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1. Introduction

(men RmXTL

In this paper, and stand for the sets of all m x n matrices over
the fields of complex numbers and real numbers, respectively. A* stands for the
conjugate transpose of A € C"™*™ and r(A) stand for the rank of A € C"™*"™.
det(A) stands for the determinant of A € C"™*™, and I,,, denotes the identity
matrix of order m.

The Core inverse denoted by A% € C™*™ of A is the unique matrix satisfying
the following matrix equations, r(A?) = r(A)

(1) AA®A = A,
(2) A(A®)? = A%,
(3) (AA®)* = AA® ([1]).

*. Corresponding author
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The Moore-penrose inverse denoted by A of A is the unique matrix satis-
fying the following matrix equations

(1) AATA = A,

(2) AtAAf = at,

(3) (AAD)* = A4,

(4) (ATA)* = AfA ([15]).

Recall that a matrix A € C™*™ is said to be EP-matrix if and only if it
satisfies the following equality

(1) AAT = ATA.

A matrix A € C"™*™ is said to be Hermitian matrix if and only if it satisfies the
following equality

2) A* = A

A matrix A € C™*™ is said to be normal matrix if and only if it satisfies the
following equality

(3) AA* = A*A.

In addition to the definitions in (1), (2) and (3), a Hermitian matrix can be
characterized by some other matrix equalities and facts. It can be expressed by
the following facts

(4) f(A,AT) =0 e AAT = ATA,
(5) fA,A) =0 A= A",
(6) f(A,A") =0 AA* = A% A,

where f(-) is the certain ordinary algebraic operation of A and A*, A and A,
Due to the arbitrariness of matrix expressions, there does not exist a general
and significant method to construct the matrix equations in (4) except some
special cases. We already have the following facts from [6]]22]:

(7) A? = AA* & A= A%
(8) A= A"A e A= A7
(9) A= AA*A = A= A%

Lemma 1.1 ([13]). Let A € C™*". The singular value decomposition of A is

> 0
eoly g
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where U € C™*™ and V € C™™ are two unitary matrices, namely, UU* =
UU = I, VV* = V*V = I, and ¥ € R**® is a positive diagonal matriz
composed of the singular values of A with s = r(A). In particular, if A € C"™*™
then A admits the following decomposition:

)

A:UB g]V:UE 8](VU)U*:U[EK EL]U*

0 0

K L

where VU can be decomposed as VU = [Kl I,

} with (VU)(VU)* = Iy, K €
Cs*s L € C*(m=3) qnd
KK*+LL =1, KK*<I, LL*<I,,

where KK* < Ig, LL* < Iy mean that Iy — KK* and I — LL* are positive
semi-definite.

So, A is Hermitian if and only if L = 0 and XK = K*X; A is normal if and
only if L =0 and XK = K3%; and finally, A is EP if and only if L = 0.

In [2, 6, 7, 10, 13, 15, 21], the properties of the EP-matrix, normal matrix,
Hermitian matrix and their equivalence relation are described. Based on this
background, we discuss their other equivalent forms. In [9] [18] and [19], the
equivalent analysis of different inversion laws of matrix is described. This paper
also gives an equivalent form of the reverse order law.

This paper is organized as follows

The second part gives some equivalent forms of the EP-matrix and corollary:

(I) Ais EP.

(I1) AATA® = ATA®A,
(II1) AABPA* = A*AA®.
(IV) AABAT = A®ATA,

(V) ATAA® = A® AT A and the third part gives some equivalent forms of the

normal matrix and corollary.

The fourth part describes the relevant properties of the Hermitian matrix

(I) A is Hermitian,
(IT) AA® = A*A®D,
(III) AA® = ATA*,
(IV) ATA = A® A"
(V) AA® = A* AT,

We aim to A®° = (AA*)?2A and A7 = (AA*)3A & A = A* and higher ones.
A new equivalent condition for the reverse order law is also obtained (AB)" =
BYAT & (B*A*ABB* A")l = (A*)1(BB*)T(A*A)T(B*)T.
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2. Related results of the EP-matrix

In this section we give the equivalent form of the EP-matrix of the form RS =
XY and XY =YX, where R, S, X,Y € A, A, A®, A*, and some conclusions
are obtained.

