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Abstract. Graphs are fundamental structures in mathematics and computer science
for modeling relationships between objects. This paper studies three hypercomposi-
tional structures that are derived from graphs, namely the Path hyperoperation, Sim-
ple Path hyperoperation, and Ancestry hyperoperation. These hyperoperations capture
complex relationships, offering a robust framework for analyzing intricate connections
within graphs. We investigate their properties and provide detailed examples to illus-
trate their applications.
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1. Introduction

Graphs are ubiquitous in various fields such as computer science, transporta-
tion and communication, biology, and social sciences, serving as a crucial model
for representing relationships among entities [1], [16]-[17], [29]. Traditionally,
graph theory has mainly utilized adjacency matrices or doubly ranked graph
operations to represent graphs and analyze their properties [14]-[15], [21]-[22].
This approach allows for the straightforward examination of graph structures
and the relationships between vertices. Recently, the introduction of algebraic
hyperstructures has provided a powerful alternative for representing and explor-
ing the properties of graph structures. This approach takes advantage of the
well-established relationship between hyperstructures and binary relations [9]-
[11], [32]-[34], see also [2], [8], [23], [26]-[28], [30]-[31]. Additionally, the inherent
symmetry with hyperstructures has been further explored in [3], [12]-[13], [24],
[25].

The application of hypercompositional algebra in graph theory has demon-
strated its robustness and convenience, providing new insights and methods for
exploring complex graph characteristics [18], [19], [35]. By leveraging the rich
algebraic framework of hyperstructures, researchers can uncover deeper connec-
tions and more intricate properties within graph theory, enhancing the analytical
capabilities and expanding the scope of graph analysis.
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This paper delves into three such hyperoperations: Path hyperoperation,
Simple Path hyperoperation, and Ancestry hyperoperation, exploring their the-
oretical foundations and practical implications. We demonstrate that the char-
acteristics of these hyperoperations are dictated by the structure of their under-
lying graphs and that these characteristics define the corresponding classes of
graphs. This important connection between hyperoperations and graph proper-
ties reveals that we can identify and understand graphs by studying the prop-
erties of the related hyperoperations, and vice versa.

2. Preliminaries

A Hypergroupoid (V, ⋆) consists of a nonempty set V and a hyperoperation

⋆ : V × V → P(V ),

where P(V ) is the powerset of V . A hypergroupoid is called:

Nonpartial if v ⋆ w ̸= ∅ for all v, w ∈ V ,

Degenerative if v ⋆ w = ∅ for all v, w ∈ V ,

Total if v ⋆ w = V for all v, w ∈ V .

Given a binary relation R ⊆ V ×V , Corsini’s hyperoperation [4]-[7], is defined
by the below mapping

(v, w) 7→ v ∗R w = {z ∈ V | (v, z), (z, w) ∈ R}.

A directed graph G is defined as a pair (V,E) where V is a set of vertices
or nodes and E ⊆ V × V is a set of directed edges, represented as ordered pairs
from the set V .

Example 1. Consider the directed graph G1 of Figure 1 with set of vertices
V1 = {v, w, x, y, z} and set of edges

E1 = {(v, w), (w, x), (w, y), (x, y), (y, z), (z, x)}.

A subgraph of a directed graph G = (V,E) is a graph H = (VH , EH) where:

VH ⊆ V is a subset of the vertices of G,

EH ⊆ E is a subset of the edges of G such that every edge in EH has both
endpoints in VH .

Example 2. A subgraph of the graph G1 of Example 1 is the graph H1 of figure
2 with set of vertices VH1 = {v, w, x} and set of edges EH1 = {(v, w), (w, x)}.

A path P of length n from a node u1 to a node un in a graph G = (V,E) is
a sequence of edges
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Figure 1: A directed graph G1
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Figure 2: A subgraph H1 of the graph G1

(u1, u2), (u2, u3), . . . , (un−1, un),

where each edge (ui, ui+1) ∈ E. Based on this definition, we say that the nodes
u1, u2, . . . , un lie on the path P and the same for all the edges in the above
sequence. We also note that nodes and edges may appear more than once in a
path. If all nodes appear at most once in a path then the path is called simple.
A cycle is a path that starts and ends at the same node. The empty sequence
ϵ is a cycle from u to itself, containing only u. The set of all nodes that lie in a
path from u1 to un is denoted

path(u1, un) = {x | x lies on a path from u1 to un}.

