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1. Introduction

Generalizing the notion of binary operation in groups to hyperoperation, Marty
[22] introduced hypergroups in 1934. A hypergroupoid is an ordered pair (M, o),
where o : M x M — P*(M) is a hyperoperation on a nonempty set M. Let L
and Lo be two nonempty subsets of M and m € M, then

L10L2:Ullol2, Liom=Lio{m} and mo Ly = {m} o Lo,

where [1 € Ly, Iy € Ls.

*. Corresponding author
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A hypergroupoid (M, o) earns the title of a semihypergroup if, for every
mi,mg, mg € M, the equation (mj oms)oms = mq o (mgoms) holds, indicating

that
U UoMmsg = U miowv.

ueEmi1oms vEMoOms

By a hypergroup, we mean a semihypergroup (M, o) for which m; o M = M o
my1 = M, for all m; € M.

The definitions of relevant algebraic structures follow the order: (binary)
hyperring (Definition 1.1), ternary hyperring (Definition 1.2) and ternary semi-
hyperring (Definition 1.3).

Krasner [20] initiated the concept of hyperrings and hyperfields, taking ad-
dition to be a hypercomposition and retaining multiplication as a binary com-
position.

Definition 1.1 ([20]). A hyperring according to Krasner is described as a math-
ematical structure (R,+,-) that adheres to the following set of axioms:

(1) (R,4) constitutes a canonical hypergroup, i.e.,

1) for every ri,ra,r3 € R, 1+ (ro+r3) = (r1 + r2) + ra,

3) there exists 0 € R such that 0+ r; = {r1} =r; +0 for each r1 € R,

4) for each 1 € R, there is precisely one element ) in R, such that
0 €r+7], (we will denote —ry as r} and refer to it as the inverse of

7"1);

(5) r3 € r1 + 7o implies ro € —r1 +r3 and r1 € T3 — T9.

(1)
(2) for every ri,mo € R, 11 + 19 =719+ 171,
(3)
(4)

(ii) (R,-) forms a semigroup with zero acting as a bilaterally absorbing ele-
ment, t.e., 11 -0=0-7r; = 0.

(7i1) The multiplication distributes with regard to the hyperoperation +.

Example 1.1 ([20]). Consider R as a ring with identity that satisfies commuta-
tivity. We define R = {¥ = {r, —r},r € R}. Then, R becomes a hyperring with
respect to the hyperoperation 71 @& 73 = {r; + r2,71 — ro} and multiplication
TLIOTg =T1 T2.

Let us suppose that (R,+,-) is a hyperring and A is a nonempty subset of
R. We define A as a subhyperring of R if (A4, +,-) forms a hyperring in its
own right. A subhyperring A of a hyperring R is a left (right) hyperideal of R
ifri-ro€ A(rg-m € A), Vri € Ryrg € A. A is termed a hyperideal if it
satisfies the conditions of being both a left and a right hyperideal. A hyperideal
P of a hyperring R is considered prime if, for any pair of hyperideals A and B
of R, the inclusion AB C P implies either A C P or B C P. In the case of
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a commutative hyperring R, a hyperideal P is prime if P # R and for every
r1,r9 € R, if r1 - r9 € P, then either r; € P or ry € P.

Significant literature has evolved in the theory of hyperstructures till date,
viz., hypergroupoids [16], hypergroups [17, 34, 18], semihypergroups [13], hyper-
rings [20, 14, 27, 28, 29, 30, 9, 6, 33], semihyperrings [1, 2, 4], ternary hyperrings
[8, 7, 32, 31, 15] and ternary semihyperings [11, 26, 25, 5].

Alajbegovi¢ and Mockot [3] studied m-rings with a multivalued addition sat-
isfying certain conditions and commutative associative binary multiplication. In
2010, Davvaz and Mirvakili [12] introduced a new class of multialgebra called
(m,n)-hyperring R in which m-ary addition makes R into a canonical hyper-
group whereas R with n-ary multiplication is a semigroup.

Krasner ternary hyperrings were investigated by Castillo and Paradero-Vilela
[8] in 2014. For a Krasner ternary hyperring (R, +, ), the symbol ‘+’ refers to
a binary hyperoperation, while ‘-’ denotes a ternary multiplication.

