The influence of $IC\overline{s}$ -subgroups on the structure of finite groups

Huajie Zheng

School of Mathematics and Statistics Henan University of Science and Technology Luoyang 471023, China huajie219@163.com

Yong Xu*

School of Mathematics and Statistics Henan University of Science and Technology Luoyang 471023, China xuy_2011@163.com

Songtao Guo

School of Mathematics and Statistics Henan University of Science and Technology Luoyang 471023, China qsongtao@gmail.com

Abstract. A subgroup H of a group G is said to be an $IC\overline{s}$ -subgroup of G if the intersection of H and [H,G] is contained in $H_{\overline{s}G}$, where $H_{\overline{s}G}$ is the maximal s-semipermutable subgroup of G contained in H. Our main result here is the following. Let \mathfrak{F} be a solubly saturated formation containing \mathfrak{U} and E be a normal subgroup of a group G such that $G/E \in \mathfrak{F}$. Let X = E or $X = F^*(E)$. If every non-trivial Sylow subgroup P of X has a subgroup D with 1 < |D| < |P| such that every subgroup of P with order |D| and P is a non-abelian 2-group is an P-subgroup of P, then P is a non-abelian 2-group is an P-subgroup of P, then P is a non-abelian 2-group.

Keywords: $IC\overline{s}$ -subgroup, p-nilpotent group, p-supersoluble group, saturated formation.

MSC 2020: 20D10, 20D15.

1. Introduction

All groups considered in this paper are finite groups. Let G be a group. $\pi(G)$ denotes the set of all primes dividing |G|. \mathfrak{U} denotes the class of all supersoluble groups. $Z_{\mathfrak{U}}(G)$ denotes the product of all normal subgroups N of G such that every chief factor of G below N has prime order. We use standard notation as in [2] and [5].

^{*.} Corresponding author

Let H be a subgroup of G. It is well known that the normal closure H^G of H in G is the smallest normal subgroup of G containing H and $H^G = H[H, G]$, where [H, G] is the commutator subgroup of H and G. It is an interesting question to research the relationship between $H \cap [H, G]$ and the structure of G. Recall that a subgroup H of G is said to be s-semipermutable in G if H permutes with every Sylow g-subgroup of G for every prime g not dividing |H|. In [12], the authors introduced the concept of an $IC\overline{s}$ -subgroup of a group.

Definition 1.1. Let H be a subgroup of G. Then, H is called an $IC\overline{s}$ -subgroup of G if $H \cap [H,G] \leq H_{\overline{s}G}$, where $H_{\overline{s}G}$ is the maximal s-semipermutable subgroup of G contained in H.

The main result of [12] is as follows: Let \mathfrak{F} be a solubly saturated formation containing \mathfrak{U} and let E be a normal subgroup of G such that $G/E \in \mathfrak{F}$. Suppose that, X = E or $X = F^*(E)$. If every cyclic subgroup of every noncyclic Sylow subgroup of X with order p and 4 (if p = 2) or every maximal subgroup of every Sylow subgroup of X is an $IC\overline{\mathfrak{F}}$ -subgroup of X, then $X \in \mathfrak{F}$. The goal of the present paper is to generalize and extend the result mentioned above by proving the theorems below.

Theorem 1.1. Let G be a group and $P \in Syl_p(G)$, where p is the smallest prime dividing |G|. Suppose that, there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an $IC\overline{s}$ -subgroup of G, then G is p-nilpotent.

Theorem 1.2. Let G be a group and $P \in Syl_p(G)$, where $p \in \pi(G)$. Suppose that, there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an $IC\overline{s}$ -subgroup of G, then G is p-supersoluble.

Theorem 1.3. Let \mathfrak{F} be a solubly saturated formation containing \mathfrak{U} and E be a normal subgroup of a group G such that $G/E \in \mathfrak{F}$. Let X = E or $X = F^*(E)$. If every non-trivial Sylow subgroup P of X has a subgroup D with 1 < |D| < |P| such that every subgroup of P with order |D| and A (if |D| = 2 and P is a non-abelian 2-group) is an $IC\overline{s}$ -subgroup of G, then $G \in \mathfrak{F}$.

