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1. Introduction

In this text, we assume that all hypermodules are left Krasner R-hypermodules,
all hyperrings are Krasner hyperrings, and all homomorphisms are strong R-
homomorphisms. In order to formalize the theory of hypercomposition algebra,
a new branch of abstract algebra began its development in 1934, when F. Marty
introduced the concept of hypergroups as a proper generalization of the con-
cept of groups. The combination of two elements is extended by replacing the
operation defined in groups with a multivalued operation (or hyperoperation),
with the result being a subset of the fundamental set. As a result, new algebraic
hypercompositional structures and the properties of classical structures are de-
fined and the properties of classical structures are defined while the properties
of classical structures are preserved or not for similar hyperstructures. This
also applies to modules and expanded into hypermodules by Krasner [15] today
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known as Krasner hypermodules. Their additive part is canonical hypergroup.
Fundamental aspects of hypermodule theory are covered in [3], [4], [5], [7], [8],
[9],[18], [22] and [23]. Recently, the concept of smallness in module theory has
been carried over and investigated in [13] on the class of hypermodules in the
context of similarities and differences. The concept of small subhypermodules
was defined in [6]. An R-subhypermodule K of H is said to be small in H if
K + T = H for each subhypermodule T of H, implies T = H, and it is denoted
by K ≪ H. An R-hypermodule H is said to be hollow if each subhypermodule
is small in H [13]. An R-hypermodule H is said to be local if H has a proper
subhypermodule that contains all proper subhypermodules of H [12]. A hyper-
module H is said to be supplemented if for each subhypermodule K of H, there
is a subhypermodule T of H provided that H = K + T and K ∩ T ≪ T [13].
Here T is said to be thesupplement of K in H.

According to this study the class of τ -supplemented hypermodules has been
classified in a category theory. In this way, the functor τ was obtained and the
class of τ -supplemented hypermodules was defined. In section 2, the algebraic
and categorical properties of Krasner hypermodules will be included and the
concept of supplement in subhypermodules will be emphasized. In section 3,
(pre)radicals will be presented in the RS

hmod, which is a special hypermodule
subcategory. In section 4, τ -supplemented hypermodules are examined.

2. Preliminaries

This section briefly reviews the basic concepts and results on Krasner hypermod-
ules, which are used throughout this article for clarity. We start with relevant
basic definitions of the topic in hypercomposition algebra, which are presented
in several books [10], [11] and overview articles [2], [19], [20] and [21]. We also
refer the reader to [1] for generalizing the concept of τ -supplement in module
theory and the studies related to the category of hypermodules.

Hypermodules. Let H be a non-empty set and P∗(H) be the set of all non-
empty subsets ofH. The function ◦ : H×H −→ P∗(H) is called a hyperoperation
on H. The image of the element (a, b) ∈ H × H under this operation is not
a single element, but a non-empty subset of the set H. Thanks to this idea,
the theory of hyperstructures was introduced by Marty in [17] as a natural and
interesting generalization of the theory of algebraic structures. Following [17],
Marty defines hypergroups using the hyperoperation on a set. Let H be a non-
empty set and a function + : H × H −→ P∗(H) be a hyperoperation on H.
Then, (H, +) is called a hypergroupoid. Moreover, for any non-empty subsets
X and Y of H, define

X + Y =
⋃

{x+ y |x ∈ X and y ∈ Y }.

We simply write a+X andX+a instead of {a}+X andX+{a}, respectively,
for any a ∈ H and any non-empty subset X of H. A hypergroupoid (H,+) is
called a



ON τ -SUPPLEMENTED KRASNER HYPERMODULES 187

(1) Semihypergroup if for every a, b, c ∈ H, we have a+ (b+ c) = (a+ b) + c;

(2) Quasihypergroup if for every x ∈ H, x+H = H = H + x.

If the hypergroupoid (H,+) is a semihypergroup and quasihypergroup, then
it is called a hypergroup. A non-empty subset S of a hypergroup (H,+) is called
a subhypergroup of H if for every a ∈ S, a+ S = S = S + a, written as S ≤ H.

