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Abstract. In this research, we investigate some conditions for the non-existence of
integer solutions of the Diophantine equation p® + p¥ + n* = w?, where p is an odd
prime number and n is a positive integer. Moreover, numerous examples to illustrate
these cases are provided.

Keywords: Diophantine equation, Legendre symbol, congruence.

MSC 2020: 11D61.

1. Introduction

One of the famous Diophantine equations is the exponential Diophantine equa-
tion a®+bY = w?, where a and b are positive integers. Many authors investigated
the non-negative integer solutions of the equation, where a and b are specified
as positive integers (c.f. [1], [3] and [15]). Positive integer a or b is studied as
variable under certain conditions in various manuscripts. In [5], [11], [14] and
[17], either a or b is a fixed number and in [4], [7], [8] [9], [10] both @ and b are
variables that satisfy some conditions. Moreover, the non-existence of positive
integer solutions to the Diophantine equation is studied; see [16].

The Diophantine equation a® + WY + ¢* = w?, where a, b and ¢ are positive
integers, was constructed and studied. In [2], Bacani and Rabago gave all non-
negative integer solutions of the equation 3% + 5Y + 77 = w?. Similarly, a, b
and c are considered in other papers as variables satisfying some conditions.

*. Corresponding author
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In [6], all integer solutions of the equation p® + (p + 1)¥ + (p + 2)* = w? are
provided, where p is a prime number and 1 < z,y, z < 2. Recently, Pandichelvi
and Sandhya [12] showed integer solutions of the equation p} + p§ + pj = M 2,
where p1, p2, p3 are prime numbers and x,y, z € {1, 2}.

In this research, the Diophantine equation

1) PP+t = w’

is studied, where p is an odd prime number and n is a positive integer. We
found some conditions for the contradiction of the existence of solutions of (1)
by modulo 4, p, p—1 and p+ 1. Thus, many Diophantine equations of the form
(1), which have no solutions, are demonstrated.

2. Non-existence of solutions by modulo 4

In this section, we investigate conditions on n modulo 4 for the non-existence of
non-negative integer solutions to (1). First, we characterize the conditions for
n®*=0,1,2,3 (mod 4).

Lemma 2.1. Let n be a positive integer and z be a non-negative integer. Then,
1. n* =0 (mod 4) if and only if n = 0,2 (mod 4), where z > 2;

2. n* =1 (mod 4) if and only if n =1 (mod 4) or n =3 (mod 4) and z is
even, where z > 1;

3. n* =2 (mod 4) if and only if n =2 (mod 4) and z = 1;
4. n* =3 (mod 4) if and only if n =3 (mod 4) and z is odd.

Proof. 1. Let z > 2. First, assume that n* = 0 (mod 4). Suppose that n = 1,3
(mod 4). Then, n* = 1,3 (mod 4), a contradiction. Thus, n = 0,2 (mod 4).
Conversely, it is easy to show that n* = 0 (mod 4) if n = 0,2 (mod 4) and
z > 2.

2. Let z > 1. First, assume that n* = 1 (mod 4). Then, n = 1 (mod 4)
orn =3 (mod4). If n =3 (mod 4), then n* = (—1)* (mod 4) so that z is
even. Therefore, n =1 (mod 4) or n = 3 (mod 4) and z is even. The converse
is obtained obviously.

3. Assume that n* = 2 (mod 4). Then, n = 2 (mod 4). Suppose that

= 0 (mod 4), respectively. This
=2 (mod 4) and z = 1. Tt is

z=0or z> 1. Thus, n* =1 (mod 4) or n*
contradicts to the assumption. Therefore, n
obvious for the converse.

4. Assume that n* = 3 (mod 4). Then, n =3 (mod 4). Hence, n* = (—1)*
(mod 4) so that z is odd. Therefore, n =3 (mod 4) and z is odd. The converse
is obtained obviously. d

The following lemma gives the conditions that lead to w? = 2,3 (mod 4)
and contradict the existence of non-negative integer solutions of (1).
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Lemma 2.2. Let n be a positive integer. Then, (1) has no non-negative integer
solution if

1. p=1 (mod 4) and n* =0,1 (mod 4) or
2. p=3 (mod 4), z,y have same parity and n* = 0,1 (mod 4) or
3. p=3 (mod 4), x,y have opposite parity and n* = 2,3 (mod 4).

