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1. Introduction

In this paper, Cm×n and Rm×n stand for the sets of all m × n matrices over
the fields of complex numbers and real numbers, respectively. A∗ stands for the
conjugate transpose of A ∈ Cm×n and r(A) stand for the rank of A ∈ Cm×n.
det(A) stands for the determinant of A ∈ Cm×m, and Im denotes the identity
matrix of order m.

The Core inverse denoted byA#O ∈ Cm×m ofA is the unique matrix satisfying
the following matrix equations, r(A2) = r(A)

(1) AA#OA = A,

(2) A(A#O)2 = A#O,

(3) (AA#O)∗ = AA#O ([1]).

*. Corresponding author
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The Moore-penrose inverse denoted by A† of A is the unique matrix satis-
fying the following matrix equations

(1) AA†A = A,

(2) A†AA† = A†,

(3) (AA†)∗ = AA†,

(4) (A†A)∗ = A†A ([15]).

Recall that a matrix A ∈ Cm×m is said to be EP-matrix if and only if it
satisfies the following equality

AA† = A†A.(1)

A matrix A ∈ Cm×m is said to be Hermitian matrix if and only if it satisfies the
following equality

A∗ = A.(2)

A matrix A ∈ Cm×m is said to be normal matrix if and only if it satisfies the
following equality

AA∗ = A∗A.(3)

In addition to the definitions in (1), (2) and (3), a Hermitian matrix can be
characterized by some other matrix equalities and facts. It can be expressed by
the following facts

f(A,A†) = 0 ⇔ AA† = A†A,(4)

f(A,A∗) = 0 ⇔ A = A∗,(5)

f(A,A∗) = 0 ⇔ AA∗ = A∗A,(6)

where f(·) is the certain ordinary algebraic operation of A and A∗, A and A†.
Due to the arbitrariness of matrix expressions, there does not exist a general
and significant method to construct the matrix equations in (4) except some
special cases. We already have the following facts from [6][22]:

A2 = AA∗ ⇔ A = A∗,(7)

A2 = A∗A ⇔ A = A∗,(8)

A3 = AA∗A ⇔ A = A∗.(9)

Lemma 1.1 ([13]). Let A ∈ Cm×n. The singular value decomposition of A is

A = U

[
Σ 0
0 0

]
V,
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where U ∈ Cm×m and V ∈ Cn×n are two unitary matrices, namely, UU∗ =
U∗U = Im, V V ∗ = V ∗V = In, and Σ ∈ Rs×s is a positive diagonal matrix
composed of the singular values of A with s = r(A). In particular, if A ∈ Cm×m,
then A admits the following decomposition:

A = U

[
Σ 0
0 0

]
V = U

[
Σ 0
0 0

]
(V U)U∗ = U

[
ΣK ΣL
0 0

]
U∗,

where V U can be decomposed as V U =

[
K L
K1 L1

]
with (V U)(V U)∗ = Im,K ∈

Cs×s, L ∈ Cs×(m−s), and

KK∗ + LL∗ = Is, KK∗ ≤ Is, LL∗ ≤ Is,

where KK∗ ≤ Is, LL
∗ ≤ Is mean that Is − KK∗ and Is − LL∗ are positive

semi-definite.

So, A is Hermitian if and only if L = 0 and ΣK = K∗Σ; A is normal if and
only if L = 0 and ΣK = KΣ; and finally, A is EP if and only if L = 0.

In [2, 6, 7, 10, 13, 15, 21], the properties of the EP-matrix, normal matrix,
Hermitian matrix and their equivalence relation are described. Based on this
background, we discuss their other equivalent forms. In [9] [18] and [19], the
equivalent analysis of different inversion laws of matrix is described. This paper
also gives an equivalent form of the reverse order law.

This paper is organized as follows
The second part gives some equivalent forms of the EP-matrix and corollary:

(I) A is EP.

(II) AA†A#O = A†A#OA.

(III) AA#OA∗ = A∗AA#O.

(IV) AA#OA† = A#OA†A.

(V) A†AA#O = A#OA†A and the third part gives some equivalent forms of the
normal matrix and corollary.

The fourth part describes the relevant properties of the Hermitian matrix

(I) A is Hermitian,

(II) AA#O = A∗A#O,

(III) AA#O = A†A∗,

(IV) A†A = A#OA∗,

(V) AA#O = A∗A†.

