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1. Introduction

Generalizing the notion of binary operation in groups to hyperoperation, Marty
[22] introduced hypergroups in 1934. A hypergroupoid is an ordered pair (M, ◦),
where ◦ : M ×M → P ⋆(M) is a hyperoperation on a nonempty set M . Let L1

and L2 be two nonempty subsets of M and m ∈ M , then

L1 ◦ L2 =
⋃

l1 ◦ l2, L1 ◦m = L1 ◦ {m} and m ◦ L2 = {m} ◦ L2,

where l1 ∈ L1, l2 ∈ L2.

*. Corresponding author
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A hypergroupoid (M, ◦) earns the title of a semihypergroup if, for every
m1,m2,m3 ∈ M , the equation (m1 ◦m2)◦m3 = m1 ◦ (m2 ◦m3) holds, indicating
that ⋃

u∈m1◦m2

u ◦m3 =
⋃

v∈m2◦m3

m1 ◦ v.

By a hypergroup, we mean a semihypergroup (M, ◦) for which m1 ◦M = M ◦
m1 = M , for all m1 ∈ M .

The definitions of relevant algebraic structures follow the order: (binary)
hyperring (Definition 1.1), ternary hyperring (Definition 1.2) and ternary semi-
hyperring (Definition 1.3).

Krasner [20] initiated the concept of hyperrings and hyperfields, taking ad-
dition to be a hypercomposition and retaining multiplication as a binary com-
position.

Definition 1.1 ([20]). A hyperring according to Krasner is described as a math-
ematical structure (R,+, ·) that adheres to the following set of axioms:

(i) (R,+) constitutes a canonical hypergroup, i.e.,

(1) for every r1, r2, r3 ∈ R, r1 + (r2 + r3) = (r1 + r2) + r3,

(2) for every r1, r2 ∈ R, r1 + r2 = r2 + r1,

(3) there exists 0 ∈ R such that 0 + r1 = {r1} = r1 + 0 for each r1 ∈ R,

(4) for each r1 ∈ R, there is precisely one element r′1 in R, such that
0 ∈ r1 + r′1, (we will denote −r1 as r′1 and refer to it as the inverse of
r1),

(5) r3 ∈ r1 + r2 implies r2 ∈ −r1 + r3 and r1 ∈ r3 − r2.

(ii) (R, ·) forms a semigroup with zero acting as a bilaterally absorbing ele-
ment, i.e., r1 · 0 = 0 · r1 = 0.

(iii) The multiplication distributes with regard to the hyperoperation +.

Example 1.1 ([20]). Consider R as a ring with identity that satisfies commuta-
tivity. We define R = {r = {r,−r}, r ∈ R}. Then, R becomes a hyperring with
respect to the hyperoperation r1 ⊕ r2 = {r1 + r2, r1 − r2} and multiplication
r1 ◦ r2 = r1 · r2.

Let us suppose that (R,+, ·) is a hyperring and A is a nonempty subset of
R. We define A as a subhyperring of R if (A,+, ·) forms a hyperring in its
own right. A subhyperring A of a hyperring R is a left (right) hyperideal of R
if r1 · r2 ∈ A (r2 · r1 ∈ A), ∀ r1 ∈ R, r2 ∈ A. A is termed a hyperideal if it
satisfies the conditions of being both a left and a right hyperideal. A hyperideal
P of a hyperring R is considered prime if, for any pair of hyperideals A and B
of R, the inclusion AB ⊆ P implies either A ⊆ P or B ⊆ P . In the case of
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a commutative hyperring R, a hyperideal P is prime if P ̸= R and for every
r1, r2 ∈ R, if r1 · r2 ∈ P , then either r1 ∈ P or r2 ∈ P .

Significant literature has evolved in the theory of hyperstructures till date,
viz., hypergroupoids [16], hypergroups [17, 34, 18], semihypergroups [13], hyper-
rings [20, 14, 27, 28, 29, 30, 9, 6, 33], semihyperrings [1, 2, 4], ternary hyperrings
[8, 7, 32, 31, 15] and ternary semihyperings [11, 26, 25, 5].

Alajbegović and Močkoř [3] studied m-rings with a multivalued addition sat-
isfying certain conditions and commutative associative binary multiplication. In
2010, Davvaz and Mirvakili [12] introduced a new class of multialgebra called
(m,n)-hyperring R in which m-ary addition makes R into a canonical hyper-
group whereas R with n-ary multiplication is a semigroup.