Proof. 1. Assume that p = 1 (mod 4) and n* = 0,1 (mod 4). Then, p* =1
(mod 4) and p¥ = 1 (mod 4). Thus, p*+pY+n* = 2,3 (mod 4) so that w? = 2,3
(mod 4). Therefore, (1) has no non-negative integer solution.

2. Assume that p = 3 (mod 4), z,y have same parity and n* = 0,1 (mod 4).
Then, p* = 1 (mod 4) and p¥ = 1 (mod 4), where z,y are even or p* = 3
(mod 4) and p¥ = 3 (mod 4), where z,y are odd. Hence, w? = p®+pY+n* = 2,3
(mod 4). Therefore, (1) has no non-negative integer solution.

3. Assume that p = 3 (mod 4), x,y have opposite parity and n®* = 2,3
(mod 4). Then, p* = 1 (mod 4) and p¥ = 3 (mod 4), where z is even and y
is odd or p* = 3 (mod 4) and p¥ = 1 (mod 4), where z is odd and y is even.
Hence, w? = p® + p¥ + n* = 2,3 (mod 4). Therefore, (1) has no non-negative
integer solution. O

~—

For p =1 (mod 4), it is easy to show that (1) has no non-negative integer
solution, where z = 0. Next, we study the case z > 2.

Theorem 2.1. Let p =1 (mod 4) and z > 2. Then, (1) has no non-negative
integer solution if

1. n=0,1,2 (mod 4) or
2. n=3 (mod 4) and z is even.

Proof. 1. Assune that n = 0,1,2 (mod 4). By Lemma 2.1 (1) and (2), we
obtain that n* = 0,1 (mod 4). Thus, (1) has no non-negative integer solution
by Lemma 2.2 (1).

2. Assume that n=3 (mod 4) and z is even. By Lemma 2.1 (2), we ob-
tain that n* = 1 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (1). O

2242

Corollary 2.1. The Diophantine equation p* + p¥ + n = w? has no non-

negative integer solution, where p =1 (mod 4).

Proof. It is obvious that 2z 4+ 2 is even and 2z + 2 > 2 for all non-negative
integer z. By Theorem 2.1 (1) and (2), p® +pY +n?**2 = w? has no non-negative
integer solution. O

Furthermore, some conditions of n that (1) has no non-negative integer so-
lution are investigated where z > 0.
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Corollary 2.2. The Diophantine equation p®+pY+n? = w? has no non-negative
integer solution, where p =1 (mod 4) and n = 0,1 (mod 4).

Proof. Since n = 0,1 (mod 4), we can conclude that n* = 0,1 (mod 4). By
Lemma 2.2 (1), p* + p¥ +n* = w? has no non-negative integer solution. O

Similarly, we obtain the non-existence of non-negative integer solutions for
p=3 (mod 4) and z, y have same parity by Lemma 2.1 (1), (2) and Lemma 2.2 (2).

Theorem 2.2. Let p =3 (mod 4), z > 2 and x,y have same parity. Then, (1)
has no non-negative integer solution if

1. n=0,1,2 (mod 4) or
2. n=3 (mod 4) and z is even.

Proof. 1. Assune that n = 0,1,2 (mod 4). By Lemma 2.1 (1) and (2), we
obtain that n* = 0,1 (mod 4). Thus, (1) has no non-negative integer solution
by Lemma 2.2 (2).

2. Assume that n=3 (mod 4) and z is even. By Lemma 2.1 (2), we ob-
tain that n*=1 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (2). O

Corollary 2.3. The Diophantine equation p** + p*¥ +n?**2 = w? has no non-
negative integer solution, where p =3 (mod 4).

Proof. It is obvious that 2z, 2y and 2z + 2 are even. Then, 2x, 2y have same
parity and 2z 4+ 2 > 2 for all non-negative integer z. By Theorem 2.2 (1) and
(2), p** + p?¥ 4+ n?**2 = w? has no non-negative integer solution. ]

Corollary 2.4. The Diophantine equation p**+1 + p2+l £ n2#+2 — 42 has no
non-negative integer solution, where p =3 (mod 4).