Lemma 2.1 ([21]). Let A € C™*™. Then, the following results hold:
(I) A%2AT = AATA & AAT = ATA;
(I) ATA? = AATA & AAT = ATA.

We present necessary and sufficient conditions for a matrix to be EP by refer-
ring to the commutativity property XY =Y X, where X and Y are transforms
of A from the set AT, A, A® A*.

Theorem 2.1. Let A € C™*"™. The index is one. Then, the following condi-
tions are equivalent:

(I) A is EP;
(I1) AATA® = ATA®A, r(A) =
(IIT) AAPA* = A*AA®, r(A) = r(A?);

(IV) AA®At = ABATA, r(A) =r
) =

)
)
)
) A (
(V) ATAA® = A®ATA, r(A
(VI) ATATA® = A®ATAT r(A) = r(A2);
(VII) ATA®AT = ABATAT, r(A) = r(A?);
(VIIT) ATAPA® = ABA®AT r(A) = r(A?);
(IX) AAPAT = ATAA® 1(A) = r(A?);
(X) ATA® = A® AT r(A) = r(A2);
(XI) ATAPA® = APATA® r(A) = r(A2).
Proof. By the Hartwig-Spindelbock decomposition of A, one has

AU [ZK EL} U

0 0

By calculating, we can get the Core inverse of A, that is

—1y—1
A@:U[K 02 0} U
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On the other hand, the Moore-Penrose inverse of A is

xy1—1
AT:U[KZ O]U*.

Lyt o
It is easy to figure out that AATA® and ATAP A are

r xy—1 —1y—1
AATA® — [T YK EL] U [K by 8} UtU [K by 0]

L0 0 Lyt 0 0
[SKK*Y KIS 4 2Ly -lk-ist o],
=U 0 ol U

[K*v~1 0 K-1x=1 0 YK YL
T A® =U U*U U*U
ATATA = Lyt o} [ 0 0} [0 0]

Ky~ K- 'K-10]
20 uE P Sl (Gl ¥ '

By AATA® = ATA® A, one has

L*y~1 =0,

K*S'K-'L =0,

L*S7IK-1L =0,

K2 ' =SKK*S 'K Ly tK-te—t

The condition AATA® = ATA®A is clearly equivalent to L = 0, K*YX~! =
YKK*Y ' K~'¥~! multiply the equation to the right by XK, can get K*KY =
YKK*, because of K K* = K*K = I, so the equation works.

It is easy to figure out AA® A* and A*AA® are

—15—1 g%
AABA* — [ YKKIYIK*Y 0 U,
0 0
K*YYXKK-'y—1 o
* @ _ *
A"AA _U[L*EEKKlzl O]U’

AABA* = A*AA® = K*Y, = K*Y, L = 0. So, A is EP.
The other equations prove the same. O

Next, give another equivalent form of the EP-matrix. We present necessary
and sufficient conditions for a matrix to be EP by referring to the commuta-
tivity property RS = Y X, where R,S,X.,Y are transforms of A from the set
AT A A® A*,

Theorem 2.2. Let A € C™*™. Then, the following conditions are equivalent.

(I) A is EP;
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(I) AA® = ATA, r(A) = r(A?);
(ITI) ATA* = ABA*, r(A) = r(A2);

)
)
(IV) ATAt = A® AL (A) = r(A?);
(V) ATAN = A®A® r(A) = r(A?);
)

(VI) ATA® = ABA® r(A) = r(A2).

Proof. By the singular value decomposition of A, one has

YK XL]..,
A [

By calculating, we can get the Core inverse of A, that is

K'»-1 o
@ _
A [0 0]

On the other hand, the Moore-Penrose inverse of A is

xy1—1
AT:U[KE O]U*

st 0
It is easy to figure out that AA® and A'A are

YK YL K1x-1 0 I 0

@ _ * *
AA _U[O O]UU[ . O]U_[O 0],
K*x~ 1 0 YK YL K*K K*L
T _ * *
A U{L*El O]UU[O O]U [L*K L*L}

The condition AA® = At A is clearly equivalent to L =0, K* = K~1. So, A is
EP. It is easy to figure out ATA* and AP A* are

K*S71K*S 0

fA* =
AA =T [L*E—lK*E 0

—1v—1 g%
]U*, A@A*:U{K XK O}U*.

