)− ζ1, s) ∗ 1
= f1(Rb

j0(y)− ζ1, s) > 1− ϵ
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and

f2(Rb
j0(αy)− (αζ1), s) = f2

(
Rb
j0(y)− ζ1,

s

|α|

)
≤ f2

(
Rb
j0(y)− ζ1, s

)
⋄ f2

(
0,

s

|α|
− s

)
= f2

(
Rb
j0(y)− ζ1, s

)
⋄ 0

= f2

(
Rb
j0(y)− ζ1, s

)
< ϵ

which implies that

j0 ∈ {j ∈ N : f1(Rb
j(αy)− (αζ1), s) > 1− ϵ and f2(Rb

j(αy)− (αζ1), s) < ϵ}.

Hence,

K ⊂ {j ∈ N : f1(Rb
j(αy)− (αζ1), s) > 1− ϵ and f2(Rb

j(αy)− (αζ1), s) < ϵ}.

Since K ∈ F(I), hence the set

{j ∈ N : f1(Rb
j(αy)− (αζ1), s) > 1− ϵ and f2(Rb

j(αy)− (αζ1), s) < ϵ} ∈ F(I)

which implies that Rb
I(f1,f2)

− lim(αy) = αζ1.

Theorem 2.4. Let y = (yk) be any sequence in IFNS (X, f1, f2, ∗, ⋄) and let
I be a non-trivial ideal in N. If z = (zk) is Riesz I-convergent sequence in X
w.r.t. IFN (f1, f2) such that the set {j ∈ N : Rb

j(y) ̸= Rb
j(z)} ∈ I, then the

sequence y = (yk) is Riesz I-convergent sequence in X w.r.t. IFN (f1, f2).

Proof of Theorem 2.4. Let

{j ∈ N : Rb
j(y) ̸= Rb

j(z)} ∈ I

and let Rb
I(f1,f2)

− lim(z) = ζ. Then, for any given ϵ > 0 and s > 0, we have

A = {j ∈ N : f1(Rb
j(z)− ζ, s) ≤ 1− ϵ or f2(Rb

j(z)− ζ, s) ≥ ϵ} ∈ I.

Thus, for any ϵ > 0,

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ}
⊆ {j ∈ N : Rb

j(y) ̸= Rb
j(z)} ∪A

which implies that

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ} ∈ I.

Hence, Rb
I(f1,f2)

− lim(y) = ζ that is y = (yk) is Riesz I-convergent sequence in

X w.r.t. IFN (f1, f2).
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Now, we define Riesz I-Cauchy sequence in IFNS and establish results about
relathionship with Riesz I-convergence in IFNS.

Definition 2.2. In an IFNS (X, f1, f2, ∗, ⋄), a sequence (yk) is said to be Riesz
Cauchy w.r.t. IFN (f1, f2) if for all ϵ > 0 and s > 0, ∃K ∈ N such that

f1(Rb
j(y)−Rb

K(y), s) > 1− ϵ and f2(Rb
j(y)−Rb

K(y), s) < ϵ for all j ≥ K.

Definition 2.3. In an IFNS (X, f1, f2, ∗, ⋄), a sequence (yk) is said to be Riesz
I-Cauchy w.r.t. IFN (f1, f2) if for a given ϵ > 0 and s > 0, ∃K ∈ N such that
the following set

{j ∈ N : f1(Rb
j(y)−Rb

K(y), s) ≥ 1− ϵ or f2(Rb
j(y)−Rb

K(y), s) ≤ ϵ} ∈ I.

Theorem 2.5. Let y = (yk) be any sequence in IFNS (X, f1, f2, ∗, ⋄) such that
(yk) is Riesz I−convergent with respect to intuitiontic fuzzy norm (f1, f2) if and
only if (yk) is Riesz I−Cauchy with respect to intuitiontic fuzzy norm (f1, f2).

Proof of Theorem 2.5. In X, let y = (yk) is such that Rb
I(f1,f2)

− lim(y) =

ζ, then for any given ϵ > 0, we can choose 0 < r < 1 in such a way that
(1− r) ∗ (1− r) > 1− ϵ and r ⋄ r < ϵ. Then, for any s > 0, we define

A1 = {j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− r}, A2 = {j ∈ N : f2(Rb

j(y)− ζ, s) ≥ r}

and A = (A1 ∪A2).

Sets A1, A2 and A must belong to I as Rb
I(f1,f2)

− lim(y) = ζ. Hence, Ac ∈ F(I)

then Ac is non empty. Let if m ∈ Ac, choose a fixed l ∈ Ac. So, we have,

f1(Rb
m(y)− ζ,

s

2
) > 1− r, f1(Rb

l (y)− ζ,
s

2
) > 1− r,

f2(Rb
m(y)− ζ,

s

2
) < r and f2(Rb

l (y)− ζ,
s

2
) < r.

Hence, we have

f1(Rb
m(y)−Rb

l (y), s) ≥ f1

(
Rb
m(y)− ζ,

s

2

)
∗ f1

(
Rb
l (y)− ζ,

s

2

)
> (1− r) ∗ (1− r) > 1− ϵ

and

f2(Rb
m −Rb

l (y), s) ≤ f2

(
Rb
m − ζ,

s

2

)
⋄ f2

(
Rb
l (y)− ζ,

s

2

)
< r ⋄ r < ϵ

which implies that

m ∈ {j ∈ N : f1(Rb
j(y)−Rb

l (y), s) > 1− ϵ and f2(Rb
j(y)−Rb

l (y), s) < ϵ}.
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Hence,

Ac ⊂ {j ∈ N : f1(Rb
j(y)−Rb

l (y), s) > 1− ϵ and f2(Rb
j(y)−Rb

l (y), s) < ϵ}.

As Ac ∈ F(I), hence the later set belongs to F(I), which implies that sequence
y = (yk) is Riesz I-Cauchy sequence with respect to intuitionistic fuzzy norm
(f1, f2).

Conversely, let on contrary, y = (yk) is a sequence in X which is Riesz
I-Cauchy but not Riesz I-convergent with respect to IF norm (f1, f2) then

R =

{
j ∈ N : f1

(
Rb
j(y)− ζ,

s

2

)
> 1− ϵ and f2

(
Rb
j(y)− ζ,

s

2

)
< ϵ

}
∈ I

which implies that, Rc ∈ F(I).

Since y = (yk) is Riesz I-Cauchy with respect to IF norm (f1, f2), then there
exists M =M(y, ϵ, s) s.t. the set

S =

{
j ∈ N : f1

(
Rb
j(y)−Rb

M (y),
s

2

)
≤ 1−ϵ or f2

(
Rb
j(y)−Rb

M (y),
s

2

)
≥ ϵ

}
∈ I.

As

f1(Rb
j(y)−Rb

M (y), s) ≥ 2f1

(
Rb
j(y)− ζ,

s

2

)
> 1− ϵ and

f2(Rb
j(y)−Rb

M (y), s) ≤ 2f2

(
Rb
j(y)− ζ,

s

2

)
< ϵ,

if f1(Rb
j(y)− ζ, s2) >

(1−ϵ)
2 and f2(Rb

j(y)− ζ, s2) >
ϵ
2 , respectively.

Hence, we have Sc ∈ I. Equivalently, S ∈ F(I), which is a contradiction, as
y = (yk) is Riesz I-Cauchy with respect to IF norm (f1, f2).

The proof of following Theorems are straight-forward.

Theorem 2.6. Let y = (yk) be a sequence in an IFNS (X, f1, f2, ∗, ⋄) is Riesz
Cauchy w.r.t. IFN (f1, f2) and Rb

j(y) clusters to ζ in X then (yk) is Riesz
I-convergent to ζ w.r.t. same IFN.

Theorem 2.7. Let y = (yk) be a sequence in an IFNS (X, f1, f2, ∗, ⋄) is Riesz
Cauchy w.r.t. IFN (f1, f2), then it is Riesz I-Cauchy w.r.t. IFN (f1, f2).

Theorem 2.8. Let y = (yk) be a sequence in an IFNS (X, f1, f2, ∗, ⋄) is Riesz
Cauchy w.r.t. IFN (f1, f2), then ∃ a subsequence (ykn) of (yk) such that (ykn)
is a Riesz Cauchy sequence w.r.t. IFN (f1, f2).

Now, we define Riesz I∗-convergence in intuitionistic fuzzzy normed space
and and prove some theorems about its relathionship with Riesz I-convergence
in IFNS.
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Definition 2.4. A sequence y = (yk) in IFNS (X, f1, f2, ∗, ⋄) is said to be Riesz
I∗-convergent to ζ ∈ X with respect to the intuitionistic fuzzy norm (f1, f2) if
there exists a set A = {ji ∈ N : ji < ji+1, for all i ∈ N} such that A ∈ F(I) and
limRb

ji
(y) = ζ w.r.t. IFN (f1, f2). In this case, we say Rb

I∗
(f1,f2)

− lim(y) = ζ

Theorem 2.9. Let I be an admissible ideal and a sequence y = (yk) in IFNS
(X, f1, f2, ∗, ⋄) is such that Rb

I∗
(f1,f2)

− lim(y) = ζ then Rb
I(f1,f2)

− lim(y) = ζ.

Proof of Theorem 2.6. Since Rb
I∗
(f1,f2)

− lim(y) = ζ so there exists a subset

A = {ji ∈ N : ji < ji+1, for all i ∈ N} such that A ∈ F(I) and limRb
ji
(y) = ζ

w.r.t. IFN (f1, f2). Hence, for each ϵ > 0 and s > 0, there exists m ∈ N in such
a way that

f1(Rb
ji(y)− ζ, s) > 1− ϵ and f2(Rb

ji(y)− ζ, t) < ϵ for all i ≥ m.

As the set

{ji ∈ A : f1(Rb
ji(y), s) ≤ 1− ϵ or f2(Rb

ji(y)− ζ, s) ≥ ϵ}

is contained in {j1, j2, ..., jm−1}. Hence,

{ji ∈ A : f1(Rb
ji(y)− ζ, s) ≤ 1− ϵ or f2(Rb

ji(y)− ζ, s) ≥ ϵ} ∈ I,

as I is an admissible ideal. Also A ∈ F(I), then by the definition of F(I) there
exists a set B ∈ I such that A = N\B. So,

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ} ⊂ B ∪{j1, j2, ..., jm−1}

Hence,

{j ∈ N : f1(Rb
j(y)− ζ, t) ≤ 1− ϵ or f1(Rb

j(y)− ζ, t) ≥ ϵ} ∈ I

which implies that Rb
I(f1,f2)

− lim(y) = ζ.

Remark 2.2. Converse of Theorem 2.9 may not be hold in general.

Example 2.2. In the Example 1.1, letX=R with usual norm, then (R, f1, f2, ∗, ⋄)
forms an IFNS.

Now, we take a decomposition of N as N = ∪Ai, where every Ai is an infinite
set and Ai ∩ Al = ∅, for i ̸= l. Suppose I = {N ⊂ N : N ⊂ ∪ri=1Ai, for some
finite natural number r} then I is a non-trivial admissible ideal.

Now, for a positive sequence of real numbers b = (bk), take a sequence (yk)
in such a way that

Rb
j(y) =

1

i
, if j ∈ Ai
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Hence, we have for s > 0

f1(Rb
j(y), s) =

s

s+ ||Rb
j(y)||

→ 1 as j → ∞

and f2(Rb
j(y), s) =

||Rb
j(y)||

s+ ||Rb
j(y)||

→ 0, as j → ∞.

Hence, by Proposition 2.1, Rb
I(f1,f2)

− lim(y) = 0.

Let on contrary that Rb
I∗
(f1,f2)

− lim(y) = 0 then ∃ a set A = {ji ∈ N : ji <

ji+1, for all i ∈ N} such that A ∈ F(I) and limRb
ji
(y) = ζ w.r.t. IFN (f1, f2).

As A ∈ F(I), ∃ K = N\A and K ∈ I. Then, there exists a natural numer r
such that K ⊂ ∪ri=1Ni. Then Nr+1 ⊂ A. Hence,

Rb
ji(y) =

1

r + 1
, for infinitely many values of ji in A,

which is a contradiction. Hence, Rb
I∗
(f1,f2)

− lim(y) ̸= 0.

Theorem 2.10. Let y = (yk) be a sequence in IFNS (X, f1, f2, ∗, ⋄) such that
Rb

I(f1,f2)
− lim(y) = ζ and ideal I satisfies condition (AP ). Then Rb

I∗
(f1,f2)

−

lim(y) = ζ.

Proof of Theorem 2.7. As Rb
I(f1,f2)

− lim(y) = ζ. Then ∀ϵ > 0 and s > 0, we

have

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− ϵ or f2(Rb

j(y)− ζ, s) ≥ ϵ} ∈ I,

For r ∈ N and s > 0, we define

Ar={j∈N : 1−1

r
≤f1(Rb

j(y)−ζ, s) < 1− 1

r + 1
or

1

r + 1
< f2(Rb

j(y)− ζ, s) ≤
1

r
}.

Now, it is clear that {A1, A2, ...} is a countable family of mutually disjoint sets
belonging to I and therefore by the condition (AP ) there is a countable family
of sets {B1, B2, ...} in I such that Ai∆Bi is a finite set for each i ∈ N and
B = ∪∞

i=1Bi. Since B ∈ I so by definition of associate filter F(I) there is set
K ∈ F(I) such that K = N−B. Now, to prove the result it is sufficient to prove
that the subsequence (yk)k ∈ K is ordinary Riesz convergent to with respect to
the intuitionistic fuzzy norm (ϕ, ψ). For this, let η > 0 and s > 0. Choose a
positive integer q such that 1

q < η. Hence, we have

{j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− η or f2(Rb

j(y)− ζ, s) ≥ η}

⊂ {j ∈ N : f1(Rb
j(y)− ζ, s) ≤ 1− 1

q
or f2(Rb

j(y)− ζ, s) ≥ 1

q
}

⊂ ∪q+1
i=1Ai.
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Since Ai∆Bi be a finite set for each i = 1, 2, ..q + 1, ∃ j0 such that

(∪q+1
i=1Bi) ∩ {j ∈ N : j ≥ j0} = (∪q+1

i=1Ai) ∩ {j ∈ N : j ≥ j0}.

If j ≥ j0 and j ∈ K, then j /∈ B. This implies that j ∈ ∪q+1
i=1Bi and therefore

j /∈ ∪q+1
i=1Ai. Hence, for every j ≥ j0 and j ∈ K, we have

f1(Rb
j(y)− ζ, s) > 1− η and f2(Rb

j(y)− ζ, s) < η

As this holds for every η > 0 and s > 0, so Rb
I∗
(f1,f2)

− lim(y) = ζ.

Theorem 2.11. For any sequence y = (yk) in IFNS (X, f1, f2, ∗, ⋄), the follow-
ing statements are equivalent.

(1) Rb
I∗
(f1,f2)

− lim(y) = ζ.

(2) ∃ sequences p = (pk) and q = (qk) in X such that Rb
j(y) = Rb

j(p) +

Rb
j(q), limj→∞ Rb

j(p) = ζ w.r.t. IFN (f1, f2) and the set {j ∈ N : Rb
j(q) ̸=

θ} ∈ I where zero elements of X are denoted by θ.

Proof of Theorem 2.8. Let statement (1) holds. Then we have a subset
A = {i1, i2, i3, ... : i1 < i2 < ..} of N in such a way that A ∈ F(I) and
limj→∞ Rb

j(y) = ζ w.r.t. IFN (f1, f2).
We define (pk) and (qk) such that,

Rb
j(p) =

{
Rb
j(y), if j ∈ A

ζ, otherwise

and Rb
j(q) = Rb

j(y)−Rb
j(p) for j ∈ N. For j ∈ Ac, for all ϵ > 0 and s > 0,

f1(Rb
j(p)− ζ, s) = 1 > 1− ϵ and f2(Rb

j(p)− ζ, s) = 0 < ϵ

which implies that limj→∞ Rb
j(p) = ζ w.r.t. IFN (f1, f2). As {j ∈ N : Rb

j(q) ̸=
θ} ⊂ Ac, which implies that {j ∈ N : Rb

j(q) ̸= θ} ∈ I.

Now, let statement (2) holds, A = {j ∈ N : Rb
j(q) = 0}, hence A ∈ F(I) so it

is an infinite set. Now, suppose A = {i1, i2, .. : i1 < i2 < ...}. As Rb
ij
(y) = Rb

ij
(p)

and limj→∞ Rb
j(p) = ζ w.r.t. IFN (f1, f2), hence limj→∞ Rb

ij
(y) = ζ w.r.t. IFN

(f1, f2), which implies that Rb
I∗
(f1,f2)

− lim(y) = ζ.

Conclusion

In this article, we have defined Riesz ideal convergent and Riesz ideal Cauchy
sequences in intuitionistic fuzzy normed space. We have also discussed the
behavior of this notion by proving various fundamental results with counterex-
amples. Usage of fuzzy logic nowadays increased massively in the various fields
of science and technology to tackle real-world problems. Since ideal convergence
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is a unified and generalized notion of various well-known notions of convergence
and Riesz ideal convergence is a more generalized variant of ideal convergence.
On the other hand, intuitionistic fuzzy normed space is an extension of various
famous spaces and it also handles complicated situations very easily because of
its inexactness of the norm, hence our study is in a more general setting than
other existing studies. Therefore, these new results will further give a superior
tool to tackle complex problems and also help the researchers expand their work
in the area of sequence spaces in view of fuzzy theory.

Acknowledgement

We would like to express our gratitude to the referees of the paper for their useful
comments and suggestions towards the quality improvement of the paper.

References
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Abstract. In this paper, the Sθ (∆) and Nθ (∆) summabilities are used along with the
notion of weakly unconditionally Cauchy series (in brief wuC series) to characterize a
Banach space. We examine these two kinds of summabilities which are regular methods
and we recall some features. Furthermore, we investigate the spaces SNθ

(
∑

p∆wp) and
SSθ

(
∑

p∆wp) which will be thought to characterize the completeness of a space.

Keywords: completeness, unconditionally Cauchy series, lacunary convergence, dif-
ference sequence.

1. Introduction and background

The notion of statistical convergence was introduced under the name almost
convergence by Zygmund [1]. It was formally presented by Fast [2]. Later the
idea was associated with summability theory by Fridy [3] and many others (see
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

By a lacunary sequence we mean an increasing integer sequence θ = {nr}
such that n0 = 0 and hr = nr − nr−1 → ∞ as r → ∞ and ratio nr

nr−1
will be

abbreviated by qr. Throughout this paper the intervals determined by θ will
be denoted by Ir = (nr−1, nr]. Utilizing lacunary sequence, Fridy and Orhan
[15] presented the notion of lacunary statistical convergence. Some works in
lacunary statistical convergence can be found in [16, 17, 18, 19, 20].

Let us define the forward difference matrix ∆F = (cnk) and the backward
difference matrix ∆B = (dnk) by

cnk =

{
(−1)n−k , n ≤ k ≤ n+ 1,

0, 0 ≤ k < n or k > n+ 1,

*. Corresponding author
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dnk =

{
(−1)n−k , n− 1 ≤ k ≤ n,
0, 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N = {0, 1, 2, ...}. Then, the difference sequence spaces l∞ (∆), c (∆)
and c0 (∆) introduced by Kızmaz [21], can be seen as the domain of forward
difference matrix ∆F in the classical spaces l∞, c and c0 of bounded, convergent
and null sequences, respectively. Quite recently, the difference space bvp was
introduced as the domain of the backward difference matrix ∆B in the classical
space lp of absolutely p-summable sequences for 0 < p < 1 by Altay and Başar
[22], and for 1 ≤ p ≤ ∞ by Başar and Altay [23].

Later on the notion was generalized by Et and Çolak [24]. Başarır [25]
investigated the ∆-statistical convergence of sequences. Also, the generalized
difference sequence spaces were worked by various authors [26, 27, 28, 29, 30].

The characterization of a Banach space through various types of convergence
has been examined by authors such as Kolk [31], Connor et al. [32].

The purpose of this study originates in the PhD thesis of the second author
[33] who identified a relationship between features of a normed space Y and some
sequence spaces which are named convergence spaces associated to a wuC series.
These sequence spaces associated to a wuC series were examined [33] in terms
of the norm topology and the usual weak topology of the space. These types of
consequences have been researched in various convergence spaces connected with
a wuC series utilizing different types of convergence [34, 35, 36, 37, 38, 40, 39].
The readers can refer to the recent papers [41, 42, 43, 44], and references therein
on the wuC series in a normed space and the examples of multiplier convergent
series that characterizes the uc and wuC series, and related topics.

Y be a normed space and
∑
wi also be a series in Y . In [33], the authors

defined the space of convergence S (
∑
wi) connected with the series

∑
wi, which

is introduced as the space of sequence (βi) in l∞ such that
∑
βiwi converges.

They demonstrated that the necessary and sufficient condition for Y to be a
complete space is that for every wuC series

∑
wi, the space S (

∑
wi) is com-

plete. Diestel [45] showed that
∑
wi is wuC iff

∑
|f (wi)| < ∞ for all f ∈ Y ∗.

In [46, 47], a Banach space is characterized by means of the strong p-Cesàro
summability and ideal-convergence.

In this paper, we examine the completeness of a normed space through the
lacunary statistical convergence and lacunary strongly convergence of series for
difference sequences. We also describe the summability spaces associated with
these summabilities with strongly (p,∆)-Cesàro summability spaces for differ-
ence sequences.

2. Main results

We identify the notion of lacunary ∆-statistically convergent sequence for Ba-
nach spaces.
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Let A ⊂ N and r ∈ N. drθ(A) is named the rth partial lacunary density of
A, if

drθ(A) =
|A ∩ Ir|
hr

,

where Ir = (kr−1, kr].

The number dθ(A) is indicated the lacunary density (θ-density) of A if

dθ(A) = lim
r→∞

1

hr
|{k ∈ Ir : k ∈ A}|, (i.e., dθ(A) = lim

r→∞
drθ(A))

exists. Also, Λ = {A ⊂ N : dθ(A) = 0} is called to be zero density set.

It is easy to demonstrate that this density is a finitely additive measure
and we can introduce the notion of lacunary statistically convergent difference
sequences for Banach spaces.

Definition 2.1. Let Y be a Banach space and θ = {nr} a lacunary sequence. A
sequence w = (wp) is a lacunary ∆-statistically convergent or sequence to ξ ∈ Y
if given ζ > 0,

dθ ({p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}) = 0,

or equivalently,

dθ ({p ∈ Ir : ∥∆wp − ξ∥ < ζ}) = 1,

we say that (wp) is Sθ (∆)-convergent and is written as Sθ-lim ∆wp = ξ.

Definition 2.2. A sequence w = (wp) in Y is lacunary strongly ∆-convergent
or Nθ (∆)-summable to ξ ∈ Y if

lim
r→∞

1

hr

∑
p∈Ir

∥∆wp − ξ∥ = 0,

and we write Nθ-lim ∆wp = ξ.

Theorem 2.1. Let Y be a Banach space and (wp) a sequence in Y . Note that
Sθ (∆) and Nθ (∆) are regular methods.

Proof. First, we prove that Sθ (∆) is a regular method. If (∆wp) → ξ, then
Nθ-lim ∆wp = ξ. Let ζ > 0, then there is p0 such that if p ≥ p0, then

∥∆wp − ξ∥ < ζ.

Therefore, there is r0 ∈ N with r0 ≥ p0 such that if r ≥ r0 we obtain

1

hr

∑
p∈Ir

∥∆wp − ξ∥ <
1

hr

∑
p∈Ir

ζ =
hr
hr
ζ = ζ,

which gives that limr→∞
1
hr

∑
p∈Ir ∥∆wp − ξ∥ = 0.
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Now, we show that Nθ (∆) is a regular method. If (∆wp) → ξ, then Sθ −
lim ∆wp = ξ. One can easily observe that (∆wp) → ξ, given ζ > 0 there is p0
such that for every p > p0 we obtain

card ({p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}) = 0,

which gives
dθ ({p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}) = 0

for every p > p0.

The reverse is not true, as was shown in Example 2.1, in which we introduce
an unbounded sequence that is Nθ (∆)-summable and Example 2.2 where an
unbounded Sθ (∆)-convergent sequence is given.

Example 2.1. There exist unbounded sequences which are Nθ (∆)-summable.
Let θ = {nr} be a lacunary sequence with n0 = 0 and nr = 2r. Think that

h1 = n1 − n0 = 2 and hr = 2r−1, for every r ≥ 2,

I1 = (n0, n1] = (0, 2] and Ir =
(
2r−1, 2r

]
, for every r ≥ 2.

Think the sequence determined by

∆wp =

{
0, if p ̸= 2j for all j,

j − 1, if p = 2j for all j.

Notice that, (wp) is unbounded and observe that∑
p∈Ir |∆wp − 0|

hr
=

{
0, if r = 1
r−1
2r−1 , if r ≥ 2

}
→ 0, as r →∞

which gives that Nθ-lim ∆wp = 0.

Theorem 2.2. Let Y be a Banach space and θ = {nr} be a lacunary sequence.
Then, we have the followings:

(i) Nθ-lim ∆wp = ξ implies Sθ-lim ∆wp = ξ,

(ii) (wp) is bounded and Sθ-lim ∆wp = ξ imply Nθ-lim ∆wp = ξ.

Proof. (i) If Nθ-lim ∆wp = ξ then, for every ζ > 0,∑
p∈Ir

∥∆wp − ξ∥ ≥
∑
p∈Ir

∥∆wp−ξ∥≥ζ

∥∆wp − ξ∥ ≥ ζ |{p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}| ,

which gives that Sθ-lim ∆wp = ξ.
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(ii) Let us assume that (wp) is bounded and Sθ-lim ∆wp = ξ. Since (wp) is
bounded, there exists H > 0 such that ∥∆wp − ξ∥ < H for every p ∈ N. Given
ζ > 0,

1

hr

∑
p∈Ir

∥∆wp − ξ∥ =
1

hr

∑
p∈Ir

∥∆wp−ξ∥≥ζ

∥∆wp − ξ∥+
1

hr

∑
p∈Ir

∥∆wp−ξ∥<ζ

∥∆wp − ξ∥

≤ H

hr
|{p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}|+ ζ,

so, we obtain Nθ-lim ∆wp = ξ.

Next, we give an example to demonstrate that the assumption over the
sequence to be bounded is necessary and cannot be removed.

Example 2.2. There exist unbounded Sθ (∆)-convergent sequences to ξ which
are not Nθ (∆)-summable to ξ. Let θ = {nr} be a lacunary sequence with n0 = 0
and nr = 2r. Consider that

h1 = n1 − n0 = 2 and hr = 2r−1 for every r ≥ 2,

I1 = (n0, n1] = (0, 2] and Ir =
(
2r−1, 2r

]
for every r ≥ 2.

Think the sequence determined by

∆wp =

{
0, if p ̸= 2j for all j,

2j , if p = 2j for all j.

Given ζ > 0, it is simply to denote that

|{p ∈ Ir : ∥∆wp − 0∥ ≥ ζ}|
hr

→ 0 as r →∞,

which gives that Sθ-lim ∆wp = 0. Also, note that (wp) is an unbounded se-
quence. However,∑

p∈Ir |∆wp − 0|
hr

=

{
2
2 = 1, if r = 1,
2r

2r−1 = 2, if r ≥ 2

}
→ 2, as r →∞

which gives that Nθ-lim ∆wp ̸= 0.

Definition 2.3. Take Y as a Banach space. A sequence w = (wp) is named to
be lacunary ∆-statistically Cauchy sequence if there exists a subsequence (wp′(r))
of (wp) sucht that p′r ∈ Ir, for every r ∈ N, limr→∞ ∆wp′(r) = ξ, for some ξ ∈ Y
and for each ζ > 0,

lim
r→∞

1

hr

∣∣{p ∈ Ir :
∥∥∆wp −∆wp′(r)

∥∥ ≥ ζ}∣∣ = 0,

or equivalently,

lim
r→∞

1

hr

∣∣{p ∈ Ir :
∥∥∆wp −∆wp′(r)

∥∥ < ζ
}∣∣ = 1.

In this case, we say that (wp) is Sθ (∆)-Cauchy.
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The following consequence is acquired for sequences in Banach spaces, and
we involve the proof for the sake of completeness.

Theorem 2.3. Take Y as a Banach space. A sequence w = (wp) is Sθ (∆)-
convergent iff it is Sθ (∆)-Cauchy.

Proof. Let w = (wp) be an Sθ (∆)-convergent sequence in Y and for each p ∈ N,
we determine

Kq =

{
p ∈ N : ∥∆wp − ξ∥ <

1

q

}
.

Observe that Kq ⊇ Kq+1 and
card(Kq∩Ir)

hr
→ 1 as r →∞.

Establish m1 such that r ≤ m1 then card(K1 ∩ Ir) /hr > 0, i.e., K1∩ Ir ̸= ∅.
Next, select m2 > m1 such that if r ≥ m2, then K2 ∩ Ir ̸= ∅. Now, for each
m1 ≤ r ≤ m2, we select p′r ∈ Ir such that p′r ∈ Ir ∩K1, i.e.,

∥∥∆wp′(r) − ξ
∥∥ < 1.

