ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS — N. 53-2025 (166-184) 166

Precedence hyperstructures and graphs in assembly line design

Anastasia Taouktsoglou®*

Department of Production and Management Engineering
Democritus University of Thrace

V. Sofias 12, 67 132 Xanthi

Greece

ataoukts@pme.duth.gr

Stefanos Spartalis

Department of Production and Management Engineering
Democritus University of Thrace

V. Sofias 12, 67 132 Xanthi

Greece

sspart@pme.duth. gr

and

School of Science and Technology
Studies in Physics

Hellenic Open University

18 Aristoteles by street, 26 335 Patra
Greece

spartalis.stefanos@ac.eap. gr

Abstract. In this paper we introduce the precedence hyperoperation, which con-
structs a precedence partial hypergroupoid, i.e. a partial hypergroupoid with some
special properties. Given a precedence partial hypergroupoid, a precedence graph can
be defined and vice versa. Using the precedence partial hypergroupoid of a precedence
graph and the Fewer-Descendants-Vertex First algorithm (FDVF algorithm), a process
flow diagram is created, which can be used in mixed-model assembly line design.
Keywords: precedence graph, precedence partial hypergroupoid, process flow dia-
gram, assembly line design, Fewer-Descendants-Vertex First algorithm (FDVF algo-
rithm), More-Descendants-Vertex First algorithm (MDVF algorithm).

MSC 2020: 05C20, 20N20, 05C38, 05C90, 90C35, 68R10.

1. Introduction

Algebraic hyperstructures were introduced in 1934 by Marty [20], as a gen-
eralization of the notion of the group and have been studied since by many
mathematicians (s. [1]-[17], [19], [21]-[22], [24]-[28]).

Hyperstructures associated with binary relations have a special interest for
many researchers, such as I. Rosenberg [22], P. Corsini [1]-[6], Y. Feng [12], V.
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Leoreanu-Fotea [4]-[6], [10], [19], B. Davvaz [10], I. Cristea and M. Stefanescu
[7]-19], M. Konstantinidou-Serafimidou and K. Serafimidis [17], [27], M. De Salvo
and J. Lo Faro [11], S. J. Rasovic [21], S. Spartalis [13]-[16], [24]-[27], A. Kalam-
pakas [13]-[16], [26], A. Taouktsoglou [27] and others.

Additionally, binary relations and directed graphs are representing complex
information and describing rich structures. Therefore, the connection between
hyperstructures and graph theory appear naturally and are studied in [13], [14],
[15] and [26]. More precisely, in [14] the “path hyperoperation” and the as-
sociated “path hypergroupoids” were introduced, as a generalization of the C-
hypergroupoids [3], [24], [25] and an application to the design and management
of mixed-model assembly lines, was presented.

On the other hand, precedence graphs, first developed by M. E. Salveson [23],
are traditionally used to visualize the assembly sequence of a model in many
industrial environments (see also, The Assembly Line Balancing Problem [18]).
A precedence graph is used in order for a product to be assembled in a proper
way. Designing an assembly line one has to correspond the tasks needed for
each product to workstations standing in a row. All precedence conditions have
to be fulfilled and the working time among the workstations has to be balanced.

In this respect, we introduce and study a new hyperoperation, which con-
structs a “precedence partial hypergroupoid”, i.e. a partial hypergroupoid with
some special properties. Given a precedence partial hypergroupoid, a prece-
dence graph can be defined and vice versa. Using the precedence partial hy-
pergroupoid of a precedence graph and following the Fewer-Descendants-Vertex
First algorithm (FDVF algorithm) that we created, one can design and computer
program a process flow diagram, which can be used in mixed-model assembly
line designing.

In Section 2 basic concepts on hypergroupoids and directed graphs are pre-
sented. In Section 3 we define the precedence hyperoperation and we investigate
the properties of the associated precedence hypergroupoid. In Section 4 using a
precedence hypergroupoid we define a precedence graph and vice versa, proving
that there is a 1-1 correspondence between the two notions. We also, set neces-
sary conditions for a graph to be a precedence graph. In Section 5 we present
an algorithm one can use, in order to derive a process flow diagram through a
precedence hypergroupoid. The proposed FDVF algorithm used on precedence
hypergroupoids can be applied in mixed-model assembly line designing.