Definition 1.2 ([8]). A hyperring (R, -+, ") is called a Krasner ternary hyperring
if it meets the following conditions:

(1) (R,4) constitutes a canonical hypergroup;
(7/&) (7“1'7‘2'7"3)'7“4'7“5:7"1'(T’Q'T’g'?"4)'?”5:7"1'7”2'(7“3'7“4'7“5);

(491) (r1+re)-r3-ra =11-T3-Ta+12-13-74, v1-(T2+73) T4 =T1 -T2 T4+T1T3 T,
TL T2 (7“3—|-7“4) =T -1"2-7“3+’I"1 s T T4,

() O0-ry-rg=7r1-0-1r9=711-72-0=0,
v r1,72,73,74,75 eER.

The concept of ternary semihyperrings was introduced by Davvaz [11] in
2009, extending the idea of semirings.

Definition 1.3 ([11]). A set R with a binary hyperoperation ‘+’ and a ternary
multiplication “’ is termed a ternary semihyperring if (R,+) constitutes a com-
mutative semihypergroup and fulfills the subsequent conditions:

1. (7"1-T2-7"3)~’r’4~7’5:?“1'(7“2'7’3'7"4)'7“5:7"1-7“2'(7’3-7"4-7"5),'
2. (7’1+?”2)'T3-T4:7'1'7“3'7“44-7’2'7’3-7’4;
S r1-(r2+73) Ta=T1T0 T4+ T T3 Ty
4. 7“1'7“2'(7“34-7’4):Tl'TQ'T'3+7“1'T2'7“4.
YV ri,r9,73,74,75 € R. We simply write r1 - T9 - 13 = r17273.

Example 1.2 ([11]). Consider Z as the set of all integers. We establish a binary
hyperoperation and ternary multiplication on Z as follows: r; @ ro = {r1,r2},
and 71 - 9 - r3 denotes the standard ternary multiplication of integers. Thus,
(Z,®,-) forms a ternary semihyperring.
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Example 1.3 ([11]). Consider (R,+,-) as a semiring. We define a binary
hyperoperation by 3 @ ro =< 71,79 > (the ideal generated by r1,72), and a
ternary multiplication by r1 o r9 o 73 = 11 - ro - 3. Consequently, (R, P, o)
constitutes a ternary semihyperring.

A nonempty subset A of a ternary semihyperring R is a ternary subsemihy-
perring of R if (A, +) is an additive subsemihypergroup of (R, +), i.e., r1 +719 C
A, for any r1,m70 € A and AAA C A, i.e., rirors € A, for any r1,r0,73 € A. R
is said to have a zero element if there exists an element 0 € R such that for
all 71,79 € R,0r1ry = r10ry = 1790 = 0. An element e of R is called a unital
element if for all r1 € R, eery = erie = riee = r1. An element r9 € R is called
an inverse of r1 € R if rirox = xrirg = rorqx = xror; = x for all z € R. A
nonempty additive subsemihypergroup I of R is called a left hyperideal of R
if RRI C I, lateral hyperideal of R if RIR C I and right hyperideal of R if
IRR C 1. If I is both a left and right hyperideal as well as a lateral hyperideal
of R then I is called a hyperideal of R. A proper hyperideal P of R is called
prime hyperideal of R if I1I513 C P implies Iy € P or Is C P or I3 C P, for any
three hyperideals I, Is, I3 of R. A ternary semihyperring R is called commu-
tative if rirorg = rorgri = r3rire = roriry = r3rory = r1r3re, V 11,710,173 € R.
Let R be a commutative ternary semihyperring and P be a hyperideal of R.
Then, P is a prime hyperideal if and only if r1ror3 € P impliesry € Porre € P
or rg € P, for all r{,r9,73 € R.

The notion of m-valuation on m-rings was put forward by Alajbegovi¢ and
Mockof [3] in 1985. The idea of hypervaluation was explored in 2006 by Davvaz
and Salsi [10]. Harijani and Anvariyeh [19] introduced hypervaluation of a hyper-
field onto a totally ordered canonical hypergroup. In 2020, Linzi and Stojalowska
[21] studied that any hypervaluation from a hyperfield onto an ordered canoni-
cal hypergroup is the composition of a hypervaluation onto an ordered abelian
group and an order preserving homomorphism of hypergroups. Nikmehr, Nikan-
dish and Yassine [23] studied the notion of hypervaluation hyperideals and then
found relations between hypervaluations, integral closure of hyperideals and pri-
mary hyperideals.

