# On biharmonic surfaces in pseudo-Riemannian 4-dimensional space forms

# Yonggang Zhang

Department of Science Gansu University of Chinese Medicine Lanzhou, 743000, Gansu China 362327630@qq.com

#### $Li Du^*$

School of Science
Chongqing University of Technology
Chongqing, 400054
China
duli820210@cqut.edu.cn

**Abstract.** In this paper, biharmonic pseudo-Riemannian surfaces with diagonalizable shape operator in pseudo-Riemannian space form  $N_s^4(c)$  are studied. We prove that the surfaces with light-like mean curvature vector field are pseudo-umbilical. For non light-like mean curvature vector field, we show that the pseudo-umbilical surfaces is minimal or  $H^2 = |c|$ . Also, we give some sufficient conditions for such surfaces with parallel mean curvature vector field to be minimal.

**Keywords:** Pseudo-Riemannian space forms, biharmonic surfaces, minimal surfaces, parallel mean curvature vector field, pseudo-umbilical surfaces.

MSC 2020: 53C50.

# 1. Introduction

Let  $\phi: M_r^n \to N_s^{n+p}$  be the inclusion of a pseudo-Riemannian submanifold  $M_r^n$  with index r into a pseudo-Riemannian manifold  $N_s^{n+p}$  with index s. We say that  $M_r^n$  is a biharmonic submanifold, if its bitension field  $\tau_2(\phi)$  vanishes identically, i.e. (see [3, 10, 15])

(1) 
$$\tau_2(\phi) := -\Delta^{\phi} \tau(\phi) - \operatorname{tr} R^N(\mathrm{d}\phi, \tau(\phi)) \mathrm{d}\phi = 0,$$

where  $\Delta^{\phi}$  is the rough Laplacian defined on sections of  $\phi^{-1}(TN)$  and  $\tau(\phi) = \operatorname{tr}\nabla^{\phi}\mathrm{d}\phi$  is the tension field of  $\phi$  that vanishes for  $\phi$  being a harmonic map.  $R^N$ ,  $\nabla^{\phi}$  and  $\nabla$  are the curvature tensor of  $N_s^{n+p}$ , the induced connection by  $\phi$  on the bundle  $\phi^*TN_s^{n+p}$  and the connection of  $M_r^n$ , respectively.

<sup>\*.</sup> Corresponding author

Notice that  $\tau(\phi) = n\overrightarrow{H}$  with  $\overrightarrow{H}$  the mean curvature vector field of  $M_r^n$ , then it is clear from (1) that a minimal submanifold must be biharmonic, and we call a nonminimal biharmonic submanifold a proper biharmonic submanifold.

During the last decade, a special attention has been paid to the study of biharmonic submanifolds and important progress has been made in the study of this subject. B. Y. Chen and S. Ishikawa in [5, 6] gave full classification of proper biharmonic curves in  $\mathbb{E}_q^3$  and proved that there exists no proper biharmonic surface in  $\mathbb{E}_q^3$ . In [15], T. Sasahara classified proper biharmonic curves and surfaces in nonflat Lorentz 3-space forms.

Now, let us turn to the problem in 4-dimensional pseudo-Riemannian space forms. F. Defever et al. proved in [8] that every biharmonic hypersurface  $M_r^3$  (r=0,1,2,3) of  $\mathbb{E}_s^4$  with diagonalizable shape operator is minimal, and the same conclusion holds for Lorentz hypersurfaces in  $\mathbb{E}_1^4$  (see [1]).

It seems then natural, as the next step, to study biharmonic surfaces  $M_r^2$  in pseudo-Riemannian space froms  $N_s^4(c)$ . The structure of the surfaces often appears considerably different from that of the hypersurfaces, the mean curvature vector field  $\vec{H}$  of surfaces may be light-like, except space-like and time-like ones. In general, each of them will imply different properties of surfaces. So far, there have been no many developments in this direction.

Surfaces with light-like mean curvature vector field were concerned by many geometers due to the study of trapped surfaces in 4-dimensional Lorentz manifolds in [14], which are related to the presence of a black hole. In [5, 6], B. Y. Chen and S. Ishikawa firstly studied biharmonic surfaces with light-like mean curvature vector field (i.e., marginally trapped biharmonic surfaces) in  $\mathbb{E}_s^4$  and gave some examples of such surfaces in  $\mathbb{E}_s^4$ . Our first goal in this paper continues to study this subject in nonflat cases and obtain

**Theorem 1.1.** Let  $M_r^2$  be a biharmonic surface with light-like mean curvature vector in a pseudo-Riemannian space form  $N_s^4(c)$ . Assume that  $M_r^2$  has diagonalizable shape operator, then it is pseudo-umbilical.

