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1. Introduction

Let (P,≤) be a poset. A (binary) operation ◦ is called residuated if there exist
(binary) operations ▷ and ◁ on P such that

(∀x, y ∈ P) x ◦ y ≤ z ⇐⇒ y ≤ x▷ z ⇐⇒ x ≤ z ◁ y.

In this case, the operation pair (▷,◁) is called a pair of residuals of the operation
◦. It is well known that an operation ◦ on the poset (P,≤) is residuated if and
only if ◦ is order preserving in each argument and such that, for all a, b ∈ P, both
{p ∈ P | a ◦ p ≤ b} and {q ∈ P | q ◦ a ≤ b} contain a greatest element(denote
by a ▷ b and b ◁ a, respectively). A residuated lattice is defined as an algebra
(L,∧,∨, ◦,▷,◁, e) satisfying the following conditions:

(RL1) (L,∧,∨) is a lattice;

(RL2) (L, ◦) is a monoid with identity e; and

(RL3) the operation pair (▷,◁) is a pair of residuals of the operation ◦.

In this case, we call the lattice (L,∧,∨) and the semigroup (L, ◦) the lattice
reduct and the semigroup reduct of the residuated lattice (L,∧,∨, ◦,▷,◁, e),
respectively. Sometime, residuated lattices are also called residuated lattice-
ordered monoids. A residuated lattice (L,∧,∨, ◦,▷,◁, e) is called idempotent if
the semigroup reduct of L is an idempotent semigroup. Moreover, an idempo-
tent residuated lattice (L,∧,∨, ◦,▷,◁, e) is called commutative if the semigroup
reduct of L is commutative and L is called a commutative idempotent residuated
chain if its lattice reduct is a chain (see [18] and [19]). As in [1] and [8], a resi-
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duated lattice (L,∧,∨, ◦,▷,◁, e) is said to be conical, if for each a ∈ L, a ≤ e
or a ≥ e, where ≤ is the order on the lattice reduct of (L,∧,∨, ◦,▷,◁, e).

Idempotent residuated lattices play a crucial role in residuated lattice the-
ory. On the one hand they include several important algebraic counterparts
of substructural logics, e.g., Brouwerian algebras, i.e. algebras of the positive
intuitionistic logic, Heyting algebras, i.e. algebras of the propositional intuition-
istic logic and positive Sugihara monoids (see [16]) and on the other hand, the
knowledge of idempotent residuated lattices can increase our comprehension of
residuated lattices (see [11, 13, 14]). Different kinds of idempotent residuated
lattices have been introduced and studied in the literature, first to handle idem-
potent residuated chains, and then for conical idempotent residuated lattices
and for finite idempotent residuated lattices (see[1-6,8-10,12,15-19]). In an ear-
lier paper [1] and [3], we investigated conical idempotent residuated lattices from
semigroup perspectives. We established a structure theorem and decomposition
theorem for conical idempotent residuated lattices. Recently, Gil-Férez, Jipsen
and Metcalfe in [12] have used semigroup reducts to give a complete structural
description of finite description of finite idempotent residuated chains. More re-
cently, Fussner and Galatos in [6] have shown that non-isomorphic idempotent
residuated chains may have the same semigroup reduct. This paper is a contin-
uation of [1] and [3]. Conical idempotent residuated lattices can be considered
as a class of lattice-ordered idempotent monoids. The following question natu-
rally arises : How can we characterize the class of monoids that are semigroup
reducts of conical idempotent residuated lattices? The purpose of this paper is
to solve this question.

We proceed as follows: In Section 2, we recall some definitions and basic facts
needed in later proofs. In Section 3, we provide the necessary and sufficient con-
ditions for an idempotent semigroup with an identity to be the semigroup reduct
of some conical idempotent residuated lattice which generalize [2, Theorem 5.2].

2. Preliminaries

In this section, we shall first recall some basic definitions and facts on semi-
groups. For further information on semigroups, we refer to any standard text
book, for example, the book by Howie [7]. After this, we recall the concepts of
residuated lattices.

Let S be a semigroup and S1 the semigroup obtained from S by adding an
identity if S has no identity, otherwise we put S1 = S. In the theory of semi-
groups, the Green’s relations L,R,J ,H and D are of fundamental importance.
They are defined in the following way:

L = {(a, b) ∈ S×S|S1a = S1b},
R = {(a, b) ∈ S×S|aS1 = bS1},
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J = {(a, b) ∈ S×S|S1aS1 = S1bS1},
H = L ∩R,
D = L ∨R.

Evidently, L is a right congruence while R is a left congruence. Moreover,
we have

Lemma 2.1 ([7]). The relations L and R commute and D = L ◦ R = R ◦ L.

If K is one of Green’s relations, we shall denote byKa the K-class ofS containing
a ∈ S.

An element x of S is called an idempotent if x2 = x. S is called a idempotent
semigroup if every element of S is an idempotent. idempotent semigroups are
also called bands. Moreover, an idempotent semigroup B is called a semilattice
if it is commutative; B is called a rectangular band if B satisfies the identity:
abc ≈ ac.

Now let B be an idempotent semigroup. By [7, Proposition 2.1.4 and The-
orem 4.1.3], on B, D = J and is a congruence such that B/D is a semilat-
tice, which is usually called the structure semilattice of B. Denote the semi-
lattice B/D by Y . Consider the natural homomorphism D♮ : B → Y in-

duced by D. For α ∈ Y, we use Dα to stand for αD♮−1
. Obviously, each

Dα is a D−class of B and further a rectangular band. It is easy to see that
DαDβ := {ab | a ∈ Dα, b ∈ Dβ} ⊆ Dαβ. Thus, we have

Lemma 2.2 ([7]). Every idempotent semigroup is a semilattice of rectangular
bands.

Let (L, ◦) be an idempotent semigroup with an identity. By the arguments
before Lemma 2.2, D is a semilattice congruence on L. In other words, the
quotient semigroup (L/D, ·), for short, L/D, is a semilattice. For simplicity, we
also write the element aD♮ of the semigroup L/D as Da, for a ∈ L. On L/D,
define: for a, b ∈ L,

Da ≤∗ Db if and only if Da ·Db = Da.

By [7, Proposition 1.3.2, p. 14], ≤∗ is an order on the semilattice L/D.

Now, we shall list some basic concepts of residuated lattices used in the
sequel. For further information on residuated lattices, we refer to [1] and [10].

Let (L,∧,∨, ◦,▷,◁, e) be a residuated lattice and assume the lattice reduct
of L is the lattice (L,≤). For convenience, we simply write a◦b as ab for a, b ∈ L.
It’s well-known that the sets {c ∈ L | ac ≤ b} and {c ∈ L | ca ≤ b} have both a
greatest element, in notation, a▷ b and b◁ a, respectively.

In a residuated lattice term, we assume that multiplication has priority over
the division operations, which, in turn, have priority over the lattice operations.
So, for example, we write x◁ yz ∧ u▷ v for [x◁ (yz)] ∧ (u▷ v).
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Now, let (P,≤) be a poset and assume x, y ∈ P with y < x. We say x
covers y, in notation, y ≺ x, if for any z ∈ P, y ≤ z ≤ x implies either x = z
or y = z. We define [x, y] = {u ∈ P | x ≤ u ≤ y} for x, y ∈ P with x ≤ y.
For a, b ∈ P, a ∥ b means that a and b are not comparable under ≤. Write
Pnca = {x ∈ P | x ∥ a}. b is called a lower square point of a if b < a and for any
d ∈ P with b ≤ d < a, there exists d′ ∈ P such that d ∥ d′. Similarly, we can
define upper square points. We denote by P la the set of lower square points of a
and by P ua the set of upper square points of a. Put Pa = Pnca ∪ P la ∪ P ua ∪ {a}.
In what follows, we denote by P⊤

a the least upper bound of Pa and by P⊥
a

the greatest lower bound of Pa if they exist. (Pa) is obtained by adjoining P⊤
a

and/or P⊥
a , whenever they exist, to Pa. We call the above (Pα) the square point

set of P.

Definition 2.1 ([1]). Let {L+,L−, {e}} be a family of pairwise disjoint subsets
of L such that L = L+ ∪ L− ∪ {e}. A partition {Lα | α ∈ Y} on L is called a
conical semilattice partition on L provided

(1) (Y,≤∗) is a semilattice with greatest element 1; and

(2) The partition satisfies the following conditions:

(CSP1) L1 = {e}, where we let e = a1 = b1.

(CSP2) For each α ∈ Y\{1}, |Lα∩L+| ≤ 1 and |Lα∩L−| ≤ 1. We shall
denote the element in Lα∩L+ and Lα∩L− by aα and bα, respectively.

(CSP3) For every α, β ∈ Y with α ∥∗ β, we have |Lα| = |Lβ| = |Lα∧β| =
1 and

Lα ∩ L+ ̸= ∅ ⇔ Lβ ∩ L+ ̸= ∅ ⇔ Lα∧β ∩ L+ ̸= ∅.

(CSP4) α∨β exists and Lα∨β = Lα∨β ∩L− for every α, β ∈ Y such that
α ∥∗ β and Lα ∩ L− ̸= ∅.

Definition 2.2 ([1]). Let {Lα | α ∈ Y} be a conical semilattice partition. A
subset X of Y is called a band subset of the partition {Lα | α ∈ Y} if |Lα| = 2
for every α ∈ X.

Definition 2.3 ([1]). Let L be a nonempty set. The conical semilattice partition
π = {Lα | α ∈ Y} on L with band subset X is called a CLOB-system provided
the mapping

Φ : C → Y; (α, β) 7→ Φ(α, β),

where C = {(α, β) ∈ Y × Y | α ∥∗ β,Lα ∩ L+ ̸= ∅}, satisfies the following
conditions:

(B1) If (α, β) ∈ DomΦ, then α <∗ Φ(α, β), β <∗ Φ(α, β) and LΦ(α,β)∩(L+∪
{e}) ̸= ∅.