2. Preliminaries

A partial hypergroupoid is a pair (H, %), where H is a non empty set and * is a
hyperoperation i.e.

x: Hx H— p(H), (z,y) = z*xy.

If A,B € p(H) — {0}, we set A B = ,capep @*b. We also, denote a * B
(resp. A xb) the hyperproduct A * B in case that A is the singleton {a} (resp.
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B is the singleton {b}). (H,x) is called a “hypergroupoid” if x xy # (), for all
x,y € H and it is called “degenerative (resp. “total) hypergroupoid” if xxy =0
(resp. zxy = H), for all z,y € H (s. [27]).

Given a binary relation R C H x H hypergroupoids can be defined in many
ways. For example, a wide class of partial hypergroupoids, named “partial C-
hypergroupoids”, are defined by the “Corsini’s hyperoperation” [3]:

xp:HxH— p(H): (z,y) »xxgy={z€ H/(x,2) € Rand (z,y) € R}.

Given a non-empty finite set V and a binary relation R C V x V' “a concrete
directed graph” G is defined as the pair (V, R). The elements of V are called
“vertices” and the elements of R are called “edges” (s. [14]). Drawing a graph,
a vertex is drawn as a node and an edge as an arrow connecting two vertices,
which are called the “head” and the “tail” of the edge.

A vertex of a graph is called “isolated” if there is no edge connected to it.
In what follows we consider concrete directed graphs without isolated vertices.

A graph G’ = (V' R') is called a “subgraph” of the graph G = (V| R) if it
holds V! C V and R’ C R. Then we say that “G’ = (V', R) is included in
G = (V,R)” and we denote G’ < G.

Given a graph G = (V, R) and vy,v, € V, “a directed path from vy to v,”
(or simply “a path from vy to v,”) is defined as a pair P = (Vp, Ep) of a set of

vertices Vp = {v1,v2,...,v,} €V and a set of edges Ep = {e1,€2,...,ep—1} C
R, where ¢; = (v;,vi41), forall i =1,2,....,n — 1, where n € Nyn > 1. Then,
v1, V9, ..., U, are called “vertices of path P” and ey, e, ..., e,_1 are called “edges

of path P”. Consequently, vy is called “starting vertez” and v, “ending vertex”
of path P. According to the previous definition, the pair P = (Vp,Ep) is a
concrete directed graph included in the graph G = (V, R).

Practically, a path from v; to v, is

e an alternating sequence of vertices and edges v1,e1,v2,€9,...,€n_1, VU, be-
ginning at v; and ending at v,, where all vertices are distinct from one
another and e; = (v;, v41), Vi = 1,2,...,n — 1 or equivalently,

e a sequence of vertices vi,va, ..., vU,, all distinct from one another, begin-
ning at v; and ending at v, where there exist edges e; = (v;,vi41) € R,
Vi=1,2,...,n—1.

Example 2.1. In the graph of Figure 1 several paths from vertex 1 to vertex 6
are displayed, i.e.
P :1,56 P:1,2,6
P3 : 1,3,5,6 P4 : 1,5,2,6
Ps:1,2,4,6 Ps:1,2,5,6
“An induced path” is defined as a path, in which each two adjacent vertices

are connected by an edge and each two nonadjacent vertices are not connected
by any edge.
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Figure 1: Several paths from vertex 1 to vertex 6

Given a graph G = (V,R), “a directed circle” (or simply “a circle”) is
defined as a pair C' = (V¢, E¢) of a set of vertices Vo = {vy,v2,...,0p-1} CV

and a set of edges Ec = {ei,ea,...,en—1} C R, where ¢; = (v;,v;41), for
all i = 1,2,...,n — 2 and e,—1 = (vp—1,v1), where n € N;n > 2. Then,
v1,V2,...,U,_1 are called “vertices of the circle C” and eq, eo, ..., e,_1 are called

“edges of the circle C”.
Practically, a circle is

e a path, whose starting and ending vertices coincide, or equivalently,

e an alternating sequence of vertices and edges v, e1,v2,€3,...,en_1,v1 be-
ginning and ending at the same vertex, where all vertices are distinct
from one another, except from the starting and the ending vertex, and
ei = (vi,vi+1), Vi=1,2,...,n—2, ep—1 = (Up_1,v1), where n € N, n > 2.

