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Abstract. Soft set theory functions as a flexible mathematical instrument designed to
handle uncertain data by aiding in the categorization of universe elements according to
predefined parameters. Unlike hypergraphs, semigraphs present a wider interpretation
of conventional graphs, allowing for a finer representation of relationships. Through
the integration of soft set principles, the notion of soft semigraphs arises, enhancing the
adaptability and versatility of semigraphs in addressing uncertainty. This paper sets
out to reveal different forms of bipartite soft semigraphs, meticulously examining their
varied structures and delving into their inherent characteristics.
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1. Introduction

Most conventional approaches in formal modelling, reasoning, and computation
are characterized by determinism, clarity, and precision. However, complex
challenges in fields like engineering, medicine, economics, and social sciences
often involve uncertain data. Various uncertainties in these areas make the
application of traditional methods challenging. This led to the emergence of
soft set theory in 1999 by Molodtsov [18]. Soft set theory proves more practical
than other established theories like probability or fuzzy set theory due to its
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versatility. Authors such as Maji, Biswas, and Roy [16], [17] have expanded on
soft set theory, applying it to resolve decision-making problems.

The concept of soft graphs was introduced by Thumbakara and George[24].
George, Thumbakara and Jose [25], [26], [27] investigated some properties of soft
graphs. In 2015, Akram and Nawas [1], [2] modified the definition of a soft graph.
Further enhancing the field, Akram and Nawas [3], [4] introduced fuzzy soft
graphs, strong fuzzy soft graphs, complete fuzzy soft graphs, and regular fuzzy
soft graphs, delving into their properties and potential applications. Akram and
Zafar [5], [6] pioneered the notions of soft trees and fuzzy soft trees.

Contributions to the study of soft graphs have been made by Thenge, Jain,
and Reddy [21], [22], [23]. Owing to their utility in handling parameterization,
soft graphs represent a burgeoning domain within graph theory. George, Thum-
bakara, and Jose introduced soft hypergraphs[7], soft directed graphs [14], [15],
and soft directed hypergraphs [13] and studied their properties. The concept of
semigraphs, which are an expanded version of graphs, was initially proposed by
E. Sampathkumar [19], [20]. Unlike hypergraphs, semigraphs maintain a defined
sequence of vertices within their edges. When depicted on a two-dimensional
plane, semigraphs bear a visual similarity to traditional graphs. In their re-
search, George, Jose, and Thumbakara [11] introduced soft semigraphs by apply-
ing soft set principles to semigraphs and defined some soft semigraph operations.
Moreover, they introduced connectedness [10] and various degrees, graphs, and
matrices linked to soft semigraphs [12]. This paper introduces different types of
bipartite soft semigraphs and investigates their properties.

2. Preliminaries

2.1 Semigraph

The notion of semigraph was introduced by E. Sampathkumar [19], [20] as
follows. “A semigraph G is a pair (V,X) where V is a nonempty set whose
elements are called vertices of G, and X is a set of n-tuples, called edges of G,
of distinct vertices, for various n ≥ 2, satisfying the following conditions.

1. Any two edges have at most one vertex in common;

2. Two edges (u1, u2, . . . , un) and (v1, v2, . . . , vm) are considered to be equal
if and only if:

(a) m = n;

(b) either ui = vi for 1 ≤ i ≤ n, or ui = vn−i+1 for 1 ≤ i ≤ n.

Let G = (V,X) be a semigraph and E = (v1, v2, . . . , vn) be an edge of G.
Then, v1 and vn are the end vertices of E and vi, 2 ≤ i ≤ n− 1 are the middle
vertices(or m-vertices) of E. If a vertex v of a semigraph G appears only as
an end vertex then it is called an end vertex. If a vertex v is only a middle
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vertex then it is a middle vertex or m-vertex while a vertex v is called middle-
cum-end vertex or (m, e)-vertex if it is a middle vertex of some edge and an
end vertex of some other edge. A subedge of an edge E = (v1, v2, . . . , vn)
is a k-tuple E′ = (vi1 , vi2 , . . . , vik), where 1 ≤ i1<i2< · · ·<ik ≤ n or 1 ≤
ik<ik−1< · · ·<i1 ≤ n. We say that the subedge E′ is induced by the set of
vertices {vi1 , vi2 , . . . vik}. A partial edge of E = (v1, v2, . . . , vn) is a (j − i + 1)-
tuple E(vi, vj) = (vi, vi+1, . . . , vj), where 1 ≤ i<j ≤ n. G′ = (V ′, X ′) is a partial
semigraph of a semigraph G if the edges of G′ are partial edges of G. Two
vertices u and v in a semigraph G are said to be adjacent if they belong to the
same edge. If u and v are adjacent and consecutive in order then they are said
to be consecutively adjacent. u and v are said to be e-adjacent if they are the
end vertices of an edge and 1e-adjacent if both the vertices u and v belong to
the same edge and at least one of them, is an end vertex of that edge”.