A group G can be partially ordered [10] by < if (G, <) is a poset in which <
is compatible with the binary composition, i.e., if a; < b; then ga; < gb; and
a1g < byg for all g € G. If a1 < a} and by < b} then we obtain a1by < ab].
So P ={g € G:1< g}, called the positive cone of G, is a submonoid of G.
Setting P! = {a~! : a € P} yields

1. PN P! ={1}, and
2. if < is a total order, then P U P~! = G.

The ordered group G is adjoined with oo fulfilling the conditions: co > a and
0000 =00=a-00=00-a foral a € G We write Go, to mean G U {c0}
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which is a hyperring with hyperoperation & defined as follows: if a < b then
a®b={a} forall a,b € Goc and a®a ={g € G : a < g}. The multiplication
is given by aob=a Vb for all a,b € G

Definition 1.4 ([10]). If R is a hyperring, then a hypervaluation on R is a
mapping v : R — G = G U {o0}, where G is a totally ordered abelian group,
satisfying the following conditions:

1. v(0) = oo;

2. v(zy) = v(z) - v(y), for all 2,y € R;

3. v(—z) = v(z), for allz € R;

b z€x+y=v(@)> minfv(z),v(y)}, for allz,y,z € R.

For a hypervaluation v, we say that (R,v,G) is a hypervalued hyperring.
We define two sets A, = {z € R :v(z) > 1} and P, = {z € R : v(z) > 1}.
Then, A, becomes a subhyperring of R and P, becomes a prime hyperideal
of A,. Additionally, the set v~ !(c0) forms a prime hyperideal of R which is
contained in P,.

Valuation on a ternary semiring has been studied by Pal et. al [24]. In this
paper, we introduce and explore the notion of hypervaluation on a ternary semi-
hyperring, finally proving that any hypervaluation from a ternary semihyperring
onto an ordered abelian multiplicative group is the composition of a hyperval-
uation onto an ordered abelian multiplicative group and an order preserving
isomorphism of ternary semirings under certain conditions.

2. Hypervaluation on ternary semihyperring

We consider a totally ordered (multiplicative) abelian group G. Throughout
this section, we consider G, as G U {o0}.

Definition 2.1. Let R be a commutative ternary semihyperring with o unital
element e and zero element 0. By a hypervaluation, we mean a mapping v :
R — Goo which satisfies the conditions as follows: for x,y,z € R,

(1) v(zyz) = v(z) - 0(y) - v(2);

(i1) if z € x +y then v(z) > min{v(z),v(y)};
(iii) v(e) =

(iv) v(0) =

Example 2.1. Consider the ternary semihyperring R = (Z,®,-) as shown in
Example 1.2. We take G = (Q™, ). Define a mapping v : R — G by

1. o(z) = |z|,z #0,
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2. v(0) = 0.
Then, v becomes a hypervaluation on R.

Henceforth, by R, we will mean a ternary semihyperring with a unital ele-
ment e and a zero element 0.

We consider the set of all hypervaluations of R which is denoted by val(R).
For any hypervaluation v € val(R), we set

Ao ={z €eR:v(zx) > 1},
Po={y€R:0(y) > 1},
Iy, ={z € R:0(2) = o0}

We see that e € A, and 0 is in Z, as well as in P,.
Theorem 2.1. A, is a ternary subsemihyperring in R.

Proof of Theorem 2.1. First we show that A, becomes an additive subsemi-
hypergroup. Let =,y € Ay, then v(z) > 1,0(y) > 1. Let z € z + y, then v(z) >
min {v(z),v(y)} > 1 which gives us z € A, = = +y C A,. Therefore A, is an
additive subsemihypergroup. Again, for z,y, z € Ay, v(zyz) = v(x)-0(y)-v(z) >
1= zyz € A,. Thus, A, is a ternary subsemihyperring of R.

Theorem 2.2. P, is a prime hyperideal of A,.

Proof of Theorem 2.2. It is clear that P, is an additive subsemihypergroup
of A,. Let a,b € Ay, and x € P, then v(a) > 1,0(b) > 1 and v(z) > 1. Then,
v(abx) = v(a) - v(b) - v(z) > 1 = abxr € P,. We can show that azb € P, and
zab € Py in a similar way. Hence Py is a hyperideal of A,. Again let a,b,c € A,
and abc € Py, then v(abc) > 1 = v(a) - v(b) - v(c) > 1 which further implies
either v(a) > 1 or v(b) > 1 or v(c) > 1. Hence P, is a prime hyperideal of A,.

Theorem 2.3. Z, is a prime hyperideal of R.

