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Abstract. In this paper, biharmonic pseudo-Riemannian surfaces with diagonalizable
shape operetor in pseudo-Riemannian space form N4

s (c) are studied. We prove that the
surfaces with light-like mean curvature vector field are pseudo-umbilical. For non light-
like mean curvature vector field, we show that the pseudo-umbilical surfaces is minimal
or H2 = |c|. Also, we give some sufficient conditions for such surfaces with parallel
mean curvature vector field to be minimal.
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1. Introduction

Let ϕ : Mn
r → Nn+p

s be the inclusion of a pseudo-Riemannian submanifold
Mn

r with index r into a pseudo-Riemannian manifold Nn+p
s with index s. We

say that Mn
r is a biharmonic submanifold, if its bitension field τ2(ϕ) vanishes

identically, i.e. (see [3, 10, 15])

(1) τ2(ϕ) := −∆ϕτ(ϕ)− trRN (dϕ, τ(ϕ))dϕ = 0,

where ∆ϕ is the rough Laplacian defined on sections of ϕ−1(TN) and τ(ϕ) =
tr∇ϕdϕ is the tension field of ϕ that vanishes for ϕ being a harmonic map. RN ,
∇ϕ and ∇ are the curvature tensor of Nn+p

s , the induced connection by ϕ on
the bundle ϕ∗TNn+p

s and the connection of Mn
r , respectively.
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Notice that τ(ϕ) = n
−→
H with

−→
H the mean curvature vector field of Mn

r , then
it is clear from (1) that a minimal submanifold must be biharmonic, and we call
a nonminimal biharmonic submanifold a proper biharmonic submanifold.

During the last decade, a special attention has been paid to the study of
biharmonic submanifolds and important progress has been made in the study of
this subject. B. Y. Chen and S. Ishikawa in [5, 6] gave full classification of proper
biharmonic curves in E3

q and proved that there exists no proper biharmonic
surface in E3

q . In [15], T. Sasahara classified proper biharmonic curves and
surfaces in nonflat Lorentz 3-space forms.

Now, let us turn to the problem in 4-dimensional pseudo-Riemannian space
forms. F. Defever et al. proved in [8] that every biharmonic hypersurface M3

r

(r = 0, 1, 2, 3) of E4
s with diagonalizable shape operator is minimal, and the

same conclusion holds for Lorentz hypersurfaces in E4
1 (see [1]).

It seems then natural, as the next step, to study biharmonic surfaces M2
r in

pseudo-Riemannian space froms N4
s (c). The structure of the surfaces often ap-

pears considerably different from that of the hypersurfaces, the mean curvature
vector field H⃗ of surfaces may be light-like, except space-like and time-like ones.
In general, each of them will imply different properties of surfaces. So far, there
have been no many developments in this direction.

Surfaces with light-like mean curvature vector field were concerned by many
geometers due to the study of trapped surfaces in 4-dimensional Lorentz mani-
folds in [14], which are related to the presence of a black hole. In [5, 6], B. Y.
Chen and S. Ishikawa firstly studied biharmonic surfaces with light-like mean
curvature vector field (i.e., marginally trapped biharmonic surfaces) in E4

s and
gave some examples of such surfaces in E4

s. Our first goal in this paper continues
to study this subject in nonflat cases and obtain

Theorem 1.1. Let M2
r be a biharmonic surface with light-like mean curva-

ture vector in a pseudo-Riemannian space form N4
s (c). Assume that M2

r has
diagonalizable shape operator, then it is pseudo-umbilical.

In [13], C.-Z. Ouyang investigated the minimality of space-like biharmonic
surfaces M2 (i.e., r = 0) with parallel mean curvature vector field in pseudo-
Riemannian space forms. After that, J.-C. Liu, L. Du and J. Zhang (see [11])
studied the problem for space-like pseudo-umbilical surfaces. Our second goal
in this paper is to investigate the minimality of such surfaces M2

r with general
index r and obtain

Theorem 1.2. Let M2
r be pseudo-umbilical biharmonic surfaces with non light-

like mean curvature vector in N4
s (c). Assume that M2

r has diagonalizable shape
operator, then one of the following three statements holds:

(i) when c = 0, then M2
r is minimal;

(ii) when c > 0, then its mean curvature vector
−→
H is space-like. Furthermore,

either M2
r is minimal or H2 = c;
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(iii) when c < 0, then either
−→
H = 0, i.e., M2

r is minimal, or
−→
H is a time-like

vector with H2 = |c|, where H is the mean curvature of M2
r .