(B2) If (α, β) ∈ DomΦ and γ ∈ Y such that α, β <∗ γ <∗ Φ(α, β), then
Lγ = Lγ ∩ L−.
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In what follows, we denote this system in Definition 2.3 by (L;π,Y;X,Φ).

Lemma 2.3 ([1]). Let (L;π,Y;X,Φ) be a CLOB-system. Define an order ≤ on
L as follows: for a ∈ Lα, b ∈ Lβ,

a ≤ b if and only if either condition (O1): α ≤∗ β and a = bα or
condition (O2): β ≤∗ α and b = aβ.

Define a multiplication ◦ on L in the following ways: for aα, bα, aβ, bβ ∈ L,

aα ◦ aβ = aα∧β;

bα ◦ bβ = bα∧β;

aα ◦ bβ =

{
aα, if α <∗ β or α = β ∈ X,

bβ, if β <∗ α or α = β /∈ X;

bβ ◦ aα =

{
aα, if α <∗ β or α = β /∈ X,

bβ, if β <∗ α or α = β ∈ X.

Then, (L, ◦,≤) is an ordered idempotent semigroup (see [1]).

Definition 2.4 ([1]). A CLOB-system (L;π,Y;X,Φ) is called a CRLOB-
system provided the mappings

ψ : {α ∈ Y \ {1} : Lα ∩ L+ ̸= ∅} → Y; α 7→ ψ(α),

φ : {α ∈ Y \ {1} : Lα ∩ L− ̸= ∅} → Y; α 7→ φ(α)

and

Ψ : R → Y; (α, β) 7→ Ψ(α, β),

where R = {(α, β) ∈ Y × Y | α ∥∗ β,Lα ∩ L− ̸= ∅ or β <∗ α,Lβ ∩ L− ̸=
∅ and α ∈ Pβ}, satisfy the following conditions:

(C1) If α ∈ Domψ, then ψ(α) <∗ α and Lψ(α) ∩ L− ̸= ∅.
(C2) If α ∈ Domφ, then α <∗ φ(α) and Lφ(α) ∩ (L+ ∪ {e}) ̸= ∅.
(C3) If α ∈ Domψ and β ∈ Y such that ψ(α) <∗ β <∗ α, then Lβ = Lβ∩L+.

(C4) If α ∈ Domφ and β ∈ Y such that α <∗ β <∗ φ(α), then Lβ = Lβ∩L−.

(C5) If (α, β) ∈ DomΨ, then α ∧Ψ(α, β) ≤∗ β.

(C6) If (α, β) ∈ DomΨ and γ ∈ Y such that Lγ∩L− ̸= ∅ and α∧γ ≤∗ α∧β,
then γ ≤∗ Ψ(α, β).

We shall denote this system by (L;π,Y;X,Φ;ψ,φ,Ψ) and the related ordered
idempotent semigroup (L, ◦,≤) by CRLOB(L;π,Y;X,Φ;ψ,φ,Ψ).

Theorem 2.1 ([1]). Let (L;π,Y;X,Φ;ψ,φ,Ψ) be a CRLOB-system. Then
CRLOB(L;π,Y;X,Φ;ψ,φ,Ψ) is a conical idempotent residuated lattice. Con-
versely, any such residuated lattice can be constructed in this manner.
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3. Residuated lattice-orderability of an idempotent semigroup with
an identity

In this section we shall give necessary and sufficient conditions for an idempotent
semigroup with an identity to be the semigroup reduct of some conical residuated
lattice, which generalize [2, Theorem 5.2].

Let (Y,≤∗) be a semilttice. The subset U of Y is called an R-sublattice of
Y if U is a sublattice of Y and satisfies the condition (RS): If α, β ∈ U, α ≰∗ β,
then there exists δ in U such that α ∧ δ = α ∧ β and for all δ′ ∈ U such that
δ′ ∧ α ≤∗ α ∧ β, δ′ ≤∗ δ. The condition (RS) indeed is to ensure that the set
{c ∈ U | a ∧ c ≤∗ b} has a greatest element, for all a, b ∈ U.

Let (Pα) be the square point set of Y. Let (Pα)
+ = {β ∈ (Pα) | (∃γ, γ′ ∈

(Pα))γ ∨ γ′ does not exists and β ≤∗ γ} and let (Pα)
− = (Pα) \ (Pα)+. (Pα) is

called a pre-sublattice of Y if (Pα) satisfies the following conditions:
(P1) (Pα) is not a sublattice of Y and ((Pα)

+∪{β},≤∗) is a lattice for some
β ∈ Y;

(P2) If β ∈ (Pα)
+ and γ ∈ (Pα)

−, then β <∗ γ;
(P3) If (Pα)

− ̸= ∅, then (Pα)
− is an R-sublattice of Y.

Lemma 3.1. Let (Y,≤∗) be a semilattice.
(1) If α, β, γ ∈ Y such that β, γ ∈ (Pα), then β ∧ γ ∈ (Pα) and β ∨ γ ∈ (Pα)

whenever β ∨ γ exists.
(2) If α, α′, γ ∈ Y such that α ∥∗ α′ and γ ∈ Pα, then Pα = Pγ.
(3) If α, β, α′, β′ ∈ Y such that α ∥ α′, β ∥ β′ and Pα∩Pβ ̸= ∅, then Pα = Pβ

and (Pα) = (Pβ).
(4) If α, β, γ ∈ Y such that (Pα) is a pre-sublattice of Y and β, γ ∈ (Pα)

+,
then β ∧ γ ∈ (Pα)

+ and β ∨ γ ∈ (Pα)
+ whenever β ∨ γ exists.

(5) If α, β, γ ∈ Y such that (Pα) is a pre-sublattice of Y and β, γ ∈ (Pα)
−,

then β ∧ γ, β ∨ γ ∈ (Pα)
−.

Proof. (1) Let α, β, γ ∈ Y such that β, γ ∈ (Pα). We consider the following
cases:

� β ≤∗ γ or γ ≤∗ β. Then, β ∧ γ ∈ {β, γ} ⊆ (Pα).

� β ∥∗ γ. Then, β ∧ γ <∗ β. If β ∧ γ ∥∗ α, then β ∧ γ ∈ (Pα). If α ≤∗ β ∧ γ,
then α ≤∗ β ∧ γ <∗ β. Since β ∈ (Pα), β ∧ γ ∈ (Pα). If β ∧ γ <∗ α, then
we can claim that β ∧ γ ∈ (Pα). Otherwise if β ∧ γ /∈ (Pα), then for all
ξ ∈ (Pα), β ∧ γ <∗ ξ. If P⊥

a exists, then β ∧ γ <∗ P⊥
a . Since P⊥

a <∗ β, γ,
P⊥
a ≤∗ β ∧ γ. It’s a contradiction. If P⊥

a doesn’t exist, then there exists
δ ∈ Y such that β ∧ γ <∗ δ <∗ α and δ <∗ η, for all η ∈ (Pα). Since
β, γ ∈ (Pα), δ <

∗ β, γ. It follows that δ ≤∗ β ∧ γ, which contrary to
β ∧ γ <∗ δ. Thus, β ∧ γ ∈ (Pα).

Similarly, if β ∨ γ exists, then β ∧ γ ∈ (Pα).
(2) Let α, α′, γ ∈ Y such that α ∥∗ α′ and γ ∈ Pα. To prove that Pα = Pγ ,

we consider the following cases:
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� γ ∥∗ α. Firstly, we will prove that Pγ ⊆ Pα. Let δ ∈ Pγ such that δ ∥∗ γ.
If δ ∥∗ α, then δ ∈ Pα. If δ <∗ α, then since γ ∥∗ α, for any ζ ∈ Y such
that δ ≤∗ ζ <∗ α, ζ ∥∗ γ. It follows that δ ∈ Pα. Similarly, if α <∗ δ,
then δ ∈ Pα. Let δ ∈ Pγ such that δ <∗ γ. Then, since γ ∥∗ α, either
δ ∥∗ α, or δ <∗ α. If δ ∥∗ α, then δ ∈ Pα. If δ <∗ α, then for any ζ ∈ Y
such that δ ≤∗ ζ <∗ α, either ζ ∥∗ γ or ζ <∗ γ. If ζ <∗ γ, then since
δ ≤∗ ζ and δ ∈ Pα, there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′. It follows that
δ ∈ Pα. Similarly, if δ ∈ Pγ such that γ ≤∗ δ, then δ ∈ Pα. It follows that
Pγ ⊆ Pα. Similarly, Pα ⊆ Pγ . Consequently, Pα = Pγ .

� γ ≤∗ α. Firstly, we will prove that Pγ ⊆ Pα. Let δ ∈ Pγ such that δ ∥∗ γ.
Then, either δ ∥∗ α or δ <∗ α. If δ ∥∗ α, then δ ∈ Pα. If δ <∗ α, then
for any ζ ∈ Y such that δ ≤∗ ζ <∗ α, either ζ ∥∗ γ or γ <∗ ζ. If γ <∗ ζ,
then γ <∗ ζ <∗ α. Since γ ∈ Pα, there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′. It
follows that δ ∈ Pα. Let δ ∈ Pγ such that δ <∗ γ. Then, δ <∗ γ ≤∗ α.
Suppose that ζ ∈ Y such that δ ≤∗ ζ <∗ α. Then, either ζ ∥∗ γ or ζ ∦∗ γ.
If ζ <∗ γ, then since δ ∈ Pγ , there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′. If
γ ≤∗ ζ, then since γ ∈ Pα, there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′. It follows
that δ ∈ Pα. Let δ ∈ Pγ such that γ ≤∗ δ. If δ ∥ α or δ = α, then δ ∈ Pα.
If δ <∗ α, then for any ζ ∈ Y such that δ ≤∗ ζ <∗ α, γ ≤∗ ζ <∗ α. Since
γ ∈ Pα, there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′. It follows that δ ∈ Pα. If
α <∗ δ, then for any ζ ∈ Y such that α <∗ ζ ≤∗ δ, γ <∗ ζ ≤∗ δ. Since
δ ∈ Pγ , there exists ζ ′ ∈ Y such that ζ ∥∗ ζ ′, which implies that δ ∈ Pα.
It follows that Pγ ⊆ Pα. Similarly, Pα ⊆ Pγ . Consequently, Pα = Pγ .