In [13], C.-Z. Ouyang investigated the minimality of space-like biharmonic surfaces  $M^2$  (i.e., r=0) with parallel mean curvature vector field in pseudo-Riemannian space forms. After that, J.-C. Liu, L. Du and J. Zhang (see [11]) studied the problem for space-like pseudo-umbilical surfaces. Our second goal in this paper is to investigate the minimality of such surfaces  $M_r^2$  with general index r and obtain

**Theorem 1.2.** Let  $M_r^2$  be pseudo-umbilical biharmonic surfaces with non light-like mean curvature vector in  $N_s^4(c)$ . Assume that  $M_r^2$  has diagonalizable shape operator, then one of the following three statements holds:

- (i) when c = 0, then  $M_r^2$  is minimal;
- (ii) when c > 0, then its mean curvature vector  $\overrightarrow{H}$  is space-like. Furthermore, either  $M_r^2$  is minimal or  $H^2 = c$ ;

(iii) when c < 0, then either  $\overrightarrow{H} = 0$ , i.e.,  $M_r^2$  is minimal, or  $\overrightarrow{H}$  is a time-like vector with  $H^2 = |c|$ , where H is the mean curvature of  $M_r^2$ .

**Remark 1.1.** As a corollary of Theorem 1.2, let  $M^2$  be a pseudo-umbilical biharmonic surface in Riemannian space form  $N^4(c)$ . When  $c \leq 0$ , then  $M^2$  must be minimal; when c > 0, then its mean curvature H = 0, or  $H^2 = c$ , which has been proved by [9] for c = 0, [2, Theorem 5.1] for c > 0 and [4, Theorem 2.4], for c < 0.

**Theorem 1.3.** Let  $M_r^2$  be a biharmonic surface with non light-like mean curvature vector in  $N_s^4(c)$ . Assume that  $M_r^2$  has parallel mean curvature vector field and diagonalizable shape operator, then  $M_r^2$  is minimal if c = 0, or c < 0 and  $\vec{H}$  is space-like, or c > 0 and trace  $A_3^2 \neq 2c$ , where  $A_3$  is the shape operator with respect to the normal frame field  $e_3$  of  $M_r^2$ .

### 2. Preliminaries

Let  $N_s^{n+p}(c)$  be an (n+p)-dimensional pseudo-Riemannian space form with index s of constant curvature c  $(0 \le s \le n+p)$ . Let  $x: M_r^n \to N_s^{n+p}(c)$  be an isometric immersion of an n-dimensional manifold  $M_r^n$  of signature  $(r, n-r)(r \ge 0)$  into  $N_s^{n+p}(c)$ . Let  $\nabla$  and  $\widetilde{\nabla}$  denote by the Levi-Civita connections of  $M_r^n$  and  $N_s^{n+p}(c)$ , respectively. For any tangent vector fields X, Y and normal vector field  $\xi$  of  $M_r^n$  in  $N_s^{n+p}(c)$ , the Gauss and Weingarten formulas are given by, respectively, (cf. [7] or [12])

$$\widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y), \ \widetilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi,$$

where B,  $A_{\xi}$  and D are the second fundamental form, the shape operator with respect to  $\xi$  and the normal connection, respectively. It is easy to see that B and  $A_{\xi}$  are related by

(2) 
$$\langle B(X,Y), \xi \rangle = \langle A_{\xi}X, Y \rangle.$$

The mean curvature vector field  $\overrightarrow{H}$  and the mean curvature H of  $M_r^n$  in  $N_s^{n+p}(c)$  are expressed as  $\overrightarrow{H} = \frac{1}{n} \text{trace} B$ , and  $H = \sqrt{|\langle \overrightarrow{H}, \overrightarrow{H} \rangle|}$ , respectively.