Remark 1.1. As a corollary of Theorem 1.2, let M2 be a pseudo-umbilical
biharmonic surface in Riemannian space form N4(c). When c ≤ 0, then M2

must be minimal; when c > 0, then its mean curvature H = 0, or H2 = c, which
has been proved by [9] for c = 0, [2, Theorem 5.1] for c > 0 and [4, Theorem
2.4], for c < 0.

Theorem 1.3. Let M2
r be a biharmonic surface with non light-like mean curva-

ture vector in N4
s (c). Assume that M2

r has parallel mean curvature vector field
and diagonalizable shape operator, then M2

r is minimal if c = 0, or c < 0 and
H⃗ is space-like, or c > 0 and traceA2

3 ̸= 2c, where A3 is the shape operator with
respect to the normal frame field e3 of M2

r .

2. Preliminaries

Let Nn+p
s (c) be an (n + p)-dimensional pseudo-Riemannian space form with

index s of constant curvature c (0 ≤ s ≤ n+ p). Let x : Mn
r → Nn+p

s (c) be an
isometric immersion of an n-dimensional manifold Mn

r of signature (r, n−r)(r ≥
0) into Nn+p

s (c). Let ∇ and ∇̃ denote by the Levi-Civita connections of Mn
r and

Nn+p
s (c), respectively. For any tangent vector fields X,Y and normal vector

field ξ of Mn
r in Nn+p

s (c), the Gauss and Weingarten formulas are given by,
respectively, (cf. [7] or [12])

∇̃XY = ∇XY +B(X,Y ), ∇̃Xξ = −AξX +DXξ,

where B, Aξ and D are the second fundamental form, the shape operator with
respect to ξ and the normal connection, respectively. It is easy to see that B
and Aξ are related by

(2) ⟨B(X,Y ), ξ⟩ = ⟨AξX,Y ⟩.

The mean curvature vector field
−→
H and the mean curvature H of Mn

r in Nn+p
s (c)

are expressed as
−→
H = 1

ntraceB, and H =

√
|⟨
−→
H,

−→
H ⟩|, respectively.

We define the covariant derivative of the second fundamental form B by

(3) (∇̃XB)(Y,Z) = DXB(Y, Z)−B(∇XY, Z)−B(Y,∇XZ).

Then, the Codazzi equation is given by

(∇̃XB)(Y,Z) = (∇̃Y B)(X,Z).

Let {e1, e2, . . . , en+p} be a local orthonormal frame basis on Nn+p
s (c) such

that e1, . . . , en are tangent to Mn
r and en+1, . . . , en+p are normal to Mn

r . Then,
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the connection forms (ωA
B) are given by (cf. [6])

(4) ∇̃eA =

n+p∑
B=1

ωB
AeB, ωA

B = −εAεBω
B
A , A,B = 1, 2, . . . , n+ p,

where and εA = ⟨eA, eA⟩ = ±1, A = 1, 2, . . . , n+ p. It follows from (2) that

(5)
−→
H =

1

n
traceB =

1

n

n∑
i=1

εiB(ei, ei) =
1

n

n+p∑
α=n+1

εα(traceAα)eα,

where Aα = Aeα .
As it is known that a vector v tangent to Nn+p

s (c) is called space-like (resp.
time-like) if v = 0 or ⟨v, v⟩ > 0 (resp. ⟨v, v⟩ < 0). A vector v is called light-like
if v ̸= 0 and ⟨v, v⟩ = 0.

A submanifold Mn
r is called minimal if

−→
H = 0. Mn

r is called pseudo-

umbilical, if it is umbilical with respect to the direction of
−→
H (cf. [7]), i.e.,

(6) ⟨B(X,Y ),
−→
H ⟩ = ⟨

−→
H,

−→
H ⟩⟨X,Y ⟩.

When
−→
H ̸= 0, (6) becomes A−→

H
= ⟨

−→
H,

−→
H ⟩I, where I stands for the identity ope-

rator. It follows from (6) that every minimal submanifold is pseudo-umbilical.
Using a similar computation as in the proof of Theorem 4.1 in [3] (also see

[7]), we obtain the following.