Proof. It is clear that 2x 4+ 1, 2y + 1 are odd and 2z + 2 is even. Then,
2x + 1,2y 4+ 1 have same parity and 2z + 2 > 2 for all non-negative integer z.
By Theorem 2.2 (1) and (2), p?*™! + p?¥*1 4+ n2#*2 = %? has no non-negative
integer solution. O

Next, we can confirm the non-existence of non-negative integer solution of
(1) where z,y have same parity and z > 0.

Corollary 2.5. The Diophantine equation p*® + p*¥ +n? = w? has no non-
negative integer solution, where p =3 (mod 4) and n = 0,1 (mod 4).

Proof. It is obvious that 2z, 2y have same parity and n* = 0,1 (mod 4). By
Lemma 2.2 (2), p?® 4+ p®¥ + n* = w? has no non-negative integer solution. [

Corollary 2.6. The Diophantine equation p**Tt + p?¥*1 4 n? = w? has no
non-negative integer solution, where p =3 (mod 4) and n = 0,1 (mod 4).
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Proof. It is obvious that 2z +1, 2y+ 1 have same parity and n* = 0,1 (mod 4).
By Lemma 2.2 (2), p?**!1 4+ p?¥+! 4 n* = w? has no non-negative integer solution.
O

By Lemma 2.1 (3), (4) and Lemma 2.2 (3), we obtain the following theorem.

Theorem 2.3. Let p =3 (mod 4) and x,y have opposite parity. Then, (1) has
no non-negative integer solution if

1. n=2 (mod 4) and z =1 or
2. n=3 (mod 4) and z is odd.

Proof. 1. Assune that n=2 (mod 4) and z = 1. By Lemma 2.1 (3), we ob-
tain that n*=2 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (3).

2. Assume that n=3 (mod 4) and z is odd. By Lemma 2.1 (4), we ob-
tain that n*=3 (mod 4). Thus, (1) has no non-negative integer solution by
Lemma 2.2 (3). O

Corollary 2.7. The Diophantine equation p**T' + p?¥ 4+ n?**t1 = w? has no

non-negative integer solution, where p =3 (mod 4) and n =3 (mod 4).

Proof. It is obvious that 2z + 1, 2y have opposite parity and 2z 4 1 is odd.
By Theorem 2.3 (2), p***! 4 p?¥ + n?**1 = w? has no non-negative integer
solution. O

Corollary 2.8. The Diophantine equation p***t1 4+ p?Y +n = w? has no non-
negative integer solution, where p =3 (mod 4) and n =2 (mod 4).

Proof. It is obvious that 2z + 1, 2y have opposite parity. By Theorem 2.3 (1),
p?* 1 4 p2Y + n = w? has no non-negative integer solution. O

3. Non-existence of solutions by modulo p

In this section, we confirm that (1) has no positive integer solution by modulo
p and Legendre symbol (%) Moreover, we gather some forms of an odd prime

number p in Legendre symbol (%), <%) and (%), where ¢, p1 and ps are

distinct prime numbers.

Theorem 3.1. Let x and y be positive integers and z be an odd positive integer.
If (%) = —1, then (1) has no positive integer solution.

Proof. Assume that (1) has a positive integer solution. Since z and y are

positive integers, we have w? = n* (mod p). Then, (%z) = 1. Since z is odd,

we can conclude that (%) =1. O
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By the above theorem, we found that an odd prime number p with (%) =-1

has an important role non-existence of positive integer solutions of (1). In [16],
Tadee and Siraworakun investigated the forms of an odd prime number p in

Legendre symbols (%) and (%), where ¢ is an odd prime number.

Theorem 3.2 ([16]). Let p and q be distinct odd prime numbers with ¢ = 1
(mod 4). Then,

<q> )1 if p=q+riig+rS  (mod 2q)
—1 if p=q+rP¢g+r" (mod2q)’

where S1 € {2,4,6,...,q—1}, So € {1,3,5,...,¢— 2} and r is a primitive root
modulo q.

