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The influence of ICs-subgroups on the structure of finite groups
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Abstract. A subgroup H of a group G is said to be an ICs-subgroup of G if
the intersection of H and [H,G] is contained in HsG, where HsG is the maximal s-
semipermutable subgroup of G contained in H. Our main result here is the following.
Let F be a solubly saturated formation containing U and E be a normal subgroup of
a group G such that G/E ∈ F. Let X = E or X = F ∗(E). If every non-trivial Sylow
subgroup P of X has a subgroup D with 1 < |D| < |P | such that every subgroup of P
with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an ICs-subgroup
of G, then G ∈ F.

Keywords: ICs-subgroup, p-nilpotent group, p-supersoluble group, saturated forma-
tion.

MSC 2020: 20D10, 20D15.

1. Introduction

All groups considered in this paper are finite groups. Let G be a group. π(G)
denotes the set of all primes dividing |G|. U denotes the class of all supersoluble
groups. ZU(G) denotes the product of all normal subgroups N of G such that
every chief factor of G below N has prime order. We use standard notation as
in [2] and [5].

*. Corresponding author



74 HUAJIE ZHENG, YONG XU and SONGTAO GUO

Let H be a subgroup of G. It is well known that the normal closure HG of
H in G is the smallest normal subgroup of G containing H and HG = H[H,G],
where [H,G] is the commutator subgroup of H and G. It is an interesting
question to research the relationship between H ∩ [H,G] and the structure of
G. Recall that a subgroup H of G is said to be s-semipermutable in G if H
permutes with every Sylow q-subgroup of G for every prime q not dividing |H|.
In [12], the authors introduced the concept of an ICs-subgroup of a group.

Definition 1.1. Let H be a subgroup of G. Then, H is called an ICs-subgroup
of G if H ∩ [H,G] ≤ HsG, where HsG is the maximal s-semipermutable subgroup
of G contained in H.

The main result of [12] is as follows: Let F be a solubly saturated formation
containing U and let E be a normal subgroup of G such that G/E ∈ F. Suppose
that, X = E or X = F ∗(E). If every cyclic subgroup of every noncyclic Sylow
subgroup of X with order p and 4 (if p = 2) or every maximal subgroup of every
Sylow subgroup of X is an ICs-subgroup of G, then G ∈ F. The goal of the
present paper is to generalize and extend the result mentioned above by proving
the theorems below.

Theorem 1.1. Let G be a group and P ∈ Sylp(G), where p is the smallest
prime dividing |G|. Suppose that, there is a subgroup D of P with 1 < |D| < |P |
such that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a
non-abelian 2-group) is an ICs-subgroup of G, then G is p-nilpotent.

Theorem 1.2. Let G be a group and P ∈ Sylp(G), where p ∈ π(G). Suppose
that, there is a subgroup D of P with 1 < |D| < |P | such that every subgroup
of P with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an
ICs-subgroup of G, then G is p-supersoluble.

Theorem 1.3. Let F be a solubly saturated formation containing U and E be a
normal subgroup of a group G such that G/E ∈ F. Let X = E or X = F ∗(E).
If every non-trivial Sylow subgroup P of X has a subgroup D with 1 < |D| < |P |
such that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a
non-abelian 2-group) is an ICs-subgroup of G, then G ∈ F.

2. Preliminary results

Lemma 2.1 ([7, Lemma 2.2]). Let G be a group. Suppose that, H is an s-
semipermutable subgroup of G. Then:

(1) If H ≤ K ≤ G, then H is s-semipermutable in K.

(2) Let N be a normal subgroup of G. If H is a p-group for some prime
p ∈ π(G) , then HN/N is s-semipermutable in G/N .

(3) If H ≤ Op(G), then H is s-permutable in G.
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(4) Suppose that, H is a p-group for some prime p ∈ π(G) and N is normal
in G. Then, H ∩N is also an s-semipermutable subgroup of G.