Technically, we select mk+1 > mk, such that if r > mk+1, then Ir ∩Kk+1 ̸= ∅.
So, for all r such that mk ≤ r < mk+1, we select p′r ∈ Ir ∩Kk, and we obtain∥∥∆wp′(r) − ξ

∥∥ < 1
k .

Therefore, we get a sequence (p′r) such that p′r ∈ Ir for every r ∈ N and
limr→∞ ∆wp′(r) = ξ. As a result, we acquire

1

hr

∣∣{p ∈ Ir :
∥∥∆wp −∆wp′(r)

∥∥ ≥ ζ}∣∣ ≤ 1

hr

∣∣∣∣{p ∈ Ir : ∥∆wp − ξ∥ ≥
ζ

2

}∣∣∣∣
+

1

hr

∣∣∣∣{p ∈ Ir :
∥∥∆wp′(r) − ξ

∥∥ ≥ ζ

2

}∣∣∣∣ .
Since Sθ-lim ∆wp = ξ and limr→∞ ∆wp′(r) = ξ we conclude that (wp) is Sθ (∆)-
Cauchy.

Conversely, if (wp) is Sθ (∆)-Cauchy sequence, for every ζ > 0,

|{p ∈ Ir : ∥∆wp − ξ∥ ≥ ζ}| ≤
∣∣∣{p ∈ Ir :

∥∥∆wp −∆wp′(r)
∥∥ ≥ ζ

2

}∣∣∣
+
∣∣∣{p ∈ Ir :

∥∥∆wp′(r) − ξ
∥∥ ≥ ζ

2

}∣∣∣ .
Since (wp) is Sθ (∆)-Cauchy and limr→∞ ∆wp′(r) = ξ, we conclude that Sθ-
lim ∆wp = ξ.

Now, we examine some features of the statistical lacunary summability
spaces for Banach spaces.

Let us think Y a real Banach space,
∑

j∆wj a series in Y and θ = (nr) a
lacunary sequence. We identify

SSθ
(
∑
j

∆wj) =

(aj)j ∈ l∞ :
∑
j

aj∆wj is Sθ-summable


endowed with the supremum norm. The space will be called as the space of
Sθ (∆)-summability connected with

∑
j∆wj . We will describe the completeness

of the space SSθ
(
∑

j∆wj) in Theorem 2.4, but first we have to give the following
Lemma.
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Lemma 2.1. Let Y be a Banach space and presume that the series
∑

j∆wj is
not wuC. Then, there is f ∈ Y ∗ and a null sequence (aj)j ∈ c0 such that

∑
j

ajf (∆wj) = +∞

and

ajf (∆wj) ≥ 0.

Proof. Since
∑∞

j=1 |f (∆wj)| = +∞, there exists t1 such that
∑t1

j=1 |f (∆wj)| >
2 · 2. We itendify aj = 1

2 if f (∆wj) ≥ 0 and aj = −1
2 if f (∆wj) < 0 for

j = {1, 2, ..., t1}. This gives that
∑t1

j=1ajf (∆wj) > 2 and ajf (∆wj) ≥ 0 if j =

{1, 2, ..., t1}. Let t2 > t1 be such that
∑t2

j=t1+1 |f (∆wj)| > 22 ·22. We determine

aj = 1
22

if f (∆wj) ≥ 0 and aj = − 1
22

if f (∆wj) < 0 for j = {t1 + 1, ..., t2}.
Hence,

∑t2
j=t1+1ajf (∆wj) > 22 and ajf (∆wj) ≥ 0 if j = {t1 + 1, ..., t2}. So, we

have acquired a sequence (aj)j ∈ c0 with the above features.

Theorem 2.4. Let Y be a Banach space and θ = {nr} a lacunary sequence.
The subsequent are equivalent:

(i) The series
∑

j∆wj is wuC.

(ii) The space SSθ
(
∑

j∆wj) is complete.

(iii) The space c0 of all null sequences is included in SSθ
(
∑

j∆wj).

Proof. (i)⇒ (ii): Since
∑

j∆wj is wuC, the subsequent supremum is finite:

Q = sup


∥∥∥∥∥∥

n∑
j=1

βj∆wj

∥∥∥∥∥∥ : |βj | ≤ 1, 1 ≤ j ≤ n, n ∈ N

 < +∞.

Let (βs)s ⊂ SSθ
(
∑

j∆wj) such that lims

∥∥βs − β0∥∥∞ = 0, with β0 ∈ l∞. We will

denote that β0 ∈ SSθ
(
∑

j∆wj). Let us assume without any loss of generality

that
∥∥β0∥∥∞ ≤ 1. Then, the partial sums S0

p =
∑p

j=1β
0
j∆wj satisfy

∥∥S0
p

∥∥ ≤ Q

for every p ∈ N, i.e., the sequence
(
S0
p

)
is bounded. Then, β0 ∈ SSθ

(
∑

j∆wj) iff(
S0
p

)
is Sθ (∆)-summable to some ξ ∈ Y . In accordance with Theorem 2.3,

(
S0
p

)
is lacunary ∆-statistically convergent to ξ ∈ Y iff

(
S0
p

)
is lacunary ∆-statistically

Cauchy sequence.

Let ζ > 0 and n ∈ N. Then, we acquire statement (ii) if we indicate that
there is a subsequence

(
Sp′(r)

)
such that p′r ∈ Ir for every r ∈ N, limr→∞ Sp′(r) =

ξ and

dθ

({
p ∈ Ir :

∥∥∥S0
p − S0

p′(r)

∥∥∥ < ζ
})

= 1.
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Since βs → β0 in l∞, there is s0 > n such that
∥∥βs − β0∥∥∞ < ζ

4Q for all s > s0,

and since Ss0p is Sθ (∆)-Cauchy, there is p′r ∈ Ir such that limr→∞ Ss0p′(r) = ξ for
some ξ and

dθ

({
p ∈ Ir :

∥∥∥Ss0p − Ss0p′(r)∥∥∥ < ζ

2

})
= 1.

Think r ∈ N and fix p ∈ Ir such that

(1)
∥∥∥Ss0p − Ss0p′(r)∥∥∥ < ζ

2
.

We will signify that
∥∥∥S0

p − S0
p′(r)

∥∥∥ < ζ, and this will evidence that{
p ∈ Ir :

∥∥∥Ss0p − Ss0p′(r)∥∥∥ < ζ

2

}
⊂
{
p ∈ Ir :

∥∥∥S0
p − S0

p′(r)

∥∥∥ < ζ
}
.

Since the first set has density 1, the second will also have density 1 and we will
be done.

Let us observe first that for each i ∈ N,∥∥∥∥∥∥
i∑

j=1

4Q

ζ

(
βsj − β

s0
j

)
∆wj

∥∥∥∥∥∥ ≤ Q,
for every s > s0, therefore

(2)
∥∥S0

i − S
s0
i

∥∥ =

∥∥∥∥∥∥
i∑

j=1

(
β0j − β

s0
j

)
∆wj

∥∥∥∥∥∥ ≤ ζ

4
.

Then, by using the triangular inequality,∥∥∥S0
p − S0

p′(r)

∥∥∥ ≤
∥∥S0

p − Ss0p
∥∥+

∥∥∥Ss0p − Ss0p′(r)∥∥∥+
∥∥∥Ss0p′(r) − S0

p′(r)

∥∥∥
< ζ

4 + ζ
2 + ζ

4 = ζ.

Therefore, by applying (1) and (2), the last inequality yields the desired result.
(ii)⇒ (iii): Let us observe that if SSθ

(
∑

j∆wj) is complete, then it includes
the space of ultimately zero sequences c00 and therefore the thesis comes, since
the supremum norm completion of c00 is c0.

(iii)⇒ (i): By utilizing the contradiction, presume that the series
∑

∆wj is
not wuC. So, there is f ∈ Y ∗ such that

∑∞
j=1 |f (∆wj)| = +∞. By Lemma 2.1,

we can create technically a sequence (βj)j ∈ c0 such that∑
j

βjf (∆wj) = +∞

and
βjf (∆wj) ≥ 0.
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Now, we will examine that the sequence (Sp) = (
∑p

j=1βjf (∆wj)) is not Sθ (∆)-
summable to any ξ ∈ R. By utilizing the contradiction, assume that it is
Sθ (∆)-summable to ξ ∈ R, then we obtain

1

hr
|{p ∈ Ir : |Sp − ξ| ≥ ζ}| =

1

hr

nr∑
p=nr−1
|Sp−ξ|≥ζ

1→ 0 as r →∞.

Since Sp is an inreasing sequence and Sp →∞, there is n0 such that |Sp − ξ| ≥ ζ
for every p ≥ n0. Let us presume that nr > n0 for every r. Consequently,

1

hr

nr∑
n=nr−1
|Sp−ξ|≥ζ

1 =
hr
hr

= 1 ↛ 0 as r →∞,

a contradiction. This gives that (Sp) is not Sθ (∆)-convergent and is a contra-
diction with (iii).

Now, we examine some features of the lacunary strongly ∆-summability
space for Banach spaces.

Let Y a real Banach space,
∑

j∆wj a series in Y and θ = (nr) a lacunary
sequence. We itendify

SNθ
(
∑
j

∆wj) =

(aj)j ∈ l∞ :
∑
j

aj∆wj is Nθ-summable


endowed with the supremum norm. This will be characterised as the space of
Nθ (∆)-summability connected with the series

∑
j∆wj . We can now give a the-

orem very same as that of Theorem 2.4 but for the case of Nθ (∆)-summability.
Actually Theorem 2.5 describes the completeness of the space SNθ

(
∑

j∆wj).

Theorem 2.5. Let Y be a real Banach space and θ = (nr) a lacunary sequence.
The subsequent are equivalent:

(i) The series
∑

j∆wj is wuC.

(ii) The space SNθ
(
∑

j∆wj) is complete.

(iii) The space c0 of all null sequences is included in SNθ
(
∑

j∆wj).

Proof. (i)⇒ (ii): Since
∑

j∆wj is wuC, the subsequent supremum is finite:

Q = sup


∥∥∥∥∥∥

k∑
j=1

βj∆wj

∥∥∥∥∥∥ : |βj | ≤ 1, 1 ≤ j ≤ k, k ∈ N

 <∞.
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Let (βs)s ⊂ SNθ
(
∑

j∆wj) such that lims

∥∥βs − β0∥∥∞ = 0, with β0 ∈ l∞. We

will denote that β0 ∈ SNθ
(
∑

j∆wj). With no loss of generality, we can presume

that
∥∥β0∥∥∞ ≤ 1. So, the partial sums S0

p =
∑p

j=1β
0
j∆wj satisfy

∥∥S0
p

∥∥ ≤ Q for

every p ∈ N, i.e., the sequence
(
S0
p

)
is bounded. Then, β0 ∈ SNθ

(
∑

j∆wj) iff(
S0
p

)
is Nθ (∆)-summable to some ξ ∈ Y . Since

(
S0
p

)
is bounded, it is sufficient

to show that (Sp) is Sθ (∆)-convergent, as a consequence of Theorem 2.1 due to
Fridy and Orhan [15]. The results follows similarly as in Theorem 2.4.

(ii)⇒ (iii): It is adequate to observe that SNθ
(
∑

j∆wj) is a complete space
and it includes the space of ultimately zero sequences c00, so it involves the
completion of c00 with regards to the supremum norm, hence it includes c0.

(iii)⇒ (i): By utilizing the contradiction, presume that the series
∑

∆wj is
not wuC. So, there is f ∈ Y ∗ such that

∑∞
j=1 |f (∆wj)| = +∞. By Lemma 2.1,

we can create technically a sequence (βj)j ∈ c0 such that
∑

jβjf (∆wj) = +∞
and βjf (∆wj) ≥ 0.

The sequence Sp =
∑p

j=1βjf (∆wj) is not Nθ (∆)-summable to any ξ ∈ R.
Since Sp →∞, for every H > 0, there is p0 such that |Sp| > H if p > p0. Then,
we acquire

1

hr

∑
p∈Ir

|Sp| >
hrQ

hr
= Q.

Hence Sp is not Nθ (∆)-summable to any ξ ∈ R, on the other hand

∞← 1

hr

∑
p∈Ir

|Sp| ≤ |ξ|+
∑
p∈Ir

|Sp − ξ| → |ξ|

We can deduce that Sp is not Nθ (∆)-convergent, a contradiction with (iii) .

A Banach space Y can be characterized by the completeness of the space
SNθ

(
∑

p∆wp) for every wuC series
∑

p∆wp, as we will show, nextly.

Theorem 2.6. Take Y as a normed real vector space. Then, Y is complete iff
SNθ

(
∑

p∆wp) is a complete space for every wuC series
∑

p∆wp.

Proof. The necessary condition is obvious from Theorem 2.4. Now, suppose
that Y is not complete, hence there is a series

∑
p∆wp in Y such that ∥∆wp∥ ≤

1
p2p and

∑
∆wp = w∗∗ ∈ Y ∗∗⧹Y . We will provide a wuC series

∑
p∆yp such

that SNθ
(
∑

p∆yp) is not complete, a contradiction. Set SM =
∑M

p=1∆wp. As
Y ∗∗ is a Banach space endowed with the dual topology, sup

∥y∗∥≤1
|y∗ (SM )− w∗∗ (y∗)|

tends to 0 as M →∞, i.e.,

(3) lim
M→+∞

y∗ (SM ) = lim
M→+∞

M∑
p=1

y∗ (∆wp) = w∗∗ (y∗) ,

for every ∥y∗∥ ≤ 1. Put ∆yp = p∆wp and let us observe that ∥∆yp∥ < 1
2p .

Therefore,
∑

p∆yp is absolutely convergent, so it is unconditionally convergent
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and weakly unconditionally Cauchy. We claim that the series
∑

p
1
p∆yp is not

Nθ-summable in Y . Using contradiction assume that SM =
∑M

p=1
1
p∆yp is Nθ-

summable in Y , i.e., there exists ξ in Y such that limr→∞
1
hr

∑
p∈Ir ∥Sp − ξ∥ = 0.

This gives that

(4) lim
r→∞

1

hr

∑
p∈Ir

y∗ (Sp) = y∗ (ξ) ,

for every ∥y∗∥ ≤ 1. By the relations (3) and (4), the uniqueness of the limit and
since Nθ (∆) is a regular method, we get w∗∗ (y∗) = y∗ (ξ) for every ∥y∗∥ ≤ 1,
so we acquire w∗∗ = ξ ∈ Y , a contradiction. Hence, SM =

∑M
p=1

1
p∆yp is not

Nθ-summable to any ξ ∈ Y.

Finally, let us observe that since
∑

p∆yp is a weakly unconditionally Cauchy

series and SM =
∑M

p=1
1
p∆yp is not Nθ-summable, we get

(
1
p

)
/∈ SNθ

(
∑

p∆yp)

and this means that c0 ⊈ SNθ
(
∑

p∆yp) which contradicts Part (iii) of Theorem
2.5. This completes the proof.

Definition 2.4. Let 0 < p <∞, the sequence w = (wn) is named to be strongly
(p,∆)-Cesàro or |σp| (∆)-summable if there is ξ ∈ R such that

lim
t→∞

1

t

t∑
i=1

∥∆wi − ξ∥p = 0

and is writen as (∆wn) →
|σp|

ξ or |σp| − limn→∞ ∆wn = ξ.

Let
∑

∆wi be a series in a real Banach space Y ,

S|σp|(
∑
i

∆wi) =

{
(ai)i ∈ l∞ :

∑
i

ai∆wi is |σp| -summable

}

endowed with the supremum norm.

Corollary 2.1. Take Y as a normed real vector space and p ≥ 1. The subsequent
are equivalent:

(i) Y is complete.

(ii) SNθ
(
∑

p∆wp) is complete for every wuC series
∑

p∆wp.

(iii) SSθ
(
∑

p∆wp is complete for every wuC series
∑

p∆wp.

(iv) S|σp|(
∑

p∆wp) is complete, for every wuC series
∑

p∆wp.
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and convergent sequences, Math. Methods Appl. Sci., 44 (2021), 3670-3685.
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[14] M. Mursaleen, Applied Summability Methods, Springer Briefs in Mathemat-
ics; Springer: Cham, Switzerland, 2014.

[15] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math.,
160 (1993), 43-51.

[16] J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal.
Appl., 173 (1993),497-504.

[17] M. Sen, M. Et, Lacunary statistical and lacunary strongly convergence of
generalized difference sequences in intuitionistic fuzzy normed linear spaces,
Bol. Soc. Paran. Mat., 38 (2020), 117-129.

[18] M. Mursaleen, S.A. Mohiuddine, On lacunary statistical convergence with
respect to the intuitionistic fuzzy normed space, J. Comput. Apl. Math., 233
(2009), 142-149.

[19] F. Nuray, Lacunary statistical convergence of sequences of fuzzy numbers,
Fuzzy Sets and Systems, 99 (1998), 353-355.
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A.Sala-Pérez, Characterizations of a Banach space through the strong la-
cunary and the lacunary statistical summabilities, Mathematics, 8 (2020),
1066.

[40] F. León-Saavedra, S. Moreno-Pulido, A. Sala, Completeness of a normed
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[42] M. Karakuş, F. Başar, Operator valued series, almost summability of vector
valued multipliers and (weak) compactness of summing operator, J. Math.
Anal. Appl., 484 (2020), 123651.
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Abstract. A subgroup H of a group G is weakly normal in G if Hg ≤ NG(H) implies
that g ∈ NG(H) for any element g ∈ G. A subgroup H of a group G is s-weakly normal
in G if there exists a normal subgroup T such that G = HT and H∩T is weakly normal
in G. Clearly a weakly normal subgroup of G is an s-weakly normal subgroup of G. In
this paper, we investigate the influence of s-weakly normal subgroups on the structure
of a finite group, especially some criteria for supersolvability, nilpotency, formation and
hypercenter of a finite group are proved. Based on our results, some recent results can
be generalized easily.

Keywords: finite group, weakly normal subgroup, s-weakly normal subgroup, super-
solvable group, nilpotent group.

1. Introduction

The groups which appear throughout this paper are assumed to be finite groups
and G always denotes a finite group. Let’s first introduce some frequently used
notations and terminologies, any unexplained terms can be found in [9, 11, 12,
20].

Let |G| be the order of G and π(G) be the set of all prime divisors of |G|.
For a p-group P , where p is a prime, we write Ω1(P ) = ⟨x ∈ P |xp = 1⟩ and
Ω2(P ) = ⟨x ∈ P |xp2 = 1⟩; we say a p′-group H means a group H satisfying
p ∤ |H|.

Let F be a class of groups. Recall that F is said to be a formation if F is
closed under taking homomorphic image and finite subdirect product, that is,
for each group G and a normal subgroup N of G, G ∈ F implies that G/N ∈ F,
moreover, if M ⊴ G, then G/N ∈ F and G/M ∈ F imply G/(N ∩M) ∈ F. A

*. Corresponding author
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formation F is said to be saturated if G ∈ F whenever G/Φ(G) ∈ F, where Φ(G)
is the intersection of all maximal subgroups of G.

We denote by U the class of all supersolvable groups and by N the class of
all nilpotent groups. It is known that U and N are both saturated formations
(see [12]). We denote by ZF(G) the product of all F-hypercentral subgroups of
G. In particular, ZU(G) denotes the product of all normal subgroups N of G
such that each chief factor of G below N has prime order. It is known that for
the formation N, ZN(G) = Z∞(G) is the hypercenter of G.

It is known that a subgroup H of a group G is pronormal in G if the sub-
groups H and Hg are conjugate in ⟨H,Hg⟩ for each element g of G. This
concept was introduced by P. Hall [13] and the first general results about
pronormality appeared in a paper by J. S. Rose [21]. A subgroup H of G is
c-normal in G if there is a normal subgroup N of G such that G = HN and
H ∩N ≤ HG = CoreG(H), see for example [22]. In [7], the authors introduced
the concept of H-subgroup of a group and proved a number of interesting re-
sults about such subgroups. A subgroup H of a group G is called an H-subgroup
provided that Hg ∩NG(H) ≤ H for all g ∈ G. It is easy to see that the Sylow
p-subgroups, normal subgroups and self-normalizing subgroups of an arbitrary
group are H-subgroups. Following Müller [18], a subgroup H of a group G is
weakly normal in G if Hg ≤ NG(H) implies that g ∈ NG(H) for any element
g ∈ G. It is known that every pronormal subgroup and H-subgroup of G are
weakly normal in G, but the converse is not true (see [1, p.28] and [6]) for
more details. In [17], the authors investigated the behaviour of weakly normal
subgroups, and obtained some characterizations about the supersolvability and
nilpotency of G by assuming that some subgroups of prime power order of G
are weakly normal in G. Recently, the authors in [24] gave some results about
formation under the condition that some subgroups of prime square order are
weakly normal in G.

It is known that there is no obvious general relationship between the concepts
of c-normal subgroup and H-subgroup. For a generalization of both H-subgroup
and c-normal subgroup, Assad, et al.[2] introduced the concept of weakly H-
subgroup, which describes subgroup embedding properties of a finite group. A
subgroup H of a group G is called a weakly H-subgroup in G if there exists
a normal subgroup K of G such that G = HK and H ∩ K is a H-subgroup
of G. The authors in [2] determined the structure of a finite group G when
all maximal subgroups of every Sylow subgroup of certain subgroups of G are
weakly H-subgroups in G.

Inspired by the above works, we consider the following question:

How is the structure of a finite group G determined by its subgroup H with
the property that there exists a normal subgroup T of G such that HT = G and
H ∩ T is weakly normal in G?

We first introduce a new notion of s-weakly normal subgroup which is a
generalization of c-normal subgroup, H-subgroup, and weakly normal subgroup.
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Definition 1.1. A subgroup H of a group G is an s-weakly normal subgroup of
G if there exists a normal subgroup T of G such that G = HT and H ∩ T is
weakly normal in G.

Clearly a c-normal subgroup, H-subgroup or weakly normal subgroup of G
is an s-weakly normal subgroup of G, but the converse is not true. The following
two examples will show this.

Example 1.1. Let G = S4 be the symmetric group of degree 4. Suppose
that H = ⟨(12)⟩ and A4 is the alternating group of degree 4. Since A4 is a
normal subgroup of G such that G = HA4 and H ∩ A4 = {(1)} is weakly
normal in G, H is s-weakly normal in G. It is easy to see that NG(H) =
{(1), (12), (34), (12)(34)}. Let g = (13)(24) ∈ G. Since Hg = {(1), (34)} and
Hg ∩NG(H) = {(1), (34)} ⩽̸ H, H is not an H-subgroup of G. Also note that
Hg ≤ NG(H), but g = (13)(24) /∈ NG(H). It follows that H is not weakly
normal in G.

Example 1.2. Let G = S4, H = {(1), (12), (13), (23), (123), (132)}. It is easy
to check that NG(H) = H, this means that H is an H-subgroup of G and so it is
weakly normal in G. Hence H is s-weakly normal in G. But H is not c-normal
in G. In fact, since HG = {(1)}, there is no such a normal subgroup T of G
such that G = HT and H ∩ T ≤ HG.

The aim of this paper is to obtain some new characterizations of the nilpo-
tency and supersolvability of finite groups by studying the s-weakly normality
properties of some certain primary subgroups. In Section 2, some necessary
lemmas are given. In Section 3, some criteria for supersolvability, nilpotency,
formation and hypercenter of a finite group are proved, based on these crite-
ria, some recent results can be improved and extended easily. These results
show that the concept of s-weakly normal subgroup provides us a useful tool to
investigate the structure of finite groups.

2. Preliminaries

In this section we list some basic facts which are needed in this paper.

Lemma 2.1 ([17], Lemma 2.1, Lemma 2.2). Let N,H and K be subgroups of a
finite group G. Then:

(1) If H is weakly normal in G, and H ≤ K ≤ G, then H is weakly normal
in K.

(2) Let N ⊴ G and N ≤ H. Then H is weakly normal in G if and only if
H/N is weakly normal in G/N .

(3) If H is weakly normal in G and H ⊴⊴K ≤ G, then H ⊴K.

(4) If N ⊴G, P is a weakly normal p-subgroup of G such that (|N |, p) = 1,
then PN is weakly normal in G and PN/N is weakly normal in G/N .
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Lemma 2.2. Let G be a finite group and N,H,K be subgroups of group G.

(1) If H is s-weakly normal in G, and H ≤ K ≤ G, then H is s-weakly
normal in K.

(2) Let N ≤ H and N ⊴G. Then H is s-weakly normal in G if and only if
H/N is s-weakly normal in G/N .

(3) Let N be a normal subgroup of G. If H is a p-subgroup of G such that
(|N |, |H|) = 1 and H is s-weakly normal in G, then HN/N is s-weakly normal
in G/N .

Proof. (1) Since H is an s-weakly normal subgroup of G, there exists a normal
subgroup T of G such that G = HT and H ∩ T is weakly normal in G. It is
easy to see that K = K ∩HT = H(K ∩ T ) and H ∩ (K ∩ T ) = H ∩ T is weakly
normal in G. It follows by Lemma 2.1(1) that H ∩ (K ∩ T ) = H ∩ T is weakly
normal in K. Hence H is s-weakly normal in K.

(2) Assume that H is s-weakly normal in G, that is, there exists a normal
subgroup T of G such that G = HT and H ∩ T is weakly normal in G. Since
N ⊴ G, it is clear that G/N = (H/N)(TN/N) and TN/N ⊴ G/N . Then it
follows from Lemma 2.1(2) that (H/N) ∩ (TN/N) = N(H ∩ T )/N is weakly
normal in G/N . Hence H/N is s-weakly normal in G/N .

Conversely, suppose that H/N is s-weakly normal in G/N . Then there
exists a normal subgroup T/N of G/N such that G/N = (H/N)(T/N) and
(H/N) ∩ (T/N) = (H ∩ T )/N is weakly normal in G/N . It is easy to see that
G = HT and H ∩ T is weakly normal in G by Lemma 2.1(2), that is, H is
s-weakly normal in G.

(3) Suppose that H is s-weakly normal in G. Then there exists a normal
subgroup T of G such that G = HT and H ∩ T is weakly normal in G. Note
that (|N |, |H|) = 1, we have N ≤ T , and hence HN ∩T = N(H ∩T ). It is easy
to see that HN ∩ T = N(H ∩ T ) is weakly normal in G. By Lemma 2.1(4),
N(H ∩ T )/N is weakly normal in G/N . Note that G/N = (HN/N)(T/N) and
(HN/N) ∩ (T/N) = (HN ∩ T )/N = N(H ∩ T )/N is weakly normal in G/N .
Hence HN/N is s-weakly normal in G/N .

Lemma 2.3 ([14], Satz 5.4, p.434). Let G be a group and p ∈ π(G), If G is a
minimal non-p-nilpotent group, that is, G is not nilpotent but all of its proper
subgroups are p-nilpotent, then

(i) G = PQ, where P is a normal Sylow p-subgroup of G and Q is a non-
normal cyclic Sylow q-subgroup of G.

(ii) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ).

(iii) If p > 2, then exp(P ) is p, and when p = 2, exp(P ) is at most 4, where
exp(P ) is the exponent of group P .

Lemma 2.4 ([23], Theorem 6.3, p.221 and Corollary 7.8, p.33). Let P be a
normal p-subgroup of a group G such that |G/CG(P )| is a power of prime p.
Then P ≤ ZU(G).
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Lemma 2.5 ([9], Theorem 6.10, p.390). If a class of groups F is a saturated
formation, then [GF, ZF(G)] = 1.

Lemma 2.6. Let H be an s-weakly normal subgroup of G and K be a subgroup
of G such that H ≤ K. If K/Φ(K) is a chief factor of G, then H is weakly
normal in G.

Proof. Since H is s-weakly normal in G, there is a normal subgroup T of G
such that G = HT and H ∩ T is weakly normal in G. Note that K/Φ(K) is a
chief factor of G. Thus either (K∩T )Φ(K)/Φ(K) = 1 or (K∩T )Φ(K)/Φ(K) =
K/Φ(K). In the former case, since K ∩ T ≤ Φ(K), we have K = K ∩ HT =
H(K ∩ T ) = H. This implies that H ⊴ G, and clearly, H is weakly normal in
G. In the latter case, we have (K ∩ T )Φ(K) = K, and hence K ∩ T = K and
G = T . This also implies that H is weakly normal in G.

Let G be a finite group. It is known that the Fitting subgroup F (G) of G is
the unique maximal normal nilpotent subgroup of G, and the generalized Fitting
subgroup F ∗(G) of G is the unique maximal normal quasinilpotent subgroup of
G. The following results about F ∗(G) and F (G)are useful in our paper.

Lemma 2.7 ([15], Chapter X 13). Let G be a group.

(1) Suppose that F ∗(G) is solvable. Then F ∗(G) = F (G);

(2) C(F ∗(G)) ≤ F (G);
(3) If N is a normal subgroup of G, then F ∗(N) = N ∩ F ∗(G).

Lemma 2.8 ([6], Lemma 2). Let H be a p-subgroup of G. Then the following
properties are equivalent:

(1) H is a pronormal subgroup of G;

(2) H is a weakly normal subgroup of G.

Lemma 2.9 ([4], Theorem 4.1). Let p be the smallest prime of π(G) and P a
Sylow p-subgroup of G. If every subgroup of P of order p or 4 (when p = 2) is
pronormal in G, then G is p-nilpotent.

From Lemma 2.8 and Lemma 2.9, we immediately get the following result.

