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Abstract. In this article, we begin by deriving a unitarily invariant norm inequality
for matrices, which is a generalization of the result due to Cao and Wu. Additionally,
we introduce a matrix Cauchy-Schwarz inequality for unitarily invariant norms, further

generalizing the inequality proposed by Hu.
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1. Introduction

Throughout this paper, let M,, denote the space of n X n complex matrices. A
matrix norm || - || is called unitarily invariant norm if |[UAV|| = ||A]| for all
A € M,, and for all unitary matrices U,V € M,,. Among well-known unitarily

invariant norm is the Schatten p-norm, denoted by || - ||, and defined as || A||, =

1

(Z" p(A)); = (tr]A]p)%,l < p < oo, where s;(A)(j = 1,2,--- ,n) are the

j=15j

singular values of A with s; > s9 > --- > s,_1 > s, > 0, that is, the eigenvalues

of the positive semidefinite matrix |A| = (A*A)%, arranged in decreasing order.
The Schatten p-norm for the values p = 1,p = 2 and p = oo represent the
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trace norm, the Hilbert-Schmidt norm or Frobenius norm (sometimes written
as || A||p for that reason) and the spectral norm, respectively. Another unitarily
invariant norm is the Ky Fan k-norm, denoted by ||-[|(;) and defined as [|A[| ) =
S si(A) k=1, ,n.

Kaur and Singh [1] proved that for A, B, X € M,, if A and B are positive
definite, then for any unitarily invariant norm

)

1 AX +XB
(L1)  SJAXBY 4+ AX B < H(l _a)AbXBE 4 a<+)

2

where £ <v <3 and o € [3, ).
Substituting A, B with A%, B2 and taking u = 2v in inequality (1.1), we have

I

1 A%2X + X B?
(12)  SIAUXB2 4 42X B < H(l — @) AXB+a <_;>

where £ <u < 3 and « € 3, 00).
Let A, B, X € M, such that A and B are positive semidefinite. Then, for
every unitarily invariant norm, the function

p(u) = [ A"X B2 + A2 X B

is convex on [%,%] and attains its minimum at v = 1. Consequently, it is
decreasing on [, 1] and increasing on [1, 3](See[2]). Using the convexity of the
function ¢p(u), Cao and Wu [3] obtained an improved version of inequality (1.2)
as follows

|A“X B*" + A> "X BY|

< 2(drg — 1)|AXB| + 2(1 — 2r0)| A2 X B2 + A2 X B3|
(1.3)
< 2(4rg — 1)||AXB||
A’X + XB?
+4(1 — 2r)|[(1 —a)AXB + a<;>

)

where % <u< %, a € [%,oo) and 79 = min{g,1 — §}.
Let A, B € M,, and r > 0. Horn and Mathias proved in [4, 5] that

(1.4) I1A*BI"1* < I(AA*)I|- (BB,

which is a matrix Cauchy-Schwarz inequality for unitarily invariant norms.
Bhatia and Davis [6] (See also [2, p.267, Theorem IX.5.2]) got a stronger
version of inequality (1.4) as follows

(1.5) A XBI"||* < |AA X[ - || XBB"],
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for A, B, X € M,, and r > 0, (1.5) is equivalent to
1 1
(1.6) 1A= X Bz|"||* < [[|AX|"[| - (11X BI"]l,
for positive semidefinite matrices A, B and arbitrary X € M,,.

For A,B,X € M, and A, B are positive semidefinite. Then, for every
unitarily invariant norm and r > 0, the function

Y(v) = [JAX BV (I|AT X B

is convex on [0,1] and attains its minimum at v = % Consequently, it is
decreasing on [0, %} and increasing on [%, 1] (See [7]). Using the convexity of

the function v (v), Hiai and Zhan [7] gave a refinement of the inequality (1.6)
as follows

(L7) [JA2XBa[|2 < ||| A" X B[] - || A" X BY["|| < [[|AX]"]| - || X B

Hu [8] utilized the convexity of the function ¢ (v) to obtain an improvement
of the second inequality in (1.7)

[[A*X BV ||| - [[|A X B[]
(1.8)
1 1
< 2to|[|A2 X B2["||* + (1 — 2t0) | |AX|"|| - [[| X BI"],

where 0 < v <1, tp = min{r,1 —v}.