Lemma 2.2 ([9, Lemma A]). If H is an s-permutable subgroup of G and H is
a p-group. Then, Op(G) ≤ NG(H).

Lemma 2.3 ([12, Lemma 2.3]). Let G be a group, H ≤ G, N ⊴ G. Suppose
that, H is an ICs-subgroup of G. Then

(1) If H ≤ K ≤ G, then H is an ICs-subgroup of K.

(2) Let N ≤ H. If H is a p-group for some prime p ∈ π(G), then H/N is an
ICs-subgroup of G/N .

(3) If H is a p-group and N is a p′-group for some prime p ∈ π(G), then
HN/N is an ICs-subgroup of G/N .

In the following two lemmas, we collect some results related to weakly τ -
embedded subgroups. Recall that a subgroup H of G is said to be τ -permutable
(τ -quasinormal) in G if H permutes with all Sylow q-subgroups Q of G such
that (q, |H|) = 1 and (|H|, |QG|) ̸= 1. A subgroup H of G is said to be weakly
τ -embedded in G if there exists a normal subgroup T of G such that HT is s-
permutable in G and H ∩T ≤ HτG, where HτG is the subgroup generated by all
those subgroups of H which are τ -permutable (τ -quasinormal) in G. Obviously,
ICs-subgroups are weakly τ -embedded subgroups.

Lemma 2.4 ([8, Theorem 2.1]). Let p be a prime dividing the order of a group
G. Assume that all maximal subgroups of every Sylow p-subgroup of G are
weakly τ -embedded in G. Then, either G is a group whose Sylow p-subgroups
are of order p or G is a p-supersoluble group.

Lemma 2.5 ([8, Theorem 2.2]). Assume that p is a prime dividing the order
of a group G. If every cyclic subgroup of G of order p or 4 (if p = 2) is weakly
τ -embedded in G, then G is p-supersoluble.

Lemma 2.6. Let G be a group with an abelian Sylow 2-subgroup, and assume
that any subgroup of G with order 2 is weakly τ -embedded in G. Then, G is
2-nilpotent.

Proof. Assume that the lemma is false and choose G to be a counterexample
of the smallest order. Let L be a proper subgroup of G. By the subgroup
heritability of weakly τ -embedding, any subgroup of L with order 2 is weakly
τ -embedded in L. Hence, L is 2-nilpotent by the minimality of G. It follows
that G is minimal non-2-nilpotent. Then, G has an elementary abelian Sylow
2-subgroup P , and P is a minimal normal subgroup of G. Then, let H = ⟨x⟩ be
a subgroup of P with order 2. Since H is weakly τ -embedded in G, there is a
normal subgroup T of G such that HT is s-permutable in G and H ∩T ≤ HτG.
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Then, P ∩ HT = H(P ∩ T ) is s-permutable in G and thus normal in G(since
P is abelian). If P ∩ T = 1, it follows that P = H, which implies that G
is 2-nilpotent, a contradiction. Then, P ≤ T , and so, H = HτG. If Q is a
non-trivial Sylow subgroup of G different from P , then it follows that HQ is a
subgroup of G. Since HQ is nilpotent, Q centralizes H. Then, H is normal in
G, a contradiction.

Lemma 2.7 ([1, Theorem 2.1.6]). Let G be a p-supersoluble group. Then, the
derived subgroup G′ of G is p-nilpotent. In particular, if Op′(G) = 1, then G
has a unique Sylow p-subgroup.

Lemma 2.8 ([5, VI, 4.10]). Assume that A and B are two subgroups of a group
G and G ̸= AB. If ABg = BgA holds for any g ∈ G, then either A or B is
contained in a proper normal subgroup of G.

Lemma 2.9 ([11, Lemma 2.6]). Let p be a prime dividing the order of G and
P a normal p-subgroup of G. Assume that there is a subgroup D of P with
1 < |D| < |P | such that every subgroup of P with order |D| and 4 (if |D| = 2
and P is a non-abelian 2-group) is an ICΦs-subgroup of G, then P ≤ ZU(G).