Proof of Theorem 2.3. Let x,y € Z, then v(z) = 0o, 0(y) = co. Let z € x4y,
then v(z) >min{v(z),v(y)} = v(2) = 00 = 2z € I,. Therefore z +y C Z,. So
Z, is an additive subsemihypergroup. Let a,b € R and x € Z, then v(abz) =
v(a) - v(b) - v(x) = co = abx € Z,. Similarly we can show that azb € 7, and
zab € Z,. Therefore Z, is a hyperideal of R. Now, let abc € Z, for any a,b,c € R,
then v(abc) = oo and so v(a) - v(b) - v(c) = co. Then, at least one of v(a), v(b)
or v(c) is oco. That is, either a € Z, or b € Z, or ¢ € Z,. Hence Z, becomes a
prime hyperideal of R.

In the results that follow, we present some properties of a hypervalued
ternary semihyperring R where A,, P, and v—!(c0) = Z, play a significant
role.
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Theorem 2.4. Consider a ternary subsemihyperring A containing e within a
commutative ternary semihyperring R. Assume that every monzero element in
R has a multiplicative inverse and P represents a proper prime hyperideal of A.
In this scenario, the following assertions hold true equivalently:

(I) for each x € R\ A, there exists y € P such that zye € A\ P,

(II) there exists a nontrivial onto ternary hypervaluation v : R — G such
that A, = A and P, = P.

Proof of Theorem 2.4. (II) = (I). Suppose there exists an onto ternary
hypervaluation v : R — Go = G U {oo} such that A, = A and P, = P. If
x € R\ Ay, then v(z) < 1 and therefore v(z) # oo, i.e., v(z) € G. Thus, we
get v(z)~! = v(y) > 1 for some y € R, which implies y € P,. Again we get
o(z) - v(y) = 1. Now, v(zye) =v(z)-0(y) - v(e) =1 = zye € Ay \ Py.

(I) = (II). We see that (I) implies the property: for all z,y € R, zye €
P=xePoryecP.
Next, for every element x belonging to the set R, we set

(P:2)r ={z € R:xze € P, for some unital ¢’ in R}.

We define a relation p on R by zpy if and only if (P : x)g = (P : y)r. Then,
p is an equivalence relation on R. Let us denote the equivalence class of an
element x € R by zp. As R is commutative, all the unital elements belong
to the same equivalence class, say, ep. We define multiplication on R/p by
(zp)(yp) = (xye)p. Consider the set G = {xp : x € R} \ {Op}. Then, G is a
group with respect to multiplication. In fact, ep is the identity element in G
and for an inverse y of x in R, yp is the inverse of zp in G.

Also, G is a totally ordered group where the ordering is given by zp < yp iff
(P:2)gr € (P:y)r. Now, we define v: R — G U {oc} by

v(z) = zp, for x € R,0(0) = oo and v(e) = ep.

It is clear that v(zyz) = v(z) - v(y) - v(2). Next we prove that for any
z € x4+ y,0(z) >min{o(x),0(y)}.

Let v(z) < v(y) then (P : z)r & (P : y)g and first we suppose that
v(z) < v(x), then we get zue ¢ P and uxe = zue € P for some u € R. We
now show that yue ¢ P. Suppose that yue € P then zue € (x + y)ue =
zue +yue C P+ P C P = zue € P, this leads to a contradiction, implying
that yue ¢ P. Given the assumption v(z) < v(y), we deduce that yte € P and
xte ¢ P for some t € R. Consequently, we derive (zte)(yue)e = (xte)y(uee) =
(rue)(yte)e € PPe C P. Hence, we encounter a contradiction, as either xte € P
or yte € P. Similarly, we reach a contradiction for the case v(z) < v(2).
Therefore, we have successfully demonstrated that v(z) = v(z),Vz € x + y if
o(x) # v(y). If v(x) = v(y), we show that v(z) > v(z) for any z € = + y, that
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is, {u € R : uze € P} C{u € R : uze € P}. Let u € R and uxe € P. Since
o(z) = v(y), we have uye € P and uze € uzre + uye C P+ P C P. Hence
(P:x)r C(P:2)R, that is, v(z) > v(x). So v is a ternary hypervaluation.

Theorem 2.5. Consider R as a commutative ternary semihyperring, and let
v : R — Gy represent a non-trivial hypervaluation on R. In this context, we
observe:

(I) v (o) ={z €R:2ye € Ay, Yy € R\ Ayp}.