A hypergroup (H,+) is called a canonical hypergroup if

(1) for every a, b ∈ H, a+ b = b+ a, that is, it is commutative;

(2) there exists a unique 0 ∈ H such that for each a ∈ H there exists a unique
element a

′
in H, denoted by −a, such that 0 ∈ a+ (−a);

(3) for every a, b, c ∈ H, if c ∈ a+ b, then a ∈ c+ (−b) := c− b.

If (H, +) is a canonical hypergroup, then a+ 0 = a for all a ∈ H.
A hyperstructure (R,+, ·) is called a (Krasner) hyperring if

(1) (R,+) is a canonical hypergroup.

(2) (R, ·) is a monoid with a bilaterally absorbing element 0, i.e.,

(a) a · b ∈ R for all a, b ∈ R;

(b) a · (b · c) = (a · b) · c for all a, b, c ∈ R;

(c) a · 0 = 0 · a = 0 for all a ∈ R;

(d) There exists an identity element 1R ∈ R such that a = a · 1R = 1R · a
for every a ∈ R.

(3) The multiplication distributes over the addition on both sides.

A hyperring (R,+, ·) is called commutative if it is commutative concerning
the multiplication.

Let (R,+, ·) be a hyperring and I be a non-empty subset of R. I is called a
left hyperideal (respectively, right hyperideal) of R provided (I, +) is a subhy-
pergroup and ra ∈ I (respectively, ar ∈ I) for all a ∈ I, and r ∈ R. I is said to
be a hyperideal of R if it is both a right and a left hyperideal of R.

A left Krasner hypermodule over a hyperring R (or left Krasner R-hyper-
module) is a canonical hypergroup (M,+) together with a map · : R×M −→M
such that to every (r, m), where r ∈ R andm ∈M , there corresponds a uniquely
determined element rm ∈M and the following conditions are satisfied:

(1) r(m1 +m2) = rm1 + rm2;

(2) (r + s)m = rm+ sm;

(3) (rs)m = r(sm);
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(4) 1Rm = m and r0M = 0Rm = 0M ,

for any m, m1, m2 ∈ M and r, s ∈ R. Throughout this paper, for a simple
explanation, when we say hypermodule, we mean the left Krasner hypermodule.
A non-empty subsetN of an R-hypermoduleM is called a subhypermodule ofM ,
denoted by N ≤M if N is an R-hypermodule under the same hyperoperations
ofM . It is clear thatM and {0M} are trivial subhypermodules ofM . It is known
that a non-empty subset N of an R-hypermodule M is a subhypermodule of M
if and only if a− b ⊆ N and ra ∈ N for all a, b ∈M and r ∈ R.

Let R be a hyperring. It follows that R is an R-hypermodule. Then, a non-
empty subset I of R is a left hyperideal of R if and only if it is a subhypermodule
of the hypermodule RR.

Let M be a hypermodule over a hyperring R and K be a subhypermodule
of M . Consider the set M

K = { a+K | a ∈M }. Then, MK is a hypermodule over
the hyperring R under the hyperoperation defined as + : M

K × M
K −→ P∗(MK )

and the external operation ⊙ : R × M
K −→ M

K defined as (a+K) + (a
′
+K) =

{ b+K | b ∈ a+ a
′ } and r⊙ (a+K) = ra+K for every a, a

′
, b ∈M and r ∈ R.

The hypermodule M
K is called the quotient hypermodule of the hypermodule M .

Let K be an R-hypermodule and x ∈ K. Then, the subset Rx = {ux |u ∈
R } of K is a subhypermodule of K. Let R be a hyperring and M be an R-
hypermodule. For a family of subhypermodules {Mi}i∈I of M , the sum of this
family is denoted by

∑
i∈IMi and it is the set of these elements x ∈ M where

x is an element of the set
∑

i∈I0 mi with finite subset I0 ⊆ I for every i ∈ I0,
mi ∈Mi. That is,∑

i∈I
Mi = {x ∈M | x ∈

∑
i∈I0

mi, mi ∈Mi and I0 is a finite subset of I}.

It is well known that
∑

i∈IMi is a subhypermodule of M .

Lemma 2.1 (Modular Law [25]). Let H be a Krasner R-hypermodule and
K,T, L are subhypermodules of H with T ≤ K.Then, K∩(T+L) = T+(K∩L).