Theorem 3.3 ([16]). Let p and q be distinct odd prime numbers with ¢ = 3
(mod 4). Then,

1 if p=3¢g+4nerS  (mod 4q)or
a\ p=—3q+ 4ngr>® (mod 4q)
(p) ) =1 if p=3q+ dngrS? (mod 4¢) or’
p=—3q+4ngr>’  (mod 4q)

where S1 € {2,4,6,...,q — 1}, Sy € {1,3,5,...,q — 2}, r is a primitive root
modulo q and ng = %1.

Theorem 3.4 ([16]). Let p and q be distinct odd prime numbers with ¢ = 1
(mod 4). Then,

;

1 if p=qg®+8nr (
p=—q¢*+8nyr (

p = 3¢% + 8nyr™? (mod 8¢q) or
2q p= -3¢ +8nr% |
<) -1 if p= ¢%+ 8nyr? (mod 8¢)or ’

p=—q¢>+ 8nyr> (mod 8q) or
p = 3¢% + 8yt (mod 8¢) or
p=—3¢>+ 8151 (mod 8¢)

where Sy € {2,4,6,...,q — 1}, So € {1,3,5,...,q — 2}, r is a primitive root

modulo q and if qzl 1s an even number, then ny = _q8+1, and if otherwise, then
3¢+1
ny = QT

Theorem 3.5 ([16]). Let p and q be distinct odd prime numbers with ¢ = 3
(mod 4). Then,
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1 if p=q®+ 32ngnr (mod 8¢) or
p=—¢% + 32ngnir2 (mod 8¢q) or
p = 3¢% + 32ngnirS? (mod 8¢q) or
2q\ p= —3¢% + 32n9n1r>>  (mod 8¢q)
<p> ) =1 if p=q?+ 32ngnyrS? (mod 8¢)or ’
p=—q¢* + 32ngnirs (mod 8¢q) or
p = 3¢ + 32ngn 12 (mod 8q) or
\ p= —3¢% + 32non1r>"  (mod 8¢q)
where S1 € {2,4,6,...,q — 1}, Sy € {1,3,5,...,9 — 2}, r is a primitive root
modulo q, ng = qzl and if qf’ is an even number, then nqy = 5%1, and if
otherwise, then ni = q%.

Moreover, Siraworakun, Wannaphan and Seesod gave forms of an odd prime
number p in Legendre symbol (%), where p; and po are distinct prime num-
bers in [13].

Theorem 3.6 ([13]). Let p1,pe and p be distinct odd prime numbers with p; = 1
(mod 4) and po =1 (mod 4). Then,

mod 2pyps) or

L if p=pipa + 2(nary p2 + nars*p )
mod 2p;ps)
)
)

(p1p2> _ p = p1p2 + 2(n1r] 'p2 + nary*pr
p -1 if p=pip2 + 2(”17“151292 + nzrzTQpl
p = p1p2 + 2(mar] ' pa + nary?py

9

mod 2p;p2) or

~— — Y
—~ T~ o~

mod 2pip2

where
Sl € {274,67"'ap1 - 1}552 € {274767-"’}72 - 1}7

Tl G{173757"'7])172}71—‘26{173757"')])272}

and r1,r9 are primitive roots modulo py and ps, respectively and ni,ny are in-
tegers with 2pan; = 1 (mod p1) and 2pin2 =1 (mod p2).

Theorem 3.7 ([13]). Let p1,p2 and p be distinct odd prime numbers with p; = 1
(mod 4) and po =3 (mod 4). Then,

1 if p=—pip2 +4(ngry' pa + dngnary?pr)  (mod 4pips) or
p = p1p2 + 4(ngri pa + dngnary*pr) (mod 4p1p2) or
p = —pip2 + 4(ngri ps + dnonaryp1)  (mod 4pips) or
(p1p2) _ p = pipe + 4(nartpy + dngnars?pr) (mod 4pip2)
p ) | -1 if p=—pips+A(ngr] s+ Angnary?pr)  (mod 4pips)or’
p = pipa + 4(ngr] 'p2 + dngnary*pr) (mod 4p1p2) or
p = —pip2 + 4(ngrps + Anonary’pr)  (mod 4pyps) or
p = pip2 + 4(n3rflp2 + 4n0n4r‘292p1) (mod 4p1p2)
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where
Sl € {27476’-“7171 _1}752 S {274767"‘7])2_1})
T, € {1,3,5,...,p1—2},T2 S {1,3,5,...,])2—2}

and r1,re are primitive roots modulo p1 and ps, respectively and ng,ns,ng are

integers with ng = pzrl, 4dpons =1 (mod py) and 4ping =1 (mod po).