Example 3. Considering the graph G1 of Example 1 we see that the sequence
(v, w), (w, x), (x, y) is a path from v to y, only the empty path ϵ exists from w
to w while there are infinite paths from x to x and there are infinite paths from
w to z. Hence we have

path(v, w) = {v, w}, path(w, v) = ∅, path(w, y) = {w, x, y, z},

and

path(w,w) = {w}, path(x, x) = {x, y, z}.

A directed graph G is called strongly connected if, for any two nodes u1
and u2, there exists at least one path from u1 to u2 and vice versa.

Example 4. The graph S of figure 3 with set of vertices VS = {a, b, c, d} and
set of edges
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Figure 3: A strongly connected graph S

ES = {(a, b), (a, d), (d, a), (b, c), (c, b), (c, d), (d, c)}

is strongly connected.

A strongly connected subgraph of a graph G is called strongly connected
component of G.

Example 5. Considering the graph G1 of Example 1, we can define a subgraph
of it H, depicted in Figure 4, with set of vertices VH = {x, y, z} and set of edges
EH = {(x, y), (y, z), (z, x)}.
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Figure 4: The graph G1 of Example 1 and a strongly connected subgraph H

3. Hyperoperations on graphs

In this section we are going to introduce three main hyperoperations on graphs.
We start with the path hyperoperation ⋆G which is defined for a given directed
graph G as a mapping that associates a given pair of graph nodes (vertices)
to the set composed of all graph nodes that lie on a directed path between the
given nodes. This definition extends a well-known hyperoperation introduced by
Corsini, where given a relation R on V and u, v elements of V , their product with
respect to the Corsini operation is properly included in u ⋆G v. More formally,
given a graph G = (V,E), the path hyperoperation is a mapping

⋆G : V × V → P(V )
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Figure 5: The directed graph G2 of Example 7

defined by

v ⋆G w = {u ∈ V | u lies on a path between v and w}.

The hyperstructure (V, ⋆G) is called the path hypergroupoid corresponding to
G.

Example 6. For the graph G1 of Example 1 the related path hyperoperation
is given in the following table.

⋆G1 v w x y z

v {v} {v, w} {v, w, x, y, z} {v, w, x, y, z} {v, w, x, y, z}
w ∅ {w} {w, x, y, z} {w, x, y, z} {w, x, y, z}
x ∅ ∅ {x, y, z} {x, y, z} {x, y, z}
y ∅ ∅ {x, y, z} {x, y, z} {x, y, z}
z ∅ ∅ {x, y, z} {x, y, z} {x, y, z}

We are now ready to illustrate the relationship between the path hyperoper-
ation and some well known graph properties cf. [20]. The first result illustrates
the relationship of the path hyperoperation with the existence of strongly con-
nected components of graphs.

Theorem 1. For any graph G = (V,E) and nodes u1, u2 ∈ V , the following
conditions are equivalent

i) u1 ⋆G u2 ̸= ∅ and u2 ⋆G u1 ̸= ∅.

ii) There is a strongly connected component of G that includes the nodes u1
and u2.

Example 7. The path hyperoperation of the graph G2 depicted in Figure 5 is
given below.
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⋆G2 a b c d e

a {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} ∅
b {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} ∅
c {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} ∅
d {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} ∅
e {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {a, b, c, d, e} {e}

A strongly connected component of G2 is the graph H2 depicted in Figure 6.
It is easy to check that the conditions of Theorem 1 are satisfied for the nodes
a, b, c, d of G2.

a

b

c

d

Figure 6: A connected component of the graph G2

The next result characterizes strong connectivity cf. [18].

Theorem 2. For any graph G = (V,E), the below conditions are equivalent

i) The graph G is strongly connected.

ii) The corresponding hypergroupoid (V, ⋆G) is nonpartial.

iii) The hyperoperation ⋆G is total.

Example 8. It is straightforward to check that the below path hyperoperation
table of the strongly connected graph G3 of Figure 7 satisfies conditions ii) and

a b

cd

Figure 7: The Strongly connected graph G3 of Example 8
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iii) of Theorem 2.

⋆G a b c d

a {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
b {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
c {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
d {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

The existence of cycles inside a graph can be also investigated by examining
the properties of the related path hyperoperation cf. [19].

Theorem 3. Given a graph G = (V,E) and nodes u1, u2 ∈ V , the following
conditions are equivalent.

i) It holds u1 ⋆G u2 = u2 ⋆G u1 ̸= ∅.

ii) There exists a cycle in G that includes both nodes u1 and u2.

Example 9. By examining graph G1 of Example 1 we can identify a cycle going
through the nodes x, y, z. We can verify the validity of Theorem 3 by checking
the corresponding path hyperoperation table of G1 presented in Example 6.