Let (K,+1) and (T,+2) be two R-hypermodules. A function ψ : K −→ T
is said to be an R-homomorphism from K to T if satisfies the following two
conditions:

1. ψ(x+1 y) ⊆ ψ(x) +2 ψ(y);

2. ψ(ux) = uψ(x),

for each u ∈ R and x, y ∈ K. If the inclusion (1) is an equality, then ψ is said
to be a strong (or good) R-homomorphism.

Categories of hypermodules. Throughout the whole text we denoted by
R − hmod the category whose objects are whole R-hypermodules and whose
morphisms are all R-homomorphisms. The class of all R-homomorphism from
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K to T is indicated by homR(K,T ). Also, RS − hmod is the category of all
R-hypermodules whose morphisms are all strong R-homomorphisms. The class
of all strong R-homomorphisms is denoted by homS

R(K,T ). It is clear that
RS − hmod is a subcategory of R − hmod, this situation is indicated by the
writing RS − hmod ⪯ R − hmod. The hyperset category denoted by HSets is
a category with the following:

1. Ob(HSets) = Ob(Sets);

2. Mor(HSets) is the class of all multivalued functions between objects in
which the composition θ ◦ ψ is defined as (θ ◦ ψ)(x) =

⋃
y∈ψ(x) θ(y) for

each x ∈ K, and an identity morphism for an object K for all z ∈ K,
idK(z) = {z}.

Let (K,+1) and (T,+2) be R-hypermodules and ψ a multi-valued function
from K to T , denoted by ψ : K −→ P ∗(T ) providing the following statements:

1. ψ(x+1 y) ⊆ ψ(x) +2 ψ(y);

2. ψ(ux) = uψ(x),

for each u ∈ R, and x, y ∈ K. Then, ψ is said to be a multi-valued R-
homomorphism, shortly Rmv-homomorphism. If equality is achieved instead
of coverage in the first of the above two properties, then ψ is called a strong
(or good) multi-valued R-homomorphism, shortly a Rsmv-homomorphism. We
denote the class of whole Rmv-homomorphisms (resp., Rsmv-homomorphisms)
from K to T as HomR(K,T ) (resp., HomS

R(K,T )). R − Hmod (resp., RS −
Hmod) specifies a category whose objects are all R-hypermodules and whose
morphisms from K to T are whole Rmv-homomorphisms (resp., Rsmv-homo-
morphisms) from K to T . Obviously, RS−Hmod is a subcategory of R−Hmod,
that is, RS −Hmod ⪯ R−Hmod.

Let ψ, θ ∈ HomR(K,T ) where ≤ is the relation on HomR(K,T ) defined as
ψ ≤ θ if for each x ∈ K, ψ(x) ⊆ θ(x). Here (HomR(K,T ),≤) is a partially or-
dered set. Let ψ, θ, η ∈ HomR(K,T ). Let + : HomR(K,T )×HomR(K,T ) −→
HomR(K,T ) be an operation onHomR(K,T ) which is defined by (ψ, θ) 7→ ψ+θ
where (ψ + θ)(x) = ψ(x) +2 θ(x) for each x ∈ K in which +2 is the hyperop-
eration of the canonical hypergroup (T,+2). Here η ≤ ψ + θ if and only if
η(x) ⊆ ψ(x) +2 θ(x) for each x ∈ K. A hyperoperation on HomR(K,T ) is
defined as follows:

ψ
⊎
θ = { η ∈ HomR(K,T ) | η ≤ ψ + θ }.

The hyperoperation
⊎

on homR(K,T ) is defined by being restricted in the
following format

ψ
⊎
θ = { η ∈ homR(K,T ) | η(x) ∈ ψ(x) + θ(x), for each x ∈ K}.
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In [3, Theorem 3.11], it has been proved that (HomR(K,T ),
⊎
) is a commutative

hypermonoid and (homR(K,T ),
⊎
) is a canonical hypergroup for objects K and

T in categories respectively R−Hmod and R− hmod.

