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Abstract. In this paper, biharmonic pseudo-Riemannian surfaces with diagonalizable
shape operetor in pseudo-Riemannian space form N2(c) are studied. We prove that the
surfaces with light-like mean curvature vector field are pseudo-umbilical. For non light-
like mean curvature vector field, we show that the pseudo-umbilical surfaces is minimal
or H? = |c|. Also, we give some sufficient conditions for such surfaces with parallel
mean curvature vector field to be minimal.
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1. Introduction

Let ¢ : M — Ny P be the inclusion of a pseudo-Riemannian submanifold
M;* with index r into a pseudo-Riemannian manifold N, o P with index s. We
say that M is a biharmonic submanifold, if its bitension field 79(¢) vanishes
identically, i.e. (see [3, 10, 15])

(1) 72(¢) := —A%7(¢) — tr R (d¢, 7(¢))d¢ = 0,

where A? is the rough Laplacian defined on sections of ¢~!(TN) and 7(¢) =
trV®de is the tension field of ¢ that vanishes for ¢ being a harmonic map. RV,
V% and V are the curvature tensor of N7, the induced connection by ¢ on
the bundle ¢* TN and the connection of M, respectively.

*. Corresponding author
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Notice that 7(¢) = nH with H the mean curvature vector field of M, then
it is clear from (1) that a minimal submanifold must be biharmonic, and we call
a nonminimal biharmonic submanifold a proper biharmonic submanifold.

During the last decade, a special attention has been paid to the study of
biharmonic submanifolds and important progress has been made in the study of
this subject. B.Y. Chen and S. Ishikawa in [5, 6] gave full classification of proper
biharmonic curves in Eg and proved that there exists no proper biharmonic
surface in Eg. In [15], T. Sasahara classified proper biharmonic curves and
surfaces in nonflat Lorentz 3-space forms.

Now, let us turn to the problem in 4-dimensional pseudo-Riemannian space
forms. F. Defever et al. proved in [8] that every biharmonic hypersurface M?
(r =0,1,2,3) of E;l with diagonalizable shape operator is minimal, and the
same conclusion holds for Lorentz hypersurfaces in E} (see [1]).

It seems then natural, as the next step, to study biharmonic surfaces M? in
pseudo-Riemannian space froms Ng(c). The structure of the surfaces often ap-
pears considerably different from that of the hypersurfaces, the mean curvature
vector field H of surfaces may be light-like, except space-like and time-like ones.
In general, each of them will imply different properties of surfaces. So far, there
have been no many developments in this direction.

Surfaces with light-like mean curvature vector field were concerned by many
geometers due to the study of trapped surfaces in 4-dimensional Lorentz mani-
folds in [14], which are related to the presence of a black hole. In [5, 6], B. Y.
Chen and S. Ishikawa firstly studied biharmonic surfaces with light-like mean
curvature vector field (i.e., marginally trapped biharmonic surfaces) in Ef and
gave some examples of such surfaces in E. Our first goal in this paper continues
to study this subject in nonflat cases and obtain

Theorem 1.1. Let M? be a biharmonic surface with light-like mean curva-
ture vector in a pseudo-Riemannian space form N2(c). Assume that M? has
diagonalizable shape operator, then it is pseudo-umbilical.

In [13], C.-Z. Ouyang investigated the minimality of space-like biharmonic
surfaces M? (i.e., 7 = 0) with parallel mean curvature vector field in pseudo-
Riemannian space forms. After that, J.-C. Liu, L. Du and J. Zhang (see [11])
studied the problem for space-like pseudo-umbilical surfaces. Our second goal
in this paper is to investigate the minimality of such surfaces M2 with general
index r and obtain

Theorem 1.2. Let M? be pseudo-umbilical biharmonic surfaces with non light-
like mean curvature vector in Ni(c). Assume that M? has diagonalizable shape
operator, then one of the following three statements holds:

(i) when ¢ = 0, then M? is minimal;

(i) when ¢ > 0, then its mean curvature vector ﬁ 1s space-like. Furthermore,
either M? is minimal or H? = c;
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(iii) when ¢ < 0, then either ﬁ =0, i.e., M? is minimal, or ﬁ s a time-like
vector with H? = |c|, where H is the mean curvature of M?2.

Remark 1.1. As a corollary of Theorem 1.2, let M? be a pseudo-umbilical
biharmonic surface in Riemannian space form N*(¢). When ¢ < 0, then M?
must be minimal; when ¢ > 0, then its mean curvature H = 0, or H? = ¢, which
has been proved by [9] for ¢ = 0, [2, Theorem 5.1] for ¢ > 0 and [4, Theorem
2.4], for ¢ < 0.