We aim to A5 = (AA∗)2A and A7 = (AA∗)3A ⇔ A = A∗ and higher ones.
A new equivalent condition for the reverse order law is also obtained (AB)† =
B†A† ⇔ (B∗A∗ABB∗A∗)† = (A∗)†(BB∗)†(A∗A)†(B∗)†.
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2. Related results of the EP-matrix

In this section we give the equivalent form of the EP-matrix of the form RS =
XY and XY = Y X, where R,S,X, Y ∈ A†, A,A#O, A∗, and some conclusions
are obtained.

Lemma 2.1 ([21]). Let A ∈ Cm×m. Then, the following results hold:

(I) A2A† = AA†A ⇔ AA† = A†A;

(II) A†A2 = AA†A ⇔ AA† = A†A.

We present necessary and sufficient conditions for a matrix to be EP by refer-
ring to the commutativity property XY = Y X, where X and Y are transforms
of A from the set A†, A,A#O, A∗.

Theorem 2.1. Let A ∈ Cm×m. The index is one. Then, the following condi-
tions are equivalent:

(I) A is EP;

(II) AA†A#O = A†A#OA, r(A) = r(A2);

(III) AA#OA∗ = A∗AA#O, r(A) = r(A2);

(IV) AA#OA† = A#OA†A, r(A) = r(A2);

(V) A†AA#O = A#OA†A, r(A) = r(A2);

(VI) A†A†A#O = A#OA†A†, r(A) = r(A2);

(VII) A†A#OA† = A#OA†A†, r(A) = r(A2);

(VIII) A†A#OA#O = A#OA#OA†, r(A) = r(A2);

(IX) AA#OA† = A†AA#O, r(A) = r(A2);

(X) A†A#O = A#OA†, r(A) = r(A2);

(XI) A†A#OA#O = A#OA†A#O, r(A) = r(A2).

Proof. By the Hartwig-Spindelböck decomposition of A, one has

A = U

[
ΣK ΣL
0 0

]
U∗.

By calculating, we can get the Core inverse of A, that is

A#O = U

[
K−1Σ−1 0

0 0

]
U∗.
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On the other hand, the Moore-Penrose inverse of A is

A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗.

It is easy to figure out that AA†A#O and A†A#OA are

AA†A#O = U

[
ΣK ΣL
0 0

]
U∗U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗U

[
K−1Σ−1 0

0 0

]
= U

[
ΣKK∗Σ−1K−1Σ−1 +ΣLL∗Σ−1K−1Σ−1 0

0 0

]
U∗

A†A#OA = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗U

[
K−1Σ−1 0

0 0

]
U∗U

[
ΣK ΣL
0 0

]
= U

[
K∗Σ−1 K∗Σ−1K−1L
L∗Σ−1 L∗Σ−1K−1L

]
U∗.

By AA†A#O = A†A#OA, one has
L∗Σ−1 = 0,

K∗Σ−1K−1L = 0,

L∗Σ−1K−1L = 0,

K∗Σ−1 = ΣKK∗Σ−1K−1Σ−1 +ΣLL∗Σ−1K−1Σ−1.

The condition AA†A#O = A†A#OA is clearly equivalent to L = 0, K∗Σ−1 =
ΣKK∗Σ−1K−1Σ−1, multiply the equation to the right by ΣKΣ, can getK∗KΣ =
ΣKK∗, because of KK∗ = K∗K = Ir, so the equation works.

It is easy to figure out AA#OA∗ and A∗AA#O are

AA#OA∗ = U

[
ΣKK−1Σ−1K∗Σ 0

0 0

]
U∗,

A∗AA#O = U

[
K∗ΣΣKK−1Σ−1 0
L∗ΣΣKK−1Σ−1 0

]
U∗,

AA#OA∗ = A∗AA#O ⇒ K∗Σ = K∗Σ, L = 0. So, A is EP.
The other equations prove the same.

Next, give another equivalent form of the EP-matrix. We present necessary
and sufficient conditions for a matrix to be EP by referring to the commuta-
tivity property RS = Y X, where R,S,X,Y are transforms of A from the set
A†, A,A#O, A∗.

Theorem 2.2. Let A ∈ Cm×m. Then, the following conditions are equivalent.

(I) A is EP;
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(II) AA#O = A†A, r(A) = r(A2);

(III) A†A∗ = A#OA∗, r(A) = r(A2);

(IV) A†A† = A#OA†, r(A) = r(A2);

(V) A†A† = A#OA#O, r(A) = r(A2);

(VI) A†A#O = A#OA#O, r(A) = r(A2).