Supplement subhypermodules of hypermodules. Let K and T be sub-
hypermodules of an R-hypermodule H. Then, both subhypermodules K and T
are called independent if K ∩ T = {0H}, so K + T is denoted by K ⊕ T and
it is called as internal direct sum. In addition, a subhypermodule K of H is
said to be a direct summand of H provided that H = K ⊕ L for some subhy-
permodule L of H ([25]). A non-zero R-hypermodule H is said to be simple
provided that the only subhypermodules of H are {0H} and H itself. Let R be
a hyperring and H be an R-hypermodule. By Soc(H) we denote the sum of all
simple subhypermodules of H. An R-hypermodule H is said to be semisimple
provided that its subhypermodules are direct summands in H ([16]). In [27],
it is introduced the concept of semisimple R-hypermodule H as H = Soc(H),
that is, it is the sum of simple R-subhypermodules of H. It was shown that the
class of semisimple hypermodules was closed under internal direct sums, factor
hypermodules, and subhypermodules. It is proven in [27, Proposition 3] that
Soc(T ) is the largest semisimple subhypermodule of a hypermodule H. The
various properties of semisimple hypermodules are given in [27]. In particular,
it is shown in [27, Theorem 1] that a hypermodule H is an internal direct sum of
subhypermodules K and T , that is, H = K⊕T if and only if, for every element
m ∈ H, there exists a unique element k ∈ K and a unique element t ∈ T such
that m is an element of the set k + t. Let I be a left hyperideal and R be a
hyperring. If I ∩J ̸= 0 for every non-zero left hyperideal J of R, then I is called
essential left hyperideal of R. Then

Z(M) = {m ∈M | Im = 0M for some essential left hyperideal I of R}

is called a singular subhypermodule of M . In [27, Corollary 2], it is proven that
every simple hypermodule M is normal projective or M = Z(M).

The following example is given in [27, Example 10].

Example 2.1. Let R = {0, 1, 2, 3} with hyperoperation “+” and operation “.”:

+ 0 1 2 3

0 {0} {1} {2} {3}
1 {1} {0,1} {3} {2,3}
2 {2} {3} {0} {1}
3 {3} {2,3} {1} {0,1}

and
· 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2
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Then, R is an R-hypermodule. It is easy to see that the only proper subhyper-
modules of R are M0 = {0}, M1 = {0, 1}, and M2 = {0, 2}. Therefore, M1 and
M2 are simple subhypermodules of M , and so we can write R =M1+M2. This
means that the R-hypermodule R is semisimple.

In [13], as a generalization class of semisimplicity, the class of supplemented
hypermodules was defined. Let H be a Krasner R-hypermodule and K,T be
subhypermodules of H. T is said to be a supplement of K in H provided that
T is a minimal element in the set {L ≤ H |K + L = H }. Then, H is said
to be supplemented provided that each subhypermodule of H has a supplement
in H [13]. A subhypermodule K of a Krasner R-hypermodule H is said to
be a small subhypermodule of H provided that K + T ̸= H for each proper
subhypermodule T of H, denoted by K ≪ H. So T is a supplement of K
in H if and only if K + T = H and K ∩ T ≪ T . In addition, K has ample
supplements in H if, whenever K + T = H, T contains a supplement L of K in
H. The Krasner R-hypermodule H is said to be amply supplemented provided
that each subhypermodule has ample supplements in H (see [13]).

Example 2.2. Let R = {0, 1, 2} and A = {0, 2}. Define the hyperaddition
“+” and multiplication “·” by the following:

+ 0 1 2

0 {0} {1} {2}
1 {1} R {1}
2 {2} {1} A

and
· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 0

Then, R is a hyperring and A is the only left maximal hyperideal of R. It
follows that the left R-hypermodule R is (amply) supplemented which is not
semisimple.

3. Preradicals in category of RS
hmod

Our interest in this approach to the structure theory of hypermodules was no-
ticed as a result of an observation mentioned in [1] and it was aimed to generalize
to hypermodules by taking advantage of the existing category theory in module
structure in [2]. In this context, we study on concept of (pre)radical for using
of the concept of τ -supplement subhypermodules in category of RS

hmod.

Definition 3.1. (1) A functor τ from the category of Rs − hmod to itself is
called a preradical if following properties are satisfied:
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(1) τ(H) is a subhypermodule of the R-hypermodule H.

(2) ψ(τ(H)) ⊆ τ(L) for each strong homomorphism ψ ∈ HomS
R(H,L).

Let τ be a preradical of Rs − hmod, where R is a hyperring. Assume that
T ≤ H are R-hypermodules. Applying the condition (2) of being preradical, it
is clear that ι(τ(T )) = τ(T ) ≤ τ(H), where ι : T −→ H is the inclusion map.

