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1. Introduction1

Throughout this paper, let Mn denote the space of n× n complex matrices. A2

matrix norm || · || is called unitarily invariant norm if ||UAV || = ||A|| for all3

A ∈ Mn and for all unitary matrices U, V ∈ Mn. Among well-known unitarily4

invariant norm is the Schatten p-norm, denoted by || · ||p and defined as ∥A∥p =5 (∑n
j=1 s

p
j (A)

) 1
p
= (tr|A|p)

1
p , 1 ≤ p < ∞, where sj(A)(j = 1, 2, · · · , n) are the6

singular values of A with s1 ≥ s2 ≥ · · · ≥ sn−1 ≥ sn ≥ 0, that is, the eigenvalues7

of the positive semidefinite matrix |A| = (A∗A)
1
2 , arranged in decreasing order.8

The Schatten p-norm for the values p = 1, p = 2 and p = ∞ represent the9

*. Corresponding author



GENERALIZATIONS OF UNITARILY INVARIANT NORM INEQUALITIES ... 83

trace norm, the Hilbert-Schmidt norm or Frobenius norm (sometimes written10

as ∥A∥F for that reason) and the spectral norm, respectively. Another unitarily11

invariant norm is the Ky Fan k-norm, denoted by ||·||(k) and defined as ∥A∥(k) =12 ∑k
j=1 sj(A), k = 1, · · · , n.13

Kaur and Singh [1] proved that for A,B,X ∈ Mn, if A and B are positive14

definite, then for any unitarily invariant norm15

(1.1)
1

2
∥AνXB1−ν +A1−νXBν∥ ≤

∥∥∥∥(1− α)A
1
2XB

1
2 + α

(
AX +XB

2

)∥∥∥∥,
where 1

4 ≤ ν ≤ 3
4 and α ∈ [12 ,∞).16

Substituting A,B with A2, B2 and taking u = 2ν in inequality (1.1), we have17

(1.2)
1

2
∥AuXB2−u +A2−uXBu∥ ≤

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥,
where 1

2 ≤ u ≤ 3
2 and α ∈ [12 ,∞).18

Let A,B,X ∈ Mn such that A and B are positive semidefinite. Then, for19

every unitarily invariant norm, the function20

φ(u) = ∥AuXB2−u +A2−uXBu∥

is convex on [12 ,
3
2 ] and attains its minimum at u = 1. Consequently, it is21

decreasing on [12 , 1] and increasing on [1, 32 ](See[2]). Using the convexity of the22

function φ(u), Cao and Wu [3] obtained an improved version of inequality (1.2)23

as follows24

(1.3)

∥AuXB2−u +A2−uXBu∥

≤ 2(4r0 − 1)∥AXB|+ 2(1− 2r0)∥A
1
2XB

3
2 +A

3
2XB

1
2 ∥

≤ 2(4r0 − 1)∥AXB∥

+4(1− 2r0)

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥,
where 1

2 ≤ u ≤ 3
2 , α ∈ [12 ,∞) and r0 = min{u

2 , 1−
u
2}.25

Let A,B ∈Mn and r > 0. Horn and Mathias proved in [4, 5] that26

(1.4) ∥|A∗B|r∥2 ≤ ∥(AA∗)r∥ · ∥(BB∗)r∥,

which is a matrix Cauchy-Schwarz inequality for unitarily invariant norms.27

Bhatia and Davis [6] (See also [2, p.267, Theorem IX.5.2]) got a stronger28

version of inequality (1.4) as follows29

(1.5) ∥|A∗XB|r∥2 ≤ ∥|AA∗X|r∥ · ∥|XBB∗|r∥,
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for A,B,X ∈Mn and r > 0, (1.5) is equivalent to30

(1.6) ∥|A
1
2XB

1
2 |r∥2 ≤ ∥|AX|r∥ · ∥|XB|r∥,

for positive semidefinite matrices A,B and arbitrary X ∈Mn.31

For A,B,X ∈ Mn and A, B are positive semidefinite. Then, for every32

unitarily invariant norm and r > 0, the function33

ψ(ν) = ∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

is convex on [0, 1] and attains its minimum at ν = 1
2 . Consequently, it is34

decreasing on
[
0, 12
]
and increasing on

[
1
2 , 1
]
(See [7]). Using the convexity of35

the function ψ (ν), Hiai and Zhan [7] gave a refinement of the inequality (1.6)36

as follows37

(1.7) ∥|A
1
2XB

1
2 |r∥2 ≤ ∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥ ≤ ∥|AX|r∥ · ∥|XB|r∥.