Given a graph G = (V, R) and vi,v, € V, “a directed walk from vy to v,”
(or simply “a walk from vy to v,”) is defined as a union P of consecutive paths,
starting at v; and ending at v,, which contains at least one circle. Then, all
vertices of the united paths are called “vertices of walk P” and all edges of the
united paths are called “edges of walk P”. Consequently, vy is called “starting
verter” and v, “ending vertex” of walk P.

3. Precedence hyperoperation

Definition 3.1. Given a non empty set V' a partial hyperoperation
xp: VXV —=pV): (z,y) »xzxpy
can be defined, for all x,y € V, in the following way:
i. vxpy#£ D= (xr€xxpy andy ¢ x xpy);
ii. 3aeV:axpx #0, for allz € V —{a};
ii. 3beV ixxpb# 0, for allx € V — {b};

. xxpy = (axpy)N(z*pb);
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(xxpu)U(uxpy) Cx*xpy
V. UEXT*kpY = T Ea*pu, ifr #u
y € uxpb, ify # b

Such a hyperoperation is called “precedence hyperoperation” and introduces
a partial hypergroupoid (V,*p) called “precedence partial hypergroupoid”. The
elements a and b are called “starting” and “ending element” respectively. The
results © xp u and u xp y are called “complementary to x xp y”.

Remark 3.1. It is obvious from Definition 3.1-i that
(1) xxpx =1, for allz e V.
Therefore, conditions i, ii and iii of Definition 3.1 imply that

(2) a € ax*pz, for allz € V — {a},

(3) x €xxpb, for all z € V — {b}.
Moreover, setting = y in Definition 3.1-iv, we obtain that
(4) (axpx)N(z*xpb) =10, for allz e V.

Example 3.1. Let V = {1,2,3,4,5,6}. We consider the hyperoperation *p :
V xV — (V) given by Table 1. One can see that this hyperoperation satisfies

1] 2 3 4 5 6
Vi@ ) | {2} | {123} | {12} | {1,2,3,4,5)
22 @ [y | 23] | ) | 2349
31T O & {3} %] {374}
ile| @ | @ & & {4}
sS|lo| @ | @ %) & {5}
6l@| @ | 7 & 2

Table 1: Precedence Partial Hypergroupoid

conditions i-v of Definition 3.1. So, it is a precedence hyperoperation with
element 1 as starting element and element 6 as ending element.

Proposition 3.1. Given a precedence partial hypergroupoid (V,xp), for all
x,y € V the following hold:

i. xxpy#£0=yx*xpx=10;
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. xxpa=0=bxpx.

Proof. i. Let x*xpy # () and y*px # (). Then, according to Definition 3.1-i
we get © € xxpy and y € y *p x. But x € x *xp y and Definition 3.1-iv
imply that x € a xp y. Similarly, since y € y *xp z = (a*xp x) N (y *p b), it
holds y € a*p x and according to Definition 3.1-v we get either z € yxp b
or z =b.

In case x € yxpb, it holds x € (a*py) N (y*pb), which is a contradiction
according to (4).

In case x = b, x € z*xpy and Definition 3.1-iv imply that b € b*p b, which
is a contradiction according to (1).

ii. For z = a it is obvious that z xp a = (). Moreover, let x € V — {a}. Then,
according to (2), a € a *p x and from Proposition 3.1-1 we obtain that
zxpa=0.