(II) If P is a proper prime hyperideal of A, such that P C P, and P ¢
v~ (00), then v=1(c0) C P.

Proof of Theorem 2.5. (I) Let € R be an element such that v(z) = oo and
y € R\ Ap. Then, we have v(zye) = v(x) - v(y) - v(e) = co. Hence zye € A,.

Now, we show that for any x € R such that for every y € R \ A,, whenever
xye € Ay, then v(xr) = oco. Suppose v(z) # oo. If v(z) < 1, we can take
y=1x € R\ Ay, then v(zye) = v(z) - v(y) - v(e) < 1 = xye ¢ A,, which is
a contradiction. Next we consider the case 1 < v(x) < co. If v(z) > 1, then
for any y € R such that v(y) = v(z)~! < 1 implies that y € R\ A,. Now,
o(yye) = v(y) - v(y) - v(e) < 1. Therefore v(z(yye)e) = v(z) - v(yye) - v(e) <
1 = z(yye)e ¢ A, where yye € R\ Ay, which is a contradiction. If v(x) = 1,
let any y € R\ Ay, v(zye) = v(z) - 0(y) - v(e) = v(y) < 1 = zye ¢ A,
which is a contradiction. Hence we can conclude that v(z) = oco. Therefore
v (o) ={z €R:azye € Ay, Yy € R\ Ap}.

(IT) Let P be a prime hyperideal of A,, with P C P, such that P Z v=1(00).
Let p € P with 1 < v(p) < oo and let z € v !(c0) = {z € R : xye €
Ao,V y € R\ Apy}. Then, v(z) = v(p)~! < 1, for some z € R\ A,. Now,
v(zze) = v(2) - v(x) - v(€) = 00 = zxe € Py. Further we have xpe € A, \ P, C
Ay \ P = xpe ¢ P. Now, (xpe)ze = x(pez)e = z(zep)e = xz(epe) = (xze)pe =
(zxe)pe € PyPe C P = z € P, since xpe ¢ P. Therefore v~!(c0) C P.

Suppose (G, -, <) is a totally ordered abelian group, it can be made into a
ternary semiring in an obvious way by defining

1. a+ b= max{a,b},
2. a-b-c=aANbAc=min{a,b,c},
for all a,b,c € G. Then, (G, +,-) becomes a ternary semiring.

Theorem 2.6. Let R be a commutative ternary semihyperring, G be a totally
ordered abelian group and v1 : R — G be a nontrivial onto ternary hyperval-
uation on R. Then, for any totally ordered abelian group H and any nontrivial
onto ternary hypervaluation v : R — Hoo on R, Ay, = Ap, and Py, = Py, if
and only if there is an order preserving isomorphism § : Goo — Hoo of ternary
semirings satisfying vo = fo vy and § carries identity of G to identity of H.
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Proof of Theorem 2.6. Let us assume that A,, = Ay, and Py, = Py,. We
define f : Goo — Hoo by f(01(x)) = v2(x), for all v;(x) # ocog and f(ocog) = cop.
This definition is well-defined, in fact, we show that

v1(z) = v1(y) # 00G = va(z) = v2(y) # cop.

Now, v1(y) ! € G, s0 0v1(y)~! = v1(2) for some z € R. Thus, we have 1 = v1(y)-
01(y) ! = v1(z) - 01(2) - v1(e) = v1(z2e) which implies that xze € Ay, \ Py, =
Ay, \ Py, This gives us va(zze) = 1 = va(x)-02(2) -v2(e) =1 = vy(x) - v2(2) =
1 = va(x) = v2(2) 1. Also, v1(yze) = 1. Proceeding in a similar way, it follows
that va(yze) = 1 = va(y) = va(2)~ L. Thus, va(z) = va(y) # coy. Also, from
Theorem 2.5, we have v} ' (cog) = vy (cog).

In order to show that f is an order preserving isomorphism, first we show that
if v1(x) < v1(y) then va(x) < v2(y). Otherwise vy (x) < v;1(y) and v2(y) < va(x)
imply that v;(x) # cog, so va(x) # com and va(y) # ocom. Now, there exists
z € R such that va(y) ™! = va(2) = 1 < va(2) - 02(y) ! = va(2) - 02(y) ' -va(e) =
va(x) - v2(2) - va(e) = va(xze) = xze € Ay, = Ay, = vi(xze) > 1. But, yze €
Aoy \ Po; = Av, \ Py, Hence 1= v1(y)-v1(2)-v1(e) = 01(y) = v1(2)~" < 01(2),
since 1 < vq(xze). Thus, we get v1(y) < v1(x) which is a contradiction.