Krasner ternary hyperrings were investigated by Castillo and Paradero-Vilela
[8] in 2014. For a Krasner ternary hyperring (R,+, ·), the symbol ‘+’ refers to
a binary hyperoperation, while ‘·’ denotes a ternary multiplication.

Definition 1.2 ([8]). A hyperring (R,+, ·) is called a Krasner ternary hyperring
if it meets the following conditions:

(i) (R,+) constitutes a canonical hypergroup;

(ii) (r1 · r2 · r3) · r4 · r5 = r1 · (r2 · r3 · r4) · r5 = r1 · r2 · (r3 · r4 · r5);

(iii) (r1+r2) ·r3 ·r4 = r1 ·r3 ·r4+r2 ·r3 ·r4, r1 ·(r2+r3) ·r4 = r1 ·r2 ·r4+r1 ·r3 ·r4,
r1 · r2 · (r3 + r4) = r1 · r2 · r3 + r1 · r2 · r4,

(iv) 0 · r1 · r2 = r1 · 0 · r2 = r1 · r2 · 0 = 0,

∀ r1, r2, r3, r4, r5 ∈ R.

The concept of ternary semihyperrings was introduced by Davvaz [11] in
2009, extending the idea of semirings.

Definition 1.3 ([11]). A set R with a binary hyperoperation ‘+’ and a ternary
multiplication ‘·’ is termed a ternary semihyperring if (R,+) constitutes a com-
mutative semihypergroup and fulfills the subsequent conditions:

1. (r1 · r2 · r3) · r4 · r5 = r1 · (r2 · r3 · r4) · r5 = r1 · r2 · (r3 · r4 · r5);

2. (r1 + r2) · r3 · r4 = r1 · r3 · r4 + r2 · r3 · r4;

3. r1 · (r2 + r3) · r4 = r1 · r2 · r4 + r1 · r3 · r4;

4. r1 · r2 · (r3 + r4) = r1 · r2 · r3 + r1 · r2 · r4.

∀ r1, r2, r3, r4, r5 ∈ R. We simply write r1 · r2 · r3 = r1r2r3.

Example 1.2 ([11]). Consider Z as the set of all integers. We establish a binary
hyperoperation and ternary multiplication on Z as follows: r1 ⊕ r2 = {r1, r2},
and r1 · r2 · r3 denotes the standard ternary multiplication of integers. Thus,
(Z,⊕, ·) forms a ternary semihyperring.
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Example 1.3 ([11]). Consider (R,+, ·) as a semiring. We define a binary
hyperoperation by r1 ⊕ r2 =< r1, r2 > (the ideal generated by r1, r2), and a
ternary multiplication by r1 ◦ r2 ◦ r3 = r1 · r2 · r3. Consequently, (R,⊕, ◦)
constitutes a ternary semihyperring.

A nonempty subset A of a ternary semihyperring R is a ternary subsemihy-
perring of R if (A,+) is an additive subsemihypergroup of (R,+), i.e., r1+r2 ⊆
A, for any r1, r2 ∈ A and AAA ⊆ A, i.e., r1r2r3 ∈ A, for any r1, r2, r3 ∈ A. R
is said to have a zero element if there exists an element 0 ∈ R such that for
all r1, r2 ∈ R, 0r1r2 = r10r2 = r1r20 = 0. An element e of R is called a unital
element if for all r1 ∈ R, eer1 = er1e = r1ee = r1. An element r2 ∈ R is called
an inverse of r1 ∈ R if r1r2x = xr1r2 = r2r1x = xr2r1 = x for all x ∈ R. A
nonempty additive subsemihypergroup I of R is called a left hyperideal of R
if RRI ⊆ I, lateral hyperideal of R if RIR ⊆ I and right hyperideal of R if
IRR ⊆ I. If I is both a left and right hyperideal as well as a lateral hyperideal
of R then I is called a hyperideal of R. A proper hyperideal P of R is called
prime hyperideal of R if I1I2I3 ⊆ P implies I1 ⊆ P or I2 ⊆ P or I3 ⊆ P , for any
three hyperideals I1, I2, I3 of R. A ternary semihyperring R is called commu-
tative if r1r2r3 = r2r3r1 = r3r1r2 = r2r1r3 = r3r2r1 = r1r3r2, ∀ r1, r2, r3 ∈ R.
Let R be a commutative ternary semihyperring and P be a hyperideal of R.
Then, P is a prime hyperideal if and only if r1r2r3 ∈ P implies r1 ∈ P or r2 ∈ P
or r3 ∈ P , for all r1, r2, r3 ∈ R.