Proof. By the singular value decomposition of A, one has

A = U

[
ΣK ΣL
0 0

]
U∗.

By calculating, we can get the Core inverse of A, that is

A#O =

[
K−1Σ−1 0

0 0

]
.

On the other hand, the Moore-Penrose inverse of A is

A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗.

It is easy to figure out that AA#O and A†A are

AA#O = U

[
ΣK ΣL
0 0

]
U∗U

[
K−1Σ−1 0

0 0

]
U∗ =

[
I 0
0 0

]
,

A†A = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗U

[
ΣK ΣL
0 0

]
U∗ =

[
K∗K K∗L
L∗K L ∗ L

]
.

The condition AA#O = A†A is clearly equivalent to L = 0, K∗ = K−1. So, A is
EP. It is easy to figure out A†A∗ and A#OA∗ are

A†A∗ = U

[
K∗Σ−1K∗Σ 0
L∗Σ−1K∗Σ 0

]
U∗, A#OA∗ = U

[
K−1Σ−1K∗Σ 0

0 0

]
U∗.

The condition A†A∗ = A#OA∗ is clearly equivalent to L = 0 and K∗Σ−1K∗Σ =
K−1Σ−1K∗Σ ⇒ K∗ = K−1. So, A is EP. It is easy to figure out A†A† and
A#OA† are

A†A† = U

[
K∗Σ−1K∗Σ−1 0
L∗Σ−1K∗Σ−1 0

]
U∗, A#OA† = U

[
K−1Σ−1K∗Σ−1 0

0 0

]
U∗.

The condition A†A† = A#OA† is clearly equivalent to L = 0 and K∗ = K−1. So,
A is EP.

The other equations prove the same.
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The following inference is obtained from Lemma2.1.

Corollary 2.1. Let A ∈ Cm×m. Then,

(I) A3A† = A2A†A and A†A3 = AA†A2 ⇔ AA† = A†A.

(II) A4A† = A3A†A and A†A4 = AA†A3 ⇔ AA† = A†A.

(III) A5A† = A4A†A and A†A5 = AA†A4 ⇔ AA† = A†A.

Proof.

AAG = AAH ⇒ AG = AH

A3A† = AA2A† = A2A†A = AAA†A ⇒ A2A† = AA†A,

A†A3 = A†A2A = AA†A2 = AA†AA ⇒ A†A2 = AA†A.

From Lemma 2.1, it come to the conclusion AA† = A†A. On the other hand,

AA† = A†A ⇒ A3A† = A2A†A and A†A3 = AA†A2

is obvious. Hence, (I) is proved.
Similarly, we have

A4A† = A2A2A† = A3A†A = A2AA†A ⇒ A2A† = AA†A,

A†A4 = A†A2A2 = AA†A3 = AA†AA2 ⇒ A†A2 = AA†A.

From Lemma 2.1, it come to the conclusion AA† = A†A. Then, (II) is proved.
The third equivalency can be proved in the same way. This completes the
proof.

Corollary 2.2. Let A,B ∈ Cm×m. Then,

(I) AB†B = AA†A and B†AA† = B†BB† ⇔ AA† = BB† and B†B = A†A.

(II) BB†A = AA†A and A†AB† = B†BB† ⇔ AA† = BB† and B†B = A†A.

Proof. Let M =

[
0 A
B† 0

]
, then M † =

[
0 B
A† 0

]
. In this situation, it is easy to

verify

M2 =

[
AB† 0
0 B†A

]
,M2M † =

[
0 AB†B

B†AA† 0

]
, M †M2 =

[
0 BB†A

A†AB† 0

]
.

Moreover,

MM †M =

[
0 AA†A

B†BB† 0

]
.

By Theorem 2.1, one has M2M † = MM †M ⇔ MM † = M †M . Hence,

AB†B = AA†A and B†AA† = B†BB† ⇔ MM † = M †M.
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It is easy to verify

M †M =

[
BB† 0
0 A†A

]
, MM † =

[
AA† 0
0 B†B

]
.

Therefore, MM † = M †M ⇔ AA† = BB† and B†B = A†A, which implies

AB†B = AA†A and B†AA† = B†BB† ⇔ AA† = BB† and B†B = A†A.

On the other hand, by using M †M2 = MM †M ⇔ MM † = M †M , one has

BB†A = AA†A and A†AB† = B†BB† ⇔ MM † = M †M.

Conclusions can be drawn

BB†A = AA†A and A†AB† = B†BB† ⇔ AA† = BB† and B†B = A†A.