0 0

The condition ATA* = A® A* is clearly equivalent to L = 0 and K*S~'K*Y =
K127 1K*Y = K* = K71, So, A is EP. It is easy to figure out ATA" and
A® AT are

K*>-1K*y-1 0

L*>71Kk*y-1 0

tAot =
AA—U[ 0 0

—1y—1 frxy—1
]U*, A@AT:U[K R O]U*.
The condition ATAT = A® AT is clearly equivalent to L = 0 and K* = K~!. So,
A is EP.
The other equations prove the same. O
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The following inference is obtained from Lemma2.1.
Corollary 2.1. Let A € C™*™. Then,
(I) ASAT = A2ATA and ATA3 = AATA? & AAT = ATA.
(IT) A*AT = ABATA and ATA* = AATA® & AAT = AT A,
(III) APAT = A*ATA and ATA® = AATA* & AAT = ATA.
Proof.

AAG = AAH = AG = AH
ASAT = AAZAT = A2ATA = AAATA = A2AT = AATA,
ATA3 = ATA2A = AATA% = AATAA = ATA? = AATA.

From Lemma 2.1, it come to the conclusion AAT = AT A. On the other hand,
AAT = ATA = A3AT = A2ATA and ATA3 = AATA?

is obvious. Hence, (I) is proved.
Similarly, we have

AYAT = AZAPAT = ABATA = A2AATA = A2AT = AATA,
ATAY = ATAZA% — AATAS = AATAAZ = ATA2 = AATA.

From Lemma 2.1, it come to the conclusion AAT = ATA. Then, (II) is proved.
The third equivalency can be proved in the same way. This completes the
proof. O

Corollary 2.2. Let A, B € C™*™., Then,
(I) AB'B = AATA and BTAA" = B'BBT & AA" = BB and B'B = ATA.
(I1) BBTA = AATA and ATAB" = BIBB < AA' = BB' and BB = ATA.

0 A 0 B
— T — . . . . .
Proof. Let M [BT O] , then M [AT O} . In this situation, it is easy to
verify
ABT 0 0 AB'B 0 BB'A
2 _ 207t tar2
e [ g = [l M0P] e = s 0
Moreover,
0 AATA
T =
MMM [BTBBJr 0 }

By Theorem 2.1, one has M?Mt = MMM < MM' = MTM. Hence,

AB'B = AA'A and BT AA" = B'1BBT & MM = Mt M.
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It is easy to verify

BB 0 AAT 0
tar — t_
MM_[O ATA]’MM_{O BTB]'

Therefore, MMT = MTM < AA" = BB and B'B = A" A, which implies
AB'B = AATA and BTAA" = BIBBT & AA" = BB' and B'B = AT A.
On the other hand, by using MTM? = MMM < MM = MM, one has
BB'A= AATA and ATAB" = B'BBY & MM' = MTM.
Conclusions can be drawn
BB'A = AATA and ATAB' = B'BB" & AA" = BB' and B'B = AT A.

Thus, we establish the equivalent facts. O

3. Related results of the normal matrix

In this section we give the equivalent form of the normal matrix of the form RS =
XY and XY =YX, where R, S, X,Y € At A, A® A* and some conclusions
are obtained.

Lemma 3.1 ([23]). Let A € C™*"™. Then, the following results hold
(I) A2A* = AA*A & AA* = A% A;
(IT) A*A%2 = AA*A & AA* = A*A.

We present necessary and sufficient conditions for a matrix to be normal
by referring to the commutativity property XY = Y X, where X and Y are
transforms of A from the set AT, A, A®, A*.