Theorem 1.3. Let M? be a biharmonic surface with non light-like mean curva-
ture vector in N2(c). Assume that M? has parallel mean curvature vector field
and diagonalizable shape operator, then M2 is minimal if ¢ = 0, or ¢ < 0 and
H is space-like, or ¢ > 0 and traceA3 # 2c, where As is the shape operator with
respect to the normal frame field e3 of M?2.

2. Preliminaries

Let N&*P(c) be an (n + p)-dimensional pseudo-Riemannian space form with
index s of constant curvature ¢ (0 < s <n+p). Let 2 : M"* — N2*P(c) be an
isometric immersion of an n-dimensional manifold M," of signature (r,n—7r)(r >
0) into N2(c). Let V and V denote by the Levi-Civita connections of M and
NP (c), respectively. For any tangent vector fields X,Y and normal vector
field & of M in Ng tr (c), the Gauss and Weingarten formulas are given by,
respectively, (cf. [7] or [12])

VxY =VxY + B(X,Y), Vxé = —A:X + Dx¢,

where B, A¢ and D are the second fundamental form, the shape operator with
respect to £ and the normal connection, respectively. It is easy to see that B
and A¢ are related by

(2) (B(X7Y)>§> = <A§X7Y>'

The mean curvature vector field H and the mean curvature H of M in NIP(¢)

are expressed as ﬁ = %traceB, and H = 4/ \(ﬁ, ﬁ)\, respectively.

We define the covariant derivative of the second fundamental form B by
(3) (VxB)(Y,Z) = DxB(Y,Z) — B(VxY, Z) — B(Y,VxZ).
Then, the Codazzi equation is given by
(VxB)(Y,Z) = (VyB)(X, Z).

Let {e1,€e2,...,€entp} be a local orthonormal frame basis on N;Hp(c) such
that e, ..., e, are tangent to M and e;41,...,en4p are normal to M*. Then,
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the connection forms (w4) are given by (cf. [6])

n+p

(4) VeAwaAeB, wa = —e epwh, ALB=1,2,...,n+p,
B=1

where and 4 = (ea,e4) = +1, A=1,2,...,n+ p. It follows from (2) that

71 1 & 1 X
(5) = EtraeeB = ZsiB(ei, e;) = - Z eq(traceAy)eq,
i=1 a=n+1

where A, = Ae,, .

As it is known that a vector v tangent to NI (c) is called space-like (resp.
time-like) if v = 0 or (v,v) > 0 (resp. (v,v) < 0). A vector v is called light-like
if v # 0 and (v,v) = 0.

A submanifold M is called minimal if ﬁ . M is called pseudo-
umbilical, if it is umbilical with respect to the dlrectlon of H (cf. [7]), i.e.,

(6) (B(X,Y),H) = (H, H)(X,Y).

When ﬁ # 0, (6) becomes Ag = <ﬁ, ﬁ)[, where I stands for the identity ope-
rator. It follows from (6) that every minimal submanifold is pseudo-umbilical.

Using a similar computation as in the proof of Theorem 4.1 in [3] (also see
[7]), we obtain the following.

Lemma 2.1. An isometric immersion ¢ : M]" — N;Hp(c) of an n-dimensional
manifold M into NP (c) is biharmonic if and only if

ADﬁ + Z € (Aﬂzel, ei) nﬁc =0,

(7) v ﬁ
+4Z€1 D. ﬁ(el) =0,
where
(8) AP = -3 ¢(D, D, — Dv,.c,).
i=1
Set
foY & a 2
||Wn—0—1”2 = 251' (wn+1(€i)) ,a>n+1,
- n
traceAn 140 = ) €i(Ant1(Aale)), €i), a>n+1,
=1
VH = Z 5i(eiH)€i-
i=1

Using Lemma 2.1, we can prove the following lemma.
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Lemma 2.2. Let M be a biharmonic submanifold in NP (¢) with non light-
like mean curvature vector. Then, we have

4 ntp

AH+Henpr Y, eallwi™]> + Henqal|Ansa|* = nHe =0,

a=n+2
n

HegtraceAn14a = 2wp 1 (VH) + H 3 i(Ve,wpiq)(€i)

(9) ntp n ;:1
+H > Z giwy, 11 (€)wg(€:), Va >n+1,
B=n+11i=
n+p n
nen1HVH +2A,(((VH) +2H Y > giwn,(ei)Aq(e;) = 0.
\ a=n+2i=1

Proof. Since ﬁ is not light-like, we can choose a local orthonormal frame field
{ei}?jlp such that H = Hep, .