Lemma 2.10 ([4, Lemma 3.3]). Let F be a solubly saturated formation contain-
ing all supersoluble groups. Suppose that, E is a normal subgroup of G such that
G/E ∈ F. If E ≤ ZU(G), then G ∈ F. In particular, if E is cyclic, then G ∈ F.

Lemma 2.11 ([10, Theorem B]). Let F be a formation and E a normal subgroup
of G. If F ∗(E) ≤ ZF(G), then E ≤ ZF(G).

3. Proofs of the main theorems

Proof of Theorem 1.1. Assume that the result is false. Let G be a counterex-
ample with minimal order. Obviously, |P | ⩾ p2 since 1 < |D| < |P |.

(1) |D| > p and |P : D| > p.
Assume that |D| = p or |P : D| = p. Then, by Lemma 2.5 and Lemma 2.6

or Lemma 2.4, G is p-supersoluble. Since p is the smallest prime dividing |G|,
we have that G is p-nilpotent, a contradiction.

(2) Op′(G) = 1.
It follows from Lemma 2.3(3).
(3) Let L be a proper normal subgroup of G and Lp ∈ Sylp(L). If |Lp| > |D|,

then L is p-nilpotent.
It follows from Lemma 2.3(1).
(4) Let K be a proper normal subgroup of G. Then, K ≤ P .
If PK < G, then PK is p-nilpotent by the hypothesis and Lemma 2.3(1)

and so K is p-nilpotent. Hence, K ≤ P by (2). If PK = G, then G/K =
PK/K ∼= P/P ∩ K is a p-group. Let M/K be a maximal subgroup of G/K.
Clearly, M ⊴ G, |G : M | = p and M ∩ P is a maximal subgroup of P . By (1)
and (3), we have M is p-nilpotent. Hence, K ≤ M ≤ P by (2).
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(5) G = Op(G).

If Op(G) < G, then Op(G) ≤ P by (4). Hence, G = P , a contradiction.

(6) G is not a non-abelian simple group.

Assume that G is a non-abelian simple group. Let H be a subgroup of P
with order |D| and Q a Sylow q-subgroup of G for some q ∈ π(G) with q ̸= p.
Then, H ∩ [H,G] ≤ HsG. If [H,G] = G, then H = HsG. So HQg = QgH
holds for any g ∈ G. This is contrary to the simplicity of G by Lemma 2.8. If
[H,G] = 1, then H ≤ Z(G) = 1, so |D| = 1, a contradiction.

(7) Let N be a minimal normal subgroup of G. Then, |N | < |D|.
By (4) and (6), we have N ≤ P . Assume that |N | ≥ |D|. Let H be a

subgroup of N with order |D|. Then, H ∩ [H,G] ≤ HsG. If [H,G] = 1, then
H ≤ Z(G) and soN = H ≤ Z(G). It follows that |N | = |D| = p, this is contrary
to (1). Hence, [H,G] ̸= 1. Note that H[H,G] = HG ≤ N , so [H,G] = N . It
follows that H = H ∩N = H ∩ [H,G] ≤ HsG. Then, H = HsG ≤ N ≤ Op(G)
and so G = Op(G) ≤ NG(H) by Lemma 2.1(3), Lemma 2.2 and (5). This implies
that H = N . Let U/N be a normal subgroup of P/N with order p. Since N
is non-cyclic, U is non-cyclic, there exists a maximal subgroup H1 of U such
that U = NH1. Obviously, |H1| = |N | = |D|, and so H1 ∩ [H1, G] ≤ (H1)sG.
It is easy to see that N ∩ H1 ̸= 1 and [N ∩ H1, G] ̸= 1, so 1 < [N ∩ H1, G] ≤
[N,G] ≤ N . It follows that N = [N,G] = [N ∩ H1, G] ≤ [H1, G] and so
H1 ∩N ≤ H1 ∩ [H1, G] ≤ (H1)sG. Hence, H1 ∩N = (H1)sG ∩N is s-permutable
in G by Lemma 2.1(3)-(4). Further, G = Op(G) ≤ NG(H1 ∩N) by Lemma 2.2
and (5). This implies H1 ∩N ⊴G and H1 ∩N = N for the minimal normality
of N , a contradiction.