The notion of m-valuation on m-rings was put forward by Alajbegović and
Močkoř [3] in 1985. The idea of hypervaluation was explored in 2006 by Davvaz
and Salsi [10]. Harijani and Anvariyeh [19] introduced hypervaluation of a hyper-
field onto a totally ordered canonical hypergroup. In 2020, Linzi and Stojalowska
[21] studied that any hypervaluation from a hyperfield onto an ordered canoni-
cal hypergroup is the composition of a hypervaluation onto an ordered abelian
group and an order preserving homomorphism of hypergroups. Nikmehr, Nikan-
dish and Yassine [23] studied the notion of hypervaluation hyperideals and then
found relations between hypervaluations, integral closure of hyperideals and pri-
mary hyperideals.

A group G can be partially ordered [10] by ≤ if (G,≤) is a poset in which ≤
is compatible with the binary composition, i.e., if a1 < b1 then ga1 < gb1 and
a1g < b1g for all g ∈ G. If a1 < a′1 and b1 < b′1 then we obtain a1b1 < a′1b

′
1.

So P = {g ∈ G : 1 ≤ g}, called the positive cone of G, is a submonoid of G.
Setting P−1 = {a−1 : a ∈ P} yields

1. P ∩ P−1 = {1}, and

2. if ≤ is a total order, then P ∪ P−1 = G.

The ordered group G is adjoined with ∞ fulfilling the conditions: ∞ > a and
∞ · ∞ = ∞ = a · ∞ = ∞ · a for all a ∈ G. We write G∞ to mean G ∪ {∞}



142 SUMANA PAL, JAYASRI SIRCAR and PINKI MONDAL

which is a hyperring with hyperoperation ⊕ defined as follows: if a < b then
a⊕ b = {a} for all a, b ∈ G∞ and a⊕ a = {g ∈ G∞ : a ≤ g}. The multiplication
is given by a ◦ b = a ∨ b for all a, b ∈ G∞.

Definition 1.4 ([10]). If R is a hyperring, then a hypervaluation on R is a
mapping v : R → G∞ = G ∪ {∞}, where G is a totally ordered abelian group,
satisfying the following conditions:

1. v(0) = ∞;

2. v(xy) = v(x) · v(y), for all x, y ∈ R;

3. v(−x) = v(x), for all x ∈ R;

4. z ∈ x+ y ⇒ v(x) ≥ min{v(x), v(y)}, for all x, y, z ∈ R.

For a hypervaluation v, we say that (R, v,G) is a hypervalued hyperring.
We define two sets Av = {x ∈ R : v(x) ≥ 1} and Pv = {x ∈ R : v(x) > 1}.
Then, Av becomes a subhyperring of R and Pv becomes a prime hyperideal
of Av. Additionally, the set v−1(∞) forms a prime hyperideal of R which is
contained in Pv.

Valuation on a ternary semiring has been studied by Pal et. al [24]. In this
paper, we introduce and explore the notion of hypervaluation on a ternary semi-
hyperring, finally proving that any hypervaluation from a ternary semihyperring
onto an ordered abelian multiplicative group is the composition of a hyperval-
uation onto an ordered abelian multiplicative group and an order preserving
isomorphism of ternary semirings under certain conditions.

2. Hypervaluation on ternary semihyperring

We consider a totally ordered (multiplicative) abelian group G. Throughout
this section, we consider G∞ as G ∪ {∞}.

Definition 2.1. Let R be a commutative ternary semihyperring with a unital
element e and zero element 0. By a hypervaluation, we mean a mapping v :
R → G∞ which satisfies the conditions as follows: for x, y, z ∈ R,

(i) v(xyz) = v(x) · v(y) · v(z);

(ii) if z ∈ x+ y then v(z) ≥ min{v(x), v(y)};

(iii) v(e) = 1;

(iv) v(0) = ∞.

Example 2.1. Consider the ternary semihyperring R = (Z,⊕, ·) as shown in
Example 1.2. We take G = (Q+, ·). Define a mapping v : R → G∞ by

1. v(x) = |x|, x ̸= 0,
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2. v(0) = ∞.

