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Abstract. In this research, we investigate some conditions for the non-existence of
integer solutions of the Diophantine equation px + py + nz = w2, where p is an odd
prime number and n is a positive integer. Moreover, numerous examples to illustrate
these cases are provided.
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1. Introduction

One of the famous Diophantine equations is the exponential Diophantine equa-
tion ax+by = w2, where a and b are positive integers. Many authors investigated
the non-negative integer solutions of the equation, where a and b are specified
as positive integers (c.f. [1], [3] and [15]). Positive integer a or b is studied as
variable under certain conditions in various manuscripts. In [5], [11], [14] and
[17], either a or b is a fixed number and in [4], [7], [8] [9], [10] both a and b are
variables that satisfy some conditions. Moreover, the non-existence of positive
integer solutions to the Diophantine equation is studied; see [16].

The Diophantine equation ax + by + cz = w2, where a, b and c are positive
integers, was constructed and studied. In [2], Bacani and Rabago gave all non-
negative integer solutions of the equation 3x + 5y + 7z = w2. Similarly, a, b
and c are considered in other papers as variables satisfying some conditions.
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In [6], all integer solutions of the equation px + (p + 1)y + (p + 2)z = w2 are
provided, where p is a prime number and 1 ≤ x, y, z ≤ 2. Recently, Pandichelvi
and Sandhya [12] showed integer solutions of the equation px1 + py2 + pz3 = M2,
where p1, p2, p3 are prime numbers and x, y, z ∈ {1, 2}.

In this research, the Diophantine equation

px + py + nz = w2(1)

is studied, where p is an odd prime number and n is a positive integer. We
found some conditions for the contradiction of the existence of solutions of (1)
by modulo 4, p, p− 1 and p+1. Thus, many Diophantine equations of the form
(1), which have no solutions, are demonstrated.

2. Non-existence of solutions by modulo 4

In this section, we investigate conditions on n modulo 4 for the non-existence of
non-negative integer solutions to (1). First, we characterize the conditions for
nz ≡ 0, 1, 2, 3 (mod 4).

Lemma 2.1. Let n be a positive integer and z be a non-negative integer. Then,

1. nz ≡ 0 (mod 4) if and only if n ≡ 0, 2 (mod 4), where z ≥ 2;

2. nz ≡ 1 (mod 4) if and only if n ≡ 1 (mod 4) or n ≡ 3 (mod 4) and z is
even, where z ≥ 1;

3. nz ≡ 2 (mod 4) if and only if n ≡ 2 (mod 4) and z = 1;

4. nz ≡ 3 (mod 4) if and only if n ≡ 3 (mod 4) and z is odd.

Proof. 1. Let z ≥ 2. First, assume that nz ≡ 0 (mod 4). Suppose that n ≡ 1, 3
(mod 4). Then, nz ≡ 1, 3 (mod 4), a contradiction. Thus, n ≡ 0, 2 (mod 4).
Conversely, it is easy to show that nz ≡ 0 (mod 4) if n ≡ 0, 2 (mod 4) and
z ≥ 2.

2. Let z ≥ 1. First, assume that nz ≡ 1 (mod 4). Then, n ≡ 1 (mod 4)
or n ≡ 3 (mod 4). If n ≡ 3 (mod 4), then nz ≡ (−1)z (mod 4) so that z is
even. Therefore, n ≡ 1 (mod 4) or n ≡ 3 (mod 4) and z is even. The converse
is obtained obviously.

3. Assume that nz ≡ 2 (mod 4). Then, n ≡ 2 (mod 4). Suppose that
z = 0 or z > 1. Thus, nz ≡ 1 (mod 4) or nz ≡ 0 (mod 4), respectively. This
contradicts to the assumption. Therefore, n ≡ 2 (mod 4) and z = 1. It is
obvious for the converse.

4. Assume that nz ≡ 3 (mod 4). Then, n ≡ 3 (mod 4). Hence, nz ≡ (−1)z

(mod 4) so that z is odd. Therefore, n ≡ 3 (mod 4) and z is odd. The converse
is obtained obviously.

The following lemma gives the conditions that lead to w2 ≡ 2, 3 (mod 4)
and contradict the existence of non-negative integer solutions of (1).
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Lemma 2.2. Let n be a positive integer. Then, (1) has no non-negative integer
solution if

1. p ≡ 1 (mod 4) and nz ≡ 0, 1 (mod 4) or

2. p ≡ 3 (mod 4), x, y have same parity and nz ≡ 0, 1 (mod 4) or

3. p ≡ 3 (mod 4), x, y have opposite parity and nz ≡ 2, 3 (mod 4).