For = b it is obvious that b xp z = (). Moreover, let x € V — {b}. Then,
according to (3), x € x xp b and from Proposition 3.1-i we obtain that
b *Xp X = @

O

Remark 3.2. Considering the multiplicative table of a precedence partial hy-
pergroupoid (V, *p) one can see the following:

e All diagonal results of the table are (). Moreover, the starting element a
belongs to every result of its row (except the diagonal one) and every ele-
ment ¢ (except the ending element b) belongs to the result, which appears
at its own row and the column of the ending element b (s. Remark 3.1).

e All results in the column of the starting element a, as well as all results
in the row of the ending element b are (). Moreover, in case that an (3, j)
cell of the multiplicative table is not (), then the diagonal symmetric cell
is equal to ) (s. Proposition 3.1).

Proposition 3.2. Given a precedence partial hypergroupoid (V,p) the follow-
ing hold:

1. the starting element is unique;

1. the ending element is unique;
iwi. Vipy=Uyey t*py=axpy, foralycV;
iv. x*pV:Uyev xxpy=x*pb, forallz € V;
v. a¢ xxpy, forallz €V —{a},y e V;

vi. b¢ zxpy, for allx,y € V.
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Proof. i. Let ai,as be both starting elements of (V,*p), a1 # aa. Then,
(2) implies that a1 € a; *p ag and as € az *xp aj. So, aj xp ag # () and
as *p ay # (), which is a contradiction, according to Proposition 3.1-i.

ii. Let b1, by be both starting elements of (V,*p), by # be. Then, (4) implies
that by € by *p by and by € by xp by. So, by *p by # @ and by xp by #+ 0,
which is a contradiction, according to Proposition 3.1-i.

iii. Definition 3.1-iv implies that  *p y C a *p y, for all z,y € V. So,
Usev z*py Caxpy, for all y € V. Furthermore axpy C U, ey T*p Y.

So, Upey T*py =ax*py.

iv. Definition 3.1-iv implies that zxpy C x*pb, for all x,y € V. So, Uyev Txp
y C xxpb, for all x € V. Furthermore x xp b C Uyev T *p y. SO,

Uyev Txpy=a*pb.

v. Let © # a. Since a € a*xp x (s. (3)), according to (4), we get a ¢ x *p b.
Then, a ¢ zxpy C x*p b (s. Proposition 3.2-iv).

vi. Let z,y be two elements of V' such that b € x *p y. Then, Proposition 3.2-
iv implies that b € x *p b, which is a contradiction according to Definition
3.1-1.

O

Remark 3.3. Considering the multiplicative table of a precedence partial hy-
pergroupoid (V,xp) the unique starting element a (resp. the unique ending
element b) may correspond to the first row and the first column (resp. the last
row and the last column) of the table. Then one can see the following:

e All results of a column are subsets of the first result of this column (i.e.,
for all columns except the first column the following holds: every result
of a column -except the first result- is either the empty set or a proper
subset of the first result of this column).

e All results of a row are subsets of the last result of this row (i.e., for all
rows except the last row the following holds: every result of a row -except
the last result- is either the empty set or a proper subset of the last result
of this row). Furthermore, every element, except the ending element b,
belongs to the last result of its own row.

e The starting element a belongs to all results of the first row, except the
diagonal one, and to no other result.

e The ending element b belongs to no results.

Definition 3.2. Let (V,xp) be a precedence partial hypergroupoid with starting
vertex a and ending vertexr b. The set V xp x is called “ancestors’ set of x”
and the set (xxp V — {x}) U{b} is called “descendants’ set of x”. The integer
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card[(x xp V — {x}) U{b}] = card(x xp V') is called “number of descendants of
x”. For every i,j € V with card(i*p V') > card(j xp V') we say that “vertex i
has more descendants than vertex j” or equivalently we say that “verter j has
fewer descendants than vertex i”. If card(i xp V) = card(j xp V') we say that
“vertices i and j have both the same number of descendants”.

Proposition 3.3. Given a precedence partial hypergroupoid (V,p) the follow-
ing hold:

i. axpb=V —{b};

TEaxpy

n'.g;*Py#@;»{ Jor all w,y €V, y # b;

YyExTkpb

x&yxpb

, forallz,y € V;
y¢axpx

144 az*py#@:>{
1. the starting element and the ending element coincide, only if V is a sin-
gleton.