Then, v becomes a hypervaluation on R.

Henceforth, by R, we will mean a ternary semihyperring with a unital ele-
ment e and a zero element 0.

We consider the set of all hypervaluations of R which is denoted by val(R).
For any hypervaluation v ∈ val(R), we set

Av = {x ∈ R : v(x) ≥ 1},
Pv = {y ∈ R : v(y) > 1},
Iv = {z ∈ R : v(z) = ∞}.

We see that e ∈ Av and 0 is in Iv as well as in Pv.

Theorem 2.1. Av is a ternary subsemihyperring in R.

Proof of Theorem 2.1. First we show that Av becomes an additive subsemi-
hypergroup. Let x, y ∈ Av, then v(x) ≥ 1, v(y) ≥ 1. Let z ∈ x+ y, then v(z) ≥
min {v(x), v(y)} ≥ 1 which gives us z ∈ Av ⇒ x + y ⊆ Av. Therefore Av is an
additive subsemihypergroup. Again, for x, y, z ∈ Av, v(xyz) = v(x)·v(y)·v(z) ≥
1 ⇒ xyz ∈ Av. Thus, Av is a ternary subsemihyperring of R.

Theorem 2.2. Pv is a prime hyperideal of Av.

Proof of Theorem 2.2. It is clear that Pv is an additive subsemihypergroup
of Av. Let a, b ∈ Av and x ∈ Pv then v(a) ≥ 1, v(b) ≥ 1 and v(x) > 1. Then,
v(abx) = v(a) · v(b) · v(x) > 1 ⇒ abx ∈ Pv. We can show that axb ∈ Pv and
xab ∈ Pv in a similar way. Hence Pv is a hyperideal of Av. Again let a, b, c ∈ Av

and abc ∈ Pv, then v(abc) > 1 ⇒ v(a) · v(b) · v(c) > 1 which further implies
either v(a) > 1 or v(b) > 1 or v(c) > 1. Hence Pv is a prime hyperideal of Av.

Theorem 2.3. Iv is a prime hyperideal of R.

Proof of Theorem 2.3. Let x, y ∈ Iv then v(x) = ∞, v(y) = ∞. Let z ∈ x+y,
then v(z) ≥min{v(x), v(y)} ⇒ v(z) = ∞ ⇒ z ∈ Iv. Therefore x + y ⊆ Iv. So
Iv is an additive subsemihypergroup. Let a, b ∈ R and x ∈ Iv then v(abx) =
v(a) · v(b) · v(x) = ∞ ⇒ abx ∈ Iv. Similarly we can show that axb ∈ Iv and
xab ∈ Iv. Therefore Iv is a hyperideal ofR. Now, let abc ∈ Iv for any a, b, c ∈ R,
then v(abc) = ∞ and so v(a) · v(b) · v(c) = ∞. Then, at least one of v(a), v(b)
or v(c) is ∞. That is, either a ∈ Iv or b ∈ Iv or c ∈ Iv. Hence Iv becomes a
prime hyperideal of R.

In the results that follow, we present some properties of a hypervalued
ternary semihyperring R where Av, Pv and v−1(∞) = Iv play a significant
role.
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Theorem 2.4. Consider a ternary subsemihyperring A containing e within a
commutative ternary semihyperring R. Assume that every nonzero element in
R has a multiplicative inverse and P represents a proper prime hyperideal of A.
In this scenario, the following assertions hold true equivalently:

(I) for each x ∈ R \A, there exists y ∈ P such that xye ∈ A \ P ,

(II) there exists a nontrivial onto ternary hypervaluation v : R → G∞ such
that Av = A and Pv = P .

Proof of Theorem 2.4. (II) ⇒ (I). Suppose there exists an onto ternary
hypervaluation v : R → G∞ = G ∪ {∞} such that Av = A and Pv = P . If
x ∈ R \ Av, then v(x) < 1 and therefore v(x) ̸= ∞, i.e., v(x) ∈ G. Thus, we
get v(x)−1 = v(y) > 1 for some y ∈ R, which implies y ∈ Pv. Again we get
v(x) · v(y) = 1. Now, v(xye) = v(x) · v(y) · v(e) = 1 ⇒ xye ∈ Av \ Pv.

(I) ⇒ (II). We see that (I) implies the property: for all x, y ∈ R, xye ∈
P ⇒ x ∈ P or y ∈ P .