Proof. 1. Assume that p ≡ 1 (mod 4) and nz ≡ 0, 1 (mod 4). Then, px ≡ 1
(mod 4) and py ≡ 1 (mod 4). Thus, px+py+nz ≡ 2, 3 (mod 4) so that w2 ≡ 2, 3
(mod 4). Therefore, (1) has no non-negative integer solution.

2. Assume that p ≡ 3 (mod 4), x, y have same parity and nz ≡ 0, 1 (mod 4).
Then, px ≡ 1 (mod 4) and py ≡ 1 (mod 4), where x, y are even or px ≡ 3
(mod 4) and py ≡ 3 (mod 4), where x, y are odd. Hence, w2 = px+py+nz ≡ 2, 3
(mod 4). Therefore, (1) has no non-negative integer solution.

3. Assume that p ≡ 3 (mod 4), x, y have opposite parity and nz ≡ 2, 3
(mod 4). Then, px ≡ 1 (mod 4) and py ≡ 3 (mod 4), where x is even and y
is odd or px ≡ 3 (mod 4) and py ≡ 1 (mod 4), where x is odd and y is even.
Hence, w2 = px + py + nz ≡ 2, 3 (mod 4). Therefore, (1) has no non-negative
integer solution.

For p ≡ 1 (mod 4), it is easy to show that (1) has no non-negative integer
solution, where z = 0. Next, we study the case z ≥ 2.

Theorem 2.1. Let p ≡ 1 (mod 4) and z ≥ 2. Then, (1) has no non-negative
integer solution if

1. n ≡ 0, 1, 2 (mod 4) or

2. n ≡ 3 (mod 4) and z is even.

Proof. 1. Assune that n ≡ 0, 1, 2 (mod 4). By Lemma 2.1 (1) and (2), we
obtain that nz ≡ 0, 1 (mod 4). Thus, (1) has no non-negative integer solution
by Lemma 2.2 (1).

2. Assume that n≡3 (mod 4) and z is even. By Lemma 2.1 (2), we ob-
tain that nz ≡ 1 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (1).

Corollary 2.1. The Diophantine equation px + py + n2z+2 = w2 has no non-
negative integer solution, where p ≡ 1 (mod 4).

Proof. It is obvious that 2z + 2 is even and 2z + 2 ≥ 2 for all non-negative
integer z. By Theorem 2.1 (1) and (2), px+py+n2z+2 = w2 has no non-negative
integer solution.

Furthermore, some conditions of n that (1) has no non-negative integer so-
lution are investigated where z ≥ 0.
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Corollary 2.2. The Diophantine equation px+py+nz = w2 has no non-negative
integer solution, where p ≡ 1 (mod 4) and n ≡ 0, 1 (mod 4).

Proof. Since n ≡ 0, 1 (mod 4), we can conclude that nz ≡ 0, 1 (mod 4). By
Lemma 2.2 (1), px + py + nz = w2 has no non-negative integer solution.

Similarly, we obtain the non-existence of non-negative integer solutions for
p≡3 (mod 4) and x, y have same parity by Lemma 2.1 (1), (2) and Lemma 2.2 (2).

Theorem 2.2. Let p ≡ 3 (mod 4), z ≥ 2 and x, y have same parity. Then, (1)
has no non-negative integer solution if

1. n ≡ 0, 1, 2 (mod 4) or

2. n ≡ 3 (mod 4) and z is even.

Proof. 1. Assune that n ≡ 0, 1, 2 (mod 4). By Lemma 2.1 (1) and (2), we
obtain that nz ≡ 0, 1 (mod 4). Thus, (1) has no non-negative integer solution
by Lemma 2.2 (2).

2. Assume that n≡3 (mod 4) and z is even. By Lemma 2.1 (2), we ob-
tain that nz≡1 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (2).

Corollary 2.3. The Diophantine equation p2x + p2y + n2z+2 = w2 has no non-
negative integer solution, where p ≡ 3 (mod 4).

Proof. It is obvious that 2x, 2y and 2z + 2 are even. Then, 2x, 2y have same
parity and 2z + 2 ≥ 2 for all non-negative integer z. By Theorem 2.2 (1) and
(2), p2x + p2y + n2z+2 = w2 has no non-negative integer solution.