� α <∗ γ. By similar arguments as in the prior case, we have Pα = Pγ .

(3) Let α, β, α′, β′ ∈ Y such that α ∥ α′, β ∥ β′ and Pα ∩ Pβ ̸= ∅. Let
γ ∈ Pα ∩ Pβ. Then, by (2), Pα = Pγ = Pβ and so (Pα) = (Pβ).

(4) Let α, β, γ ∈ Y such that (Pα) is a pre-sublattice of Y and β, γ ∈ (Pα)
+.

Since β ∧ γ ≤∗ β, β ∧ γ ∈ (Pα)
+ by (1) and (P2). If β ∨ γ exists, then

by (1), β ∨ γ ∈ (Pα). Since β ∈ (Pα)
+, there exist δ, δ′ ∈ (Pα)

+ such that
δ ∨ δ′ doesn’t exist and β ≤∗ δ. Suppose that β ∨ γ ∈ (Pα)

−. Then, by (P2),
δ, δ′ <∗ β ∨ γ and so there exists ζ ∈ (Pα) such that δ, δ′ <∗ ζ <∗ β ∨ γ. If
ζ ∈ (Pα)

−, then by (P2), β, γ <∗ ζ, and so β ∨ γ ≤∗ ζ, which contrary to
ζ <∗ β∨γ. If ζ ∈ (Pα)

+, then there exist ω, ω′ ∈ (Pα)
+ such that ω∨ω′ doesn’t

exist and ζ ≤∗ ω. Since δ ∨ δ′ doesn’t exist, there exists ξ ∈ (Pα) such that
δ, δ′ <∗ ξ <∗ ζ. Hence, by (P2), ξ ∈ (Pα)

+. Because ((Pα)
+ ∪ {η},≤∗) is a

lattice for some η ∈ Y, δ ∨((Pα)+∪{η}) δ
′ = ω ∨((Pα)+∪{η}) ω

′ = η, which implies
that η <∗ ξ <∗ ζ ≤∗ ω <∗ η. It’s a contradiction. Thus, β ∨ γ ∈ (Pα)

+.

(5) Let α, β, γ ∈ Y such that (Pα) is a pre-sublattice of Y and β, γ ∈ (Pα)
−.

Then, by (1), β ∧ γ, β ∨ γ ∈ (Pα). Since β <∗ β ∨ γ, β ∨ γ ∈ (Pα)
− by (P2).

Assume that β ∧ γ ∈ (Pα)
+. Then, there exist δ, δ′ ∈ (Pα)

+ such that δ ∨ δ′
doesn’t exist and β ∧ γ ≤∗ δ. Hence, by (P2), δ, δ′ <∗ β, γ. Thus, δ, δ′ ≤∗ β ∧ γ.
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It follows that δ′ ≤∗ β∧γ = δ. Thus, δ∨ δ′ = δ, which contrary to δ∨ δ′ doesn’t
exist. Consequently, β ∧ γ ∈ (Pα)

−.

Lemma 3.2. Let L = CRLOB(L;πD,Y;X,Φ;ψ,φ,Ψ) be a conical idempotent
residuated lattice.

(1) If α ∈ Domψ, then for each β ∈ Y, ψ(α) ≤∗ β or β ≤∗ ψ(α). Moreover,
in this case, ψ(α) ≺∗ φ(ψ(α)).

(2) If α ∈ Domφ, then for each β ∈ Y, φ(α) ≤∗ β or β ≤∗ φ(α). Moreover,
if φ(α) ̸= 1, then ψ(φ(α)) ≺∗ φ(α).

(3) If (α, β) ∈ DomΦ and α∨β doesn’t exist, then for each γ ∈ Y, Φ(α, β) ≤∗

γ or γ ≤∗ Φ(α, β).
(4) If α, η, ζ ∈ Y such that ζ ∈ (Pα)

+, η ∈ (Pα)
−, then ζ <∗ η and Dζ =

{aζ}.
(5) If α, β, γ ∈ Y such that β, γ ∈ (Pα)

+, then β ∧ γ ∈ (Pα)
+ and β ∨ γ ∈

(Pα)
+ whenever β ∨ γ exists.
(6) If α, β, γ ∈ Y such that (Pα)

+ ̸= ∅ and β, γ ∈ (Pα)
−, then β ∧ γ, β ∨ γ ∈

(Pα)
−. Moreover, if β ̸= 1, then Dβ = {bβ}.

Proof. (1) Suppose that there exists β ∈ Y such that ψ(α) ∥∗ β. Since Dψ(α)

contains bψ(α) and by (CSP3) of Definition 2.1, Dβ = {bβ}, which, together with
aα ∈ Dα by noting that α ∈ Domψ, derives α ∦∗ β. By (C1) of Definition 2.4,
ψ(α) <∗ α, so β <∗ α, hence by (CSP4) of Definition 2.1, ψ(α) ∨ β exists
and Dψ(α)∨β = {bψ(α)∨β}. Thus ψ(α) <∗ ψ(α) ∨ β <∗ α. Therefore, by (C3)
of Definition 2.4, Dψ(α)∨β = {aψ(α)∨β}, contrary to Dψ(α)∨β = {bψ(α)∨β}. We
conclude that for each β ∈ Y, φ(α) ≤∗ β or β ≤∗ φ(α). Suppose that there
exists β ∈ Y such that ψ(α) <∗ β <∗ φ(ψ(α)). Then, by (C4) of Definition
2.4, Dβ = {bβ}. Since α ∈ Domψ, aα ∈ Dα and by (CSP3) of Definition 2.1,
α ∦∗ β. Assume α <∗ β. Then ψ(α) <∗ α <∗ β <∗ φ(ψ(α)) and so by (C4)
of Definition 2.4, Dα = {bα}, contrary to α ∈ Domψ. This implies β <∗ α
and so by (C3) of Definition 2.4, Dβ = {aβ}, contrary to Dβ = {bβ}. Thus,
ψ(α) ≺∗ φ(ψ(α)).

(2) It is similar to (1).
(3) Suppose that (α, β) ∈ DomΦ and α ∨ β doesn’t exist. Then, by (B1) of

Definition 2.3, α, β <∗ Φ(α, β) and DΦ(α,β) contains aΦ(α,β). Since α∨β doesn’t
exist, there exists γ ∈ Y such that α, β <∗ γ <∗ Φ(α, β). Hence, by (B2) of
Definition 2.3, Dγ = {bγ}, so by (2), for each δ ∈ Y, either φ(γ) ≤∗ δ or δ ≤∗

φ(γ), thereby φ(γ) <∗ Φ(α, β) or Φ(α, β) ≤∗ φ(γ). If φ(γ) <∗ Φ(α, β), then
α, β <∗ γ <∗ φ(γ) <∗ Φ(α, β) and so by (B2) of Definition 2.3, Dφ(γ) = {bφ(γ)},
contrary to Dφ(γ) contains aφ(γ). If Φ(α, β) <∗ φ(γ), then γ <∗ Φ(α, β) <∗

φ(γ) and so by (C4) of Definition 2.4, DΦ(α,β) = {bΦ(α,β)}, contrary to DΦ(α,β)

contains aΦ(α,β). Hence, Φ(α, β) = φ(γ) and so by (2), for each δ ∈ Y, either
Φ(α, β) ≤∗ δ or δ ≤∗ Φ(α, β).

(4) Suppose to the contrary that η ≤∗ ζ or ζ ∥∗ η. If η ≤∗ ζ, then since ζ ∈
(Pα)

+, there exist ζ ′, δ′ ∈ (Pα) such that ζ ′ ∨ δ′ doesn’t exist and ζ ≤∗ ζ ′, hence
η ≤∗ ζ ′, which implies that η ∈ (Pα)

+, contrary to η ∈ (Pα)
− = (Pα) \ (Pα)+. If
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ζ ∥∗ η, then since ζ ∈ (Pα)
+, there exist ζ ′, δ′ ∈ (Pα) such that ζ ′∨δ′ doesn’t exist

and ζ ≤∗ ζ ′. If η <∗ ζ ′, then η ∈ (Pα)
+, contrary to η ∈ (Pα)

− = (Pα)\(Pα)+. If
η ∥∗ ζ ′, then since ζ ′∨δ′ doesn’t exist, ζ ′ ∥∗ δ′, hence by (CPS3) and (CSP4) of
Definition 2.1, Dδ′ = {aδ′} and Dζ′ = {aζ′}, which imply that Dη = {aη}. Since
ζ ′ ∨ δ′ doesn’t exist, there exists δ ∈ Y such that ζ ′, δ′ <∗ δ <∗ Φ(ζ ′, δ′), hence
by (B2) of Definition 2.3, Dδ = {bδ}. By (CSP3) of Definition 2.1, η ∦∗ δ. Since
η ∥∗ ζ ′ and ζ ′ <∗ δ, η <∗ δ. Note that η ∈ (Pα)

−, η ∨ ζ ′ and (η ∨ ζ ′) ∨ δ′ exist,
hence we have ζ ′, δ′ <∗ (η ∨ ζ ′)∨ δ′ ≤∗ δ <∗ Φ(ζ ′, δ′). Since ζ ′ ∨ δ′ doesn’t exist,
there exists ξ ∈ Y such that ζ ′, δ′ <∗ ξ <∗ (η ∨ ζ ′) ∨ δ′ <∗ Φ(ζ ′, δ′). By (B2) of
Definition 2.3, Dξ = {bξ}. By (CSP3), ξ <∗ η or η <∗ ξ. Assume that ξ <∗ η.
Then, ζ ′, δ′ <∗ ξ <∗ η <∗ δ <∗ Φ(ζ ′, δ′). By (B2), Dη = {bη}, which contrary to
Dη = {aη}. Thus, η <∗ ξ. It follows that η∨ ζ ′, δ′ ≤∗ ξ <∗ (η∨ ζ ′)∨ δ′, contrary
to (η∨ζ ′)∨δ′ ≤∗ ξ. Thus, η ≤∗ ζ and ζ ∥∗ η are both impossible. Consequently,
ζ <∗ η. Since Dζ′ = {aζ′}, by (1, 2), ψ(ζ ′) ≺∗ φ(ψ(ζ ′)) ≤∗ ζ ≤∗ ζ ′ and so by
(C3) of Definition 2.4, Dζ = {aζ}.