We define the covariant derivative of the second fundamental form B by

(3) 
$$(\widetilde{\nabla}_X B)(Y, Z) = D_X B(Y, Z) - B(\nabla_X Y, Z) - B(Y, \nabla_X Z).$$

Then, the Codazzi equation is given by

$$(\widetilde{\nabla}_X B)(Y, Z) = (\widetilde{\nabla}_Y B)(X, Z).$$

Let  $\{e_1, e_2, \ldots, e_{n+p}\}$  be a local orthonormal frame basis on  $N_s^{n+p}(c)$  such that  $e_1, \ldots, e_n$  are tangent to  $M_r^n$  and  $e_{n+1}, \ldots, e_{n+p}$  are normal to  $M_r^n$ . Then,

the connection forms  $(\omega_B^A)$  are given by (cf. [6])

(4) 
$$\widetilde{\nabla}e_A = \sum_{B=1}^{n+p} \omega_A^B e_B, \ \omega_B^A = -\varepsilon_A \varepsilon_B \omega_A^B, \ A, B = 1, 2, \dots, n+p,$$

where and  $\varepsilon_A = \langle e_A, e_A \rangle = \pm 1, A = 1, 2, \dots, n + p$ . It follows from (2) that

(5) 
$$\overrightarrow{H} = \frac{1}{n} \operatorname{trace} B = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i B(e_i, e_i) = \frac{1}{n} \sum_{\alpha=n+1}^{n+p} \varepsilon_\alpha (\operatorname{trace} A_\alpha) e_\alpha,$$

where  $A_{\alpha} = A_{e_{\alpha}}$ .

As it is known that a vector v tangent to  $N_s^{n+p}(c)$  is called *space-like* (resp. time-like) if v=0 or  $\langle v,v\rangle>0$  (resp.  $\langle v,v\rangle<0$ ). A vector v is called light-like if  $v\neq 0$  and  $\langle v,v\rangle=0$ .

A submanifold  $M_r^n$  is called *minimal* if  $\overrightarrow{H} = 0$ .  $M_r^n$  is called *pseudo-umbilical*, if it is umbilical with respect to the direction of  $\overrightarrow{H}$  (cf. [7]), i.e.,

(6) 
$$\langle B(X,Y), \overrightarrow{H} \rangle = \langle \overrightarrow{H}, \overrightarrow{H} \rangle \langle X, Y \rangle.$$

When  $\overrightarrow{H} \neq 0$ , (6) becomes  $A_{\overrightarrow{H}} = \langle \overrightarrow{H}, \overrightarrow{H} \rangle I$ , where I stands for the identity operator. It follows from (6) that every minimal submanifold is pseudo-umbilical.

Using a similar computation as in the proof of Theorem 4.1 in [3] (also see [7]), we obtain the following.

**Lemma 2.1.** An isometric immersion  $\phi: M_r^n \to N_s^{n+p}(c)$  of an n-dimensional manifold  $M_r^n$  into  $N_s^{n+p}(c)$  is biharmonic if and only if

(7) 
$$\begin{cases} \Delta^{D} \overrightarrow{H} + \sum_{i=1}^{n} \varepsilon_{i} B(A_{\overrightarrow{H}} e_{i}, e_{i}) - n \overrightarrow{H} c = 0, \\ n \nabla \langle \overrightarrow{H}, \overrightarrow{H} \rangle + 4 \sum_{i=1}^{n} \varepsilon_{i} A_{D_{e_{i}} \overrightarrow{H}} (e_{i}) = 0, \end{cases}$$

where

(8) 
$$\Delta^{D} = -\sum_{i=1}^{n} \varepsilon_{i} (D_{e_{i}} D_{e_{i}} - D_{\nabla_{e_{i}} e_{i}}).$$

Set 
$$\begin{cases} \|\omega_{n+1}^{\alpha}\|^2 = \sum_{i=1}^n \varepsilon_i (\omega_{n+1}^{\alpha}(e_i))^2, & \alpha > n+1, \\ \operatorname{trace} A_{n+1} A_{\alpha} = \sum_{i=1}^n \varepsilon_i \langle A_{n+1}(A_{\alpha}(e_i)), e_i \rangle, & \alpha > n+1, \\ \nabla H = \sum_{i=1}^n \varepsilon_i (e_i H) e_i. \end{cases}$$

Using Lemma 2.1, we can prove the following lemma.