Corollary 2.4. The Diophantine equation p2x+1 + p2y+1 + n2z+2 = w2 has no
non-negative integer solution, where p ≡ 3 (mod 4).

Proof. It is clear that 2x + 1, 2y + 1 are odd and 2z + 2 is even. Then,
2x + 1, 2y + 1 have same parity and 2z + 2 ≥ 2 for all non-negative integer z.
By Theorem 2.2 (1) and (2), p2x+1 + p2y+1 + n2z+2 = w2 has no non-negative
integer solution.

Next, we can confirm the non-existence of non-negative integer solution of
(1) where x, y have same parity and z ≥ 0.

Corollary 2.5. The Diophantine equation p2x + p2y + nz = w2 has no non-
negative integer solution, where p ≡ 3 (mod 4) and n ≡ 0, 1 (mod 4).

Proof. It is obvious that 2x, 2y have same parity and nz ≡ 0, 1 (mod 4). By
Lemma 2.2 (2), p2x + p2y + nz = w2 has no non-negative integer solution.

Corollary 2.6. The Diophantine equation p2x+1 + p2y+1 + nz = w2 has no
non-negative integer solution, where p ≡ 3 (mod 4) and n ≡ 0, 1 (mod 4).
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Proof. It is obvious that 2x+1, 2y+1 have same parity and nz ≡ 0, 1 (mod 4).
By Lemma 2.2 (2), p2x+1+p2y+1+nz = w2 has no non-negative integer solution.

By Lemma 2.1 (3), (4) and Lemma 2.2 (3), we obtain the following theorem.

Theorem 2.3. Let p ≡ 3 (mod 4) and x, y have opposite parity. Then, (1) has
no non-negative integer solution if

1. n ≡ 2 (mod 4) and z = 1 or

2. n ≡ 3 (mod 4) and z is odd.

Proof. 1. Assune that n≡2 (mod 4) and z = 1. By Lemma 2.1 (3), we ob-
tain that nz≡2 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (3).

2. Assume that n≡3 (mod 4) and z is odd. By Lemma 2.1 (4), we ob-
tain that nz≡3 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (3).

Corollary 2.7. The Diophantine equation p2x+1 + p2y + n2z+1 = w2 has no
non-negative integer solution, where p ≡ 3 (mod 4) and n ≡ 3 (mod 4).

Proof. It is obvious that 2x + 1, 2y have opposite parity and 2z + 1 is odd.
By Theorem 2.3 (2), p2x+1 + p2y + n2z+1 = w2 has no non-negative integer
solution.

Corollary 2.8. The Diophantine equation p2x+1 + p2y + n = w2 has no non-
negative integer solution, where p ≡ 3 (mod 4) and n ≡ 2 (mod 4).

Proof. It is obvious that 2x+ 1, 2y have opposite parity. By Theorem 2.3 (1),
p2x+1 + p2y + n = w2 has no non-negative integer solution.

3. Non-existence of solutions by modulo p

In this section, we confirm that (1) has no positive integer solution by modulo

p and Legendre symbol
(
n
p

)
. Moreover, we gather some forms of an odd prime

number p in Legendre symbol
(
q
p

)
,
(
2q
p

)
and

(
p1p2
p

)
, where q, p1 and p2 are

distinct prime numbers.

Theorem 3.1. Let x and y be positive integers and z be an odd positive integer.

If
(
n
p

)
= −1, then (1) has no positive integer solution.

Proof. Assume that (1) has a positive integer solution. Since x and y are

positive integers, we have w2 ≡ nz (mod p). Then,
(
nz

p

)
= 1. Since z is odd,

we can conclude that
(
n
p

)
= 1.
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By the above theorem, we found that an odd prime number p with
(
n
p

)
= −1

has an important role non-existence of positive integer solutions of (1). In [16],
Tadee and Siraworakun investigated the forms of an odd prime number p in

Legendre symbols
(
q
p

)
and

(
2q
p

)
, where q is an odd prime number.

Theorem 3.2 ([16]). Let p and q be distinct odd prime numbers with q ≡ 1
(mod 4). Then,(

q

p

)
=

{
1 if p ≡ q + rS1q + rS1 (mod 2q)

−1 if p ≡ q + rS2q + rS2 (mod 2q)
,

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2} and r is a primitive root
modulo q.

Theorem 3.3 ([16]). Let p and q be distinct odd prime numbers with q ≡ 3
(mod 4). Then,

(
q

p

)
=


1 if p ≡ 3q + 4n0r

S1 (mod 4q) or

p ≡ −3q + 4n0r
S2 (mod 4q)

−1 if p ≡ 3q + 4n0r
S2 (mod 4q) or

p ≡ −3q + 4n0r
S1 (mod 4q)

,

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q and n0 =

q+1
4 .