Next, for every element x belonging to the set R, we set

(P : x)R = {z ∈ R : xze′ ∈ P, for some unital e′ in R}.

We define a relation ρ on R by xρy if and only if (P : x)R = (P : y)R. Then,
ρ is an equivalence relation on R. Let us denote the equivalence class of an
element x ∈ R by xρ. As R is commutative, all the unital elements belong
to the same equivalence class, say, eρ. We define multiplication on R/ρ by
(xρ)(yρ) = (xye)ρ. Consider the set G = {xρ : x ∈ R} \ {0ρ}. Then, G is a
group with respect to multiplication. In fact, eρ is the identity element in G
and for an inverse y of x in R, yρ is the inverse of xρ in G.

Also, G is a totally ordered group where the ordering is given by xρ ≤ yρ iff
(P : x)R ⊆ (P : y)R. Now, we define v : R → G ∪ {∞} by

v(x) = xρ, for x ∈ R, v(0) = ∞ and v(e) = eρ.

It is clear that v(xyz) = v(x) · v(y) · v(z). Next we prove that for any
z ∈ x+ y, v(z) ≥min{v(x), v(y)}.

Let v(x) < v(y) then (P : x)R ⫋ (P : y)R and first we suppose that
v(z) < v(x), then we get zue /∈ P and uxe = xue ∈ P for some u ∈ R. We
now show that yue /∈ P . Suppose that yue ∈ P then zue ∈ (x + y)ue =
xue + yue ⊆ P + P ⊆ P ⇒ zue ∈ P , this leads to a contradiction, implying
that yue /∈ P . Given the assumption v(x) < v(y), we deduce that yte ∈ P and
xte /∈ P for some t ∈ R. Consequently, we derive (xte)(yue)e = (xte)y(uee) =
(xue)(yte)e ∈ PPe ⊆ P . Hence, we encounter a contradiction, as either xte ∈ P
or yte ∈ P . Similarly, we reach a contradiction for the case v(x) < v(z).
Therefore, we have successfully demonstrated that v(z) = v(x),∀z ∈ x + y if
v(x) ̸= v(y). If v(x) = v(y), we show that v(z) ≥ v(x) for any z ∈ x + y, that
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is, {u ∈ R : uxe ∈ P} ⊆ {u ∈ R : uze ∈ P}. Let u ∈ R and uxe ∈ P . Since
v(x) = v(y), we have uye ∈ P and uze ∈ uxe + uye ⊆ P + P ⊆ P . Hence
(P : x)R ⊆ (P : z)R, that is, v(z) ≥ v(x). So v is a ternary hypervaluation.

Theorem 2.5. Consider R as a commutative ternary semihyperring, and let
v : R → G∞ represent a non-trivial hypervaluation on R. In this context, we
observe:

(I) v−1(∞) = {x ∈ R : xye ∈ Av, ∀y ∈ R \ Av}.

(II) If P is a proper prime hyperideal of Av such that P ⊆ Pv and P ⊈
v−1(∞), then v−1(∞) ⊆ P .

Proof of Theorem 2.5. (I) Let x ∈ R be an element such that v(x) = ∞ and
y ∈ R \ Av. Then, we have v(xye) = v(x) · v(y) · v(e) = ∞. Hence xye ∈ Av.

Now, we show that for any x ∈ R such that for every y ∈ R \Av, whenever
xye ∈ Av, then v(x) = ∞. Suppose v(x) ̸= ∞. If v(x) < 1, we can take
y = x ∈ R \ Av, then v(xye) = v(x) · v(y) · v(e) < 1 ⇒ xye /∈ Av, which is
a contradiction. Next we consider the case 1 ≤ v(x) < ∞. If v(x) > 1, then
for any y ∈ R such that v(y) = v(x)−1 < 1 implies that y ∈ R \ Av. Now,
v(yye) = v(y) · v(y) · v(e) < 1. Therefore v(x(yye)e) = v(x) · v(yye) · v(e) <
1 ⇒ x(yye)e /∈ Av where yye ∈ R \ Av, which is a contradiction. If v(x) = 1,
let any y ∈ R \ Av, v(xye) = v(x) · v(y) · v(e) = v(y) < 1 ⇒ xye /∈ Av,
which is a contradiction. Hence we can conclude that v(x) = ∞. Therefore
v−1(∞) = {x ∈ R : xye ∈ Av, ∀y ∈ R \ Av}.