The unitarily invariant norm inequalities are widely applied in fields such as
quantum mechanics, signal processing, data analysis and optimization theory.
For example, in quantum entanglement measures, the unitarily invariant norm
inequalities are employed to ensure the consistency of entanglement properties
across different reference frames. Therefore, studying the unitarily invariant
norm inequalities is of significant theoretical and practical importance. Many
authors discussed different proofs, equivalent statements, generalizations, refine-
ments and applications of inequalities for unitarily invariant norms. For more
information on this topic, the reader is referred to [9-12] and the references
therein.

This note, building on the preceding discussions, focuses on generalizing
unitarily invariant norms inequalities. The structure of the note is as follows.
In Section 2, we generalize inequalities (1.3) and (1.8) by using the convexity of
functions. Finally, Section 3 provides concluding remarks.

2. Main results

We begin this section with the following lemma, which is useful in the proof of
our results.
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Lemma 2.1([13]). Let f be a real valued convexr function on an interval [a, b]
which contains (x1,x2). Then for x1 < x < x9, we have

flaz) = fl21) =~ 21f(z2) — 22f(21)

To — I T2 — 1

f(z) <

Theorem 2.1. Let A, X, B € M,, such that A and B are positive semidefinite.
Then, for any unitarily invariant norm

4 —
”AI/XBQ*I/_FAQ*I/XBV” < (NU VO)
2ug — 1
21/0 —1

2M0—1

2 2
‘(1—04)AXB+O¢<A X+AB )H

2

+ |A*X B*F 4 A2"F X B*||,

whereégl/gg, % <p<i5,ac [%,oo), vy = min{v,2 — v} and py =
min{y, 2 — p}.

Proof. For 1 < v <y <1, by the convexity of function ¢(v) = ||[A”XB*™ +
A?""X BY|| and Lemma 2.1, we get

p(p) —e(3)  5e(n) — me(3)
30(1/) < 1 2 V= 2 1 2 )
H—3 H—=3
which is equivalent to
2v—1 2p—v) (1
2.1 — i UnA Z
(2.1) o) < 3o+ e (3)).

combining (1.2) with (2.1), we have

Ay — A2X + XB?
AV X B> 4+ AT x| < A=Y ’(1 — a)AXB + a(+) H
24 — 1 2
2v—1

ST |A# X B*# + A* F X BH||
/J/ —

which is equivalent to

|AYX B> + A2V XB"||

4(/1,0 — I/()) AZX + XB2
< —(1-a)AXB _—
(2.2) S oot ||t ta 2
+ |A*X B“"F + A" X B*||.
2[,00 -1
Forl<pu<v< %, by Lemma 2.1, it follows that
3 3 3
e(5) =) pe(3) — 59(u)
(,0(1/) < 23 v — 23 2 ,
7 T H 7 T H
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which implies

(23 o) < 50 (3) + et

combining (1.2) with (2.3), we have

2 2
AV X B2V + A2V X BY|| < 2W K H AXB+a<AX+XB>H

2

which is equivalent to

|AYX B> + A> VX BY|

4(/1,0 — Vo) A%2X + X B?
2vp — 1
2”0 L AMX B 4 41X B

Ho —

It follows from (2.2),(2.4) and 3 < v < 3,
min{v, 2 — v}, up = min{y, 2 — p} that

<u<%,a€[%,oo),y0:

N[ =

4(ug — A’X + X B?
x4+ Az xpr) < 20l AXE <+> H
210 — 1 2
219 — 1
+ 0 | ArX B2 4 AR X B,
2#0 -1
This completes the proof. ]

Remark 2.1. Let ¢ =1 in Theorem 2.1, we obtain the inequality (1.3).

Remark 2.2. When % <v<pu<lol<puy<r<L %, the inequality in
Theorem 2.1 is better than inequality (1.3).

By the convexity of function p(v) = ||A¥ X B>~*+A27¥ X BY|| and Lemma 2.1,
we know that inequality (1.3) is equivalent to

<v<l1

o) <201 - ) (5) + v - Dpl), 3

and
() < (B3=2v)p(1)+2(r—1)p <2> , 1<v < g

For 3 <v < pu <1, since p(v) = |AVXB?>7" + A> X B”| is convex on [3,1], it
follows by a slope argument that

p(p) —
h—

)

N[

(

<

NO|— ‘6

o(1) — w(%)
3
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By a small calculation, we have

21 =v)p (;) + (2v = 1)p(1) - [mw (;) + ;:: 1<p(u)]
_ w1 [90(1) —o(3) el —¢ (é)}
2 3 b3
>0

For 1 < p < v < 3, since p(v) = |AVXB*" + A2"V X B"|| is convex on [1, 3]
and ¢(v) is increasing on [1, 3], we have

Obviously, Theorem 2.1 is a generalization of inequality (1.3).