2. Preliminary results

Lemma 2.1 ([7, Lemma 2.2]). Let G be a group. Suppose that, H is an s-semipermutable subgroup of G. Then:

- (1) If $H \le K \le G$, then H is s-semipermutable in K.
- (2) Let N be a normal subgroup of G. If H is a p-group for some prime $p \in \pi(G)$, then HN/N is s-semipermutable in G/N.
- (3) If $H \leq O_p(G)$, then H is s-permutable in G.

(4) Suppose that, H is a p-group for some prime $p \in \pi(G)$ and N is normal in G. Then, $H \cap N$ is also an s-semipermutable subgroup of G.

Lemma 2.2 ([9, Lemma A]). If H is an s-permutable subgroup of G and H is a p-group. Then, $O^p(G) \leq N_G(H)$.

Lemma 2.3 ([12, Lemma 2.3]). Let G be a group, $H \leq G$, $N \leq G$. Suppose that, H is an $IC\overline{s}$ -subgroup of G. Then

- (1) If $H \le K \le G$, then H is an $IC\overline{s}$ -subgroup of K.
- (2) Let $N \leq H$. If H is a p-group for some prime $p \in \pi(G)$, then H/N is an $IC\overline{s}$ -subgroup of G/N.
- (3) If H is a p-group and N is a p'-group for some prime $p \in \pi(G)$, then HN/N is an $IC\overline{s}$ -subgroup of G/N.

In the following two lemmas, we collect some results related to weakly τ -embedded subgroups. Recall that a subgroup H of G is said to be τ -permutable (τ -quasinormal) in G if H permutes with all Sylow q-subgroups Q of G such that (q, |H|) = 1 and $(|H|, |Q^G|) \neq 1$. A subgroup H of G is said to be weakly τ -embedded in G if there exists a normal subgroup T of G such that HT is s-permutable in G and $H \cap T \leq H_{\tau G}$, where $H_{\tau G}$ is the subgroup generated by all those subgroups of H which are τ -permutable (τ -quasinormal) in G. Obviously, $IC\overline{s}$ -subgroups are weakly τ -embedded subgroups.

Lemma 2.4 ([8, Theorem 2.1]). Let p be a prime dividing the order of a group G. Assume that all maximal subgroups of every Sylow p-subgroup of G are weakly τ -embedded in G. Then, either G is a group whose Sylow p-subgroups are of order p or G is a p-supersoluble group.

Lemma 2.5 ([8, Theorem 2.2]). Assume that p is a prime dividing the order of a group G. If every cyclic subgroup of G of order p or q (if q = q) is weakly τ -embedded in q, then q is q-supersoluble.

Lemma 2.6. Let G be a group with an abelian Sylow 2-subgroup, and assume that any subgroup of G with order 2 is weakly τ -embedded in G. Then, G is 2-nilpotent.

Proof. Assume that the lemma is false and choose G to be a counterexample of the smallest order. Let L be a proper subgroup of G. By the subgroup heritability of weakly τ -embedding, any subgroup of L with order 2 is weakly τ -embedded in L. Hence, L is 2-nilpotent by the minimality of G. It follows that G is minimal non-2-nilpotent. Then, G has an elementary abelian Sylow 2-subgroup P, and P is a minimal normal subgroup of G. Then, let $H = \langle x \rangle$ be a subgroup of P with order 2. Since H is weakly τ -embedded in G, there is a normal subgroup T of G such that HT is s-permutable in G and $H \cap T \leq H_{\tau G}$.

Then, $P \cap HT = H(P \cap T)$ is s-permutable in G and thus normal in G(since P is abelian). If $P \cap T = 1$, it follows that P = H, which implies that G is 2-nilpotent, a contradiction. Then, $P \leq T$, and so, $H = H_{\tau G}$. If Q is a non-trivial Sylow subgroup of G different from P, then it follows that HQ is a subgroup of G. Since HQ is nilpotent, Q centralizes H. Then, H is normal in G, a contradiction.