Proof. i. Proposition 3.2-vi implies that a xp b C V — {b}. Let now z €
V — {b}. Then = € x *p b (s. Definition 3.1-iii). According to Proposition
3.2-iii we have z xp b C a*xpb. So, x € ax*xpb, i.e. V —{b} C axpb.
Consequently, a xp b =V — {b}.

iil. *py # 0 implies that x € x xp y (s. Definition 3.1-i). Then, according
to Definition 3.1-iv we get « € a *p y. On the other hand, setting u = =
in Definition 3.1-v we get y € x *p b.

iii. It is obvious from (4), Proposition 3.3-ii and Proposition 3.2-vi.

iv. In case a = b, since a xp b = a*xp a = (), but also axp b =V — {b} (s.
Proposition 3.3-1) we obtain that V' is a singleton, i.e. V = {a}.
]

Remark 3.4. Considering the multiplicative table of a precedence partial hy-
pergroupoid (V, xp) with the starting element a (resp. the ending element b) in
the first row and the first column (resp. in the last row and the last column) of
the table, one can see the following:

e If the result at an arbitrary (z,y) cell is not (), then the element x belongs
to the first result of the y-column and the element y belongs to the last
result of the xz-row, i.e. = belongs to the ancestors’ set of y and y belongs
to descendants’ set of x.

e If element x precedes element y, then y does not precede .

Proposition 3.4. Let V be a non empty set with card(V') = n.
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For n =1, the only precedence partial hypergroupoid defined on V is the
degenerative one.

For n € {2,3}, one precedence partial hypergroupoid is defined on V.

For n =4, three precedence partial hypergroupoids are defined on V.

Proof. i. Let n = 1ie. V = {1}. In a precedence partial hypergroupoid

il.

iii.

(V,xp) it holds 1 xp 1 = (. So, (V,*p) is the degenerative one.

Let n = 2 ie. V = {1,2}. Let element 1 be the starting element and
element 2 be the ending element. According to Proposition 3.1-ii and
Proposition 3.3-i the only precedence partial hypergroupoid (V, xp) defined
on V has the multiplicative Table 2.

1 2
' @ i
2 & %)

Table 2: Precedence partial hypergroupoid defined on V' = {1, 2}

Similarly, if n = 3i.e. V = {1,2,3} with element 1 as starting element and
element 3 as ending element, the only precedence partial hypergroupoid
(V,*p) defined on V' has the multiplicative Table 3.

1 2 3
1 Z T )
? 2 s | &
3 42, & %)

Table 3: Precedence partial hypergroupoid defined on V = {1,2,3}

Let n =41ie. V ={1,2,3,4} and (V,*p) be a precedence partial hyper-
groupoid defined on V. Let also element 1 be the starting element and
element 4 be the ending element of (V,*p). Then the multiplicative table
of (V,xp) looks like Table 4 because

— since element 1 is its starting element, it belongs to every result of its
own row, except the diagonal one, and all results of its own column
are (),

— since element 4 is its ending element, every result of its column con-
tains the element, which corresponds to the row of the result, except
the diagonal result; furthermore, all results of its own row are (,
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1 2 3 4
1 % L7} {17} {1,2,3}
2 1] 4] ? {2, ‘_7}

3 & ? ] {3,?}

4 %) %) %) %)

Table 4: Precedence partial hypergroupoid defined on V' = {1,2,3,4}

— all diagonal results are 0,
—1xp4={1,2,3} =V — {4},

where

— {1,7} denotes that the corresponding result contains element 1, but
it may contain other elements too,

— 7 denotes that the corresponding result is totally unknown.
So, we have the following options:

iii-(1) 2%p 3 =0 and 3 xp 2 = (), which leads to the partial hypergroupoid
(V,*p) given by Table 5.