(8) Let N be a minimal normal subgroup of G. Then, G/N is p-nilpotent.

By (7), |N | < |D|. If p > 2 or p = 2 and P/N is an abelian 2-group or p = 2
and |D/N | > 2, then G/N satisfies the hypothesis of the theorem by Lemma
2.3(2), so G/N is p-nilpotent by the minimal choice of G. Now suppose that
p = 2 and P/N is not abelian and |D/N | = 2. Then, |D| = 2|N |. Obviously,
every subgroup of P/N with order 2 is an ICs-subgroup of G/N . Let U/N be
a cyclic subgroup of P/N with order 4. We will prove that U/N is an ICs-
subgroup of G/N .

Firstly, we claim that |N | > 2. If |N | = 2, then |D| = 4. By the hypothesis,
all subgroups of P with order 4 are ICs-subgroups of G. Clearly, N is an ICs-
subgroup of G with order 2. Assume that there is a subgroup ⟨x⟩ of P with
order 2 such that ⟨x⟩ ≠ N . Then, T = ⟨x⟩N is an elementary abelian 2-group
with order 4. If ⟨x⟩ ∩ [⟨x⟩, G] = 1, obviously, ⟨x⟩ is an ICs-subgroup of G. If
⟨x⟩ ∩ [⟨x⟩, G] = ⟨x⟩, then ⟨x⟩ = ⟨x⟩ ∩ [⟨x⟩, G] ≤ T ∩ [T,G] ≤ TsG. Note that
N ≤ TsG, hence T = TsG. Let Q ∈ Sylq(G), where q ̸= 2. Since NQ⊴ TQ and
NQ is 2-nilpotent, we have Q⊴TQ and so ⟨x⟩Q is a subgroup of G. This implies
that ⟨x⟩ = ⟨x⟩sG. Hence, ⟨x⟩ is an ICs-subgroup of G. We have proved that
every subgroup of P with order 2 and 4 is an ICs-subgroup of G. Therefore, G
is 2-supersoluble by Lemma 2.5 and so G is 2-nilpotent, a contradiction. Hence,
|N | > 2 and |D| > 4.
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Suppose that, N ≤ Φ(U), then U is cyclic and N is cyclic, a contradiction.

Hence, N ≰ Φ(U). Then, there exists a maximal subgroup U1 of U such
that U = NU1. Obviously, |U1| = |D|. Then, U1 ∩ [U1, G] ≤ (U1)sG. It is
easy to see that N ∩ U1 ̸= 1 and [N ∩ U1, G] ̸= 1, then 1 < [N ∩ U1, G] ≤
[N,G] ≤ N . It follows that N = [N,G] = [N ∩U1, G] ≤ [U1, G]. So U ∩ [U,G] =
NU1 ∩ [NU1, G] = NU1 ∩ [U1, G]N [N,G] = NU1 ∩ [U1, G] = N(U1 ∩ [U1, G]) ≤
N(U1)sG ≤ (NU1)sG = UsG. This shows that U is an ICs-subgroup of G and
so U/N is an ICs-subgroup of G/N . Hence, G/N is 2-nilpotent by Lemma 2.5.

(9) The final contradiction.

By (8), let K/N be the normal p-complement of G/N . Then, G/K is a
p-group. On the other hand, K ≤ P by (4). Hence, G is a p-group, the final
contradiction.

This completes the proof.

Proof of Theorem 1.2. If p = 2, then G is 2-nilpotent by Theorem 1.1. Hence,
the theorem holds. Now we consider the case when p is an odd prime.

Assume that the result is false. Let G be a counterexample with minimal
order. Obviously, |P | ⩾ p2 since 1 < |D| < |P |.

(1) |D| > p and |P : D| > p.