Theorem 3.4 ([16]). Let p and q be distinct odd prime numbers with q ≡ 1
(mod 4). Then,

(
2q

p

)
=



1 if p ≡ q2 + 8n1r
S1 (mod 8q) or

p ≡ −q2 + 8n1r
S1 (mod 8q) or

p ≡ 3q2 + 8n1r
S2 (mod 8q) or

p ≡ −3q2 + 8n1r
S2 (mod 8q)

−1 if p ≡ q2 + 8n1r
S2 (mod 8q) or

p ≡ −q2 + 8n1r
S2 (mod 8q) or

p ≡ 3q2 + 8n1r
S1 (mod 8q) or

p ≡ −3q2 + 8n1r
S1 (mod 8q)

,

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q and if q−1

4 is an even number, then n1 =
−q+1

8 , and if otherwise, then

n1 =
3q+1
8 .

Theorem 3.5 ([16]). Let p and q be distinct odd prime numbers with q ≡ 3
(mod 4). Then,
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(
2q

p

)
=



1 if p ≡ q2 + 32n0n1r
S1 (mod 8q) or

p ≡ −q2 + 32n0n1r
S2 (mod 8q) or

p ≡ 3q2 + 32n0n1r
S1 (mod 8q) or

p ≡ −3q2 + 32n0n1r
S2 (mod 8q)

−1 if p ≡ q2 + 32n0n1r
S2 (mod 8q) or

p ≡ −q2 + 32n0n1r
S1 (mod 8q) or

p ≡ 3q2 + 32n0n1r
S2 (mod 8q) or

p ≡ −3q2 + 32n0n1r
S1 (mod 8q)

,

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q, n0 = q+1

4 and if q−3
4 is an even number, then n1 = 5q+1

8 , and if

otherwise, then n1 =
q+1
8 .

Moreover, Siraworakun, Wannaphan and Seesod gave forms of an odd prime

number p in Legendre symbol
(
p1p2
p

)
, where p1 and p2 are distinct prime num-

bers in [13].

Theorem 3.6 ([13]). Let p1, p2 and p be distinct odd prime numbers with p1 ≡ 1
(mod 4) and p2 ≡ 1 (mod 4). Then,

(
p1p2
p

)
=


1 if p ≡ p1p2 + 2(n1r

S1
1 p2 + n2r

S2
2 p1) (mod 2p1p2) or

p ≡ p1p2 + 2(n1r
T1
1 p2 + n2r

T2
2 p1) (mod 2p1p2)

−1 if p ≡ p1p2 + 2(n1r
S1
1 p2 + n2r

T2
2 p1) (mod 2p1p2) or

p ≡ p1p2 + 2(n1r
T1
1 p2 + n2r

S2
2 p1) (mod 2p1p2)

,

where
S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1},
T1 ∈ {1, 3, 5, . . . , p1 − 2}, T2 ∈ {1, 3, 5, . . . , p2 − 2}

and r1, r2 are primitive roots modulo p1 and p2, respectively and n1, n2 are in-
tegers with 2p2n1 ≡ 1 (mod p1) and 2p1n2 ≡ 1 (mod p2).

Theorem 3.7 ([13]). Let p1, p2 and p be distinct odd prime numbers with p1 ≡ 1
(mod 4) and p2 ≡ 3 (mod 4). Then,

(
p1p2
p

)
=



1 if p ≡ −p1p2 + 4(n3r
S1
1 p2 + 4n0n4r

S2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 4(n3r
S1
1 p2 + 4n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 4(n3r
T1
1 p2 + 4n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 4(n3r
T1
1 p2 + 4n0n4r

S2
2 p1) (mod 4p1p2)

−1 if p ≡ −p1p2 + 4(n3r
T1
1 p2 + 4n0n4r

S2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 4(n3r
T1
1 p2 + 4n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 4(n3r
S1
1 p2 + 4n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 4(n3r
S1
1 p2 + 4n0n4r

S2
2 p1) (mod 4p1p2)

,
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where
S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1},

T1 ∈ {1, 3, 5, . . . , p1 − 2}, T2 ∈ {1, 3, 5, . . . , p2 − 2}

and r1, r2 are primitive roots modulo p1 and p2, respectively and n0, n3, n4 are
integers with n0 =

p2+1
4 , 4p2n3 ≡ 1 (mod p1) and 4p1n4 ≡ 1 (mod p2).

