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Groups in which every element centralizer is a TI -subgroup
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Abstract. Let G be a finite group. Recall that a subgroup H is called a TI-subgroup
of G if H ∩ Hg = 1 or H for every element g of G. We call a group G a CTI-group
if its every element centralizer is a TI-group. Clearly S3, A5, D7 and Q8 are all CTI-
groups. In this paper, we investigate the structure of a CTI -group G and prove that
a CTI -group G is a nilpotent group or a Frobenius group whose complement is either
cyclic or the direct product of a cyclic group of odd order and Q8, or G ∼= PSL(2, 2n)
with n > 1.
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1. Introduction

All groups considered in this paper are finite. The properties of some element
centralizers have a profound influence on the structure of a group G, and there
are many results in this regard, see [1, 2, 9, 10, 16, 3, 17, 18, 12, 13, 4]. Among
these results, a classic result was derived from Brauer-Fowler ([4]) in 1955, which
showed that if G was a group of even order with center of odd order, then there
existed an element x ∈ G \ Z(G) such that |G| < |CG(x)|3. As for the number
of element centralizers, Belcastro and Sherman in [3] asserted that there was
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no a finite group with 2 or 3 element centralizers, furthermore, there are also
many results relevant to this topic, see [1, 2, 9, 10, 16]. Except for these, [12, 13]
concerned the group G whose element centralizers were nilpotent, even abelian,
[17, 18] characterized the group G all of whose centralizers were maximal or
second maximal, and so on.

On the other hand, in 1979, Walls in [15] introduced the definition of the
TI -subgroup(a subgroup H of G is called a TI -subgroup if H ∩ Hg = 1 or H
for every element g of G) and classified groups all of whose subgroups were TI -
subgroups. Based on this, some authors investigated the finite groups in which
some subgroups were assumed to be TI -subgroups, such as abelian subgroups
[6], non-abelian subgroups [11], etc.

Combining the above two aspects of studies, in this paper, we investigate the
finite groups in which every element centralizer is a TI -group. For convenience,
we call a group G a CTI -group if and only if its every element centralizer is a
TI-subgroup of G. In fact, there exists many CTI -groups in finite groups, some
examples are as follows:

Example 1. In S3, for every non-central element x ∈ S3, it is clear that
|CS3(x)| = 2 or 3, so CS3(x) is a TI-group, and thus S3 is a CTI -group.

Example 2. In A5, for every non-central element x ∈ A5, it is easy to find that
|CA5(x)| = 3 or 5 or 4, thus:

CA5(x) ∩ CA5(x)
g = 1 or CA5(x), for any g ∈ A5.

So, A5 is a CTI -group.

Example 3. The dihedral group D7 is a CTI-group since |CG(x)| = 2 or 7 for
every non-central element x ∈ D7.

Example 4. The quaternion group Q8 are CTI-groups since every subgroup
of Q8 is normal.

A natural question is:

What about the structure of a CTI -group G?

In this paper, we prove the following result:

Theorem 3.1. Let G be a CTI-group, then one of the following statements
holds:

(1) G is nilpotent;

(2) G is a Frobenius group whose complement is either cyclic or the direct
product of a cyclic group of odd order and Q8;

(3) G ∼= PSL(2, 2n) with n > 1.
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2. Preliminaries

Here, we present some useful results needed during the proof of Theorem 3.1.

Lemma 2.1 ([5, Chapter 14, Theorem 1.5]). If G is a solvable CN-group, then
one of the following holds:

(1) G is nilpotent.

(2) G is a Frobenius group whose complement is either cyclic or the direct
product of a cyclic group of odd order and a generalized quaternion group.

(3) G is a 3-step group1.

Lemma 2.2 ([14, Theorem 2]). Let G be a group of even order and its Sylow
2-subgroups are TI-subgroups. Then one of the following three statements is
true:

(1) A Sylow 2-subgroup of G is a normal subgroup;

(2) A Sylow 2-subgroup of G is either a cyclic group or a generalized (or
ordinary) quaternion group;

(3) G contains normal subgroups G1 and G2 such that

G ⊇ G1 ⊃ G2 ⊇ {1}

where both G/G1 and G2 are of odd order and G1/G2 is isomorphic to one
of the groups PSL(2, 2n), U3(2

n) or Sz(q).

The main results of [13] indicate that the class of ZT -groups2 consists of sim-
ple groups PSL(2, 2n) and simple groups Sz(q), combining [12, Part I, Theorem
4] and [12, Part III, Theorem 5], we have:

Lemma 2.3. If G is a non-solvable CN -group3, then the maximal solvable
normal subgroup N of G is a 2-group and G/N is one of the following types:

PSL(2, q) with q = 2n ± 1 or 2n, Sz(q), PSL(3, 4) or M9.

where M9 is the projective group of one variable over near-field of 9 elements.

Lemma 2.4. Let G = Sz(q) and S ∈ Syl2(G). For elements x, y of S with
order 4, we have:

1. We shall call G a 3-step group (with respect to the prime p) provided: (i) Opp′(G) is a
Frobenius group with kernel Op(G) and cyclic complement of odd order. (ii) G = Opp′p(G)
and Opp′(G) ⊂ G. (iii) G/Op(G) is a Frobenius group with kernel Opp′(G)/Op(G)(see [5]).