Theorem 3.8 ([13]). Let p1,p2 and p be distinct odd prime numbers with p; = 3
(mod 4) and po =3 (mod 4). Then,

1 if p=pips+ 16(m0n3rf1p2 + n0n4r§2p1) (mod 4p;ip2) or
p=—p1p2 + 16(m0n37“1T1p2 + non4r2TQp1) (mod 4pip2) or
p = pip2 + 16(monary 'p2 + nonary*p1)  (mod 4pips) or
(pmz ) B p = —pip2 + 16(monsr py + nongry?pr)  (mod 4pips)
I T P =pip2 + 16(m0n3r?1p2 + n0n4r§2p1) (mod 4p;ip2) or ’
)

od 4p1ps) or

=]

p = —pip2 + 16(mon:>,7“*19 "D + nonaraipr)  (
p = pip2 + 16(monsrypy + nonarizpr)  (mod 4p;ps) or
= —p1pa + 16(monzrips + nonary?pr)  (mod 4pips)

where
S1€{2,4,6,...,p1 —1},52 € {2,4,6,...,p2 — 1},

T, €{1,3,5,...,;pm1 —2},To € {1,3,5,...,p2 — 2}

and r1,ro are primitive roots modulo p1 and ps, respectively and mg, ng,ng, N4

are integers with mgy = p14+1, ng = mjl, 4pong = 1 (mod p1) and 4ping = 1

(mod p2).

Now, we combine Theorem 3.1 with Theorem 3.2-3.8 to prove Theorem 3.9 -
3.15. In addition, many examples of (1), that have no positive integer solution,
are demonstrated in Corollary 3.1 - 3.7.

Theorem 3.9. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. ¢ =1 (mod 4) and
2. p=q+r52q+r® (mod 2q),

where Sy € {1,3,5,...,q — 2} and r is a primitive root modulo q, then the
Diophantine equation p® + p¥ + ¢* = w? has no positive integer solution.

Proof. By Theorem 3.2, (%) = —1. Thus, p® + pY + ¢° = w? has no positive
integer solution by Theorem 3.1. O

Corollary 3.1. The Diophantine equation p® +pY + 5% = w? has no positive
integer solution, where p = £3 (mod 10).
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Proof. It is obvious that 2z + 1 is odd. Let ¢ = 5 and r = 2. Then, ¢ = 1
(mod 4) and r is a primitive root modulo ¢g. Since p = £3 (mod 10), we have
p=q+r2q+r% (mod 2q), where Sy € {1,3,5,...,q — 2}. By Theorem 3.9,
p* 4+ p¥ 4+ 52*Ft1 = ? has no positive integer solution. O

Theorem 3.10. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. ¢=3 (mod 4) and
2. p=3q+4ner?, — 3q+ 4ner> (mod 4q),

where S € {2,4,6,...,q — 1}, Sy € {1,3,5,...,q — 2}, r is a primitive root
modulo ¢ and ng = qil, then the Diophantine equation p* + p¥ + ¢* = w? has
no positive integer solution.

Proof. By Theorem 3.3, (%) = —1. Thus, p® + p¥ + ¢* = w? has no positive
integer solution by Theorem 3.1. O

Corollary 3.2. The Diophantine equation p® +pY + 3% = w? has no positive
integer solution, where p = £5 (mod 12).

Proof. It is obvious that 2z+1isodd. Let ¢ = 3,7 =2and ng = 1. Then, ¢ = 3
(mod 4), r is a primitive root modulo ¢ and ny = %1. Since p = +5 (mod 12),
we have p = 3¢+4nor>2, —3q+4ner™" (mod 4q), where S1 € {2,4,6,...,q—1}
and Sy € {1,3,5,...,¢ — 2}. By Theorem 3.10, p® + p¥ + 32**1 = %? has no
positive integer solution. O

Theorem 3.11. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. ¢=1 (mod 4) and
2. p= ¢ +8n11r°2, —¢®+8n17%2, 3¢ +8n1r, — 3¢+ 8n1r™ (mod 8q),

where S1 € {2,4,6,...,q — 1}, So € {1,3,5,...,q¢ — 2}, r is a primitive root

modulo q and if qzl 18 an even number, then nq1 = %ﬂ, and if otherwise, then
ny = 3‘7—8“, then the Diophantine equation p* + p¥ + (2q)* = w? has no positive

integer solution.