Theorem 3.8 ([13]). Let p1, p2 and p be distinct odd prime numbers with p1 ≡ 3
(mod 4) and p2 ≡ 3 (mod 4). Then,

(
p1p2
p

)
=



1 if p ≡ p1p2 + 16(m0n3r
S1
1 p2 + n0n4r

S2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 16(m0n3r
S1
1 p2 + n0n4r

S2
2 p1) (mod 4p1p2)

−1 if p ≡ p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

S2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 16(m0n3r
S1
1 p2 + n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ p1p2 + 16(m0n3r
S1
1 p2 + n0n4r

T2
2 p1) (mod 4p1p2) or

p ≡ −p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

S2
2 p1) (mod 4p1p2)

,

where
S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1},

T1 ∈ {1, 3, 5, . . . , p1 − 2}, T2 ∈ {1, 3, 5, . . . , p2 − 2}

and r1, r2 are primitive roots modulo p1 and p2, respectively and m0, n0, n3, n4

are integers with m0 = p1+1
4 , n0 = p2+1

4 , 4p2n3 ≡ 1 (mod p1) and 4p1n4 ≡ 1
(mod p2).

Now, we combine Theorem 3.1 with Theorem 3.2-3.8 to prove Theorem 3.9 -
3.15. In addition, many examples of (1), that have no positive integer solution,
are demonstrated in Corollary 3.1 - 3.7.

Theorem 3.9. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. q ≡ 1 (mod 4) and

2. p ≡ q + rS2q + rS2 (mod 2q),

where S2 ∈ {1, 3, 5, . . . , q − 2} and r is a primitive root modulo q, then the
Diophantine equation px + py + qz = w2 has no positive integer solution.

Proof. By Theorem 3.2,
(
q
p

)
= −1. Thus, px + py + qz = w2 has no positive

integer solution by Theorem 3.1.

Corollary 3.1. The Diophantine equation px+py +52z+1 = w2 has no positive
integer solution, where p ≡ ±3 (mod 10).
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Proof. It is obvious that 2z + 1 is odd. Let q = 5 and r = 2. Then, q ≡ 1
(mod 4) and r is a primitive root modulo q. Since p ≡ ±3 (mod 10), we have
p ≡ q + rS2q + rS2 (mod 2q), where S2 ∈ {1, 3, 5, . . . , q − 2}. By Theorem 3.9,
px + py + 52z+1 = w2 has no positive integer solution.

Theorem 3.10. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. q ≡ 3 (mod 4) and

2. p ≡ 3q + 4n0r
S2 , − 3q + 4n0r

S1 (mod 4q),

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q and n0 = q+1

4 , then the Diophantine equation px + py + qz = w2 has
no positive integer solution.

Proof. By Theorem 3.3,
(
q
p

)
= −1. Thus, px + py + qz = w2 has no positive

integer solution by Theorem 3.1.

Corollary 3.2. The Diophantine equation px+py +32z+1 = w2 has no positive
integer solution, where p ≡ ±5 (mod 12).

Proof. It is obvious that 2z+1 is odd. Let q = 3, r = 2 and n0 = 1. Then, q ≡ 3
(mod 4), r is a primitive root modulo q and n0 =

q+1
4 . Since p ≡ ±5 (mod 12),

we have p ≡ 3q+4n0r
S2 , −3q+4n0r

S1 (mod 4q), where S1 ∈ {2, 4, 6, . . . , q−1}
and S2 ∈ {1, 3, 5, . . . , q − 2}. By Theorem 3.10, px + py + 32z+1 = w2 has no
positive integer solution.

Theorem 3.11. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. q ≡ 1 (mod 4) and

2. p ≡ q2+8n1r
S2 , − q2+8n1r

S2 , 3q2+8n1r
S1 , − 3q2+8n1r

S1 (mod 8q),

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q and if q−1

4 is an even number, then n1 =
−q+1

8 , and if otherwise, then

n1 = 3q+1
8 , then the Diophantine equation px + py + (2q)z = w2 has no positive

integer solution.

Proof. By Theorem 3.4,
(
2q
p

)
= −1. Thus, px+py+(2q)z = w2 has no positive

integer solution by Theorem 3.1.

Corollary 3.3. The Diophantine equation px+py+102z+1 = w2 has no positive
integer solution, where p ≡ ±7,±11,±17,±19 (mod 40).