Lemma 2.7 ([1, Theorem 2.1.6]). Let G be a p-supersoluble group. Then, the derived subgroup G' of G is p-nilpotent. In particular, if $O_{p'}(G) = 1$, then G has a unique Sylow p-subgroup.

Lemma 2.8 ([5, VI, 4.10]). Assume that A and B are two subgroups of a group G and $G \neq AB$. If $AB^g = B^gA$ holds for any $g \in G$, then either A or B is contained in a proper normal subgroup of G.

Lemma 2.9 ([11, Lemma 2.6]). Let p be a prime dividing the order of G and P a normal p-subgroup of G. Assume that there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| and P is a non-abelian 2-group) is an $IC\Phi_s$ -subgroup of P, then $P < Z_{M}(G)$.

Lemma 2.10 ([4, Lemma 3.3]). Let \mathfrak{F} be a solubly saturated formation containing all supersoluble groups. Suppose that, E is a normal subgroup of G such that $G/E \in \mathfrak{F}$. If $E \leq Z_{\mathfrak{U}}(G)$, then $G \in \mathfrak{F}$. In particular, if E is cyclic, then $G \in \mathfrak{F}$.

Lemma 2.11 ([10, Theorem B]). Let \mathfrak{F} be a formation and E a normal subgroup of G. If $F^*(E) \leq Z_{\mathfrak{F}}(G)$, then $E \leq Z_{\mathfrak{F}}(G)$.

3. Proofs of the main theorems

Proof of Theorem 1.1. Assume that the result is false. Let G be a counterexample with minimal order. Obviously, $|P| \ge p^2$ since 1 < |D| < |P|.

(1) |D| > p and |P:D| > p.

Assume that |D| = p or |P:D| = p. Then, by Lemma 2.5 and Lemma 2.6 or Lemma 2.4, G is p-supersoluble. Since p is the smallest prime dividing |G|, we have that G is p-nilpotent, a contradiction.

- (2) $O_{p'}(G) = 1$.
- It follows from Lemma 2.3(3).
- (3) Let L be a proper normal subgroup of G and $L_p \in Syl_p(L)$. If $|L_p| > |D|$, then L is p-nilpotent.

It follows from Lemma 2.3(1).

(4) Let K be a proper normal subgroup of G. Then, $K \leq P$.

If PK < G, then PK is p-nilpotent by the hypothesis and Lemma 2.3(1) and so K is p-nilpotent. Hence, $K \le P$ by (2). If PK = G, then $G/K = PK/K \cong P/P \cap K$ is a p-group. Let M/K be a maximal subgroup of G/K. Clearly, $M \le G$, |G:M| = p and $M \cap P$ is a maximal subgroup of P. By (1) and (3), we have M is p-nilpotent. Hence, $K \le M \le P$ by (2).

- (5) $G = O^p(G)$.
- If $O^p(G) < G$, then $O^p(G) \le P$ by (4). Hence, G = P, a contradiction.
- (6) G is not a non-abelian simple group.

Assume that G is a non-abelian simple group. Let H be a subgroup of P with order |D| and Q a Sylow q-subgroup of G for some $q \in \pi(G)$ with $q \neq p$. Then, $H \cap [H, G] \leq H_{\overline{s}G}$. If [H, G] = G, then $H = H_{\overline{s}G}$. So $HQ^g = Q^gH$ holds for any $g \in G$. This is contrary to the simplicity of G by Lemma 2.8. If [H, G] = 1, then $H \leq Z(G) = 1$, so |D| = 1, a contradiction.

(7) Let N be a minimal normal subgroup of G. Then, |N| < |D|.