It follows from Lemma 2.5 and Lemma 2.4.

(2) Op′(G) = 1.

It follows from Lemma 2.3(3).

(3) If N is a minimal normal subgroup of G contained in P , then |N | ≤ |D|.
Assume that |N | > |D|. Let H be a subgroup of N with order |D| such that

H⊴P . Then, H∩[H,G] ≤ HsG. It is easy to see that [H,G] ̸= 1 and [H,G] = N .
It follows that H = H ∩N = H ∩ [H,G] ≤ HsG. Then, H = HsG < N ≤ Op(G)
and so Op(G) ≤ NG(H) by Lemma 2.1(3) and Lemma 2.2. Since H ⊴ P , we
have H ⊴G and so |H| = |D| = 1, a contradiction.

(4) If N is a minimal normal subgroup of G contained in P , then G/N is
p-supersoluble.

By (3), |N | ≤ |D|. If |N | < |D|, then G/N satisfies the hypothesis of the
theorem by Lemma 2.3(2), so G/N is p-supersoluble by the minimal choice of
G.

If |N | = |D|. Now we claim that every subgroup of P/N with order p is an
ICs-subgroup of G/N . Let A/N be a subgroup of P/N with order p. By (1), N
is non-cyclic, so A is non-cyclic. Hence, there exists a maximal subgroup T of
A such that A = TN . Obviously, |T | = |N | = |D|. Then, T ∩ [T,G] ≤ TsG. It is
easy to see that N∩T ̸= 1 and [N∩T,G] ̸= 1, then 1 < [N∩T,G] ≤ [N,G] ≤ N .
It follows that N = [N,G] = [N∩T,G] ≤ [T,G]. So A∩[A,G] = TN∩[TN,G] =
TN ∩ [T,G]N [N,G] = TN ∩ [T,G] = (T ∩ [T,G])N ≤ TsGN ≤ (TN)sG = AsG.
This shows that A is an ICs-subgroup of G and so A/N is an ICs-subgroup of
G/N . Hence, G/N is p-supersoluble by Lemma 2.5.

(5) Op(G) = 1.
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Assume that Op(G) ̸= 1. Let N be a minimal normal subgroup of G con-
tained in P . Then, N ≤ Op(G). By (4), it is easy to see that N is the unique
minimal normal subgroup ofG contained inOp(G). Moreover, Φ(G) = 1. Hence,
Op(G) is an elementary abelian p-group, and G has a maximal subgroup M such
that G = MN and M ∩N = 1. It is easy to deduce that N = Op(G). By (4),
obviously, G is p-soluble. Hence, N is the unique minimal normal subgroup of
G by (2). By (3), |N | ≤ |D|.

If |N | < |D|. Let Mp = M ∩ P . Then, P = NMp. Obviously, Mp ̸= 1 and
|N | > p. Let P1 be a maximal subgroup of P containing Mp. Then, P = NP1

and 1 < N ∩ P1 < N . Let H be a subgroup of P1 containing N ∩ P1 such
that |H| = |D| and H ⊴ P . Then, H ∩ N = P1 ∩ N ̸= 1. By the hypothesis,
H∩ [H,G] ≤ HsG. Obviously, [H,G] ̸= 1. Hence, H∩N ≤ H∩ [H,G] ≤ HsG. It
follows that H∩N = HsG∩N and so Op(G) ≤ NG(H∩N) by Lemma 2.1(3)-(4)
and Lemma 2.2. Since H ∩N ⊴ P , we have H ∩N ⊴G and so H ∩N = N by
the minimality of N , then N ≤ H ≤ P1, a contradiction.

