Inequalities of DVT-type – the two-dimensional case continued

Barbora Batíková

Department of Mathematics CULS Kamýcká 129 165 21 Praha 6 - Suchdol Czech Republic batikova@tf.czu.cz

Tomáš J. Kepka

Faculty of Education Charles University M. Rettigové 4 116 39 Praha 1 Czech Republic tomas.kepka@pedf.cuni.cz

Petr C. Němec

Department of Mathematics CULS Kamýcká 129 165 21 Praha 6 - Suchdol Czech Republic nemec@tf.czu.cz

Abstract. In this note, particular two-dimensional inequalities dealing with two *n*-tuples of integer numbers under relatively general assumptions are investigated. Moreover, systems of integers for which the equality holds are completely described.

Keywords: integer numbers, inequality

MSC 2020: 11D75

1. Introduction

In [4], A. Drápal and V. Valent proved that in a finite quasigroup Q of order n the number of associative triples $a(Q) \geq 2n - i(Q) + (\delta_1 + \delta_2)$, where i(Q) is the number of idempotents in Q, i.e., $i(Q) = |\{x \in Q | xx = x\}|, \ \delta_1 = |\{z \in Q | zx \neq x \text{ for all } x \in Q\}|$ and $\delta_2 = |\{z \in Q | xz \neq x \text{ for all } x \in Q\}|$. This important result is an easy consequence of the inequality

$$\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) - \sum_{i=1}^{k} (a_i + b_i) \ge 3n - 2k + (r+s),$$

where $n \geq k \geq 0$, $a_1, \ldots, a_n, b_1, \ldots, b_n$ are non-negative integers such that $\sum a_i = n = \sum b_i$, $a_i \geq 1$ and $b_i \geq 1$ for $1 \leq i \leq k$, r is the number of i with $a_i = 0$ and s is the number of i with $b_i = 0$. It should be noted that quasigroups with small a(Q) may have applications in cryptography [5]. The lengthy and complicated proof of this DVT-inequality (inequality of Drápal-Valent type) in [4] is based on highly semantically involved insight.

In [6], a very short elementary arithmetical proof of a more general inequality of this type was found under assumption that $\sum_{i=1}^{n} a_i \geq n$, $\sum_{i=1}^{n} b_i \geq n$. This inequality is two-dimensional in the sense that it works with two n-tuples of integers. The approach in [6] opens a road to investigation of similar DVT-inequalities which could be useful in further investigations of estimates in non-associative algebra and they are also of independent interest. Hence they deserve a thorough examination; however, the research is only at its beginning. In [1] and [2], the one-dimensional case working with one n-tuple of real numbers was investigated. In [3], the investigation of the two-dimensional case working with two n-tuples of integer numbers was begun. The main aim of this note is to show that

$$2\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 3\sum_{i=1}^{n} (a_i + b_i) + 2r + 2s,$$

where $a_1, \ldots, a_n, b_1, \ldots, b_n$ are integers such that $\sum_{i=1}^n |a_i| \ge n$, $\sum_{i=1}^n |b_i| \ge n$, r is the number of i with $a_i = 0$ and s is the number of i with $b_i = 0$. Moreover, the case when the equality holds is completely described.