(II) Let P be a prime hyperideal of Av, with P ⊆ Pv such that P ⊈ v−1(∞).
Let p ∈ P with 1 < v(p) < ∞ and let z ∈ v−1(∞) = {x ∈ R : xye ∈
Av, ∀ y ∈ R \ Av}. Then, v(x) = v(p)−1 < 1, for some x ∈ R \ Av. Now,
v(zxe) = v(z) · v(x) · v(e) = ∞ ⇒ zxe ∈ Pv. Further we have xpe ∈ Av \ Pv ⊆
Av \ P ⇒ xpe /∈ P . Now, (xpe)ze = x(pez)e = x(zep)e = xz(epe) = (xze)pe =
(zxe)pe ∈ PvPe ⊆ P ⇒ z ∈ P , since xpe /∈ P . Therefore v−1(∞) ⊆ P .

Suppose (G, ·,≤) is a totally ordered abelian group, it can be made into a
ternary semiring in an obvious way by defining

1. a+ b = max{a, b},

2. a · b · c = a ∧ b ∧ c = min{a, b, c},

for all a, b, c ∈ G. Then, (G,+, ·) becomes a ternary semiring.

Theorem 2.6. Let R be a commutative ternary semihyperring, G be a totally
ordered abelian group and v1 : R → G∞ be a nontrivial onto ternary hyperval-
uation on R. Then, for any totally ordered abelian group H and any nontrivial
onto ternary hypervaluation v2 : R → H∞ on R, Av1 = Av2 and Pv1 = Pv2 if
and only if there is an order preserving isomorphism f : G∞ → H∞ of ternary
semirings satisfying v2 = f ◦ v1 and f carries identity of G to identity of H.
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Proof of Theorem 2.6. Let us assume that Av1 = Av2 and Pv1 = Pv2 . We
define f : G∞ → H∞ by f(v1(x)) = v2(x), for all v1(x) ̸= ∞G and f(∞G) = ∞H .
This definition is well-defined, in fact, we show that

v1(x) = v1(y) ̸= ∞G ⇒ v2(x) = v2(y) ̸= ∞H .

Now, v1(y)
−1 ∈ G, so v1(y)

−1 = v1(z) for some z ∈ R. Thus, we have 1 = v1(y)·
v1(y)

−1 = v1(x) · v1(z) · v1(e) = v1(xze) which implies that xze ∈ Av1 \ Pv1 =
Av2 \Pv2 . This gives us v2(xze) = 1 ⇒ v2(x) ·v2(z) ·v2(e) = 1 ⇒ v2(x) ·v2(z) =
1 ⇒ v2(x) = v2(z)

−1. Also, v1(yze) = 1. Proceeding in a similar way, it follows
that v2(yze) = 1 ⇒ v2(y) = v2(z)

−1. Thus, v2(x) = v2(y) ̸= ∞H . Also, from
Theorem 2.5, we have v−1

1 (∞G) = v−1
2 (∞H).

In order to show that f is an order preserving isomorphism, first we show that
if v1(x) < v1(y) then v2(x) < v2(y). Otherwise v1(x) < v1(y) and v2(y) ≤ v2(x)
imply that v1(x) ̸= ∞G, so v2(x) ̸= ∞H and v2(y) ̸= ∞H . Now, there exists
z ∈ R such that v2(y)

−1 = v2(z) ⇒ 1 ≤ v2(x) ·v2(y)−1 = v2(x) ·v2(y)−1 ·v2(e) =
v2(x) · v2(z) · v2(e) = v2(xze) ⇒ xze ∈ Av2 = Av1 ⇒ v1(xze) ≥ 1. But, yze ∈
Av2 \Pv2 = Av1 \Pv1 . Hence 1 = v1(y) ·v1(z) ·v1(e) ⇒ v1(y) = v1(z)

−1 ≤ v1(x),
since 1 ≤ v1(xze). Thus, we get v1(y) ≤ v1(x) which is a contradiction.

We can show, in a similar manner, that if v2(x) < v2(y) then v1(x) < v1(y)
and so f is order preserving.