2. A permutation group is called a ZT -group if it is a doubly transitive group of odd degree
containing no regular normal subgroup, and if no non-identity element leaves more than
three letters invariant(see [12]).

3. A group G is a CN -group if the centralizer of every non-identity element is nilpotent(see
[12]).
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(1) If CS(x) ̸= CS(y), then CS(x) ∩ CS(y) = Z(S).

(2) CG(x) is not a TI-subgroup of G.

Proof. (1) Clearly |S|=q2, in view of [8, Ch. 11, Lemma 5.9 and Lemma 11.7]
and [16, Theorem 1.2], we have |Z(S)| = q and |CS(x)| = 2q for x ∈ S − Z(S).
Let |Cent(S)| be the number of centralizers of S, clearly |Cent(S)|=q by [16,
Theorem 1.2]. Assume that CS(xi)(0 ≤ i ≤ q − 1) are all distinct centralizers,
where CS(x0) = S, we have S = CS(x1) ∪ CS(x2) ∪ . . . ∪ CS(xq−1), so

|S| ≤ |CS(x1)|+ |CS(x2)|+ . . .+ |CS(xq−1)| − (q − 2) · |Z(S)|
= (q − 1) · |CS(x1)| − (q − 2) · |Z(S)| = q2 = |S|,

which means

CS(xi) ∩ CS(xj) = Z(S), for i ̸= j.

(2) Otherwise, there exists an element u of G with order 4 such that CG(u)
is a TI-subgroup of G. Clearly u /∈ Z(S), so there is an s(∈ S) such that us ̸= u.
By (1), we have CS(u) ∩ CS(u

s) = Z(S), it follows that CG(u) = CG(u
s) since

CG(u) is a TI-subgroup of G, and hence CS(u) = CS(u
s), a contradiction.

3. Main results

In this section, we give some properties about CTI -groups.

Proposition 3.1. If G is a CTI-group and x a non-identity element of G, then
NG(⟨y⟩) ≤ NG(CG(y)) = NG(CG(x)) for every 1 ̸= y ∈ CG(x).

Proof. (1) NG(⟨y⟩) ≤ NG(CG(y)) for any 1 ̸= y ∈ CG(x).

For every 1 ̸= y ∈ CG(x) and g ∈ NG(⟨y⟩), we have yg ∈ CG(y)
g ∩ CG(y).

Notice that CG(y) is a TI-subgroup ofG, we have CG(y) = CG(y)
g, consequently

g ∈ NG(CG(y)), and therefore NG(⟨y⟩) ≤ NG(CG(y)) by the arbitrariness of g.

(2) NG(CG(y)) = NG(CG(x)) for every 1 ̸= y ∈ CG(x).

On the one hand, xg ∈ CG(y)
g = CG(y) for every 1 ̸= y ∈ CG(x) and

g ∈ NG(CG(y)), and hence y ∈ CG(x)∩CG(x)
g, therefore CG(x) = CG(x)

g since
CG(x) is a TI-subgroup of G, so NG(CG(y)) ≤ NG(CG(x)). On the other hand,
by using a similar argument to the above, we have NG(CG(x)) ≤ NG(CG(y)),
consequently NG(CG(y)) = NG(CG(x)).

Proposition 3.2. If G is a CTI-group, then G is a CN -group. Especially, if
Z(G) ̸= 1, then G is nilpotent.

Proof. For every 1 ̸= x ∈ G and 1 ̸= y ∈ CG(x), it is clear that ⟨y⟩ ⊴ CG(y)
and CG(y)⊴NG(CG(y)). Also, NG(CG(y)) = NG(CG(x)) by Proposition 3.1, so
⟨y⟩ is a subnormal subgroup of CG(x), therefore G is a CN -group. Especially,
clearly G is nilpotent if Z(G) ̸= 1.
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Proposition 3.3. If G is a CTI-group, p a prime factor of |G| and x a p-
element of G, then P ≤ NG(CG(x)) with x ∈ P ∈ Sylp(G). Especially, if
x ∈ Z(P ), then NG(P ) = NG(CG(x)).

Proof. For every p-element x ∈ P ∈ Sylp(G), it is clear that Z(P ) ≤ CG(x).
Take 1 ̸= y ∈ Z(P ), so P ≤ NG(⟨y⟩) ≤ NG(CG(x)) by Proposition 3.1.

Especially, if x ∈ Z(P ), then P ≤ CG(x). In fact, P = P g ≤ CG(x)
g for

every g ∈ NG(P ), it shows that P ≤ CG(x) ∩ CG(x)
g. Notice that CG(x) is a

TI-subgroup of G, we have CG(x) = CG(x)
g, it follows that g ∈ NG(CG(x)), so

NG(P ) ≤ NG(CG(x)) by the arbitrariness of g. On the other hand, obviously
NG(CG(x)) ≤ NG(P ) since CG(x) is nilpotent by Proposition 3.2. Therefore,
NG(P ) = NG(CG(x)).

