Prime-valent one-regular graphs of order 28p

De-Xue Li

Henan Polytechnic Institute Nanyang 473000 P.R. China 784245478@qq.com

Song-Tao Guo*

School of Mathematics and Statistics
Henan University of Science and Technology
Luoyang 471023
P.R. China
gsongtao@gmail.com

Abstract. A graph is *one-regular* if its full automorphism group acts on its arcs regularly. In this paper, we classify connected one-regular graphs of prime valency and order 28p for each prime p, and prove that there is only one sporadic graph: the \mathbb{Z}_7 -cover CQ_7 of the three dimensional hypercube Q_3 with valency 3.

Keywords: symmetric graph, arc-transitive graph, one-regular graph.

MSC 2020: 05C25, 20B25.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and undirected. For group-theoretic concepts or graph-theoretic terms not defined here we refer the reader to [22, 25] or [1, 2], respectively. Let G be a permutation group on a set Ω and $v \in \Omega$. Denote by G_v the stabilizer of v in G, that is, the subgroup of G fixing the point v. We say that G is semiregular on Ω if $G_v = 1$ for every $v \in \Omega$ and regular if G is transitive and semiregular.

For a graph X, denote by V(X), E(X) and $\operatorname{Aut}(X)$ its vertex set, its edge set and its full automorphism group, respectively. A graph X is said to be G-vertex-transitive if $G \leq \operatorname{Aut}(X)$ acts transitively on V(X). X is simply called vertex-transitive if it is $\operatorname{Aut}(X)$ -vertex-transitive. An s-arc in a graph is an ordered (s+1)-tuple $(v_0, v_1, \cdots, v_{s-1}, v_s)$ of vertices of the graph X such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup $G \leq \operatorname{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive. In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X

^{*.} Corresponding author

is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by \mathbf{C}_n and \mathbf{K}_n the cycle and the complete graph of order n, respectively. Denote by \mathbf{D}_{2n} the dihedral group of order 2n. As we all known that there is only one connected 2-valent graph of order n, that is, the cycle \mathbf{C}_n , which is s-regular with full automorphism group \mathbf{D}_{2n} . Let p be a prime. Classifying s-transitive and s-regular graphs has received considerable attention. The classification of s-transitive graphs of order p and p was given in [5] and [6], respectively. Wang [24] characterized the prime-valent s-transitive graphs of order p was given in [15] and [18], respectively. For heptavalent symmetric graphs of order p order p their characterizations can be obtained in [19].

For 2-valent case, the graph is a cycle, which is s-regular for any integer s, and for cubic case, s-transitivity always means s-regularity by Miller [9]. However, for the other prime-valent case, this is not true, see for example [11] for pentavalent case and [12] for heptavalent case. Thus, characterization and classification of prime-valent s-regular graphs is very interesting and also reveals the s-regular global and local actions of the permutation groups on s-arcs of such graphs. In particular, 1-regular action is the most simple and typical situation. In this paper, we classify prime-valent one-regular graph of order 28p for each prime p.

2. Preliminary results

Let X be a connected G-symmetric graph with $G \leq \operatorname{Aut}(X)$, and let N be a normal subgroup of G. The quotient graph X_N of X relative to N is defined as the graph with vertices the orbits of N on V(X) and with two orbits adjacent if there is an edge in X between those two orbits. In view of [17, Theorem 9], we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with $G \leq \operatorname{Aut}(X)$ and prime valency $q \geq 3$, and let N be a normal subgroup of G. Then, one of the following holds:

- (1) N is transitive on V(X);
- (2) X is bipartite and N is transitive on each part of the bipartition;
- (3) N has $r \geq 3$ orbits on V(X), N acts semiregularly on V(X), the quotient graph X_N is a connected q-valent G/N-symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of order 2p for a prime p from Cheng and Oxley [6], we introduce the graphs G(2p,q). Let V and V' be two disjoint copies of \mathbb{Z}_p , say $V=\{0,1,\cdots,p-1\}$ and $V'=\{0',1',\cdots,(p-1)'\}$. Let q be a positive integer dividing p-1 and H(p,q) the unique subgroup of \mathbb{Z}_p^* of order q. Define the graph G(2p,q) to have vertex set $V \cup V'$ and edge set $\{xy' \mid x-y \in H(p,q)\}$.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order 2p with p,q primes. Then, X is isomorphic to \mathbf{K}_{2p} with q=2p-1, $\mathbf{K}_{p,p}$ or G(2p,q) with q|(p-1). Furthermore, if $(p,q) \neq (11,5)$ then $\operatorname{Aut}(G(2p,q)) = (\mathbb{Z}_p \rtimes \mathbb{Z}_q) \rtimes \mathbb{Z}_2$; if (p,q) = (11,5) then $\operatorname{Aut}(G(2p,q)) = \operatorname{PGL}(2,11)$.

Next, by [24, Theorem 3.1], we have the characterization of prime valent symmetric graphs of order 4p.

Proposition 2.3. Let p and q be two primes with $q \geq 5$, and let X be a q-valent symmetric graph of order 4p. Then, X is isomorphic to \mathbf{K}_{4p} with q = 4p - 1, $\mathbf{K}_{2p,2p} - 2p\mathbf{K}_2$ with q = 2p - 1, or the quotient graph is isomorphic to $\mathbf{K}_{p,p}$ with q = p or \mathbf{K}_{2p} with q = 2p - 1.

The following proposition is about the prime-valent symmetric graphs of order 14p with p a prime, which is deduced from [20, Theorem 1.2].

Proposition 2.4. Let p and q be two primes. If $q \ge 5$, then there is no q-valent symmetric graph of order 14p admitting a solvable arc-transitive automorphism group.

The following proposition is the famous "N/C-Theorem", see for example [14, Chapter I, Theorem 4.5]).

Proposition 2.5. The quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the automorphism group Aut(H) of H.

From [8, pp.12-14] and [23, Theorem 2], we can deduce the non-abelian simple groups whose orders have at most four different prime divisors.

Proposition 2.6. Let p and q be two odd primes, and let G be a non-abelian simple group. If the order |G| divides $2^2 \cdot 7 \cdot p \cdot q$ with $p \geq 3$ and q > 7, then G is isomorphic to A_5 , PSL(2,13). If the order |G| has at most three different prime divisors, then G is called K_3 -simple group and isomorphic to one of the following groups.

Table 1: Non-abelian simple $\{2,3,p\}$ -groups

Group	Order	Group	Order
A_5	$2^2 \cdot 3 \cdot 5$	PSL(2,17)	$2^4 \cdot 3^2 \cdot 17$
A_6	$2^3 \cdot 3^2 \cdot 5$	PSL(3,3)	$2^4 \cdot 3^3 \cdot 13$
PSL(2,7)	$2^3 \cdot 3 \cdot 7$	PSU(3,3)	$2^5 \cdot 3^3 \cdot 7$
PSL(2,8)	$2^3 \cdot 3^2 \cdot 7$	PSU(4,2)	$2^6 \cdot 3^4 \cdot 5$

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order 28p for each prime p. Let q be a prime. In what follows, we always denote by X a connected q-valent one-regular graph of order 28p. Set $A = \operatorname{Aut}(X)$, $v \in V(X)$. Then, the vertex stabilizer $A_v \cong \mathbb{Z}_q$ and hence |A| = 28pq. Clearly, if q = 2, then $X \cong \mathbb{C}_{28p}$ with $A \cong \mathbb{D}_{56p}$, which is s-regular for any positive integer s. If q = 3, then by [15, Corollary 4.9] and [10, Theorem 5.1], we have that $X \cong CQ_7$, that is, the \mathbb{Z}_7 -cover of three dimensional hypercube Q_3 . If q = 5, then by [18, Theorem 3.1] and [21], there exists no pentavalent one-regular graph of order 28p. Next we deal with the case q = 7.