Lemma 2.10. Let G be a group and p be the smallest prime of π(G). If P is a
Sylow p-subgroup of G and every subgroup of Pof order p or 4 (when p = 2) is
weakly normal in G, then G is p-nilpotent.

Lemma 2.11 ([16], Lemma 2.8). Let P be a normal p-subgroup of G contained
in Z∞(G). Then Op(G) ≤ CG(P ).

Lemma 2.12 ([10], Lemma 2.4). Let P be a p-group. If α is a p′-automorphism
of P which centralizes Ω1(P ), then α = 1 unless P is a non-abelian 2-group. If
[α,Ω2(P )] = 1, then α = 1 without restriction.
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3. Main results

In the sequel, we discuss the influence of s-weakly normal subgroups on the
structure of a group.

Theorem 3.1. Let G be a group with a Sylow p-subgroup P , where p is the
smallest prime in π(G). Suppose that every subgroup of P of order p or 4 (when
p = 2) is s-weakly normal in G. Then G is p-nilpotent.

Proof. Suppose that the required result is not true and let G be a counterex-
ample of minimal order.

Firstly, suppose that p is an odd prime. If every subgroup of P of order p
is weakly normal in G, then by Lemma 2.10, G is p-nilpotent, a contradiction.
Hence there exists a subgroup P1 of P such that |P1| = p and P1 is not weakly
normal in G. By the hypotheses of the theorem, P1 is s-weakly normal in G,
i.e. there is a normal subgroup T of G such that G = P1T and P1 ∩ T is
weakly normal in G. If P1 ∩ T ̸= 1, then P1 ∩ T = P1 is weakly normal in G, a
contradiction. Thus P1 ∩ T = 1, and therefore T is a proper subgroup of G. By
Lemma 2.2(1), T satisfies the hypotheses of the theorem. Then T is p-nilpotent
by the minimal choice of G. Let Tp′ be a normal p-complement of G. Clearly,
Tp′ char G. Note that T is normal in G, and therefore Tp′ ⊴G. This means that
G is p-nilpotent, which is a contradiction.

Now suppose that p = 2. Since G is not 2-nilpotent, it follows that G
contains a minimal non-2-nilpotent subgroup K. Then K is a minimal non-
nilpotent subgroup of G and K = K2 ⋊ Kq, where K2 is a normal Sylow 2-
subgroup of K and Kq is a non-normal Sylow q-subgroup of K, where q > 2,
and exp(K2) is at most 4. By using Lemma 2.1(1), we can easily see that the
hypothesis is inherited by K. Then by Lemma 2.10, K2 contains a subgroup L
of order 2 or 4 such that L is not weakly normal in K. By the hypotheses of the
theorem, L is s-weakly normal in G and thereby L is s-weakly normal in K by
Lemma 2.2(1), that is, there is a normal subgroup T of K such that K = LT
and L ∩ T is weakly normal in K. If T = K, then L ∩ T = L is weakly normal
in K, a contradiction. Thus T is a proper subgroup of K. If |L| = 2, then
L ∩ T = 1. Since T is a normal nilpotent subgroup of K, Kq char T ⊴K, and
hence Kq ⊴ K, a contradiction. If |L| = 4, then we can always conclude that
Kq ⊴K when |L∩ T | = 1 or |L∩ T | = 2 since T is a normal nilpotent subgroup
of K, a contradiction. This completes the proof of the theorem.

Theorem 3.2. Let G be a group with a normal p-subgroup P , where p ∈ π(G).
Suppose that every subgroup of P of order p or of order 4 (when p = 2) is
s-weakly normal in G. Then we have P ≤ ZU(G).

Proof. We proceed the proof of the theorem by induction on |G| + |P | and
distinguish the following two cases.

Case (1): p is an odd prime.
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If every subgroup of P of order p is normal in G, then it is easy to see from
[5, Theorem 1.1] that P ≤ ZU(G). Now we assume that there exists a subgroup
H of order p in P such that H is not normal in G. By the hypothesis of the
theorem, H is s-weakly normal in G, that is, there exists a normal subgroup
T of G such that G = HT and H ∩ T is weakly normal in G. Assume that
H ∩ T ̸= 1. Then H ∩ T = H is weakly normal in G. It is easy to know that
H is subnormal in G, then we have that H ⊴ G by Lemma 2.1(3), which is a
contradiction. Therefore H ∩T = 1. Note that P ∩T ⊴G. By hypothesis of the
theorem, every subgroup of P ∩ T of order p is s-weakly normal in G. Hence,
by induction on |G|+ |P |, we have that P ∩ T ≤ ZU(G). Since P = H(P ∩ T ),
we have P/(P ∩ T ) = H(P ∩ T )/(P ∩ T ) is a normal subgroup of G/(P ∩ T ) of
order p. Consequently, P/(P ∩T ) ≤ ZU(G/(P ∩T )). Note that P ∩T ≤ ZU(G),
and then by [23, Theorem 7.7, p.32], we have

ZU(G/(P ∩ T )) = ZU(G)/(P ∩ T ).

Therefore, P ≤ ZU(G).
Case (2): p = 2.
Let Q be any Sylow q-subgroup of G, where q ̸= 2. Then it is clear that PQ

is a subgroup of G. By Lemma 2.2(1) and Theorem 3.1, PQ is 2-nilpotent, this
implies that PQ = P × Q. And then |G/CG(P )| is a power of 2. By Lemma
2.4, we have P ≤ ZU(G).

Theorem 3.3. Let G be a group and F be a saturated formation containing the
class of supersolvable groups U. Then G lies in F if and only if there is a normal
subgroup H of G such that G/H ∈ F, and every subgroup of H of prime order
or of order 4 is s-weakly normal in G.

Proof. The necessity is obvious, and we only need to prove the sufficiency
part. We use induction on the order of group G. By Lemma 2.2(1) and using
repeated applications of Theorem 3.1,H has a Sylow tower of supersolvable type.
Without loss of generality, let p be the largest prime of π(H) and P be the Sylow
p-subgroup of H. Clearly P is a characteristic subgroup of H, and note H ⊴G,
we have P ⊴G. This implies that H/P ⊴G/P and (G/P )/(H/P ) ∼= G/H ∈ F.
It follows from Lemma 2.2(3) that every subgroup of H/P of prime order or of
order 4 is s-weakly normal in G/P . By induction on |G|, we have G/P ∈ F. It
is easy to see from Theorem 3.2 that P ≤ ZU(G). And by Lemma[9, Propositin
3.11, p.362], ZU(G) ≤ ZF(G), consequently, we have P ≤ ZF(G). Therefore,
G ∈ F.

As an immediate consequence of Theorem 3.3, we have the following two
corollaries.

Corollary 3.1. Let G be a group with a normal subgroup E. If G/E is super-
solvable and every subgroup of E of prime order or of order 4 is s-weakly normal
in G, then G is supersolvable.
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Corollary 3.2. Suppose that every subgroup of prime order or of order 4 is
s-weakly normal in a group G. Then G is supersolvable.

Theorem 3.4. Let G be a group and F be a saturated formation containing
the class of supersolvable groups U. Then G lies in F if and only if there is a
normal subgroup E of G such that G/E ∈ F, and every subgroup of F ∗(E) of
prime order or of order 4 is s-weakly normal in G.

Proof. We only need to prove the sufficiency part. We use induction on the
order of group G. By Lemma 2.2(1), every subgroup of F ∗(E) of prime order
or of order 4 is s-weakly normal in F ∗(E). It follows from Corollary 3.2 that
F ∗(E) is supersolvable. By Lemma 2.7(1), we have F ∗(E) = F (E), and then
F (E) ≤ ZU(G) by Theorem 3.2. Since ZU(G) ≤ ZF(G), we have F (E) ≤
ZF(G). Hence by Lemma 2.5, we have G/CG(F (E)) ∈ F. This implies that
G/(E ∩ CG(F (E))) = G/CE(F (E)) ∈ F. Since CE(F (E)) ≤ F (E) by Lemma
2.7(2) and F ∗(E) = F (E), we have

G/F (E) ∼= (G/CE(F (E)))/(F (E)/CE(F (E))) ∈ F.

And then it is easy to see that G ∈ F by Theorem 3.3.

Corollary 3.3. Let G be a group and F be a saturated formation containing
the class of supersolvable groups U. Then G lies in F if and only if there is a
solvable normal subgroup E such that G/E ∈ F and every subgroup of F (E) of
prime order or of order 4 is s-weakly normal in G.

In the following part, we characterize the nilpotency of finite groups by the
s-weakly normality of some subgroups of prime power order in G.

Theorem 3.5. Let G be a group with a normal subgroup E such that G/E is
nilpotent. If every minimal subgroup of E is contained in Z∞(G), and every
cyclic subgroup of E of order 4 is s-weakly normal in G, then G is nilpotent.

Proof. Assume that the result is false and let (G,E) be a counterexample such
that |G|+ |E| is minimal. Then we prove the theorem via the following steps.

(1) G is a minimal non-nilpotent group, that is, G = P ⋊ Q, where P is a
normal Sylow p-subgroup of G and Q is a non-normal cyclic Sylow q-subgroup
of G for some prime q ̸= p; P/Φ(P ) is a chief factor of G; exp(P ) = p when
p > 2 and exp(P ) is at most 4 when p = 2.

Let K be any proper subgroup of G. Then K/(E ∩K) ∼= EK/E ≤ G/E is
nilpotent, and every minimal subgroup of E ∩K is contained in Z∞(G) ∩K ≤
Z∞(K). By hypothesis, every cyclic subgroup of E ∩K of order 4 is s-weakly
normal in G. Thus by Lemma 2.2(1), every cyclic subgroup of E ∩K of order
4 is s-weakly normal in K. Hence (K,E ∩ K) satisfies the hypothesis of the
theorem. Then the choice of (G,E) implies that K is nilpotent. Hence G is a
minimal non-nilpotent group, and so (1) holds by [14, Chapter III, Satz 5.2].

(2) P ≤ E.
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If P ≰ E, then clearly P ∩E < P , and so (P ∩E)Q < G. By (1), (P ∩E)Q
is nilpotent. This implies that Q⊴ (P ∩E)Q. Since G/(P ∩E) ≲ G/P ×G/E
is nilpotent, (P ∩ E)Q⊴G, and thus Q⊴G, which contradicts to (1).

(3) Final contradiction.
If exp(P ) = p, then P ≤ Z∞(G), and so G is nilpotent, which is impossible.

Hence we may assume that p = 2 and exp(P ) = 4. Then by Lemma 2.6, every
cyclic subgroup of P of order 4 is weakly normal in G, and so every cyclic
subgroup of P of order 4 is normal in G by Lemma 2.1(3). Take an element
x ∈ P\Φ(P ). Since P/Φ(P ) is a chief factor of G, P = ⟨x⟩GΦ(P ) = ⟨x⟩G.
If x is of order 2, then P = ⟨x⟩G ≤ Z∞(G), also we have G is nilpotent. a
contradiction. Now assume that x is of order 4. Then ⟨x⟩⊴G, and so P = ⟨x⟩
is cyclic. By [20, (10.1.9)], G is 2-nilpotent, and so Q⊴G, a contradiction. This
completes the proof of the theorem.

Theorem 3.6. Let G be a group with a normal subgroup E such that G/E is
nilpotent. If every minimal subgroup of F ∗(E) is contained in Z∞(G) and every
cyclic subgroup of F ∗(E) of order 4 is s-weakly normal in G, then G is nilpotent.

Proof. Assume that the result is false and let (G,E) be a counterexample such
that |G|+ |E| is minimal. Then we prove the theorem via the following steps.

(1) Every proper normal subgroup of G is nilpotent.
Let K be any proper normal subgroup of G. Then K/(E ∩K) ∼= EK/E ≤

G/E is nilpotent. By Lemma 2.7(3), F ∗(E∩K) = F ∗(E)∩K. Hence by Lemma
2.2(1), (K,E ∩K) satisfies the hypothesis of the theorem. The choice of (G,E)
implies that K is nilpotent.

(2) E = G = γ∞(G) and F ∗(G) = F (G) < G, where γ∞(G) is the nilpotent
residual of G.

If E is a proper subgroup of G, then E is nilpotent by (1), and so F ∗(E) =
F (E) = E. By Theorem 3.5, G is nilpotent, a contradiction. Thus E = G. Now
suppose that F ∗(G) = G. Then by Theorem 3.5 again, G is nilpotent, which
is impossible. Hence F ∗(G) < G, and F ∗(G) = F (G) by (1). If γ∞(G) < G,
then by (1), γ∞(G) ≤ F (G), and so G/F (G) is nilpotent. It follows that G is
nilpotent, a contradiction. Thus γ∞(G) = G.

(3) Every cyclic subgroup of F (G) of order 4 is contained in Z(G).
By hypothesis and (2), every cyclic subgroup H of F (G) of order 4 is s-

weakly normal in G. Then there exists a normal subgroup T of G such that
G = HT and H ∩ T is weakly normal in G. If T < G, then T ≤ F (G) by (1),
and thereby F (G) = G, a contradiction. Hence T = G, and so H is weakly
normal in G. By Lemma 2.1(3), H ⊴G. This implies that G/CG(H) is abelian.
Then by (2), CG(H) = γ∞(G) = G, and so H ≤ Z(G). Thus (3) holds.

(4) Final contradiction.
Let p be any prime divisor of |F (G)| and P be the Sylow p-subgroup of

F (G). Then P ⊴G. If p is odd, then by hypothesis, Ω1(P ) ≤ Z∞(G). It follows
from Lemma 2.11 that Op(G) ≤ CG(Ω1(P )), and so Op(G) ≤ CG(P ) by Lemma
2.12. Then by (2), CG(P ) = γ∞(G) = G. Now consider that p = 2. Then by
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hypothesis and (3), Ω2(P ) ≤ Z∞(G). A similar discussion as above also shows
that CG(P ) = G. Therefore, we have CG(F (G)) = G, which contradicts the fact
that CG(F (G)) ≤ F (G) by (2) and Lemma 2.7(2). This completes the proof of
the theorem.

Remark 3.1. Note that a c-normal subgroup, H-subgroup and weakly normal
subgroup of G is an s-weakly normal subgroup of G, thus some recent results can
be generalized and improved by applications of the results given in this paper.
For example,[22, Theorem 4.2] and [3, Theorem 3.6] are immediate results of
Theorem 3.3; It is easy to obtain [8, Theorem 11]) and [17, Theorem 3.1] by
Corollary 3.1; [17, Theorem 3.2] and [17, Corollary 3.4] are immediate result of
Theorem 3.4; [17, Theorem 3.5] and [17, Theorem 3.6] are immediate results of
Theorem 3.5 and Theorem 3.6, respectively.
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1. Introduction

The sporadic Monster group M has a conjugacy class of maximal 5-local sub-
groups of the form 54:((3× 2L2(25)):22) [6]. Obtaining a permutation represen-
tation on 625 points for G=54:((3×2L2(25)):22) from the online ATLAS [23], the
group G is generated by using the algebra computational system MAGMA [5].
The normal subgroup N = 54 and subgroup G = (3×2L2(25)):22 ∼= SL2(25):S3
of G are constructed by MAGMA as permutation groups on 625 points. Using
the MAGMA commands, ”M:=GModule(G,N); and ”M:Maximal;”, the group
G =< g1, g2 > is constructed as a matrix group of degree 4 over GF (5) with
generators g1 and g2 such that o(g1) = 2, o(g2) = 39 and o(g1g2) = 8 (see,
Figure 1).

g1 =


1 0 1 0
0 1 0 0
0 0 4 0
0 2 0 4

, g2 =


0 1 0 0
4 1 4 2
0 0 0 1
3 4 2 0


Figure 1: Generators of G

Considering N = V4(5) as the vector space of dimension 4 over GF (5),
on which the matrix group G =< g1, g2 > acts absolutely irreducibly, it was
found with aid of GAP [8] that G has two orbits on N of lengths 1 and 624
with corresponding point stabilizers P1 = G and P2 = 52:S3. By Brauer’s
theorem (see Theorem 5.1.5 in [12]), the action of G on Irr(N) also has two
orbits of lengths 1 and 624 with corresponding inertia factor groups H1 = G
and H2 = 52:S3. It is worth noting that the vector space N and its dual
space N∗ =Irr(N) are isomorphic as 4-dimensional modules over GF (5) for G.
Having obtained G as a 4-dimensional matrix group over the finite field GF (5)
and treating N as the vector space V4(5) we can apply Fischer-Clifford theory
(see, for example, [7] and [14]) to the split extension G to construct its ordinary
character table. The Fischer-Clifford matrices technique is powerful if the kernel
of a suitable split extension group is elementary abelian as it is the case with the
group G. A GAP routine found in [21] which is based on coset analysis technique
found in [11] and [14] is used to compute the conjugacy classes ofG. This method
is very efficient when the kernel of a split extension is an elementary-abelian p-
group. The importance of computing conjugacy classes of G from a coset Ng
is that the centralizer orders of these classes play a role in the computation
of the entries of a Fischer-Clifford matrix M(g), where g is a conjugacy class
representative of G. In the paper [10], Fischer-Clifford technique was applied to
a non-split extension G1 = 53·L3(5), which is a maximal subgroup of the Lyons
sporadic simple group Ly. Besides our group G , G1 is one of the few extension
groups in the literature with the kernel being an elementary abelian 5-group,
where the method of Fischer-Clifford matrices has been applied to.

In the sections that follow, an outline of the Fischer-Clifford matrices tech-
nique is going to be given. The conjugacy classes and Fischer-Clifford matrices
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of G are also computed using appropriate GAP routines. In addition, the or-
dinary character table of G is constructed and the fusion of conjugacy classes
of G into those of the Monster M is determined. For an update on recent de-
velopments around Fischer-Clifford matrices, interested readers are referred to
the papers [1], [2], [15] [16], [17], [18] and [19]. Most of the computations in
this paper are carried out with computer algebra systems MAGMA and GAP.
Notation from the ATLAS [6] is mostly followed.

2. Theory of Fischer-Clifford matrices

Since the ordinary character table of G = 54:((3 × 2L2(25)):22) will be con-
structed by the technique of Fischer-Clifford matrices, an outline of this tech-
nique is given for a split extension G = N :G, where N is an elementary abelian
p-group, see for example, [14] or [22].

Let G = N :G be a split extension of N by G, where N is an elementary
abelian p-group. The subgroup H = N :H =

{
x ∈ G|θx = θ

}
of G is defined as

the inertia group of θ ∈ Irr(N) in G, with inertia factor H = H/N . Note that a
lifting g ∈ G of g ∈ G into G under the natural homomorphism η:G −→ G is just
g itself, since G ≤ G. Let X(g) = {x1, x2, · · · , xc(g)} be a set of representatives

of the conjugacy classes of G from the coset Ng whose images under the natural
homomorphism η are in the conjugacy class [g] of G where x1 = g. Now let
θ1 = 1N , θ2, · · · , θt be representatives of the orbits of G on Irr(N). Since N is
elementary abelian, we have by Mackey’s Theorem (see Theorem 5.1.15 in [12])
that each θi, 1 ≤ i ≤ t, extends to a ψi ∈ Irr(Hi), i.e. ψi ↓N = θi. By Theorem
5.1.7, Remark 5.1.8 and Theorem 5.1.19 in [12], an ordinary irreducible character

χ = (ψiβ)
G of G consists of ψiβ ∈ Irr(Hi) which is induced to G, where N is

contained in the kernel ker(β) of a lifting β ∈ Irr(Hi) of β ∈ Irr(Hi) into Hi.
Therefore,

Irr(G) =

t⋃
i=1

{(ψiβ)
G|β ∈ Irr(Hi), N ⊆ ker(β)} =

t⋃
i=1

{(ψiβ)
G|β ∈ Irr(Hi)}.

Hence, the set Irr(G) are partitioned into t blocks Bi with each block Bi corre-
sponding to an inertia subgroup Hi of G. Observe that |Irr(G)| = |Irr(H1)| +
...+ |Irr(Ht)|.

We take H1= G and H1 = G. Choose y1, y2, .., yr to be representatives of
the conjugacy classes [yk], k = 1, ..., r, of Hi that fuse to [g] in G. We define
R(g) = {(i, yk) | 1 ≤ i ≤ t,Hi ∩ [g] ̸= ∅, 1 ≤ k ≤ r} and we observe that yk
runs over representatives of the conjugacy classes [yk] of Hi which fuse into [g]
of G. We define ylk ∈ Hi such that ylk ranges over all representatives of the
conjugacy classes of H i which map to yk under the homomorphism Hi −→ Hi

whose kernel is N .
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Lemma 2.1. With notation as above,

(ψiβ)
G(xj) =

∑
yk:(i,yk)∈R(g)

[ ′∑
l

|CG(xj)|
|CHi

(ylk)|
ψi(ylk)

]
β(yk).

Proof. See [22].

Then, the Fischer-Clifford matrix M(g) = (aj(i,yk)) is defined as (aj(i,yk)) =

(
∑′

l
|CG(xj)|
|CHi

(ylk )|
ψi(ylk) ), with columns indexed by X(g) and rows indexed by R(g)

and where
∑′

l is the summation over all l for which ylk ∼ xj in G. So, we can
write Lemma 2.1 as

(ψiβ)
G(xj) =

∑
yk:(i,yk)∈R(g)

aj(i,yk)β(yk).

The Fischer-CliffordM(g) (see, Figure 2) is partitioned row-wise into blocks
Mi(g), where each block corresponds to an inertia group H i. We write |CG(xj)|,
for each xj ∈ X(g), at the top of the columns of M(g) and at the bottom we

write mj ∈ N, where we define mj = |N | |CG(g)|
|CG(xj)| . On the left of each row we

write |CHi(yk)|, where the conjugacy classes [yk], k = 1, 2, ..., r, of an inertia
factor Hi fuse into the conjugacy class [g] of G.

M(g)=



|CG(x1)| |CG(x2)| · · · |CG(xc(g))|

|CG(g)| a1
(1,g) a2

(1,g) · · · a
c(g)

(1,g)

|CH2(y1)| a1
(2,y1)

a2
(2,y1)

· · · a
c(g)

(2,y1)

|CH2(y2)| a1
(2,y2)

a2
(2,y2)

· · · a
c(g)

(2,y2)

...
...

...
...

...

|CHi(y1)| a1
(i,y1)

a2
(i,y1)

· · · a
c(g)

(i,y1)

|CHi(y2)| a1
(i,y2)

a2
(i,y2)

· · · a
c(g)

(i,y2)

...
...

...
...

...

|CHt(y1)| a1
(t,y1)

a2
(t,y1)

· · · a
c(g)

(t,y1)

|CHt(y2)| a1
(t,y2)

a2
(t,y2)

· · · a
c(g)

(t,y2)

...
...

...
...

...


m1 m2 · · · mc(g)

Figure 2: The Fischer-Clifford Matrix M(g)
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In practice it is difficult to compute the elements ylk or the ordinary ir-
reducible character tables of the inertia groups H i, since the sets Irr(H i) of
ordinary irreducible characters of the H i’s are in general much larger and more
complicated to compute than the one for G. Instead of using the above for-
mal definition of a Fischer-Clifford matrix M(g), the arithmetical properties of
M(g) found in [14] are used to compute the entries of M(g). The matrix M(g)
is square where the number of rows is equal to the number of conjugacy classes
of the inertia factors Hi’s, 1 ≤ i ≤ t, which fuse into the class [g] in G and the
number of columns is equal to the number c(g) of conjugacy classes of G which
is obtained from the coset Ng. Then, the partial character table of G on the
classes {x1, x2, · · · , xc(g)} is given by

C1(g)M1(g)
C2(g)M2(g)

...
Ct(g)Mt(g)



with each block Mi(g) of M(g) (see Figure 2) corresponding to an inertia group
H i and Ci(g) consists of the columns of the ordinary character table of Hi which
correspond to the conjugacy classes of Hi that fuse into the class [g] of G. We
obtain the characters of G by multiplying the relevant columns of the ordinary
irreducible characters of Hi by the rows of M(g).

3. The conjugacy classes of G

In this section, a GAP routine (labelled as Programme A in [21]), which is
based on the method of coset analysis (see [11], [13] or [14]), is used to compute
the conjugacy classes of G. This GAP routine is written for a split extension
S = pn:Q of an elementary abelian p-group pn by a linear matrix group Q of
dimension n over the field GF (p). The group pn (regarded as a vector space
Vn(p) of degree n over the finite field GF (p) (p is a prime)) is a Q-module where
upon the matrix group Q acts naturally. A coset pnq is considered for each
conjugacy class [q] representative q in Q and then consider the action of the
stabilizer Cg = pn:CQ(q) = {x ∈ S|x(pnq)x−1 = pnq} of the coset pnq in S by
conjugation on the elements of pnq. Since Cg is split extension we will first act
pn on pnq to form k orbits Q1, Q2, ..., Qk, with each orbit Qi containing |pn|/k
elements. Under the action of the centralizer CQ(q) of q in Q, fj of the k orbits
Qi fuse together to form an orbit Oj . The orbit Oj contains the elements from
the coset pnq which belong to a conjugacy class [xj ] of S with class representative
xj . Note that

∑
fj = k. The order of the centralizer |CS(xj)| of the class

representative xj is then computed by |CS(xj)| =
k|CQ(q)|

fj
. In this manner, the

conjugacy classes of S, with class representatives X(q) = {x1, x2, ..., xc(q)} (see
Section 2) coming from the coset pnq, are obtained.
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Using similar techniques as in [14], the permutation character χ(G|54) of
G = (3× 2L2(25)):22 on the conjugacy classes of N = 54 is computed as

χ(G|54) =
2∑

i=1

IGPi
= 1aa+ 13cd+ 25b+ 26dd+ 52bbdejklmno.

Note that χ(G|54) is the sum of the identity characters IGPi
, i = 1, 2, of the

point stabilizers Pi of the orbits of G on N , which are induced to G. Also,
χ(G|54) is written in terms of the ordinary irreducible characters of G. For an
element g in a conjugacy class [g] of G, it is required that χ(G|54)(g) = 5n, for
some n ∈ {0, 1, 2, 3, 4}. The value χ(G|54)(g) gives the number of elements of
N which is fixed by an element g ∈ G and it is also the number of orbits of N
on a coset Ng.