160 SUTON TADEE and APIRAT SIRAWORAKUN

Proof. It is obvious that 2z + 1 is odd. Let q = 5, r = 2 and n1 = 2. Then,
q ≡ 1 (mod 4), r is a primitive root modulo q and n1 = 3q+1

8 . Since p ≡
±7,±11,±17,±19 (mod 40), we have p ≡ q2 + 8n1r

S2 , − q2 + 8n1r
S2 , 3q2 +

8n1r
S1 , − 3q2 + 8n1r

S1 (mod 8q), where S1 ∈ {2, 4, 6, . . . , q − 1} and S2 ∈
{1, 3, 5, . . . , q − 2}. By Theorem 3.11, px + py + 102z+1 = w2 has no positive
integer solution.

Theorem 3.12. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. q ≡ 3 (mod 4) and

2. p ≡ q2+32n0n1r
S2 , −q2+32n0n1r

S1 , 3q2+32n0n1r
S2 , −3q2+32n0n1r

S1

(mod 8q),

where S1 ∈ {2, 4, 6, . . . , q − 1}, S2 ∈ {1, 3, 5, . . . , q − 2}, r is a primitive root
modulo q, n0 = q+1

4 and if q−3
4 is an even number, then n1 = 5q+1

8 , and if

otherwise, then n1 = q+1
8 , then the Diophantine equation px + py + (2q)z = w2

has no positive integer solution.

Proof. By Theorem 3.5,
(
2q
p

)
= −1. Thus, px+py+(2q)z = w2 has no positive

integer solution by Theorem 3.1.

Corollary 3.4. The Diophantine equation px+py +62z+1 = w2 has no positive
integer solution, where p ≡ ±7,±11, (mod 24).

Proof. It is obvious that 2z + 1 is odd. Let q = 3, r = 2, n0 = 1 and
n1 = 2. Then, q ≡ 3 (mod 4), r is a primitive root modulo q, n0 = q+1

4

and n1 =
5q+1
8 . Since p ≡ ±7,±11, (mod 24), we have p ≡ q2 +32n0n1r

S2 , −
q2 + 32n0n1r

S1 , 3q2 + 32n0n1r
S2 , − 3q2 + 32n0n1r

S1 (mod 8q), where S1 ∈
{2, 4, 6, . . . , q−1} and S2 ∈ {1, 3, 5, . . . , q−2}. By Theorem 3.12, px+py+62z+1 =
w2 has no positive integer solution.

Theorem 3.13. Let x and y be positive integers and z be an odd positive integer.
If p1, p2 and p are distinct odd prime numbers with the following conditions:

1. p1 ≡ 1 (mod 4), p2 ≡ 1 (mod 4) and

2. p ≡ p1p2+2(n1r
S1
1 p2+n2r

T2
2 p1), p1p2+2(n1r

T1
1 p2+n2r

S2
2 p1) (mod 2p1p2),

where S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1}, T1 ∈ {1, 3, 5, . . . , p1 −
2}, T2 ∈ {1, 3, 5, . . . , p2 − 2} and r1, r2 are primitive roots modulo p1 and p2,
respectively and n1, n2 are integers with 2p2n1 ≡ 1 (mod p1) and 2p1n2 ≡ 1
(mod p2), then the Diophantine equation px+ py +(p1p2)

z = w2 has no positive
integer solution.

Proof. By Theorem 3.6,
(
p1p2
p

)
= −1. Thus, px + py + (p1p2)

z = w2 has no

positive integer solution by Theorem 3.1.
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Corollary 3.5. The Diophantine equation px+py+652z+1 = w2 has no positive
integer solution, where p ≡ ±3,±11,±17,±19,±21,±23,±27,±31,±41,±43,
±53,±59 (mod 130).

Proof. It is obvious that 2z+1 is odd. Let p1 = 5, p2 = 13, r1 = 2, r2 = 2, n1 =
1 and n2 = 4. Then, p1 ≡ 1 (mod 4), p2 ≡ 1 (mod 4), r1, r2 are primitive roots
modulo p1 and p2, respectively, 2p2n1 ≡ 1 (mod p1) and 2p1n2 ≡ 1 (mod p2).
Since p ≡ ±3,±11,±17,±19,±21,±23,±27,±31,±41,±43,±53,±59 (mod 130),
we have p ≡ p1p2+2(n1r

S1
1 p2+n2r

T2
2 p1), p1p2+2(n1r

T1
1 p2+n2r

S2
2 p1) (mod 2p1p2),

where S1 ∈ {2, 4, 6, . . . , p1−1}, S2 ∈ {2, 4, 6, . . . , p2−1}, T1 ∈ {1, 3, 5, . . . , p1−2}
and T2 ∈ {1, 3, 5, . . . , p2 − 2}. By Theorem 3.13, px + py + 652z+1 = w2 has no
positive integer solution.