Proof. By Theorem 3.4, (%) = —1. Thus, p® +pY+(2¢)* = w? has no positive
integer solution by Theorem 3.1. O

Corollary 3.3. The Diophantine equation p*+p¥+10%*T1 = w? has no positive
integer solution, where p = £7,4+11, 417,419 (mod 40).
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Proof. It is obvious that 2z + 1 is odd. Let ¢ = 5, r = 2 and ny = 2. Then,
g = 1 (mod 4), r is a primitive root modulo ¢ and n; = 3‘1;'1. Since p =
+7, 411,417,419 (mod 40), we have p = ¢* + 8n17%2, — ¢ + 8nyr™2, 3¢% +
8n1rSt,  — 3¢ + 8n1r' (mod 8¢), where S; € {2,4,6,...,q — 1} and Sy €
{1,3,5,...,q — 2}. By Theorem 3.11, p® + p¥ 4+ 10%**! = w? has no positive

integer solution. O

Theorem 3.12. Let x and y be positive integers and z be an odd positive integer.
If p and q are distinct odd prime numbers with the following conditions:

1. ¢=3 (mod 4) and

Sa

2. p= ¢>+32ngn1r>?, —q 2 4 32ngn 51 , 3¢° +32ngn, 152 , —3q> +32ngn 51

(mod 8q),

where S1 € {2,4,6,...,q — 1}, Sy € {1,3,5,...,9 — 2}, 7 is a primitive root
modulo q, ng = if qf?’ ‘ 1= %, and if
otherwise, then n1 then the Diophantine equatzon p" +pY + (29)% = w?
has no positive integer solutzon

_ q+1

Proof. By Theorem 3.5, (%) = —1. Thus, p® +pY+(2¢)* = w? has no positive
integer solution by Theorem 3.1. O

Corollary 3.4. The Diophantine equation p® 4+ p¥ +62*T1 = w? has no positive
integer solution, where p = £7,4+11, (mod 24).

Proof. It is obvious that 2z + 1 is odd. Let ¢ = 3, r = 2, ng = 1 and
ny = 2. Then, ¢ = 3 (mod 4), r is a primitive root modulo ¢, ng = %1
and ni = SqH Since p = 7,411, (mod 24), we have p= ¢ + 32ngniro2, —
@+ 32n0n1r5 . 3¢% + 32n0n1r52 — 3¢ + 32non1r°' (mod 8¢), where S; €
{2,4,6,...,q—1}and Sy € {1,3,5,...,¢q—2}. By Theorem 3.12, p*+pY+62**1 =

w? has no positive integer solution. O

Theorem 3.13. Let x and y be positive integers and z be an odd positive integer.
If p1,p2 and p are distinct odd prime numbers with the following conditions:

1. p1 =1 (mod 4), po =1 (mod 4) and
2. p=pipa+2(nir patnoraipr), pipa+2(nirit patnory?pr) (mod 2pips),

where S1 € {2,4,6,...,])1 — 1},52 S {2,4,6,...,]72 — 1}, T € {1,3,5,...,1)1 -
2}, Ty € {1,3,5,...,p2 — 2} and ri,7r9 are primitive roots modulo p1 and pa,
respectively and ni,ns are integers with 2psny = 1 (mod p1) and 2pine = 1
(mod pz), then the Diophantine equation p® +pY + (p1p2)? = w? has no positive
integer solution.

P
positive integer solution by Theorem 3.1. O

Proof. By Theorem 3.6, (m) = —1. Thus, p* + p¥ + (p1p2)* = w? has no
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Corollary 3.5. The Diophantine equation p*+p¥+65%*T1 = w? has no positive

integer solution, where p = +3,+11,+17, 419, £21, 4£23, +27, 431, £41, +43,
+53,+59 (mod 130).