In Section 1, the group G = (3×2L2(25)):22 =< g1, g2 > was computed as a
4-dimensional matrix group over the field GF (5) and withN = 54 represented as
a vector space V4(5) of dimension 4 over GF (5), we now proceed to compute the
conjugacy classes for G as described above. The permutation character χ(G|54)
is evaluated on each class representative g ∈ G to determine the number k =
χ(G|54)(g) of orbits of N on Ng. Programme A in [21] written in GAP is then
used to calculate the number fj of these k orbits which come together as an orbit
Oj under the action of CG(g). With the values of k and the fj ’s obtained, the

order of the centralizer |CG(djg)| =
k|CG(g)|

fj
of a class representative djg ∈ Oj ,

where dj ∈ N and g ∈ G, is computed (see Table 1). Altogether 70 conjugacy
classes are obtained for G. Using the GAP routine, Programme B in [21],
which is based on Theorem 2.7 and Remark 2.8 in [14], the order o(djg) of a
representative djg in the orbit Oj , is computed. Let (djg)

o(g) = w ∈ N . If w =
1N , then o(djg) = o(g). Otherwise for w ̸= 1N we have o(djg) = 5o(g), since N
is an elementary abelian 5-group. Hence the order for each class representative
djg in a conjugacy class [djg] of G coming from a coset Ng is determined and
is found in Table 1. From Programme A and Programme B in [21] the p-power
maps, p a prime, are computed for the elements in each conjugacy class [djg]

of G and are listed in Table 1. The values of the parameter, mj =
fj |N |
k , which

are useful in determining the entries of a Fischer-Clifford matrix M(g) are also
listed in Table 1. We identify djg with xj used in Section 2 and in the beginning
of Section 3.
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Table 1: The Conjugacy Classes of Ḡ
[g]G k fj mj dj w [djg]G |CG(djg)| 2 3 5 13 7→M
1A 625 1 1 (0, 0, 0, 0) (0, 0, 0, 0) 1A 58500000 1A

624 624 (0, 0, 0, 1) (0, 0, 0, 1) 5A 93750 1A 5B

2A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 2A 93600 1A 2B

2B 25 1 25 (0, 0, 0, 0) (0, 0, 0, 0) 2B 6000 1A 2B
24 600 (0, 0, 0, 1) (1, 2, 3, 2) 10A 250 5A 2B 10E

3A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 3A 46800 1A 3B

3B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 3B 144 1A 3C

3C 25 1 25 (0, 0, 0, 0) (0, 0, 0, 0) 3C 1800 1A 3C
24 600 (0, 1, 2, 2) (1, 2, 4, 4) 15A 75 5A 3C 15D

4A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 4A 144 2A 4D

4B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 4B 240 2A 4D

5A 25 1 25 (0, 0, 0, 0) (0, 0, 0, 0) 5B 7500 1A 5B
12 300 (0, 0, 2, 4) (0, 0, 0, 0) 5C 625 1A 5B
12 300 (0, 1, 0, 0) (0, 0, 0, 0) 5D 625 1A 5B

5B 25 1 25 (0, 0, 0, 0) (0, 0, 0, 0) 5E 7500 1A 5A
6 150 (0, 0, 0, 4) (0, 0, 0, 0) 5F 1250 1A 5B
6 150 (0, 0, 0, 2) (0, 0, 0, 0) 5G 1250 1A 5B
6 150 (0, 1, 0, 0) (0, 0, 0, 0) 5H 1250 1A 5B
6 150 (0, 1, 0, 3) (0, 0, 0, 0) 5I 1250 1A 5B

6A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 6A 46800 3A 2A 6B

6B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 6B 72 3B 2A 6F

6C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 6C 144 3C 2A 6F

6D 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 6D 12 3B 2B 6F

8A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 8A 72 4B 8F

8B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 8B 8 4B 8F

10A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 10B 300 5B 2A 10D

10B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 10C 300 5E 2A 10B

10C 5 1 125 (0, 0, 0, 0) (0, 0, 0, 0) 10D 100 5E 2B 10B
2 250 (0, 0, 0, 1) (0, 0, 0, 0) 10E 50 5H 2B 10E
2 250 (0, 0, 0, 2) (0, 0, 0, 0) 10F 50 5I 2B 10E

10D 5 1 125 (0, 0, 0, 0) (0, 0, 0, 0) 10G 100 5E 2B 10B
2 250 (0, 0, 2, 2) (0, 0, 0, 0) 10H 50 5G 2B 10E
2 250 (0, 0, 0, 3) (0, 0, 0, 0) 10I 50 5F 2B 10E

12A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 12A 72 6A 4A 12J

12B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 12B 72 6A 4B 12F

12C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 12C 72 6C 4B 12J

12D 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 12D 72 6C 4B 12J

12E 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 12E 12 6B 4B 12J

13A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 13A 78 1A 13B

13B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 13B 78 1A 13B

13C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 13C 78 1A 13B

15A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 15B 150 5B 3A 15C

15B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 15C 150 5E 3A 15B

20A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 20A 20 10B 4A 20E

20B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 20B 20 10B 4A 20E
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Table 1. The Conjugacy Classes of Ḡ (continued)

[g]G k fj mj dj w [djg]G |CG(djg)| 2 3 5 13 7→M
24A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24A 72 12B 8B 12F

24B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24B 72 12B 8B 24J

24C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24C 72 12D 8B 24J

24D 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24D 72 12D 8B 24J

24E 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24E 72 12C 8B 24J

24F 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24F 72 12C 8B 24J

24G 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24G 72 12E 8B 24J

24H 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 24H 72 12E 8B 24J

26A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 26A 78 13C 2A 26B

26B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 26B 78 13A 2A 26B

26C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 26C 78 13B 2A 26B

30A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 30A 150 15A 10B 6A 30A

30B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 30B 150 15B 10C 6A 30D

39A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39A 78 13C 3A 39C

39B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39B 78 13C 3A 39D

39C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39C 78 13A 3A 39C

39D 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39D 78 13A 3A 39D

39E 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39E 78 13B 3A 39C

39F 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 39F 78 13B 3A 39D

78A 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78A 78 39E 26C 6A 78B

78B 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78B 78 39F 26C 6A 78C

78C 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78C 78 39A 26A 6A 78B

78D 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78D 78 39B 26A 6A 78C

78E 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78E 78 39C 26B 6A 78B

78F 1 1 625 (0, 0, 0, 0) (0, 0, 0, 0) 78F 78 39D 26B 6A 78C

4. Inertia factor groups of G

We have already seen in the Introduction of this paper, that the orbit stabilizers
(the so-called inertia factors) of the action of G on Irr(N) are two groups of the
form H1 = G and H2 = 52:S3. The inertia factor H2 =< α1, α2 > is generated
from elements α1 ∈ 2B and α2 ∈ 10C (see Figure 3) in the conjugacy classes
2B and 10C of G.

The fusion maps of the conjugacy classes of H2 into G are shown in Table 2
and will be used in the construction of the Fischer-Clifford matrices and ordinary
character table of G.
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α1 =


1 0 0 0
0 1 0 0
2 0 4 0
0 2 0 4

, α2 =


1 0 0 0
4 3 2 4
2 0 4 0
4 3 1 2


Figure 3: Generators of H2

Table 2: The fusion of H2 into G
[h]H2 −→ [g](3×2L2(25)):22 [h]H2 −→ [g](3×2L2(25)):22

1A 1A 5E 5B
2A 2B 5F 5B
3A 3C 10A 10C
5A 5A 10B 10D
5B 5A 10C 10C
5C 5B 10D 10D
5D 5B

5. The Fischer-matrices of G

In this section, the Fischer-Clifford matrices of the group G are going to be
obtained by using a GAP routine, Programme D in [3] and [4]. This routine
gives a possible candidate for a Fischer-Clifford matrixM(g) and then the prop-
erties of Fischer-Clifford matrices (see [2], [14]) are used to rearrange the rows
and columns in order to get the unique matrix M(g) corresponding to a class
representative g ∈ G. A brief outline of the theory behind the development of
Programme D, as found in [9] and [14], is given first.

We restrict our discussion to a split extension S = pn:Q, with pn an elemen-
tary abelian p-group. For a class representative q ∈ Q, it can be shown that
the map ϕq:p

n −→ pn, defined by ϕq(n) = nqn−1q−1, is an endomorphism of
pn. The image I = Im(ϕq) and kernel ker(ϕq) are Cq-sub-modules of pn, where
Cq = pn:CQ(q) is the stabilizer of the coset pnq. The actions of pn by conjuga-
tion on pnq and that of I by left multiplication result in the same number k of
orbits. It follows that the action of Cq on the k orbits of pn on pnq is the same
as the action of Cq on the module pn/I ∼= ker(ϕq). Therefore, we can identify
the k orbits of the action of I on pnq with the k elements of pn/I. Since pn is an
elementary abelian p-group, I and ker(ϕq) are also elementary abelian p-groups
and it follows that the index of I in pn is [pn:I] = k. Instead of acting Cq on the
k orbits, the centralizer CQ(q) of q in Q is used. With the above discussion and
notation and more details in [9], the following theorem is formulated.

Theorem 5.1. A Fischer-Clifford matrix M(q) of a split extension S = pn:Q,
corresponding to a class representative q ∈ Q, is a matrix of orbit sums of
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Cq acting on the rows of the ordinary character table of pn/I with duplicating
columns discarded.

Corollary 5.1. If q = 1Q, then I = Im(ϕq) = 1pn and the Fischer-Clifford
matrix M(1Q) is the matrix of orbit sums of Cq = S acting on the rows of the
ordinary character table of pn/I = pn with duplicating columns discarded.

The following GAP routine, which is based on the above theoretical discus-
sion, is taken from Programme D in [3] and can compute a candidate FM for a
Fischer-Clifford matrix M(q) of S = pn:Q.

C:=List(ConjugacyClasses(G),Representative);; M:=[];;
g:=C[i];; for n in N do

Add(M, n*g*Inverse(n)*Inverse(g));; od;

M:=AsGroup(M);; cent:=Centralizer(G, g);

I:=Irr(N);; IM:=[];; for i in [1..Size(I)] do

if IsSubgroup(Kernel(I[i]), M) then Add(IM,I[i]);

fi; od; oo:=Orbits(cent,IM);; FM:=[];;

for i in [1..Size(oo)] do

Append(FM,[AsList(Sum(oo[i]))]);od;

M1:=TransposedMat(FM);;

M2:=AsDuplicateFreeList(M1);;

FM:=TransposedMat(M2);; Display(FM)

As an example, consider the conjugacy class 5B of G. By making use of Theorem
5.2.4 and property (e) in [12],M(5B) has the following form with corresponding
weights attached to the rows and columns,

|CG(5E)| |CG(5F )| |CG(5G)| |CG(5H)| |CG(5I)|
7500 1250 1250 1250 1250


|CH1

(5B)|= 300 1 1 1 1 1
|CH2

(5C)|= 50 6 g h i j
|CH2

(5D)|= 50 6 l m n o
|CH2

(5E)|= 50 6 q r s t
|CH2(5F )|= 50 6 v w x y

mj 25 150 150 150 150

.

To determine the unknown entriesM(5B), the above GAP routine gives the
candidate FM,
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M(5B) =


1 1 1 1 1
6 A∗ A B∗ B
6 A A∗ B B∗

6 B∗ B A A∗

6 B B∗ A∗ A


where A = 1−

√
5 and B = (−3−

√
5)/2.

From the p-power maps of G in Table 1, we have that (10I)2 = 5F , (10H)2 =
5G, (10E)2 = 5H and (10F )2 = 5I. Thus, for any χ ∈ Irr(G), the congruent
relations χ(5F ) ≡ χ(10I) (mod 2), χ(5G) ≡ χ(10H) (mod 2), χ(5H) ≡ χ(10E)
(mod 2) and χ(5I) ≡ χ(10F ) (mod 2) must be satisfied. Checking the validity of
these relations for the parts of the ordinary character tables of G corresponding
to M(10C), M(10D) and the candidate FM for M(5B), the rows of FM are
rearranged to find the desired Fischer-Clifford matrixM(5B) ofG (see Figure 4).

M(5B) =


1 1 1 1 1
6 A∗ A B∗ B
6 B B∗ A∗ A
6 A A∗ B B∗

6 B∗ B A A∗



Figure 4: Fischer-Clifford matrix M(5B)

Only the Fischer-matrices M(5B), M(10C) and M(10D) were computed
with the aid of the above GAP routine. The rest of the Fischer-Clifford ma-
trices of G were computed manually. The above GAP routine comes in very
handy when some entries of the Fischer-Clifford matrices are algebraic integers
which are not integers. If there are considerately many inertia factors Hi for the
action of a split extension S = pn:Q on Irr(pn), the Fischer-Clifford matrices
can become very large. Consequently, to compute the desired Fischer-Clifford
matrices of S, it is necessary also to use other techniques such as restriction of
ordinary characters of the parent group of S to the ordinary irreducible charac-
ters of S together with the GAP routine. However, when the group S becomes
too large, the computational power to use the GAP routine becomes difficult.
We have then to resort to other methods, if possible, to compute the Fischer-
Clifford matrices. The Fischer-Clifford matrices of G have sizes ranging from 1
to 5 and are contained in Table 3.
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Table 3: The Fischer-Clifford Matrices of G
M(g) M(g)

M(1A) =

(
1 1

624 −1

)
M(2B) =

(
1 1
24 −1

)

M(3C) =

(
1 1
24 −1

)
M(5A) =

 1 1 1
12 −3 2
12 2 −3



M(5B) =


1 1 1 1 1
6 A∗ A B∗ B
6 B B∗ A∗ A
6 A A∗ B B∗

6 B∗ B A A∗

 M(10C) =

1 1 1
2 C C∗

2 C∗ C



M(10D) =

1 1 1
2 C C∗

2 C∗ C

 M(gi) =
(
1
)
, ∀gi /∈ {1A, 2B, 3C, 5A, 5B, 10C, 10D}

where A = 1−
√
5, B = (−3−

√
5)/2, C = (−1−

√
5)/2

6. The character table of G and fusion into the Monster M

With all the necessary information obtained in the previous sections, the ordi-
nary character table of G can now be constructed by the technique of Fischer-
Clifford matrices as discussed in Section 2. The character table (see Table 4) is
a 70× 70 C−valued matrix partitioned row-wise into two blocks △1 = {χi|1 ≤
i ≤ 57} and △2 = {χi|58 ≤ i ≤ 70}, where χi ∈ Irr(G) = ∪2i=1△i. Note that
each block corresponds to an inertia group H i = 54:Hi. Checks for consistency
and accuracy of the character table obtained have been carried out with the
GAP routine, Programme C [20].

Unique p-power maps for the elements of G are obtained for our Table 4
using Programme C, which coincide with the p-power maps in Table 1. Using the
power maps of G and M, the permutation character χ(M|G) of M on the classes
of G which was computed directly by GAP, we obtained partial fusion from the
classes of G into M. To complete the fusion map from G to M, the technique of
set intersections [14] was used to restrict ordinary irreducible characters of M of
small degrees to G. For example, the character 196883a ∈ Irr(M) will restrict
to G as (196883a)G = 13c+24a+26cef +52acjk+624a+4(624b)+5(1248a)+
5(1872a) + 7(1872b) + 5(1872c) + 7(1872d) + 5(1872e) + 7(1872f) + 5(1872g) +
7(1872h) + 13(3744a) + 13(3744b). The fusion map of the classes of G into the
classes of M is found in the last column of Table 1.
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Table 4: The Character Table of G
[g]G 1A 2A 2B 3A 3B 3C 4A 4B 5A 5B
[x]G 1A 5A 2A 2B 10A 3A 3B 3C 15A 4A 4B 5B 5C 5D 5E 5F 5G 5H 5I
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1
χ3 2 2 2 0 0 -1 2 -1 -1 0 2 2 2 2 2 2 2 2 2
χ4 12 12 -12 0 0 12 0 0 0 0 0 -3 -3 -3 2 2 2 2 2
χ5 12 12 -12 0 0 12 0 0 0 0 0 -3 -3 -3 2 2 2 2 2
χ6 12 12 -12 0 0 12 0 0 0 0 0 2 2 2 -3 -3 -3 -3 -3
χ7 12 12 -12 0 0 12 0 0 0 0 0 2 2 2 -3 -3 -3 -3 -3
χ8 13 13 13 -1 -1 13 1 1 1 -5 1 -2 -2 -2 3 3 3 3 3
χ9 13 13 13 -5 -5 13 1 1 1 -1 1 3 3 3 -2 -2 -2 -2 -2
χ10 13 13 13 5 5 13 1 1 1 1 1 3 3 3 -2 -2 -2 -2 -2
χ11 13 13 13 1 1 13 1 1 1 5 1 -2 -2 -2 3 3 3 3 3
χ12 24 24 -24 0 0 -12 0 0 0 0 0 -6 -6 -6 4 4 4 4 4
χ13 24 24 -24 0 0 -12 0 0 0 0 0 4 4 4 -6 -6 -6 -6 -6
χ14 25 25 25 -5 -5 25 1 1 1 -5 1 0 0 0 0 0 0 0 0
χ15 25 25 25 5 5 25 1 1 1 5 1 0 0 0 0 0 0 0 0
χ16 26 26 26 0 0 -13 2 -1 -1 0 2 6 6 6 -4 -4 -4 -4 -4
χ17 26 26 26 0 0 -13 2 -1 -1 0 2 -4 -4 -4 6 6 6 6 6
χ18 26 26 26 6 6 26 2 2 2 -6 -2 1 1 1 1 1 1 1 1
χ19 26 26 26 -6 -6 26 2 2 2 6 -2 1 1 1 1 1 1 1 1
χ20 26 26 26 -4 -4 26 -1 -1 -1 -4 2 1 1 1 1 1 1 1 1
χ21 26 26 26 4 4 26 -1 -1 -1 -4 2 1 1 1 1 1 1 1 1
χ22 26 26 26 -4 -4 26 -1 -1 -1 4 2 1 1 1 1 1 1 1 1
χ23 26 26 26 4 4 26 -1 -1 -1 4 2 1 1 1 1 1 1 1 1
χ24 48 48 48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ25 48 48 48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ26 48 48 48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ27 48 48 -48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ28 48 48 -48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ29 48 48 -48 0 0 48 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ30 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ31 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ32 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ33 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ34 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ35 48 48 -48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ36 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ37 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ38 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ39 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ40 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ41 48 48 48 0 0 -24 0 0 0 0 0 -2 -2 -2 -2 -2 -2 -2 -2
χ42 50 50 50 0 0 -25 2 -1 -1 0 2 0 0 0 0 0 0 0 0
χ43 52 52 52 0 0 -26 4 -2 -2 0 -4 2 2 2 2 2 2 2 2
χ44 52 52 -52 0 0 52 4 4 4 0 0 2 2 2 2 2 2 2 2
χ45 52 52 52 0 0 52 -2 -2 -2 0 -4 2 2 2 2 2 2 2 2
χ46 52 52 52 0 0 -26 -2 1 1 0 4 2 2 2 2 2 2 2 2
χ47 52 52 52 0 0 -26 -2 1 1 0 4 2 2 2 2 2 2 2 2
χ48 52 52 -52 0 0 -26 4 -2 -2 0 0 2 2 2 2 2 2 2 2
χ49 52 52 -52 0 0 -26 4 -2 -2 0 0 2 2 2 2 2 2 2 2
χ50 52 52 -52 0 0 52 -2 -2 -2 0 0 2 2 2 2 2 2 2 2
χ51 52 52 -52 0 0 52 -2 -2 -2 0 0 2 2 2 2 2 2 2 2
χ52 52 52 52 0 0 -26 -2 1 1 0 -4 2 2 2 2 2 2 2 2
χ53 52 52 52 0 0 -26 -2 1 1 0 -4 2 2 2 2 2 2 2 2
χ54 52 52 -52 0 0 -26 -2 1 1 0 0 2 2 2 2 2 2 2 2
χ55 52 52 -52 0 0 -26 -2 1 1 0 0 2 2 2 2 2 2 2 2
χ56 52 52 -52 0 0 -26 -2 1 1 0 0 2 2 2 2 2 2 2 2
χ57 52 52 -52 0 0 -26 -2 1 1 0 0 2 2 2 2 2 2 2 2
χ58 624 -1 0 24 -1 0 0 24 -1 0 0 24 -1 -1 24 -1 -1 -1 -1
χ59 624 -1 0 -24 1 0 0 24 -1 0 0 24 -1 -1 24 -1 -1 -1 -1
χ60 1248 -2 0 0 0 0 0 -24 1 0 0 48 -2 -2 48 -2 -2 -2 -2
χ61 1872 -3 0 -24 1 0 0 0 0 0 0 12 A *A -18 C C D D
χ62 1872 -3 0 -24 1 0 0 0 0 0 0 12 *A A -18 D D C C
χ63 1872 -3 0 -24 1 0 0 0 0 0 0 12 A *A -18 C C D D
χ64 1872 -3 0 -24 1 0 0 0 0 0 0 12 *A A -18 D D C C
χ65 1872 -3 0 24 -1 0 0 0 0 0 0 12 A *A -18 C C D D
χ66 1872 -3 0 24 -1 0 0 0 0 0 0 12 *A A -18 D D C C
χ67 1872 -3 0 24 -1 0 0 0 0 0 0 12 A *A -18 C C D D
χ68 1872 -3 0 24 -1 0 0 0 0 0 0 12 *A A -18 D D C C
χ69 3744 -6 0 0 0 0 0 0 0 0 0 -36 B *B 24 E E *E *E
χ70 3744 -6 0 0 0 0 0 0 0 0 0 -36 -*B B 24 *E *E E E

where A=−1−5
√
5

2
, B= 3+5

√
5

2
, C=−7E(5)− 2E(5)2 + 3E(5)3 + 3E(5)4,

D=3E(5)− 7E(5)2 + 3E(5)3 − 2E(5)4, E=−1− 5
√
5
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Table 4: The Character Table of G (continued)
[g]G 6A 6B 6C 6D 8A 8B 10A 10B 10C 10D 12A 12B 12C 12D 12E
[x]G 6A 6B 6C 6D 8A 8B 10B 10C 10D 10E 10F 10G 10H 10I 12A 12B 12C 12D 12E
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
χ3 -1 2 -1 0 0 2 2 2 0 0 0 0 0 0 0 -1 -1 -1 2
χ4 -12 0 0 0 0 0 3 -2 0 0 0 0 0 0 0 0 0 0 0
χ5 -12 0 0 0 0 0 3 -2 0 0 0 0 0 0 0 0 0 0 0
χ6 -12 0 0 0 0 0 -2 3 F F F -F -F -F 0 0 0 0 0
χ7 -12 0 0 0 0 0 -2 3 -F -F -F F F F 0 0 0 0 0
χ8 13 1 1 -1 1 -1 -2 3 -1 -1 -1 -1 -1 -1 1 1 1 1 1
χ9 13 1 1 1 1 -1 3 -2 0 0 0 0 0 0 -1 1 1 1 1
χ10 13 1 1 -1 -1 -1 3 -2 0 0 0 0 0 0 1 1 1 1 1
χ11 13 1 1 1 -1 -1 -2 3 1 1 1 1 1 1 -1 1 1 1 1
χ12 12 0 0 0 0 0 6 -4 0 0 0 0 0 0 0 0 0 0 0
χ13 12 0 0 0 0 0 -4 6 0 0 0 0 0 0 0 0 0 0 0
χ14 25 1 1 1 -1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
χ15 25 1 1 -1 1 1 0 0 0 0 0 0 0 0 -1 1 1 1 1
χ16 -13 2 -1 0 0 -2 6 -4 0 0 0 0 0 0 0 -1 -1 -1 2
χ17 -13 2 -1 0 0 -2 -4 6 0 0 0 0 0 0 0 -1 -1 -1 2
χ18 26 2 2 0 0 0 1 1 1 1 1 1 1 1 0 -2 -2 -2 -2
χ19 26 2 2 0 0 0 1 1 -1 -1 -1 -1 -1 -1 0 -2 -2 -2 -2
χ20 26 -1 -1 -1 0 2 1 1 1 1 1 1 1 1 -1 2 -1 -1 -1
χ21 26 -1 -1 1 0 -2 1 1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1
χ22 26 -1 -1 -1 0 -2 1 1 1 1 1 1 1 1 1 2 -1 -1 -1
χ23 26 -1 -1 1 0 2 1 1 -1 -1 -1 -1 -1 -1 1 2 -1 -1 -1
χ24 48 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ25 48 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ26 48 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ27 -48 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ28 -48 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ29 -48 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ30 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ31 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ32 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ33 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ34 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ35 24 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
χ36 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ37 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ38 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ39 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ40 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ41 -24 0 0 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ42 -25 2 -1 0 0 2 0 0 0 0 0 0 0 0 0 -1 -1 -1 2
χ43 -26 4 -2 0 0 0 2 2 0 0 0 0 0 0 0 2 2 2 -4
χ44 -52 -4 -4 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ45 52 -2 -2 0 0 0 2 2 0 0 0 0 0 0 0 -4 2 2 2
χ46 -26 -2 1 0 0 -4 2 2 0 0 0 0 0 0 0 -2 1 1 -2
χ47 -26 -2 1 0 0 4 2 2 0 0 0 0 0 0 0 -2 1 1 -2
χ48 26 -4 2 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ49 26 -4 2 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ50 -52 2 2 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ51 -52 2 2 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0
χ52 26 -2 1 0 0 0 2 2 0 0 0 0 0 0 0 2 -1 -1 2
χ53 -26 -2 1 0 0 0 2 2 0 0 0 0 0 0 0 2 -1 -1 2
χ54 26 2 -1 0 0 0 -2 -2 0 0 0 0 0 0 0 0 J -J 0
χ55 26 2 -1 0 0 0 -2 -2 0 0 0 0 0 0 0 0 J -J 0
χ56 26 2 -1 0 0 0 -2 -2 0 0 0 0 0 0 0 0 -J J 0
χ57 26 2 -1 0 0 0 -2 -2 0 0 0 0 0 0 0 0 -J J 0
χ58 0 0 0 0 0 0 0 0 4 -1 -1 4 -1 -1 0 0 0 0 0
χ59 0 0 0 0 0 0 0 0 -4 1 1 -4 1 1 0 0 0 0 0
χ60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ61 0 0 0 0 0 0 0 0 G H H *G I I 0 0 0 0 0
χ62 0 0 0 0 0 0 0 0 *G I I G H H 0 0 0 0 0
χ63 0 0 0 0 0 0 0 0 G H H *G I I 0 0 0 0 0
χ64 0 0 0 0 0 0 0 0 *G I I G H H 0 0 0 0 0
χ65 0 0 0 0 0 0 0 0 -G -H -H -*G -I -I 0 0 0 0 0
χ66 0 0 0 0 0 0 0 0 -*G -I -I -G -H -H 0 0 0 0 0
χ67 0 0 0 0 0 0 0 0 -G -H -H -*G -I -I 0 0 0 0 0
χ68 0 0 0 0 0 0 0 0 -*G -I -I -G -H -H 0 0 0 0 0
χ69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

where F=−
√
5, G=1 +

√
5, H=−E(5) + E(5)2 + E(5)4,

I=−E(5)2 + E(5)3 + E(5)4, J = −3E(4)
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Table 4: The Character Table of G (continued)
[g]G 13A 13B 13C 15A 15B 20A 20B 24A 24B 24C 24D 24E 24F 24G 24H
[x]G 13A 13B 13C 15A 15B 20A 20B 24A 24B 24C 24D 24E 24F 24G 24H
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1
χ3 2 2 2 -1 -1 0 0 -1 -1 -1 -1 -1 -1 2 2
χ4 -1 -1 -1 -3 2 N -N 0 0 0 0 0 0 0 0
χ5 -1 -1 -1 -3 2 -N N 0 0 0 0 0 0 0 0
χ6 -1 -1 -1 2 -3 0 0 0 0 0 0 0 0 0 0
χ7 -1 -1 -1 2 -3 0 0 0 0 0 0 0 0 0 0
χ8 0 0 0 -2 3 0 0 -1 -1 -1 -1 -1 -1 -1 -1
χ9 0 0 0 3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ10 0 0 0 3 -2 1 1 -1 -1 -1 -1 -1 -1 -1 -1
χ11 0 0 0 -2 3 0 0 -1 -1 -1 -1 -1 -1 -1 -1
χ12 -2 -2 -2 3 -2 0 0 0 0 0 0 0 0 0 0
χ13 -2 -2 -2 -2 3 0 0 0 0 0 0 0 0 0 0
χ14 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 1 1
χ15 -1 -1 -1 0 0 0 0 1 1 1 1 1 1 1 1
χ16 0 0 0 -3 2 0 0 1 1 1 1 1 1 -2 -2
χ17 0 0 0 2 -3 0 0 1 1 1 1 1 1 -2 -2
χ18 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0
χ19 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
χ20 0 0 0 1 1 1 1 2 2 -1 -1 -1 -1 -1 -1
χ21 0 0 0 1 1 1 1 -2 -2 1 1 1 1 1 1
χ22 0 0 0 1 1 -1 -1 -2 -2 1 1 1 1 1 1
χ23 0 0 0 1 1 -1 -1 2 2 -1 -1 -1 -1 -1 -1
χ24 K M L -2 -2 0 0 0 0 0 0 0 0 0 0
χ25 L K M -2 -2 0 0 0 0 0 0 0 0 0 0
χ26 M L K -2 -2 0 0 0 0 0 0 0 0 0 0
χ27 K M L -2 -2 0 0 0 0 0 0 0 0 0 0
χ28 L K M -2 -2 0 0 0 0 0 0 0 0 0 0
χ29 M L K -2 -2 0 0 0 0 0 0 0 0 0 0
χ30 K M L 1 1 0 0 0 0 0 0 0 0 0 0
χ31 L K M 1 1 0 0 0 0 0 0 0 0 0 0
χ32 M L K 1 1 0 0 0 0 0 0 0 0 0 0
χ33 M L K 1 1 0 0 0 0 0 0 0 0 0 0
χ34 K M L 1 1 0 0 0 0 0 0 0 0 0 0
χ35 L K M 1 1 0 0 0 0 0 0 0 0 0 0
χ36 K M L 1 1 0 0 0 0 0 0 0 0 0 0
χ37 L K M 1 1 0 0 0 0 0 0 0 0 0 0
χ38 M L K 1 1 0 0 0 0 0 0 0 0 0 0
χ39 M L K 1 1 0 0 0 0 0 0 0 0 0 0
χ40 K M L 1 1 0 0 0 0 0 0 0 0 0 0
χ41 L K M 1 1 0 0 0 0 0 0 0 0 0 0
χ42 -2 -2 -2 0 0 0 0 -1 -1 -1 -1 -1 -1 2 2
χ43 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0
χ44 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
χ45 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0
χ46 0 0 0 -1 -1 0 0 2 2 -1 -1 -1 -1 2 2
χ47 0 0 0 -1 -1 0 0 -2 -2 1 1 1 1 -2 -2
χ48 0 0 0 -1 -1 0 0 R -R R -R R -R 0 0
χ49 0 0 0 -1 -1 0 0 -R R -R R -R R 0 0
χ50 0 0 0 2 2 0 0 0 0 S -S S -S S -S
χ51 0 0 0 2 2 0 0 0 0 -S S -S S -S S
χ52 0 0 0 -1 -1 0 0 0 0 J J -J -J 0 0
χ53 0 0 0 -1 -1 0 0 0 0 -J -J J J 0 0
χ54 0 0 0 -1 -1 0 0 R -R T -T T -T S -S
χ55 0 0 0 -1 -1 0 0 -R R -T T -T T -S S
χ56 0 0 0 -1 -1 0 0 R -R -T T -T T -S S
χ57 0 0 0 -1 -1 0 0 -R R T -T T -T S -S
χ58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

where K=−E(13)4 − E(13)6 − E(13)7 − E(13)9, L=−E(13)− E(13)5 − E(13)8 − E(13)12,

M=−E(13)2 − E(13)3 − E(13)10 − E(13)11, R=−
√
6i, S=−

√
6, T=E(24)− E(24)17
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Table 4: The Character Table of G (continued)
[g]G 26A 26B 26C 30A 30B 39A 39B 39C 39D 39E 39F 78A 78B 78C 78D 78E 78F
[x]G 26A 26B 26C 30A 30B 39A 39B 39C 39D 39E 39F 78A 78B 78C 78D 78E 78F
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ3 2 2 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ4 1 1 1 3 -2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
χ5 1 1 1 3 -2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
χ6 1 1 1 -2 3 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
χ7 1 1 1 -2 3 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
χ8 0 0 0 -2 3 0 0 0 0 0 0 0 0 0 0 0 0
χ9 0 0 0 3 -2 0 0 0 0 0 0 0 0 0 0 0 0
χ10 0 0 0 3 -2 0 0 0 0 0 0 0 0 0 0 0 0
χ11 0 0 0 -2 3 0 0 0 0 0 0 0 0 0 0 0 0
χ12 2 2 2 -3 2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
χ13 2 2 2 2 -3 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
χ14 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ15 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
χ16 0 0 0 -3 2 0 0 0 0 0 0 0 0 0 0 0 0
χ17 0 0 0 2 -3 0 0 0 0 0 0 0 0 0 0 0 0
χ18 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ19 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ20 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ21 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ22 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ23 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ24 K M L -2 -2 K K M M L L K K M M L L
χ25 L K M -2 -2 L L K K M M L L K K M M
χ26 M L K -2 -2 M M L L K K M M L L K K
χ27 -K -M -L 2 2 K K M M L L -K -K -M -M -L -L
χ28 -L -K -M 2 2 L L K K M M -L -L -K -K -M -M
χ29 -M -L -K 2 2 M M L L K K -M -M -L -L -K -K
χ30 -K -M -L -1 -1 O O Q Q P P -O -O -Q -Q -P -P
χ31 -L -K -M -1 -1 P P O O Q Q -P -P -O -O -Q -Q
χ32 -M -L -K -1 -1 Q Q P P O O -Q -Q -P -P -O -O
χ33 -M -L -K -1 -1 Q Q P P O O -Q -Q -P -P -O -O
χ34 -K -M -L -1 -1 O O Q Q P P -O -O -Q -Q -P -P
χ35 -L -K -M -1 -1 P P O O Q Q -P -P -O -O -Q -Q
χ36 K M L 1 1 O O Q Q P P O O Q Q P P
χ37 L K M 1 1 P P O O Q Q P P O O Q Q
χ38 M L K 1 1 Q Q P P O O Q Q P P O O
χ39 M L K 1 1 Q Q P P O O Q Q P P O O
χ40 K M L 1 1 O O Q Q P P O O Q Q P P
χ41 L K M 1 1 P P O O Q Q P P O O Q Q
χ42 -2 -2 -2 0 0 1 1 1 1 1 1 1 1 1 1 1 1
χ43 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ44 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0
χ45 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0
χ46 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ47 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ48 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ49 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ50 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0
χ51 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0
χ52 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ53 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
χ54 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ55 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ56 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ57 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
χ58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
χ70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
where K=−E(13)4 − E(13)6 − E(13)7 − E(13)9, L=−E(13)− E(13)5 − E(13)8 − E(13)12,
M=−E(13)2 − E(13)3 − E(13)10 − E(13)11, O=−E(39)− E(39)5 − E(39)8 − E(39)25,
P=−E(39)2 − E(39)10 − E(39)11 − E(39)16,Q=−E(39)4 − E(39)20 − E(39)22 − E(39)32
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Recinto Emilio Prud’homme

Los Pepines, Santiago de Los caballeros

República Dominicana

luis.vasquez@isfodosu.edu.do

Abstract. In this paper the notions of I-e-open set and I-e∗-open set are introduced
and used to define a large number of modifications of the concept of continuous func-
tion, such as (I, J)-e-continuous functions, (I, J)-e∗-continuous functions, contra (I, J)-
e-continuous functions, contra (I, J)-e∗-continuous functions, almost weakly (I, J)-
e-continuous functions, almost weakly (I, J)-e∗-continuous functions, almost (I, J)-

*. Corresponding author



A NOTE ON (I, J)-e-CONTINUOUS AND (I, J)-e∗-CONTINUOUS FUNCTIONS 835

e-continuous functions, almost (I, J)-e∗-continuous functions, almost contra (I, J)-e-
continuous functions and almost contra (I, J)-e∗-continuous functions. Also, several
characterizations of these new classes of functions are given and finally relations be-
tween them are investigated.