Lemma 3.1. Let q = 7. Then, there exists no heptavalent one-regular graph of order 28p.

Proof. Suppose that p=2. Then, |V(X)|=56=8.7 and $|A|=8.7^2$. By [13, Theorem 3.1], there is no heptavalent symmetric graphs of order 56, and the statement holds for p=2.

Suppose that $p \geq 3$. Then, by [19, Theorem 1.1], we have that $A \cong \operatorname{PSL}(2,p)$, $\operatorname{PGL}(2,p)$, $\operatorname{PSL}(2,p) \times \mathbb{Z}_2$ or $\operatorname{PGL}(2,p) \times \mathbb{Z}_2$. In particular, A is non-solvable. Note that $|A| = 2^2 \cdot 7^2 \cdot p$. Thus, A has a non-solvable composition factor H isomorphic to a non-abelian K_3 -simple group. By Proposition 2.6, p = 3 and $H \cong \operatorname{PSL}(2,7)$. However, $|H| = 2^3 \cdot 3 \cdot 7$, this is contrary to the fact that $|H||2^2 \cdot 7^2 \cdot p$.

Now, we treat with the case q > 7. Recall that |A| = 28pq, $A_v \cong \mathbb{Z}_q$ and q > 7. Let N be a minimal normal subgroup of A. We divide the proof into the following two cases: p = q and $p \neq q$.

Lemma 3.2. Let p = q > 7. Then, there exists no new graph.

Proof. Suppose that p=q. Then, $|A|=28p^2$ and $A_v\cong \mathbb{Z}_p$ with p>7. Let P be a Sylow p-subgroup of A. Then, $|P|=p^2$. Note that p=q>7. Thus, by Sylow Theorem, the number of Sylow p-subgroups of A is $kp+1=|A:N_A(P)|$ for some integer k. Since $|A|=28p^2$, we have that $(kp+1)\div 28$. It is easy to see that either k=0 or k=1 with p=13. If k=1, then P is normal in A. Since $|P|=p^2>7^2$, we have that $P_v\cong \mathbb{Z}_p$. However, P acting on V(X) has 28 orbits, and hence P is semiregular by Proposition 2.1. This is contrary to the fact that $P_v\cong \mathbb{Z}_p$. Thus, k=1 and p=13. If A is non-solvable, then a composition factor is isomorphic to a non-abelian simple group and hence this composition factor has order dividing $|A|=2^2\cdot 7\cdot p^2$. By Proposition 2.6, there is no non-abelian simple K_3 -group whose prime divisor does not have 3. It follows that A is solvable with p=q=13 and P is not normal in A.

Let N be a minimal normal subgroup of A. Then, $N \cong \mathbb{Z}_2$, \mathbb{Z}_2^2 , \mathbb{Z}_7 or \mathbb{Z}_p because A is solvable and has no normal Sylow p-subgroup by the above paragraph. By Proposition 2.1, N is semiregular and X_N is a q-valent symmetric

graph of order 28p/|N|. Note that there exists no regular graph of odd order and odd valency. Thus, $N \ncong \mathbb{Z}_2^2$.

Suppose that $N \cong \mathbb{Z}_2$. Then, X_N is a A/N-symmetric graph of order $2 \cdot 7 \cdot 13$ and valency 13. Since X_N has valency 13 and order $2 \cdot 7 \cdot 13$, we have that $13 \not | (7-1)$. Note that A/N is solvable. By Proposition 2.4, there exists no symmetric graph of order 14 admitting a solvable arc-transitive automorphism group, a contradiction.