Proof. It is obvious that 2z+1isodd. Let p1 =5, ps =13, 11 =2, 10 =2, n1 =
1 and ny = 4. Then, p; =1 (mod 4), p2 =1 (mod 4), r1,ry are primitive roots
modulo p; and ps, respectively, 2pon; = 1 (mod p;1) and 2pine = 1 (mod p2).
Since p = £3, £11, £17, £19, £21, £23, £27, £31, £41, £43, £53, £59 (mod 130),
we have p = p1pa+2(niry potnary®pr), pip2+2(nary patnars®pr) (mod 2pips),
where S € {2,4,6,...,])1—1},52 S {2,4,6,. . .,pg—l}, T € {1,3,5,... ,p1—2}
and Ty € {1,3,5,...,p2 — 2}. By Theorem 3.13, p* + p¥ + 652**! = w? has no
positive integer solution. O

Theorem 3.14. Let x and y be positive integers and z be an odd positive integer.
If p1,p2 and p are distinct odd prime numbers with the following conditions:

1. p1 =1 (mod 4), p2 =3 (mod 4) and

2. p=—pip2 + 4(n37“1T;p2 + 4non4r§;p1), pip2 + 4(n37“1T;p2 + 4non4r2TZp1),
— p1p2 + 4(nary' pe + dnonary®p1), pipe + 4(naripe + 4nonary®pr)
(mod 4p1p2),

where S1 € {2,4,6,...,])1 — 1},52 S {2,4,6,...,])2 - 1}, T, € {1,3,5,...,])1 —
2}, Ty € {1,3,5,...,p2 — 2} and r1,r2 are primitive roots modulo p; and pe,
respectively and and ng, n3,ng are integers with ng = pQII, 4dpons =1 (mod py)
and 4p1ng = 1 (mod po), then the Diophantine equation p* + p¥ + (p1p2)? = w?

has no positive integer solution.

Proof. By Theorem 3.7, (%) = —1. Thus, p* + p¥ + (p1p2)* = w? has no

positive integer solution by Theorem 3.1. 0

52z+1

Corollary 3.6. The Diophantine equation p*+p¥+1 = w? has no positive

integer solution, where p = +13,+19, 423, 29 (mod 60).

Proof. It is obvious that 2z 4+ 1 is odd. Let py = 5, po = 3, 11 = 2, ro = 2,
no =1, ng = 3 and ngy = 2. Then, p; =1 (mod 4), p2 = 3 (mod 4), r1, 7 are
primitive roots modulo p; and po, respectively, ng = pfl, 4dpons =1 (mod py)
and 4ping = 1 (mod pe2). Since p = £13,419,+23,£29 (mod 60), we have
p = —pip2+4(narips +4ngnars’pr), pipe+4(naritpy+4dngnaraipr), —pips+
A(ngrtpa + dnonary®pr), pipe + 4(ngritps + dngnary’pr) (mod 4pip2), where
Sy € {2,4,6,....p1 — 1}, € {2,4,6,...,ps — 1}, T1 € {1,3,5,...,p1 — 2},
and Ty € {1,3,5,...,p2 — 2}. By Theorem 3.14, p® + p¥ + 152**1 = 4?2 has no
positive integer solution. O

Theorem 3.15. Let x and y be positive integers and z be an odd positive integer.
If p1,po and p are distinct odd prime numbers with the following conditions:
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1. p1 =3 (mod 4), p2 =3 (mod 4) and

2. p= p1p2+16(mon3rT1p2+non4r§ ’p1), —p1p2+16(mon3ri§fpz+non4r§;p1),
p1p2+16(monsry' pa+nonary’p1), —pip2+16(monsry' pa+nenarspr)
(mod 4p1p2),

where S1 € {2,4,6,...,])1 — 1},52 €1{2,4,6,...,p0— 1}, T1 € {1,3,5,...,]01 —
2}, T, € {1,3,5,...,p2 — 2} and r1,r2 are primitive roots modulo p; and pe,
respectively and and mg,ng,ng, ng are integers with my = pljl, ng = pZH,
4dpaong = 1 (mod p1) and 4ping = 1 (mod pe), then the Diophantine equation

¥+ pY + (p1p2)? = w? has no positive integer solution.