Hu [8] utilized the convexity of the function ψ(ν) to obtain an improvement38

of the second inequality in (1.7)39

(1.8)

∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

≤ 2t0∥|A
1
2XB

1
2 |r∥2 + (1− 2t0)∥|AX|r∥ · ∥|XB|r∥,

where 0 ≤ ν ≤ 1, t0 = min{ν, 1− ν}.40

The unitarily invariant norm inequalities are widely applied in fields such as41

quantum mechanics, signal processing, data analysis and optimization theory.42

For example, in quantum entanglement measures, the unitarily invariant norm43

inequalities are employed to ensure the consistency of entanglement properties44

across different reference frames. Therefore, studying the unitarily invariant45

norm inequalities is of significant theoretical and practical importance. Many46

authors discussed different proofs, equivalent statements, generalizations, refine-47

ments and applications of inequalities for unitarily invariant norms. For more48

information on this topic, the reader is referred to [9-12] and the references49

therein.50

This note, building on the preceding discussions, focuses on generalizing51

unitarily invariant norms inequalities. The structure of the note is as follows.52

In Section 2, we generalize inequalities (1.3) and (1.8) by using the convexity of53

functions. Finally, Section 3 provides concluding remarks.54

2. Main results55

We begin this section with the following lemma, which is useful in the proof of56

our results.57
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Lemma 2.1([13]). Let f be a real valued convex function on an interval [a, b]58

which contains (x1, x2). Then for x1 ≤ x ≤ x2, we have59

f(x) ≤ f(x2)− f(x1)

x2 − x1
x− x1f(x2)− x2f(x1)

x2 − x1
.

Theorem 2.1. Let A,X,B ∈Mn such that A and B are positive semidefinite.60

Then, for any unitarily invariant norm61

∥AνXB2−ν +A2−νXBν∥ ≤ 4(µ0 − ν0)

2µ0 − 1

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+

2ν0 − 1

2µ0 − 1
∥AµXB2−µ +A2−µXBµ∥,

where 1
2 ≤ ν ≤ 3

2 ,
1
2 < µ < 3

2 , α ∈ [12 ,∞), ν0 = min{ν, 2 − ν} and µ0 =62

min{µ, 2− µ}.63

Proof. For 1
2 ≤ ν ≤ µ ≤ 1, by the convexity of function φ(ν) = ∥AνXB2−ν +64

A2−νXBν∥ and Lemma 2.1, we get65

φ(ν) ≤
φ(µ)− φ(12)

µ− 1
2

ν −
1
2φ(µ)− µφ(12)

µ− 1
2

,

which is equivalent to66

(2.1) φ(ν) ≤ 2ν − 1

2µ− 1
φ(µ) +

2(µ− ν)

2µ− 1
φ

(
1

2

)
,

combining (1.2) with (2.1), we have67

∥AνXB2−ν +A2−νXBν∥ ≤ 4(µ− ν)

2µ− 1

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+

2ν − 1

2µ− 1
∥AµXB2−µ +A2−µXBµ∥

which is equivalent to68

(2.2)

∥AνXB2−ν +A2−νXBν∥

≤ 4(µ0 − ν0)

2µ0 − 1

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+
2ν0 − 1

2µ0 − 1
∥AµXB2−µ +A2−µXBµ∥.

For 1 < µ ≤ ν ≤ 3
2 , by Lemma 2.1, it follows that69

φ(ν) ≤
φ(32)− φ(µ)

3
2 − µ

ν −
µφ(32)−

3
2φ(µ)

3
2 − µ

,
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which implies70

(2.3) φ(ν) ≤ 2ν − 2µ

3− 2µ
φ

(
3

2

)
+

3− 2ν

3− 2µ
φ(µ),

combining (1.2) with (2.3), we have71

∥AνXB2−ν +A2−νXBν∥ ≤ 4(ν − µ)

3− 2µ

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+

3− 2ν

3− 2µ
∥AµXB2−µ +A2−µXBµ∥,

which is equivalent to72

(2.4)

∥AνXB2−ν +A2−νXBν∥

≤ 4(µ0 − ν0)

2µ0 − 1

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+
2ν0 − 1

2µ0 − 1
∥AµXB2−µ +A2−µXBµ∥.