Thus, we establish the equivalent facts.

3. Related results of the normal matrix

In this section we give the equivalent form of the normal matrix of the form RS =
XY and XY = Y X, where R,S,X, Y ∈ A†, A,A#O, A∗, and some conclusions
are obtained.

Lemma 3.1 ([23]). Let A ∈ Cm×m. Then, the following results hold

(I) A2A∗ = AA∗A ⇔ AA∗ = A∗A;

(II) A∗A2 = AA∗A ⇔ AA∗ = A∗A.

We present necessary and sufficient conditions for a matrix to be normal
by referring to the commutativity property XY = Y X, where X and Y are
transforms of A from the set A†, A,A#O, A∗.

Theorem 3.1. Let A ∈ Cm×m. Then, the following conditions are equivalent.

(I) A is normal;

(II) AA∗A#O = A∗A#OA, r(A) = r(A2);

(III) AA#OA∗ = A#OA∗A, r(A) = r(A2);

(IV) A∗A#O = A#OA∗, r(A) = r(A2);

(V) A†A∗A#O = A#OA†A∗, r(A) = r(A2);

(VI) A∗AA#O = A#OA∗A, r(A) = r(A2);

(VII) A∗A†A#O = A#OA∗A†, r(A) = r(A2);
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(VIII) A∗A#OA∗ = A#OA∗A∗, r(A) = r(A2);

(IX) A∗A#OA#O = A#OA∗A#O, r(A) = r(A2);

(X) A†A#OA∗ = A#OA∗A†, r(A) = r(A2).

Proof. Following Lemma 1.1, one has

A = U

[
ΣK ΣL
0 0

]
U∗.

Then,

A∗ = U

[
(ΣK)∗ 0
(ΣL)∗ 0

]
U∗.

Furthermore,

AA∗ = U

[
ΣK ΣL
0 0

]
U∗U

[
(ΣK)∗ 0
(ΣL)∗ 0

]
U∗

= U

[
(ΣK) (ΣK)∗ + (ΣL) (ΣL)∗ 0

0 0

]
U∗,

AA∗A#O = U

[
ΣKK∗Σ+ ΣLL∗Σ 0

0 0

]
U∗U

[
K−1Σ−1 0

0 0

]
U∗

= U

[
ΣKK∗ΣK−1Σ−1 +ΣLL∗ΣK−1Σ−1 0

0 0

]
U∗.

Simple computations show that

A∗A#OA = U

[
K∗Σ 0
L∗Σ 0

]
U∗U

[
K−1Σ−1 0

0 0

]
U∗U

[
ΣK ΣL
0 0

]
U∗

= U

[
K∗Σ K∗ΣK−1L
L∗Σ L∗ΣK−1L

]
U∗.

By AA∗A#O = A∗A#OA, one has
L∗Σ = 0

K∗ΣK−1L = 0

L∗ΣK−1L = 0

K∗L = ΣKK∗ΣK−1Σ−1 +ΣLL∗ΣK−1Σ−1

.

Hence, it is seen that A∗A#O and A commute if and only if L = 0, K∗Σ =
ΣKK∗ΣK−1Σ−1. However, L = 0 implies K∗ = K−1.

Multiply both sides of K∗Σ = ΣKK∗ΣK−1Σ−1 by ΣK. Can get the formula

K∗Σ2K = Σ2.
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Taking square roots,we arrive at L = 0 and K∗ΣK = Σ, that is L = 0 and
ΣK = KΣ. So, A is normal. It is easy to figure out AA#OA∗ and A#OA∗A are

AA#OA∗ = U

[
K∗Σ 0
0 0

]
U∗,

A#OA∗A = U

[
K−1Σ−1K∗ΣΣK K−1Σ−1K∗ΣΣL

0 0

]
U∗.

Hence, it is seen that A#OA∗ and A commute if and only if L = 0, K∗Σ =
K−1Σ−1K∗ΣΣK.

Multiply both sides of this equation ΣK. Then,

ΣK = KΣ.

The other equations prove the same.

Corollary 3.1. Let A ∈ Cm×n and B ∈ Cn×m. Then,

ABB∗A∗ = B∗A∗AB ⇔ (AB)(AB)∗ = (AB)∗(AB).

Proof. The (AB)(AB)∗ = (AB)∗(AB) ⇒ ABB∗A∗ = B∗A∗AB part is obvi-
ous. To show the ABB∗A∗ = B∗A∗AB ⇒ (AB)(AB)∗ = (AB)∗(AB) part,
multiply both sides of this equation by AB gives

ABABB∗A∗ = ABB∗A∗AB ⇒ (AB)2(AB)∗ = (AB)(AB)∗(AB).

