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Prime-valent one-regular graphs of order 28p

De-Xue Li
Henan Polytechnic Institute
Nanyang 473000
P.R. China
784245478@qq.com

Song-Tao Guo∗

School of Mathematics and Statistics

Henan University of Science and Technology

Luoyang 471023

P.R. China

gsongtao@gmail.com

Abstract. A graph is one-regular if its full automorphism group acts on its arcs
regularly. In this paper, we classify connected one-regular graphs of prime valency and
order 28p for each prime p, and prove that there is only one sporadic graph: the Z7-cover
CQ7 of the three dimensional hypercube Q3 with valency 3.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts or graph-theoretic terms not defined
here we refer the reader to [22, 25] or [1, 2], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the
subgroup of G fixing the point v. We say that G is semiregular on Ω if Gv = 1
for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
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is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all known
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is s-regular with full automorphism group D2n. Let p be a prime.
Classifying s-transitive and s-regular graphs has received considerable attention.
The classification of s-transitive graphs of order p and 2p was given in [5] and
[6], respectively. Wang [24] characterized the prime-valent s-transitive graphs
of order 4p. The classification of cubic and pentavalent s-transitive graphs of
order 28p was given in [15] and [18], respectively. For heptavalent symmetric
graphs of order 28p, their characterizations can be obtained in [19].

For 2-valent case, the graph is a cycle, which is s-regular for any integer
s, and for cubic case, s-transitivity always means s-regularity by Miller [9].
However, for the other prime-valent case, this is not true, see for example [11]
for pentavalent case and [12] for heptavalent case. Thus, characterization and
classification of prime-valent s-regular graphs is very interesting and also reveals
the s-regular global and local actions of the permutation groups on s-arcs of such
graphs. In particular, 1-regular action is the most simple and typical situation.
In this paper, we classify prime-valent one-regular graph of order 28p for each
prime p.

2. Preliminary results

Let X be a connected G-symmetric graph with G ≤ Aut(X), and let N be a
normal subgroup of G. The quotient graph XN of X relative to N is defined as
the graph with vertices the orbits of N on V (X) and with two orbits adjacent
if there is an edge in X between those two orbits. In view of [17, Theorem 9],
we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then, one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), the quotient
graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [6], we introduce the graphs
G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
H(p, q) the unique subgroup of Z∗

p of order q. Define the graph G(2p, q) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.



PRIME-VALENT ONE-REGULAR GRAPHS OF ORDER 28p 131

Proposition 2.2. Let X be a connected q-valent symmetric graph of order 2p
with p, q primes. Then, X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q|(p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp ⋊ Zq)⋊ Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

Next, by [24, Theorem 3.1], we have the characterization of prime valent
symmetric graphs of order 4p.

Proposition 2.3. Let p and q be two primes with q ≥ 5, and let X be a q-valent
symmetric graph of order 4p. Then, X is isomorphic to K4p with q = 4p − 1,
K2p,2p− 2pK2 with q = 2p− 1, or the quotient graph is isomorphic to Kp,p with
q = p or K2p with q = 2p− 1.

The following proposition is about the prime-valent symmetric graphs of
order 14p with p a prime, which is deduced from [20, Theorem 1.2].

Proposition 2.4. Let p and q be two primes. If q ≥ 5, then there is no q-valent
symmetric graph of order 14p admitting a solvable arc-transitive automorphism
group.

The following proposition is the famous “N/C-Theorem”, see for example
[14, Chapter I, Theorem 4.5]).

Proposition 2.5. The quotient group NG(H)/CG(H) is isomorphic to a sub-
group of the automorphism group Aut(H) of H.

From [8, pp.12-14] and [23, Theorem 2], we can deduce the non-abelian
simple groups whose orders have at most four different prime divisors.

Proposition 2.6. Let p and q be two odd primes, and let G be a non-abelian
simple group. If the order |G| divides 22·7·p·q with p ≥ 3 and q > 7, then G
is isomorphic to A5, PSL(2, 13). If the order |G| has at most three different
prime divisors, then G is called K3-simple group and isomorphic to one of the
following groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5



132 DE-XUE LI and SONG-TAO GUO

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
28p for each prime p. Let q be a prime. In what follows, we always denote byX a
connected q-valent one-regular graph of order 28p. Set A = Aut(X), v ∈ V (X).
Then, the vertex stabilizer Av

∼= Zq and hence |A| = 28pq. Clearly, if q = 2,
then X ∼= C28p with A ∼= D56p, which is s-regular for any positive integer s. If
q = 3, then by [15, Corollary 4.9] and [10, Theorem 5.1], we have that X ∼= CQ7,
that is, the Z7-cover of three dimensional hypercube Q3. If q = 5, then by [18,
Theorem 3.1] and [21], there exists no pentavalent one-regular graph of order
28p. Next we deal with the case q = 7.

Lemma 3.1. Let q = 7. Then, there exists no heptavalent one-regular graph of
order 28p.