We will calculate each term in (7) individually. First, from (8) we have

n n
ADﬁ = — Z‘SiDeiDei (H €n+1) + ZEiDveiei (H €n+1)
=1 i=1

= — Zai (eieiHenH +2e;HD, enq1 + HDeiDeienH)

i=1
n n—+p
=— ZEZ{ leieiH — eny1 H Z sa(wgﬂ(ei))ﬂen“
= a=n+2
(10) n+p
+ > [2wna(e(H)e) + HV (@i (e)
a=n+2
n-+p
+H Z 5iw£+1(ei)wg(ei)]ea}
B=n—+1
n n—+p
+ Zgi ((veiei)( €n+1 +H Z n+1 Vezez ea)
i=1 a=n+2
Putting into (10) gives
n—+p n+p
APH :(AH Y eauwgﬂyﬁ)enﬂ -y {mgﬂ(v H)
a=n-+2 a=n+2
(11) ntp

+HZ gi(Ve,w ZH Z &iw n+1 (e Wﬁ(ez)]} €a-

B=n+1
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Using ﬁ = Hen41 again, a straightforward computation yields

251 A;} €i) ez)—ZEi{€n+1<An+1(Aﬁ(€z’)),€i>6n+1
=1
n+p

(12) + Y ealAa(Ag(e)), e )ea}
a=n+2
n+p
:5n+1H||An+1H2en+1 + H Z EatraceA,+1Aq€q.
a=n+2

Z 51ADEZ_§(6@-) = Z gilp,, (1 ens1)(€i)
i=1 i=1
n—+p n

= A (VH) +H > > sy (e)Aales)-
a=n+2 i=1

Substituting (11), (12) and (13) into (7), we complete the proof of Lemma 2.2.

3. Proof of Main Theorems

Proof of Theorem 1.1. Since A3 and A4 are diagonalizable, we choose a local
orthonormal frame field {e1,...,es4} such that ej, es are tangent to M? and

(a0 (im0
a8 we (3 2 )omm(m o),

Since ﬁ is light-like, we can set

(15) H= f(es + eq)

with e3 being space-like, e4 being time-like and f being a non-zero function on
M? (in fact, we can assume ez be time-like and ey be space-like, the proof idea
is the same). By a direct computation, we have

AP(fe5) = (Af)es — 2wd(V feq — f(traceVed)eq — fllud|2es.
AD(fe4) = (Af)es — 2w§(Vf)63 - f(tracveé)e;; - f||w§H2e4.
Then, we have

APH =AP(fes) + AP(fes)
(16) = (Af —2w3(V[) — ftraceVws — fllws?) es
+ (Af — 2w§(Vf) - ftracve§ - f||w§H2) ey,
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where traceVuwi = 37 £:(V,wi)(e;). We also have

2
Z e;B(Az(ei), i) = f(traceA3 + traceAsAy)es
i=1

(17)
— f(traceA% + trace Az Ay)ey.
2 2
(18) Z EiADeiﬁ(ei) = (Ag + A4) (Vf + f Z Eiwg(ei)ei> .
i=1 =1

Substituting (15), (16), (17) and (18) into (7), we get

A f = 2w3(V ) = ftraceVuwg — fllwi|® - 2fc
+f(traceA3 + trace Az Ay) = 0,
(19) A f = 23(VF) = foraceVews — fllwgl|? - 2fc
—f(traceA? + traceA3A4) = 0,
(s + A9 (VF + 1 S el (ei)e) = 0.

Using the first and second equations in (19), we have
(20) traceA3 + traceAF + 2traceAz Ay = 0,
which together with (14), we get

Al = —p1, A2 = —pa.

Note that

(21) Ag = Af(egres) = < f()\l(;HLQ) f(/\Q(:-,lw) > =0
Then, (Blei, ¢;), H) = (Agj(ei)e;) = 0, i,j = 1,2. Also, (H, H)(er,e5) = 0

because of H being light-like. So, <B(ei,ej),ﬁ> = <ﬁ,ﬁ><ei,ej). We have
from (6) that M? is pseudo-umbilical and complete the proof of Theorem 1.1.

Proof of Theorem 1.2. Choose a local orthonormal frame field {e;}?_, such
that H = Heg with (e3,e3) = €3 = £1. Then, (9) is simplified as

AH + Hegey||lw?|? + Hes||As||> — 2He = 0,
2
eqaHtraceAs Ay = 2w5(VH) + H Y ;(Ve,w3)(e:),

=1

(22)
esVH + Ag(VH) + H i €iw§(6i)A4(€i) =0.