2.2 Soft set

In 1999, D. Molodtsov [18] initiated the concept of soft sets. Let U be an initial
universe set and let A be a set of parameters. A pair (F,A) is called a soft set
(over U) if and only if F is a mapping of A into the set of all subsets of the set
U . That is, F : A → P(U).

2.3 Soft semigraph

B. George, R. K. Thumbakara and J. Jose [11], [12] introduced soft semigraph
by applying the concept of soft set in semigraph as follows: “Let G∗ = (V,X)
be a semigraph having vertex set V and edge set X. Consider a subset V1 of
V . Then, a partial edge formed by some or all vertices of V1 is said to be a
maximum partial edge or mp edge if it is not a partial edge of any other partial
edge formed by some or all vertices of V1.

Let Xp be the collection of all partial edges of the semigraph G and A be a
nonempty set. Let a subset R of A × V be an arbitrary relation from A to V .
We define a mapping Q from A to P(V ) by Q(x) = {y ∈ V |xRy},∀x ∈ A, where
P(V ) denotes the power set of V . Then, the pair (Q,A) is a soft set over V .
Also define a mapping W from A to P(Xp) by W (x) = {mp edges< Q(x) >},
where {mp edges< Q(x) >} denotes the set of all mp edges that can be formed
by some or all vertices of Q(x) and P(Xp) denotes the power set of Xp. The pair
(W,A) is a soft set over Xp. Then, we can define a soft semigraph as follows:

The 4-tupleG = (G∗, Q,W,A) is called a soft semigraph ofG∗ if the following
conditions are satisfied:

1. G∗ = (V,X) is a semigraph having vertex set V and edge set X;

2. A is the nonempty set of parameters;

3. (Q,A) is a soft set over V ;

4. (W,A) is a soft set over Xp;
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5. H(a) = (Q(a),W (a)) is a partial semigraph of G∗, ∀a ∈ A.

Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semigraph of
G∗ which is also given by {H(x) : x ∈ A}. Then, the partial semigraph H(x)
corresponding to any parameter x in A is called a p-part of the soft semigraph
G. An edge present in a soft semigraph G of G∗ is called an f -edge. It may be a
partial edge of some edge in G∗ or an edge in G∗. A partial edge of any f -edge
of a soft semigraph G is called a p-edge of G. An f -edge is a p-edge of itself.
An f -edge or a p-edge of a soft semigraph G is called an fp-edge of G.”

3. Different types of bipartite soft semigraphs

In this section we extend the concepts of bipartite semigraphs given in [20] to
soft semigraphs.

3.1 Bipartite soft semigraph

Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a soft semigraph of
G∗ represented by {H(x) : x ∈ A}. Then, G is called a bipartite soft semigraph
if each of its p-parts H(x) is a bipartite partial semigraph of G∗. That is, Q(x)
can be partitioned into sets {Q1(x), Q2(x)} such that both Q1(x) and Q2(x) are
independent for all x in A. That is, no f -edge in W (x) is an mp edge< Q1(x) >
or an mp edge< Q2(x) > for all x in A. The term mp edge< Qi(x) > denotes
a maximum partial edge that can be formed by some or all vertices of Qi(x).

Example 3.1. Let G∗ = (V,X) be a semigraph given in Figure 1, where V =
{v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} and X = {(v0, v1, v2), (v2, v3, v4), (v1, v6, v5),
(v3, v9, v8), (v7, v8)}.