Keywords: topological ideal, (I, J)-e-continuous functions, (I, J)-e∗-continuous func-
tions, contra (I, J)-e-continuous functions, almost contra (I, J)-e∗-continuous functions.

1. Introduction

In 2008, E. Ekici [10] introduced a new class of generalized open sets in a topo-
logical space called e-open sets and, in 2009, [11] introduced a new generalization
of open sets called e∗-open sets. Also, [5], [6], [7], [8], [9], [17] studied another
generalized forms of open sets using e-open sets and e∗-open sets. Currently us-
ing the notion of topological ideal, different types of continuous functions have
been introduced and studied. The concept of ideal topological spaces has been
introduced and studied by Kuratowski [13] and the local function of a subset A
of a topological space (X, τ) was introduced by Vaidyanathaswamy [16] as fol-
lows: given a topological space (X, τ) with an ideal I on X and P (X) the set of
all subsets of X, a set operator (.)∗ : P (X) → P (X), defined for each A ⊆ X, as
A∗(τ, I) = {x ∈ X / U∩A /∈ I for every U ∈ τx}, where τx = {U ∈ τ : x ∈ U}, is
called the local function of A with respect to τ and I. A Kuratowski closure op-
erator cl∗(·) for a topology τ∗(τ, I) called the ∗-topology, finer than τ , is defined
by cl∗(A) = A∪A∗(τ, I). We will denote A∗(τ, I) by A∗ and τ∗(τ, I) by τ∗. Note
that when I = {∅}, (respectively, I = P(X)) A∗ = cl(A) (respectively, A∗ = ∅).
In 1990, Jankovic and Hamlett [12] introduced the notion of I-open set in a topo-
logical space (X, τ) with an ideal I on X. In 2018, Rosas et al. [15] introduced,
studied and investigated the (I, J)-continuous functions and its relations with
another functions and, in this same direction, Al-Omeri and Noiri (see [1], [2] [3])
introduced several modifications of continuity that have served as inspiration for
other researchers to focus their attention on this topic. Motivated by this, we
introduce the notions of I-e-open set and I-e∗-open set in an ideal topological
spaces, and using these notions, we define and study a large number of modifi-
cations of the concept of continuous function, such as (I, J)-e-continuous func-
tions, (I, J)-e∗-continuous functions, contra (I, J)-e-continuous functions, con-
tra (I, J)-e∗-continuous functions, almost weakly (I, J)-e-continuous functions,
almost weakly (I, J)-e∗-continuous functions, almost (I, J)-e-continuous func-
tions, almost (I, J)-e∗-continuous functions, almost contra (I, J)-e-continuous
functions and almost contra (I, J)-e∗-continuous functions. Finally, we give sev-
eral characterizations of these new classes of functions and we investigate some
relations between them.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) always mean
topological spaces in which no separation axioms are assumed, unless explicitly
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stated. If I is an ideal on X, (X, τ, I) mean an ideal topological space. For a
subset A of (X, τ), Cl(A) and int(A) denote the closure of A with respect to τ
and the interior of A with respect to τ , respectively. A subset S of (X, τ, I) is an
I-open [12], if S ⊆ int(S∗). The complement of an I-open set is called I-closed
set. In the case that I = {∅} (respectively, I = P (X),) the I-open sets form the
collection of all preopen sets of X (respectively, the only I-open set is ∅ ). The
I-closure and the I-interior of a subset A ofX, denoted by I-Cl(A) and I-int(A),
respectively, can be defined in the same way as Cl(A) and int(A), respectively.
The family of all I-open (resp. I-closed) subsets of a (X, τ, I), denoted by
IO(X)(resp. IC(X)). We set IO(X,x) = {A : A ∈ IO(X) and x ∈ A}. It
is well known that in an ideal topological space (X, τ, I), the I-Cl(A) is an I-
closed set and I-int(A) is an I-open set and then, the following two results are
immediate, using the notions of I-closure and I-interior.

Theorem 2.1. Let (X, τ, I) be an ideal topological space, A ⊆ X and x ∈ X.
x ∈ I-Cl(A) if and only if U ∩A ̸= ∅ for all U ∈ IO(X,x).

Theorem 2.2. Let (X, τ, I) be an ideal topological space and A,B subsets of
X. Then, the following conditions hold:

1. I-int(X \A) = X \ I-Cl(A).

2. I-Cl(X \A) = X \ I-int(A).

3. A ⊆ B ⇒ I-Cl(A) ⊆ I-Cl(B).

4. A ⊆ B ⇒ I-int(A) ⊆ I-int(B).

5. I-Cl(A) ∪ I-Cl(B) ⊆ I-Cl(A ∪B).

6. I-int(A ∩B ⊆ I-int(A ∩B).

Definition 2.3 ([14]). Let (X, τ, I) be an ideal topological space. A ⊆ X is said
to be:

1. I-regular open if A = I-int(I-Cl(A));

2. I-semiopen if A ⊆ I-Cl(I-int(A));

3. I-preopen if A ⊆ I-int(I-Cl(A)).

The class of I-regular open (resp.,I-semiopen, I-preopen) sets in X, is de-
noted by IRO(X) (resp., ISO(X), IPO(X)). The complement of an I-regular
open set is called an I-regular closed set and the class of this sets is denoted by
IRC(X). The complement of an I-semiopen set is called an I-semiclosed set
and the family of this sets is denoted by ISC(X). Similarly, the complement of
an I-preopen set is called an I-preclosed set and the class of this sets is denoted
by IPC(X).
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Definition 2.4 ([18]). Let (X, τ, I) be an ideal topological space and A ⊆ X:

1. A subset A of X is said to be I-δ-open if for each x ∈ A, there exists an
I-regular open set G such that x ∈ G ⊆ A.

2. A point x ∈ X is called an I-δ-cluster point of A if I-int(I Cl(U))∩A ̸= ∅
for every I-open set U of X containing x.

The set of all I-δ-cluster point of A is called the I-δ-closure of A and is
denoted by I-δ-Cl(A). If I-δ-Cl(A) = A, A is said to be I-δ-closed. The set
{x ∈ X : x ∈ U ⊆ A for some I-regular open set U ⊆ X} is called I-δ-interior
of A and is denoted by I-δ-int(A). A is I-δ-open if I-δ-int(A) = A.

Theorem 2.5 ([18]). Let (X, τ, I) be an ideal topological space and A,B subsets
of X. Then, the following conditions hold:

1. if A ⊆ B then I-δ-int(A) ⊆ I-δ-int(B).

2. if A ⊆ B then I-δ-Cl(A) ⊆ I-δ-Cl(B).

3. I-δ-int(X \A) = X \ I-δ-Cl(A).

4. I-δ-Cl(X \A) = X \ I-δ-int(A).

5. I-δ-int(A) ⊆ I-int(A) ⊆ I-Cl(A) ⊆ I-δ-Cl(A).

3. Contra (I, J)-e-continuous functions and contra
(I, J)-e∗-continuous functions

In this section, we introduced and defined a notion of I-e-open sets and I-e∗-open
sets in order to define and characterize a new notions of continuous functions.

Definition 3.1. Let (X, τ, I) be an ideal topological space. A ⊆ X is said to be:

1. I-e-open set if A ⊆ I-Cl(I-δ-int(A)) ∪ I-int(I-δ-Cl(A)).

2. I-e∗-open set if A ⊆ I-Cl(I-int(I-δ-Cl(A))).

The complement of an I-e-open (respectively, I-e∗-open) set is called an I-
e-closed (respectively, I-e∗-closed) set. The family of all I-e-open (respectively,
I-e∗-open) sets is denoted by I-eO(X) (respectively, I-e∗O(X)).

Theorem 3.2. Let (X, τ, I) be an ideal topological space. The following condi-
tions hold:

1. the union of any collection of I-e-open sets is an I-e-open set.

2. the union of any collection of I-e∗-open sets is an I-e∗-open set.
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We define the I-e-closure (respectively, I-e-closure) of A ⊆ X denoted by I-e-
Cl(A) (respectively, I-e∗-Cl(A)) as the intersection of all I-e-closed (respectively,
I-e∗-closed) sets containing A. From the above A is I-e-closed (respectively, I-
e∗-closed) if A = I-e-Cl(A) (respectively, A = I-e∗-Cl(A)).

Theorem 3.3. Let (X, τ, I) be an ideal topological space. The following condi-
tions hold:

1. every I − δ-open is an I-e-open set, but not conversely.

2. every I-e-open set is an I-e∗-open set, but not conversely.

Proof. The proof follows directly from the definition.

Example 3.4. Let X = {a, b, c, d}, τ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c},
{a, c, d}} and I = {∅}. Then, we obtain that:
IO(X) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
IRO(X) = {∅, X, {c}, {a, b}},
I-δ-open set = {∅, X, {c}, {a, b}, {a, b, c}},
I-eO(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}},
I-e∗O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}}.

Now, it is easy to see that: {a, c} is an I-e-open but is not I-δ-open. In the
same form {a, d} is an I-e∗-open but is not I-e-open.

In a natural form, we define the (I, J)-e-continuous and (I, J)-e∗-continuous
functions.

Definition 3.5. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. (I, J)-e-continuous if f−1(U) is I-e-open for every J-open set U in Y ;

2. (I, J)-e∗-continuous if f−1(U) is I-e∗-open for every J-open set U in Y .

The characterization of (I, J)-e-continuous are very similar as the charac-
terization of (I, J)-continuous functions due in [15].

Definition 3.6. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. contra (I, J)-e-continuous if f−1(U) is I-e-closed for every J-open set U
in Y ;

2. contra (I, J)-e∗-continuous if f−1(U) is I-e∗-closed for every J-open set
U in Y .

Example 3.7. Let X = Y = {a, b, c, d}, τ = σ = {∅, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}} and I = J = {∅}. Then, we obtain that:

IO(Y ) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = a, f(b) = b, f(c) = d and
f(d) = c. It is easy to see that f is contra (I, J)-e-continuous.
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Example 3.8. Let X = Y = {a, b, c, d}, τ = σ = {∅, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}} and I = J = {∅}. Then, we obtain that:
IO(Y ) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}, I-e∗C(X) = {∅, X, {a},
{b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = a, f(b) = b, f(c) = d and
f(d) = c. It is easy to see that f is contra (I, J)-e∗-continuous.

Definition 3.9. Let (X, τ, I) be an ideal topological space and A ⊆ X. The
I-kernel of A, denoted by I-ker(A) is defined as the intersection of all I-open
sets that contains A, that is I-ker(A) = ∩{U : U ∈ IO(X), A ⊆ U}.

In a natural form as in topological spaces, we have the following result.

Theorem 3.10. Let (X, τ, I) be an ideal topological space, A ⊆ X and x ∈ X,
then:

1. x ∈ I-ker(A) if and only if A ∩ F ̸= ∅ for every I-closed set F containing
x;

2. A ⊆ I-ker(A) and A = I-ker(A) if A is an I-open set.

Using the above notion, we obtain the following characterizations of contra
(I, J)-e-continuous and contra (I, J)-e∗-continuous functions.

Theorem 3.11. For a function f : (X, τ, I) → (Y, σ, J), the following condi-
tions are equivalent:

1. f is contra (I, J)-e-continuous;

2. for each x ∈ X and each J-closed set F of Y containing f(x) there exists
U ∈ I-eO(X) such that f(U) ⊆ F ;

3. for each J-closed subset F of Y , f−1(F ) is an I-e-open set;

4. f(I-e-Cl(A)) ⊆ J-ker(f(A)) for all A ⊆ X;

5. I-e-Cl(f−1(B)) ⊆ f−1(J-ker(B)) for all B ⊆ Y .

Proof. (1) ⇒ (2). Let x ∈ X and F any J-closed set of Y containing f(x).
Then, Y \ F is a J-open set in Y and by hypothesis f−1(Y \ F ) = X \ f−1(F )
is I-e-closed in X, in consequence, f−1(F ) is an I-e-open. Taking U = f−1(F ),
x ∈ U and f(U) ⊆ F .

(2) ⇒ (3). Let F be any J-closed subset of Y . Consider x ∈ f−1(F ), then
f(x) ∈ F . By hypothesis, there exists U ∈ I-eO(X) such that f(U) ⊆ F . In
consequence, U ⊆ f−1(f(U)) ⊆ f−1(F ). It follows that f−1(F ) = ∪x∈f−1(F )U
and then by Theorem 3.2, f−1(F ) is an I-e-open set.

(3) ⇒ (4). Consider that for some subset A of X, y ∈ f(I-e-Cl(A)) but
y /∈ J-ker(f(A)). This implies that there exists a J-closed set F such that
y ∈ F and f(A) ∩ F = ∅. It follows that A ∩ f−1(F ) = ∅. Since F is a J-closed
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set, by hypothesis, f−1(F ) is an I-e-open set and then, I-e-Cl(A)∩f−1(F ) = ∅.
Since y ∈ f(I-e-Cl(A), then y = f(x) for some x ∈ I-e-Cl(A), since f(x) ∈ F ,
then x ∈ f−1(F ) and hence x ∈ I-e-Cl(A) ∩ f−1(F ), which is a contradiction.

(4) ⇒ (5). Let B be any subset of Y . By hypothesis, f(I-e-Cl(f−1(B)))
⊆ J-ker(B). Thus I-e-Cl(f−1(B)) ⊆ f−1(J-ker(B)) for all B ⊆ Y .

(5) ⇒ (1). Let V any J-open set of Y . By hypothesis, I-e-Cl(f−1(V )) ⊆
f−1(J-ker(V )) = f−1(V ). Follows that I-e-Cl(f−1(V )) = f−1(V ). Hence
f−1(V ) is an I-e-closed set in X.

Theorem 3.12. For a function f : (X, τ, I) → (Y, σ, J), the following condi-
tions are equivalent:

1. f is contra (I, J)-e∗-continuous;

2. for each J-closed subset F of Y , f−1(F ) is an I-e∗-open set;

3. for each x ∈ X and each J-closed set F of Y containing f(x) there exists
U ∈ I-e∗O(X) such that f(U) ⊆ F ;

4. f(I-e∗-Cl(A)) ⊆ J-ker(f(A)) for all A ⊆ X;

5. I-e∗-Cl(f−1(B)) ⊆ f−1(J-ker(B)) for all B ⊆ Y .

Proof. The proof is similar to that of Theorem 3.11.

Definition 3.13. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. almost weakly (I, J)-e-continuous at a point x ∈ X, if for each J-open set
V of Y containing f(x), there exists an I-e-open set U containing x such
that f(U) ⊆ J-Cl(V );

2. almost weakly (I, J)-e∗-continuous at a point x ∈ X, if for each J-open
set V of Y containing f(x), there exists an I-e∗-open set U containing x
such that f(U) ⊆ J-Cl(V ).

If f : (X, τ, I) → (Y, σ, J) is almost weakly (I, J)-e-continuous (respec-
tively, almost weakly (I, J)-e∗-continuous) at each point x ∈ X, then f is said
to be almost weakly (I, J)-e-continuous (respectively, almost weakly (I, J)-e∗-
continuous).

Theorem 3.14. For a function f : (X, τ, I) → (Y, σ, J), the following condi-
tions are satisfied:

1. If f is (I, J)-e-continuous function then f is almost weakly (I, J)-e-conti-
nuous;

2. If f is (I, J)-e∗-continuous function then f is almost weakly (I, J)-e∗-
continuous.
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Proof. The proof is a consequence of the Definition 3.13 and the notion of
J-closure of a set.

The following examples shows that the converse of Theorem 3.14 are not
necessarily true.

Example 3.15. As in Example 3.7. Then, we obtain that:
IO(X) = JO(Y ) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
I-eO(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = d, f(b) = a, f(c) = b and
f(d) = c. It is easy to see that f is almost weakly (I, J)-e-continuous but is not
(I, J)-e-continuous.

Example 3.16. Let X = Y = {a, b, c}, τ = σ = {∅, X, {b, c}}, I = J =
{∅, {b}}. Then, we obtain that:
JO(Y ) = {∅, Y, {c}, {a, c}, {b, c}},
I-e∗O(X) = {∅, X, {a}, {c}, {a, c}, {b, c}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = c, f(b) = a and f(c) = b.
It is easy to see that f is almost weakly (I, J)-e∗-continuous but is not (I, J)-
e∗-continuous.

Definition 3.17. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. almost (I, J)-e-continuous if and only if for each x ∈ X and each J-regular
open set V of Y containing f(x), there exists an I-e-open set U containing
x such that f(U) ⊆ V .

2. almost (I, J)-e∗-continuous if and only if for each x ∈ X and each J-
regular open set V of Y containing f(x), there exists an I-e∗-open set U
containing x such that f(U) ⊆ V .

Example 3.18. As in Example 3.7. Then, we obtain that:
IO(Y ) = {∅, Y, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
IRO(Y ) = {∅, Y, {c}, {a, b}},
I-eO(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}},
I-e∗O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = a, f(b) = b, f(c) = d and
f(d) = c. It is easy to see that f is not almost (I, J)-e-continuous.

Example 3.19. As in Example 3.7. Then, we obtain that:
IO(Y ) = {∅, Y, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
IRO(Y ) = {∅, Y, {c}, {a, b}},
I-eO(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}},
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I-e∗O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = d, f(b) = c, f(c) = b
and f(d) = a. It is easy to see that f is almost (I, J)-e-continuous but is not
(I, J)-e-continuous function.

Example 3.20. As in Example 3.15, f is almost weakly (I, J)-e-continuous but
is not almost (I, J)-e-continuous.

4. Almost contra (I, J)-e-continuous functions and almost contra
(I, J)-e∗-continuous functions

In this section, we introduced and defined the notions of almost contra (I, J)-e-
continuous and almost contra (I, J)-e∗-continuous functions in order to charac-
terize it and find its relations with another notions of continuous functions.

Definition 4.1. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. almost contra (I, J)-e-continuous if f−1(V ) is I-e-closed for every J-
regular open set V of Y ,

2. almost contra (I, J)-e∗-continuous if f−1(V ) is I-e∗-closed for every J-
open set V in Y .

Example 4.2. As in Example 3.7. Then, we obtain that:
IO(X) = JO(Y ) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
IRO(X) = {∅, X, {c}, {a, b}},
I-eC(X) = {∅, X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d},
{a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = d, f(b) = a, f(c) = b and
f(d) = c. It is easy to see that f is almost contra (I, J)-e-continuous.

Theorem 4.3. For a function f : (X, τ, I) → (Y, σ, J), the following conditions
are equivalent:

1. f is almost contra (I, J)-e-continuous;

2. f−1(F ) is I-e-open for every J-regular closed set F of Y ;

3. for each x ∈ X and each J-regular open set F of Y containing f(x) there
exists U ∈ I-eO(X,x) such that f(U) ⊆ F ;

4. for each x ∈ X and each J-regular open set V of Y containing f(x) there
exists a I-e-closed set K containing x such that f−1(V ) ⊆ K.

Proof. (1) ⇒ (2). Let F be any J-regular closed set of Y . Then, Y \ F is a
J-regular open set of Y , and f−1(Y \ F ) = X \ f−1(F ) ∈ I-eC(X). Therefore,
f−1(F ) ∈ I-eO(X).
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(2) ⇒ (3). Let F be any J-regular closed set of Y and x ∈ X such that
f(x) ∈ F . Then, f−1(F ) ∈ I-eO(X,x), x ∈ f−1(F ). Therefore, take U =
f−1(F ), f(U) ⊆ F .

(3) ⇒ (4) Let V any J-regular open set of Y such that f(x) /∈ V , then
f(x) ∈ Y \V and Y \V is a J-regular closed set of Y . By hypothesis, there exists
U ∈ I-eO(X,x) such that f(U) ⊆ Y \V , therefore U ⊆ f−1(Y \V ) ⊆ X\f−1(V ).
Follows f−1(U) ⊆ X \ U , X \ U is an I-e-closed set and x /∈ X \ U .

(4) ⇒ (1). Straighforward.

Theorem 4.4. For a function f : (X, τ, I) → (Y, σ, J), the following conditions
are equivalent:

1. f is almost contra (I, J)-e∗-continuous;

2. f−1(F ) is I-e∗-open for every J-regular closed set F of Y ;

3. for each x ∈ X and each J-regular open set F of Y containing f(x) there
exists U ∈ I-e∗O(X,x) such that f(U) ⊆ F ;

4. for each x ∈ X and each J-regular open set F of Y containing f(x) there
exists a I-e∗-closed set K containing x such that f−1(V ) ⊆ K.

Proof. The proof is similar to that of Theorem 4.3.

Theorem 4.5. If f : (X, τ, I) → (Y, σ, J) is almost contra (I, J)-e-continuous
then f is almost contra (I, J)-e∗-continuous.

Proof. The proof follows from the fact that every I-e-open set is an I-e∗-open
set.

The following example, shows that there exists an almost contra (I, J)-e∗-
continuous that is not almost contra (I, J)-e-continuous.

Example 4.6. As in Example 4.2. Then, we obtain that:
IO(X) = JO(Y ) = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}},
IRC(Y ) = {∅, Y, {c, d}, {a, b, d}},
I-eO(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}},
I-e∗O(X) = {∅, X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c},
{a, b, d}, {a, c, d}, {b, c, d}}.

Define f : (X, τ, I) → (Y, σ, J) as follows: f(a) = c, f(b) = a, f(c) =
b, f(d) = d. It is easy to see that f is almost contra (I, J)-e∗-continuous but is
not almost contra (I, J)-e-continuous.

Definition 4.7. An ideal topological space (X, τ, I) is said to be I-extremally
disconnected if I-Cl(U) ∈ IO(X) for each U ∈ IO(X).
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Example 4.8. Let X = {a, b, c, d}, τ = P(X), I = {∅}. Follows that: IO(X) =
P(X), the I-Cl(U) = U for all U ∈ IO(X). It follows that (X, τ, I) is extremally
disconnected.

Theorem 4.9. Let f : (X, τ, I) → (Y, σ, J) be a function, where Y is J-
extremally disconnected. The following conditions hold:

1. f is almost contra (I, J)-e-continuous if and only if f is almost (I, J)-e-
continuous,

2. f is almost contra (I, J)-e∗-continuous if and only if f is almost (I, J)-
e∗-continuous.

Proof. (1). Suppose that x ∈ X and V is any J-regular open set of Y containing
f(x). Since Y is J-extremally disconnected, J-Cl(V ) ∈ JO(Y ) and then V is
J-regular closed, follows that V is J-clopen. Using Theorem 4.3, there exists
U ∈ IO(X,x) such that f(U) ⊆ V and then f is almost (I, J)-e-continuous.
Conversely, Let f be almost (I, J)-e-continuous function andW be any J-regular
closed set of Y . By hypothesis, Y is J-extremally disconnected, then W is J-
regular open, therefore f−1(W ) is an I-e-open set of X. Take U = f−1(W ) and
obtain that f(U) ⊆W .

(2). The proof is similar to that of part (1).

Definition 4.10. An ideal topological space (X, τ, I) is said to be I-e∗-T1/2 if
each I-e∗-closed set is I-δ-closed.

Example 4.11. LetX = {a, b, c, d}, τ = P(X), I = {∅}. Then IO(X) = P(X),
IRO(X) = P(X), I-δ-open sets=P(X), I-e∗O(X) = P(X).

It follows that (X, τ, I) is an I-e∗-T1/2.

Theorem 4.12. Let f : (X, τ, I) → (Y, σ, J) be a function and (X, τ, I) an I-
e∗-T1/2. Then, f is almost (I, J)-e-continuous if and only if f is almost (I, J)-
e∗-continuous.

Proof. By Theorem 3.10, each I-e-open set is I-e∗-open and then each almost
(I, J)-e-continuous f is almost (I, J)-e∗-continuous. Conversely, since (X, τ, I)
is an I-e∗-T1/2-space, each I-e∗-open set is I-δ-open. By Theorem 3.10, each
I-δ-open set is I-e-open and, then each almost (I, J)-e∗-continuous f is almost
(I, J)-e-continuous.

Theorem 4.13. Let f : (X, τ, I) → (Y, σ, J) be a function and (X, τ, I) an
I-e∗-T1/2-space. Then, f is almost contra (I, J)-e-continuous if and only if f is
almost contra (I, J)-e∗-continuous.

Proof. The proof is similar to that of Theorem 4.12.

Definition 4.14. A function f : (X, τ, I) → (Y, σ, J) is said to be:

1. (I, J)-e-irresolute if f−1(V ) is I-e-open for every J-e-open set V of Y ;



A NOTE ON (I, J)-e-CONTINUOUS AND (I, J)-e∗-CONTINUOUS FUNCTIONS 845

2. (I, J)-e∗-irresolute if f−1(V ) is I-e∗-open for every J-e∗-open set V of Y .

Theorem 4.15. 1. If f : (X, τ, I) → (Y, σ, J) is an (I, J)-e-irresolute func-
tion and g : (Y, σ, J) → (Z, β, L) is an (J, L)-e-irresolute function, then
g ◦ f : (X, τ, I) → (Z, β, L) is an (I, L)-e-irresolute function;

2. If f : (X, τ, I) → (Y, σ, J) is an (I, J)-e∗-irresolute function and g :
(Y, σ, J) → (Z, β, L) is an (J, L)-e∗-irresolute function, then g◦f : (X, τ, I)
→ (Z, β, L) is an (I, L)-e∗-irresolute function;

3. If f : (X, τ, I) → (Y, σ, J) is an (I, J)-e-irresolute function and g : (Y, σ, J)
→ (Z, β, L) is an (J, L)-e-continuous function, then g ◦ f : (X, τ, I) →
(Z, β, L) is an (I, L)-e- continuous function;

4. If f : (X, τ, I) → (Y, σ, J) is an (I, J)-e∗-irresolute function and g :
(Y, σ, J) → (Z, β, L) is an (J, L)-e∗-continuous function, then g ◦ f :
(X, τ, I) → (Z, β, L) is an (I, L)-e∗- continuous function.