Lemma 2.1. An isometric immersion ϕ : Mn
r → Nn+p

s (c) of an n-dimensional
manifold Mn

r into Nn+p
s (c) is biharmonic if and only if

(7)


∆D−→H +

n∑
i=1

εiB(A−→
H
ei, ei)− n

−→
Hc = 0,

n∇⟨
−→
H,

−→
H ⟩+ 4

n∑
i=1

εiADei

−→
H
(ei) = 0,

where

(8) ∆D = −
n∑

i=1

εi(DeiDei −D∇eiei
).

Set 

∥ωα
n+1∥2 =

n∑
i=1

εi
(
ωα
n+1(ei)

)2
, α > n+ 1,

traceAn+1Aα =
n∑

i=1
εi⟨An+1(Aα(ei)), ei⟩, α > n+ 1,

∇H =
n∑

i=1
εi(eiH)ei.

Using Lemma 2.1, we can prove the following lemma.
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Lemma 2.2. Let Mn
r be a biharmonic submanifold in Nn+p

s (c) with non light-
like mean curvature vector. Then, we have

(9)



∆H +Hεn+1

n+p∑
α=n+2

εα∥ωn+1
α ∥2 +Hεn+1∥An+1∥2 − nHc = 0,

HεαtraceAn+1Aα = 2ωα
n+1(∇H) +H

n∑
i=1

εi(∇eiω
α
n+1)(ei)

+H
n+p∑

β=n+1

n∑
i=1

εiω
β
n+1(ei)ω

α
β (ei),∀α > n+ 1,

nεn+1H∇H + 2An+1(∇H) + 2H
n+p∑

α=n+2

n∑
i=1

εiω
α
n+1(ei)Aα(ei) = 0.

Proof. Since
−→
H is not light-like, we can choose a local orthonormal frame field

{ei}n+p
i=1 such that

−→
H = H en+1.

We will calculate each term in (7) individually. First, from (8) we have

(10)

∆D−→H =−
n∑

i=1

εiDeiDei(H en+1) +
n∑

i=1

εiD∇eiei
(H en+1)

=−
n∑

i=1

εi

(
eieiHen+1 + 2eiHDeien+1 +HDeiDeien+1

)
=−

n∑
i=1

εi

{[
eieiH − εn+1H

n+p∑
α=n+2

εα(ω
α
n+1(ei))

2
]
en+1

+

n+p∑
α=n+2

[
2ωα

n+1(ei(H)ei) +H∇ei(ω
α
n+1(ei))

+H

n+p∑
β=n+1

εiω
β
n+1(ei)ω

α
β (ei)

]
eα

}

+

n∑
i=1

εi

(
(∇eiei)(H)en+1 +H

n+p∑
α=n+2

ωα
n+1(∇eiei)eα

)
.

Putting into (10) gives

(11)

∆D−→H =
(
∆H + εn+1H

n+p∑
α=n+2

εα∥ωn+1
α ∥2

)
en+1 −

n+p∑
α=n+2

{
2ωα

n+1(∇H)

+H
n∑

i=1

[
εi(∇eiω

n+1
α )ei +

n+p∑
β=n+1

εiω
β
n+1(ei)ω

α
β (ei)

]}
eα.
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Using
−→
H = Hen+1 again, a straightforward computation yields

(12)

n∑
i=1

εiB(A−→
H
(ei), ei) =

n∑
i=1

εi

{
εn+1⟨An+1

(
A−→

H
(ei)

)
, ei⟩ en+1

+

n+p∑
α=n+2

εα⟨Aα

(
A−→

H
(ei)

)
, ei⟩ eα

}

=εn+1H∥An+1∥2en+1 +H

n+p∑
α=n+2

εαtraceAn+1Aαeα.

(13)

n∑
i=1

εiADei

−→
H
(ei) =

n∑
i=1

εiADei (H en+1)(ei)

= An+1(∇H) +H

n+p∑
α=n+2

n∑
i=1

εiω
α
n+1(ei)Aα(ei).

Substituting (11), (12) and (13) into (7), we complete the proof of Lemma 2.2.

3. Proof of Main Theorems

Proof of Theorem 1.1. Since A3 and A4 are diagonalizable, we choose a local
orthonormal frame field {e1, . . . , e4} such that e1, e2 are tangent to M2

r and

(14) A3 =

(
λ1 0
0 λ2

)
, A4 =

(
µ1 0
0 µ2

)
.

Since
−→
H is light-like, we can set

(15)
−→
H = f(e3 + e4)

with e3 being space-like, e4 being time-like and f being a non-zero function on
M2

r (in fact, we can assume e3 be time-like and e4 be space-like, the proof idea
is the same). By a direct computation, we have

∆D(fe3) = (∆f)e3 − 2ω4
3(∇f)e4 − f(trace∇ω4

3)e4 − f∥ω4
3∥2e3.