If |N | = |D|. Let T/N be a normal subgroup of P/N with order p. Then,
we can write T = N⟨x⟩, where xp ∈ N , but x /∈ N . Assume that Φ(T ) = N .
Then, T is cyclic, so is N . It follows that |N | = p, a contradiction. Hence,
Φ(T ) < N . Since T ⊴ P , we have Φ(T ) ⊴ P . Hence, we can choose a maximal
subgroup N1 of N containing Φ(T ) such that N1 ⊴ P . Let H = N1⟨x⟩. Since
xp ∈ Φ(T ) ≤ N1, we have |H| = |N | = |D|. Then, H ∩ [H,G] ≤ HsG. Hence, we
can obtain N1 = H ∩N ⊴G by a similar discussion as in the process of proving
|N | < |D|. Hence, N1 = 1 and |N | = p, a contradiction.

(6) LetA be a minimal normal subgroup ofG. Then, A is non-p-supersoluble.

If A is p-supersoluble, then Ap ⊴ A by (2) and Lemma 2.7, where Ap ∈
Sylp(A). So Ap ⊴G, but this is contrary to (5).

(7) G is a non-abelian simple group.

Suppose that, G is not a simple group. Let A be a minimal normal subgroup
of G. Then, A < G. If |Ap| > |D|, it easily follows that A is p-supersoluble by
Lemma 2.3(1), this is contrary to (6). If |Ap| ≤ |D|, we can pick a subgroup
P1 of P such that Ap = A ∩ P ≤ P1 and |P1| = p|D|. Then, P1 is a Sylow
p-subgroup of P1A. Since every maximal subgroup of P1 is an ICs-subgroup of
G by the hypothesis, we have every maximal subgroup of P1 is an ICs-subgroup
of P1A by Lemma 2.3(1), so P1A is p-supersoluble by Lemma 2.4. Therefore, A
is p-supersoluble, this is contrary to (6) again.

(8) The final contradiction.

Let H be a subgroup of P with |H| = |D|. Then, H ∩ [H,G] ≤ HsG. By
(1), (6) and (7), we have 1 ̸= [H,G] = G, H = H ∩G = H ∩ [H,G] ≤ HsG and
H = HsG. Let Q be a Sylow q-subgroup of G for some q ∈ π(G) with q ̸= p.
Then, HQg = QgH for any g ∈ G. Since G is a simple group, so G = HQ by
Lemma 2.8, the final contradiction.

This completes the proof.
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Corollary 3.1. Let P be a normal p-subgroup of G. Suppose that, there is a
subgroup D of P with 1 < |D| < |P | such that every subgroup of P with order
|D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an ICs-subgroup of G,
then P ≤ ZU(G).

Proof. Let H ≤ P such that H is an ICs-subgroup of G. Then, H ∩ [H,G] ≤
HsG. By Lemma 2.1(3), HsG is equal to HsG, i.e. the subgroup of H generated
by all subgroups of H which are s-permutable in G. Thus, H is an ICΦs-
subgroup of G (see, [11, Definition 1.1]). It follows that any subgroup of P with
order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an ICΦs-subgroup
of G. Then, P ≤ ZU(G) by Lemma 2.9. This completes the proof.

Proof of Theorem 1.3. We first prove that the theorem is true if X = E.
Suppose that, this is not the case, and let (G,E) be a counterexample with
|G|+ |E| minimal.

By the hypothesis and Theorem 1.2, we have E is supersoluble. Let P ∈
Sylp(E), where p is the largest prime divisor of |E|. Then, P ⊴E and so P ⊴G.
Since (G/P )/(E/P ) ∼= G/E ∈ F and (G/P,E/P ) satisfies the hypothesis of the
theorem, we have G/P ∈ F. Moreover, P ≤ ZU(G) by Corollary 3.1. Hence,
G ∈ F by Lemma 2.10, and this contradiction completes the proof for the case
X = E.

Now we prove that the theorem holds for X = F ∗(E).

By the hypothesis and Theorem 1.2, we have F ∗(E) is supersoluble. Hence,
F (E) = F ∗(E). Let P be a Sylow p-subgroup of F (E). Then, P ⊴ G. By
Corollary 3.1, P ≤ ZU(G). It follows that F (E) ≤ ZU(G). Thus we have G ∈ F
by Lemma 2.10 and Lemma 2.11.

This completes the proof.
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