Suppose that $N \cong \mathbb{Z}_7$. Then, X_N is a A/N-symmetric graph of order 4p and valency 13. Since $|A/N| = 4 \cdot 13^2$, by Sylow Theorem we have that the Sylow p-subgroup of A/N is nomal in A/N, and by Proposition 2.5, we can easily deduce that A has a normal Sylow p-subgroup, a contradiction.

Suppose that $N \cong \mathbb{Z}_p$. Then, X_N is a A/N-symmetric graph of order 28. By [7], there are two symmetric graphs of order 28, their full automorphism groups are $S_{14} \times \mathbb{Z}_2$ and $\mathrm{PSL}(2,13) \times \mathbb{Z}_2$, respectively. However, these two groups have no subgroup of order $28 \cdot 13$, a contradiction.

Lemma 3.3. Let $p \neq q$ and q > 7. Then, there exists no new graph.

Proof. Suppose that $p \neq q$. Then, |A| = 28pq and $A_v \cong \mathbb{Z}_q$ with $p \neq q > 7$. Since |A| = 28pq and $A_v \cong \mathbb{Z}_q$, we have that A_v is a Sylow q-subgroup of A. It follows that the Sylow q-subgroups of A cannot be normal in A. Let N be a minimal normal subgroup of A. Then, N is either a direct product of some isomorphic non-abelian simple groups or an elementary abelian r-group with r = 2, 7 or p.

Case 1. Assume that N is non-solvable.

Since $|A| = 2^2 \cdot 3 \cdot 7 \cdot q$, we have that $|N| | 2^2 \cdot 3 \cdot 7 \cdot q$. By Proposition 2.6, we have that $N \cong A_5$ or PSL(2, 13).

Let $N \cong A_5$. Then, $|N| = 2^2 \cdot 3 \cdot 5$. Since |N| ||A|, we have that p = 3 and q = 5. This is contrary to our assumption that q > 7.

Let $N \cong \mathrm{PSL}(2,13)$. Then, $|N| = 2^2 \cdot 3 \cdot 7 \cdot 13$. Since q > 7, we have that p = 3 and q = 13. It follows that N is arc-transitive on X and $N_v \cong \mathbb{Z}_{13}$ is a Sylow 13-subgroup of N. Thus, X can be viewed as an orbital graph of N acting on N_v . By using the functions CosetAction and OrbitalGraph in Magma [3], up to graph isomorphism, there is only one connected orbital graph of valence 13 admitting N as an arc-transitive automorphism group. However, this orbital graph has full automorphism group isomorphic to $\mathrm{PSL}(2,13) \times \mathbb{Z}_2$ and so is not one-regular, a contradiction.

Case 2. Assume that A has no non-solvable minimal normal subgroup.

Suppose that p=2. Then, by [16, Theorem 3.3], there is no q-valent one-regular graph of order 56 with q>7. In what follows, we may suppose that $p\geq 3$. Since N is solvable, $N\cong \mathbb{Z}_2, \mathbb{Z}_2^2, \mathbb{Z}_7, \mathbb{Z}_7^2$ with p=7 or \mathbb{Z}_p . By Proposition 2.1, N is semiregular and X_N is a q-valent symmetric graphs of

order 28p/|N| with $A/N \lesssim \operatorname{Aut}(X_N)$. Clearly, $N \not\cong \mathbb{Z}_2^2$ because there exists no regular graph of odd order and odd valency.

Let $N \cong \mathbb{Z}_p$. Then, X_N is a q-valent symmetric graph of order 28 with q > 7. By [7], there are two symmetric graphs of order 28 and valency q, their full automorphism groups are $S_{14} \times \mathbb{Z}_2$ and $\mathrm{PSL}(2,13) \times \mathbb{Z}_2$, respectively. By Proposition 2.1, A/N can be embedded in $S_{14} \times \mathbb{Z}_2$ or $\mathrm{PSL}(2,13) \times \mathbb{Z}_2$. However, by Magma [3], both $S_{14} \times \mathbb{Z}_2$ and $\mathrm{PSL}(2,13) \times \mathbb{Z}_2$ have no subgroup of order 28·13, a contradiction.