∆D(fe4) = (∆f)e4 − 2ω4
3(∇f)e3 − f(trace∇ω4

3)e3 − f∥ω4
3∥2e4.

Then, we have

(16)

∆D−→H =∆D(fe3) + ∆D(fe4)

=
(
∆f − 2ω4

3(∇f)− ftrace∇ω4
3 − f∥ω4

3∥2
)
e3

+
(
∆f − 2ω4

3(∇f)− ftrace∇ω4
3 − f∥ω4

3∥2
)
e4,
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where trace∇ω4
3 =

∑2
i=1 εi(∇eiω

4
3)(ei). We also have

(17)

2∑
i=1

εiB(A−→
H
(ei), ei) =f(traceA2

3 + traceA3A4)e3

− f(traceA2
4 + traceA3A4)e4.

(18)
2∑

i=1

εiADei

−→
H
(ei) = (A3 +A4)

(
∇f + f

2∑
i=1

εiω
4
3(ei)ei

)
.

Substituting (15), (16), (17) and (18) into (7), we get

(19)



∆ f − 2ω4
3(∇f)− ftrace∇ω4

3 − f∥ω4
3∥2 − 2fc

+f(traceA2
3 + traceA3A4) = 0,

∆ f − 2ω4
3(∇f)− ftrace∇ω4

3 − f∥ω4
3∥2 − 2fc

−f(traceA2
4 + traceA3A4) = 0,

(A3 +A4)
(
∇f + f

∑2
i=1 εiω

4
3(ei)ei

)
= 0.

Using the first and second equations in (19), we have

(20) traceA2
3 + traceA2

4 + 2traceA3A4 = 0,

which together with (14), we get

λ1 = −µ1, λ2 = −µ2.

Note that

(21) AH⃗ = Af(e3+e4) =

(
f(λ1 + µ2) 0

0 f(λ2 + µ2)

)
= 0.

Then, ⟨B(ei, ej),
−→
H ⟩ = ⟨A−→

H
(ei), ej⟩ = 0, i, j = 1, 2. Also, ⟨

−→
H,

−→
H ⟩⟨ei, ej⟩ = 0

because of
−→
H being light-like. So, ⟨B(ei, ej),

−→
H ⟩ = ⟨

−→
H,

−→
H ⟩⟨ei, ej⟩. We have

from (6) that M2
r is pseudo-umbilical and complete the proof of Theorem 1.1.

Proof of Theorem 1.2. Choose a local orthonormal frame field {ei}4i=1 such

that
−→
H = He3 with ⟨e3, e3⟩ = ε3 = ±1. Then, (9) is simplified as

(22)


∆H +Hε3ε4∥ω3

4∥2 +Hε3∥A3∥2 − 2Hc = 0,

ε4HtraceA3A4 = 2ω4
3(∇H) +H

2∑
i=1

εi(∇eiω
4
3)(ei),

ε3∇H +A3(∇H) +H
2∑

i=1
εiω

4
3(ei)A4(ei) = 0.
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Since
−→
H is non light-like, then either

−→
H = 0, or ⟨

−→
H,

−→
H ⟩ ≠ 0.

Suppose that ⟨
−→
H,

−→
H ⟩ ≠ 0. Since M2

r is pseudo-umbilical, it follows from (2)

and (6) that A−→
H

= ⟨
−→
H,

−→
H ⟩I. On one hand, we obtain

(23)
2∑

i=1

εi(ADei

−→
H
)(ei) =

2∑
i=1

εi

(
∇eiA−→

H

)
(ei)−∇⟨

−→
H,

−→
H ⟩.

On the other hand, it follows that

(24)

2∑
i=1

εi

(
∇eiA−→

H

)
(ei) = ∇⟨

−→
H,

−→
H ⟩.

Putting (23) and (24) into the second equation of (7), we obtain ∇⟨
−→
H,

−→
H ⟩ = 0,

i.e., H is a non zero constant. Then, (22) becomes

(25)


ε4ε3∥ω3

4∥2 + ε3∥A3∥2 − 2c = 0,

ε4traceA3A4 =
2∑

i=1
εi(∇eiω

4
3)(ei),

2∑
i=1

εiω
4
3(ei)A4(ei) = 0.