By Lemma 4.3, we can get

(AB)(AB)∗ = (AB)∗(AB).

This proof is complete.

Corollary 3.2. Let A,B ∈ Cm×n. Then

(I) AB∗B = AA∗A and B∗BB∗ = B∗A∗A∗ ⇔ AA∗ = BB∗ and B∗B = A∗A;

(II) AA∗A = BB∗A and A∗AB∗ = B∗BB∗ ⇔ AA∗ = BB∗ and B∗B = A∗A.

Proof. Let M =

[
0 A
B∗ 0

]
, then M∗ =

[
0 B
A∗ 0

]
. In this situation, it is easy

to verify

M2=

[
AB∗ 0
0 B∗A

]
,M2M∗ =

[
0 AB∗B

B∗A∗A∗ 0

]
,M∗M2 =

[
0 BB∗A

A∗AB∗ 0

]
and

MM∗M =

[
0 AA∗A

B∗BB∗ 0

]
.
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By Theorem 4.3, M2M∗ = MM∗M ⇔ MM∗ = M∗M , which implies

AB∗B = AA∗A and B∗BB∗ = B∗A∗A∗ ⇔ MM∗ = M∗M.

Now, it is easy to verify

M∗M =

[
BB∗ 0
0 A∗A

]
, MM∗ =

[
AA∗ 0
0 B∗B

]
.

Hence, MM∗ = M∗M ⇔ AA∗ = BB∗ and B∗B = A∗A. Thus, (I) is estab-
lished.

Now, prove foemula (II), M∗M2 = MM∗M ⇔ MM∗ = M∗M , which im-
plies

AA∗A = BB∗A and A∗AB∗ = B∗BB∗ ⇔ MM∗ = M∗M.

Conclusions can be drawn that

AA∗A = BB∗A and A∗AB∗ = B∗BB∗ ⇔ AA∗ = BB∗ and B∗B = A∗A.

This proof is complete.

We present necessary and sufficient conditions for a matrix to be normal
by referring to the commutativity property RS = Y X, where R, S, X, Y are
transforms of A from the set A†, A,A#O, A∗.

Theorem 3.2. Let A ∈ Cn×n. Then, the following conditions are equivalent

(I) A is normal;

(II) A∗A† = A#OA∗, r(A) = r(A2);

(III) A∗A#O = A†A∗, r(A) = r(A2).

Proof. From Lemma 1.1, it is easy to figure out that A∗A† and A#OA∗ are

A∗A† = U

[
K∗ΣK∗Σ−1 0
L∗ΣK∗Σ−1 0

]
U∗, A#OA∗ = U

[
K−1Σ−1K∗Σ 0

0 0

]
U∗.

The condition A∗A† = A#OA∗ is clearly equivalent to L = 0. Moreover, by
K∗ = K−1, we get ΣK−1Σ−1 = Σ−1K−1Σ, which implies ΣK = KΣ. So, A is
normal.

On the other hand, it is easy to figure out that A∗A#O and A†A∗ are

A∗A#O = U

[
K∗ΣK−1Σ−1 0
L∗ΣK−1Σ−1 0

]
U∗, A†A∗ = U

[
K∗Σ−1K∗Σ 0
L∗Σ−1K∗Σ 0

]
U∗.

The condition A∗A#O = A†A∗ is clearly equivalent to L = 0. Moreover, by
K∗ = K−1, we get ΣK−1Σ−1 = Σ−1K−1Σ, which implies ΣK = KΣ. So, A is
normal. This proof is complete.
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Corollary 3.3. Let A ∈ Cm×m. Then

(I) A3A∗ = A2A∗A ⇔ AA∗ = A∗A;

(II) A4A∗ = A3A∗A, A3A∗ = A2A∗A ⇔ AA∗ = A∗A;

(III) A5A∗ = A4A∗A, A4A∗ = A3A∗A ⇔ AA∗ = A∗A;

(IV) A6A∗ = A5A∗A, A5A∗ = A4A∗A ⇔ AA∗ = A∗A.

Proof. The AA∗ = A∗A ⇒ A3A∗ = A2A∗A is obvious. Now, we show the
A3A∗ = A2A∗A ⇒ AA∗ = A∗A part. in [15]. It is clearly that

AAG = AAH ⇒ AG = AH

A3A∗ = A2A∗A ⇒ AA2A∗ = AAA∗A ⇒ A2A∗ = AA∗A.