Proposition 3.4. If G is a CTI-group, p a prime factor of |G| and x a p-
element of G, then xG ∩ CG(x) ⊆ xG ∩ P , where x ∈ P ∈ Sylp(G). Especially,
|xG ∩ CG(x)|||xG|.

Proof. Obviously, xG ∩ CG(x) = xG ∩ P1 ⊆ xG ∩ P by Proposition 3.2 and
Proposition 3.3, where P1 ∈ Sylp(CG(x)). Especially, xG ⊆ CG(x)

G, while
CG(x) is a TI-subgroup, so |xG ∩ CG(x)|||xG|.

Proposition 3.5. If G is a CTI-group, then any two Sylow subgroups of G
have a trivial intersection.

Proof. Let p be a prime factor of |G| and P ∈ Sylp(G). Take 1 ̸= x ∈ Z(P ),
clearly P ≤ CG(x). If there exists a g ∈ G such that 1 ̸= u ∈ P ∩ P g, then
u ∈ P ∩P g ≤ CG(x)∩CG(x)

g, and hence CG(x) = CG(x)
g since CG(x) is a TI-

subgroup ofG, therefore P = P g since CG(x) is nilpotent by Proposition 3.2.

Now, we would prove Theorem 3.1.

Theorem 3.1. Let G be a CTI-group, then one of the following statements
holds:

(1) G is nilpotent;

(2) G is a Frobenius group whose complement is either cyclic or the direct
product of a cyclic group of odd order and Q8;

(3) G ∼= PSL(2, 2n) with n > 1.

Proof. The proof is divided into two aspects according to the solvablity of G.

(1) If G is solvable, then G is nilpotent or G is a Frobenius group whose
complement is either cyclic or the direct product of a cyclic group of odd order
and Q8.

By Proposition 3.2, we have G is a CN -group. By Lemma 2.1, we have:

(a) G is nilpotent; or
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(b) G is a Frobenius group whose complement is either cyclic or the direct
product of a cyclic group of odd order and a generalized quaternion group; or

(c) G is a 3-step group.

For (b), if G(= K⋊H) is a Frobenius group andH is the direct product of an
odd order cyclic group and a generalized quaternion group Q4n, we assert n = 2.
Otherwise, let Q4n = ⟨a, b⟩, where a2n = 1, b2 = an, and b−1ab = a−1. Notice
that CQ4n(b) = ⟨b⟩ ⋬ Q4n. However, b

2 ∈ CQ4n(b) ∩ CQ4n(b)
g ≤ CG(b) ∩ CG(b)

g

for any g ∈ Q4n, so CQ4n(b) = CQ4n(b)
g since CG(b) is a TI-subgroup of G, and

hence CQ4n(b)⊴Q4n, a contradiction. Therefore, n = 2, and so Q4n = Q8.

For (c), if G is a 3-step group with respect to the prime p, we have Opp′(G) =
Op(G) ⋊ H is a Frobeius group. For every P1, P2 ∈ Sylp(G), clearly Op(G) ≤
P1 ∩ P2, and hence P1 is a normal subgroup of G since G is a CTI -group and
Proposition 3.2, in contradiction with the definition of 3-step group.

(2) If G is non-solvable, then G ∼= PSL(2, 2n) with n > 1.

By Proposition 3.2 and Lemma 2.3, we have the maximal solvable normal
subgroup N of G is a 2-group and G/N is one of the following types:

(∗) PSL(2, q) with q = 2n ± 1 or 2n, Sz(q), PSL(3, 4) or M9.

It is obvious that the Sylow 2-subgroup of G is not a normal subgroup, a
cyclic group or a generalized (or ordinary) quaternion group, so Lemma 2.2
shows that there exists a normal subgroups series

G ⊇ G1 ⊃ G2 ⊇ {1}

such that G1/G2
∼= PSL(2, 2n), U3(2

n) or Sz(q), where both G/G1 and G2 are
of odd order. Applying Lemma 2.3 once again, we have G2 = 1, and hence

(∗∗) G1
∼= PSL(2, 2n), U3(2

n) or Sz(q).

Moreover, notice that N ⊴ G1, so N = 1 by (**), and hence G ∼= PSL(2, 2n)
or Sz(q) by (*) and (**). By Lemma 2.4(2), we have G ∼= PSL(2, 2n) with
n > 1.

By Lemma 3.1(2) and [8, Chapter 11], we have:

Corollary 3.1. Let G = Sz(q), CG(x) is not a TI-subgroup of Sz(q) if and
only if o(x) = 4.

By Theorem 3.1 and [7, Chapter 2, Theorem 8.2-Theorem 8.5], we have:

Corollary 3.2. A group G is a simple CTI-group if and only if G ∼= PSL(2, 2n)
with n > 1.
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4. Conclusion

The classification of finite groups is one of the important topics in finite group
theory. Based on the study of the TI-subgroups and the element centralizers,
in this paper, we introduced the definition of the CTI-group, subsequently,
studied the properties of CTI-groups, and then finished the classification of the
CTI-groups.
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