Figure 1: Semigraph G∗ = (V,X)

Let A = {v1, v8} ⊆ V be a parameter set. Define Q from A to P(V ) by
Q(x) = {y ∈ V |xRy ⇔ x = y or x and y are consecutively adjacent},∀x ∈ A and
W from A to P(Xp) by W (x) = {mp edges⟨Q(x)⟩},∀x ∈ A. That is, Q(v1) =
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{v0, v1, v2, v6} and Q(v8) = {v7, v8, v9}. Also, W (v1) = {(v1, v6), (v0, v1, v2)}
and W (v8) = {(v7, v8), (v8, v9)}. Then, H(v1) = (Q(v1),W (v1)) and H(v8) =
(Q(v8),W (v8)) are partial semigraphs of G∗ as shown below in Figure 2. Hence,
G = {H(v1), H(v8)} is a soft semigraph of G∗. Here, Q(v1) = {v0, v1, v2, v6}

Figure 2: Soft Semigraph G = {H(v1), H(v8)}

can be partitioned into sets {Q1(v1), Q2(v1)}, where Q1(v1) = {v0, v2, v6} and
Q2(v1) = {v1}. Then, Q1(v1) and Q2(v1) are independent since, no edge in
W (v1) is an mp edge< Q1(v1) > or an mp edge< Q2(v1) >. Also, Q(v8) =
{v7, v8, v9} can be partitioned into sets {Q3(v8), Q4(v8)}, whereQ3(v8) = {v7, v9}
and Q4(v8) = {v8}. Then, Q3(v8) and Q4(v8) are independent since, no edge in
W (v8) is an mp edge< Q3(v8) > or an mp edge< Q4(v8) >. Therefore, H(v1)
andH(v8) are bipartite partial semigraphs ofG∗ and hence, G = {H(v1), H(v8)}
is a bipartite soft semigraph.

3.2 e-bipartite soft semigraph

Definition 3.1. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be
a soft semigraph of G∗ represented by {H(x) : x ∈ A}. Then, G is called an
e-bipartite soft semigraph if each of its p-parts H(x) is an e-bipartite partial
semigraph of G∗. That is, Q(x) can be partitioned into sets {Q1(x), Q2(x)}
such that both Q1(x) and Q2(x) are e-independent for all x in A. That is, no
two end vertices or partial end vertices of an f -edge in W (x) belong to Q1(x)
or Q2(x) for all x in A.

Example 3.2. Consider the soft semigraph G given in Figure 2. Here, Q(v1) =
{v0, v1, v2, v6} can be partitioned into sets {Q1(v1), Q2(v1)}, where Q1(v1) =
{v0, v1} and Q2(v1) = {v2, v6}. Then, Q1(v1) and Q2(v1) are e-independent
since no two end vertices or partial end vertices of an f -edge in W (v1) belong
to Q1(v1) or Q2(v1). Also, Q(v8) = {v7, v8, v9} can be partitioned into sets
{Q3(v8), Q4(v8)}, where Q3(v8) = {v7, v9} and Q4(v8) = {v8}. Then, Q3(v8)
and Q4(v8) are e-independent since no two end vertices or partial end vertices
of an f -edge in W (v8) belong to Q3(v8) or Q4(v8). Therefore, H(v1) and H(v8)



UNDERSTANDING BIPARTITE SOFT SEMIGRAPH STRUCTURES 55

are e-bipartite partial semigraphs of G∗ and hence, G = {H(v1), H(v8)} is an
e-bipartite soft semigraph.

3.3 Strongly bipartite soft semigraph

Definition 3.2. Let G∗ = (V,X) be a semigraph and G = (G∗, Q,W,A) be a
soft semigraph of G∗ represented by {H(x) : x ∈ A}. Then, G is called a strongly
bipartite soft semigraph if each of its p-parts H(x) is a strongly bipartite partial
semigraph of G∗. That is, Q(x) can be partitioned into sets {Q1(x), Q2(x)} such
that both Q1(x) and Q2(x) are strongly independent for all x in A. That is, no
two adjacent vertices in H(x) belong to Q1(x) or Q2(x) for all x in A.

Example 3.3. Let be a semigraph given in Figure 3, where V = {v1, v2, v3, v4, v5,
v6} and X = {(v1, v2), (v1, v3, v6, v4), (v4, v5)}.