We can show, in a similar manner, that if vy(z) < va(y) then vy (z) < v1(y)
and so f is order preserving.

Now, G and H can be made into ternary semirings. To prove that § :
G — Hoo is a homomorphism, we need to show that f(a + b) = f(a) + f(b)
and f(abc) = f(a)f(b)f(c), where a = vi(z),b = v1(y) and ¢ = vy(z) for some
x,y,z € R. Since a + cog = 0o for any a in G, and a; + copr = ooy for any
a1 in Hy, it is sufficient to consider the case when a,b € G. Let a,b € G and
x,y € R such that a = v1(x),b = v1(y). Then, f(a) + f(b) = f(v1(x)) + f(v1(y)).
Then, if v1(z) < v1(y) we have va(x) < v2(y) and vy (z) + v1(y) = v1(y). Hence
fla+0b) = f(o1(x) +01(y)) = f(01(y)) = v2(y) = §(01(2)) +F(v1(y)) = f(a) +§(b).
If v (x) = v1(y) then va(z) = f(v1(x)) = f(v1(y)) = v2(y). Therefore f(a + b) =
i(a) + ).

Also, f(abc) = f(a)f(b)f(c) and f(1) = 1 follows from the order preserving
property of f. Obviously f is onto.

We now show that § is injective. Let f(vi(x)) = f(v1(y)) # oom, that is,
va(x) = va(y) # ocop. If possible, let vy (z) # v1(y). Then, either vy (z) < v1(y)
or v1(y) < vy(z). Consider the case when vy(x) > vi(y). Since va(z) # oop,
we must have v1(z) # cog and so v1(y) # oog. Now, there exists z € R such
that v1(y) ™' = v1(2) # cog. Then, vi(z) - v1(y)~' > 1= v1(x) - 0v1(2) - v1(€) >
1 = zze € Py, = Py, = va(xze) > 1. Again yze € Ay, \ Po, = Ap, \ Po,-
Hence vy(yze) = 1. But, va(z) # cop. Now, va(y) - v2(2) - va2(e) = 1 = va(y) =
v2(2)"! < va(x), which is a contradiction. Similarly contradiction is obtained
for the case v1(z) < v1(y). Hence § is injective, making f an order preserving
isomorphism.
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For the converse part, let © € Ay, = v1(z) > 1 = f(v1(2)) > §(1) = v2(x) >
1 = 2z € A,,. Therefore A,, C Ap,. Similarly, we can show that A,, C Ay,
hence A,, = Ayp,. In a similar way we can show that Py, = Po,.

In the above theorem, the hypothesis of surjectivity of the hypervaluations
cannot be dispensed with, as supported by Example 2.2 below.

Example 2.2. Consider the ternary semihyperring R = (Z,®,-) (as in Exam-
ple 1.2) and the totally ordered group G = ({1},-). Then, v; : R — G defined
by

1. vy(x) =1,if x #0,
2. 01(0) = 00,

is an onto hypervaluation on R.

We take H = (QT,-) and the hypervaluation by on R to be the hypervalua-
tion as defined in Example 2.1.

Here, Ay, = Ay, = Z and Py, = {0}, Po, = Z\ {1}. We define f : Goo = Hoo
by

L) =1,
2. f(o0) = o0,

which is a homomorphism of ternary semirings satisfying vy = fo v;. But, §is
not an isomorphism. We also note that vy is not onto.

Conclusion

The impetus for studying hypervaluation on ternary semihyperrings arises from
its potential to generalize and expand the theory of hypervaluation on hyper-
rings. A necessary and sufficient condition for the existence of a ternary hy-
pervaluation is provided in Theorem 2.4. The set v~ !(0c0) = Z, is characterised
thereafter. We conclude by proving (in Theorem 2.6) that any hypervaluation
is the composition of a hypervaluation and an order preserving isomorphism (of
ternary semirings).

This study may be continued with the study of hyperideal theory in ternary
semihyperrings. The concept of regularity in these structures along with study
in relation to hypervaluation is another area which may be explored. Further,
one may investigate the notion of product hypervaluation and attempt to char-
acterise the set of all hypervaluations on ternary semihyperrings into suitable
algebraic system, as open issues.
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