By Lemma 4.3, one has

A2A∗ = AA∗A ⇒ A∗A = AA∗.

It is easy to see that

A4A∗ = A3A∗A ⇒ A3A∗ = A2A∗A ⇒ A2A∗ = AA∗A ⇒ A∗A = AA∗.

Hence, A4A∗ = A3A∗A ⇔ AA∗ = A∗A.
The same can be said for the other equations.

4. Related results of the Hermitian matrix

In this section we give the equivalent form of the Hermitian of the form RS =
XY , where R,S,X, Y ∈ A†, A,A#O, A∗, and some conclusions are obtained, and
we also get a new equivalent form of the reverse order law.

Lemma 4.1. Let A ∈ Cm×n and B,C ∈ Cn×p. Then, the following results hold

(I) A∗AB = A∗AC ⇔ AB = AC. In particular, A∗A = 0 ⇔ AA∗A = 0 ⇔
A = 0 ([14]).

(II) The principal kth root of positive semi-definite matrix exists and is unique
([16]).

Lemma 4.2. Let A ∈ Cm×m. Then, the following results hold

(I) AA∗A = A∗AA∗ ⇔ A = A∗ ([3]).

(II) A3 = AA∗A ⇔ A = A∗ ([3]).

Lemma 4.3 ([3]). Let A ∈ Cm×m. Then

(I) (AA∗A)2 = (AA∗)3 ⇔ A = A∗,
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(II) (AA∗A)2 = (A∗A)3 ⇔ A = A∗,

(III) (AA∗A)3 = (AA∗)2A(A∗A)2 ⇔ A = A∗,

(IV) A3 = A∗AA∗ and A5 = (A∗A)2A∗ ⇔ A = A∗,

(V) A5 = (AA∗)2A and A7 = (AA∗)3A ⇔ A = A∗.

Next,the above results are pushed to higher order form in order to better
judge the equivalence conditions of Hermitian.

Theorem 4.1. Let A ∈ Cm×m. Then,

(I) A7 = (A∗A)3A∗ and A9 = (A∗A)4A∗ ⇔ A = A∗;

(II) A9 = (AA∗)4A and A11 = (AA∗)5A ⇔ A = A∗;

(III) A11 = (A∗A)5A∗ and A13 = (A∗A)6A∗ ⇔ A = A∗;

(IV) A13 = (AA∗)6A and A15 = (AA∗)7A ⇔ A = A∗;

...

(V) A2k−3 = (A∗A)kA∗ and A2k−1 = (A∗A)kA∗ ⇔ A = A∗;

(VI) A2k−1 = (AA∗)kA and A2k+1 = (AA∗)kA ⇔ A = A∗.

Proof. We are supported by A = A∗, it’s easy to get the left-hand side. Now,
let us derive from the left-hand formula. Since A7 = (A∗A)3A∗, one has
A9 = A7A2 = (A∗A)3A∗AA = (A∗A)4A∗, which is equivalent to A2 = AA∗

by applying Lemma(4.1)(I)four times. By the formula (7), one has A = A∗. By
A9 = (AA∗)4A, one can get A11 = A9A2 = (AA∗)4AAA. Hence, (AA∗)5A =
(AA∗)4AAA, which is equivalent to A3 = AA∗A by applying Lemma(4.1) (I)
four times. By the Lemma (4.2), one has A = A∗.

Notice that A11 = (A∗A)5A∗. Then, A13 = A11A2 = (A∗A)5A∗A2. Hence,
which is equivalent to A2 = AA∗ by applying Lemma(4.1)(I)five times. By the
formula (7), one has A = A∗.

And so on, by the same proofs, we can get

A2k−3 = (A∗A)kA∗ and A2k−1 = (A∗A)kA∗ ⇔ A = A∗,

A2k−1 = (AA∗)kA and A2k+1 = (AA∗)kA ⇔ A = A∗.

This completes the proof.

Next, an equivalent form of the matrix is given. We present necessary and
sufficient conditions for a matrix to be Hermitian by referring to the commuta-
tivity property RS = Y X, where R, S, X, Y are transforms of A from the set
A†, A,A#O, A∗.
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Theorem 4.2. Let A ∈ Cn×n. Then, the following conditions are equivalent:

(I) A is Hermitian;

(II) AA#O = A∗A#O, r(A) = r(A2);

(III) AA#O = A†A∗, r(A) = r(A2);

(IV) A†A = A#OA∗, r(A) = r(A2);

(V) AA#O = A∗A†, r(A) = r(A2).