2. The inequalities

Throughout this section, let $n \ge 1$ and $a_1, \ldots, a_n, b_1, \ldots, b_n$ be integers. Put $\alpha = (a_1, \ldots, a_n), \beta = (b_1, \ldots, b_n), I = \{1, \ldots, n\}, A = \{i \in I \mid a_i \ge 0, b_i \ge 0, a_i + b_i \ge 3\}, B_1 = \{i \in I \mid (a_i, b_i) = (2, 0)\}, B_2 = \{i \in I \mid (a_i, b_i) = (0, 2)\}, B_3 = \{i \in I \mid (a_i, b_i) = (1, 1)\}, B = B_1 \cup B_2 \cup B_3, C_1 = \{i \in I \mid (a_i, b_i) = (2, -1)\}, C_2 = \{i \in I \mid (a_i, b_i) = (-1, 2)\}, C = C_1 \cup C_2, D_1 = \{i \in I \mid (a_i, b_i) = (0, 1)\}, D_2 = \{i \in I \mid (a_i, b_i) = (1, 0)\}, D = D_1 \cup D_2 \text{ and } E = \{i \in I \mid (a_i, b_i) = (0, 0)\}.$ For $X = A, B_1, \ldots, E$, denote x = |X|. Further, for integers x, y put z(0) = 1, z(x) = 0 otherwise and $t(x, y) = 2x^2 + 2y^2 + 2xy - 3x - 3y - 2z(x) - 2z(y)$. Finally, put $z(\alpha) = |\{i \in I \mid a_i = 0\}| = \sum_{i=1}^n z(a_i) \text{ and } t(\alpha, \beta) = \sum_{i=1}^n t(a_i, b_i)$.

Lemma 2.1. $a^2 - a - 2z(a) \ge 2|a| - 2$ for every integer a.

Proof. Obviously, $a^2 - 3a + 2 = (a - 1)(a - 2) \ge 0$. If a > 0 then z(a) = 0 and $a^2 - a \ge 2a - 2 = 2|a| - 2$. If a < 0 then z(a) = 0 and $a^2 \ge |a| = -a > -a - 2$, and hence $a^2 - a - 2z(a) > -2a - 2 = 2|a| - 2$. Finally, if a = 0 then z(a) = 1 and $a^2 - a - 2z(a) = -2 = 2|a| - 2$.

Lemma 2.2. Let $a \ge 1$ and $b \ge 0$ be integers. Then:

(i)
$$t(a+1,b) > t(a,b)$$
.

- (ii) If c, d are integers such that $c \ge a, d \ge b$ and c + d > a + b then t(c, d) > t(a, b).
- (iii) If $i \in A$ then $t(a_i, b_i) \ge t(2, 1) = 5$.
- (iv) t(2,-1) = t(-1,2) = 3, t(1,0) = t(0,1) = -3, t(2,0) = t(0,2) = t(1,1) = 0 and t(0,0) = -4.
- (v) If $I = B \cup C \cup D \cup E$ and 3c = 3d + 4e then $t(\alpha, \beta) = 0$.

Proof. We have $t(a+1,b)-t(a,b)=4a+2b-1\geq 4a-1\geq 3$ and the rest is clear. \square

Theorem 2.3. Let $\sum_{i=1}^{n} |a_i| \ge n$ and $\sum_{i=1}^{n} |b_i| \ge n$. Put $\alpha = (a_1, ..., a_n)$, $\beta = (b_1, ..., b_n)$. Then

$$2\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 3\sum_{i=1}^{n} (a_i + b_i) + 2z(\alpha) + 2z(\beta),$$

$$2\sum_{i=1}^{n} (a_i + b_i)^2 \ge 2\sum_{i=1}^{n} a_i b_i + 3\sum_{i=1}^{n} (a_i + b_i) + 2z(\alpha) + 2z(\beta).$$

The equalities hold if and only if the following conditions are satisfied:

- 1. $I = B \cup C \cup D$.
- 2. $d_1 \le c_1 + c_2$ and $k = 2c_1 + 2c_2 + |c_1 d_1| \le n$.
- 3. $d_2 = c_1 + c_2 d_1$.
- 4. If $c_1 \ge d_1$ then $b_2 = b_1 + |c_1 d_1|$.
- 5. If $c_1 < d_1$ then $b_1 = b_2 + |c_1 d_1|$.
- 6. $2p \le n k$ and $b_3 = n k 2p$, where $p = \min(b_1, b_2)$.

In this case, $\sum_{i=1}^{n} |a_i| = n = \sum_{i=1}^{n} |b_i|$.