**Lemma 2.2.** Let  $M_r^n$  be a biharmonic submanifold in  $N_s^{n+p}(c)$  with non light-like mean curvature vector. Then, we have

(9) 
$$\begin{cases} \Delta H + H\varepsilon_{n+1} \sum_{\alpha=n+2}^{n+p} \varepsilon_{\alpha} \|\omega_{\alpha}^{n+1}\|^{2} + H\varepsilon_{n+1} \|A_{n+1}\|^{2} - nHc = 0, \\ H\varepsilon_{\alpha} \operatorname{trace} A_{n+1} A_{\alpha} = 2\omega_{n+1}^{\alpha} (\nabla H) + H \sum_{i=1}^{n} \varepsilon_{i} (\nabla_{e_{i}} \omega_{n+1}^{\alpha})(e_{i}) \\ + H \sum_{\beta=n+1}^{n+p} \sum_{i=1}^{n} \varepsilon_{i} \omega_{n+1}^{\beta}(e_{i}) \omega_{\beta}^{\alpha}(e_{i}), \forall \alpha > n+1, \\ n\varepsilon_{n+1} H\nabla H + 2A_{n+1} (\nabla H) + 2H \sum_{\alpha=n+2}^{n+p} \sum_{i=1}^{n} \varepsilon_{i} \omega_{n+1}^{\alpha}(e_{i}) A_{\alpha}(e_{i}) = 0. \end{cases}$$

**Proof.** Since  $\overrightarrow{H}$  is not light-like, we can choose a local orthonormal frame field  $\{e_i\}_{i=1}^{n+p}$  such that  $\overrightarrow{H} = H e_{n+1}$ .

We will calculate each term in (7) individually. First, from (8) we have

$$\Delta^{D}\overrightarrow{H} = -\sum_{i=1}^{n} \varepsilon_{i} D_{e_{i}} D_{e_{i}} (H e_{n+1}) + \sum_{i=1}^{n} \varepsilon_{i} D_{\nabla_{e_{i}} e_{i}} (H e_{n+1})$$

$$= -\sum_{i=1}^{n} \varepsilon_{i} \left( e_{i} e_{i} H e_{n+1} + 2 e_{i} H D_{e_{i}} e_{n+1} + H D_{e_{i}} D_{e_{i}} e_{n+1} \right)$$

$$= -\sum_{i=1}^{n} \varepsilon_{i} \left\{ \left[ e_{i} e_{i} H - \varepsilon_{n+1} H \sum_{\alpha=n+2}^{n+p} \varepsilon_{\alpha} (\omega_{n+1}^{\alpha}(e_{i}))^{2} \right] e_{n+1} \right.$$

$$+ \sum_{\alpha=n+2}^{n+p} \left[ 2 \omega_{n+1}^{\alpha} (e_{i}(H) e_{i}) + H \nabla_{e_{i}} (\omega_{n+1}^{\alpha}(e_{i})) \right.$$

$$+ H \sum_{\beta=n+1}^{n+p} \varepsilon_{i} \omega_{n+1}^{\beta} (e_{i}) \omega_{\beta}^{\alpha}(e_{i}) \right] e_{\alpha}$$

$$+ \sum_{i=1}^{n} \varepsilon_{i} \left( (\nabla_{e_{i}} e_{i}) (H) e_{n+1} + H \sum_{\alpha=n+2}^{n+p} \omega_{n+1}^{\alpha} (\nabla_{e_{i}} e_{i}) e_{\alpha} \right).$$

Putting into (10) gives

(11) 
$$\Delta^{D}\overrightarrow{H} = \left(\Delta H + \varepsilon_{n+1}H \sum_{\alpha=n+2}^{n+p} \varepsilon_{\alpha} \|\omega_{\alpha}^{n+1}\|^{2}\right) e_{n+1} - \sum_{\alpha=n+2}^{n+p} \left\{2\omega_{n+1}^{\alpha}(\nabla H) + H \sum_{i=1}^{n} \left[\varepsilon_{i}(\nabla_{e_{i}}\omega_{\alpha}^{n+1})e_{i} + \sum_{\beta=n+1}^{n+p} \varepsilon_{i}\omega_{n+1}^{\beta}(e_{i})\omega_{\beta}^{\alpha}(e_{i})\right]\right\} e_{\alpha}.$$

Using  $\overrightarrow{H} = He_{n+1}$  again, a straightforward computation yields

$$\sum_{i=1}^{n} \varepsilon_{i} B(A_{\overrightarrow{H}}(e_{i}), e_{i}) = \sum_{i=1}^{n} \varepsilon_{i} \Big\{ \varepsilon_{n+1} \langle A_{n+1}(A_{\overrightarrow{H}}(e_{i})), e_{i} \rangle e_{n+1}$$

$$+ \sum_{\alpha=n+2}^{n+p} \varepsilon_{\alpha} \langle A_{\alpha}(A_{\overrightarrow{H}}(e_{i})), e_{i} \rangle e_{\alpha} \Big\}$$

$$= \varepsilon_{n+1} H \|A_{n+1}\|^{2} e_{n+1} + H \sum_{\alpha=n+2}^{n+p} \varepsilon_{\alpha} \operatorname{trace} A_{n+1} A_{\alpha} e_{\alpha}.$$
(12)