(5) Let α, β, γ ∈ Y such that β, γ ∈ (Pα)
+. Then, there exist ζ, ζ ′, δ, δ′ ∈ (Pα)

such that β ≤∗ ζ, γ ≤∗ δ, ζ ∨ ζ ′ and δ ∨ δ′ don’t exist. Hence, β ∧ γ ≤ ζ which
implies that β ∧ γ ∈ (Pα)

+ by noting that β ∧ γ ∈ (Pα) by Lemma 3.1(1).
Suppose that β ∨ γ exists. Then, by Lemma 3.1(1), β ∨ γ ∈ (Pα). If β ∦∗ γ,
then β ∨ γ ∈ {β, γ} ⊆ (Pα)

+. If β ∥∗ γ, then by Lemma 3.1(1), β ∨ γ ∈ (Pα).
If β ∨ γ ≤∗ ζ, then β ∨ γ ∈ (Pα)

+. If β ∨ γ ∥∗ ζ, then by (4), β ∨ γ ∈ (Pα)
+.

If ζ <∗ β ∨ γ, then β ≤∗ ζ <∗ β ∨ γ. Assume that β ∨ γ /∈ (Pα)
+. Then,

β∨γ ∈ (Pα)
− by Lemma 3.1(1). Since ζ, ζ ′ ∈ (Pα) and ζ∨ζ ′ doesn’t exist, ζ ∥ ζ ′

and so ζ, ζ ′ ∈ (Pα)
+. Hence, by (4), ζ, ζ ′ <∗ β ∨ γ and by (CSP3) and (CSP4)

of Definition 2.1, Dζ = {aζ}, Dζ′ = {aζ′}. If γ <∗ ζ ′, then for all η ∈ Y such
that ζ, ζ ′ <∗ η, β, γ <∗ η. Hence, β∨γ ≤∗ η and so ζ∨ζ ′ = β∨γ, which contrary
to ζ ∨ ζ ′ doesn’t exist. If γ ∥∗ ζ ′, then by (CSP2), Dγ = {aγ} and Dβ = {aβ}.
By (B1) of Definition 2.3, ζ, ζ ′ <∗ Φ(ζ, ζ ′). We claim that α′ ≤∗ Φ(ζ, ζ ′), for all
α′ ∈ (Pα). If Φ(ζ, ζ

′) = 1, then α′ ≤∗ Φ(ζ, ζ ′), for all α′ ∈ (Pα). If Φ(ζ, ζ
′) ̸= 1,

then Φ(ζ, ζ ′) <∗ 1. Suppose that there exists γ′ ∈ (Pα) such that Φ(ζ, ζ ′) ≤∗ γ′.
Then, by (B1) of Definition 2.3, ζ, ζ ′ <∗ Φ(ζ, ζ ′), hence there exists ξ ∈ Y
such that ζ, ζ ′ <∗ ξ <∗ Φ(ζ, ζ ′) by noting that ζ ∨ ζ ′ doesn’t exist. By (B2) of
Definition 2.3, Dξ = {bξ}. It follows from the proof of (3) that Φ(ζ, ζ ′) = φ(ξ).
By (2), ψ(φ(ξ)) ≺∗ Φ(ζ, ζ ′) = φ(ξ). By (1-3), α ≤∗ ψ(φ(ξ)) ≺∗ Φ(ζ, ζ ′) or
ψ(φ(ξ)) ≺∗ Φ(ζ, ζ ′) ≤∗ α. If α ≤∗ ψ(φ(ξ)) ≺∗ Φ(ζ, ζ ′), then by the definition
of (Pα) and (1-3), β′ ≤∗ ψ(φ(ξ)) ≺∗ Φ(ζ, ζ ′), for all β′ ∈ (Pα), which implies
that γ′ /∈ (Pα) by noting that Φ(ζ, ζ ′) ≤∗ γ′, a contradiction. If ψ(φ(ξ)) ≺∗

Φ(ζ, ζ ′) ≤∗ α, then β, γ /∈ (Pα), a contradiction. Thus, α′ <∗ Φ(ζ, ζ ′), for all
α′ ∈ (Pα). Consequently, α′ ≤∗ Φ(ζ, ζ ′), for all α′ ∈ (Pα). It follows that
β ∨ γ ≤∗ Φ(ζ, ζ ′). Since ζ ∨ ζ ′ doesn’t exist,there exists ω ∈ Y such that
ζ, ζ ′ <∗ ω <∗ β ∨ γ ≤∗ Φ(ζ, ζ ′). By (B2) of Definition 2.3, Dω = {bω}. Since
Dγ = {aγ} and γ ∥∗ ζ ′, γ <∗ ω by (CSP3) of Definition 2.1. It follows that
β ∨ γ ≤∗ ω. It’s a contradiction. Consequently, β ∨ γ ∈ (Pα)

+.
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(6) Let α, β, γ ∈ Y such that (Pα)
+ ̸= ∅ and β, γ ∈ (Pα)

−. Then, there
exist ζ, ζ ′ ∈ (Pα)

+ such that ζ ∨ ζ ′ doesn’t exist and β ∧ γ, β ∨ γ ∈ (Pα) by
Lemma 3.1(1). Since β ∈ (Pα)

− and β <∗ β ∨ γ, β ∨ γ ∈ (Pα)
− by (4). If

β ∦∗ γ, then β ∧ γ ∈ {β, γ} ⊆ (Pα)
−. Suppose that β ∥∗ γ. Then, by the

proof of (5), ζ, ζ ′ <∗ β ∧ γ <∗ β, γ <∗ Φ(ζ, ζ ′), and so by (B2) of Definition 2.3,
Dβ = {bβ}, Dγ = {bγ} and Dβ∧γ = {bβ∧γ}. Thus, by (4), β ∧ γ ∈ (Pα)

−.
If β ̸= 1, then by the proof of (5), ζ, ζ ′ <∗ β <∗ Φ(ζ, ζ ′), and so by (B2) of
Definition 2.3, Dβ = {bβ}.

Theorem 3.1. Let L be an idempotent semigroup with identity e and Y be the
structure semilattice with greatest element 1 of L. Then, L is the semigroup
reduct of some conical idempotent residuated lattice if and only if L satisfies the
following conditions:

(SR1) For each α ∈ Y, either (Pα) is a sublattice of Y or (Pα) a pre-
sublattice of Y and |Dα| = 1.

(SR2) Each D−class of L contains at most two elements.

(SR3) If a ∈ Dα and b ∈ Dβ such that α <∗ β, then ab = ba = a.

(SR4) If α, β ∈ Y such that α ∥∗ β, then |Dα| = |Dβ| = |Dα∧β| = 1.

(SR5) If (Pα) is a pre-sublattice of Y, then α satisfies the following condi-
tions:

(D1) There exists α+ ∈ Y satisfying

(a) For each β ∈ Y, either α+ ≤∗ β or β ≤∗ α+;

(b) If α ̸= 1, then α <∗ α+;

(c) If α+ ̸= 1, then there exists γ ∈ Y such that γ ≺∗ α+ and for each
β ∈ Y, either γ ≤∗ β or β ≤∗ γ;

(d) If β ∈ Y such that, for all α′ ∈ (Pα), α
′ <∗ β <∗ α+, then |Dβ| = 1 and

(Pβ) is a R-sublattice;

(D2) There exists α∗ ∈ Y satisfying

(a) For each β ∈ Y, either α∗ ≤∗ β or β ≤∗ α∗;

(b) α∗ <∗ α;

(c) There exists γ ∈ Y such that α∗ ≺∗ γ and for each β ∈ Y, either γ ≤∗ β
or β ≤∗ γ;

(d) If β ∈ Y such that, for all α′ ∈ (Pα), α
∗ <∗ β <∗ α′, then |Dβ| = 1 and

(Pβ) is a sublattice.

(SR6) If α ∈ Y such that |Dα| = 2, then |DP⊤
α
| = 1 whenever P⊤

α exists and

P⊤
α ̸= α, |DP⊥

α
| = 1 whenever P⊥

α exists and P⊥
α ̸= α, (Pα) = {β ∈ (Pα)|α ≤∗ β}

is a R-sublattice of Y and α satisfies (D1) and (D2).

(SR7) If α ∈ Y \ {1} such that |Dα| = 1 and (Pα) is a R-sublattice of Y,
then α satisfies (D1) or (D2).

(SR8) If α ∈ Y \ {1} such that |Dα| = 1 and (Pα) isn’t a R-sublattice of Y,
then α satisfies (D2).

Proof. Let L be a conical idempotent residuated lattice. By Theorem 2.1,
L = CRLOB(L;π,Y;X,Φ;ψ,φ,Ψ). By Lemma 4.7 of [1], π = {Lα | α ∈ Y} =
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πD = {Dα | α ∈ Y}. By (CSP1) and (CSP2) of Definition 2.1, L satisfies
(SR2). By Lemma 2.3 and Theorem 2.1, condition (SR3) holds. By (CSP3) of
Definition 2.1, L satisfies (SR4).