Proof. Clearly, the inequalities are equivalent to $t(\alpha,\beta) \geq 0$. Denote $I_1 = \{i \in I \mid a_i \geq 0, b_i \geq 0\}$, $n_1 = |I_1|$, $I_2 = \{i \in I \mid a_i \leq 0, b_i \leq 0\} \setminus \{(0,0)\}$, $n_2 = |I_2|$, $I_3 = \{i \in I \mid a_i b_i < 0\}$ and $n_3 = |I_3|$. For j = 1,2,3 put $z_j(\alpha) = |\{a_i \in I_j \mid a_i = 0\}| = \sum_{i \in I_j} z(a_i)$, $z_j(\beta) = |\{b_i \in I_j \mid b_i = 0\}| = \sum_{i \in I_j} z(b_i)$ and $t_j = 2\sum_{i \in I_j} a_i^2 + 2\sum_{i \in I_j} b_i^2 + 2\sum_{i \in I_j} a_i b_i - 3\sum_{i \in I_j} a_i - 3\sum_{i \in I_j} b_i - 2z_j(\alpha) - 2z_j(\beta)$. Then $I = I_1 \cup I_2 \cup I_3$, $n = n_1 + n_2 + n_3$, $z_3(\alpha) = 0 = z_3(\beta)$ and $t(\alpha, \beta) = t_1 + t_2 + t_3$. The proof is divided into nine parts:

(i) First, denote $t_1(\alpha) = \sum_{i \in I_1} a_i^2 - \sum_{i \in I_1} a_i - 2z_1(\alpha)$, $t_1(\beta) = \sum_{i \in I_1} b_i^2 - \sum_{i \in I_1} b_i - 2z_1(\beta)$ and $q_1 = \sum_{i \in I_1} (a_i + b_i)^2 - 2\sum_{i \in I_1} a_i - 2\sum_{i \in I_1} b_i$. By 2.1, we get $t_1(\alpha) \ge 2\sum_{i \in I_1} |a_i| - 2n_1$, $t_1(\beta) \ge 2\sum_{i \in I_1} |b_i| - 2n_1$ and $q_1 = \sum_{i \in I_1} (a_i + b_i - 1)^2 - n_1 \ge \sum_{i \in I_1} (a_i + b_i - 1) - n_1 = \sum_{i \in I_1} |a_i| + \sum_{i \in I_1} |b_i| - 2n_1$. Then $t_1 = t_1(\alpha) + t_1(\beta) + q_1 \ge 3\sum_{i \in I_1} |a_i| + 3\sum_{i \in I_1} |b_i| - 6n_1$.