Theorem 3.14. Let x and y be positive integers and z be an odd positive integer.
If p1, p2 and p are distinct odd prime numbers with the following conditions:

1. p1 ≡ 1 (mod 4), p2 ≡ 3 (mod 4) and

2. p ≡ −p1p2 + 4(n3r
T1
1 p2 + 4n0n4r

S2
2 p1), p1p2 + 4(n3r

T1
1 p2 + 4n0n4r

T2
2 p1),

− p1p2 + 4(n3r
S1
1 p2 + 4n0n4r

T2
2 p1), p1p2 + 4(n3r

S1
1 p2 + 4n0n4r

S2
2 p1)

(mod 4p1p2),

where S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1}, T1 ∈ {1, 3, 5, . . . , p1 −
2}, T2 ∈ {1, 3, 5, . . . , p2 − 2} and r1, r2 are primitive roots modulo p1 and p2,
respectively and and n0, n3, n4 are integers with n0 =

p2+1
4 , 4p2n3 ≡ 1 (mod p1)

and 4p1n4 ≡ 1 (mod p2), then the Diophantine equation px + py + (p1p2)
z = w2

has no positive integer solution.

Proof. By Theorem 3.7,
(
p1p2
p

)
= −1. Thus, px + py + (p1p2)

z = w2 has no

positive integer solution by Theorem 3.1.

Corollary 3.6. The Diophantine equation px+py+152z+1 = w2 has no positive
integer solution, where p ≡ ±13,±19,±23,±29 (mod 60).

Proof. It is obvious that 2z + 1 is odd. Let p1 = 5, p2 = 3, r1 = 2, r2 = 2,
n0 = 1, n3 = 3 and n4 = 2. Then, p1 ≡ 1 (mod 4), p2 ≡ 3 (mod 4), r1, r2 are
primitive roots modulo p1 and p2, respectively, n0 = p2+1

4 , 4p2n3 ≡ 1 (mod p1)
and 4p1n4 ≡ 1 (mod p2). Since p ≡ ±13,±19,±23,±29 (mod 60), we have
p ≡ −p1p2+4(n3r

T1
1 p2+4n0n4r

S2
2 p1), p1p2+4(n3r

T1
1 p2+4n0n4r

T2
2 p1), −p1p2+

4(n3r
S1
1 p2 + 4n0n4r

T2
2 p1), p1p2 + 4(n3r

S1
1 p2 + 4n0n4r

S2
2 p1) (mod 4p1p2), where

S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1}, T1 ∈ {1, 3, 5, . . . , p1 − 2},
and T2 ∈ {1, 3, 5, . . . , p2 − 2}. By Theorem 3.14, px + py + 152z+1 = w2 has no
positive integer solution.

Theorem 3.15. Let x and y be positive integers and z be an odd positive integer.
If p1, p2 and p are distinct odd prime numbers with the following conditions:
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1. p1 ≡ 3 (mod 4), p2 ≡ 3 (mod 4) and

2. p ≡ p1p2+16(m0n3r
T1
1 p2+n0n4r

S2
2 p1), −p1p2+16(m0n3r

S1
1 p2+n0n4r

T2
2 p1),

p1p2+16(m0n3r
S1
1 p2+n0n4r

T2
2 p1), −p1p2+16(m0n3r

T1
1 p2+n0n4r

S2
2 p1)

(mod 4p1p2),

where S1 ∈ {2, 4, 6, . . . , p1 − 1}, S2 ∈ {2, 4, 6, . . . , p2 − 1}, T1 ∈ {1, 3, 5, . . . , p1 −
2}, T2 ∈ {1, 3, 5, . . . , p2 − 2} and r1, r2 are primitive roots modulo p1 and p2,
respectively and and m0, n0, n3, n4 are integers with m0 = p1+1

4 , n0 = p2+1
4 ,

4p2n3 ≡ 1 (mod p1) and 4p1n4 ≡ 1 (mod p2), then the Diophantine equation
px + py + (p1p2)

z = w2 has no positive integer solution.