(13) 
$$\sum_{i=1}^{n} \varepsilon_{i} A_{D_{e_{i}} \overrightarrow{H}}(e_{i}) = \sum_{i=1}^{n} \varepsilon_{i} A_{D_{e_{i}}(H e_{n+1})}(e_{i})$$

$$= A_{n+1}(\nabla H) + H \sum_{\alpha=n+2}^{n+p} \sum_{i=1}^{n} \varepsilon_{i} \omega_{n+1}^{\alpha}(e_{i}) A_{\alpha}(e_{i}).$$

Substituting (11), (12) and (13) into (7), we complete the proof of Lemma 2.2.

#### 3. Proof of Main Theorems

**Proof of Theorem 1.1.** Since  $A_3$  and  $A_4$  are diagonalizable, we choose a local orthonormal frame field  $\{e_1, \ldots, e_4\}$  such that  $e_1, e_2$  are tangent to  $M_r^2$  and

(14) 
$$A_3 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, A_4 = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}.$$

Since  $\overrightarrow{H}$  is light-like, we can set

$$(15) \qquad \overrightarrow{H} = f(e_3 + e_4)$$

with  $e_3$  being space-like,  $e_4$  being time-like and f being a non-zero function on  $M_r^2$  (in fact, we can assume  $e_3$  be time-like and  $e_4$  be space-like, the proof idea is the same). By a direct computation, we have

$$\Delta^{D}(fe_{3}) = (\Delta f)e_{3} - 2\omega_{3}^{4}(\nabla f)e_{4} - f(\operatorname{trace}\nabla\omega_{3}^{4})e_{4} - f\|\omega_{3}^{4}\|^{2}e_{3}.$$
  
$$\Delta^{D}(fe_{4}) = (\Delta f)e_{4} - 2\omega_{3}^{4}(\nabla f)e_{3} - f(\operatorname{trace}\nabla\omega_{3}^{4})e_{3} - f\|\omega_{3}^{4}\|^{2}e_{4}.$$

Then, we have

(16) 
$$\Delta^{D} \overrightarrow{H} = \Delta^{D}(fe_{3}) + \Delta^{D}(fe_{4})$$

$$= \left(\Delta f - 2\omega_{3}^{4}(\nabla f) - f \operatorname{trace} \nabla \omega_{3}^{4} - f \|\omega_{3}^{4}\|^{2}\right) e_{3}$$

$$+ \left(\Delta f - 2\omega_{3}^{4}(\nabla f) - f \operatorname{trace} \nabla \omega_{3}^{4} - f \|\omega_{3}^{4}\|^{2}\right) e_{4},$$

where trace  $\nabla \omega_3^4 = \sum_{i=1}^2 \varepsilon_i (\nabla_{e_i} \omega_3^4)(e_i)$ . We also have

(17) 
$$\sum_{i=1}^{2} \varepsilon_{i} B(A_{\overrightarrow{H}}(e_{i}), e_{i}) = f(\operatorname{trace} A_{3}^{2} + \operatorname{trace} A_{3} A_{4}) e_{3} - f(\operatorname{trace} A_{4}^{2} + \operatorname{trace} A_{3} A_{4}) e_{4}.$$

(18) 
$$\sum_{i=1}^{2} \varepsilon_i A_{D_{e_i} \overrightarrow{H}}(e_i) = (A_3 + A_4) \Big( \nabla f + f \sum_{i=1}^{2} \varepsilon_i \omega_3^4(e_i) e_i \Big).$$

Substituting (15), (16), (17) and (18) into (7), we get

(19) 
$$\begin{cases} \Delta f - 2\omega_3^4(\nabla f) - f \operatorname{trace} \nabla \omega_3^4 - f \|\omega_3^4\|^2 - 2fc \\ + f(\operatorname{trace} A_3^2 + \operatorname{trace} A_3 A_4) = 0, \\ \Delta f - 2\omega_3^4(\nabla f) - f \operatorname{trace} \nabla \omega_3^4 - f \|\omega_3^4\|^2 - 2fc \\ - f(\operatorname{trace} A_4^2 + \operatorname{trace} A_3 A_4) = 0, \\ (A_3 + A_4) \Big(\nabla f + f \sum_{i=1}^2 \varepsilon_i \omega_3^4(e_i) e_i\Big) = 0. \end{cases}$$