It follows from (2.2),(2.4) and 1
2 ≤ ν ≤ 3

2 ,
1
2 < µ < 3

2 , α ∈ [12 ,∞), ν0 =73

min{ν, 2− ν}, µ0 = min{µ, 2− µ} that74

∥AνXB2−ν +A2−νXBν∥ ≤ 4(µ0 − ν0)

2µ0 − 1

∥∥∥∥(1− α)AXB + α

(
A2X +XB2

2

)∥∥∥∥
+

2ν0 − 1

2µ0 − 1
∥AµXB2−µ +A2−µXBµ∥.

This completes the proof.75

Remark 2.1. Let µ = 1 in Theorem 2.1, we obtain the inequality (1.3).76

Remark 2.2. When 1
2 ≤ ν ≤ µ ≤ 1 or 1 < µ ≤ ν ≤ 3

2 , the inequality in77

Theorem 2.1 is better than inequality (1.3).78

By the convexity of function φ(ν) = ∥AνXB2−ν+A2−νXBν∥ and Lemma 2.1,79

we know that inequality (1.3) is equivalent to80

φ(ν) ≤ 2(1− ν)φ

(
1

2

)
+ (2ν − 1)φ(1),

1

2
≤ ν ≤ 1

and81

φ(ν) ≤ (3− 2ν)φ(1) + 2(ν − 1)φ

(
3

2

)
, 1 < ν ≤ 3

2
.

For 1
2 ≤ ν ≤ µ ≤ 1, since φ(ν) = ∥AνXB2−ν +A2−νXBν∥ is convex on [12 , 1], it82

follows by a slope argument that83

φ(µ)− φ(12)

µ− 1
2

≤
φ(1)− φ(12)

1− 1
2

.
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By a small calculation, we have84

2(1− ν)φ

(
1

2

)
+ (2ν − 1)φ(1)−

[
2(ν − µ)

2µ− 1
φ

(
1

2

)
+

2ν − 1

2µ− 1
φ(µ)

]
=

2ν − 1

2

[
φ(1)− φ

(
1
2

)
1
2

−
φ(µ)− φ

(
1
2

)
µ− 1

2

]
≥ 0.

For 1 < µ ≤ ν ≤ 3
2 , since φ(ν) = ∥AνXB2−ν + A2−νXBν∥ is convex on [1, 32 ]85

and φ(ν) is increasing on [1, 32 ], we have86

0 ≤
φ(32)− φ(1)

1
2

≤
φ(µ)− φ(32)

µ− 3
2

.

By a small calculation, we have87

(3− 2ν)φ(1) + 2(ν − 1)φ

(
3

2

)
−
[(

2ν − 2µ

3− 2µ

)
φ

(
3

2

)
+

3− 2ν

3− 2µ
φ(µ)

]
= (ν − 1)

φ(32)− φ(1)
1
2

+
3− 2ν

2

φ(µ)− φ(32)

µ− 3
2

≥ 0.

Obviously, Theorem 2.1 is a generalization of inequality (1.3).88

In the following, we utilize the convexity of the function ψ(ν)=∥|AνXB1−ν |r∥·89

∥|A1−νXBν |r∥ to obtain a matrix Cauchy-Schwarz inequality for unitarily in-90

variant norms that leads to a generalization of inequality (1.8).91

Theorem 2.2. Let A,X,B ∈Mn such that A and B are positive semidefinite.92

Then, for every unitarily invariant norm93

(2.5)
∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥
≤ (1− r0)∥|AX|r∥ · ∥|XB|r∥+ r0∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥,

where r > 0, 0 ≤ ν ≤ 1, 0 < µ < 1 and r0 =

{
ν
µ , 0 ≤ ν ≤ µ,
1−ν
1−µ , µ < ν ≤ 1.

94

Proof. Inequality (2.5) is obvious for ν = 0, µ, 1. For 0 < ν < µ, since95

ψ(ν) = ∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥ is convex on [0, 1], it follows by a slope96

argument that97

ψ(ν)− ψ(0)

ν − 0
≤ ψ(µ)− ψ(0)

µ− 0
,

then98

ψ(ν) ≤
(
1− ν

µ

)
ψ(0) +

ν

µ
ψ(µ).
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Therefore,99

∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

≤
(
1− ν

µ

)
∥|AX|r∥ · ∥|XB|r∥+ ν

µ
∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥,

which is equivalent to100

(2.6)
∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

≤ (1− r0)∥|AX|r∥ · ∥|XB|r∥+ r0∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥.