- (ii) Further, we have $t_2 = 2\sum_{i \in I_2} a_i^2 + 2\sum_{i \in I_2} b_i^2 + 2\sum_{i \in I_2} a_i b_i + 3\sum_{i \in I_2} |a_i| + 3\sum_{i \in I_2} |b_i| 2z_2(\alpha) 2z_2(\beta) \ge 3\sum_{i \in I_2} |a_i| + 3\sum_{i \in I_2} |b_i| 2n_2$, since $a_i = 0$ if and only if $b_i \neq 0$ for every $i \in I_2$. If $I_2 \neq \emptyset$ then $t_2 > 3\sum_{i \in I_2} |a_i| + 3\sum_{i \in I_2} |b_i| 6n_2$.
- (iii) If $i \in I_3$ and $a_i > 0$, $b_i < 0$, then $t(a_i, b_i) 3|a_i| 3|b_i| + 6 = 2a_i^2 + 2b_i^2 + 2a_ib_i 6a_i + 6 = 2(b_i^2 + a_ib_i + a_i^2 3a_i + 3) = 2((b_i + \frac{a_i}{2})^2 + \frac{3}{4}(a_i 2))^2 \ge 0$. Thus $t(a_i, b_i) \ge 3|a_i| + 3|b_i| 6$ and the equality holds if and only if $(a_i, b_i) = (2, -1)$. The case $a_i < 0$, $b_i > 0$ is symmetric. Hence $t_3 \ge 3 \sum_{i \in I_3} |a_i| + 3 \sum_{i \in I_3} |b_i| 6n_3$ and the equality holds if and only if $I_3 = C$.
 - (iv) Finally, $t(\alpha, \beta) = t_1 + t_2 + t_3 \ge 3 \sum_{i=1}^{n} |a_i| + 3 \sum_{i=1}^{n} |b_i| 6n \ge 0$.
- (v) Now, assume that $t(\alpha, \beta) = 0$. Then $\sum_{i=1}^{n} |a_i| = n = \sum_{i=1}^{n} |b_i|$, $I_2 = \emptyset$ and $I_3 = C$. Thus $I = A \cup B \cup C \cup D \cup E$.
- (vi) First, let $t(\alpha, \beta) = 0$ and $C = \emptyset$. Then $I = I_1$, $\sum_{i=1}^n a_i = n = \sum_{i=1}^n b_i$ and (see (i)) $0 = q_1 = \sum_{i=1}^n (a_i + b_i)^2 2\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n (a_i + b_i 2)^2 + 2\sum_{i=1}^n a_i + 2\sum_{i=1}^n b_i 4n = \sum_{i=1}^n (a_i + b_i 2)^2 \ge 0$. Thus $a_i + b_i = 2$ for every $i = 1, \ldots, n$, I = B and $A = \emptyset = E$.
- (vii) Further, let $t(\alpha,\beta)=0, C\neq\emptyset$ and $E\neq\emptyset$. Take $j\in C$ and $k\in E$. If $j\in C_1$ (i.e., $(a_j,b_j)=(2,-1)$), put $c_j=1, d_j=0, c_k=1=d_k$ and $c_i=a_i, d_i=b_i$ otherwise. Denote $\gamma=(c_1,\ldots,c_n)$ and $\delta=(d_1,\ldots,d_n)$. Then $\sum_{i=1}^n|c_i|=\sum_{i\neq j,k}|a_i|+1+1=\sum_{i\neq j,k}|a_i|+2+0=n=\sum_{i\neq j,k}|b_i|+1+0=\sum_{i\neq j,k}|b_i|+0+1=\sum_{i=1}^n|d_i|,$ and hence $0\leq t(\gamma,\delta)=\sum_{i\neq j,k}t(a_i,b_i)-3+0<\sum_{i\neq j,k}t(a_i,b_i)+3-4=t(\alpha,\beta)=0,$ a contradiction. The proof for $j\in C_2$ is similar. We have proved that if $t(\alpha,\beta)=0$ and $C\neq\emptyset$ then $E=\emptyset$.
- (viii) Now, let $t(\alpha, \beta) = 0$, $C \neq \emptyset$ and $A \neq \emptyset$. Then $E = \emptyset$ by (vii), $t(\alpha, \beta) = \sum_{i \in A} t(a_i, b_i) + 3c 3d$ and $\sum_{i=1}^n |a_i| = \sum_{i \in A} a_i + 2b_1 + b_3 + 2c_1 + c_2 + d_2 = n = a + b_1 + b_2 + b_3 + c_1 + c_2 + d_1 + d_2 = \sum_{i=1}^n |b_i| = \sum_{i \in A} b_i + 2b_2 + b_3 + c_1 + 2c_1 + d_1$.

In order to obtain $t(\alpha, \beta) = 0$, to each pair (a_i, b_i) , $i \in C$, must correspond a pair (a_j, b_j) , $j \in D$. Hence $d = d_1 + d_2 > c_1 + c_2$ and the remaining d - c pairs (a_i, b_i) , $i \in D$ (their increment to $t(\alpha, \beta)$ is -3(d - c)) must compensate $\sum_{i \in A} t(a_i, b_i) \geq 5a$.