Proof. By Theorem 3.8,
(
p1p2
p

)
= −1. Thus, px + py + (p1p2)

z = w2 has no

positive integer solution by Theorem 3.1.

Corollary 3.7. The Diophantine equation px+py+212z+1 = w2 has no positive
integer solution, where p ≡ ±11,±13,±19,±23,±29,±31 (mod 84).

Proof. It is obvious that 2z+1 is odd. Let p1 = 3, p2 = 7, r1 = 2, r2 = 3, m0 =
1, n0 = 2, n3 = 1 and n4 = 3. Then, p1 ≡ 3 (mod 4), p2 ≡ 3 (mod 4), r1, r2 are
primitive roots modulo p1 and p2, respectively, m0 =

p1+1
4 , n0 =

p2+1
4 , 4p2n3 ≡ 1

(mod p1) and 4p1n4 ≡ 1 (mod p2). Since p ≡ ±11,±13,±19,±23,±29,±31
(mod 84), we have

p ≡ p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

S2
2 p1), − p1p2 + 16(m0n3r

S1
1 p2 + n0n4r

T2
2 p1),

p1p2 + 16(m0n3r
S1
1 p2 + n0n4r

T2
2 p1),

− p1p2 + 16(m0n3r
T1
1 p2 + n0n4r

S2
2 p1) (mod 4p1p2),

where S1 ∈ {2, 4, 6, . . . , p1−1}, S2 ∈ {2, 4, 6, . . . , p2−1}, T1 ∈ {1, 3, 5, . . . , p1−2}
and T2 ∈ {1, 3, 5, . . . , p2 − 2} By Theorem 3.15, px + py + 212z+1 = w2 has no
positive integer solution.

4. Non-existence of solutions by modulo p-1 and p+1

In the last section, we are interested in exploring some conditions of n by modulo
p− 1 and p+ 1 that (1) has no positve integer solution.

Theorem 4.1. Let n ≡ 0 (mod p − 1). If p ≡ 1 (mod 4), then (1) has no
positive integer solution.

Proof. Assume that (1) has a positive integer solution. Then, w2 ≡ 2 (mod p−
1). There exists an integer k such that w2 = (p−1)k+2 = 2((p−1

2 )k+1). Thus,
p−1
2 is odd. Therefore, p ≡ 3 (mod 4).

Corollary 4.1. The Diophantine equation px + py + ((p − 1)k)z = w2 has no
positive integer solution, where p ≡ 1 (mod 4) and k is a positive integer.
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Proof. Since (p−1)k ≡ 0 (mod p−1) and p ≡ 1 (mod 4), we can conclude that
px + py + ((p− 1)k)z = w2 has no positive integer solution by Theorem 4.1.

Theorem 4.2. Let n ≡ 0 (mod p+ 1) and x, y have the same parity. If p ≡ 3
(mod 4), then (1) has no positive integer solution.

Proof. Assume that (1) has a positive integer solution. Then, w2 = px +
py + nz ≡ (−1)x + (−1)y + 0 (mod p + 1). Since x, y have same parity, we
obtain that w2 ≡ ±2 (mod p + 1). So, there exists an integer k such that
w2 = (p + 1)k ± 2 = 2((p+1

2 )k ± 1). Thus, p+1
2 is odd. Therefore, p ≡ 1

(mod 4).

Corollary 4.2. The Diophantine equation p2x + p2y + ((p+ 1)k)z = w2 has no
positive integer solution, where p ≡ 3 (mod 4) and k is a positive integer.

Proof. It is obvious that 2x, 2y have same parity. Since (p+1)k ≡ 0 (mod p+1)
and p ≡ 3 (mod 4), we can conclude that p2x + p2y + ((p + 1)k)z = w2 has no
positive integer solution by Theorem 4.2.

Corollary 4.3. The Diophantine equation p2x+1+p2y+1+((p+1)k)z = w2 has
no positive integer solution, where p ≡ 3 (mod 4) and k is a positive integer.

Proof. It is obvious that 2x + 1, 2y + 1 have same parity. Since (p + 1)k ≡ 0
(mod p+1) and p ≡ 3 (mod 4), we can conclude that p2x+p2y+((p+1)k)z = w2

has no positive integer solution by Theorem 4.2.

5. Conclusion

We have studied the Diophantine equations px+py+nz = w2, where p is an odd
prime number and n is a positive integer. Various conditions are provided to
confirm that the Diophantine equations px + py + nz = w2 has no non-negative
or positive integer solution. Moreover, we obtain numerous examples form all
corollaries in this article.
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