Commutativity of the path hyperoperation is related with strongly connected
graph components as it is illustrated in the next theorem cf. [20].

Theorem 4. The below conditions are equivalent for a given graph G = (V,R).

i) The path hyperoperation ⋆G is commutative.

ii) G can be obtained as the union of disjoint strongly connected graphs.

Associativity of the path hyperoperation can be obtained as a corollary of
the following theorem cf. [19].

Theorem 5. Given a graph G = (V,E) and nodes v, w, u ∈ V it holds

(v ⋆G w) ⋆G u = v ⋆G (w ⋆G u) = v ⋆G w ⋆G u.

Corollary 1. The path hyperoperation is associative

Given a graph G, the simple path hyperoperation ⋆sG maps a pair of
nodes of the graph G to the set that includes all nodes lying on a directed simple
path between the two given nodes. It is evident that the simple path hyperop-
eration between two nodes of a graph results in a set that is always included
in the path hyperoperation between the same nodes. To formally introduce it,
given a graph G = (V,E), the simple path hyperoperation is a mapping

⋆sG : V × V → P(V )

defined by

u1 ⋆
s
G u2 = {u ∈ V | u lies on a simple path between u1 and u2}.

The hyperstructure (V, ⋆sG) is called the simple path hypergroupoid correspond-
ing to G.
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Figure 8: The graph G4 of Example 10

Example 10. For the graph G4 of Figure 8, the table of the simple path hy-
peroperation is given below.

⋆sG a b c

a {a, b, c} {a, b} {a, b, c}
b {a, b, c} {a, b, c} {b, c}
c {a, c} {a, b, c} {a, b, c}

It is clear that ⋆sG is nonpartial and not total. Hence nonpartiality and totality
are not equivalent for the simple path hyperoperation as opposed to the case for
the path hyperoperation as it is described in Theorem 2.

Discrete graphs can be also characterized by the path and the simple path
hyperoperations as follows.

Proposition 1. For a graph G = (V,E), the following conditions are equivalent

i) The graph G is discrete.

ii) The path hyperoperation ⋆G organizes V into a weakly degenerative hyper-
groupoid.

iii) The simple path hyperoperation ⋆sG organizes V into of a weakly degener-
ative hypergroupoid.

The third hyperoperation we will introduce is the ancestry hyperopera-
tion, which assigns any two nodes u1 and u2 of a graph G to the set of all the
nodes of G that have paths going to u1 and u2. Formally we have the following
definition, given a graph G = (V,E), the ancestry hyperoperation is a mapping

⋆cG : V × V → P(V )

defined by

u1 ⋆
c
G u2 = {u ∈ V | path(u, u1) ̸= ∅ and path(u, u2) ̸= ∅}.

The hyperstructure (V, ⋆cG) is called the ancestry hypergroupoid corresponding
to G.
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Figure 9: The graph G5 of Example 11

Example 11. Consider the graph G5 of Figure 9. In the below tables of the
path and the ancestry hyperoperation we can see that the path hyperoperation is
partial and non-commutative as opposed to the ancestry hyperoperation which
is non-partial and commutative.

⋆G a b c d

a {a} {a, b} {a, b, c} {a, b, d}
b ∅ {b} {b, c} {b, d}
c ∅ ∅ {c} ∅
d ∅ ∅ ∅ {d}

⋆cG a b c d

a {a} {a} {a} {a}
b {a} {a, b} {a, b} {a, b}
c {a} {a, b} {a, b, c} {a, b}
d {a} {a, b} {a, b} {a, b, d}

The ancestry hyperoperation of the previous example was commutative and
in the next theorem we see that this is a property that holds in general [20].

Theorem 6. The ancestry hyperoperation ⋆cG is commutative and associative.

4. Conclusion

By investigating hyperstructures derived from graphs, we obtain a powerful
framework to analyze complex relationships within graphs. We explored three
key hyperoperations: the path hyperoperation, which maps two vertices to the
set of all vertices on paths between them; the simple path hyper-operation,
which is similar but only considers simple paths between nodes; and the ancestry
hyper-operation, which maps two nodes to the set of their common ancestors,
defined by the paths leading to these vertices.

These hyperoperations provide new insights and tools for analyzing the in-
tricate structures of graphs. Future research can extend these concepts to more
complex graph structures, such as weighted and dynamic graphs. Additionally,
the introduced hyperoperations can be applied to network analysis, aiding in
the development of efficient algorithms for large-scale graphs.
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