Theorem 3.1. Let A € C™*™, Then, the following conditions are equivalent.
(I) A is normal;
(II) AA*A® = A*A®PA, r(A) = r(A?);

(IIT) AAPA* = ABPA*A, r(A) = r(A?);

(IV) A*A® = AP A* r(A) = r(A?);

)

)
)
)
(V) ATA*A® = APATA*, r(A) = r(A?);
(VI) A*AA® = ABA*A, r(A) = r(A?);
)

(VII) A*ATA® = A®A* AT r(A) = r(A2);
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(VIIT) A*ABA* = ABA*A* r(A) = r(A?);
(IX) A*ABPA® = ABA*A® r(A) = r(A2);
(X) ATA®A* = ABA* AT, r(A) = r(A2).

Proof. Following Lemma 1.1, one has

YK YL ..,
A= [ g

Then,

Furthermore,
. - [EK XL| ... [(EK)" 0], .
I P

[(BK) (BK)" + (XL) (2L)" 0] 7+
0 0 ’

- * * —1y—1
SKK*Y + SLL*Y o] U*U[K 5 o} -

=U

* A @D —
AA*A U 0 0 0 0
[SKK*SK- 'S~ 4+ YL K1yt o] .
0 0 U*.

=U

Simple computations show that
K*Y 0 K-1x=1 0 YK XL
* A@D — * * *
waes = v[S2 Qoo [ET Yoy B2,
K*Y, K*SK-'L] .,
- U[L*E L*EK—lL}U'

By AA*A® = A*A® A, one has

L*> =0
K*YK 'L =0
L*>SK'L=0

K*L=YKK*SK 1871+ SLL*YSK 19!
Hence, it is seen that A*A® and A commute if and only if L = 0, K*Y =
SKK*YK~'Y~! However, L = 0 implies K* = K~ L.
Multiply both sides of K*¥ = SKK*YK 1%~ by XK. Can get the formula

K*Y2K = Y2,
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Taking square roots,we arrive at L = 0 and K*YXK = 3, that is L = 0 and
YK = KX. So, A is normal. It is easy to figure out AA®PA* and AP A*A are

K*> 0
@ *: *
AA®D A U[ 0 O]U’
—1v—1 g% —15—1 g%
A®A*A:U[K by OK YYK K% OK XL U

Hence, it is seen that AZA* and A commute if and only if L = 0, K*3 =
K13 'K*YYK.
Multiply both sides of this equation XK. Then,
YK =K.

The other equations prove the same. ]
Corollary 3.1. Let A € C"™*" and B € C"*™. Then,
ABB*A* = B*A*AB < (AB)(AB)* = (AB)*(AB).

Proof. The (AB)(AB)* = (AB)*(AB) = ABB*A* = B*A*AB part is obvi-
ous. To show the ABB*A* = B*A*AB = (AB)(AB)* = (AB)*(AB) part,
multiply both sides of this equation by AB gives

ABABB*A* = ABB*A*AB = (AB)*(AB)* = (AB)(AB)*(AB).
By Lemma 4.3, we can get
(AB)(AB)* = (AB)*(AB).
This proof is complete. O
Corollary 3.2. Let A, B € C™*™. Then
(I) AB*B = AA*A and B*BB* = B*A*A* & AA* = BB* and B*B = A*A;
(II) AA*A = BB*A and A*AB* = B*BB* < AA* = BB* and B*B = A*A.

0 A . |0 B . D

Proof. Let M = [B* O]’ then M* = [A* 0] . In this situation, it is easy
to verify

AB* 0 0 AB*B 0 BB*A

2 2 * * 2
= [ e = g e P aae = [ PO
and
—_— 0 AA*A
MMM = [B*BB* 0 } )
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By Theorem 4.3, M?M* = MM*M < MM* = M*M, which implies
AB*B = AA*A and B*BB* = B*A*A* & MM* = M* M.
Now, it is easy to verify

BB* 0

MM:[O A*A

e[t

0 B*B|’

Hence, MM* = M*M < AA* = BB* and B*B = A*A. Thus, (I) is estab-
lished.