1 2 3 4

I I T B U S
2 1G] %) & {2}

3 1%} 1) 1% {3}

4 %] %) & &

Table 5: 1st precedence partial hypergroupoid defined on V' = {1, 2, 3,4}

iii-(2) 3*p2 # (0, which leads to the partial hypergroupoid (V, xp) given by
Table 6.
We notice that 3xp2 # ) leads to 2xp3 = (), according to Proposition
3.1-i. It alsoholds 3 € 1 xp 2 and 2 € 3 *p 4, according to Proposition
3.3-ii. Then 3xp 2= (1xp2)N(3xp4).

iii-(3) 2x*p 3 # (0, which leads to the partial hypergroupoid (V, xp) given by
Table 7.
We notice that 2xp3 # ) leads to 3xp2 = (), according to Proposition
3.1-i. It alsoholds 2 € 1 xp 3 and 3 € 2 xp 4, according to Proposition
3.3-ii. Then 2xp 3= (1%p3)N(2x*p4).
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1 2 3 4
1 & {1,3} {n {1,2,3}
2 ] ] ] {2}
; @ 3} @ {2.3}
4 ) ) ) )

Table 6: 2nd precedence partial hypergroupoid defined on V' = {1, 2, 3, 4}

2 3 4
{1,2,3}
{2.3)
13

%]

—~—
—
[y

S
—

e | —
\]
——

Ql 9 §f Qf~

= WM
Q9 Q
Ol

Table 7: 3rd precedence partial hypergroupoid defined on V' = {1,2,3,4}

In all three options results 2 xp 4 and 3 xp 4 are obtained through Propo-
sition 3.2-iv, Proposition 3.3-iii and Remark 3.1-(3).

One can see that the previous three hyperoperations satisfy the condi-
tions of Definition 3.1. So, they are precedence hyperoperations. Conse-
quently, the only precedence partial hypergroupoids that can be defined
on V = {1,2,3,4} are the precedence partial hypergroupoids described by
the previous three tables.

O]

4. Precedence graphs

Definition 4.1. Given a precedence partial hypergroupoid (V,xp) we construct
a binary relation R CV x V in the following way:
For every x,y € V, it holds

(5) (x,y) € R if andonlyif xxpy isa singleton.

The above binary relation R defines a directed graph G = (V, R) called a “prece-
dence graph associated to the precedence partial hypergroupoid (V,xp)”.

Vice versa, given a precedence graph G = (V, R) we can assume the prece-
dence partial hypergroupoid (V, p) that defined the graph G = (V, R). Indeed
the hyperoperation *p : V x V — p(V') defined as follows:

For every z,y € V

(6) x *p y := {all vertices of all paths of graph G from z to y, except y}
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defines a precedence partial hypergroupoid (V, xp), whose associated precedence
graph is G = (V, R).

Remark 4.1. Incase V = {1, 2, 3,4} all three precedence partial hypergroupoids
(V,*p) (s. Proposition 3.4-iii) define the precedence graphs shown in Figure 2.

‘2\. /

_ O h
i g q 1
. Wy

3 3

Figure 2: Precedence graphs defined by precedence partial hypergroupoids
onV =1{1,2,3,4}

Given a graph G = (V| R) the hyperoperation *p defined by (6) can check,
if the graph is a precedence graph or not. In case the graph is not a precedence
graph, the hyperoperation *xp can derive a precedence graph from the given
graph.

In the following we give two necessary conditions for a graph to be a prece-
dence graph.

Proposition 4.1. A precedence graph G = (V, R) has no walks.

Proof. Let G = (V, R) be a precedence graph defined by a precedence hyper-
groupoid (V,*p) according to (5). Let G = (V,R) has a walk. Every walk
contains at least one circle. If 7 is a vertex of this circle, then ¢ € 7 *p ¢ and so,
ixpi # (). Consequently, (V,xp) is not a precedence partial hypergroupoid (s.
(1)) and graph G = (V, R) is not a precedence graph. O

Proposition 4.2. A precedence graph G = (V, R) has only induced paths.