Now, we prove that L satisfies (SR1). Let α ∈ Y and suppose that (Pα) isn’t
a sublattice of L. Then, there exist β, γ ∈ (Pα) such that β ∨ γ doesn’t exist,
hence (Pα)

+ ̸= ∅, so by Lemma 3.2(4,5), for all β′, γ′ ∈ (Pα)
+, Dβ′ = {aβ′},

β′ ∧ γ′ ∈ (Pα)
+ and β′ ∨ γ′ ∈ (Pα)

+ whenever β′ ∨ γ′ exists. To show that
((Pα)

+ ∪ {Φ(β, γ)},≤∗) is a lattice, we consider the following cases:

� Φ(β, γ) ̸= 1. By the proof of Lemma 3.2(5), α′ <∗ Φ(β, γ), for all
α′ ∈ (Pα). Suppose that β′, γ′ ∈ (Pα)

+ such that β′ ∨ γ′ doesn’t exist.
Then, by Lemma 3.2(3), either Φ(β′, γ′) ≤∗ Φ(β, γ) or Φ(β, γ) ≤∗ Φ(β′, γ′).
Assume that Φ(β′, γ′) <∗ Φ(β, γ). Then, Φ(β′, γ′) ̸= 1, so by the proof
of Lemma 3.2(5), we have α′ <∗ Φ(β′, γ′), for all α′ ∈ (Pα), hence
β, γ <∗ Φ(β′, γ′) <∗ Φ(β, γ). Thus, by (B2) of Definition 2.3, DΦ(β′,γ′) =
{bΦ(β′,γ′)}, contrary to DΦ(β′,γ′) contains aΦ(β′,γ′) by (B1) of Definition 2.3.
If Φ(β, γ) <∗ Φ(β′, γ′), then β′, γ′ <∗ Φ(β, γ) <∗ Φ(β′, γ′), hence by (B2)
of Definition 2.3, DΦ(β,γ) = {bΦ(β,γ)}, contrary to DΦ(β,γ) contains aΦ(β,γ)

by (B1) of Definition 2.3, which implies Φ(β, γ) <∗ Φ(β′, γ′) is impossible.
Thus, Φ(β, γ) = Φ(β′, γ′). If there exists δ ∈ (Pα) such that β, γ <∗ δ, then
β, γ <∗ δ <∗ Φ(β, γ), hence by (B2) of Definition 2.3, Dδ = {bδ}. Thus,
by Lemma 3.1(4), δ /∈ (Pα)

+, which means that ((Pα)
+ ∪{Φ(β, γ)},≤∗) is

a lattice. This proves that (P1) holds.

� Φ(β, γ) = 1. Then, α′ ≤∗ Φ(β, γ), for all α′ ∈ (Pα) and there exists δ ∈ Y
such that β, γ <∗ δ <∗ Φ(β, γ) by noting that β∨γ doesn’t exist. By (B2)
of Definition 2.3, Dδ = {bδ}. It follows from the proof of Lemma 3.2(3)
that Φ(β, γ) = φ(δ). Suppose that β′, γ′ ∈ (Pα)

+ and β′∨γ′ doesn’t exist.
Then, Φ(β′, γ′) ≤∗ Φ(β, γ) = 1. Assume Φ(β′, γ′) <∗ Φ(β, γ). Then,
Φ(β′, γ′) ̸= 1, so by the proof of the prior case, we have α′ <∗ Φ(β′, γ′),
for all α′ ∈ (Pα), hence β, γ <∗ Φ(β′, γ′) <∗ Φ(β, γ). Thus, by (B2)
of Definition 2.3, DΦ(β′,γ′) = {bΦ(β′,γ′)}, contrary to DΦ(β′,γ′) contains
aΦ(β′,γ′) by (B1) of Definition 2.3. We conclude that Φ(β′, γ′) = Φ(β, γ) =
1. Furthermore, by Lemma 3.2(4), we have δ /∈ (Pα)

+, which means that
((Pα)

+ ∪ {Φ(β, γ)},≤∗) is a lattice. This proves that (P1) holds.

We conclude that (P1) holds. By Lemma 3.2(4), (Pα) satisfies (P2). We shall
show that (Pα) satisfies (P3). By Lemma 3.2(6), (Pα)

− is a sublattice of Y.
Let δ, δ′ ∈ (Pα)

− be such that δ ∥∗ δ′ or δ′ <∗ δ. If δ = 1, then δ′ <∗ δ = 1 and
for all ζ ∈ (Pα)

− such that ζ ∧ 1 ≤∗ 1 ∧ δ′, we have ζ ≤∗ δ′. If δ ̸= 1, then by
Lemma 3.2(6), Dδ′ = {bδ′} and Dδ = {bδ}. So, (δ, δ′) ∈ DomΨ, hence by (C5)
of Definition 2.4, δ∧Ψ(δ, δ′) ≤∗ δ′, which implies that δ∧Ψ(δ, δ′) ≤∗ δ∧δ′. Since
δ∧δ′ ≤∗ δ∧δ′, by (C6) of Definition 2.4, δ′ ≤∗ Ψ(δ, δ′), hence δ∧δ′ ≤∗ δ∧Ψ(δ, δ′),
thus δ ∧ Ψ(δ, δ′) = δ ∧ δ′. Let γ′ ∈ (Pα)

− such that δ ∧ γ′ ≤∗ δ ∧ δ′. By
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Lemma 3.2(6), Dγ′ = {bγ′}, hence by (C6) of Definition 2.4, γ′ ≤∗ Ψ(δ, δ′). We
shall show Ψ(δ, δ′) ∈ (Pα). For this, we consider the following cases:

� Ψ(δ, δ′) ∥∗ α. Then Ψ(δ, δ′) ∈ (Pα).

� Ψ(δ, δ′) ≤∗ α. Then δ′ ≤∗ Ψ(δ, δ′) ≤∗ α, and so Ψ(δ, δ′) ∈ (Pα).

� α <∗ Ψ(δ, δ′) and Ψ(δ, δ′) = δ′. Then, Ψ(δ, δ′) ∈ (Pα).

� α <∗ Ψ(δ, δ′) and Ψ(δ, δ′) ̸= δ′. Then, by (C6) of Definition 2.4, δ′ <∗

Ψ(δ, δ′). If Ψ(δ, δ′) ∦∗ δ, then Ψ(δ, δ′) ∧ δ ∈ {Ψ(δ, δ′), δ}, contrary to
Ψ(δ, δ′)∧δ = δ′∧δ ≤∗ δ′, thus Ψ(δ, δ′) ∥∗ δ, which implies that Ψ(δ, δ′) ∈ Pδ
and δ ∈ Pα. By the similar argument as in the proof of Lemma 3.1(2),
Pδ ⊆ Pα and so Ψ(δ, δ′) ∈ Pα ⊆ (Pα).

We conclude that Ψ(δ, δ′) ∈ (Pα). Since δ
′ ≤∗ Ψ(δ, δ′) and δ′ ∈ (Pα)

−, by (P2),
Ψ(δ, δ′) ∈ (Pα)

−, which implies that (Pα)
− satisfies (RS). Thus, (Pα)

− is a R-
sublattice ofY. This proves that (P3) holds. Thereby, (Pα) is a pre-sublattice of
Y. By Lemma 3.2(4,6) and (CSP1) of Definition 2.1, |Dα| = 1. Consequently,
L satisfies (SR1).

Next, we prove that L satisfies (SR5). Let (Pα) be a pre-sublattice of Y.
Then, there exist β, γ ∈ (Pα) such that β ∥∗ γ and β ∨ γ doesn’t exist, hence by
(CSP3) and (CSP4) of Definition 2.1, Dβ = {aβ}, Dγ = {aγ}. If α ̸= 1, then
by Lemma 3.2(4,6), Dα = {aα} or Dα = {bα}. Let α+ = Φ(β, γ). If α ̸= 1,
then by the proof of |Dα| = 1 in the case that L satisfies (SR1), α <∗ Φ(β, γ)
and by Lemma 3.2(3), for each β′ ∈ Y, either β′ ≤∗ Φ(β, γ) or Φ(β, γ) ≤∗ β′.
This proves that Φ(β, γ) satisfies (D1)(a) and (b). Since β ∨ γ doesn’t exist,
there exists δ ∈ Y such that β, γ <∗ δ <∗ Φ(β, γ) and by (B2) of Definition 2.3,
Dδ = {bδ}. If Φ(β, γ) ̸= 1, then by the proof of Lemma 3.2(3), Φ(β, γ) = φ(δ)
and by Lemma 3.2(2), ψ(Φ(β, γ)) = ψ(φ(δ)) ≺∗ φ(δ) = Φ(β, γ) and for each
γ′ ∈ Y, either ψ(Φ(β, γ)) ≤∗ γ′ or γ′ ≤∗ ψ(Φ(β, γ)). This shows that Φ(β, γ)
satisfies (D1)(c). If β′ ∈ Y such that, for all α′ ∈ (Pα), α

′ <∗ β′ <∗ Φ(β, γ),
then β′ /∈ (Pα). Furthermore, we can claim that there exists δ′ ∈ Y such that
α <∗ δ′ <∗ β′ and for each γ′ ∈ Y, either δ′ ≤∗ γ′ or γ′ ≤∗ δ′. Otherwise, for
any δ′ ∈ Y such that α <∗ δ′ <∗ β′, there exists γ′ ∈ Y such that δ′ ∥∗ γ′.
Assume ζ ∈ Y such that α′ ≤∗ ζ, for all α′ ∈ (Pα). If β′ ∥∗ ζ, then β′ ∈ (Pα),
contrary to β′ /∈ (Pα). If ζ <∗ β′, then there exists γ′ ∈ Y such that ζ ∥∗ γ′,
so γ′ <∗ β′. Since α <∗ β′, α ∥∗ γ′ or α <∗ γ′ <∗ β′, hence γ′ ∈ (Pα),
which implies that γ′ ≤∗ ζ, contrary to ζ ∥∗ γ′. Consequently, β′ ≤∗ ζ, which
derives that β′ = P⊤