Definition 3.2. Let τ be a preradical of Rs−hmod. Then, τ is called idempo-
tent if τ(τ(H)) = τ(H) for every H ∈ Rs − hmod.

Example 3.1. Let R be a hyperring andM be any R-hypermodule. By Soc(M)
we denote the sum of all simple subhypermodules of M as in [27]. It follows
from [27, Proposition 3] that Soc(M) is the largest semisimple subhypermodule
ofM . By [27, Lemma 8], we define the preradical τ : Rs−hmod −→ Rs−hmod
by τ(M) = Soc(M) for all M ∈ Rs − hmod. Again applying [27, Proposition
3], we deduce that τ is the idempotent preradical of Rs − hmod.

Example 3.2. Let R be a hyperring and M be any R-hypermodule. By [27,
Theorem 7], we consider the singular subhypermodule Z(M) of M , that is

Z(M) = {m ∈M | Im = 0M for some essential left hyperideal I of R}.

Here, I is an essential left hyperideal of R if I ∩ J ̸= 0 for every non-zero left
hyperideal J of R. For any R-hypermodules M, N ∈ Rs − hmod, let f :M −→
N be any strong homomorphism and m ∈ Z(M). Therefore, there exists an
essential left hyperideal I of R such that Im = 0M . It follows that If(m) =
f(Im) = 0N and so f(m) ∈ Z(N). It means that Z(.) defines the preradical in
Rs−hmod. Since Z(Z(M)) = Z(M) for any hypermodule M ∈ Rs−hmod, the
preradical Z(.) is idempotent in Rs − hmod.

Example 3.3. Given the hyperring R = {0, 1, 2} and the left hyperideal A =
{0, 2} in Example 2.2, define the preradical τ : Rs − hmod −→ Rs − hmod by
τ(N) = AN for all N ∈ Rs−hmod, where AN = {m ∈ N |m ∈

∑n
i=1 rimi, mi ∈

N, ri ∈ A, 1 ≤ i ≤ n and n ∈ Z+}. It follows that τ is preradical of Rs−hmod.
Since AA = {0}, we deduce that τ is not idempotent preradical.

Definition 3.3. Let τ be a preradical of Rs − hmod. Then, τ is called radical
if τ( H

τ(H)) = {0} for every H ∈ Rs − hmod.

Let M be an R-hypermodule. By Rad(M) we denote the intersection of
all maximal subhypermodules of M . Now we shall show that Rad(.) induces a
radical of Rs − hmod. Firstly we need the following lemma.

Lemma 3.1. Let M be a hypermodule and N be a subhypermodule of M . As-
sume that {Mi}i∈I is a family of subhypermodules of M containing N . Then,⋂
i∈I

Mi
N =

⋂
i∈I Mi

N .
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Proof. The proof is straightforward.

Example 3.4. Let R be any hyperring. Define τ : Rs − hmod −→ Rs − hmod
by τ(M) = Rad(M) for all M ∈ Rs − hmod. It follows from [23] that τ is the
preradical of Rs − hmod.

Next we show that τ is the radical of Rs−hmod. LetM be any hypermodule
over the hyperring R and {Mi}i∈I be the set of all maximal subhypermodules
of M . Since Rad(M) is contained in all maximal hypermodules of M , we get
that

Rad(
M

Rad(M)
) =

⋂
i∈I

Mi

Rad(M)
=

⋂
i∈IMi

Rad(M)
= 0

by Lemma 3.1. Hence, τ is radical.

Now we give the following lemma and we will use it throughout the paper.

Lemma 3.2. For a hyperring R, let τ be a preradical of Rs−hmod. If T ≤ H are
R-hypermodules, then τ(H)+T

T ≤ τ(HT ). Moreover, if τ is radical and T ≤ τ(H),

τ(HT ) =
τ(H)
T .

Proof. Consider the canonical strong projection Ψ : H −→ H
T . Since τ is a

preradical of Rs − hmod, we can write Ψ(τ(H)) = τ(H)+T
T ⊆ τ(HT ) as required.

Let τ be a radical of Rs−hmod and T ≤ τ(H). Therefore, τ(H)+T
T = τ(H)

T ⊆
τ(HT ). Note that

H
T

τ(H)
T

∼=
H

τ(H)
.