By (4) and (6), we have $N \leq P$. Assume that $|N| \geq |D|$. Let H be a subgroup of N with order |D|. Then, $H \cap [H,G] \leq H_{\overline{s}G}$. If [H,G] = 1, then $H \leq Z(G)$ and so $N = H \leq Z(G)$. It follows that |N| = |D| = p, this is contrary to (1). Hence, $[H,G] \neq 1$. Note that $H[H,G] = H^G \leq N$, so [H,G] = N. It follows that $H = H \cap N = H \cap [H,G] \leq H_{\overline{s}G}$. Then, $H = H_{\overline{s}G} \leq N \leq O_p(G)$ and so $G = O^p(G) \leq N_G(H)$ by Lemma 2.1(3), Lemma 2.2 and (5). This implies that H = N. Let U/N be a normal subgroup of P/N with order p. Since N is non-cyclic, U is non-cyclic, there exists a maximal subgroup H_1 of U such that $U = NH_1$. Obviously, $|H_1| = |N| = |D|$, and so $H_1 \cap [H_1, G] \leq (H_1)_{\overline{s}G}$. It is easy to see that $N \cap H_1 \neq 1$ and $[N \cap H_1, G] \neq 1$, so $1 < [N \cap H_1, G] \leq [N, G] \leq N$. It follows that $N = [N, G] = [N \cap H_1, G] \leq [H_1, G]$ and so $H_1 \cap N \leq H_1 \cap [H_1, G] \leq (H_1)_{\overline{s}G}$. Hence, $H_1 \cap N = (H_1)_{\overline{s}G} \cap N$ is s-permutable in G by Lemma 2.1(3)-(4). Further, $G = O^p(G) \leq N_G(H_1 \cap N)$ by Lemma 2.2 and (5). This implies $H_1 \cap N \leq G$ and $H_1 \cap N = N$ for the minimal normality of N, a contradiction.

(8) Let N be a minimal normal subgroup of G. Then, G/N is p-nilpotent.

By (7), |N| < |D|. If p > 2 or p = 2 and P/N is an abelian 2-group or p = 2 and |D/N| > 2, then G/N satisfies the hypothesis of the theorem by Lemma 2.3(2), so G/N is p-nilpotent by the minimal choice of G. Now suppose that p = 2 and P/N is not abelian and |D/N| = 2. Then, |D| = 2|N|. Obviously, every subgroup of P/N with order 2 is an $IC\overline{s}$ -subgroup of G/N. Let U/N be a cyclic subgroup of P/N with order 4. We will prove that U/N is an $IC\overline{s}$ -subgroup of G/N.

Firstly, we claim that |N| > 2. If |N| = 2, then |D| = 4. By the hypothesis, all subgroups of P with order 4 are $IC\overline{s}$ -subgroups of G. Clearly, N is an $IC\overline{s}$ -subgroup of G with order 2. Assume that there is a subgroup $\langle x \rangle$ of P with order 2 such that $\langle x \rangle \neq N$. Then, $T = \langle x \rangle N$ is an elementary abelian 2-group with order 4. If $\langle x \rangle \cap [\langle x \rangle, G] = 1$, obviously, $\langle x \rangle$ is an $IC\overline{s}$ -subgroup of G. If $\langle x \rangle \cap [\langle x \rangle, G] = \langle x \rangle$, then $\langle x \rangle = \langle x \rangle \cap [\langle x \rangle, G] \leq T \cap [T, G] \leq T_{\overline{s}G}$. Note that $N \leq T_{\overline{s}G}$, hence $T = T_{\overline{s}G}$. Let $Q \in Syl_q(G)$, where $q \neq 2$. Since $NQ \subseteq TQ$ and NQ is 2-nilpotent, we have $Q \subseteq TQ$ and so $\langle x \rangle Q$ is a subgroup of G. This implies that $\langle x \rangle = \langle x \rangle_{\overline{s}G}$. Hence, $\langle x \rangle$ is an $IC\overline{s}$ -subgroup of G. We have proved that every subgroup of P with order 2 and 4 is an $IC\overline{s}$ -subgroup of G. Therefore, G is 2-supersoluble by Lemma 2.5 and so G is 2-nilpotent, a contradiction. Hence, |N| > 2 and |D| > 4.