Using the first and second equations in (19), we have

(20) 
$$\operatorname{trace} A_3^2 + \operatorname{trace} A_4^2 + 2\operatorname{trace} A_3 A_4 = 0,$$

which together with (14), we get

$$\lambda_1 = -\mu_1, \ \lambda_2 = -\mu_2.$$

Note that

(21) 
$$A_{\vec{H}} = A_{f(e_3 + e_4)} = \begin{pmatrix} f(\lambda_1 + \mu_2) & 0 \\ 0 & f(\lambda_2 + \mu_2) \end{pmatrix} = \mathbf{0}.$$

Then,  $\langle B(e_i,e_j),\overrightarrow{H}\rangle=\langle A_{\overrightarrow{H}}(e_i),e_j\rangle=0,\ i,j=1,2.$  Also,  $\langle \overrightarrow{H},\overrightarrow{H}\rangle\langle e_i,e_j\rangle=0$  because of  $\overrightarrow{H}$  being light-like. So,  $\langle B(e_i,e_j),\overrightarrow{H}\rangle=\langle \overrightarrow{H},\overrightarrow{H}\rangle\langle e_i,e_j\rangle.$  We have from (6) that  $M_r^2$  is pseudo-umbilical and complete the proof of Theorem 1.1.

**Proof of Theorem 1.2.** Choose a local orthonormal frame field  $\{e_i\}_{i=1}^4$  such that  $\overrightarrow{H} = He_3$  with  $\langle e_3, e_3 \rangle = \varepsilon_3 = \pm 1$ . Then, (9) is simplified as

(22) 
$$\begin{cases} \Delta H + H \varepsilon_{3} \varepsilon_{4} \|\omega_{4}^{3}\|^{2} + H \varepsilon_{3} \|A_{3}\|^{2} - 2Hc = 0, \\ \varepsilon_{4} H \operatorname{trace} A_{3} A_{4} = 2\omega_{3}^{4} (\nabla H) + H \sum_{i=1}^{2} \varepsilon_{i} (\nabla_{e_{i}} \omega_{3}^{4})(e_{i}), \\ \varepsilon_{3} \nabla H + A_{3} (\nabla H) + H \sum_{i=1}^{2} \varepsilon_{i} \omega_{3}^{4}(e_{i}) A_{4}(e_{i}) = 0. \end{cases}$$

Since  $\overrightarrow{H}$  is non light-like, then either  $\overrightarrow{H}=0$ , or  $\langle \overrightarrow{H}, \overrightarrow{H} \rangle \neq 0$ . Suppose that  $\langle \overrightarrow{H}, \overrightarrow{H} \rangle \neq 0$ . Since  $M_r^2$  is pseudo-umbilical, it follows from (2) and (6) that  $A_{\overrightarrow{H}}=\langle \overrightarrow{H}, \overrightarrow{H} \rangle I$ . On one hand, we obtain

(23) 
$$\sum_{i=1}^{2} \varepsilon_{i}(A_{D_{e_{i}}\overrightarrow{H}})(e_{i}) = \sum_{i=1}^{2} \varepsilon_{i} \left(\nabla_{e_{i}} A_{\overrightarrow{H}}\right)(e_{i}) - \nabla \langle \overrightarrow{H}, \overrightarrow{H} \rangle.$$

On the other hand, it follows that

(24) 
$$\sum_{i=1}^{2} \varepsilon_{i} \left( \nabla_{e_{i}} A_{\overrightarrow{H}} \right) (e_{i}) = \nabla \langle \overrightarrow{H}, \overrightarrow{H} \rangle.$$

Putting (23) and (24) into the second equation of (7), we obtain  $\nabla \langle \overrightarrow{H}, \overrightarrow{H} \rangle = 0$ , i.e., H is a non zero constant. Then, (22) becomes