Let $N \cong \mathbb{Z}_7^2$. Then, p = 7, $|A| = 2^2 \cdot 7^2 \cdot q$ and X_N is a A/N-symmetric graph of order 4 and valency q. Note that q > 7. This is clearly impossible.

Let $N \cong \mathbb{Z}_7$. Then, X_N is a A/N-symmetric graph of order 4p and valency q. By Proposition 2.3, $X_N \cong \mathbf{K}_{4p}$ with q = 4p-1, $\mathbf{K}_{2p,2p} - 2p\mathbf{K}_2$ with q = 2p-1, or A/N has a normal subgroup $M/N \cong \mathbb{Z}_2$ such that $X_M \cong \mathbf{K}_{p,p}$ with q = p or \mathbf{K}_{2p} with q = 2p-1. By our assumption with $p \neq q$, we have that $X_M \ncong \mathbf{K}_{p,p}$.

Assume that $X_N \cong \mathbf{K}_{4p}$ with q=4p-1. Then, $A/N \lesssim S_{4p}$ and |A/N|=4pq. If A/N is non-solvable, then A/N has a composition factor isomorphic to a non-abelian K_3 -simple group. By Proposition 2.6, this is impossible because q>7. Thus, A/N is solvable. Since |A/N|=4pq with q=4p-1, we have that A/N is 2-transitive on V(X). It follows that the vertex stabilizer of A/N is isomorphic to \mathbb{Z}_q and normalizes the subgroup of A/N and order 4p. By Burnside's Theorem [4, p.192, Theorem IX], A/N is affine. This forces that A/N has a unique minimal normal elementary abelian subgroup and hence $4p=r^k$ for some prime r. This is impossible because $p\geq 3$.

Assume that $X_N \cong \mathbf{K}_{2p,2p} - 2p\mathbf{K}_2$ with q = 2p - 1. Then, $A/N \lesssim S_{2p} \times \mathbb{Z}_2$. Since |A/N| = 4pq and X_N is a bipartite graph, A/N has a subgroup B/N of index 2, which acting on each bipartition of X_N is 2-transitive. Clearly, |B/N| = 2pq and so B/N is solvable. By Burnside's Theorem, B/N is affine. Similar arguments as the above paragraph, we can deduce that a contradiction because 4p can not be a prime power with $p \geq 3$.

Assume that $X_M \cong \mathbf{K}_{2p}$ with q = 2p - 1. Then, $A/M \lesssim \S_{2p}$ and A/M is 2-transitive on $V(X_M)$. Since |A/M| = 2pq, we have that A/M is solvable. By Burnside's Theorem, A/N is affine. Similarly, this is impossible because 2p cannot be a prime power with $p \geq 3$.

Let $N \cong \mathbb{Z}_2$. Then, X_N is a A/N-symmetric graph of order $2 \cdot 7 \cdot p$ and valency q. If p = 7, then $|A/N| = 2 \cdot 7^2$. By Sylow Theorem, the Sylow p-subgroup of A/N must be normal, and by Proposition 2.5, A has a normal Sylow p-subgroup P of order P. Thus, P is a symmetric graph of order P and valency P and Clearly, this is impossible. If $P \neq P$, then P has a square free order. By Proposition 2.4, there is no symmetric graph of order P admitting a solvable arc-transitive automorphism group, a contradiction.

Combining the above arguments with the cases q=2,3 and 5, and by Lemmas 3.1-3.3, we have the following result.

Theorem 3.1. Let p,q be two primes and let X be a connected q-valent one-regular graph of order 28p. Then $X \cong CQ_7$ with p = 7 and valency 3.