Figure 3: Semigraph G∗ = (V,X)

Let A = {v2, v5} ⊆ V be a parameter set. Define Q from A to P(V ) by
Q(x) = {y ∈ V |xRy ⇔ x = y or x and y are adjacent}, ∀x ∈ A and W from
A to P(Xp) by W (x) = {mp edges⟨Q(x)⟩}, ∀x ∈ A. That is, Q(v2) = {v1, v2}
and Q(v5) = {v4, v5}. Also, W (v2) = {(v1, v2)} and W (v5) = {(v4, v5)}. Then,
H(v2) = (Q(v2),W (v2)) and H(v5) = (Q(v5),W (v5)) are partial semigraphs of
G∗ as shown below in Figure 4. Hence, G = {H(v2), H(v5)} is a soft semigraph
of G∗. Here, Q(v2) = {v1, v2} can be partitioned into sets {Q1(v2), Q2(v2)},
where Q1(v2) = {v1} and Q2(v2) = {v2}. Then, Q1(v2) and Q2(v2) are strongly
independent since, no two adjacent vertices in H(v2) belong to Q1(v2) or Q2(v2).
Also, Q(v5) = {v4, v5} can be partitioned into sets {Q3(v5), Q4(v5)}, where
Q3(v5) = {v4} and Q4(v5) = {v5}. Then, Q3(v5) and Q4(v5) are strongly inde-
pendent since, no two adjacent vertices in H(v5) belong to Q3(v5) or Q4(v5).
Therefore, H(v2) and H(v5) are strongly bipartite partial semigraphs of G∗ and
hence, G = {H(v2), H(v5)} is a strongly bipartite soft semigraph.
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Figure 4: Soft Semigraph G = {H(v2), H(v5)}

Theorem 3.1. If a soft semigraph G is strongly bipartite then its p-parts are
bipartite graphs if we treat both end vertices and partial end vertices as vertices
of the bipartite graph.

Proof. Let G = (G∗, Q,W,A) be a strongly bipartite soft semigraph of G∗

represented by {H(x) : x ∈ A}. Then, each of its p-parts H(x) is a strongly
bipartite partial semigraph of G∗. That is, Q(x) can be partitioned into sets
{Q1(x), Q2(x)} such that both Q1(x) and Q2(x) are strongly independent for all
x in A. That is, no two adjacent vertices in H(x) belong to Q1(x) or Q2(x) for
all x in A. So, each H(x) can contain f -edges with 2 vertices only. Therefore,
this partition {Q1(x), Q2(x)} will satisfy all the criteria for a bipartite graph in
graph theory, if we treat both end vertices and partial end vertices as vertices
and f -edges as edges.

Theorem 3.2. If a soft semigraph G is e-bipartite, then it is also a bipartite
soft semigraph.

Proof. Let G = (G∗, Q,W,A) be an e-bipartite soft semigraph represented by
{H(x) : x ∈ A}. Then, each p-part H(x) of G will be an e-bipartite partial
semigraphs of G∗. That is,Q(x) can be partitioned into sets {Q1(x), Q2(x)}
such that both Q1(x) and Q2(x) are e-independent for all x in A. That is, no
two end vertices or partial end vertices of an f -edge in W (x) belong to Q1(x)
or Q2(x), for all x in A. Definitely, no edge in W (x) is an mp edge< Q1(x) >
or an mp edge< Q2(x) >, for all x in A. Therefore, G is also a bipartite soft
semigraph.

Remark 3.1. The converse of this theorem need not be true. This is clear from
the following example.
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Example 3.4. Let be a semigraph given in Figure 5, where V = {v0, v1, v2, v3, v4,
v5, v6, v7, v8, v9} and X = {(v0, v2), (v0, v1, v3), (v2, v3), (v3, v4, v5), (v6, v5, v9),
(v6, v7), (v5, v7), (v7, v8, v9)}.