5. Conclusion

In this work, in the theoretical framework of an ideal topological space, we have
introduced the notions of I-e-open set and I-e∗-open set. By using these notions
we have defined the (I, J)-e-continuous functions, (I, J)-e∗-continuous functions,
contra (I, J)-e-continuous functions, contra (I, J)-e∗-continuous functions, al-
most weakly (I, J)-e-continuous functions, almost weakly (I, J)-e∗-continuous
functions, almost (I, J)-e-continuous functions, almost (I, J)-e∗-continuous func-
tions, almost contra (I, J)-e-continuous functions and almost contra (I, J)-e∗-
continuous functions. Also, we gave various characterizations of these new
classes of functions and have obtained some relationships between them. For
future research, notions similar to those studied in the reference [4] can be in-
vestigated, such as defining an I-semi∗-open (respectively, I-pre ∗-open) set A
to the one that satisfies the inclusion A ⊆ I-Cl(I-δ-int(A)) (respectively, A ⊆ I-
int(I-δ-Cl(A))).

In consequence, these notions can be applied in the study of new modifica-
tions of continuous functions that are similar to those presented in [4].
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[4] Wadei AL-Omeri, T. Noiri, On semi∗-I-open sets, pre∗-I-open sets and e-
I-open sets in ideal topological spaces, to appear in Bol. Soc. Paran. Mat.,
(2021), 8 pages.

[5] Wadei AL-Omeri, Mohd. Salmi Md. Noorani, A. AL-Omari, On e-I-open
sets, e-I-continuous functions and decomposition of continuity, J. Math.
Appl., 38 (2015), 15-31.

[6] E. Ekici, Some generalizations of almost contra-super continuity, Filomat,
21 (2007), 31-44.

[7] E. Ekici, On a-open sets, A∗-sets and decompositions of continuity and
super-continuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 51 (2008),
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Abstract. A broader concept than eGE algebra, called weak eGE algebra, is intro-
duced, and related properties are studied. The concept of transitive and tightly (weak)
eGE algebra is also considered and some properties are discussed. A weak eGE-algebra
with additional conditions is used to give a way to create a GE-algebra. Extended GE
filters are described in the last section. The concept of eGE-filters and upper sets is
introduced and associated properties are investigated. Conditions for a superset of E in
a weak eGE-algebra (X, ∗, E) to be an eGE-filter are provided. Also, conditions for the
upper set to become an eGE-filter are discussed. The characterization of the eGE-filter
is established.
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1. Introduction

The concept of Hilbert algebra was introduced in early 50-ties by L. Henkin
and T. Skolem for some investigations of implication in intuitionistic and other
non-classical logics. In 60-ties, these algebras were studied especially by A. Horn
and A. Diego [7] from algebraic point of view. Hilbert algebras are a valuable
tool for some algebraic logic investigations as they can be regarded as fragments
of any propositional logic that contains a logical connective implication (→)

*. Corresponding author
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and the constant 1 that is assumed to be the logical meaning “true”. Many
researchers have done a significant amount of work on Hilbert algebras [4, 5, 6,
8, 9, 10, 12, 13, 14]. As a generalization of Hilbert algebras, R.K. Bandaru et
al. [1] introduced the notion of GE-algebras. They studied the various properties
and filter theory of GE-algebras [2, 11, 15]. Bandaru et al. [3] introduced the
notion of eGE-algebra as a generalization of GE-algebra and investigated its
properties. We observed that there is a condition that do not play a remarkable
role in that paper [3]. Algebraic structures with conditions that play no many
role will inevitably narrow their objects, so they can weaken the value of their
use. Everyone knows that the wider the object for a new algebraic structure, the
wider the application. Therefore, it is necessary to increase the value of use by
expanding the object of algebraic structures except for the conditions in which
the role is insignificant. From this point of view, we would like to introduce a
more generalized concept by deleting conditions that do not play an important
role.

In this manuscript, we introduce more general version than eGE-algebras,
so called weak eGE-algebra, and investigate its properties. This can generalize
the several results of paper [3], and allows some of the results of the paper [3]
to be classified as corollaries. We provide a condition for a weak eGE-algebra
to be an eGE-algebra. We consider the concepts of a transitive and tightly
(weak) eGE-algebra, and discuss some properties. Using a weak eGE-algebra
with additional conditions, we provide a way to create a GE-algebra. The last
section describes the expanded GE filters. We introduce the concepts of eGE-
filters and upper sets and investigate their associated properties. We provide
conditions for a superset of E in a weak eGE-algebra (X, ∗, E) to be an eGE-
filter. We provide conditions for the upper set to become an eGE-filter. We
establish the characterization of eGE filters.

2. Preliminaries

Definition 2.1 ([1]). By a GE-algebra we mean a nonempty set X with a
constant 1 and a binary operation “∗” satisfying the following axioms:

(GE1) u ∗ u = 1,

(GE2) 1 ∗ u = u,

(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w)),

for all u, v, w ∈ X.

Definition 2.2 ([3]). Let E be a nonempty subset of a set X. By a extended
GE-algebra (briefly, eGE-algebra) we mean a structure (X, ∗, E) in which ∗ is
a binary operation on X satisfying the condition (GE3) and

(eGE1) (∀x ∈ X) (x ∗ x ∈ E),
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(eGE2) (∀x ∈ X) (x ∗ E ⊆ E),

(eGE3) (∀x ∈ X) (E ∗ x = {x}),

where E ∗ x := {a ∗ x | a ∈ E} and x ∗ E := {x ∗ a | a ∈ E}.

In an eGE-algebra (X, ∗, E), we define a binary operation “≤e” as follows:

(∀x, y ∈ X)(x ≤e y ⇔ x ∗ y ∈ E).(1)

It could be noted that the binary operation “≤e” is reflexive, but it is neither
antisymmetric nor transitive.

Proposition 2.1 ([3]). Every eGE-algebra (X, ∗, E) satisfies:

(∀x, y ∈ X)(x ∗ (x ∗ y) = x ∗ y),(2)

(∀x, y, z ∈ X)(y ∗ z ∈ E ⇒ x ∗ (y ∗ z) ∈ E),(3)

(∀x, y, z ∈ X)(x ≤e y ∗ z ⇒ y ≤e x ∗ z).(4)

Definition 2.3 ([3]). Let (X, ∗, E) be a (weak) eGE-algebra. A subset F of X
is called an extended GE-filter (briefly, eGE-filter) of (X, ∗, E) if F is a superset
of E which satisfies the next condition

(∀x, y ∈ X)(x ∗ y ∈ F, x ∈ F ⇒ y ∈ F ).(5)

Lemma 2.1 ([3]). Every eGE-filter F of an eGE-algebra (X, ∗, E) satisfies:

(∀x, y ∈ X)(x ∈ F, x ≤e y ⇒ y ∈ F ).(6)

3. Weak extended GE-algebras

Definition 3.1. Let E be a nonempty subset of a set X and let “∗” be a binary
operation on X. A structure (X, ∗, E) is called a weak extended GE-algebra
(briefly, weak eGE-algebra) if it satisfies the following three conditions (GE3),
(eGE1) and (eGE3).

It is obvious that every eGE-algebra is a weak eGE-algebra, but the converse
is not true in general as shown in the following example.

Example 3.2. Let X = {a, b, c, d} be a set with the Cayley table which is given
in Table 1.

Then, (X, ∗, E) with E = {b, c} is a weak eGE-algebra. But it is not an eGE-
algebra since d ∗ E = {a, c} ⊈ E.

It is clear that if E = {1}, then the weak eGE-algebra (X, ∗, E) is only a
GE-algebra, and vice versa. If |E| ≥ 2, then the weak eGE-algebra (X, ∗, E)
may not be a GE-algebra as seen in the following example. Hence, we know
that the weak eGE-algebra is an extension of a GE-algebra.
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Table 1: Cayley table for the binary operation “∗”

∗ a b c d

a b b c c
b a b c d
c a b c d
d a a c c

Example 3.3. Consider the weak eGE-algebra (X, ∗, E) which is given in Ex-
ample 3.2. We can see that there is no element to play a constant role and
we can check that (GE1) and (GE2) are not true. Hence, (X, ∗, E) is not a
GE-algebra.

Proposition 3.1. Every weak eGE-algebra (X, ∗, E) satisfies:

(∀x, y ∈ X)(x ∗ (x ∗ y) = x ∗ y).(7)

Proof. For every x, y ∈ X, we have

x ∗ (x ∗ y) = x ∗ ((x ∗ x) ∗ (x ∗ y)) = x ∗ ((x ∗ x) ∗ y) = x ∗ y

by (GE3), (eGE1) and (eGE3).

Definition 3.4. If (X, ∗, E) is a (weak) eGE-algebra in which (X, ∗, 1) is a
GE-algebra, we say that (X, ∗, E) is a tightly (weak) eGE-algebra.

It is clear that every (weak) eGE-algebra (X, ∗, E) is a tightly (weak) eGE-
algebra if and only if E = {1}.

In the example below, we can see that if (X, ∗, E) is a (weak) eGE-algebra
satisfying 1 ∈ E and |E| ≥ 2, (X, ∗, E) may not be a tightly (weak) eGE-algebra.

Example 3.5. 1. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which
is given in Table 2. Then (X, ∗, E) with E = {0, 1} is an eGE-algebra. But it is

Table 2: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 1 2 3 4
1 0 1 2 3 4
2 0 1 0 0 0
3 0 1 0 0 0
4 0 1 0 0 0

not a tightly eGE-algebra since (X, ∗, 1) fails to satisfy (GE1), i.e., 0∗0 = 0 ̸= 1.
2. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in

Table 3.
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Table 3: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 1 2 3 4
1 0 1 2 3 4
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

Then (X, ∗, E) with E = {0, 1} is a weak eGE-algebra. But it is not a tightly
weak eGE-algebra since (X, ∗, 1) fails to satisfy (GE1), i.e., 0 ∗ 0 = 0 ̸= 1.

Proposition 3.2. If (X, ∗, E) is a weak eGE-algebra, then E is closed under
the binary operation “∗”.

Proof. Let x, y ∈ E. Then x ∗ y = y ∈ E and y ∗x = x ∈ E by (eGE3). Hence,
E is closed under “∗”

Question 3.1. Let B be a subset of X such that E ⊆ B.
1. If (X, ∗, E) is a weak eGE-algebra, then is (X, ∗, B) a weak eGE-algebra.
2. If (X, ∗, B) is a weak eGE-algebra, then is (X, ∗, E) a weak eGE-algebra.

The next example give a negative answer to Question 3.1.

Example 3.6. 1. Let X = {a, b, c, d, e} be a set with the Cayley table which is
given in Table 4.

Table 4: Cayley table for the binary operation “∗”

∗ a b c d e

a c b c c b
b d d d d d
c a b c d e
d a b c d e
e a c c d e

Then (X, ∗, E) with E = {c, d} is a weak eGE-algebra. But (X, ∗, B) with
B = {c, d, e} is not a weak eGE-algebra since B ∗ b = {b, c} ̸= {b}. Also
(X, ∗, B) with B = {c, d} is a weak eGE-algebra. But (X, ∗, E) with E = {c} is
not a weak eGE-algebra since b ∗ b = d /∈ E.

Remark 3.7. Let {E,B} be a partition of X. If (X, ∗, E) is a (weak) eGE-
algebra, then (X, ∗, B) can never be a (weak) eGE-algebra.

The following example describes Remark 3.7.
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Example 3.8. In Example 3.6, if we take E = {c, d} and B = {a, b, e}, then
{E,B} is a partition of X. We can observe that (X, ∗, E) is a weak eGE-algebra,
but (X, ∗, B) is not a weak eGE-algebra since B ∗ b = {b, c, d} ≠ {b}.

By Remark 3.7, we know that if (X, ∗, E) is a weak eGE-algebra, then
(X, ∗, X \ E) is not a weak eGE-algebra.

Theorem 3.2. Every weak eGE-algebra (X, ∗, E) with E = {1} satisfies the
condition (eGE2).

Proof. It is straightforward.

Question 3.3. Let (X, ∗, E) be a weak eGE-algebra. If E contains the constant
1, then does (eGE2) hold?

The next example give a negative answer to Question 3.3.

Example 3.9. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is
given in Table 5.

Table 5: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 3 3 1
1 0 1 2 3 4
2 0 1 2 3 4
3 0 1 0 1 1
4 0 1 0 1 1

Then (X, ∗, E) with E = {1, 2} is a weak eGE-algebra. But it does not satisfy
(eGE2) since 2 ∗ E = {0, 2} ⊈ E.

Note that two facts below are equivalent in an eGE-algebra (X, ∗, E) (see
[3]).

(∀x, y, z ∈ X)(x ∗ y ≤e (z ∗ x) ∗ (z ∗ y)).(8)

(∀x, y, z ∈ X)(x ∗ y ≤e (y ∗ z) ∗ (x ∗ z)).(9)

In the next example, we can verify that (8) and (9) are not equivalent in a
weak eGE-algebra.

Example 3.10. Let X = {0, a, b, c, d, e, f} be a set with the Cayley table which
is given in Table 6.

Then (X, ∗, E) with E = {a, d} is a weak eGE-algebra. But (8) and (9) are not
equivalent. In fact, (0 ∗ b) ∗ ((c ∗ 0) ∗ (c ∗ b)) = a ∗ (0 ∗ b) = a ∗ a = a ∈ E, that is,
(0∗ b) ≤e (c∗0)∗ (c∗ b). But (0∗ b)∗ ((b∗c)∗ (0∗c)) = a∗ (f ∗a) = a∗e = e /∈ E,
i.e., (0 ∗ b) ≤e (b ∗ c) ∗ (0 ∗ c) does not hold.
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Table 6: Cayley table for the binary operation “∗”

∗ 0 a b c d e f

0 a a a a a a a
a 0 a b c d e f
b 0 0 d f d 0 f
c 0 0 b d d 0 d
d 0 a b c d e f
e 0 a 0 0 0 a 0
f 0 e b d d e d

Definition 3.11. A (weak) eGE-algebra (X, ∗, E) is said to be transitive if it
satisfies:

(∀x, y, z ∈ X)(x ∗ y ≤e (z ∗ x) ∗ (z ∗ y)).(10)

It is clear that every transitive eGE-algebra is a transitive weak eGE-algebra.

Example 3.12. Let X = {0, a, b, c, d} be a set with the Cayley table which is
given in Table 7.

Table 7: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 0 a b c d
a 0 0 b c 0
b 0 a b c d
c 0 a 0 0 a
d b b b c b

Then (X, ∗, E) with E = {0, b} is a transitive (weak) eGE-algebra.

Lemma 3.1. Every transitive weak eGE-algebra (X, ∗, E) satisfies:

(∀x, y, z ∈ X)(y ≤e z ⇒ x ∗ y ≤e x ∗ z, z ∗ x ≤e y ∗ x).(11)

(∀x, y, z ∈ X)(x ≤e y, y ≤e z ⇒ x ≤e z).(12)

Proof. Let x, y, z ∈ X be such that y ≤e z. Then y ∗z ∈ E, which implies from
(eGE3) and (10) that

(x ∗ y) ∗ (x ∗ z) = (y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) ∈ E,

that is, x ∗ y ≤e x ∗ z. The combination of (GE3), (eGE3) and (10) induces

(z ∗ x) ∗ (y ∗ x) = (y ∗ z) ∗ ((z ∗ x) ∗ (y ∗ x))
= (y ∗ z) ∗ ((z ∗ x) ∗ ((y ∗ z) ∗ (y ∗ x)))
= (z ∗ x) ∗ ((y ∗ z) ∗ (y ∗ x)) ∈ E,
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and so z ∗ x ≤e y ∗ x. Hence, (11) is valid. Let x, y, z ∈ X be such that x ≤e y
and y ≤e z. Then x ∗ y ∈ E and y ∗ z ∈ E. Using (eGE3) and (10), we have

x ∗ z = (y ∗ z) ∗ ((x ∗ y) ∗ (x ∗ z)) ∈ E,

and thus x ≤e z.

Corollary 3.1. Every transitive eGE-algebra (X, ∗, E) satisfies (11) and (12).

The following example shows that any weak eGE-algebra (X, ∗, E) does not
satisfy the following assertion.

(∀x, y, z ∈ X)(y ∗ z ∈ E ⇒ x ∗ (y ∗ z) ∈ E).(13)

Example 3.13. Let X = {0, a, b, c, d} be a set with the Cayley table which is
given in Table 8.

Table 8: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 0 a b c d
a b b b c c
b 0 a b c d
c a a b b a
d 0 0 b b 0

Then, (X, ∗, E) with E = {0, b} is a weak eGE-algebra. But it doesn’t satisfy
(13). In fact, d ∗ 0 = 0 ∈ E but c ∗ (d ∗ 0) = c ∗ 0 = a /∈ E.

Proposition 3.3. For any weak eGE-algebra (X, ∗, E) satisfying the condition
(13), we have

(∀x, y, z ∈ X)

(
x ≤e y ∗ z ⇒

{
y ∗ (x ∗ z) ∈ E
y ∗ (x ∗ (y ∗ z)) ∈ E

)
.(14)

Proof. Let (X, ∗, E) be a weak eGE-algebra that satisfies the condition (13).
Let x, y, z ∈ X be such that x ≤e y ∗ z. Then x ∗ (y ∗ z) ∈ E and hence

y ∗ (x ∗ z) = y ∗ (x ∗ (y ∗ z)) ∈ E

by (GE3) and (13).

Since every eGE-algebra (X, ∗, E) satisfies the condition (13) (see [3]), we
have the following corollary.

Corollary 3.2. Every eGE-algebra (X, ∗, E) satisfies the condition (14).
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Theorem 3.4. Let (X, ∗, E) be a weak eGE-algebra satisfying the condition (13)
where E contains the constant 1, and let Y := {1} ∪ (X \ E). Define a binary
operation “⊛” on Y as follows:

⊛ : Y × Y → Y, (x, y) 7→


x ∗ y, if x ̸= 1 ̸= y, x ∗ y /∈ E,
1, if x ̸= 1 ̸= y, x ∗ y ∈ E,
y, if x = 1,

1, if y = 1.

(15)

Then (Y,⊛, 1) is a GE-algebra.

Proof. (GE1) and (GE2) are directly identified by the definition of ⊛. Let
x, y, z ∈ X. It is clear that if x = 1, y = 1 or z = 1, then

x⊛ (y ⊛ z) = x⊛ (y ⊛ (x⊛ z)).

Assume that x ̸= 1, y ̸= 1 and z ̸= 1. If y ∗ z ∈ E, then y ⊛ z = 1 and so
x⊛ (y ⊛ z) = x⊛ 1 = 1.

On the other hand, if x ∗ z ∈ E, then x⊛ z = 1. Hence,

x⊛ (y ⊛ (x⊛ z)) = x⊛ (y ⊛ 1) = x⊛ 1 = 1.

If x ∗ z /∈ E, then x ⊛ z = x ∗ z. Since y ∗ z ∈ E, we have x ∗ (y ∗ z) ∈ E,
that is, x ≤e y ∗ z by (13), and thus y ∗ (x ∗ z) ∈ E by Proposition 3.3. Hence,
y ⊛ (x⊛ z) = y ⊛ (x ∗ z) = 1, and so x⊛ (y ⊛ (x⊛ z)) = x⊛ 1 = 1. This shows
that x⊛(y⊛z) = x⊛(y⊛(x⊛z)) when y∗z ∈ E. If y∗z /∈ E, then y⊛z = y∗z,
and either x ∗ (y ∗ z) ∈ E or x ∗ (y ∗ z) /∈ E. For the case x ∗ (y ∗ z) ∈ E, we
get x⊛ (y ⊛ z) = x⊛ (y ∗ z) = 1, and y ∗ (x ∗ z) ∈ E by Proposition 3.3. Thus
y ⊛ (x⊛ z) = y ⊛ (x ∗ z) = 1 when x ∗ z /∈ E. If x ∗ z ∈ E, then x⊛ z = 1 and
so y ⊛ (x⊛ z) = y ⊛ 1 = 1. Hence,

x⊛ (y ⊛ (x⊛ z)) = x⊛ 1 = 1 = x⊛ (y ⊛ z).

For the case x ∗ (y ∗ z) /∈ E, we get y ∗ z /∈ E by (13), and y ∗ (x ∗ z) /∈ E by
Proposition 3.3. Then x ∗ z /∈ E by (13). Since 1 ∈ E and

x ∗ (y ∗ (x ∗ z)) = x ∗ (y ∗ z) /∈ E

by (GE3), it follows that

x⊛ (y ⊛ z) = x⊛ (y ∗ z) = x ∗ (y ∗ z)
= x ∗ (y ∗ (x ∗ z))
= x⊛ (y ∗ (x ∗ z))
= x⊛ (y ⊛ (x⊛ z)).

Therefore, (Y,⊛, 1) is a GE-algebra.
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Note that, every eGE-algebra (X, ∗, E) satisfies the condition (13) and it is
a weak eGE-algebra. Hence, we have the next corollary.

Corollary 3.3 ([3]). Let (X, ∗, E) be an eGE-algebra where E contains the
constant 1 and consider Y := {1} ∪ (X \E). If we give a binary operation “⊛”
on Y by (15), then (Y,⊛, 1) is a GE-algebra.

The following example illustrates Theorem 3.4.

Example 3.14. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is
given in Table 9.

Table 9: Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 1 2 3 4
1 0 1 2 3 4
2 0 0 0 0 4
3 0 0 0 0 4
4 1 1 1 3 1

Then (X, ∗, E) with E = {0, 1} is a weak eGE-algebra satisfying the condition
(13), and Y = {1} ∪ (X \ E) = {1, 2, 3, 4}. The operation ⊛ on Y is given by
Table 10, and (Y,⊛, 1) is a GE-algebra.

Table 10: Cayley table for the binary operation “⊛”

⊛ 1 2 3 4

1 1 2 3 4
2 1 1 1 4
3 1 1 1 4
4 1 1 3 1

4. Extended GE-filters

Given a superset F of E in a weak eGE-algebra (X, ∗, E), we consider the next
arguments:

(∀a ∈ E)(∀x, y ∈ X)(x ∗ (a ∗ y) ∈ F ⇒ a ∗ y ∈ F ),(16)

(∀a ∈ Ec)(∀x, y ∈ X)(x ∗ (a ∗ y) ∈ F ⇒ a ∗ y ∈ F ).(17)

The following example shows that there exists a weak eGE-algebra (X, ∗, E)
in which any supserset F of E does not satisfy the assertion (16) or (17).
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Table 11: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 0 a b c d
a 0 a b c d
b c a a c c
c 0 0 0 0 0
d 0 0 0 0 0

Example 4.1. 1. Let X = {0, a, b, c, d} be a set with the Cayley table which is
given in Table 11.

Then, (X, ∗, E) with E = {0, a} is a weak eGE-algebra. If we take a superset
F = {0, a, b} of E, then d ∗ (a ∗ c) = d ∗ c = 0 ∈ F and a ∈ E but a ∗ c = c /∈ F .
Hence, F does not satisfy the assertion (16).

2. Let X = {0, a, b, c, d} be a set with the Cayley table which is given in
Table 12.

Table 12: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 b a b a a
a 0 c 0 c c
b 0 a b c d
c 0 a b c d
d 0 a 0 c c

Then, (X, ∗, E) with E = {b, c} is a weak eGE-algebra, and the set F = {b, c, d}
does not satisfy (17) since 0 ∗ (a ∗ 0) = 0 ∗ 0 = b ∈ F but a ∗ 0 = 0 /∈ F .

We provide a condition for a superset of E in a weak eGE-algebra (X, ∗, E)
to be an eGE-filter.

Theorem 4.1. Let F be a superset of E in a weak eGE-algebra (X, ∗, E). If F
satisfies (16), then F is an eGE-filter of (X, ∗, E).

Proof. Let x, y ∈ X be such that x ∈ F and x ∗ y ∈ F . Then x ∗ (E ∗ y) =
x ∗ {y} ⊆ F , and so x ∗ (a ∗ y) ∈ F , for all a ∈ E. It follows from (16) that
a ∗ y ∈ F , for all a ∈ E. Hence, {y} = E ∗ y ⊆ F , and thus y ∈ F . Therefore,
F is an eGE-filter of (X, ∗, E).

Question 4.2. If a superset F of E in a weak eGE-algebra (X, ∗, E) satisfies
(17), then is F an eGE-filter of (X, ∗, E)?

The answer to the Question 4.2 is negative as seen in the next example.
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Table 13: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 b b b d d
a b b b b b
b 0 a b c d
c 0 a b c d
d b b b b b

Example 4.2. Let X = {0, a, b, c, d} be a set with the Cayley table which is
given in Table 13. Then (X, ∗, E) with E = {b, c} is a weak eGE-algebra, and
the set F = {b, c, d} satisfies (17). But F is not eGE-filter of (X, ∗, E) since
d ∗ 0 = b ∈ F and d ∈ F but 0 /∈ F .

Theorem 4.3. Let F be a superset of E in a weak eGE-algebra (X, ∗, E). Then
F is an eGE-filter of (X, ∗, E) if and only if it satisfies:

(∀x ∈ E)(∀y, z ∈ X)(x ∗ (y ∗ z) ∈ F, x ∗ y ∈ F ⇒ x ∗ z ∈ F ).(18)

Proof. Assume that F is an eGE-filter of (X, ∗, E). Let x, y, z ∈ X be such
that x ∈ E, x ∗ (y ∗ z) ∈ F and x ∗ y ∈ F . Then y ∗ z = x ∗ (y ∗ z) ∈ F and
y = x ∗ y ∈ F by (eGE3). It follows from (eGE3) and (5) that x ∗ z = z ∈ F .

Conversely, suppose that F satisfies (18). Assume that x ∈ F and x∗y ∈ F ,
for all x, y ∈ X. Then E ∗x = {x} ⊆ F and E ∗ (x ∗ y) = {x ∗ y} ⊆ F . It follows
that a ∗ x ∈ F and a ∗ (x ∗ y) ∈ F , for all a ∈ E. Hence, a ∗ y ∈ F , for all a ∈ E
by (18), and so {y} = E ∗ y ⊆ F , that is y ∈ F . Therefore, F is an eGE-filter
of (X, ∗, E).

Given an eGE-algebra (X, ∗, E) and any element a, b ∈ X, consider the
following set.

Ea := {x ∈ X | a ∗ x ∈ E},(19)

E(a, b) := {x ∈ X | a ∗ (b ∗ x) ∈ E}.(20)

The set Ea(resp. E(a, b)) is called an upper set of a(resp. of a and b).

Proposition 4.1. Let (X, ∗, E) be an eGE-algebra and a, b ∈ X. Then

(i) a ∈ Ea and a, b ∈ E(a, b).

(ii) Ea ⊆ E(a, x), for all x ∈ X.

(iii) E(a, b) = E(b, a).

(iv) a ≤e b ⇒ b ∈ E(a, c), for all c ∈ X.

(v) b ∈ E ⇒ E(a, b) ⊆ Ea.
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(vi) Ea =
⋂

x∈X E(a, x).

Proof. (i) It is straightforward.
(ii) If z ∈ Ea and x ∈ X, then a ∗ z ∈ E and so x ∗ (a ∗ z) ∈ x ∗ E ⊆ E by

(eGE2). It follows from (14) that a ∗ (x ∗ z) ∈ E. Hence, z ∈ E(a, x), and thus
Ea ⊆ E(a, x), for all x ∈ X.

(iii) it is straightforward by (14).
(iv) Assume a ≤e b and let c ∈ X. Then a∗b ∈ E, and so c∗(a∗b) ∈ c∗E ⊆ E.

Hence, b ∈ E(c, a) = E(a, c).
(v) Let b ∈ E. Then b ∗ x ∈ E ∗ x = {x} by (eGE3), and so b ∗ x = x, for

all x ∈ X. If y ∈ E(a, b), then a ∗ y = a ∗ (b ∗ y) ∈ E, i.e., y ∈ Ea. Hence,
E(a, b) ⊆ Ea.

(vi) We have Ea ⊆
⋂

x∈X E(a, x) by (ii). If y ∈
⋂

x∈X E(a, x), then y ∈
E(a, x), i.e., a ∗ (x ∗ y) ∈ E, for all x ∈ X and so a ∗ (b ∗ y) ∈ E for b ∈ E.
It follows from (eGE3) that a ∗ y = a ∗ (b ∗ y) ∈ E, that is, y ∈ Ea. Hence,⋂

x∈X E(a, x) ⊆ Ea, and therefore (vi) is valid.

The following example shows that the set Ea may not be an eGE-filter of a
weak eGE-algebra (X, ∗, E).