α ∈ (Pα), contrary to β′ /∈ (Pα). We conclude that there
exists δ′ ∈ Y such that α <∗ δ′ <∗ β′ and for each γ′ ∈ Y, either δ′ ≤∗ γ′ or
γ′ ≤∗ δ′, which implies that α′ ≤∗ δ′, for all α′ ∈ (Pα), and δ′ ≤∗ ξ, for all
ξ ∈ (Pβ′). If Φ(β, γ) ̸= 1, then by the proof of (P1) and Lemma 3.2, β, γ <∗

δ′ ≤∗ ξ ≤∗ ψ(Φ(β, γ)) ≺∗ Φ(β, γ), for all ξ ∈ (Pβ′), so by (B2) of Definition 2.3,
Dξ = {bξ}, for all ξ ∈ (Pβ′). If Φ(β, γ) = 1, then β, γ <∗ δ′ ≤∗ ξ ≤∗ Φ(β, γ),
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for all ξ ∈ (Pβ′), hence by (B2) of Definition 2.3 and (CSP1) of Definition 2.1,
Dξ = {bξ}, for all ξ ∈ (Pβ′). We conclude that Dξ = {bξ}, for all ξ ∈ (Pβ′)\{1}.
By similar arguments as in the proof of (P3), (Pβ′) is a R-sublattice of Y, which
implies that (D1)(d) holds. We have proved α satisfies (D1). Let α∗ = ψ(β).
Then, by Lemma 3.2(1), ψ(β) satisfies (D2)(a) and ψ(β) ≺∗ φ(ψ(β)) ≤∗ α′, for
all α′ ∈ (Pα), which implies that ψ(β) satisfies (D2) (b − c). If γ′ ∈ Y such
that, for all α′ ∈ (Pα), ψ(β) <

∗ γ′ <∗ α′, then γ′ /∈ (Pα) and ψ(β) <
∗ γ′ <∗ β,

so by (C3) of Definition 2.4, Dγ′ = {aγ′} and |Dγ′ | = 1 and by Lemma 3.2(1),
ψ(β) ≺∗ φ(ψ(β)) ≤∗ ξ, for all ξ ∈ (Pγ′). By similar arguments as in the proof
of (D1)(d), there exists ζ ∈ Y with γ′ <∗ ζ <∗ α such that for each ζ ′ ∈ Y,
either ζ ′ ≤∗ ζ or ζ ≤∗ ζ ′, which implies that ζ ′ ≤∗ α′, for all α′ ∈ (Pα), and
ξ ≤∗ ζ, for all ξ ∈ (Pγ′). Suppose that (Pγ′) isn’t a sublattice of Y. Then,
there exist ξ, ξ′ ∈ Pγ′ such that ξ ∥∗ ξ′ and ξ ∨ ξ′ doesn’t exist. By (CSP3)
and (CSP4) of Definition 2.1, Dξ = {aξ} and Dξ′ = {aξ′}. Since β ∥∗ γ, by
Lemma 3.2(3), either Φ(ξ, ξ′) <∗ β or β <∗ Φ(ξ, ξ′). If Φ(ξ, ξ′) <∗ β, then
there exists δ ∈ Y such that ψ(β) <∗ ξ, ξ′ <∗ δ <∗ Φ(ξ, ξ′) <∗ β, hence by
(C3) of Definition 2.4 Dδ = {aδ}, but by (B2) of Definition 2.3, Dδ = {bδ}, a
contradiction. If β <∗ Φ(ξ, ξ′), then ξ, ξ′ <∗ β <∗ Φ(ξ, ξ′), hence by (B2) of
Definition 2.3, Dβ = {bβ}, contrary to Dβ = {aβ}. Consequently, (Pγ′) is a
sublattice of Y. Thus, α satisfies (D2). This proves that L satisfies (SR5).

We shall prove that L satisfies (SR6). Let α ∈ Y such that Dα con-
tains two elements. Then, by (CSP2) of Definition 2.1, Dα = {aα, bα}. By
Lemma 3.2(1,2), for all γ ∈ (Pα) \ (Pα), ψ(α) ≺∗ φ(ψ(α)) ≤∗ γ <∗ α, hence by
(C3) of Definition 2.4, Dγ = {aγ}, which implies that |DP⊥

α
| = 1 if P⊥

α exists

and P⊥
α ̸= α. If φ(α) ̸= 1, then by Lemma 3.2(1,2), for all β ∈ (Pα) \ {α},

α <∗ β ≤∗ ψ(φ(α)) ≺∗ φ(α), hence by (C4) of Definition 2.4, Dβ = {bβ}, which
implies that |DP⊤

α
| = 1 whenever P⊤

α exists and P⊤
α ̸= α. If φ(α) = 1, then by

Lemma 3.2(2), for all β ∈ (Pα) \ {α, 1}, α <∗ β <∗ φ(α) = 1, hence by (C4) of
Definition 2.4, Dβ = {bβ}, which implies that |DP⊤

α
| = 1 whenever P⊤

α exists

and P⊤
α ̸= α. By similar arguments as in the proof that (Pα)

− is a R-sublattice
of Y, (Pα) is a R-sublattice of Y. Let α+ = φ(α) and α∗ = ψ(α). By similar
arguments as in the proof of (SR5), α satisfies (D1) and (D2). This proves that
L satisfies (SR6). Similarly, L satisfies (SR7).

Next we shall show that L satisfies (SR8). Let α ∈ Y \ {1} be such that
|Dα| = 1 and (Pα) isn’t a R-sublattice of Y. If (Pα) is a pre-sublattice of Y,
then by (SR5), α satisfies (D2). Let (Pα) be a sublattice of Y. If Dα = {aα},
then we let α∗ = ψ(α), so by similar arguments to those in the case that (Pα)
is a pre-sublattice of Y, α satisfies (D2). If Dα = {bα}, then we consider the
following cases:

� For all β ∈ (Pα), Dβ = {bβ}. Then, by similar arguments to the proof of
(D1)(d) in the case that (Pα) is a pre-sublattice ofY, (Pα) is a R-sublattice
of Y, contrary to (Pα) isn’t a R-sublattice of Y.
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� There exists β ∈ (Pα) such that Dβ contains aβ. Since Dα = {bα}, by
(CSP3) of Definition 2.1, α ∦∗ β. If α <∗ β, then by Lemma 3.2 and
β ∈ (Pα), ψ(β) ≺∗ φ(ψ(β)) ≤∗ α <∗ β, thus by (C3) of Definition 2.4,
Dα = {aα}, contrary to Dα = {bα}. If β <∗ α, then we let α∗ = ψ(β), so
by similar arguments to those in the case that (Pα) is a pre-sublattice of
Y, α satisfies (D2).

We conclude that L satisfies (SR8).
Conversely, suppose that L =

⋃
α∈YDα is an idempotent semigroup with an

identity e and satisfies conditions (SR1-8), where Y is the structure semilattice
with greatest element 1 of L. By a routine calculation, D1 = {e}. We let
e = a1 = b1. Put D = {Dα | α ∈ Y}, Y1 = {α ∈ Y | |Dα| = 2} and
P = {α ∈ Y | |Dα| = 1, (Pα) is pre-sublattice of Y and there exists α′ ∈
Y such that α ∥ α′}. We define a binary relation ∼ on P as follows: for α, β ∈ P ,
α ∼ β if and only if Pα = Pβ. By lemma 3.1(2,3), ∼ is an equivalence relation
on P . It follows that Pα = {β ∈ P | β ∼ α} for every α ∈ P . Let Y2 ⊆ P be
such that for every α ∈ P , |Y2∩Pα| = 1. For any α ∈ Y1, we denote one element
of Dα by aα and the other element of Dα by bα. If β ∈ (Pα) \ {α, 1}, then we
let Dβ = {bβ}. If β′ ∈ (Pα) \ (Pα), then we let Dβ′ = {aβ′}. For any α ∈ Y2, let
Dγ = {aγ}, for all γ ∈ (Pα)

+, and let Dγ′ = {bγ′}, for all γ′ ∈ (Pα)
− \ {1}. Let

α ∈ Y1 ∪ Y2. We distinguish two cases.

� For each β ∈ Y such that α′ <∗ β for all α′ ∈ (Pα), |Dβ| = 1 and (Pβ) is
a R-sublattice of Y. By conditions (SR5− 6), we can choose α∗ ∈ Y and
1 is interpreted as α+. Hence, we obtain the closed interval Hα = [α∗, 1]
and by (SR5− 6), there exists element γ in Y such that α∗ ≺∗ γ. For any
β ∈ Y such that α′ <∗ β <∗ 1, for all α′ ∈ (Pα), let Dβ = {bβ}. For any
γ′ ∈ Y such that α∗ <∗ γ′ <∗ α′, for all α′ ∈ (Pα), let Dγ′ = {aγ′}. If
|Dα∗ | = 1, then we define Dα∗ = {bα∗}.

� There exists β ∈ Y such that α′ <∗ β, for all α′ ∈ (Pα) and |Dβ| = 2
or α′ <∗ β, for all α′ ∈ (Pα) and (Pβ) isn’t a R-sublattice of Y. By
conditions (SR5 − 6), we can choose α∗ and α+ in Y \ {1}. Hence, we
obtain the closed interval Hα = [α∗, α+] and by (SR5 − 6), there exist
elements β, γ in Y such that β ≺∗ α+ and α∗ ≺∗ γ. For any β′ ∈ Y such
that α′ <∗ β′ <∗ α+, for all α′ ∈ (Pα), let Dβ′ = {bβ′}. If |Dα+ | = 1, then
we define Dα+ = {aα+}. For any γ′ ∈ Y such that α∗ <∗ γ′ <∗ α′, for all
α′ ∈ (Pα), let Dγ′ = {aγ′}. If |Dα∗ | = 1, then we define Dα∗ = {bα∗}.

Let α, β ∈ Y1∪Y2 be such that α <∗ β. If |Hα∩Hβ| > 2, we choose α+ to be γ
which covers β∗. Then, we obtain a family of closed intervals {Hα | α ∈ Y1∪Y2}
such that for α, β ∈ Y1 ∪ Y2 with α ̸= β, |Hα ∩Hβ| ≤ 2.