Now, prove foemula (I1), M*M? = MM*M < MM* = M*M, which im-
plies

AA*A = BB*A and A"AB* = B*BB* < MM* = M*M.
Conclusions can be drawn that
AA*A = BB*A and A"AB* = B"BB* & AA®* = BB* and B*B = A™A.
This proof is complete. O

We present necessary and sufficient conditions for a matrix to be normal
by referring to the commutativity property RS = Y X, where R, S, X, Y are
transforms of A from the set AT, A, A® A*.

Theorem 3.2. Let A € C"*™. Then, the following conditions are equivalent
(I) A is normal;
(IT) A*At = A®A* r(A) = r(A?);

(III) A*A® = ATA*, r(A) = r(A?).

Proof. From Lemma 1.1, it is easy to figure out that A*A" and A® A* are

K*SK*2~1 0

* T:
A4 U[L*EK*E—l 0

—1y—1 g%
}U*, A@A*—U[K XK O]U*.

0 0

The condition A*AT = A®A* is clearly equivalent to L = 0. Moreover, by
K* = K1 we get Y K~!'%7!1 = 71K~ which implies XK = KX. So, A is
normal.

On the other hand, it is easy to figure out that A*A® and AfA* are

K*YK-1x-1 0

* ABD __
AAT=U [L*ZK‘lz_l 0

*y1—1 7%
}U*, ATA*:U[KE K O]U*.

L*S7'K*Y 0

The condition A*A® = ATA* is clearly equivalent to L = 0. Moreover, by
K* =K' we get S K1Y~ = "1 K=, which implies K = KX. So, A is

normal. This proof is complete. O
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Corollary 3.3. Let A € C™*™, Then
(I) A3A* = A2A*A & AA* = A*A;

(I) A%A* = ABA*A, ABA* = A2A*A & AA* = A*A;
(111)
(IV) ASA* = ASA*A, APA* = A*A*A & AA* = A*A.

APA* = AYA* A, AYA* = ABA*A & AA* = A A;

Proof. The AA* = A*A = A3A* = A%2A*A is obvious. Now, we show the
ABA* = A2A*A = AA* = A*A part. in [15]. It is clearly that

AAG = AAH = AG = AH
APA* = APA*A = AA?A" = AAA*A = A%A* = AA*A.
By Lemma 4.3, one has
A%A* = AA*A = A*A = AA*.
It is easy to see that
ATA* = ABA*A = A3A* = A2A*A = A2A* = AA*A = A*A = AA*
Hence, A*A* = ABA*A & AA* = A*A.

The same can be said for the other equations. ]

4. Related results of the Hermitian matrix

In this section we give the equivalent form of the Hermitian of the form RS =
XY, where R, S, X,Y € AT, A, A%, A*, and some conclusions are obtained, and
we also get a new equivalent form of the reverse order law.

Lemma 4.1. Let A € C™*" and B,C € C"*P. Then, the following results hold

(I) A*AB = A*AC < AB = AC. In particular, A*A =0 < AA*A=0<
A=0 ([14]).

(IT) The principal kth root of positive semi-definite matriz exists and is unique

(116).
Lemma 4.2. Let A € C™*™. Then, the following results hold
(I) AA*A = A*"AA* & A= A" ([3)]).
(I) A3 = AA*A = A= A* ([3]).
Lemma 4.3 ([3]). Let A € C™*™. Then
(I) (AA*A)? = (AA*)3 = A = A*,
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(II) (AA*A)2 = (A*A)S & A = A%,

(II) (AA*A)? = (AA*)2A(A*A)? & A = A*,
(IV) A3 = A*AA* and A5 = (A*A)?A* & A = A",
(V) A5 = (AA*)2A and A7 = (AA*)3A & A = A*.

Next,the above results are pushed to higher order form in order to better
judge the equivalence conditions of Hermitian.

Theorem 4.1. Let A € C™*™. Then,

(I) A7 = (A*A)3A* and A = (A*A)1A* & A = A*;
(I1) A% = (AA*)1A and A = (AA*)°A & A= A*;
(IIT) A = (A*A)PA* and A = (A*A)SA* & A = A*;
(IV) A3 = (AA*)SA and AP = (AA*)A & A= A*;

(V) A%=3 = (A*A)kA* and A%l = (A*A)PA* & A = A*;
(VI) A% = (AA*)FA and A%+! = (AA*)FA & A = A*.