Proof. By the singular value decomposition of A, one has

A = U

[
ΣK ΣL
0 0

]
U∗.

By calculating, we can get the Core inverse

A#O = U

[
K−1Σ−1 0

0 0

]
U∗.

On the other hand, the Moore-Penrose inverse of A is

A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗.

It is easy to figure out that AA#O and A∗A#O are

AA#O = U

[
ΣKK−1Σ−1 0

0 0

]
U∗, A∗A#O = U

[
K∗ΣK−1Σ−1 0
L∗ΣK−1Σ−1 0

]
U∗.

The condition AA#O = A∗A#O is clearly equivalent to L = 0, I = K∗ΣK−1Σ−1,
which implies ΣK = K∗Σ, and hence A is Hermitian.

On the other hand, it is easy to figure out that AA#O and A†A∗ are

AA#O = U

[
I 0
0 0

]
U∗, A†A∗ = U

[
K∗Σ−1K∗Σ 0
L∗Σ−1K∗Σ 0

]
U∗.

The condition AA#O = A†A∗ is clearly equivalent to L = 0, I = K∗Σ−1K†Σ
which implies ΣK = K∗Σ. So, A is Hermitian.

The other equations can be proved the same.

By Lemma 4.2, have the following inference.

Corollary 4.1. Let A ∈ Cm×m and B ∈ Cm×m. Then,

BABBABB = BA(BBA)∗BB ⇔ A∗B∗B∗ = BBA.
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Proof. If A∗B∗B∗ = BBA, we can get BABBABB = BA(BBA)∗BB. If
BABBABB = BA(BBA)∗BB, multiply left by B and right by A on both
sides of this equation, we can get

BBABBABBA = BBA(BBA)∗BBA ⇒ (BBA)3 = BBA(BBA)∗BBA.

According to Lemma 4.2, one has A3 = AA∗A ⇔ A = A∗, by which we can get
BBA = (BBA)∗ = A∗B∗B∗. This completes the proof.

Theorem 4.3. Let A,B ∈ Cm×n. Then,

(I) A∗AA∗ = B∗BB∗ ⇔ A = B,

(II) A∗BA∗ = B∗BB∗ and BB∗B = BA∗B ⇔ A = B.

Proof. Let

X =

[
0 B
A∗ 0

]
and X∗ =

[
0 A
B∗ 0

]
.

In this situation, it is easy to verify

XX∗X =

[
0 BB∗B

A∗AA∗ 0

]
, X∗XX∗ =

[
0 AA∗A

B∗BB∗ 0

]
,

X3 =

[
0 BA∗B

A∗BA∗ 0

]
.

From Lemma 4.2, we can get

X3 = XX∗X = X∗XX∗ ⇒ X = X∗ ⇒ A = B.

So, we get the following:

A∗AA∗ = B∗BB∗ ⇒ A = B,

A∗BA∗ = B∗BB∗ and BB∗B = BA∗B ⇒ A = B.

This completes the proof.

Theorem 4.4. Let A,B ∈ Cn×n be two Hermitian matrices. Then, the follow-
ing seven statements are equivalent:

(I) BBA = ABB;

(II) (BBA)(ABB)(BBA) = (ABB)(BBA)(ABB);

(III) (BBA)3 = (BBA)(ABB)(BBA);

(IV) ((BBA)(ABB)(BBA))2 = ((BBA)(ABB))3;

(V) ((BBA)(ABB)(BBA))3 = ((BBA)(ABB))2(BBA)((ABB)(BBA))2;
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(VI) (BBA)3 = (BBA)(ABB)(BBA) and
(BBA)5 = (BBA)[(ABB)(BBA)2](BBA);

(VII) (BBA)5 = (BBA)[(ABB)(BBA)2](BBA) and
(BBA)7 = (BBA)[(ABB)(BBA)4](BBA).

Proof. If BBA = ABB, the other equations are obviously true. Now, let
us verify BBA = ABB with something else. Since (BBA)(ABB)(BBA) =
(ABB)(BBA)(ABB), one has (BBA)(BBA)∗(BBA) = (BBA)∗(BBA)(BBA)∗.
It follows from replacing A with BBA in Lemma 4.2. We have that

(BBA)(BBA)∗(BBA) = (BBA)∗(BBA)(BBA)∗ ⇒ (BBA)∗

= A∗B∗B∗ = ABB = BBA

and we can do the same thing with the rest. This completes the proof.