We arbitrarily choose α ∈ Y \
⋃
δ∈Y1∪Y2 Hδ such that α ̸= 1. We distinguish

two cases.

Case A. (Pα) is a R-sublattice. By (SR7), α satisfies (D1) or (D2). We
need to consider two subcases:
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(1) α satisfies (D2).

� If there exists γ ∈ Y1∪Y2 such that γ <∗ α and [γ, α]∩(
⋃
δ∈Y1∪Y2 Hδ) ⊆ Hγ ,

then there exists ζ ∈ Hγ such that ζ ≺∗ γ+. Hence, when ζ is interpreted
as α∗, we have the set Hα = {β ∈ Y | [α∗, β] ⊆ (Y \

⋃
δ∈Y1∪Y2 Hδ) ∪

{α∗, γ+}}. For each β ∈ Hα such that γ+ <∗ β, let Dβ = {aβ}.

� If there doesn’t exist γ ∈ Y1∪Y2 such that γ <∗ α and [γ, α]∩(
⋃
δ∈Y1∪Y2 Hδ)

⊆ Hγ , then we can claim that α∗ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ. Otherwise, if α∗ ∈⋃

δ∈Y1∪Y2 Hδ, then there exists γ′ ∈ Y1∪Y2 such that α∗ ∈ Hγ′ and γ
′ <∗ α,

hence there exist δ, δ′, δ′′ ∈ Y1 ∪ Y2 such that γ′ <∗ δ′ <∗ δ <∗ δ′′ <∗

α, so α∗ <∗ δ and δ /∈ (Pα), which imply that δ <∗ α′, for all α′ ∈
(Pα). By (D2)(d), |Dδ| = 1 and (Pδ) is a sublattice of Y, contrary to
|Dδ| = 2 or |Dδ| = 1 and (Pδ) is pre-sublattice of Y. Consequently,
α∗ ∈ Y \

⋃
δ∈Y1∪Y2 Hδ and so [α∗, α] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ. If the set {β′ ∈

Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α} has the least element β,

then by (D2)(c), there exists ξ ∈ Y such that β ≺∗ ξ and for each ξ′ ∈ Y,
either ξ ≤∗ ξ′ or ξ′ ≤∗ ξ. Furthermore, we have for any ζ ∈ Y such that
ζ <∗ ξ and [ζ, ξ] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ, (Pζ) is a R-sublattice; whereas, if

(Pζ) isn’t a R-sublattice, then by (SR8), there exists ζ∗ ∈ Y such that
(D2)(a − d), by similar arguments as in case: α∗ ∈ Y \

⋃
δ∈Y1∪Y2 Hδ,

ζ∗ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ, which, together with [ζ, ξ] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ,

implies that ζ∗ ∈ {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α}

and ζ∗ <∗ ξ, contrary to ξ is the least element of the set {β′ ∈ Y \⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α}. We conclude that for any

ζ ∈ Y such that ζ <∗ ξ and [ζ, ξ] ⊆ Y\
⋃
δ∈Y1∪Y2 Hδ, (Pζ) is a R-sublattice.

Thereby, when ξ is interpreted as β+, we have the set Hβ = {β′ ∈ Y |
[β′, β+] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}; when β is interpreted as α∗, we have the set

Hα = {α′ ∈ Y | [α∗, α′] ⊆ Y \
⋃
δ∈Y1∪Y2 Hδ}. For each β′ ∈ Hβ, let

Dβ′ =

{
{bβ′} if β′ ̸= β+,

{aβ′} if β′ = β+.

For each α′ ∈ Hα, let

Dα′ =

{
{aα′} if α′ ̸= α∗,

{bα′} if α′ = α∗.

If the set {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α} hasn’t

the least element, then we choose β in the set {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′

satisfies (D2)(a− d) for α}. Hence, when β is interpreted as α∗, we have
the set Hα = {α′ ∈ Y | [α∗, α′] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}. For each α′ ∈ Hα, let

Dα′ =

{
{aα′} if α′ ̸= α∗,

{bα′} if α′ = α∗.
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(2) α doesn’t satisfy (D1). Then, α satisfies (D2). We can claim that
for each β ∈ Y such that [β, α] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ, (Pβ) is a R-sublattice.

Otherwise, if for some β ∈ Y such that [β, α] ⊆ Y\
⋃
δ∈Y1∪Y2 Hδ, (Pβ) isn’t a R-

sublattice, then by condition (SR8), there exists β∗ ∈ Y satisfying (D2), which,
together with [β, α] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ, implies that we can choose α∗ in Y, a

contradiction. Consequently, for each β ∈ Y such that [β, α] ⊆ Y\
⋃
δ∈Y1∪Y2 Hδ,

(Pβ) is a R-sublattice. We consider the following cases:

� If there exists β ∈ Y1∪Y2 such that α <∗ β and [α, β]∩(
⋃
δ∈Y1∪Y2 Hδ) ⊆ Hβ.

Hence, there exists η ∈ Hβ such that β∗ ≺∗ η. Thus, when η is interpreted
as α+, we have the set Hα = {γ ∈ Y | [γ, α+] ⊆ (Y \

⋃
δ∈Y1∪Y2 Hδ) ∪

{α+, β∗}}. For each γ ∈ Hα such that γ <∗ β∗, let Dγ = {bγ}.

� If there doesn’t exist β ∈ Y1∪Y2 such that α <∗ β and [α, β]∩(
⋃
δ∈Y1∪Y2 Hδ)

⊆ Hβ, then by similar arguments as in (1), α+ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ. This

means that there exists γ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ satisfying (D1)(a − d).

If γ = 1, then when 1 is interpreted as α+, we have the set Hα =
{α′ ∈ Y | [α′, 1] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}. For each α′ ∈ Hα such that

α′ <∗ 1, let Dα′ = {bα′}. If γ ̸= 1, then by (D1)(c), there exists η ∈ Y,
such that η ≺∗ γ and for each β′ ∈ Y, either η ≤∗ β′ or β′ ≤∗ η.
Hence, when γ is interpreted as α+, we have the set Hα = {α′ ∈ Y |
[α′, α+] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}; when η is interpreted as β∗, we have the set

Hβ = {β′ ∈ Y | [β∗, β′] ⊆ Y \
⋃
δ∈Y1∪Y2 Hδ}. For each α′ ∈ Hα, let

Dα′ =

{
{bα′} if α′ ̸= α+,

{aα′} if α′ = α+.

For each β′ ∈ Hβ, let

Dβ′ =

{
{aβ′} if β′ ̸= β∗,

{bβ′} if β′ = β∗.

Case B. (Pα) isn’t a R-sublattice. Then, by (SR8), α satisfies (D2). We need
to consider two subcases:

� If there exists γ ∈ Y1∪Y2 such that γ <∗ α and [γ, α]∩(
⋃
δ∈Y1∪Y2 Hδ) ⊆ Hγ ,

then there exists ζ ∈ Hγ such that ζ ≺∗ γ+. Hence, when ζ is interpreted
as α∗, we have the set Hα = {β ∈ Y | [α∗, β] ⊆ (Y \

⋃
δ∈Y1∪Y2 Hδ) ∪

{α∗, γ+}}. For each β ∈ Hα such that γ+ <∗ β, let Dβ = {aβ}.

� If there doesn’t exist γ ∈ Y1∪Y2 such that γ <∗ α and [γ, α]∩(
⋃
δ∈Y1∪Y2 Hδ)

⊆ Hγ , then we can claim that α∗ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ. Otherwise, if α∗ ∈⋃

δ∈Y1∪Y2 Hδ, then there exists γ′ ∈ Y1∪Y2 such that α∗ ∈ Hγ′ and γ
′ <∗ α,

hence there exist δ, δ′, δ′′ ∈ Y1 ∪ Y2 such that γ′ <∗ δ′ <∗ δ <∗ δ′′ <∗
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α, so α∗ <∗ δ and δ /∈ (Pα), which imply that δ <∗ α′, for all α′ ∈
(Pα). By (D2)(d), |Dδ| = 1 and (Pδ) is a sublattice of Y, contrary to
|Dδ| = 2 or |Dδ| = 1 and (Pδ) is a pre-sublattice of Y. Consequently,
α∗ ∈ Y \

⋃
δ∈Y1∪Y2 Hδ and so [α∗, α] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ. If the set {β′ ∈

Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α} has the least element β,

then by (D2)(c), there exists ξ ∈ Y such that β ≺∗ ξ and for each ξ′ ∈ Y,
either ξ ≤∗ ξ′ or ξ′ ≤∗ ξ. Furthermore, we have for any ζ ∈ Y such that
ζ <∗ ξ and [ζ, ξ] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ, (Pζ) is a R-sublattice; whereas, if

(Pζ) isn’t a R-sublattice, then by (SR8), there exists ζ∗ ∈ Y such that
(D2)(a − d), by similar arguments as in case: α∗ ∈ Y \

⋃
δ∈Y1∪Y2 Hδ,

ζ∗ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ, which, together with [ζ, ξ] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ,

implies that ζ∗ ∈ {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α}

and ζ∗ <∗ ξ, contrary to ξ is the least element of the set {β′ ∈ Y \⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α}. We conclude that for any

ζ ∈ Y such that ζ <∗ ξ and [ζ, ξ] ⊆ Y\
⋃
δ∈Y1∪Y2 Hδ, (Pζ) is a R-sublattice.

Thereby, when ξ is interpreted as β+, we have the set Hβ = {β′ ∈ Y |
[β′, β+] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}; when β is interpreted as α∗, we have the set

Hα = {α′ ∈ Y | [α∗, α′] ⊆ Y \
⋃
δ∈Y1∪Y2 Hδ}. For each β′ ∈ Hβ, let

Dβ′ =

{
{bβ′}, if β′ ̸= β+,

{aβ′}, if β′ = β+.

For each α′ ∈ Hα, let

Dα′ =

{
{aα′}, if α′ ̸= α∗,

{bα′}, if α′ = α∗.