Proof. We are supported by A = A*, it’s easy to get the left-hand side. Now,
let us derive from the left-hand formula. Since A7 = (A*A)3A*, one has
A% = ATA? = (A*A)BA*AA = (A*A)*A*, which is equivalent to A2 = AA*
by applying Lemma(4.1)(I)four times. By the formula (7), one has A = A*. By
A% = (AA*)* A, one can get A = A%4%2 = (AA*)TAAA. Hence, (AA*)°A =
(AA*)*AAA, which is equivalent to A% = AA*A by applying Lemma(4.1) (I
four times. By the Lemma (4.2), one has A = A*.

Notice that A" = (A*A)?A*. Then, A3 = A1 A% = (A*A)>A*A?. Hence,
which is equivalent to A?> = AA* by applying Lemma(4.1)(I)five times. By the
formula (7), one has A = A*.

And so on, by the same proofs, we can get

A?FT3 — (A* AR A* and AP = (A A AT o A = A7,
APl = (AA*)PA and AT = (A4 A & A= A%

This completes the proof. O

Next, an equivalent form of the matrix is given. We present necessary and
sufficient conditions for a matrix to be Hermitian by referring to the commuta-
tivity property RS = Y X, where R, S, X, Y are transforms of A from the set
At A A® A*
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Theorem 4.2. Let A € C"*™. Then, the following conditions are equivalent:
(I) A is Hermitian;

(I) AA® = A*A®, r(A) = r(A2);

)
)
(ITT) AA® = ATA*, r(A) = r(A2);
(IV) ATA = A®A* r(A) = r(A?);
)

(V) AA® = A*At, r(A) = r(A2).

Proof. By the singular value decomposition of A, one has
YK YL| .,
a=o[PK

By calculating, we can get the Core inverse
K's71 0

@ — *

A U [ 0 0} U*.

On the other hand, the Moore-Penrose inverse of A is

T U U—*

It is easy to figure out that AA® and A*A® are

YKK-x-1 o

@:
AA U[ 0 0

* —1y—1
]U*, A*A@—U[K SR O] U,

LYK=ty 0

The condition AA® = A*A® is clearly equivalent to L =0, I = K*SK 1%~
which implies YK = K*3, and hence A is Hermitian.
On the other hand, it is easy to figure out that AA® and AfA* are

I 0

® _
AA _U[O 0

*y1—1 77 %
]U*, ATA*:U[KE K O]U*.

L*S71K*Y 0

The condition AA® = ATA* is clearly equivalent to L = 0, ] = K*X 1KY
which implies XK = K*X.. So, A is Hermitian.
The other equations can be proved the same. ]

By Lemma 4.2, have the following inference.

Corollary 4.1. Let A € C™*"™ and B € C"™*™. Then,

BABBABB = BA(BBA)*"BB < A*B*B* = BBA.
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Proof. If A*B*B* = BBA, we can get BABBABB = BA(BBA)*BB. If
BABBABB = BA(BBA)*BB, multiply left by B and right by A on both
sides of this equation, we can get

BBABBABBA = BBA(BBA)*BBA = (BBA)* = BBA(BBA)*BBA.

According to Lemma, 4.2, one has A3 = AA*A & A = A*, by which we can get
BBA = (BBA)* = A*B*B*. This completes the proof. O

Theorem 4.3. Let A, B € C"™*", Then,

(I) A*AA* = B*BB* & A = B,

(Il) A*BA* = B*BB* and BB*B = BA*B & A= B.
Proof. Let

0 B « |0 A
X_[A* 0] andX—[B* 0]

In this situation, it is easy to verify

.o [ 0 BBB]l ... [ 0 A4*A
oex= e U0 = e 107
s [ 0 BA*B
X _[A*BA* 0 |

From Lemma 4.2, we can get
X=XX*X=X"'XX"=X=X"=A=B.
So, we get the following:
A*AA* = B*BB* = A = B,
A*BA* = B*BB* and BB*B = BA*B = A= B.
This completes the proof. ]