Proof. By Theorem 3.8, (%) = —1. Thus, p* + p¥ + (p1p2)? = w? has no

positive integer solution by Theorem 3.1. O

Corollary 3.7. The Diophantine equation p*+p¥+21%*T1 = w? has no positive

integer solution, where p = +£11,+13,+19, 423, 29, 31 (mod 84).

Proof. It is obvious that 2z+1isodd. Let p1 =3, pa =7, 11 =2,79 =3, mg =
1, n9 =2, n3 =1and ng = 3. Then, p; =3 (mod 4), p, =3 (mod 4), r1,r9 are
primitive roots modulo p; and po, respectively, mg = plz'l, ng = pzz'l, 4dpong =1
(mod p1) and 4ping = 1 (mod pe). Since p = +11,+13,+19,+23, £29, +31

(mod 84), we have

p = pipa + 16(monari ' pa + nonars?pr), — pipe + 16(mongry pr + nonara®pr),
p1p2 + 16(monary py + nonara*pr),

—p1p2 + 16(m0n37“ip1172 + n0n4r‘§2p1) (mod 4p1p2),

where S1 € {2,4,6,...,p1—1},52 € {2,4,6,...,p2—1},T1 € {1,3,5,...,p1 —2}
and Ty € {1,3,5,...,p2 — 2} By Theorem 3.15, p* + p¥ + 212**1 = w? has no
positive integer solution. O

4. Non-existence of solutions by modulo p-1 and p+1

In the last section, we are interested in exploring some conditions of n by modulo
p—1 and p+ 1 that (1) has no positve integer solution.

Theorem 4.1. Let n = 0 (mod p —1). If p = 1 (mod 4), then (1) has no
positive integer solution.

Proof. Assume that (1) has a positive integer solution. Then, w? =2 (mod p—

1). There exists an integer k such that w? = (p—1)k+2 = 2((%)1@4— 1). Thus,

% is odd. Therefore, p =3 (mod 4). O

Corollary 4.1. The Diophantine equation p* + p¥ + ((p — 1)k)* = w? has no
positive integer solution, where p =1 (mod 4) and k is a positive integer.
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Proof. Since (p—1)k =0 (mod p—1)and p =1 (mod 4), we can conclude that
p” +pY + ((p— 1)k)* = w? has no positive integer solution by Theorem 4.1. [

Theorem 4.2. Let n =0 (mod p+ 1) and x,y have the same parity. If p =3
(mod 4), then (1) has no positive integer solution.

Proof. Assume that (1) has a positive integer solution. Then, w? = p® +
p +n* = (-1 + (—-1)Y + 0 (mod p + 1). Since z,y have same parity, we
obtain that w? = 42 (mod p + 1). So, there exists an integer k& such that
w? = (p+ Dk +2 = 2((2)k £ 1). Thus, 25 is odd. Therefore, p = 1
(mod 4). O

Corollary 4.2. The Diophantine equation p** 4+ p?Y + ((p + 1)k)* = w? has no
positive integer solution, where p =3 (mod 4) and k is a positive integer.

Proof. It is obvious that 2z, 2y have same parity. Since (p+1)k =0 (mod p+1)
and p = 3 (mod 4), we can conclude that p?® + p*¥ + ((p + 1)k)* = w? has no
positive integer solution by Theorem 4.2. O

Corollary 4.3. The Diophantine equation p***1 +p?*1 4+ ((p+1)k)* = w? has
no positive integer solution, where p =3 (mod 4) and k is a positive integer.

Proof. It is obvious that 2z + 1, 2y + 1 have same parity. Since (p+ 1)k =0
(mod p+1) and p = 3 (mod 4), we can conclude that p?*+p?+((p+1)k)* = w?
has no positive integer solution by Theorem 4.2. O

5. Conclusion

We have studied the Diophantine equations p* +p¥ +n* = w?, where p is an odd
prime number and n is a positive integer. Various conditions are provided to
confirm that the Diophantine equations p* + p¥ + n* = w? has no non-negative
or positive integer solution. Moreover, we obtain numerous examples form all
corollaries in this article.
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