Consider the canonical strong projection Φ : HT −→
H
T

τ(H)
T

. It follows that

Φ(τ(
H

T
)) =

τ(HT ) +
τ(H)
T

τ(H)
T

⊆ τ(
H
T

τ(H)
T

).

Since τ is a radical of Rs − hmod, τ( H
τ(H)) = {0} and so τ(

H
T

τ(H)
T

) = { τ(H)
T }.

Thus,
τ(H

T
)+

τ(H)
T

τ(H)
T

⊆ τ(H)
T . It means that τ(HT ) =

τ(H)
T .

4. τ-supplemented hypermodules

Recall that an R-module M is τ -supplemented if every submodule U of M has
a τ -supplement V in M , that is, M = U + V and U ∩ V ⊆ τ(V ), where τ is
a preradical of R −Mod. Now we transfer this definition to hypermodules as
follows:
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Definition 4.1. Let R be a hyperring and τ be a preradical of Rs − hmod. An
R-hypermodule M is called τ -supplemented if every subhypermodule U has a τ -
supplement V in M , that is, M = U +V and U ∩V ⊆ τ(V ). M is called amply
τ -supplemented if for every subhypermodules K,T of H with K+T =M , there
exists a τ -supplement V of K with V ≤ T .

It is clear that every semisimple hypermodule is (amply) τ -supplemented.
Observe from Example 2.2 that the R-hypermodule R is a Soc-supplemented
and Rad-supplemented hypermodule which is not semisimple.

Lemma 4.1. Let M be an R-hypermodule and τ be a preradical of Rs− hmod.
Assume that M = τ(M). Then, M is τ -supplemented.

Proof. Let U ≤M . Therefore, M = U +M and U ∩M = U ⊆M = τ(M). It
means that M is a τ -supplement of U in M . Hence, M is τ -supplemented.

Theorem 4.1. Let τ be a radical of Rs − hmod and T be an R-hypermodule.
Then, a subhypermodule K of T is a τ -supplement in T if and only if, for every
strong homomorphism g : K −→ L of hypermodules with τ(L) = 0, there exists
a strong homomorphism h : T −→ L such that g = hι, where ι : K −→ T is the
inclusion map.

Proof. (⇒) Let K be a τ -supplement of some hypermodule U of T . Therefore,

we can write T
τ(K) = K

τ(K) ⊕
U+τ(K)
τ(K) . Assume that g : K −→ L is a strong

homomorphism of hypermodules, where τ(L) = 0. It follows that there exists a
strong homomorphism h : T −→ K

τ(K) with h(x) = x+τ(K) for all x ∈ T . Then,

g(τ(K)) ⊆ τ(g(K)) ⊆ τ(L) = 0 and thus the strong homomorphism g : K −→ L
factors through the canonical strong epimorphism π : K −→ K

τ(K) with g = g
′
π,

where g
′
: K
τ(K) −→ L. Put α = g

′
h. Hence, αι = g.

(⇐) Since τ is a radical of Rs − hmod, we have τ( K
τ(K)) = 0 and so, by

assumption, there exists a strong homomorphism h : T −→ K
τ(K) with hι = π,

where π : K −→ K
τ(K) is the canonical strong homomorphism. It follows that

h(k) = k + τ(K) for all k ∈ K. Thus, h induces a strong homomorphism
f : T

τ(K) −→
K

τ(K) such that f(k + τ(K)) = h(k). So, K
τ(K) is a direct summand

of T
τ(K) and then we can write T

τ(K) = K
τ(K) ⊕

U
τ(K) for some subhypermodule

U
τ(K) of T

τ(K) . Hence, T = K + U and K ∩ U ⊆ τ(K). It means that K is a
τ -supplement in T .

Corollary 4.1. Let τ be a radical for RS
hmod and K ≤ T , where T ∈RS

hmod.

1. If K is a τ -supplement in T and τ(K) = {0}, then K is a direct summand
of T .

2. If τ(T ) = {0H}, then each τ -supplement subhypermodule of T is a direct
summand.
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3. If K is a τ -supplement in T and W ≤ K, then K
W is a τ -supplement in

T
W .