Now, suppose that $d_1 \geq c_1$ and $d_2 \geq c_2$. Then for every $i \in C_1$ we can choose $j_i \in D_1$ and for every $i \in C_2$ we can choose $j_i \in D_2$. Put $K = I \setminus \{i, j_i \mid i \in C\}$. Then $K = \{i \in K \mid a_i \geq 0, b_i \geq 0\}$, |K| = n - 2c, $\sum_{i \in K} |a_i| = \sum_{i \in A} a_i + 2b_1 + b_3 + d_2 - c_2 = |K| = \sum_{i \in A} a_i + 2b_1 + b_3 + 2c_1 + c_2 + d_2 - 2c_1 - 2c_2 = n - 2c = |K| = \sum_{i \in A} b_i + 2b_2 + b_3 + c_1 + 2c_2 + d_1 - 2c_1 - 2c_2 = \sum_{i \in A} b_i + 2b_2 + b_3 + d_1 - c_1 = \sum_{i \in K} |b_i| \text{ and } 0 = t(\alpha, \beta) = \sum_{i \in K} t(a_i, b_i) + \sum_{i \in C_1} (t(a_i, b_i) + t(a_{j_i}, b_{j_i})) + \sum_{i \in C_2} (t(a_i, b_i) + t(a_{j_i}, b_{j_i})) = \sum_{i \in K} t(a_i, b_i) + c_1(t(2, -1) + t(0, 1)) + c_2(t(-1, 2) + t(1, 0)) = \sum_{i \in K} t(a_i, b_i)$. By (vi) (for K instead of K) we obtain $K = \{i \in K \mid a_i + b_i = 2\}$, a contradiction with $\emptyset \neq A \subseteq K$.

Further, suppose that $d_1 > c_1$ and $d_2 < c_2$. Again, for every $i \in C_1$ we can choose $j_i \in D_1$, and for every $i \in D_2$ we can choose $j_i \in C_2$. Taking into account that the increment of pairs (2,-1), (0,1) to $\sum_{i=1}^n |a_i|, \sum_{i=1}^n |b_i|$ and n is 2 and t(2,-1)+t(0,1)=3-3=0, the increment of pairs (1,0), (-1,2) to $\sum_{i=1}^n |a_i|, \sum_{i=1}^n |b_i|$ and n is 2 and t(1,0)+t(-1,2)=-3+3=0, the increment of pairs (2,0), (0,2) to $\sum_{i=1}^n |a_i|, \sum_{i=1}^n |b_i|$ and n is 2 and t(2,0)=0=t(0,2), and the

increment of pair (1,1) to $\sum_{i=1}^{n} |a_i|$, $\sum_{i=1}^{n} |b_i|$ and n is 1 and t(1,1) = 0, we may assume without loss of generality that $\mathbf{b}_3 = 0$, $\min(\mathbf{b}_1, \mathbf{b}_2) = 0$, $\mathbf{c}_1 = 0$ and $\mathbf{d}_2 = 0$. Of course, $\mathbf{d}_1 > \mathbf{c}_2$ and $C = C_2$, $D = D_1$. Now, for each $i \in C_2$ we can choose $j_i \in D_1$. Put $L = \{j_i | i \in C_2\} \subseteq D_1$ and $K = I \setminus (C_2 \cup L)$. For every $i \in C_2$ put $c_i = 0$, $d_i = 2$, $c_{j_i} = 1$ and $d_{j_i} = 1$. Further, put $c_i = a_i$, $d_i = b_i$ for every $i \in K$ and $\gamma = (c_1, \ldots, c_n)$, $\delta = (d_1, \ldots, d_n)$. Then $(c_i, d_i) = (0, 2)$ for every $i \in C_2$, $(c_i, d_i) = (1, 1)$ for every $i \in L$ and $c_i \geq 0$, $d_i \geq 0$ for every $i \in I$, $\sum_{i=1}^{n} |c_i| = \sum_{i \in K} |a_i| + \mathbf{c}_2 = \sum_{i=1}^{n} |a_i| = n = \sum_{i=1}^{n} |b_i| = \sum_{i \in K} |b_i| + \mathbf{c}_2 + 2\mathbf{c}_2 = \sum_{i=1}^{n} |d_i|$ and $t(\gamma, \delta) = \sum_{i \in K} t(a_i, b_i) + \sum_{i \in C_2} t(c_i, d_i) + \sum_{i \in L} t(c_i, d_i)) = \sum_{i \in K} t(a_i, b_i) = \sum_{i \in K} t(a_i, b_i) + 3\mathbf{c}_2 - 3\mathbf{c}_2 = \sum_{i \in K} t(a_i, b_i) + \sum_{i \in C_2} t(a_i, b_i) + \sum_{i \in L} t(a_i, b_i) = \sum_{i \in I} t(a_i, b_i) = 0$. By (vi) for γ, δ , we obtain $K = \{i \in K \mid a_i + b_i = 2\}$, a contradiction with $\emptyset \neq A \subseteq K$. The proof for $\mathbf{d}_1 < \mathbf{c}_1$, $\mathbf{d}_2 > \mathbf{c}_2$ is similar. We have proved that if $t(\alpha, \beta) = 0$ and $C \neq \emptyset$ then $A = \emptyset$.