Now, G and H can be made into ternary semirings. To prove that f :
G∞ → H∞ is a homomorphism, we need to show that f(a + b) = f(a) + f(b)
and f(abc) = f(a)f(b)f(c), where a = v1(x), b = v1(y) and c = v1(z) for some
x, y, z ∈ R. Since a+∞G = ∞G for any a in G∞ and a1 +∞H = ∞H for any
a1 in H∞, it is sufficient to consider the case when a, b ∈ G. Let a, b ∈ G and
x, y ∈ R such that a = v1(x), b = v1(y). Then, f(a) + f(b) = f(v1(x)) + f(v1(y)).
Then, if v1(x) < v1(y) we have v2(x) < v2(y) and v1(x) + v1(y) = v1(y). Hence
f(a+ b) = f(v1(x)+ v1(y)) = f(v1(y)) = v2(y) = f(v1(x))+ f(v1(y)) = f(a)+ f(b).
If v1(x) = v1(y) then v2(x) = f(v1(x)) = f(v1(y)) = v2(y). Therefore f(a+ b) =
f(a) + f(b).

Also, f(abc) = f(a)f(b)f(c) and f(1) = 1 follows from the order preserving
property of f. Obviously f is onto.

We now show that f is injective. Let f(v1(x)) = f(v1(y)) ̸= ∞H , that is,
v2(x) = v2(y) ̸= ∞H . If possible, let v1(x) ̸= v1(y). Then, either v1(x) < v1(y)
or v1(y) < v1(x). Consider the case when v1(x) > v1(y). Since v2(x) ̸= ∞H ,
we must have v1(x) ̸= ∞G and so v1(y) ̸= ∞G. Now, there exists z ∈ R such
that v1(y)

−1 = v1(z) ̸= ∞G. Then, v1(x) · v1(y)−1 > 1 ⇒ v1(x) · v1(z) · v1(e) >
1 ⇒ xze ∈ Pv1 = Pv2 ⇒ v2(xze) > 1. Again yze ∈ Av1 \ Pv1 = Av2 \ Pv2 .
Hence v2(yze) = 1. But, v2(z) ̸= ∞H . Now, v2(y) · v2(z) · v2(e) = 1 ⇒ v2(y) =
v2(z)

−1 < v2(x), which is a contradiction. Similarly contradiction is obtained
for the case v1(x) < v1(y). Hence f is injective, making f an order preserving
isomorphism.
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For the converse part, let x ∈ Av1 ⇒ v1(x) ≥ 1 ⇒ f(v1(x)) ≥ f(1) ⇒ v2(x) ≥
1 ⇒ x ∈ Av2 . Therefore Av1 ⊆ Av2 . Similarly, we can show that Av2 ⊆ Av1 ,
hence Av1 = Av2 . In a similar way we can show that Pv1 = Pv2 .

In the above theorem, the hypothesis of surjectivity of the hypervaluations
cannot be dispensed with, as supported by Example 2.2 below.

Example 2.2. Consider the ternary semihyperring R = (Z,⊕, ·) (as in Exam-
ple 1.2) and the totally ordered group G = ({1}, ·). Then, v1 : R → G∞ defined
by

1. v1(x) = 1, if x ̸= 0,

2. v1(0) = ∞,

is an onto hypervaluation on R.
We take H = (Q+, ·) and the hypervaluation v2 on R to be the hypervalua-

tion as defined in Example 2.1.
Here, Av1 = Av2 = Z and Pv1 = {0}, Pv2 = Z\{1}. We define f : G∞ → H∞

by

1. f(1) = 1,

2. f(∞) = ∞,

which is a homomorphism of ternary semirings satisfying v2 = f ◦ v1. But, f is
not an isomorphism. We also note that v2 is not onto.

Conclusion

The impetus for studying hypervaluation on ternary semihyperrings arises from
its potential to generalize and expand the theory of hypervaluation on hyper-
rings. A necessary and sufficient condition for the existence of a ternary hy-
pervaluation is provided in Theorem 2.4. The set v−1(∞) = Iv is characterised
thereafter. We conclude by proving (in Theorem 2.6) that any hypervaluation
is the composition of a hypervaluation and an order preserving isomorphism (of
ternary semirings).

This study may be continued with the study of hyperideal theory in ternary
semihyperrings. The concept of regularity in these structures along with study
in relation to hypervaluation is another area which may be explored. Further,
one may investigate the notion of product hypervaluation and attempt to char-
acterise the set of all hypervaluations on ternary semihyperrings into suitable
algebraic system, as open issues.
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