According to (4), we put

(26) ω4
3 = −ε3ε4ω

3
4 = f̃1ω1 + f̃2ω2,

where f̃1 and f̃2 are some functions. Note that
−→
H = He3, it follows from (5)

that traceA4 = 0. Then, we can express the matrix representation of A4 as

(27) A4 =

(
g̃11 0
0 −g̃11

)
.

We claim that ∥ω3
4∥2 = 0.

Assume on the contrary that ∥ω3
4∥2 ̸= 0, i.e., f̃2

1 + ε1ε2f̃
2
2 ̸= 0. Making use

of the third equation of (25) and (26), we have

(28) ε1ε2f̃1A4(e1) + f̃2A4(e2) = 0,

which together with (27), we obtain f̃1g̃11 = 0, and ε1ε2f̃2g̃11 = 0. So, we have(
f̃2
1 + ε1ε2f̃

2
2

)
g̃11 = 0,

which shows that g̃11 = 0. Thus, A4 = 0.

Since
−→
H = He3 and M2

r is pseudo-umbilical, A3 = ε3HI. It follows from (2)
that

ε1B(e1, e1) = ε1ε3⟨A3(e1), e1⟩ e3 + ε1ε4⟨A4(e1), e1⟩ e4 = ε3He3,

ε1B(e1, e2) = ε1ε3⟨A3(e1), e2⟩ e3 + ε1ε4⟨A4(e1), e2⟩ e4 = 0,

ε2B(e2, e2) = ε2ε3⟨A3(e2), e2⟩ e3 + ε2ε4⟨A4(e2), e2⟩ e4 = ε3He3,
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which imply that

B(e1, e1) = ε1ε3He3, B(e1, e2) = 0, B(e2, e2) = ε2ε3He3.

Using these three equations and (3), we compute and get

(∇̃e2B)(e1, e1) = ε1ε3Hω4
3(e2)e4.

(∇̃e1B)(e2, e1) = −ε3H
(
ε1ω

1
2(e1) + ε2ω

2
1(e1)

)
e3.

Then, the Codazzi equation (∇̃e2B)(e1, e1) = (∇̃e1B)(e2, e1) and (26) deduce to
Hf̃2 = 0. Similarly, the Codazzi equation (∇̃e1B)(e2, e2) = (∇̃e2B)(e1, e2) gives
Hf̃1 = 0. These two equations imply that H = 0, which is a contradiction.

Since ∥ω3
4∥2 = 0 and A3 = ε3HI, then the first equation of (25) becomes

(29) ε3H
2 − c = 0.

When c = 0, (29) implies H = 0, a contradiction. So,
−→
H = 0 and M2

1 is
minimal.

When c > 0, it follows from (29) that ε3 = 1. Then, the mean curvature

vector
−→
H (= He3) is space-like, and H2 = c.

When c < 0, we know from (29) that
−→
H is a time-like vector with H2 = |c|.

We complete the proof of Theorem 1.2.

Proof of Theorem 1.3. Choose a orthonormal frame field {e1, . . . , e4} such

that
−→
H = He3. Since A3 is diagonalizable, we denote by

(30) A3(e1) = λe1, A3(e2) = µe2.

Then, λ + µ = 2H and trA4 = 0. Since DeiH⃗ = 0, we easily prove that
ei(H)e3 + Hω4

3(ei)e4 = 0 for i = 1, 2, which means that H is a constant and
ω4
3 = 0. Thus, it follows from (30) that (22) is simplified to

(31) H(ε3(λ
2 + µ2)− 2c) = 0.

When c = 0, we have from (31) that H(λ2 + µ2) = 0, which implies that
H = 0 or λ2 + µ2 = 0. This together with λ + µ = 2H gives that H = 0, that
is, M2

r is minimal.
When c < 0, then (λ2+µ2)− 2c ̸= 0 since ε3 = 1. Thus, it follows from (31)

that H = 0.
We claim that H⃗ is space-like when c > 0.
Suppose on contrary that H⃗ is time-like, then ε3 = −1 and H ̸= 0. Then,

using (31) leads to (λ2 + µ2) + 2c = 0, which contradicts the assumption that
(λ2 + µ2) + 2c ̸= 0. So, H⃗ is space-like.

Since H⃗ is space-like, then ε3 = 1. This which together with (31) gives

(32) H(λ2 + µ2 − 2c) = 0,

which implies that H = 0, and we complete the proof of Theorem 1.3.
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