Suppose that, $N \leq \Phi(U)$, then U is cyclic and N is cyclic, a contradiction. Hence, $N \nleq \Phi(U)$. Then, there exists a maximal subgroup U_1 of U such that $U = NU_1$. Obviously, $|U_1| = |D|$. Then, $U_1 \cap [U_1, G] \leq (U_1)_{\overline{s}G}$. It is easy to see that $N \cap U_1 \neq 1$ and $[N \cap U_1, G] \neq 1$, then $1 < [N \cap U_1, G] \leq [N, G] \leq N$. It follows that $N = [N, G] = [N \cap U_1, G] \leq [U_1, G]$. So $U \cap [U, G] = NU_1 \cap [NU_1, G] = NU_1 \cap [U_1, G]^N[N, G] = NU_1 \cap [U_1, G] = N(U_1 \cap [U_1, G]) \leq N(U_1)_{\overline{s}G} \leq (NU_1)_{\overline{s}G} = U_{\overline{s}G}$. This shows that U is an $IC\overline{s}$ -subgroup of G and so U/N is an $IC\overline{s}$ -subgroup of G/N. Hence, G/N is 2-nilpotent by Lemma 2.5.

(9) The final contradiction.

By (8), let K/N be the normal p-complement of G/N. Then, G/K is a p-group. On the other hand, $K \leq P$ by (4). Hence, G is a p-group, the final contradiction.

This completes the proof.

Proof of Theorem 1.2. If p = 2, then G is 2-nilpotent by Theorem 1.1. Hence, the theorem holds. Now we consider the case when p is an odd prime.

Assume that the result is false. Let G be a counterexample with minimal order. Obviously, $|P| \ge p^2$ since 1 < |D| < |P|.

- (1) |D| > p and |P:D| > p.
- It follows from Lemma 2.5 and Lemma 2.4.
- (2) $O_{p'}(G) = 1$.
- It follows from Lemma 2.3(3).
- (3) If N is a minimal normal subgroup of G contained in P, then $|N| \leq |D|$. Assume that |N| > |D|. Let H be a subgroup of N with order |D| such that $H \subseteq P$. Then, $H \cap [H, G] \leq H_{\overline{s}G}$. It is easy to see that $[H, G] \neq 1$ and [H, G] = N. It follows that $H = H \cap N = H \cap [H, G] \leq H_{\overline{s}G}$. Then, $H = H_{\overline{s}G} < N \leq O_p(G)$ and so $O^p(G) \leq N_G(H)$ by Lemma 2.1(3) and Lemma 2.2. Since $H \subseteq P$, we have $H \subseteq G$ and so |H| = |D| = 1, a contradiction.
- (4) If N is a minimal normal subgroup of G contained in P, then G/N is p-supersoluble.
- By (3), $|N| \leq |D|$. If |N| < |D|, then G/N satisfies the hypothesis of the theorem by Lemma 2.3(2), so G/N is p-supersoluble by the minimal choice of G.
- If |N|=|D|. Now we claim that every subgroup of P/N with order p is an $IC\overline{s}$ -subgroup of G/N. Let A/N be a subgroup of P/N with order p. By (1), N is non-cyclic, so A is non-cyclic. Hence, there exists a maximal subgroup T of A such that A=TN. Obviously, |T|=|N|=|D|. Then, $T\cap [T,G]\leq T_{\overline{s}G}$. It is easy to see that $N\cap T\neq 1$ and $[N\cap T,G]\neq 1$, then $1<[N\cap T,G]\leq [N,G]\leq N$. It follows that $N=[N,G]=[N\cap T,G]\leq [T,G]$. So $A\cap [A,G]=TN\cap [TN,G]=TN\cap [T,G]^N[N,G]=TN\cap [T,G]=(T\cap [T,G])N\leq T_{\overline{s}G}N\leq (TN)_{\overline{s}G}=A_{\overline{s}G}$. This shows that A is an $IC\overline{s}$ -subgroup of G and so A/N is an $IC\overline{s}$ -subgroup of G/N. Hence, G/N is p-supersoluble by Lemma 2.5.
 - (5) $O_p(G) = 1$.