4. Conclusion

As is known to all, arc-transitive graphs have much higher symmetries and much larger full automorphism groups, and one-regular graphs have smallest full automorphism groups such that the graphs are arc-transitive. Thus, the characterization and classification of one-regular graphs not only reveal the local action but also global action of the full automorphism group acting on vertices and arcs. In the paper, we classify the one-regular graphs of order 28p and prime valency for each prime p, and prove that there is only one sporadic such graph. As a natural continuation, could we find and classify one-regular graphs of order 28p with more general valencies.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11301154) and Natural Science Foundation of Henan Province (242300421385).

References

- [1] N. Biggs, Algebraic graph theory, Second ed., Cambridge University Press, Cambridge, 1993.
- [2] J.A. Bondy, U.S.R. Murty, *Graph theory with applications*, Elsevier Science Ltd, New York, 1976.
- [3] W. Bosma, C. Cannon, C. Playoust, *The MAGMA algebra system I: The user language*, J. Symbolic Comput., 24 (1997), 235-265.
- [4] W. Burnside, *Theory of groups of finite order*, Cambridge University Press, Cambridge, 1897.
- [5] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc., 158 (1971), 247-256.
- [6] Y. Cheng, J. Oxley, On the weakly symmetric graphs of order twice a prime,J. Combin. Theory Ser. B, 42 (1987), 196-211.
- [7] M.D.E. Conder, A complete list of all connected symmetric graphs of order 2 to 30,
 - https://www.math.auckland.ac.nz/conder/symmetricgraphs-orderupto30.txt.
- [8] H.J. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A Wilson, *Atlas of finite group*, Clarendon Press, Oxford, 1985.

- [9] D.Ž. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B, 29 (1980), 195-230.
- [10] Y.Q. Feng, J.H. Kwak, K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p², European J. Combin., 26 (2005), 1033-1052.
- [11] S.T. Guo, Y.Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math., 312 (2012), 2214-2216.
- [12] S.T. Guo, Y.T. Li, X.H. Hua, (G, s)-transitive graphs of valency 7, Algebra Colloq., 23 (2016), 493-500.
- [13] S.T. Guo, Y. Xu, G.Y. Chen, Heptavalent symmetric graphs of order 8p, Ital. J. Pure Appl. Math., 43 (2020), 37-46.
- [14] B. Huppert, Eudiche gruppen I, Springer-Verlag, Berlin, 1967.
- [15] A. Imani, N. Mehdipoor, A.A. Talebi, On application of linear algebra in classification cubic s-regular graphs of order 28p, Algebra Discrete Math., 25 (2018), 56-72.
- [16] D.X. Li, Prime-valent one-regular graphs of order 8p, Ital. J. Pure Appl. Math., 44 (2020), 449-353.
- [17] P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency,
 J. Graph Theory, 8 (1984), 55-68.
- [18] J. Pan, B. Lou, C. Liu, Arc-transitive pentavalent graphs of order 4pq, Electron. J. Combin., 20 (2013), #36.
- [19] J. Pan, B. Ling, S. Ding, On symmetric graphs of order four times an odd square-free integer and valency seven, Discrete Math., 340 (2017), 2071-2078.
- [20] J. Pan, B. Ling, S. Ding, On prime-valent symmetric graphs of square-free order, Ars Math. Contemp., 15 (2018), 53-65.
- [21] P. Potočnik, Pentavalent arc-transitive graphs on up to 500 vertices which admit an arc-transitive group G with the vertex stabiliser G_v acting faithfully on the neighbourhood of v and being solvable,

 https://www.fmf.uni-lj.si/potocnik/work_datoteke/AT5-Census.mag.
- [22] D.J. Robinson, A Course in the theory of groups, Springer-Verlag, New York, 1982.
- [23] W.J. Shi, On simple K_4 -groups (in Chinese), Chinese Science Bull, 36 (1991), 1281-1283.
- [24] X. Wang, Symmetric graphs of order 4p of valency prime, 2015 Intl. Sym. Comp. Inform., 1 (2015), 1583-1590.

[25] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.

Accepted: January 22, 2025