Theorem 4.4. Let A, B € C"™™ be two Hermitian matrices. Then, the follow-
ing seven statements are equivalent:

(I) BBA = ABB;
(I1) (BBA)(ABB)(BBA) = (ABB)(BBA)(ABB);
BBA)? = (BBA)(ABB)(BBA);

(IV) ((BBA)(ABB)(BBA))? = ((BBA)(ABB))3;

)
) (
(I11) (
) (
(V) ((BBA)(ABB)(BBA))? = ((BBA)(ABB))*(BBA)((ABB)(BBA))?;
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(VI) (BBA)? = (BBA)(ABB)(BB A) and
(BBA)® = (BBA)[(ABB)(BBA)?’|(BBA);
(VII) (BBA)® = (BBA)|(ABB)(BBA)?|(BBA) and
(BBA)" = (BBA)[(ABB)(BBA)*(BBA).

Proof. If BBA = ABB, the other equations are obviously true. Now, let
us verify BBA = ABB with something else. Since (BBA)(ABB)(BBA) =
(ABB)(BBA)(ABB), one has (BBA)(BBA)*(BBA) = (BBA)*(BBA)(BBA)*.
It follows from replacing A with BBA in Lemma 4.2. We have that

(BBA)(BBA)*(BBA) = (BBA)*(BBA)(BBA)* = (BBA)*
— A*B*B* = ABB = BBA

and we can do the same thing with the rest. This completes the proof. O

A typical matrix equality for the case of the product of two matrices of
appropriate sizes is

(AB)' = BTAT,

which is usually called the reverse-order law for the Moore-Penrose inverse of
a matrix product. The reverse-order law does not necessarily hold. So, have a
fact

(AB)' = BTAT & (ABB*A*AB)' = BY(A*A)1(BB*)T AT

(see [3]). In ]9, 12, 13, 18, 22], some equivalent conditions for the reverse-order
law are also given. The result of theorem4.3 applies here to the inverse order law.
In the following, we will give a new equivalent condition for the reverse-order
law.

Theorem 4.5. Let A € C"™*" and B € C"*P. Then,

(AB)' = BTA" & (B*A*ABB*A*)! = (A*)1(BB*)T(A*A)1(B*)'.
Proof. The implying

(AB)T = BTAT = (B*A*ABB*A*)' = (A*)1(BB*)1(A*A)T(B*)

is obvious. Now, we will prove the reverse part. Utilization Theorem 4.3 (1),
(AB)T instead of A, BT AT instead of B, one has

(AB))) (ABN(AB))* = (BTAN)*(BIAT)((B'A"))* = (AB)! = BlAL.

Hence, (B*A*ABB*A*)' = (A*)/(BB*)T(A*A)1(B*) = (AB)! = BT Al
This completes the proof. O
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5. Conclusions

Obviously,the results in the above theorem and corollaries offer lots of equivalent
facts about EP-matrices, normal matrices, and Hermitian matrices. This fact
can be described in the implication form f(A,A*) = 0 & AA* = A*A and
f(A AT) =0 < AAT = ATA. In this note, applied the core inverse to provide
new characterizations. We show servers special cases of the equivalent facts:

(I) AA® = A*A® & A = A,

(I1) AA® = ATA* & A= A* and (I) A is EP.
(I1) AATA® = ATA® A,
(IIT) AAPA* = A*AA®.
(IV) AA®AT = A®ATA.
(V) ATAA® = A®ATA

without assuming the invertibility of A through the skillful use of decompo-
sitions of matrices. Some equivalent forms related to A®, A, A* can also
be obtained. A new equivalent condition for the reverse order law is also
obtained:(AB)T = BTAT & (B*A*ABB*A*)l = (A")(BB*)T(A*A)T(B*)T. We
can also use the new generalized inverse to study the equivalent form of EP,
normal and Hermitian matrices.
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