Figure 5: Semigraph G∗ = (V,X)

Let A = {v0, v7} ⊆ V be a parameter set.
Define mappings Q from A to P(V ) by Q(x) = {y ∈ V |xRy ⇔ x =

y or x and y are adjacent},∀x ∈ A and W from A to P(Xp) by W (x) =
{mp edges⟨Q(x)⟩}, ∀x ∈ A. That is, Q(v0) = {v0, v1, v2, v3} and Q(v7) =
{v5, v6, v7, v8, v9}. Also, W (v0) = {(v0, v2), (v2, v3), (v0, v1, v3)} and W (v7) =
{(v6, v7), (v6, v5, v9), (v5, v7), (v7, v8, v9)}. Then, H(v0) = (Q(v0),W (v0)) and
H(v7) = (Q(v7),W (v7)) are partial semigraphs of G∗ as shown below in Figure
6. Hence, G = {H(v0), H(v7)} is a soft semigraph of G∗.

Figure 6: Soft Semigraph G = {H(v0), H(v7)}

Here, Q(v0) = {v0, v1, v2, v3} can be partitioned into sets {Q1(v0), Q2(v0),
where Q1(v0) = {v0, v3} and Q2(v0) = {v2, v1}. Then, Q1(v0) and Q2(v0)
are independent, since no edge in W (v0) is an mp edge< Q1(v0) > or an
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mp edge< Q2(v0) >. Also, Q(v7) = {v5, v6, v7, v8, v9} can be partitioned
into sets {Q3(v7), Q4(v7)}, where Q3(v7) = {v5, v6, v8} and Q4(v7) = {v7, v9}.
Then, Q3(v7) and Q4(v7) are independent, since no edge in W (v7) is an mp
edge< Q3(v7) > or an mp edge< Q4(v7) >. Therefore, H(v0) and H(v7) are
bipartite partial semigraphs of G∗ and hence, G = {H(v0), H(v7)} is a bipartite
soft semigraph. But, H(v0) and H(v7) are not e-bipartite partial semigraphs of
G∗ because, Q(v0) and Q(v7) are not e-independent. That is, there exists no par-
tition for Q(v0) and Q(v7) such that the two end vertices or partial end vertices
of an f -edge in W (v0) and W (v7) are in two different sets of the partition.

Theorem 3.3. A soft semigraph G is e-bipartite if and only if all of its p-part
end vertex graphs H(x)e are bipartite where H(x)e is a graph having vertex set
Q(x) and two vertices u and v in H(x)e are adjacent if they are the end vertices
or a partial end vertices of an f -edge containing these vertices in the p-part
H(x).

Proof. Assume that a soft semigraph G = (G∗, Q,W,A) represented by {H(x) :
x ∈ A} is an e-bipartite soft semigraph. Then, all of its p-parts H(x) are e-
bipartite partial semigraphs of G∗. That is, Q(x) can be partitioned into sets
{Q1(x), Q2(x)} such that both Q1(x) and Q2(x) are e-independent for all x in
A. That is, no two end vertices or partial end vertices of an f -edge in W (x)
belong to Q1(x) or Q2(x) for all x in A. We know that the p-part end vertex
graph H(x)e is Q(x) and two vertices u and v in H(x)e are adjacent if they are
the end vertices or a partial end vertices of an f -edge W (x) for all x in A. So, if
we give the same partition {Q1(x), Q2(x)} to Q(x) in H(x)e then each edge has
one end in Q1(x) and the other end in Q2(x). Therefore, H(x)e is a bipartite
graph for all x in A.

Conversely, assume that all p-part end vertex graph H(x)e of G is bipartite.
That is, if Q(x) is the vertex set of H(x)e, then it can be partitioned into two
nonempty sets Q1(x) and Q2(x) such that each edge in H(x)e has one end in
Q1(x) and the other end in Q2(x) for all x in A. In the corresponding p-part
H(x), end vertices or partial end vertices of the f -edge are the same as the
end vertices of the corresponding edge in H(x)e. Therefore, if we use the same
partition of Q(x) in H(x), Q1(x) and Q2(x) will be e-independent for all x in
A. Therefore, H(x) is an e-bipartite partial semigraph for all x in A. That is,
G is an e-bipartite soft semigraph.

4. Conclusion

This paper has explored the intersection of soft set theory and semigraphs,
demonstrating the efficacy of soft set principles in enhancing the adaptability
of semigraphs to address uncertainty. The paper focused on different kinds of
bipartite soft semigraphs, studying their structures and features closely. This
research helps us better understand how to use these tools to tackle real-world
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problems with uncertain data, which can be important for making better deci-
sions in various fields.
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