Proof. (1) Let K be a τ -supplement of L in T . Therefore, T = L + K and
L ∩K ⊆ τ(K) = 0 and so T = L⊕K, as required.

(2) It follows from (1).
(3) Let V ≤ T satisfying conditionsK+V = T andK∩V ≤ τ(K). Then, we

can write K
W + V+W

W = T
W and K

W ∩ (V+W )
W = (K∩V )+W

W ≤ τ(K)+W
W ≤ τ(KW ).

Recall from [12] that a subhypermodule K of H is called essential in H if
K ∩ T = {0H} implies T = {0H} for each nonzero subhypermodule T of H,
denoted by K ⊵H.

Theorem 4.2. Let H ∈RS
hmod with a τ -supplemented hypermodule. Then, we

have:

1. Each subhypermodule K ≤ H with K∩τ(H) = {0H} is a direct summand.
Especially, if τ(H) = {0H}, then H is semisimple.

2. Each factor hypermodule and each direct summand of H is τ -supplemented.

3. H
τ(H) is a semisimple hypermodule.

4. H = V ⊕ T where T is semisimple and τ(V )⊵ V .

Proof. (1) Since τ(K) ≤ K ∩ τ(H), it follows from [27, Theorem 9] and Corol-
lary 4.1-(1).

(2) and (3) Clear by Corollary 4.1.
(4) Let T ∩ τ(H) = {0H} and T ⊕ τ(H)⊵H. It follows that τ(T ) = {0H}.

Since H is τ -supplemented module, there is a subhypermodule V of H such that
T + V = H and T ∩ V ≤ τ(V ). Then, T ∩ V = T ∩ (T ∩ V ) ≤ T ∩ τ(V ) ≤
T ∩ τ(H) = {0H}, H = T ⊕ V and τ(H) = τ(T ) ⊕ τ(V ) = τ(V ). Therefore,
T ⊕ τ(V )⊵ T ⊕ V . It follows from τ(V )⊵ V . By (1), T is semisimple.

Theorem 4.3. Let H ∈RS
hmod. Then, the following statements hold.

1. Let K,V ≤ H, where K is τ -supplemented. If K + V has a τ -supplement
in H, then V has a τ -supplement in H.

2. If K and T are τ -supplemented, then K + T is τ -supplemented.

3. Any finite sum of τ -supplemented hypermodules is τ -supplemented.

Proof. (1) By hypothesis, there is T ≤ H provided that (K +V )+T = H and
(K + V ) ∩ T ≤ τ(T ). Since (V + T ) ∩ K has a τ -supplement in K, we have
(V +T )∩K+W = K and (V +T )∩W ≤ τ(W ) forW ≤ K. As V +T+W = H,
W is a τ -supplement of V +T in H. To show that T +W is a τ -supplement of V
in H, we must prove that V ∩ (T +W ) ≤ τ(T +W ). Note that W +V ≤ K+V .
So T ∩ (W + V ) ≤ T ∩ (K + V ) ≤ τ(T ).
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(2) Let V ≤ K + T . By hypothesis, K + T + V has a trivial τ -supplement
in K +T and by using (1), T +V has a τ -supplement in K +T . It follows from
again (1) that V has a τ -supplement in K+T . Hence, K+T is τ -supplemented.

(3) It is obtained directly by (1).

Theorem 4.4. Let H ∈RS
hmod. If H is an amply τ -supplemented hypermodule,

then following statements hold.

1. Direct summands of H are amply τ -supplemented.

2. Factor hypermodules of H are amply τ -supplemented.

Proof. (1) Let H = K ⊕ T and let V,W be subhypermodules of T with T =
V +W . Since H = K + V +W , there is a subhypermodule Z of W such that
Z+K+V = H and Z∩(K+V ) ≤ τ(Z). It follows that Z∩V ≤ Z∩(V +K) ≤
τ(Z) and T = T ∩ H = T ∩ (Z + (K ⊕ V )) = T ∩ (K ⊕ V ) + Z = V + Z.
Therefore, Z is a τ -supplement of V in T and Z ≤W .

(2) Let V ≤ H and H
V = K

V + T
V with V ≤ K ≤ H, V ≤ T ≤ H. It follows

from H = K + T that there is a subhypermodule W ≤ T ≤ H. It follows from
H = K + T that there is a subhypermodule W ≤ T provided that K +W = H
and K ∩W ≤ τ(W ). We must prove that W+V

V is a τ -supplement of K
V in H

V .