Example 4.3. Let X = {0, a, b, c, d} be a set with the Cayley table which is
given in Table 14. Then (X, ∗, E) with E = {a, b} is a weak eGE-algebra which

Table 14: Cayley table for the binary operation “∗”

∗ 0 a b c d

0 a a a a a
a 0 a b c d
b 0 a b c d
c 0 a 0 a d
d b a b c b

is not eGE-algebra. We can observe that Ed = {0, a, b, d} ⊆ E. But Ed is not
an eGE-filter of (X, ∗, E). In fact, 0 ∗ c = a ∈ Ed and 0 ∈ Ed but c /∈ Ed.

We provide conditions for the set Ea to be an eGE-filter.

Theorem 4.4. If a weak eGE-algebra (X, ∗, E) satisfies:

(∀x, y, z ∈ X)(x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)),(21)

then Ea is an eGE-filter of (X, ∗, E), for all a ∈ X.

Proof. It is clear that Ea is a superset of E. Let x, y ∈ X be such that x ∈ Ea

and x ∗ y ∈ Ea. Then a ∗ x ∈ E and (a ∗ x) ∗ (a ∗ y) = a ∗ (x ∗ y) ∈ E by (21).
Since E is an eGE-filter of X, it follows from (5) that a ∗ y ∈ E, that is, y ∈ Ea.
Therefore, Ea is an eGE-filter of X.
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Corollary 4.1. If an eGE-algebra (X, ∗, E) satisfies (21), then Ea is an eGE-
filter of (X, ∗, E), for all a ∈ X.

The following example shows that there exist a, b ∈ X such that the set
E(a, b) may not be an eGE-filter of a weak eGE-algebra (X, ∗, E).

Example 4.4. Let X = {0, a, b, c, d, e} be a set with the Cayley table which
is given in Table 15. Then (X, ∗, E) with E = {a, b} is a weak eGE-algebra

Table 15: Cayley table for the binary operation “∗”

∗ 0 a b c d e

0 a a a a a a
a 0 a b c d e
b 0 a b c d e
c 0 a b b a e
d 0 b b c b b
e b d b c d b

which is not an eGE-algebra. Let c, d ∈ X. Then we can observe that E(d, c) =
{a, b, d, e} and E ⊆ E(d, c). But E(d, c) is not an eGE-filter of (X, ∗, E) since
e ∗ 0 = b ∈ E(d, c) and e ∈ E(d, c) but 0 /∈ E(d, c).

We provide a condition for the set E(a, b) to be an eGE-filter, for all a, b ∈ X.

Theorem 4.5. If a weak eGE-algebra (X, ∗, E) satisfies (21), then E(a, b) is
an eGE-filter of (X, ∗, E), for all a, b ∈ X.

Proof. Let a, b ∈ X. It is clear that E(a, b) is a superset of E. Let x, y ∈ X
be such that x ∈ E(a, b) and x ∗ y ∈ E(a, b). Then a ∗ (b ∗ x) ∈ E and
a ∗ (b ∗ (x ∗ y)) ∈ E. Using (21), we have

(a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ y)) = a ∗ ((b ∗ x) ∗ (b ∗ y)) = a ∗ (b ∗ (x ∗ y)) ∈ E.

Since E is an eGE-filter of (X, ∗, E), it follows from (5) that a ∗ (b ∗ y) ∈ E, i.e.,
y ∈ E(a, b). Therefore, E(a, b) is an eGE-filter of (X, ∗, E), for all a, b ∈ X.

Corollary 4.2. If an eGE-algebra (X, ∗, E) satisfies (21), then E(a, b) is an
eGE-filter of (X, ∗, E), for all a, b ∈ X.

Theorem 4.6. Let F be a nonempty subset of X in a weak eGE-algebra (X, ∗, E).
Then F is an eGE-filter of (X, ∗, E) if and only if it satisfies:

(∀a, b ∈ F )(E(a, b) ⊆ F ).(22)

Proof. Assume that F is an eGE-filter of (X, ∗, E) and let x ∈ E(a, b), for all
a, b ∈ F . Then a ∗ (b ∗ x) ∈ E ⊆ F , and so x ∈ F by (5). Hence, E(a, b) ⊆ F ,
for all a, b ∈ F .
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Conversely, suppose F satisfies (22). Then F is a superset of E since E ⊆
E(a, b) ⊆ F , for all a, b ∈ F . Let x, y ∈ X be such that x ∈ F and x ∗ y ∈ F .
Since (x∗y)∗(x∗y) ∈ E by (eGE1), we have y ∈ E(x∗y, x) ⊆ F . Consequently,
F is an eGE-filter of (X, ∗, E).

Corollary 4.3. Let F be a nonempty subset of X in an eGE-algebra (X, ∗, E).
Then F is an eGE-filter of (X, ∗, E) if and only if it satisfies (22).

Proposition 4.2. If F is an eGE-filter of a weak eGE-algebra (X, ∗, E), then
F =

⋃
a,b∈F E(a, b).

Proof. Let x ∈ F . The combination of (eGE1) and (eGE3) induces x∗ (y ∗x) ∈
E, for all y ∈ E. Hence, x ∈ E(x, y), and so

F ⊆
⋃

x∈F,y∈E
E(x, y)

⋃
a,b∈F

E(a, b).

If x ∈
⋃

a,b∈F E(a, b), then x ∈ E(y, z) for some y, z ∈ F and thus x ∈ F
by Theorem 4.6. This shows that

⋃
a,b∈F E(a, b) ⊆ F , and we conclude that

F =
⋃

a,b∈F E(a, b).

Corollary 4.4. If F is an eGE-filter of an eGE-algebra (X, ∗, E), then F =⋃
a,b∈F E(a, b).

5. Conclusion

We have introduced a broader concept than eGE algebra, called weak eGE
algebra and its properties are investigated. We have also considered the concept
of transitive and tightly (weak) eGE algebra and some properties are discussed.
We have provided a way to create a GE-algebra using a weak eGE-algebra with
additional conditions. We have introduced the notions of eGE-filter and upper
set and associated properties are investigated. Conditions for a superset of E
in a weak eGE-algebra (X, ∗, E) to be an eGE-filter are provided. We have
established the characterization of the eGE-filter.
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Abstract. In this paper, new intuitionistic fuzzy topological operators are introduced
by considering Marinov and Atanassov’s last operators. We show that these operators
are also pair of conjugate preinterior-preclosure operators. In addition, some properties
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1. Introduction

Fuzzy set theory was introduced by Zadeh [18] as an object whose elements have
memberships degrees in the [0, 1] interval. In following years, many researchers
studied on the generalization of the fuzzy set concept. Atanassov introduced
the concept of Intuitionistic Fuzzy Sets, form an extension of fuzzy sets by
expanding the truth value set to the lattice [0, 1]× [0, 1] is defined as following:

Definition 1.1. Let L = [0, 1] then L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1}
is a lattice with (x1, x2) ≤ (y1, y2) :⇐⇒ “x1 ≤ y1 and x2 ≥ y2”. For
(x1, y1), (x2, y2) ∈ L∗,the operators ∧ and ∨ on (L∗,≤) are defıned as following;

(x1, y1) ∧ (x2, y2) = (min(x1, x2),max(y1, y2)),

(x1, y1) ∨ (x2, y2) = (max(x1, x2),min(y1, y2)).

For each J ⊆ L∗ sup J = (sup{x : (x, y ∈ [0, 1]), ((x, y) ∈ J)}, inf{y : (x, y ∈
[0, 1])((x, y) ∈ J)}) and inf J = (inf{x : (x, y ∈ [0, 1])((x, y) ∈ J)}, sup{y :
(x, y ∈ [0, 1])((x, y) ∈ J)}).

Topology concept is widely used by mathematicians and other scientists in
modeling real-world structures and problems. This approach is based on identi-
fying and using the common points of different shapes. The Intuitionistic Fuzzy
Topology was defined by Çoker in 1997 ([6]). Expanding the topology theory on
intuitionistic fuzzy sets has attracted the attention of many researchers.Various
studies were done based on the application and theoretical fields [8, 9, 10, 13].
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The application of intuitionistic fuzzy topology on spatial objects was examined
firstly by M.R. Malek [11].

Operator theory has an important role in modeling real-world problems. The
concept of intuitionistic fuzzy modal operators was defined by K. Atanassov in
1999 and then modal operators were studied extensively in various fields (see
[2, 4, 7, 15]). The first intuitionistic fuzzy topological operators were defined
by K. Atanassov and in subsequent studies new intuitionistic fuzzy topological
operators were introduced (see [4, 8, 15]). Fuzzy and intuitionistic fuzzy pre-
topological /topological operators are applied in computing the values of fuzzy
relations of spatial objects with uncertainty in determining the boundaries such
as forest area, lake, sea, etc. ([5, 13, 14, 16, 17]). Therefore, the defining of new
topological operators is important for approaching spatial problems.

In this paper, new intuitionistic fuzzy topological operators are introduced
and some properties are examined.

2. Preliminaries

Definition 2.1 ([2]). An intuitionistic fuzzy set (shortly IFS) on a set X is an
object of the form

A = {⟨x, µA(x), νA(x)⟩ : x ∈ X},

where µA(x), (µA : X → [0, 1]) is called the “degree of membership of x in A”,
νA(x), (νA : X → [0, 1]) is called the “degree of non- membership of x in A”,
and where µA and νA satisfy the following condition:

µA(x) + νA(x) ≤ 1, for all x ∈ X.

The class of intuitionistic fuzzy sets on X is denoted by IFS(X). The
hesitation degree of x is defined by πA(x) = 1− µA(x)− νA(x).

Definition 2.2 ([2]). An IFS A is said to be contained in an IFS B (notation
A ⊑ B) if and only if, for all x ∈ X : µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

It is clear that A = B if and only if A ⊑ B and B ⊑ A.

Definition 2.3 ([2]). Let A ∈ IFS and let A = {⟨x, µA(x), νA(x)⟩ : x ∈ X}
then the above set is callede the complement of A

Ac = {⟨x, νA(x), µA(x)⟩ : x ∈ X}.

The intersection and the union of two IFSs A and B on X is defined by

A ⊓B = {⟨x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)⟩ : x ∈ X} ,

A ⊔B = {⟨x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)⟩ : x ∈ X} .

Some special Intuitionistic Fuzzy Sets on X are defined as following;

O∗ = {⟨x, 0, 1⟩ : x ∈ X} ,
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X∗ = {< x, 1, 0 >: x ∈ X}.

Atanassov introduced topological operators, and the extensions of these op-
erators was defined by same author in 2001 as:

Definition 2.4 ([2]). Let X be a set and A ∈ IFS(X)

C(A) = {⟨x,K,L⟩ : x ∈ X} ,

where K = supy∈X µA(y), L = infy∈X νA(y) and

I(A) = {⟨x, k, l⟩ : x ∈ X} ,

where k = infy∈X µA(y), l = supy∈X νA(y).

Definition 2.5 ([3, 4]). Let X be a set and A ∈ IFS(X). Let K,L, k and l be
as above forms:

1. Cµ(A) = {⟨x,K,min(1−K, νA(x))⟩ : x ∈ X} ;

2. Cν(A) = {⟨x, µA(x), L⟩ : x ∈ X} ;

3. Iµ(A) = {⟨x, k, νA(x)⟩ : x ∈ X} ;

4. Iν(A) = {⟨x,min(1− l, µA(x)), l⟩ : x ∈ X} .

The characteristic of these operators were investigated in the same study.
We will now define some topological concepts that we refer to in this study.

Definition 2.6 ([1]). An pre−closure operator c : X → X is a map which
associates to each set A ∈ X a set c (A) such that:

1. c (∅) = ∅;

2. A ⊆ c (A) ;

3. c (A ∪B) = c (A) ∪ c (B) , for all A,B ⊂ X.

If in addition to above axioms the operator c is idempotent, that is c (A) =
c (c (A)) then c is called closure operator in X. X can be ℘ (X) , FS (X) or
IFS (X) .

Definition 2.7 ([1]). For the pre−closure operator c defined on X we say that
a set A ∈ X is closed iff c (A) = A. Also,

τc = {A : A ∈ X & c (A) = A}

is the topology generated by the pre−closure operator c. If X is ℘ (X) , FS (X)
or IFS (X) then τ is called crisp topology, fuzzy topology or intuitionistic fuzzy
topology, respectively.
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Definition 2.8 ([1]). An pre−interior operator i : X → X is a map which
associates to each set A ∈ X a set i (A) such that:

1. i (X) = X;

2. i (A) ⊆ A;

3. i (A ∩B) = i (A) ∩ i (B) , for all A,B ⊂ X.

If in addition to above axioms the operator i is idempotent, that is i (A) =
i (i (A)) then i is called interior operator in X. X can be ℘ (X) , FS (X) or
IFS (X) .

Definition 2.9 ([1]). For the pre−interior operator i defined on X we say that
a set A ∈ X is open iff i (A) = A. Also,

τi = {A : A ∈ X & i (A) = A}

is the topology generated by the pre−interior operator i. If X is ℘ (X) , FS (X)
or IFS (X) then τ is called crisp topology, fuzzy topology or intuitionistic fuzzy
topology, respectively.

Remark 2.1. If i is (pre)interior operator then c (A) = ¬i (¬A) is its corre-
sponding pre−closure. That is (c (A) ,¬i (¬A)) is a pair of conjugate preclosure-
preinterior operators.

Proposition 2.1 ([1]). If i and c is a conjugate pair of preinterior and preclo-
sure operators in X, then

τc = {¬A : A ∈ τi} and τi = {¬B : B ∈ τc} .

In [14], Marinov and Atanassov generalized the pre−interior and pre−closure
operators to intuitionistic fuzzy sets and introduced new intuitionistic fuzzy
topological operators. In the same paper, they examined topological properties
of these operators in detail.

Definition 2.10 ([14]). Let us denote α = (α0, α1) and β = (β0, β1) , where
αi, βi ∈ [0, 1] for i ∈ {0, 1} and α0 ≤ α1,β0 ≤ β1. For every γα, γβ ∈ [0, 1] and
based on an arbitrary A ∈ IFS(X). The topological operators

I
γα,γβ

µ;α,β
, C

γα,γβ

ν;α,β
: IFS(X)→ IFS(X)

are defined as follow;

µ
I
γα,γ

β

µ;α,β
(A)

(x) =


µA (x) , 0 ≤ µA(x) < α0

α0, α0 ≤ µA(x) < α0 + γα (α1 − α0)
1

1−γα
(µA(x)− α1) + α1, α0 + γα (α1 − α0) ≤ µA(x) < α1

µA(x), α1 ≤ µA(x) ≤ 1

,
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ν
I
γα,γ

β

µ;α,β
(A)

(x) =



νA (x) , 0 ≤ νA (x) < β0

min


(

1− γβ
)
νA (x) + β1γβ,

1− µ
I
γα,γ

β

µ;α,β
(A)

(x)

 , β0 ≤ νA (x) < β1

νA (x) , β1 ≤ νA (x) ≤ 1

and

µ
C

γα,γ
β

ν;α,β
(A)

(x) =



µA (x) , 0 ≤ µA (x) < β0

min


(

1− γβ
)
µA (x) + β1γβ,

1− ν
C

γα,γ
β

ν;α,β
(A)

(x)

 , β0 ≤ µA (x) < β1

µA (x) , β1 ≤ µA (x) ≤ 1

,

ν
C

γα,γ
β

ν;α,β
(A)

(x) =


νA (x) , 0 ≤ νA(x) < α0

α0, α0 ≤ νA(x) < α0 + γα (α1 − α0)
1

1−γα
(νA(x)− α1) + α1, α0 + γα (α1 − α0) ≤ νA(x) < α1

νA(x), α1 ≤ νA(x) ≤ 1

3. Main results

In this study, new intuitionistic fuzzy topological operators are defined by con-
sidering the operators defined by Marinov and Atanassov in [14]. The variation
of pre−closure operator, pre−interior operator and boundary value according
to varying α, β, γ and ω values is examined with an example.

Definition 3.1. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
topological operator Iγ,ωα,β is defined as follow;

Iγ,ωα,β : IFS(X)→ IFS(X)

such that

µIγ,ωα,β (A) (x) =


inf µA (x) , 0 ≤ µA(x) < αγ (1− β)

(1− β)µA (x) , αγ (1− β) ≤ µA(x) < αγ
1

1−γ (µA(x)− α) + α, αγ ≤ µA(x) < α

µA(x), α ≤ µA(x) ≤ 1

and

νIγ,ωα,β (A) (x) =


νA (x) , 0 ≤ νA (x) < βω

min
{

(1− ω) νA (x) + βω, 1− µIγ,ωα,β (A) (x)
}
, βω ≤ νA (x) < β

νA (x) , β ≤ νA (x) ≤ 1
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Proposition 3.1. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
topological operator Iγ,ωα,β (A) is an intuitionistic fuzzy set.

Proof. Suppose that 0 ≤ νA (x) < βω or β ≤ νA (x) ≤ 1 then νIγ,ωα,β (A) (x) =

νA (x) and it is clear that µIγ,ωα,β (A) (x) ≤ µA(x), we obtain that µIγ,ωα,β (A)(x) +

νIγ,ωα,β (A)(x) ≤ µA(x) + νA(x) ≤ 1.

On the other hand, if βω ≤ νA (x) < β then

µIγ,ωα,β (A) (x) + min{(1− ω) νA (x) + βω, 1− µIγ,ωα,β (A) (x)}

≤ µIγ,ωα,β (A) (x) + 1− µIγ,ωα,β (A) (x) = 1

⇒ µIγ,ωα,β (A) (x) + νIγ,ωα,β (A) (x) ≤ 1.

Proposition 3.2. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
operator Iγ,ωα,β (A) is a pre−interior operator in IFS(X).

Proof. (i) LetA = X∗ then µIγ,ωα,β (A) (x) = µX∗(A) (x) and νIγ,ωα,β (A) (x) = νX∗(A) (x)

for all x ∈ X∗. Iγ,ωα,β (X∗) = X∗

(ii) Let’s examine the Iγ,ωα,β (A) under the given conditions.

First, inf µA (x) ≤ µA(x) and (1− β)µA (x) ≤ µA(x), β ∈ [0, 1] for all x ∈ X.
Now, let µA(x) < α, x ∈ X then for γ ∈ [0, 1],

γµA(x) < γα⇒ µA(x)− γα < µA(x)− γµA(x)

⇒ µA(x) >
µA(x)− α

1− γ
+ α

⇒ µA(x) >
1

1− γ
(µA(x)− α) + α

also, let νA (x) < β, x ∈ X then for ω ∈ [0, 1],ωνA (x) < ωβ ⇒ νA (x) <
(1− ω) νA (x) + ωβ and νA (x) < 1− µIγ,ωα,β (A) (x) for all x ∈ X. Iγ,ωα,β (A) ⊑ A.

(iii) Let A,B ∈ IFS(X).

µIγ,ωα,β (A⊓B) (x)

=


inf (µA (x)∧µB (x)) , 0 ≤ µA (x) ∧ µB (x) < αγ (1− β)

(1− β) (µA (x)∧µB (x)) , αγ (1− β)≤ µA (x) ∧ µB (x) < αγ
1

1−γ ((µA (x)∧µB (x))−α) +α, αγ ≤ µA (x) ∧ µB (x) < α

(µA (x)∧µB (x)) , α ≤ µA (x) ∧ µB (x) ≤ 1
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=



inf µA (x)∧ inf µB (x) , 0 ≤ µA (x) ∧ µB (x) < αγ (1− β)

(1− β)µA (x)∧ (1− β)µB (x) , αγ (1− β)≤ µA (x) ∧ µB (x) < αγ(
1

1−γ (µA (x)−α) + α
)
∧(

1
1−γ (µB (x)−α) + α

)
,

αγ ≤ µA (x) ∧ µB (x) < α

(µA (x)∧µB (x)) , α ≤ µA (x) ∧ µB (x) ≤ 1

=


inf µA (x) , 0 ≤ µA(x) < αγ (1− β)

(1− β)µA (x) , αγ (1− β)≤ µA(x) < αγ
1

1−γ (µA (x)−α) +α, αγ ≤ µA(x) < α

µA (x) , α ≤ µA(x) ≤ 1

∧


inf µB (x) , 0 ≤ µA(x) < αγ (1− β)

(1− β)µB (x) , αγ (1− β)≤ µA(x) < αγ
1

1−γ (µB (x)−α) +α, αγ ≤ µA(x) < α

µB (x) , α ≤ µA(x) ≤ 1

= µIγ,ωα,β (A) (x)∧µIγ,ωα,β (B) (x)

and

νIγ,ωα,β (A⊓B)(x)

=


νA(x)∨νB(x), 0 ≤ νA(x) ∨ νB(x) < βω

min

{
(1− ω)(νA(x)∨νB(x)) + βω,

1−(µIγ,ωα,β (A)(x)∧µIγ,ωα,β (B)(x))

}
, βω ≤ νA(x) ∨ νB(x) < β

νA(x)∨νB(x), β ≤ νA(x) ∨ νB(x) ≤ 1

=



νA(x)∨νB(x), 0≤νA(x)∨νB(x)<βω

min


((1− ω)νA(x)+βω)∨
((1− ω)νB(x)+βω),

(1− µIγ,ωα,β (A)(x)) ∨ (1− µIγ,ωα,β (B)(x))

 , βω ≤ νA(x) ∨ νB(x) < β

νA(x)∨νB(x), β ≤ νA(x) ∨ νB(x) ≤ 1

=


νA(x), 0 ≤ νA(x)< βω

min{(1− ω)νA(x)+βω, 1− µIγ,ωα,β (A)(x)}, βω ≤ νA(x)< β

νA(x), β ≤ νA(x)≤ 1

∨


νB(x), 0 ≤ νA(x)< βω

min{(1− ω)νB(x)+βω, 1− µIγ,ωα,β (B)(x)}, βω ≤ νA(x)< β

νB(x), β ≤ νA(x)≤ 1

= νIγ,ωα,β (A)(x)∨νIγ,ωα,β (B)(x)

This completes the proof.
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Definition 3.2. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
topological operator Cγ,ω

ν;α,β is defined as follow;

Cγ,ω
α,β : IFS(X)→ IFS(X)

such that

µCγ,ω
α,β (A) (x) =


µA (x) , 0 ≤ µA (x)< βω

min
{

(1− ω)µA (x) + βω, 1− νCγ,ω
α,β (A) (x)

}
, βω ≤ µA (x)< β

µA (x) , β ≤ µA (x)≤ 1

and

νCγ,ω
α,β (A) (x) =


inf νA (x) , 0 ≤ νA(x) < αγ (1− β)

(1− β) νA (x) , αγ (1− β)≤ νA(x) < αγ
1

1−γ (νA(x)− α) +α, αγ ≤ νA(x) < α

νA(x), α ≤ νA(x) ≤ 1

Proposition 3.3. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
topological operator Cγ,ω

α,β (A) is an intuitionistic fuzzy set.

Proof. It can be proved similarly to Proposition 3.1.

Proposition 3.4. Let X be a set and A ∈ IFS(X). For α, β, γ, ω ∈ [0, 1], the
operator Cγ,ω

α,β (A) is a pre−closure operator in IFS(X).

Proof. (i) Let A = O∗ then µCγ,ω
α,β (A) (x) = µO∗(A) (x) and νCγ,ω

α,β (A) (x) =

νO∗(A) (x) for all x ∈ O∗. Cγ,ω
α,β (O∗) = O∗

(ii) It is clear that inf νA (x) ≤ νA(x) and (1− β) νA (x) ≤ νA(x), β ∈ [0, 1]
for all x ∈ X.

Now, let νA(x) < α, x ∈ X then for γ ∈ [0, 1],

γνA(x) < γα⇒ νA(x)− γα < νA(x)− γνA(x)

⇒ νA(x) >
νA(x)− α

1− γ
+ α

⇒ νA(x) >
1

1− γ
(νA(x)− α) + α

and also, let µA (x) < β, x ∈ X then for ω ∈ [0, 1],

ωµA (x) < ωβ ⇒ µA (x) < (1− ω)µA (x) + ωβ

and µA (x) < 1− νCγ,ω
α,β (A) (x) for all x ∈ X. So, A ⊑ Cγ,ω

α,β (A) .
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(iii) Let A,B ∈ IFS(X).

νCγ,ω
α,β (A⊔B) (x)

=


inf (νA (x) ∧ νB (x)) , 0 ≤ νA (x) ∧ νB (x) < αγ (1− β)

(1− β) (νA (x) ∧ νB (x)) , αγ (1− β)≤ νA (x) ∧ νB (x) < αγ
1

1−γ ((νA (x) ∧ νB (x))− α) +α, αγ ≤ νA (x) ∧ νB (x) < α

(νA (x) ∧ νB (x)) , α ≤ νA (x) ∧ νB (x) ≤ 1

=



inf νA (x)∧ inf νB (x) , 0 ≤ νA (x) ∧ νB (x) < αγ (1− β)

(1− β) νA (x)∧ (1− β) νB (x) , αγ (1− β)≤ νA (x) ∧ νB (x) < αγ(
1

1−γ (νA (x)− α) + α
)
∧(

1
1−γ (νB (x)− α) + α

)
,

αγ ≤ νA (x) ∧ νB (x) < α

(νA (x) ∧ νB (x)) , α ≤ νA (x) ∧ νB (x) ≤ 1

=


inf νA (x) , 0 ≤νA(x) < αγ (1− β)

(1− β) νA (x) , αγ (1− β)≤νA(x) < αγ
1

1−γ (νA (x)− α) +α, αγ ≤νA(x) < α

νA (x) , α ≤νA(x) ≤ 1

∧


inf νB (x) , 0 ≤νB(x) < αγ (1− β)

(1− β) νB (x) , αγ (1− β)≤νB(x) < αγ
1

1−γ (νB (x)− α) +α, αγ ≤νB(x) < α

νB (x) , α ≤νB(x) ≤ 1

= νCγ,ω
α,β (A) (x) ∧ νCγ,ω

α,β (B) (x)

and

µCγ,ω
α,β (A⊔B)(x)

=


µA(x)∨µB(x), 0 ≤ µA(x) ∨ µB(x) < βω

min

{
(1− ω)(µA(x) ∨ µB(x)) + βω,

1− (νCγ,ω
α,β (A)(x) ∧ νCγ,ω

α,β (B)(x))

}
, βω ≤ µA(x) ∨ µB(x) < β

νA(x)∨νB(x), β ≤ µA(x) ∨ µB(x) ≤ 1

=



µA(x)∨µB(x), 0 ≤ µA(x) ∨ µB(x) < βω

min


((1− ω)µA(x) + βω)∨
((1− ω)µB(x) + βω),

(1− νCγ,ω
α,β (A)(x)) ∨ (1− νCγ,ω

α,β (B)(x))

 , βω ≤ µA(x) ∨ µB(x) < β

µA(x)∨µB(x), β ≤ µA(x) ∨ µB(x) ≤ 1
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=


µA(x), 0 ≤µA(x)< βω

min{(1− ω)µA(x) + βω, 1− νCγ,ω
α,β (A)(x)}, βω ≤µA(x)< β

µA(x), β ≤µA(x)≤ 1

∨


µB(x), 0 ≤µA(x)< βω

min{(1− ω)µB(x) + βω, 1− νCγ,ω
α,β (B)(x)}, βω ≤µA(x)< β

µB(x), β ≤µA(x)≤ 1

= µCγ,ω
α,β (A)(x)∨µCγ,ω

α,β (B)(x)

Hence, proof completed.

Proposition 3.5. The operator Iγ,ωα,β is generalization of the operator Iµ and

the operator Cγ,ω
α,β is generalization of the operator Cν .

Proof. Let X be a set and A ∈ IFS(X). It is clear that to take γ = α = 1, ω =
0 and β = 1 − inf µA(x), i.e. Iµ = I1,01,(1−k) is provides the definition. On the

other hand, if γ=α=1, ω=0 and β=1− inf νA(x) then Cν=C1,0
1,(1−L).

Theorem 1. Let X be a set and A ∈ IFS(X) then Cγ,ω
α,β (A) = ¬ Iγ,ωα,β (¬A) ,

i.e Iγ,ωα,β and Cγ,ω
α,β is a conjugate pair of pre−interior and pre−closure operators.

They define the same topology τIγ,ωα,β
= {¬B : B ∈ τC

γ,ω
α,β }.

Proof. Let X be a set and A ∈ IFS(X).

µIγ,ωα,β (¬A) (x) =


inf νA (x) , 0 ≤ νA(x) < αγ (1− β)

(1− β) νA (x) , αγ (1− β) ≤ νA(x) < αγ
1

1−γ (νA(x)− α) + α, αγ ≤ νA(x) < α

νA(x), α ≤ νA(x) ≤ 1

= νCγ,ω
α,β (A) (x)

and

νIγ,ωα,β (¬A) (x)=


µA (x) , 0 ≤ µA (x) < βω

min
{

(1− ω)µA (x) + βω, 1− νCγ,ω
α,β (A)

}
, βω ≤ µA (x) < β

µA (x) , β ≤ µA (x) ≤ 1

= µCγ,ω
α,β (A) (x)

So, Cγ,ω
α,β (A) = ¬ Iγ,ωα,β (¬A) . From Proposition 2.1, we obtain that τIγ,ωα,β

=

{¬B : B ∈ τC
γ,ω
α,β }.