In the following, we utilize the convexity of the function ¢ (v)=|||A¥ X B1="|"||-
|JA1=Y X B¥|"|| to obtain a matrix Cauchy-Schwarz inequality for unitarily in-
variant norms that leads to a generalization of inequality (1.8).

Theorem 2.2. Let A, X, B € M,, such that A and B are positive semidefinite.
Then, for every unitarily invariant norm

A" X B[ - I|A™" X B[]

2.5 _ _

(2:5) < (1= ro)ll|AX["|| - I XB|"|| + roll [A* X B*"#"|| - [[| A" # X B*|"||,
2, 0<v <y,

where r >0, 0<v <1, 0<pu<1andrg= ‘1‘_
ﬁ, /.L<l/§1

Proof. Inequality (2.5) is obvious for v = 0, u, 1. For 0 < v < p, since
P(v) = |||[AVXBYY|"|| - |||JA*"Y X BY|"|| is convex on [0, 1], it follows by a slope
argument that

then
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Therefore,
AYX B2 - ||A X BV

v 14 _ _
< (1 - N) A NXBI + AR X B A X B

which is equivalent to
A X B - A X BV
(2.6)
< (1= ro)[|AX["[| - [1X BI"[| + rol[| A*X B ||| - [[JA"# X BH|"]|.

For 1 < v < 1, since ¥ (v) is convex on [0, 1], it follows by a slope argument that

() =) _ P(1) = d(w)

vV— - 1—u
then
< (1-128) v + L)
Y(v) < = s
Therefore,

I|AYXB|"|| - [[|A"" X B[
< (1 1-v
< -

which is equivalent to

1 _
|| AR X BR[| AY X B,
I—p

) NAXT] - IXBF | +

I[A"X B[ || - [[|A X BV
(2.7)
< (1= ro)[|AX|"|| - [[|IX BI"[| + ol |[A* X B =#[7| - || A+ X BH["||.

It follows from (2.6), (2.7) and r >0, 0<v <1,0<p <1,

) OSVSH)

v
—, pu<r<l
I—p

SN

ro =

that

A" X B[ - I|A™=" X B[]
< (1= ro)[|AX["[| - [1XBI"|| + rol|| A* X B ||| - [[[A* =X B"|"].

The proof is completed. O
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Remark 2.3. Let pu= % in Theorem 2.2, we obtain the inequality (1.8).

Remark 2.4. When 0 < v < pu < % or % < p < v <1, the inequality in
Theorem 2.2 is better than inequality (1.8).
By the convexity of function (v) = |||A*XB>|"|| - |||A*"*XB"|"|| and

Lemma 2.1, we know that inequality (1.8) is equivalent to

(2.8 v0) < (=200 + 200 (5) 0w < ]
and
(2.9) ww>§@u—nwuw+m1—mw(;)7;gygL

For0<v<u< %, compared with inequality (2.8)
(1= 20)%(0)+2v0 (;) - [ (1 - Z) w<0>+”w<u>]

—(2(w 5 ) = $O)-2(0l0) ~ O)).

Since ¥(v) = |||[AYXB7Y|"|| - |||AY"Y X B¥|"|| is convex on [0, 1], it follows by a
slope argument that

¥ (3) = 0) _ w(p) — ()
-0 - =0

i

that is

thus, we have
1 v v
- 2y0) + 200 (3) 2 (1-2) 010 + e,
For % < pu < v <1, compared with inequality (2.9)
v-u + 20 -0 (3) - [ (12122 v+ 20|

:u—w(“?jf”—¢m w@»_

vl |

Since 9 (v) is convex on [0, 1], it follows by a slope argument that

o) = vl) | o) — vl
1—p = ’

1
2
Thus, we have

- nu +20 -0 (3) 2 (1- 150 v+ 1= 2ol

Obviously, Theorem 2.2 is a generalization of inequality (1.8).
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3. Conclusion

In recent years, there has been a growing interest in exploring unitarily invariant
norms inequalities. By utilizing the convexity of the functions ¢(v) and ¥ (v),
we introduce two new matrix inequalities for unitarily invariant norms, which
generalize several previously known results. The inequalities derived in this
work lead to refinements of unitarily invariant norms inequalities under specific
conditions. Future research will further explore these topics.
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