=1
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Since H is non light-like, then either H= 0, or (ﬁ, ﬁ> # 0.
Suppose that (ﬁ, ﬁ> # 0. Since M? is pseudo-umbilical, it follows from (2)
and (6) that Ap = <ﬁ, ﬁ)[ On one hand, we obtain

(23) ZEZ D, ﬁ (e:) 22381 (V Aﬁ) ﬁ ﬁ

=1

On the other hand, it follows that

(24) Zal <V61Aﬁ>> ) = ﬁ ﬁ

=1

Putting (23) and (24) into the second equation of (7), we obtain V(ﬁ, ﬁ) =0,
i.e., H is a non zero constant. Then, (22) becomes

eqes||wi]|? + e3]|A3||* — 2¢ = 0,
2
eqtraceAz Ay = 3 6i(Ve,w3)(e:),

(25)

2
Z Eiwg(ei)A4(ei) =0.
=1
According to (4), we put
(26) w§ = —5354@1’ = f1w1 + f2w2,

where fi and f; are some functions. Note that ﬁ = Heg, it follows from (5)
that trace A4 = 0. Then, we can express the matrix representation of A4 as

J11 0
27 Ay = - .
27) ! ( 0 —J11 >

We claim that ||w}||? = . .
Assume on the contrary that ||w3||? # 0, i.e., fZ + e1e2f2 # 0. Making use
of the third equation of (25) and (26), we have

(28) e1eafiAa(er) + faAa(ea) =0,
which together with (27), we obtain f‘lgll =0, and 5152f2§11 = 0. So, we have
(ff + 5152f22)§11 =0,
which shows that g3 = 0. Thus, A4 = 0.
Since H = H e3 and M? is pseudo-umbilical, A3 = e3HI. It follows from (2)

that
e1B(e1,e1) = e1e3(As(e1),e1) es + e1e4(A4(e1),e1) e4 = esHes,
e1B(e1,e2) = e1e3(As(e1), e2) es + e1e4(A4(e1), e2) e4 = 0,
e9B(eg, e2) = e2e3(As(e2), €2) €3 + e2e4(A4(e2), e2) e4 = e3Hes,



302 YONGGANG ZHANG AND LI DU

which imply that
B(ei,e1) =cie3Hes, Bl(ey,e2) =0, B(eg, ez) = eaezHes.

Using these three equations and (3), we compute and get

(%€2B)(ela el) = 5153HW§(62)84.

(velB)(eg, 61) = *63H(61w%(61) + 62&)%(61))63.

Then, the Codazzi equation (Ve, B)(e1,e1) = (Ve,B)(e2,€1) and (26) deduce to

H fy = 0. Similarly, the Codazzi equation (V,, B)(ea, e2) = (Ve, B)(e1, €2) gives

H fl = 0. These two equations imply that H = 0, which is a contradiction.
Since ||w}||? = 0 and A3 = e3HI, then the first equation of (25) becomes

(29) e3H? —c=0.

When ¢ = 0, (29) implies H = 0, a contradiction. So, ﬁ = 0 and M12 is
minimal.
When ¢ > 0, it follows from (29) that e3 = 1. Then, the mean curvature

vector ﬁ (= Hes) is space-like, and H? = c.
When ¢ < 0, we know from (29) that H is a time-like vector with H2 = |e|.
We complete the proof of Theorem 1.2.

Proof of Theorem 1.3. Choose a orthonormal frame field {ej,...,es} such
that ﬁ = Hes. Since Az is diagonalizable, we denote by

(30) Ag(el) == )\61, A3(€2) = Hea.

Then, A + 4 = 2H and trA4 = 0. Since Deiﬁ = 0, we easily prove that
ei;(H)es + Hwi(e;)ey = 0 for i = 1,2, which means that H is a constant and
w3 = 0. Thus, it follows from (30) that (22) is simplified to

(31) H(e3(\? + 1) — 2¢) = 0.

When ¢ = 0, we have from (31) that H(A? + p?) = 0, which implies that
H =0 or A2 + 2 = 0. This together with A\ + p = 2H gives that H = 0, that
is, M? is minimal.

When ¢ < 0, then (A2 + u?) — 2¢ # 0 since e3 = 1. Thus, it follows from (31)
that H = 0.

We claim that H is space-like when ¢ > 0.

Suppose on contrary that H is time-like, then e3 = —1 and H # 0. Then,
using (31) leads to (A2 + p?) + 2¢ = 0, which contradicts the assumption that
(A2 + 12) 4 2¢ # 0. So, H is space-like.

Since H is space-like, then 5 = 1. This which together with (31) gives

(32) H(N + 42 —2¢) =0,

which implies that H = 0, and we complete the proof of Theorem 1.3.
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