Proof. Suppose that p = 2. Then, |V (X)| = 56 = 8·7 and |A| = 8·72. By [13,
Theorem 3.1], there is no heptavalent symmetric graphs of order 56, and the
statement holds for p = 2.

Suppose that p ≥ 3. Then, by [19, Theorem 1.1], we have that A ∼=
PSL(2, p), PGL(2, p), PSL(2, p) × Z2 or PGL(2, p) × Z2. In particular, A is
non-solvable. Note that |A| = 22·72·p. Thus, A has a non-solvable composition
factor H isomorphic to a non-abelian K3-simple group. By Proposition 2.6,
p = 3 and H ∼= PSL(2, 7). However, |H| = 23·3·7, this is contrary to the fact
that |H|

∣∣22·72·p.
Now, we treat with the case q > 7. Recall that |A| = 28pq, Av

∼= Zq and
q > 7. Let N be a minimal normal subgroup of A. We divide the proof into the
following two cases: p = q and p ̸= q.

Lemma 3.2. Let p = q > 7. Then, there exists no new graph.

Proof. Suppose that p = q. Then, |A| = 28p2 and Av
∼= Zp with p > 7. Let P

be a Sylow p-subgroup of A. Then, |P | = p2. Note that p = q > 7. Thus, by
Sylow Theorem, the number of Sylow p-subgroups of A is kp+1 = |A : NA(P )|
for some integer k. Since |A| = 28p2, we have that (kp + 1) ÷ 28. It is easy to
see that either k = 0 or k = 1 with p = 13. If k = 1, then P is normal in A.
Since |P | = p2 > 72, we have that Pv

∼= Zp. However, P acting on V (X) has
28 orbits, and hence P is semiregular by Proposition 2.1. This is contrary to
the fact that Pv

∼= Zp. Thus, k = 1 and p = 13. If A is non-solvable, then a
composition factor is isomorphic to a non-abelian simple group and hence this
composition factor has order dividing |A| = 22·7·p2. By Proposition 2.6, there is
no non-abelian simple K3-group whose prime divisor does not have 3. It follows
that A is solvable with p = q = 13 and P is not normal in A.

Let N be a minimal normal subgroup of A. Then, N ∼= Z2, Z2
2, Z7 or

Zp because A is solvable and has no normal Sylow p-subgroup by the above
paragraph. By Proposition 2.1, N is semiregular andXN is a q-valent symmetric
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graph of order 28p/|N |. Note that there exists no regular graph of odd order
and odd valency. Thus, N ̸∼= Z2

2.

Suppose that N ∼= Z2. Then, XN is a A/N -symmetric graph of order 2·7·13
and valency 13. SinceXN has valency 13 and order 2·7·13, we have that 13 ̸

∣∣∣ (7−
1). Note that A/N is solvable. By Proposition 2.4, there exists no symmetric
graph of order 14 admitting a solvable arc-transitive automorphism group, a
contradiction.

Suppose that N ∼= Z7. Then, XN is a A/N -symmetric graph of order 4p and
valency 13. Since |A/N | = 4·132, by Sylow Theorem we have that the Sylow
p-subgroup of A/N is nomal in A/N , and by Proposition 2.5, we can easily
deduce that A has a normal Sylow p-subgroup, a contradiction.

Suppose that N ∼= Zp. Then, XN is a A/N -symmetric graph of order 28. By
[7], there are two symmetric graphs of order 28, their full automorphism groups
are S14 ×Z2 and PSL(2, 13)×Z2, respectively. However, these two groups have
no subgroup of order 28·13, a contradiction.

Lemma 3.3. Let p ̸= q and q > 7. Then, there exists no new graph.

Proof. Suppose that p ̸= q. Then, |A| = 28pq and Av
∼= Zq with p ̸= q > 7.

Since |A| = 28pq and Av
∼= Zq, we have that Av is a Sylow q-subgroup of A.

It follows that the Sylow q-subgroups of A cannot be normal in A. Let N be
a minimal normal subgroup of A. Then, N is either a direct product of some
isomorphic non-abelian simple groups or an elementary abelian r-group with
r = 2, 7 or p.

Case 1. Assume that N is non-solvable.

Since |A| = 22·3·7·q, we have that |N |
∣∣22·3·7·q. By Proposition 2.6, we have

that N ∼= A5 or PSL(2, 13).

Let N ∼= A5. Then, |N | = 22·3·5. Since |N |
∣∣|A|, we have that p = 3 and

q = 5. This is contrary to our assumption that q > 7.

Let N ∼= PSL(2, 13). Then, |N | = 22·3·7·13. Since q > 7, we have that p = 3
and q = 13. It follows that N is arc-transitive on X and Nv

∼= Z13 is a Sylow
13-subgroup of N . Thus, X can be viewed as an orbital graph of N acting on
Nv. By using the functions CosetAction and OrbitalGraph in Magma [3], up
to graph isomorphism, there is only one connected orbital graph of valence 13
admitting N as an arc-transitive automorphism group. However, this orbital
graph has full automorphism group isomorphic to PSL(2, 13)×Z2 and so is not
one-regular, a contradiction.