For µ < ν < 1, since ψ(ν) is convex on [0, 1], it follows by a slope argument that101

ψ(ν)− ψ(µ)

ν − µ
≤ ψ(1)− ψ(µ)

1− µ
,

then102

ψ(ν) ≤
(
1− 1− ν

1− µ

)
ψ(1) +

1− ν

1− µ
ψ(µ).

Therefore,103

∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

≤
(
1− 1− ν

1− µ

)
∥|AX|r∥ · ∥|XB|r∥+ 1− ν

1− µ
∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥,

which is equivalent to104

(2.7)
∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥

≤ (1− r0)∥|AX|r∥ · ∥|XB|r∥+ r0∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥.

It follows from (2.6), (2.7) and r > 0, 0 ≤ ν ≤ 1, 0 < µ < 1,105

r0 =


ν

µ
, 0 ≤ ν ≤ µ,

1− ν

1− µ
, µ < ν ≤ 1

that106

∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥
≤ (1− r0)∥|AX|r∥ · ∥|XB|r∥+ r0∥|AµXB1−µ|r∥ · ∥|A1−µXBµ|r∥.

The proof is completed.107
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Remark 2.3. Let µ = 1
2 in Theorem 2.2, we obtain the inequality (1.8).108

Remark 2.4. When 0 ≤ ν ≤ µ ≤ 1
2 or 1

2 < µ ≤ ν ≤ 1, the inequality in109

Theorem 2.2 is better than inequality (1.8).110

By the convexity of function ψ(ν) = ∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥ and111

Lemma 2.1, we know that inequality (1.8) is equivalent to112

(2.8) ψ(ν) ≤ (1− 2ν)ψ(0) + 2νψ

(
1

2

)
, 0 ≤ ν ≤ 1

2

and113

(2.9) ψ(ν) ≤ (2ν − 1)ψ(1) + 2(1− ν)ψ

(
1

2

)
,
1

2
≤ ν ≤ 1.

For 0 ≤ ν ≤ µ ≤ 1
2 , compared with inequality (2.8)114

(1− 2ν)ψ(0)+2νψ

(
1

2

)
−
[(

1− ν

µ

)
ψ(0)+

ν

µ
ψ(µ)

]
=ν(2(ψ

(
1

2

)
− ψ(0))−ν

µ
(ψ(µ)− ψ(0))).

Since ψ(ν) = ∥|AνXB1−ν |r∥ · ∥|A1−νXBν |r∥ is convex on [0, 1], it follows by a115

slope argument that116

ψ
(
1
2

)
− ψ(0)

1
2 − 0

≥ ψ(µ)− ψ(0)

µ− 0
,

that is117

2(ψ

(
1

2

)
− ψ(0))− 1

µ
(ψ(µ)− ψ(0)) ≥ 0,

thus, we have118

(1− 2ν)ψ(0) + 2νψ

(
1

2

)
≥
(
1− ν

µ

)
ψ(0) +

ν

µ
ψ(µ).

For 1
2 < µ ≤ ν ≤ 1, compared with inequality (2.9)119

(2ν − 1)ψ(1) + 2(1− ν)ψ

(
1

2

)
−
[(

1− 1− ν

1− µ

)
ψ(1) +

1− ν

1− µ
ψ(µ)

]
= (1− ν)

(
ψ(1)− ψ(µ)

1− µ
−
ψ(1)− ψ(12)

1
2

)
.

Since ψ(ν) is convex on [0, 1], it follows by a slope argument that120

ψ(1)− ψ(µ)

1− µ
≥
ψ(1)− ψ(12)

1
2

.

Thus, we have121

(2ν − 1)ψ(1) + 2(1− ν)ψ

(
1

2

)
≥
(
1− 1− ν

1− µ

)
ψ(1) +

1− ν

1− µ
ψ(µ).

Obviously, Theorem 2.2 is a generalization of inequality (1.8).122
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3. Conclusion123

In recent years, there has been a growing interest in exploring unitarily invariant124

norms inequalities. By utilizing the convexity of the functions φ(ν) and ψ(ν),125

we introduce two new matrix inequalities for unitarily invariant norms, which126

generalize several previously known results. The inequalities derived in this127

work lead to refinements of unitarily invariant norms inequalities under specific128

conditions. Future research will further explore these topics.129
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