A typical matrix equality for the case of the product of two matrices of
appropriate sizes is

(AB)† = B†A†,

which is usually called the reverse-order law for the Moore-Penrose inverse of
a matrix product. The reverse-order law does not necessarily hold. So, have a
fact

(AB)† = B†A† ⇔ (ABB∗A∗AB)† = B†(A∗A)†(BB∗)†A†

(see [3]). In [9, 12, 13, 18, 22], some equivalent conditions for the reverse-order
law are also given. The result of theorem4.3 applies here to the inverse order law.
In the following, we will give a new equivalent condition for the reverse-order
law.

Theorem 4.5. Let A ∈ Cm×n and B ∈ Cn×p. Then,

(AB)† = B†A† ⇔ (B∗A∗ABB∗A∗)† = (A∗)†(BB∗)†(A∗A)†(B∗)†.

Proof. The implying

(AB)† = B†A† ⇒ (B∗A∗ABB∗A∗)† = (A∗)†(BB∗)†(A∗A)†(B∗)†

is obvious. Now, we will prove the reverse part. Utilization Theorem 4.3 (1),
(AB)† instead of A, B†A† instead of B, one has

((AB)†))∗(AB)†)((AB)†))∗ = ((B†A†))∗(B†A†)((B†A†))∗ ⇒ (AB)† = B†A†.

Hence, (B∗A∗ABB∗A∗)† = (A∗)†(BB∗)†(A∗A)†(B∗)† ⇒ (AB)† = B†A†.

This completes the proof.
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5. Conclusions

Obviously,the results in the above theorem and corollaries offer lots of equivalent
facts about EP-matrices, normal matrices, and Hermitian matrices. This fact
can be described in the implication form f(A,A∗) = 0 ⇔ AA∗ = A∗A and
f(A,A†) = 0 ⇔ AA† = A†A. In this note, applied the core inverse to provide
new characterizations. We show servers special cases of the equivalent facts:

(I) AA#O = A∗A#O ⇔ A = A∗.

(II) AA#O = A†A∗ ⇔ A = A∗ and (I) A is EP.

(II) AA†A#O = A†A#OA.

(III) AA#OA∗ = A∗AA#O.

(IV) AA#OA† = A#OA†A.

(V) A†AA#O = A#OA†A

without assuming the invertibility of A through the skillful use of decompo-
sitions of matrices. Some equivalent forms related to A#O, A†, A∗ can also
be obtained. A new equivalent condition for the reverse order law is also
obtained:(AB)† = B†A† ⇔ (B∗A∗ABB∗A∗)† = (A∗)†(BB∗)†(A∗A)†(B∗)†. We
can also use the new generalized inverse to study the equivalent form of EP,
normal and Hermitian matrices.
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[13] R.E. Hartwig, K. Spindelböck, Matrices for which A∗ and A† can commute,
Linear Multilinear Algebra, 14 (1983), 241-256.

[14] G. Matsaglia, G.P.H. Styan, Equalities and Inequalities for ranks of matri-
ces, Linear Multilinear Algebra, 1974, 269-292.

[15] R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge
philos. Soc., 51 (1955), 406-413.

[16] M.I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J.
Matrix Anal. Appl., 24 (2003), 971-989.

[17] Y. Tian, S. Cheng, Two sets of new characterizations for normal and EP
matrices, Linear Algebra Appl., 375 (2003), 181-195.

[18] Y. Tian, A family of 512 reverse order laws for generalized inverses of a
matrix product a review, Heliyon, 6 (2020), e04924.

[19] Y. Tian, Equivalence analysis of different reverse order laws for generalized
inverses of a matrix product, Indian J. Pure Appl. Math., 53 (2022), 939-
947.

[20] Y. Tian, A study of range equalities for matrix expressions that involve
matrices and their generalized inverses, Comput. Appl. Math., 41 (2022),
384.



266 X.J. LIU and H.J. HAO

[21] Y. Tian, H. Wang, Characterizations of EP matrices and weighted-EP ma-
trices, Linear Algebra Appl., 434 (2011), 1295-1318.

[22] Y. Tian, Some new characterizations of a Hermitian matrix and their ap-
plications, Linear Multilinear Algebra, 62 (2014), 792-802.

[23] F. Zhang, Matrix theory: basic results and techniques, Springer Science,
Business Media, 2011.

Accepted: October 18, 2024