Case 2. Assume that A has no non-solvable minimal normal subgroup.

Suppose that p = 2. Then, by [16, Theorem 3.3], there is no q-valent one-
regular graph of order 56 with q > 7. In what follows, we may suppose that
p ≥ 3. Since N is solvable, N ∼= Z2, Z2

2, Z7, Z2
7 with p = 7 or Zp. By

Proposition 2.1, N is semiregular and XN is a q-valent symmetric graphs of
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order 28p/|N | with A/N ≲ Aut(XN ). Clearly, N ̸∼= Z2
2 because there exists no

regular graph of odd order and odd valency.

Let N ∼= Zp. Then, XN is a q-valent symmetric graph of order 28 with
q > 7. By [7], there are two symmetric graphs of order 28 and valency q, their
full automorphism groups are S14 × Z2 and PSL(2, 13) × Z2, respectively. By
Proposition 2.1, A/N can be embedded in S14×Z2 or PSL(2, 13)×Z2. However,
by Magma [3], both S14 × Z2 and PSL(2, 13) × Z2 have no subgroup of order
28·13, a contradiction.

Let N ∼= Z2
7. Then, p = 7 , |A| = 22·72·q and XN is a A/N -symmetric graph

of order 4 and valency q. Note that q > 7. This is clearly impossible.

Let N ∼= Z7. Then, XN is a A/N -symmetric graph of order 4p and valency
q. By Proposition 2.3, XN

∼= K4p with q = 4p−1, K2p,2p−2pK2 with q = 2p−1,
or A/N has a normal subgroup M/N ∼= Z2 such that XM

∼= Kp,p with q = p or
K2p with q = 2p− 1. By our assumption with p ̸= q, we have that XM ̸∼= Kp,p.

Assume thatXN
∼= K4p with q = 4p−1. Then, A/N ≲ S4p and |A/N | = 4pq.

If A/N is non-solvable, then A/N has a composition factor isomorphic to a non-
abelian K3-simple group. By Proposition 2.6, this is impossible because q > 7.
Thus, A/N is solvable. Since |A/N | = 4pq with q = 4p−1, we have that A/N is
2-transitive on V (X). It follows that the vertex stabilizer of A/N is isomorphic
to Zq and normalizes the subgroup of A/N and order 4p. By Burnside’s Theorem
[4, p.192, Theorem IX], A/N is affine. This forces that A/N has a unique
minimal normal elementary abelian subgroup and hence 4p = rk for some prime
r. This is impossible because p ≥ 3.

Assume that XN
∼= K2p,2p − 2pK2 with q = 2p− 1. Then, A/N ≲ S2p ×Z2.

Since |A/N | = 4pq and XN is a bipartite graph, A/N has a subgroup B/N
of index 2, which acting on each bipartition of XN is 2-transitive. Clearly,
|B/N | = 2pq and so B/N is solvable. By Burnside’s Theorem, B/N is affine.
Similar arguments as the above paragraph, we can deduce that a contradiction
because 4p can not be a prime power with p ≥ 3.

Assume that XM
∼= K2p with q = 2p − 1. Then, A/M ≲ §2p and A/M

is 2-transitive on V (XM ). Since |A/M | = 2pq, we have that A/M is solvable.
By Burnside’s Theorem, A/N is affine. Similarly, this is impossible because 2p
cannot be a prime power with p ≥ 3.

Let N ∼= Z2. Then, XN is a A/N -symmetric graph of order 2·7·p and valency
q. If p = 7, then |A/N | = 2·72. By Sylow Theorem, the Sylow p-subgroup of
A/N must be normal, and by Proposition 2.5, A has a normal Sylow p-subgroup
P of order 72. Thus, XP is a symmetric graph of order 4 and valency q > 7.
Clearly, this is impossible. If p ̸= 7, then XN has a square free order. By
Proposition 2.4, there is no symmetric graph of order 2·7·p admitting a solvable
arc-transitive automorphism group, a contradiction.

Combining the above arguments with the cases q = 2, 3 and 5, and by
Lemmas 3.1-3.3, we have the following result.
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Theorem 3.1. Let p, q be two primes and let X be a connected q-valent one-
regular graph of order 28p. Then X ∼= CQ7 with p = 7 and valency 3.

4. Conclusion

As is known to all, arc-transitive graphs have much higher symmetries and
much larger full automorphism groups, and one-regular graphs have smallest
full automorphism groups such that the graphs are arc-transitive. Thus, the
characterization and classification of one-regular graphs not only reveal the local
action but also global action of the full automorphism group acting on vertices
and arcs. In the paper, we classify the one-regular graphs of order 28p and
prime valency for each prime p, and prove that there is only one sporadic such
graph. As a natural continuation, could we find and classify one-regular graphs
of order 28p with more general valencies.
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