(25) 
$$\begin{cases} \varepsilon_{4}\varepsilon_{3}\|\omega_{4}^{3}\|^{2} + \varepsilon_{3}\|A_{3}\|^{2} - 2c = 0, \\ \varepsilon_{4}\operatorname{trace}A_{3}A_{4} = \sum_{i=1}^{2} \varepsilon_{i}(\nabla_{e_{i}}\omega_{3}^{4})(e_{i}), \\ \sum_{i=1}^{2} \varepsilon_{i}\omega_{3}^{4}(e_{i})A_{4}(e_{i}) = 0. \end{cases}$$

According to (4), we put

(26) 
$$\omega_3^4 = -\varepsilon_3 \varepsilon_4 \omega_4^3 = \tilde{f}_1 \omega_1 + \tilde{f}_2 \omega_2,$$

where  $\tilde{f}_1$  and  $\tilde{f}_2$  are some functions. Note that  $\overrightarrow{H} = He_3$ , it follows from (5) that trace  $A_4 = 0$ . Then, we can express the matrix representation of  $A_4$  as

(27) 
$$A_4 = \begin{pmatrix} \tilde{g}_{11} & 0 \\ 0 & -\tilde{g}_{11} \end{pmatrix}.$$

We claim that  $\|\omega_4^3\|^2 = 0$ .

Assume on the contrary that  $\|\omega_4^3\|^2 \neq 0$ , i.e.,  $\tilde{f}_1^2 + \varepsilon_1 \varepsilon_2 \tilde{f}_2^2 \neq 0$ . Making use of the third equation of (25) and (26), we have

(28) 
$$\varepsilon_1 \varepsilon_2 \tilde{f}_1 A_4(e_1) + \tilde{f}_2 A_4(e_2) = 0,$$

which together with (27), we obtain  $\tilde{f}_1\tilde{g}_{11}=0$ , and  $\varepsilon_1\varepsilon_2\tilde{f}_2\tilde{g}_{11}=0$ . So, we have

$$(\tilde{f}_1^2 + \varepsilon_1 \varepsilon_2 \tilde{f}_2^2) \tilde{g}_{11} = 0,$$

which shows that  $\tilde{g}_{11} = 0$ . Thus,  $A_4 = 0$ .

Since  $\overrightarrow{H} = He_3$  and  $M_r^2$  is pseudo-umbilical,  $A_3 = \varepsilon_3 HI$ . It follows from (2) that

$$\begin{split} \varepsilon_1 B(e_1,e_1) &= \varepsilon_1 \varepsilon_3 \langle A_3(e_1),e_1 \rangle \, e_3 + \varepsilon_1 \varepsilon_4 \langle A_4(e_1),e_1 \rangle \, e_4 = \varepsilon_3 H e_3, \\ \varepsilon_1 B(e_1,e_2) &= \varepsilon_1 \varepsilon_3 \langle A_3(e_1),e_2 \rangle \, e_3 + \varepsilon_1 \varepsilon_4 \langle A_4(e_1),e_2 \rangle \, e_4 = 0, \\ \varepsilon_2 B(e_2,e_2) &= \varepsilon_2 \varepsilon_3 \langle A_3(e_2),e_2 \rangle \, e_3 + \varepsilon_2 \varepsilon_4 \langle A_4(e_2),e_2 \rangle \, e_4 = \varepsilon_3 H e_3, \end{split}$$

which imply that

$$B(e_1, e_1) = \varepsilon_1 \varepsilon_3 H e_3, \quad B(e_1, e_2) = 0, \quad B(e_2, e_2) = \varepsilon_2 \varepsilon_3 H e_3.$$

Using these three equations and (3), we compute and get

$$(\widetilde{\nabla}_{e_2}B)(e_1, e_1) = \varepsilon_1 \varepsilon_3 H \omega_3^4(e_2) e_4.$$
  

$$(\widetilde{\nabla}_{e_1}B)(e_2, e_1) = -\varepsilon_3 H (\varepsilon_1 \omega_2^1(e_1) + \varepsilon_2 \omega_1^2(e_1)) e_3.$$

Then, the Codazzi equation  $(\widetilde{\nabla}_{e_2}B)(e_1,e_1)=(\widetilde{\nabla}_{e_1}B)(e_2,e_1)$  and (26) deduce to  $H\widetilde{f}_2=0$ . Similarly, the Codazzi equation  $(\widetilde{\nabla}_{e_1}B)(e_2,e_2)=(\widetilde{\nabla}_{e_2}B)(e_1,e_2)$  gives  $H\widetilde{f}_1=0$ . These two equations imply that H=0, which is a contradiction.