(ix) Finally, let $t(\alpha, \beta) = 0$. By (vi), (vii) and (viii), we have $A = \emptyset = E$, $I = B \cup C \cup D$, $0 = t(\alpha, \beta) = 3c - 3d$ and $c = c_1 + c_2 = d = d_1 + d_2$. Hence $d_1 \le c_1 + c_2$ and $d_2 = c_1 + c_2 - d_1$. Further, $\sum_{i=1}^n |a_i| = 3c_1 + 2c_2 - d_1 + 2b_1 + b_3 = n = 2c_1 + 2c_2 + b_1 + b_2 + b_3 = \sum_{i=1}^n |b_i| = c_1 + 2c_2 + d_1 + 2b_2 + b_3$, and hence $c_1 + b_1 = d_1 + b_2$. If $c_1 \ge d_1$ then $b_2 = b_1 + |c_1 - d_1|$, and if $c_1 < d_1$ then $b_1 = b_2 + |c_1 - d_1|$. As $|C \cup D| = 2c_1 + 2c_2$, we obtain $k = 2c_1 + 2c_2 + |c_1 - d_1| \le n$. Now, denote $p = \min(b_1, b_2)$. Then $2p \le n - k$ and $b_3 = n - k - 2p$. Indeed, if $c_1 \ge d_1$ then $n - k = n - 2c_1 - 2c_2 - c_1 + d_1 = b_1 + b_2 + b_3 - c_1 + d_1 = b_1 + b_1 + b_3 = 2p + b_3$. Thus $2p \le n - k$ and $b_3 = n - k - 2p$. The proof in case $c_1 < d_1$ is similar.

Conversely, assume that the conditions (1) - (6) are satisfied. If $c_1 \ge d_1$ then $\sum_{i=1}^{n} |a_i| = 3c_1 + 2c_2 - d_1 + 2b_1 + b_3 = 3c_1 + 2c_2 - d_1 + 2p + n - k - 2p = 2c_1 + 2c_2 + c_1 - d_1 + n - k = n$ and $\sum_{i=1}^{n} |b_i| = c_1 + 2c_2 + d_1 + 2b_2 + b_3 = c_1 + 2c_2 + d_1 + 2p + 2(c_1 - d_1) + n - k - 2p = 2c_1 + 2c_2 + c_1 - d_1 + n - k = n$. The proof for $c_1 < d_1$ is similar. Finally, $t(\alpha, \beta) = 0$ by 2.2(v).

Remark 2.4. If $\sum_{i=1}^{n} |a_i| + \sum_{i=1}^{n} |b_i| \ge 2n$ then the inequalities in Theorem 2.3 hold.

Theorem 2.5. If $\sum_{i=1}^{n} a_i \ge n$ and $\sum_{i=1}^{n} b_i \ge n$ then the inequalities in Theorem 2.3 hold and the equalities hold if and only if I = B, $2b_1 \le n$, $b_2 = b_1$ and $b_3 = n - 2b_1$.

Proof. The inequalities follow from Theorem 2.3. Now, suppose that $t(\alpha, \beta) = 0$. Then $\sum_{i=1}^{n} |a_i| = n = \sum_{i=1}^{n} |b_i|$. If $C \neq \emptyset$ then $\sum_{i=1}^{n} a_i < \sum_{i=1}^{n} |a_i| = n$ or $\sum_{i=1}^{n} b_i < \sum_{i=1}^{n} |b_i| = n$, a contradiction. Thus $C = \emptyset$ and the rest follows from Theorem 2.3 and its proof.