If the set {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′ satisfies (D2)(a − d) for α} hasn’t

the least element, then we choose β in the set {β′ ∈ Y \
⋃
δ∈Y1∪Y2 Hδ|β′

satisfies (D2)(a− d) for α}. Hence, when β is interpreted as α∗, we have
the set Hα = {α′ ∈ Y | [α∗, α′] ⊆ Y \

⋃
δ∈Y1∪Y2 Hδ}. For each α′ ∈ Hα, let

Dα′ =

{
{aα′}, if α′ ̸= α∗,

{bα′}, if α′ = α∗.

We repeat the proceeding above, replacing
⋃
δ∈Y1∪Y2 Hδ by corresponding

subsets of Y. Then, we obtain a family sets {Hα | α ∈ Y3} such that, for all
β, γ ∈ Y1 ∪ Y2 ∪ Y3 with β ̸= γ, |Hβ ∩Hγ | ≤ 2. We can claim that Y \ {1} ⊆⋃
α∈Y1∪Y2∪Y3 Hα. Let H be a subset of power set P(Y \ {1}) such that for

A ∈ H and β ∈ A, there exists α ∈ Y1 ∪ Y2 ∪ Y3 such that β ∈ Hα. Then
(H ,⊆) is a partial ordered set. Suppose that {Ai | i ∈ I} is a totally ordered
subset of H . It’s easy to see

⋃
i∈I Ai is a upper bound of {Ai | i ∈ I} and⋃

i∈I Ai ∈ H . By Zorn’s Lemma, H has a maximal element B. Furthermore,
we have B = Y \ {1}. Otherwise, if B ̸= Y \ {1}, then there exists β ∈ Y \ {1}
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such that β /∈ B, so by the procedure above, there exists α ∈ Y1 ∪ Y2 ∪ Y3
such that β ∈ Hα, thus B ∪ {β} ∈ H contrary to B is a maximal element of
H . Consequently, Y \ {1} ⊆

⋃
α∈Y1∪Y2∪Y3 Hα. Let L+ = {aα | α ∈ Y \ {1}}

and L− = {bβ | β ∈ Y \ {1}}. Since D is a congruence on L, πD = {Dα |
α ∈ Y} is a partition on L. By (SR4) and the proceeding above, πD = {Dα |
α ∈ Y} is a conical semilattice partition on L. Let X = {α ∈ Y | |Dα| =
2 and (Dα, ·) is a left zero semigroup} be a subset of Y. Then, X is a band
subset of {Dα | α ∈ Y}. Let C = {(α, β) ∈ Y×Y | α ∥∗ β, aα ∈ Dα}. We define
a mapping Φ from C to Y by

Φ(α, β) =

{
α ∨ β if α ∨ β exists,

γ+ (α ∈ Hγ) otherwise.

By the definition of Φ and Definition 2.3, πD = {Dα | α ∈ Y} is a CLOB−system.

Now we define two mappings ψ and φ. Put Domψ = {α ∈ Y\{1} | aα ∈ Dα}
and Domφ = {α ∈ Y \ {1} | bα ∈ Dα}. For any α ∈ Domψ, there exists
β ∈ Y1 ∪ Y2 ∪ Y3 such that α ∈ Hβ and α ̸= β∗. Let

ψ(α) =

{
β∗ if α ̸= β+,

γ (γ ≺∗ β+) if α = β+.

For any α ∈ Domφ, there exists β ∈ Y1 ∪Y2 ∪Y3 such that α ∈ Hβ and α ̸= β+.
Let

φ(α) =

{
β+ if α ̸= β∗,

γ (β∗ ≺∗ γ) if α = β∗.

It’s easy to see that ψ and φ are well defined. Put R = {(α, β) ∈ Y×Y | α ∥∗
β, bα ∈ Dα or β <∗ α, α ∈ Pβ, bβ ∈ Dβ}. Now we define a mapping Ψ from R
to Y. If (α, β) ∈ R, then there exists γ ∈ Y1 ∪ Y2 ∪ Y3 such that α, β ∈ Hγ . We
consider the following cases:

� If γ ∈ Y1, then by the definition of R and Hγ , α, β ∈ {ξ ∈ Hγ |γ ≤∗ ξ}.
If α, β ∈ (Pγ),then since by the definition of (Pγ), (Pγ) is a R-sublattice,

there exists a unique element δ in (Pγ) such that α ∧ δ = α ∧ β and for

all δ′ ∈ (Pγ) such that δ′ ∧ α ≤ α ∧ β, δ′ ≤∗ δ. We define Ψ(α, β) = δ.

If α, β ∈ {ξ ∈ Hγ |γ ≤∗ ξ} \ (Pγ), then by the definition of Hγ , (Pβ) is
a R-sublattice, hence there exists a unique element δ in (Pβ) such that
α ∧ δ = α ∧ β and for all δ′ ∈ (Pβ) such that δ′ ∧ α ≤ α ∧ β, δ′ ≤∗ δ. We
define Ψ(α, β) = δ.

� If γ ∈ Y2, then by the definition of R and Hγ , α, β ∈ (Hγ)
− = {α′ ∈

Hγ |(∃β′ ∈ (Pγ)
−)β′ ≤∗ α′}. If α, β ∈ (Pγ)

−, then since by the definition
of (Pγ)

−, (Pγ)
− is a R-sublattice, there exists a unique element δ in (Pγ)

−

such that α ∧ δ = α ∧ β and for all δ′ ∈ (Pβ)
− such that δ′ ∧ α ≤ α ∧ β,
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δ′ ≤∗ δ. We define Ψ(α, β) = δ. If α, β ∈ (Hγ)
− \ (Pγ)−, then (Pβ) is a R-

sublattice by the definition of Hγ . Hence, there exists a unique element δ
in (Pβ) such that α∧δ = α∧β and for all δ′ ∈ (Pβ) such that δ′∧α ≤ α∧β,
δ′ ≤∗ δ. We define Ψ(α, β) = δ.

� If γ ∈ Y3, then by the definition of R and Hγ , (Pβ) is a R-sublattice.
Hence. there exists a unique element δ in (Pβ) such that α∧δ = α∧β and
for all δ′ ∈ (Pβ) such that δ′ ∧ α ≤ α ∧ β, δ′ ≤∗ δ. We define Ψ(α, β) = δ.

By Definition 2.4 and a routine computation, we can prove that (L;πD,Y;X,Φ;
ψ,φ,Ψ) is a CRLOB-system. By Theorem 2.1, L = CRLOB(L;πD,Y;X,Φ;
ψ,φ,Ψ) is a conical idempotent residuated lattice. Finally, we shall prove
that (L, ·) is the semigroup reduct of CRLOB(L;πD,Y;X,Φ;ψ,φ,Ψ). Let c ∈
Dα, d ∈ Dβ. We consider the following cases:

� If α <∗ β and c = aα, d = aβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = aα ◦ aβ = aα∧β = aα = c and d ◦ c = aβ ◦ aα = aα∧β = aα = c. By
(SR3), c · d = d · c = c. Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α <∗ β and c = bα, d = bβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = bα ◦ bβ = bα∧β = bα = c and d ◦ c = bβ ◦ bα = bα∧β = bα = c. By
(SR3), c · d = d · c = c. Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α <∗ β and c = aα, d = bβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = aα ◦ bβ = aα = c and d ◦ c = bβ ◦ aα = aα = c. By (SR3),
c · d = d · c = c. Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α <∗ β and c = bα, d = aβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = bα ◦ aβ = bα = c and d ◦ c = aβ ◦ bα = bα = c. By (SR3),
c · d = d · c = c. Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α ∥∗ β and c = aα, d = aβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = aα ◦ aβ = aα∧β and d ◦ c = aβ ◦ aα = aα∧β. Since c = aα, d = aβ,
c ·d, d ·c ∈ Dα∧β. Since by (SR4), |Dα∧β| = 1, c ·d = aα∧β and d ·c = aα∧β.
Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α ∥∗ β and c = bα, d = bβ, then by the definition of ◦ in Lemma 2.3,
c ◦ d = bα ◦ bβ = bα∧β and d ◦ c = bβ ◦ bα = bα∧β. Since c = bα, d = bβ,
c ·d, d ·c ∈ Dα∧β. Since by (SR4), |Dα∧β| = 1, c ·d = bα∧β and d ·c = bα∧β.
Thus, c · d = c ◦ d and d · c = d ◦ c.

� If α = β, α ∈ X and c = aα, d = bα, then by the definition of ◦ in
Lemma 2.3, c ◦ d = aα ◦ bα = aα = c and d ◦ c = bα ◦ aα = bα = d. Since
c, d ∈ Dα, by the definition of X, c · d = c and d · c = d. Thus, c · d = c ◦ d
and d · c = d ◦ c.
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� If α = β, α /∈ X and c = aα, d = bα, then by the definition of ◦ in
Lemma 2.3, c ◦ d = aα ◦ bα = bα = d and d ◦ c = bα ◦ aα = aα = c. Since
c, d ∈ Dα, by the definition of X, c · d = d and d · c = c. Thus, c · d = c ◦ d
and d · c = d ◦ c.

We conclude that (L, ·) is the semigroup reduct of CRLOB(L;πD,Y;X,Φ;
ψ,φ,Ψ).

The following result is an immediate consequence of Theorem 3.1.

Corollary 3.1. A semilattice Y with greatest element 1 is the semigroup reduct
of some conical commutative idempotent residuated lattice if and only if Y sa-
tisfies conditions (SR1), (SR5) and (SR7− 8).

4. Conclusions

In this paper, we have studied conical idempotent residuated lattices. Using
square point sets and the structure theorem of conical idempotent residuated
lattices, we have obtained necessary and sufficient conditions for an idempo-
tent semigroup with an identity to be the semigroup reduct of some conical
idempotent residuated lattice, which generalize [2, Theorem 5.2]. Note that
the work presented here heavily relies on the fact that idempotent residuated
lattices are conical. In the future, the structure and decomposition of non-
conical idempotent residuated lattices may be investigated.
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