Proof. Let G = (V, R) be a precedence graph defined by a precedence hyper-
groupoid (V,*p) according to (5). Let also 4, j be two nonadjacent vertices of
a path connected by an edge i.e. (i,7) € R. Then, there is at least one vertex
x so that {i,z} Ci*pj . So, i *p j is not a singleton. Then (5) implies that
(i,7) ¢ R, which is a contradiction. O

5. Assembly line design using a precedence hyperoperation

Designing an assembly line one must first set the tasks ' needed for the product
to be assembled and then assign these tasks to workstations standing in a row.

1. Small element of work that cannot be conveniently fragmented further.
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The fundamental problem of the assembly line design, the so-called “assembly
line balancing problem (ALB)”, is to manage this assignment to satisfy the
precedence relations among the tasks and to minimize the idle time (s. [18]).

To illustrate the need of precedence relations, we usually give the standard
example: “A bottle can’t be filled, when the cap is already on.” The precedence
relations are usually visualized by a precedence graph first developed by Salveson
[23].

Given a precedence graph and the task times “ we must work out a process
flow diagram, which is the final assignment of the tasks to workstations standing
in a row. We assume that every workstation has the same time to complete its
own set of tasks (“Cycle Time” or “Task Time”). If one task needs more time to
be completed, more workers can be set at its workstation in order to reduce the
working time. Furthermore some tasks with short task times can be assigned
to the same workstation in order for the working time among the workstations
to be balanced. So, we shall now concentrate on working out the assembly line
design based on the precedence relations of the tasks only. For this purpose we
shall use the precedence hyperoperation introduced in Section 3.

2

We consider as an example a “one-model assembly line” which consists of
8 tasks. The precedence relations among the tasks are given by the graph
G = (V, R) shown in Figure 3. In order for one unit of the model to be assembled
all 8 tasks of the graph have to be completed.

Figure 3: Example of a precedence graph in one-model assembly line

We define the precedence hyperoperation (6) on the set V' = {1,2,3,4,5,
6,7,8} of the vertices of the graph G = (V, R). So, the associative precedence
partial hypergroupoid (V, xp) is defined by Table 8, where a = 1 is the starting
element and b = 8 the ending element. In what follows the elements of V' are
also called “vertices”.

2. Time needed to complete one task by a well trained worker.
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Table 8: (V,xp) defined by the graph G = (V, R) (s. Figure 3)
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In order to construct a process flow diagram we introduce the following
algorithm, that we call “Fewer-Descendants-Vertex First algorithm” or shorter

“FDVF algorithm”:

e Step 1. We check all results a *p i of the starting vertex row and we

collect all singletons. The corresponding vertices will be executed exactly
after the starting vertex a. The order of the execution of these vertices
will be chosen according to the increasing number of their descendants.
So, we collect their complementary results to a*pb in a set I and we order
the elements of I according to their increasing cardinality. If ¢ xp b is the
result we found with the minimum cardinality and n = card(i xp b), then
vertex i is necessary for fewer of the following tasks and this is the vertex
we will choose first after the starting vertex. Then, we continue with the
rest vertices. If more than one elements of I have the same cardinality,
then we choose an arbitrary one of the corresponding vertices.

In our example, we check all results of the starting vertex row and we
collect 1xp2,1xp3,1%p5. So, after vertex 1 we must execute the vertices
2, 3 and 5. To choose their order of execution, we find card(2 xp 8) <
card(3xp8) < card(5*p8) and so, we choose vertex 2, since it is necessary
for fewer of the following tasks. After vertex 2 we will execute vertex 3 and
then vertex 5. In case card(2*p8) = card(3+p8) = card(5*p8) we would
randomly choose the sequence of the vertices 2, 3 and 5. Consequently,
our process flow diagram so far is shown in Figure 4.

@000

T R . .

Figure 4: Process flow diagram after step 1 of FDVF algorithm
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e Step 2. We check the number of descendants of the last executed vertex.
If it is equal to 1, then we go to Step 4, otherwise we go to the next Step.