Definition 3.3. The boundary of set A in the intuitionistic fuzzy topology
defined by these pre−interior and pre−closure operators is ∂A = Cγ,ω

α,β (A) ∩
(¬ Iγ,ωα,β (A)) according to the IF boundary definition given by Malek [11].
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In the following example, Iγ,ωα,β , Cγ,ω
α,β and boundary value of an intuitionistic

fuzzy set A are examined, for different α, β, γ and ω.

Example 3.1. Let the universal X and A ∈ IFS(X) be given in the table
below.

Figure 1: Table
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As can be seen from the tables, since there are no conditions limiting α, β, γ
and ω values, this diversity provides wide application for problems studied using
topological operators.

4. Conclusion

In this study, new topological operators are defined on intuitionistic fuzzy sets
and their theoretical properties are examined. It is obvious that these defined
operators will contribute to the modeling of real-world problems with uncer-
tainty in determining the boundaries.
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Abstract. In this paper, we present some sufficient conditions for which a Banach
spaceX has normal structure in term of the modulus of weak uniform rotundity δX(ϵ, f),
the Domı́nguez-Benavides coefficient R(1, X) and the coefficient of weak orthogonality
ω(X). Some known results are improved and strengthened.
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coefficient of weak orthogonality, normal structure.

1. Introduction

Let X be a Banach space, and SX = {x ∈ X : ∥x∥ = 1}, BX = {x ∈ X : ∥x∥ ≤
1} denote the unit sphere and the unit ball of the Banach space X, respectively.
For x ∈ SX , let ∇x ⊂ SX∗ be the set of norm 1 supporting functionals of SX at
x, that is f ∈ ∇x ⇔ ⟨f, x⟩ = 1, where X∗ stands for the dual space of X.

Definition 1.1. The bounded convex subset C of a Banach space X is said to
have normal structure, if for every convex subset H of C that contains more
than one point, there exists a point x0 ∈ H such that

sup{∥x0 − y∥ : y ∈ H} < sup{∥x− y∥ : x, y ∈ H}.

The Banach space X is said to have weak normal structure, if every weakly
compact convex subset of X that contains more than one point has normal
structure. In reflexive spaces, both weak normal structure and normal structure
coincide. A Banach space X is said to have uniform normal structure, if there

*. Corresponding author



NORMAL STRUCTURE AND THE MODULUS OF WEAK UNIFORM ROTUNDITY ... 877

exists 0 < c < 1 such that for any closed bounded convex subset H of X that
contains more than one point, there exists x0 ∈ H such that

sup{∥x0 − y∥ : y ∈ H} < c sup{∥x− y∥ : x, y ∈ H}.

Let C be a nonempty bounded closed convex subset of a Banach space X, a
mapping T : C → C is said to be nonexpansive provided the inequality

∥Tx− Ty∥ ≤ ∥x− y∥

holds for every x, y ∈ C. A Banach space X is said to have the fixed point
property if every nonexpansive mapping T : C → C has a fixed point.

Weak normal structure, normal structure and uniform normal structure are
important in the metric fixed point theory for nonexpansive mapping. It was
proved by Kirk [7] that if X has normal structure, then Banach space X has
fixed point property. Since then, many mathematicians have investigated many
various geometrical properties of Banach spaces implying weak normal structure,
normal structure or uniform normal structure. A possible approach to look for
some geometric properties in term of some geometric constants which imply
weak normal structure, normal structure or uniform normal structure. Among
the geometric constants, the modulus of weak uniform rotundity δX(ϵ, f) plays
an important role in the description of various geometric structures.

Definition 1.2. The modulus of weak uniform rotundity is the function δX(ϵ, f) :
[0, 2]× SX∗ → [0, 1] defined in the following way ([10]):

δX(ϵ, f) = inf

{
{1} ∪ {1− ∥x+ y∥

2
: x, y ∈ SX , |⟨f, x− y⟩| ≥ ϵ}

}
,

where 0 ≤ ϵ ≤ 2 and f ∈ SX∗. The space X is weakly uniformly rotund if
δX(ϵ, f) > 0, whenever 0 < ϵ ≤ 2 and f ∈ SX∗. For any f ∈ SX∗, δX(ϵ, f) is a

continuous function in 0 ≤ ϵ < 2 and δX(ϵ,f)
ϵ is increasing in (0, 2].

Rencently, Gao [3] studies the modulus of weak uniform rotundity exten-
sively, and get some various geometrical properties and some sufficient condi-
tions for normal structure as follows:

(i) If δX(ϵ, f) > 1
2−

ϵ
4 , 0 ≤ ϵ < 2 for all f ∈ SX∗ , then X is uniform nonsquare.

(ii) If δX(1, f) > 0 for all f ∈ SX∗ , then X has uniform normal structure.

(iii) If δX(ϵ, f) > 1
2 −

ϵ
4 , 0 ≤ ϵ < 2 for all f ∈ SX∗ , then X has uniform normal

structure.

The purpose of this paper is to obtain some classes of Banach spaces with nor-
mal structure, which involves the modulus of weak uniform rotundity δX(ϵ, f),
the Domı́nguez-Benavides coefficient R(1, X) and the coefficient of weak orthog-
onality ω(X). Moreover, these results are strictly wider than the previous Gao’s
results.
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2. Preliminaries

Firstly, let us recall some basic facts about ultrapowers. A filter F on the set N
of natural numbers is called to be an ultrafilter if it is maximal with respect to
set inclusion. The ultrafilter is called trivial if it is of the form A : A ⊂ N, i0 ∈ A
for some fixed i0 ∈ N, otherwise, it is called nontrivial. The sequence {xn}
in X converges to x with respect to F , denoted by limF xi = x if for each
neighborhood U of x, {i ∈ N : xi ∈ U} ∈ F . Let l∞(X) denote the subspace of
the product space ⨿n∈NX equipped with the norm

∥(xn)∥ := sup
n∈N

∥xn∥ <∞.

Let U be an ultrafilter on N and

NU = {(xn) ∈ l∞(X) : lim
U

∥xn∥ = 0}.

The ultrapower of X, denoted by X̃ is the quotient space l∞(X)/NU equipped
with the quotient norm. (xn)U to denote the elements of the ultrapower. It
follows from the definition of the quotient norm that

∥(xn)U∥ = lim
U

∥xn∥.

If U is nontrivial, then X can be embedded into X̃ isometrically ([6]).
In what follows, some coefficients are introduced, which will be used in the

following sections.

Definition 2.1. The following Domı́nguez-Benavides coefficient was introduced
in [2]:

R(1, X) = sup
{
lim inf
n→∞

{∥xn + x∥}
}
,

where the supremum is taken over all x ∈ X with ∥x∥ ≤ 1 and all weakly null
sequences {xn} in BX such that

D[(xn)] := lim sup
n→∞

lim sup
m→∞

∥xn − xm∥ ≤ 1.

It is clear that 1 ≤ R(1, X) ≤ 2. Some geometric conditions sufficient for
normal structure in term of Domı́nguez-Benavides coefficient have been studied
in [11], [12], [13].

Definition 2.2. The coefficient of weak orthogonality of X was introduced by
Sims in [9]:

ω(X) = sup{λ > 0 : λ · lim inf
n→∞

∥xn + x∥ ≤ lim inf
n→∞

∥xn − x∥},

where the supremum is taken over all the weakly null sequence (xn) in X and
all elements x of X. It is known that 1

3 ≤ ω(X) ≤ 1 and ω(X) = ω(X∗) in the
reflexive Banach spaces (see [5], [8]).
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3. Main results

Lemma 3.1 ([4]). Let X be a Banach space without weak normal structure,
then there exists a weakly null sequence {xn}∞n=1 ⊆ SX such that

lim
n

∥xn − x∥ = 1 for all x ∈ co{xn}∞n=1.

Theorem 3.2. Let X be a Banach space with δX(1+ϵ, f) > g(ϵ) for all f ∈ SX∗

and 0 ≤ ϵ ≤ 1, then X has weak normal structure, where the function g(ϵ) is
defined as

g(ϵ) :=


(R(1,X)−1)ϵ

2 , 0 ≤ ϵ ≤ 1
R(1,X) ,

1
2

(
1− 1−ϵ

R(1,X)−1

)
, 1

R(1,X) < ϵ ≤ 1.

Proof. Suppose that X does not have weak normal structure, by the Lemma
3.1, there exists a weakly null sequence {xn}∞n=1 in SX such that

lim
n

∥xn − x∥ = 1 for all x ∈ co{xn}∞n=1.

Take {fn} ⊂ SX∗ such that fn ∈ ∇xn for all n ∈ N. By the reflexivity of X∗,

without loss of generality, we can assume that fn
w∗
−−→ f for some f ∈ BX∗ . If

necessary by passing to a subsequence, we can choose a subsequence of {xn}∞n=1,
denoted again by {xn}∞n=1, such that

lim
n

∥xn+1 − xn∥ = 1, |(fn+1 − f)(xn)| <
1

n
, fn(xn+1) <

1

n
,(1)

for all n ∈ N and it follows that

lim
n
fn+1(xn) = lim

n
(fn+1 − f)(xn) + f(xn) = 0.

Note that the sequence {xn} is weakly null and verifies D[{xn}] = 1. It follows
from the definition of R(1, X), then

lim inf
n

∥xn+1 + xn∥ ≤ R(1, X).

Therefore, we can choose a subsequence {xn} such that

∥xn+1 + xn∥ ≤ R(1, X).(2)

Denote that R := R(1, X) and consider two cases for ϵ ∈ [0, 1].
Firstly, if ϵ ∈ [0, 1

R ], take

x̃ = (xn+1 − xn)U , ỹ = {[1− (R− 1)ϵ]xn+1 + ϵxn}U and f̃ = (−fn)U .

By the 1 and 2, then
∥f̃∥ = f̃(x̃) = ∥x̃∥ = 1.
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and

∥ỹ∥ =

∥∥∥∥[1− (R− 1)ϵ]xn+1 + ϵxn

∥∥∥∥
=

∥∥∥∥ϵ(xn + xn+1) + (1−Rϵ)xn+1

∥∥∥∥
≤ Rϵ+ (1−Rϵ) = 1.

Therefore, we have

f̃(x̃− ỹ) = lim
U
(−fn)

(
(R− 1)ϵxn+1 − (1 + ϵ)xn

)
= 1 + ϵ,

∥x̃+ ỹ∥ = lim
U

∥∥∥∥[2− (R− 1)ϵ]xn+1 − (1− ϵ)xn

∥∥∥∥
≥ lim

U
(fn+1)

(
[2− (R− 1)ϵ]xn+1 − (1− ϵ)xn

)
= 2− (R− 1)ϵ.

From the definition of δX(ϵ, f), then

δX(1 + ϵ, f) = δ
X̃
(1 + ϵ, f) ≤ (R− 1)ϵ

2
,

which is a contradiction.

Secondly, if ϵ ∈ ( 1
R , 1], in this case R > 1, other ϵ > 1. Let

x̃ = (xn+1 − xn)U , ỹ = {[1− (R− 1)ϵ′]xn + ϵ′xn+1}U , and f̃ = (−fn)U ,

where ϵ′ = 1−ϵ
R−1 ∈ [0, 1

R). It follows from the first case, then

∥f̃∥ = ∥x̃∥ = 1 and ∥ỹ∥ ≤ 1,

f̃(x̃− ỹ) = lim
U
(−fn)

(
(1− ϵ′)xn+1 − [2− (R− 1)ϵ′]xn

)
= 2− (R− 1)ϵ′,

∥x̃+ ỹ∥ = lim
U

∥(1 + ϵ′)xn+1 − (R− 1)ϵ′xn∥

≥ lim
U
(fn+1)

(
(1 + ϵ′)xn+1 − (R− 1)ϵ′xn

)
= 1 + ϵ′.
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From the definition of δX(ϵ, f), then

δX(2− (R− 1)ϵ′, f) = δ
X̃
(2− (R− 1)ϵ′, f) ≤ 1− ϵ′

2
,

which is equivalent to

δX(1 + ϵ, f) = δ
X̃
(1 + ϵ, f) ≤ 1

2

(
1− 1− ϵ

R− 1

)
.

This is a contradiction.

In fact, take ϵ = 0 in Theorem 3.2, we can easily get the following result in
[3].

Corollary 3.3. Let X be a Banach space with

δX(1, f) > 0 for all f ∈ SX∗ ,

then X has weak normal structure.

Remark 3.4. (i) Theorem 3.2 strengthens the result of Gao: δX(1, f) > 0 for
all f ∈ SX∗ =⇒ X has normal structure, which gives the precise sufficient
condition for the normal structure, whenever 1 ≤ 1 + ϵ ≤ 2.

(ii) It is note that Corollary 3.3 is sharp in the sense that there is a Banach
space X such that δX(1, f) = 0, X fails to have normal structure. Indeed,
we consider the Bynum space ℓp,∞, which is the space ℓp (1 < p < +∞)
with the norm

∥x∥p,∞ = max{∥x+∥, ∥x−∥},

where x+ is the positive part of x, defined as x+(i) = max{x(i), 0} and
x− = x+ − x. It is known that ℓp,∞ is a super-reflexive space that fails
normal structure(see [1]), therefore δX(1, f) = 0. This example shows that
the condition in Corollary 3.3 is the best possible.

In the proof of following Theorem 3.5, we will get a property P that implying
the uniform normal structure of a Banach space and also implying uniform
normal structure of its dual. The proof is in the following fashion, suppose X∗

fails to have uniform normal structure, then X̃∗ fails to have normal structure

[7]. If X is super-reflexive, applying Lemma 3.1 yields vectors in (
˜̃
X∗)∗ = ˜̃X

that are used to show ˜̃X /∈ P, which in turn implies X /∈ P (The notation X /∈ P
will mean that a Banach space X does not satisfy the property P.) Thus, in
order to prove the property P implying X∗ has uniform normal structure, we
only need to show that if X = X∗∗ fails to have uniform normal structure, then

(X̃)∗ = ( ˜̃X)∗ fails to satisfy the property P by Lemma 3.1.
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Theorem 3.5. Let X be a Banach space such that

δX(1 + ω(X), f) >
1− ω(X)

2

for all f ∈ SX∗, then X and X∗ have uniform normal structure.

Proof. Since 1
3 ≤ ω(X) ≤ 1, it is easy to check that

δX(1 + ω(X), f) >
1− ω(X)

2
≥ 1

2
− 1 + ω(X)

4
=

1− ω(X)

4
,

then X is uniformly nonsquare by the result (i) of Gao, it suffices to prove that
X has weak normal structure whenever

δX(1 + ω(X), f) >
1− ω(X)

2
.

Firstly, repeating the arguments in the proof of Theorem 3.2, take x̃ = (xn+1 −
xn)U , ỹ = [ω(X)(xn+1 + xn)]U , and f̃ = (−fn)U . By the definition of ω(X) and
Lemma 3.1, then

∥f̃∥ = f̃(x̃) = ∥x̃∥ = 1,

∥ỹ∥ = ∥[ω(X)(xn+1 + xn)]U∥ ≤ ∥(xn+1 − xn)U∥ = 1,

f̃(x̃− ỹ) = lim
U
(−fn)

(
(1− ω(X))xn+1 − (1 + ω(X))xn

)
= 1 + ω(X),

∥x̃+ ỹ∥ = lim
U

∥(1 + ω(X))xn+1 − (1− ω(X))xn∥

≥ lim
U
(fn+1)

(
(1 + ω(X))xn+1 − (1− ω(X))xn

)
= 1 + ω(X).

The definition of δX(ϵ, f) implies that

δX(1 + ω(X), f) = δ
X̃
(1 + ω(X), f) ≤ 1− ω(X)

2
.

This is a contradiction. Consequently, if δX(1+ω(X), f) > 1−ω(X)
2 , then X has

weak normal structure.
On the other hand, suppose that X∗∗ does not have weak normal structure,

x̃∗ = (fn)U , ỹ∗ = [ω(X∗)(fn+1 − fn+2)]U and x̃∗∗ = (xn − xn+1)U .

By the definition of ω(X∗) and Lemma 3.1, then

∥x̃∗∥ = ∥(fn)U∥ = 1 and ⟨x̃∗, x̃∗∗⟩ = ⟨fn, xn − xn+1⟩ = 1,
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and

∥ỹ∗∥ = ω(X∗)∥(fn+1 − fn+2)U∥ ≤ 1.

Moreover, we have

⟨x̃∗ − ỹ∗, x̃∗∗⟩ = lim
U
⟨fn − ω(X∗)fn+1 + ω(X∗)fn+2, xn − xn+1⟩

= 1 + ω(X∗),

∥x̃∗ + ỹ∗∥ = lim
U

∥fn + ω(X∗)fn+1 − ω(X∗)fn+2∥

≥ lim
U
⟨fn + ω(X∗)fn+1 − ω(X∗)fn+2, xn − xn+2⟩

= 1 + ω(X∗).

From the definition of δX∗(ϵ, f) and ω(X) = ω(X∗), then

δX∗(1 + ω(X∗), f) = δ(X∗)U (1 + ω(X), f) = δ(XU )∗(1 + ω(X), f) >
1− ω(X)

2
.

Remark 3.6.

(i) It is well known that 1
3 ≤ ω(X) ≤ 1, then 4

3 ≤ 1+ω(X) ≤ 2, therefore the
condition in Theorem 3.5 implies the uniform normal structure of Banach
spaces are shown to imply uniform normal structure of their dual spaces as
well, which are complementary to the Gao’s results, whenever 4

3 ≤ ϵ ≤ 2.

(ii) Consider the Hilbert space H, it is well known that δH(ϵ, f) = 1−
√

2(2−ϵ)

2
for all f ∈ SX∗ and 0 ≤ ϵ ≤ 2, R(1, X) = 1 and ω(X) = 1, it is easy to

check that δH(ϵ, f) > 0 = (R(1,X)−1)ϵ
2 = 1−ω(X)

2 , then X has weak normal
structure from Theorem 3.2 or Theorem 3.5.
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1. Introduction

All groups considered are finite. Let G be a group, we denote by π(G) the set
of all prime divisors of |G|. Let p ∈ π(G), by Gp, we mean a Sylow p-subgroup
of G. The other notations and terminologies used in this note are standard, as
in [1, 2].

The p-length of a p-soluble group is an important invariant parameter. Many
scholars have investigated on this invariant parameter, the readers can refer
to [3]-[6] for instances. Therefore, the celebrated Hall-Higman theorem has
established basic theorem on the p-length of a p-soluble group G, showing that
the p-length of G is bounded above by the nilpotent class and the minimal
number of generators of Gp and the p-rank of G [3].

In general, a product of two p-soluble subgroups need not be p-soluble. How-
ever, if the groupG is a mutually permutable product of two p-soluble subgroups,
then G is still a p-soluble group [7]. Recall that the product G = AB of the
subgroups A and B of a group G is called a mutually permutable product of A
and B if AU = UA for any subgroup U of B and BV = V B for any subgroup V
of B [7]. Cossey and Li in [6] investigated the p-length of a mutually permutable
product of two p-soluble groups and obtained the following result:

Theorem 1.1 ([6, Theorem 1.1]). Suppose that G = AB is a mutually per-
mutable product of two p-soluble subgroups A and B, where p is a prime in
π(G). If lp(A) ≤ k and lp(B) ≤ k, then lp(G) ≤ k + 1.

In the note, we continue the study on the p-length of a mutually permutable
product of two p-soluble groups. By use of several invariant parameters of A
and B, we will improve the above results as follows.

Theorem 1.2. Suppose that G = AB is a mutually permutable product of two
p-soluble subgroups A and B, where p is a prime in π(G). Then

(1) lp(G) ≤ max{c(Ap), c(Bp)};
(2) lp(G) ≤ max{d(Ap), d(Bp)};
(3) lp(G) ≤ max{lp(A), lp(B)}+ 1;
(4) lp(G) ≤ max{rp(A), rp(B)}+ 1.

Note that, max{lp(A), lp(B)} ≤ lp(G), we get the following corollary:

Corollary 1.1. Suppose that G = AB is a mutually permutable product of
two p-soluble subgroups A and B, where p is a prime in π(G). Then, either
lp(G) = max{lp(A), lp(B)} or lp(G) = max{lp(A), lp(B)}+ 1.

2. Preliminaries

Let π be a set of primes and letG be a group. As well-known, Oπ(G) is defined to
be the intersection of all normal subgroups N of G such that G/N is a π-group.
Hence, G/Oπ(G) is the maximal π-factor group of G ([8, IX, 1.1]). Following
[6], we invoke the following definition way of p-length of a p-soluble group.



A NOTE ON THE p-LENGTH OF A p-SOLUBLE GROUP 887

If p is a prime, the lower p-series of G is

G ≥ Op′(G) ≥ Op′,p(G) ≥ Op′,p,p′(G) ≥ · · · .

If G is p-soluble, the last term of the lower p-series is 1 and if the lower p-series
of G is

G = G0 ≥ G1 ≥ · · · ≥ Gs = 1,

then the p-length of G is the number of non-trivial p-groups in the set

{G/G1, G1/G2, . . . , Gs−1/Gs}.

Lemma 2.1 ([7, Theorem 4.1.15]). Let the group G be the product of the mu-
tually permutable subgroups A and B. If A and B are p-soluble, then G is
p-soluble.

Lemma 2.2 ([7, Lemma 4.1.10]). Let the group G be the product of the mutually
permutable subgroups A and B. If N is a normal subgroup of G, then G/N is
a mutually permutable product of AN/N and BN/N .

Lemma 2.3 ([7, Theorem 4.3.11]). Let the non-trivial group G be the product
of mutually permutable subgroups A and B. Then AGBG is not trivial.

Lemma 2.4 ([7, Lemma 4.3.3]). Let the group G be the product of the mutually
permutable subgroups A and B. Then:

(1) If N is a minimal normal subgroup of G, then {A ∩N,B ∩N} ⊆ {N, 1}.

(2) If N is a minimal normal subgroup of G contained in A and B ∩N = 1,
then N ≤ CG(A) or N ≤ CG(B). If furthermore N is not cyclic, then
N ≤ CG(B).

Lemma 2.5 ([7, Corollary 4.1.25]). Let the group G be the product of the mu-
tually permutable subgroups A and B. Then A′ and B′ are subnormal in G.

3. Proof of Theorem 1.2

Proof. It is clear that (3) implies (4) by Hall-Higman theorem on the p-length
of p-soluble groups. Hence, we only need to prove (1), (2) and (3).

Let G be a counter-example of minimal order. We proceed in steps.
Step 1. G is p-soluble.

This follows from Lemma 2.1.
Step 2. N = Op(G) is unique minimal normal and complemented in G and
N = CG(N).

Let N be a minimal normal subgroup of G. We consider G = G/N together
with A = AN/N and B = BN/N . It is clear that Ap = ApN/N and Bp =
BpN/N is respectively a Sylow p-subgroup of A and B. By Lemma 2.2, G is



888 HUAQUAN WEI, JIAO LI, HUILONG GU, YANGMING LI and LIYING YANG

the mutually product of two p-soluble subgroups A and B, hence G satisfies the
hypotheses of the theorem. For (1), the choice of G implies that

lp(G) ≤ max{c(Ap), c(Bp)} ≤ max{c(Ap), c(Bp)}.

If N1 is minimal normal in G with N1 ̸= N , then we also have

lp(G/N1) ≤ max{c(Ap), c(Bp)}.

It follows that

lp(G) ≤ max{lp(G/N), lp(G/N1)} ≤ max{c(Ap), c(Bp)},

a contradiction. Therefore N is the unique minimal normal subgroup of G.
Moreover, if N ≤ Op′(G) or N ≤ Φ(G), then

lp(G) = lp(G) ≤ max{c(Ap), c(Bp)},

contradicting to the choice of G. Hence, Op′(G) = Φ(G) = 1 and N = Op(G),
Step 1 follows. Similarly, we can prove Step 1 for (2) and (3).
Step 3. N ≤ A ∩B.

Since AGBG ̸= 1 by Lemma 2.3, we may assume N ≤ A by Step 1. If N ̸≤ B,
then N ∩ B = 1 by Lemma 2.4(1). If N is cyclic, then N = CG(N) ∈ Sylp(G),
hence lp(G) = 1, a contradiction. Thus, N is not cyclic and N ≤ CG(B) by
Lemma 2.4(2). Furthermore, B ≤ CG(N) = N ≤ A and so G = AB = A,
Theorem 1.2 holds by Hall-Higman theorem. This shows N ≤ A ∩B.
Step 4. If N ≤M ≤ G, then Op′(M) = 1.

Since Op′(M) ≤ CM (N) ≤ CG(N) = N , we have Op′(M) = 1.
Step 5. Finishing the proof.

For convenience, write G = G/N , A = A/N and B = B/N . We know that
G satisfies the hypotheses of the theorem. Now, we prove by distinguishing
three invariant parameters.

(1) By Step 2 and 3, Z(Ap) ≤ CA(N) = N , hence c(Ap) ≤ c(Ap) − 1.
Similarly, c(Bp) ≤ c(Bp)− 1. The minimality of G implies that

lp(G) ≤ max{c(Ap), c(Bp)} ≤ max{c(Ap)− 1, c(Bp)− 1}.

Thus, lp(G) ≤ max{c(Ap), c(Bp)}. This is the final contradiction.
(2) Since N is complemented in G, N ̸≤ Φ(Ap), i.e., N ∩ Φ(Ap) < N . Now,

that Ap is a p-group, we have Φ(Ap) = Φ(Ap)N/N and so

Ap/Φ(Ap) = (Ap/N)/(Φ(Ap)N/N) ∼= Ap/(Φ(Ap)N).

Furthermore,

|Ap/Φ(Ap)| = |Ap/(Φ(Ap)N)| = |Ap/Φ(Ap)|/|N/(N ∩ Φ(Ap))| < |Ap/Φ(Ap)|.

This implies that d(Ap) ≤ d(Ap)− 1. Similarly, d(Bp) ≤ d(Bp)− 1.



A NOTE ON THE p-LENGTH OF A p-SOLUBLE GROUP 889

The choice of G implies that

lp(G) ≤ max{d(Ap), d(Bp)} ≤ max{d(Ap)− 1, d(Bp)− 1}.

Thus, lp(G) ≤ max{d(Ap), d(Bp)}. This is the final contradiction.
(3) Firstly, we have

Claim 1. max{lp(A), lp(B)} > 1.
Suppose otherwise, max{lp(A), lp(B)} = 1. Then
(i) A = Ap ×Ap′ and B = Bp ×Bp′ .
Since lp(A) ≤ 1, by Step 4, we can write A = [Ap]Ap′ . Since [Ap, Ap′ ] ⊴

⟨Ap, Ap′⟩ = A and [Ap, Ap′ ] ≤ [A,A] = A′, we have [Ap, Ap′ ]⊴A′. Noticing that
A′ is subnormal in G by Lemma 2.5, [Ap, Ap′ ] is a subnormal p-subgroup of G.
Hence, [Ap, Ap′ ] ≤ Op(G) = N and consequently, A = Ap ×Ap′ .

Similarly, B = Bp ×Bp′ .
(ii) Both Ap and Bp are abelian groups.
By (i), (A)′ = (Ap)

′×(Bp)
′. Note that (A)′ is subnormal in G by Lemma 2.2

and 2.5, (Ap)
′ is a subnormal p-subgroup of G. Hence, (Ap)

′ ≤ Op(G) = 1, that
is, Ap is abelian.

Similarly, Bp is also abelian.
(iii) Finishing the proof of Claim 1.
In view of (ii) and the result of (1), lp(G) ≤ max{c(Ap), c(Bp)} ≤ 1. Hence,

lp(G) ≤ 2, a contradiction.
Now, we may assume that max{lp(A), lp(B)} = lp(A) > 1. Furthermore, we

have
Claim 2. 1 < Op(A

′) ≤ N .
Since lp(A) > 1, A′ ̸= 1. But Op′(A

′) ≤ Op′(A), hence Op′(A
′) = 1 by

Step 4. Because A′ is subnormal in G, Op(A
′) is subnormal in G. Thereby

1 < Op(A
′) ≤ N .

Claim 3. Let O be the last non-trivial term of the lower p-series of A. Then
O ≤ Op(A

′).
Since Op′(A) = 1, O is a p-group and O ≤ Ap. On the other hand, since

lp(A) > 1,

O ≤ Op′,p(A) = Op(Op′(A)) ≤ Op(A).

Consequently, O ≤ ApA
′ ∩Op(A)A′. Noticing that

A/A′ = ApA
′/A′ ×Op(A/A′) = ApA

′/A′ ×Op(A)A′/A′,

we have ApA
′ ∩Op(A)A′ = A′. Hence, O ≤ A′ and O ≤ Op(A

′).
Claim 4. max{lp(A), lp(B)} ≤ lp(A)− 1.

By Claim 2 and 3, we have O ≤ N . Clearly, lp(A) ≤ lp(A/O) ≤ lp(A) − 1.
Similarly, lp(B) ≤ lp(A) − 1 if lp(B) = lp(A). Of course, lp(B) ≤ lp(B) ≤
lp(A)− 1 if lp(B) < lp(A). Thus, Claim 4 follows.

Finally, since lp(G) ≤ max{lp(A), lp(B)}+ 1 ≤ lp(A), we obtain

lp(G) ≤ lp(A) + 1 = max{lp(A), lp(B)}+ 1.

This is the final contradiction and the proof is complete.
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