It is clear that W+V
V + K

V = H
V and so K

V ∩ W+V
V = (K∩W )+V

V ≤ τ(W )+V
V ≤

τ(W+V
V ).

The following corollary follows from directly using Theorem 4.4.

Corollary 4.2. Let H ∈RS
hmod. If H is amply τ -supplemented, then following

statements hold.

1. If K is a τ -supplement in H and τ(K) = {0K}, then K is amply τ -
supplemented.

2. If τ(H) = {0}, then each τ -supplement subhypermodule of H is amply
τ -supplemented.

Recall from [22] that a hypermodule H is called normal π-projective if for
each (K,T ) of subhypermodules of H providing K + T = H, there is a strong
homomorphism γ : H −→ H with Im(γ) ≤ K and Im(1 − γ) ≤ T , where 1
denotes the identity strong homomorphism of H.

Proposition 4.1. Let H ∈RS
hmod. Then, following statements hold.

1. If each subhypermodule of H is τ -supplemented, then H is an amply τ -
supplemented hypermodule.

2. If H is normal π-projective and τ -supplemented, then H is amply τ -
supplemented.
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Proof. (1) Let K,T ≤ H with H = K + T . As K is τ -supplemented, there
is W ≤ K with (K ∩ T ) +W = K and K ∩ T ∩W ≤ τ(W ). It follows that
T ∩W = K ∩ T ∩W ≤ τ(W ) and H =W + T .

(2) Let H = K + T . By hypothesis there exists a strong endomorphism γ
of H with Im(γ) ≤ K and Im(1 − γ) ≤ T . As H is τ -supplemented, there is
a subhypermodule V ≤ H with V + K = H and V ∩ K ≤ τ(V ). Therefore,
H = Im(γ) + Im(1 − γ) ≤ K + (1 − γ)(K + V ) ≤ K + (1 − γ)(V ). So
H = K+(1−γ)(V ). It can be shown that (1−γ)(V ) ≤ T and K∩ (1−γ)(V ) =
(1− γ)(K ∩ V ). Since K ∩ V ≤ τ(V ), we have K ∩ (1− γ)(V ) ≤ τ((1− γ)(V )).
Thus, (1 − γ)(V ) is a τ -supplement of K in H and (1 − γ)(V ) ≤ T . Hence, H
is amply τ -supplemented.

Finally, we give examples of a τ = Rad-supplemented Krasner hypermodule
and an amply τ = Rad-supplemented Krasner hypermodule in ZS

hmod without
completing the article in the following.

Example 4.1. 1. Consider Q is quotient field of Z. Then, we take H as a
Krasner Z-hypermodule Q. It can be seen clearly from [13] and [26] that the
Krasner Z-hypermodule H is Rad-supplemented but not supplemented.

2. Consider the Z-module Zp∞ = { m
pn |m ∈ Z, n ≥ 0, 0 ≤ m

pn < 1, p ∤ m }
and a submodule H = ⟨1p + Z⟩. By [12, Example 2.5], it can be constructed
a Z-hypermodule (Zp∞ ,⊕,⊙). Since τ(Zp∞) = Rad(Zp∞) = Zp∞ and each
subhypermodule of Zp∞ is the form ⟨ 1

pm + Z⟩ where m ≥ 1, Zp∞ is amply
τ -supplemented, but not local.

5. Conclusions

In essence of this study, the properties of the concept of τ -supplemented module,
one of the most basic topics of module theory, in the structure of subcategory
hypermodules were investigated. We first characterized the τ -supplemented
hypermodules by generalizing the supplemented hypermodules with the help of
preradical, which we defined in the subcategory RS

hmod. The basic properties of
τ -supplemented hypermodules have been provided. The connection between the
notion of τ -supplemented hypermodules and the notion of supplemented hyper-
modules can be obtained with the help of the basic algebraic properties provided
by the concept of τ -supplement subhypermodule. In particular, we have shown
that the class of amply τ -supplemented is closed under direct summands, fac-
tor hypermodules and finite sums. Also, we prove that every subhypermodule
τ -supplemented hypermodule is τ -supplemented.
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