Assume that $O_p(G) \neq 1$. Let N be a minimal normal subgroup of G contained in P. Then, $N \leq O_p(G)$. By (4), it is easy to see that N is the unique minimal normal subgroup of G contained in $O_p(G)$. Moreover, $\Phi(G) = 1$. Hence, $O_p(G)$ is an elementary abelian p-group, and G has a maximal subgroup M such that G = MN and $M \cap N = 1$. It is easy to deduce that $N = O_p(G)$. By (4), obviously, G is p-soluble. Hence, N is the unique minimal normal subgroup of G by (2). By (3), $|N| \leq |D|$.

If |N| < |D|. Let $M_p = M \cap P$. Then, $P = NM_p$. Obviously, $M_p \neq 1$ and |N| > p. Let P_1 be a maximal subgroup of P containing M_p . Then, $P = NP_1$ and $1 < N \cap P_1 < N$. Let H be a subgroup of P_1 containing $N \cap P_1$ such that |H| = |D| and $H \leq P$. Then, $H \cap N = P_1 \cap N \neq 1$. By the hypothesis, $H \cap [H, G] \leq H_{\overline{s}G}$. Obviously, $[H, G] \neq 1$. Hence, $H \cap N \leq H \cap [H, G] \leq H_{\overline{s}G}$. It follows that $H \cap N = H_{\overline{s}G} \cap N$ and so $O^p(G) \leq N_G(H \cap N)$ by Lemma 2.1(3)-(4) and Lemma 2.2. Since $H \cap N \leq P$, we have $H \cap N \leq G$ and so $H \cap N = N$ by the minimality of N, then $N \leq H \leq P_1$, a contradiction.

If |N| = |D|. Let T/N be a normal subgroup of P/N with order p. Then, we can write $T = N\langle x \rangle$, where $x^p \in N$, but $x \notin N$. Assume that $\Phi(T) = N$. Then, T is cyclic, so is N. It follows that |N| = p, a contradiction. Hence, $\Phi(T) < N$. Since $T \subseteq P$, we have $\Phi(T) \subseteq P$. Hence, we can choose a maximal subgroup N_1 of N containing $\Phi(T)$ such that $N_1 \subseteq P$. Let $H = N_1 \langle x \rangle$. Since $x^p \in \Phi(T) \subseteq N_1$, we have |H| = |N| = |D|. Then, $H \cap [H, G] \subseteq H_{\overline{s}G}$. Hence, we can obtain $N_1 = H \cap N \subseteq G$ by a similar discussion as in the process of proving |N| < |D|. Hence, $N_1 = 1$ and |N| = p, a contradiction.

- (6) Let A be a minimal normal subgroup of G. Then, A is non-p-supersoluble. If A is p-supersoluble, then $A_p \subseteq A$ by (2) and Lemma 2.7, where $A_p \in Syl_p(A)$. So $A_p \subseteq G$, but this is contrary to (5).
 - (7) G is a non-abelian simple group.

Suppose that, G is not a simple group. Let A be a minimal normal subgroup of G. Then, A < G. If $|A_p| > |D|$, it easily follows that A is p-supersoluble by Lemma 2.3(1), this is contrary to (6). If $|A_p| \le |D|$, we can pick a subgroup P_1 of P such that $A_p = A \cap P \le P_1$ and $|P_1| = p|D|$. Then, P_1 is a Sylow p-subgroup of P_1A . Since every maximal subgroup of P_1 is an $IC\overline{s}$ -subgroup of P_1A by Lemma 2.3(1), so P_1A is p-supersoluble by Lemma 2.4. Therefore, P_1A is P_1A is P_2A is P_3A is P_3A is P_4A is P

(8) The final contradiction.

Let H be a subgroup of P with |H| = |D|. Then, $H \cap [H, G] \leq H_{\overline{s}G}$. By (1), (6) and (7), we have $1 \neq [H, G] = G$, $H = H \cap G = H \cap [H, G] \leq H_{\overline{s}G}$ and $H = H_{\overline{s}G}$. Let Q be a Sylow q-subgroup of G for some $q \in \pi(G)$ with $q \neq p$. Then, $HQ^g = Q^gH$ for any $g \in G$. Since G is a simple group, so G = HQ by Lemma 2.8, the final contradiction.