Remark 2.6. (i) The situation $\sum_{i=1}^{n} |a_i| \geq n$, $\sum_{i=1}^{n} |b_i| \geq n$, $t(\alpha, \beta) = 0$ is completely described by conditions (1) - (6). In order to find all such pairs α, β for given n, choose non-negative integers c_1, c_2, d_1, p such that $d_1 \leq c_1 + c_2$, $k = 2c_1 + 2c_2 + |c_1 - d_1| \leq n$ and $2p \leq n - k$, calculate $d_2 = c_1 + c_2 - d_1$, $b_1 = p$ and $b_2 = p + |c_1 - d_1|$ if $c_1 \geq d_1$, $b_2 = p$ and $b_1 = p + |c_1 - d_1|$ if $c_1 < d_1$,

- $b_3 = n k 2p$ and take c_1 pairs (2,-1), c_2 pairs (-1,2), d_1 pairs (0,1), d_2 pairs (1,0), b_1 pairs (2,0), b_2 pairs (0,2) and b_3 pairs (1,1).
- (ii) For instance, for n=17 choose, e.g., $c_1=3, c_2=2, d_1=4$ and p=2. Then $d_2=1, b_2=2, b_1=3, b_3=2$ and we obtain one type of α, β . In this way, to each choice of c_1, c_2, d_1, p satisfying $d_1 \leq c_1 + c_2, k = 2c_1 + 2c_2 + |c_1 d_1| \leq n$ and $2p \leq n-k$ corresponds one type of α, β such that $\sum_{i=1}^{n} |a_i| \geq n, \sum_{i=1}^{n} |b_i| \geq n$ and $t(\alpha, \beta)=0$. All n! pairs α, β of this type can be obtained by permutations of I.
- (iii) By Theorem 2.5, the situation $\sum_{i=1}^{n} a_i \ge n$, $\sum_{i=1}^{n} b_i \ge n$, $t(\alpha, \beta) = 0$ is completely described.
- (iv) For instance, for n=5 choose, e.g., p=2. Then we obtain one type of α, β , namely 2 pairs (2,0), 2 pairs (0,2) and one pair (1,1). In this way, to each choice of p such that $2p \leq n$ corresponds one type of α, β such that $\sum_{i=1}^{n} a_i \geq n$, $\sum_{i=1}^{n} b_i \geq n$ and $t(\alpha, \beta) = 0$, namely p pairs (2,0), p pairs (0,2) and n-2p pairs (1,1). All n! pairs of this type can be obtained by permutations of I.

3. Conclusions

In the paper, two relatively complicated inequalities concerning two *n*-tuples of integers are proved and the case when the equality holds is solved. Inequalities of similar type already proved useful in obtaining some estimates of the number of non-associative triples in quasigroups and hence the investigation of such inequalities can lead to further applications.

References

- [1] B. Batíková, T. J. Kepka and P. C. Němec, *Inequalities of DVT-type the one-dimensional case*, Comment. Math. Univ. Carolin., 61 (2020), 411-426.
- [2] B. Batíková, T. J. Kepka and P. C. Němec, Inequalities of DVT-type the one-dimensional case continued, Ital. J. Pure Appl. Math., 49 (2023), 687-693
- [3] B. Batíková, T. J. Kepka and P. C. Němec, *Inequalities of DVT-type the two-dimensional case*, Ital. J. Pure Appl. Math., 52 (2024), 1-8.
- [4] A. Drápal and V. Valent, *High non-associativity in order 8 and an associative index estimate*, J. Combin. Des., 27 (2019), 205-228.
- [5] O. Grošek and P. Horák, On quasigroups with few associative triples, Des., Codes Cryptogr., 64 (2012), 221-227.
- [6] T. J. Kepka and P. C. Němec, A note on one inequality of Drápal-Valent type, J. Combin. Des., 28 (2020), 141-143.

Accepted: 13.05.2025