In our example, we check card(5+p 8) =3 > 1, so we go to the next step.

e Step 3. Now we check all results i xp b, j # b, of the rows of the vertices
executed in the previous step and we collect all singletons. The corre-
sponding vertices will be executed exactly after the last executed vertex.
The order of the execution of these vertices will be chosen according to the
increasing number of their descendants. So, we collect their complemen-
tary results to i xp b in a set [ and we order the elements of I according to
their increasing cardinality. If more than one elements of I have the same
cardinality, then we choose an arbitrary one of the corresponding vertices.
Then we go to Step 2.

In our example, we check all results of the rows 2, 3 and 5 executed in the
previous step and we collect 3 xp 4,5 xp 6,5 xp 7. So, after vertex 5 we
must execute the vertices 4, 6 and 7. To choose their order of execution,
we find card(4 «p 8) = card(6 xp 8) = card(7 xp 8) and so, we randomly
choose the sequence of the vertices 4, 6 and 7. Consequently, our process
flow diagram so far is shown in Figure 5.

4 _,f\\\ f"/"‘\\\ /"‘/7\“‘-\ /,/—-\\‘ /,/—'\_\\ //—'\\ //—'\\\
( —_— { — { {

 me  me  Eme End  md Emd
b S - e . . N

Figure 5: Process flow diagram after step 3 of FDVF algorithm

We go to Step 2 and we check card(4 xp 8). Since card(4+p 8) =1, we go
to Step 4.

e Step 4. We execute the last vertex i.e. the ending vertex b.

In our example, we execute vertex 8.

Consequently, our final process flow diagram is shown in Figure 6.
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b 4 A 4 A 4 4 " y A y b 4 b
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Figure 6: Process flow diagram of FDVF algorithm

Figure 7 shows the initial precedence graph (on the left) and the process
flow diagram constructed by the FDVF-algorithm (on the right):
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Figure 7: Process flow diagram of FDVF algorithm

Figure 8: Process flow diagram of MDVF algorithm

Remark 5.1. The “More-Descendants- Vertex First algorithm” or shorter “MDVF
algorithm” that can be defined in a similar way, will construct a similar process
flow diagram illustrated in Figure 8.

One can choose FDVF or MDVF process flow diagram considering comple-
mentary benefits, such as raw material or skilled workers available at a time.

Remark 5.2. After the process flow diagram design follows the final assignment
of the tasks to an ordered sequence of workstations. Some tasks with short task
times can be assigned to the same workstation in order for the working time
among the workstations to be balanced.

Figure 9 shows an example of a final assignment of the tasks of the process
flow diagram of Figure 6 to an ordered sequence of workstations. Every square
represents a workstation. In this example task times of 2 and 3 (resp. 6 and 4)
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supposed to be short enough, so that their sum is almost equal to the task time
of the previous and the next workstation. This is a reason why tasks 2 and 3
(resp. 6 and 4) are assigned to the same workstation.

A 4
(#,9]

1 > 23

v
th
Y
s
A 4

6.4

Figure 9: Assignment of the tasks to an ordered sequence of workstations

Remark 5.3. In our case study we examined “a one-model assembly line” i.e.
in order for one unit of a model to be assembled all tasks of the precedence graph
have to be completed. In case of “a mizxed-model assembly line” we follow the
same procedure: Every product unit passes through all tasks of the precedence
graph (i.e. all tasks of the process flow diagram) and just skip the tasks that
are not required for its specific model.

Discussion

Our research proposes an algorithm of constructing a process flow diagram start-
ing from a precedence partial hypergroupoid of a precedence graph. The exam-
ples given deal with sets of tasks with small cardinalities. However, in the
real-world implementation we have to deal with sets of tasks with big cardi-
nalities. Then, the multiplicative tables of the associative precedence partial
hypergroupoids are big, although they are “half” empty. This fact may put lim-
itations on the application of the algorithm. A solution to the problem would be
the partition of the total precedence graph into subgraphs and the application
of the algorithm to each subgraph. Then, each subgraph could be considered as
a simple task of the total precedence graph and the algorithm could be applied
to the simplified form of the total precedence graph.
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