Since  $\|\omega_4^3\|^2 = 0$  and  $A_3 = \varepsilon_3 HI$ , then the first equation of (25) becomes

When c = 0, (29) implies H = 0, a contradiction. So,  $\overrightarrow{H} = 0$  and  $M_1^2$  is minimal.

When c > 0, it follows from (29) that  $\varepsilon_3 = 1$ . Then, the mean curvature vector  $\overrightarrow{H}$  (=  $He_3$ ) is space-like, and  $H^2 = c$ .

When c < 0, we know from (29) that  $\overrightarrow{H}$  is a time-like vector with  $H^2 = |c|$ . We complete the proof of Theorem 1.2.

**Proof of Theorem 1.3.** Choose a orthonormal frame field  $\{e_1, \ldots, e_4\}$  such that  $\overrightarrow{H} = He_3$ . Since  $A_3$  is diagonalizable, we denote by

(30) 
$$A_3(e_1) = \lambda e_1, \ A_3(e_2) = \mu e_2.$$

Then,  $\lambda + \mu = 2H$  and  $\operatorname{tr} A_4 = 0$ . Since  $D_{e_i} \vec{H} = 0$ , we easily prove that  $e_i(H)e_3 + H\omega_3^4(e_i)e_4 = 0$  for i = 1, 2, which means that H is a constant and  $\omega_3^4 = 0$ . Thus, it follows from (30) that (22) is simplified to

(31) 
$$H(\varepsilon_3(\lambda^2 + \mu^2) - 2c) = 0.$$

When c=0, we have from (31) that  $H(\lambda^2 + \mu^2) = 0$ , which implies that H=0 or  $\lambda^2 + \mu^2 = 0$ . This together with  $\lambda + \mu = 2H$  gives that H=0, that is,  $M_r^2$  is minimal.

When c < 0, then  $(\lambda^2 + \mu^2) - 2c \neq 0$  since  $\varepsilon_3 = 1$ . Thus, it follows from (31) that H = 0.

We claim that  $\vec{H}$  is space-like when c > 0.

Suppose on contrary that  $\vec{H}$  is time-like, then  $\varepsilon_3 = -1$  and  $H \neq 0$ . Then, using (31) leads to  $(\lambda^2 + \mu^2) + 2c = 0$ , which contradicts the assumption that  $(\lambda^2 + \mu^2) + 2c \neq 0$ . So,  $\vec{H}$  is space-like.

Since  $\vec{H}$  is space-like, then  $\varepsilon_3 = 1$ . This which together with (31) gives

(32) 
$$H(\lambda^2 + \mu^2 - 2c) = 0,$$

which implies that H = 0, and we complete the proof of Theorem 1.3.

## Acknowledgements

The second author is supported by the Natural Science Foundation of Chongqing (No. CSTB2024NSCQ-MSX0421).

#### References

- [1] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, V. J. Papantoniou, *Biharmonic Lorentz hypersurfaces in*  $E_1^4$ , Pacific J. Math., 229 (2007), 293-305.
- [2] A. Balmuş, S. Montaldo, C. Oniciuc, Classification results for biharmonic submanifolds in spheres, Israel J. Math., 168 (2008), 201-220.
- [3] R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of  $S^3$ , Inter. J. Math., 12 (2001), 867-876.
- [4] R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math., 130 (2002), 109-123.
- [5] B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ., 45 A (1991), 323-347.
- [6] B. Y. Chen, S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 52 (1998), 167-185.
- [7] B. Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, Hackensack, NJ, 2011.
- [8] F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space  $E_s^4$ , J. Math. Anal. Appl., 315 (2006), 276-286.
- [9] I. Dimitrić, Submanifolds of E<sup>m</sup> with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20 (1992), 53-65.
- [10] G.-Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chin. Ann. Math. Ser. A, 7 (1986), 389-402.
- [11] J.-C. Liu, L. Du, J. Zhang, Minimality on biharmonic space-like submanifolds in pseudo-Riemannian space forms, J. Geom. Phys., 92 (2015), 69-77.
- [12] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [13] C.-Z. Ouyang, 2-Harmonic space-like submanifolds in pseudo-Riemannain space forms, Chinese Ann. Math. Ser. A, 21 (2000), 649-654.
- [14] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett., 14 (1965), 57-59.

[15] T. Sasahara, Biharmonic submaifolds in nonflat Lorentz 3-space forms, Bull. Aust. Math. Soc., 85 (2012), 422-432.

Accepted: November 27, 2024