This completes the proof.

Corollary 3.1. Let P be a normal p-subgroup of G. Suppose that, there is a subgroup D of P with 1 < |D| < |P| such that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an $IC\overline{s}$ -subgroup of G, then $P \leq Z_{\Omega}(G)$.

Proof. Let $H \leq P$ such that H is an $IC\overline{s}$ -subgroup of G. Then, $H \cap [H,G] \leq H_{\overline{s}G}$. By Lemma 2.1(3), $H_{\overline{s}G}$ is equal to H_{sG} , i.e. the subgroup of H generated by all subgroups of H which are s-permutable in G. Thus, H is an $IC\Phi_s$ -subgroup of G (see, [11, Definition 1.1]). It follows that any subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian 2-group) is an $IC\Phi_s$ -subgroup of G. Then, $P \leq Z_{\mathfrak{U}}(G)$ by Lemma 2.9. This completes the proof.

Proof of Theorem 1.3. We first prove that the theorem is true if X = E. Suppose that, this is not the case, and let (G, E) be a counterexample with |G| + |E| minimal.

By the hypothesis and Theorem 1.2, we have E is supersoluble. Let $P \in Syl_p(E)$, where p is the largest prime divisor of |E|. Then, $P \subseteq E$ and so $P \subseteq G$. Since $(G/P)/(E/P) \cong G/E \in \mathfrak{F}$ and (G/P, E/P) satisfies the hypothesis of the theorem, we have $G/P \in \mathfrak{F}$. Moreover, $P \leq Z_{\mathfrak{U}}(G)$ by Corollary 3.1. Hence, $G \in \mathfrak{F}$ by Lemma 2.10, and this contradiction completes the proof for the case X = E.

Now we prove that the theorem holds for $X = F^*(E)$.

By the hypothesis and Theorem 1.2, we have $F^*(E)$ is supersoluble. Hence, $F(E) = F^*(E)$. Let P be a Sylow p-subgroup of F(E). Then, $P \subseteq G$. By Corollary 3.1, $P \subseteq Z_{\mathfrak{U}}(G)$. It follows that $F(E) \subseteq Z_{\mathfrak{U}}(G)$. Thus we have $G \in \mathfrak{F}$ by Lemma 2.10 and Lemma 2.11.

This completes the proof.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11871360, 11601225), Foundation for University Key Teacher by the Ministry of Education of Henan (No. 2020GGJS079), Natural Science Foundation of Henan Province (Grant No. 242300421385).

We also would like to express our sincere gratitude to the editor and reviewer for their valuable comments, which have greatly improved this paper.

References

- [1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Producs of finite groups*, Walter de Gruyter, Berlin-New York, 2010.
- [2] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin-New York, 1992.

- [3] Y. X. Gao, X. H. Li, The influence of ICΦ-subgroups on the structure of finite groups, Acta Math. Hungar., 163 (2021), 29-36.
- [4] W. B. Guo, A. N. Skiba, On §Φ*-hypercentral subgroups of finite groups,
 J. Algebra, 372 (2012), 275-292.
- [5] B. Huppert, Endliche gruppen I, Springer, New York, Berlin, 1967.
- [6] J. Kaspczyk, On p-nilpotence and ICΦ-subgroups of finite groups, Acta Math. Hungar., 165 (2021), 355-359.
- [7] Y. M. Li, S. H. Qiao, N. Su, Y. M. Wang, On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250-261.
- [8] I. A. Malinowska, On p-supersolvability of finite groups, Proc. Indian Acad. Sci.(Math. Sci.), 125 (2015), 173-179.
- [9] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285-293.
- [10] A. N. Skiba, On two questions of L.A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory, 13 (2010), 841-850.
- [11] X. J. Zhang, Y. Xu, On $IC\Phi_s$ -subgroups of finite groups, Comm. Algebra, 52 (2024), 3853-3858.
- [12] H. J. Zheng, Y. Xu, On ICs-subgroups of finite groups, Ital. J. Pure Appl. Math., 52 (2024), 47-58.

Accepted: April 4, 2025