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Abstract. Let X be an infinite-dimensional complex Banach space and B(X ) be the
algebra of all bounded linear operators on X . For T ∈ B(X ), and a fixed nonzero
complex scalar λ0, we denote by ET ({λ0}), the algebraic spectral subspace of T as-
sociated with {λ0}. In this paper, we characterize maps ϕ on B(X ) for which whose
ranges contain all operators of rank at most two (resp. at most four), and that sat-
isfy ETS({λ0}) = Eϕ(T )ϕ(S)({λ0}) (resp. ETST ({λ0}) = Eϕ(T )ϕ(S)ϕ(T )({λ0})), for all
T, S ∈ B(X ).
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1. Introduction

Throughout this note, X will denote an infinite-dimensional complex Banach
space, X ∗ the topological dual of X , B(X ) the algebra of all bounded linear
operators on X and C the field of complex numbers. For any x ∈ X and f ∈ X ∗,
x⊗ f stands for the operator of rank at most one defined by (x⊗ f)(y) = f(y)x
for every y ∈ X . We denote by span{x} the subspace spanned by x. The sets
of all finite rank operators, all operators of rank at most n, all rank-one non-
nilpotent operators, all rank-one idempotent operators are denoted, respectively,
by F(X ), Fn(X ), F1(X ) \ N1(X ) and P1(X ). Note that, x⊗ f ∈ P1(X ) if and
only if f(x) = 1. For T ∈ B(X ), the kernel and the range of T are denoted,
respectively, by N (T ) and R(T ). We define the following set

F1,α(X ) = {x⊗ f : x ∈ X , f ∈ X ∗ such that f(x) = α},
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where α ∈ C \ {0}.
The algebraic core of T , denoted by C(T ), is defined to be the greatest

subspace M of X for which

TM = M.

Note that, y ∈ C(T ) if and only if there exists a sequence (yn)n ⊂ X such that
y0 = y and Tyn+1 = yn, for all n ∈ Z+; see [1, Theorem 1.8 ].

For a vector x0 ∈ X , the local resolvent set of an operator T ∈ B(X ) at x0,
denoted by ρT (x0), is defined as the union of all open subsets U ⊂ C for which
there exists an analytic function f : U → X such that (T − λI)f(λ) = x0, for
all λ ∈ U . The subset σT (x0) = C \ ρT (x0) is the local spectrum of T at x0.

For every subset Ω of C, the local spectral subspace, XT (Ω), is defined by

XT (Ω) = {x ∈ X : σT (x) ⊂ Ω}.

The algebraic spectral subspace of T associated with Ω, denoted by ET (Ω),
is defined as the algebraic sum of all subspace M of X with the property that

(T − λI)M = M, for every λ ∈ C \ Ω.

Evidently, ET (Ω) is the largest subspace of X on which all the restrictions of
λI − T , λ ∈ C \ Ω, are surjective. In particular,

(1) (T − λI)ET (Ω) = ET (Ω), for all λ ∈ C \ Ω.

Note that, ET (Ω) ⊂ C(T − λI), for all λ /∈ Ω, and for every λ ∈ Ω we have

(2) N (T − λI) ⊂ ET (Ω)

(see, for instance, [1, 9]).
For T ∈ B(X ), we denote Lat(T ) the lattice of T , that is, the set of all

invariant subspaces of T . Note that, the subspace ET (Ω) is an invariant subspace
of T .

In recent decades, a considerable attention has been paid to the nonlinear
preserver problems, which demand the characterization of maps between alge-
bras that leave a given set, property or relation invariant without assuming in
advance algebraic conditions such as linearity, additivity or multiplicity, but a
weak algebraic condition is often imposed through the preserving property.; see
for instance [5, 7, 8, 9, 10] and the reference cited there.

In [5], Dolinar, Du, Hou and Legǐsa characterized the form of maps pre-
serving the lattice of product of operators. They showed that maps (not nec-
essarily linear) ϕ : B(X ) → B(X ) satisfy Lat(ϕ(A)ϕ(B)) = Lat(AB) (resp.
Lat(ϕ(A)ϕ(B)ϕ(A)) = Lat(ABA)), for all A,B ∈ B(X ), if and only if there is
a map φ : B(X ) → K such that φ(A) ̸= 0 if A ̸= 0 and ϕ(A) = φ(A)A, for
all A ∈ B(X ). These results have motivated several authors to study maps on
Banach algebras which preserve invariant subspaces; see for instance [2, 3, 4, 11].
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In [2], the authors characterized maps on B(X ) preserving the commutant
of the sum A + B, the product AB, the Jordan triple product ABA and the
Jordan product AB +BA, for all A,B ∈ B(X ).

In the context of local spectral subspace, we cite the results found in [3],
in which the authors described surjective maps ϕ : B(X ) → B(X ) satisfying
Xϕ(A)ϕ(B)({λ}) = XAB({λ}) (resp. Xϕ(A)ϕ(B)ϕ(A)({λ}) = XABA({λ}),) for all
A,B ∈ B(X ) and λ ∈ C.

For a fixed scalar λ0 ∈ C, in [4], Bouchangour and Jaatit find a similar result
as in [3] by removing the surjectivity condition on ϕ for product or Jordan triple
product of operators. They determine the form of all maps on B(X ) which satis-
fying XTS({λ0}) = Xϕ(T )ϕ(S)({λ0}) (resp.XTST ({λ0}) = Xϕ(T )ϕ(S)ϕ(T )({λ0})),
for all T, S ∈ B(X ) with λ0 is a fixed complex scalar.

In this paper, we continue our study of mappings that preserve invariant
subspaces. We, therefore, propose to determine the forms of all surjective maps
ϕ : B(X ) → B(X )(not necessarily additive or surjective) which preserve the
algebraic spectral subspace of the product or Jordan triple product of operators
associated with a fixed singleton {λ0} (λ0 ∈ C \ {0}).

The paper is organized as follows:
In the second section we give the basic properties of the algebraic spectral sub-
space and the lemmas necessary of the proofs of the main results.

In the third section, we describe maps ϕ on B(X ), for which their ranges con-
tain all operators of rank at most two, and that preserve the algebraic spectral
subspace of product of operators associated with the singleton {λ0}.

In the fourth section, we determine the structure of maps ϕ on B(X ), for
which their ranges contain all operators of rank at most four, and that preserve
the algebraic spectral subspace of Jordan triple product of operators associated
with the singleton {λ0}. Note that certain ideas in our main results are inspired
by [4].

2. Preliminaries

In this section, we state some useful lemmas needed for the proof of our main
results. The first one summarizes some properties of the algebraic spectral
subspace which will be used frequently.

Lemma 2.1. Let A,B ∈ B(X ) and λ0 be a fixed nonzero complex scalar. The
following statements hold:

1. EαA({λ}) = EA({λ
α}), for all α ∈ C \ {0} and all λ ∈ C.

2. EI({1}) = X .

3. If EAR({λ0}) = EBR({λ0}), for all R ∈ F1(X )\N1(X ), then EAR({λ}) =
EBR({λ}), for all R ∈ F1(X ) \ N1(X ) and all λ ∈ C \ {0}.

4. If ERAR({λ0}) = ERBR({λ0}), for all R ∈ F1(X )\N1(X ), then ERAR({λ})
= ERBR({λ}), for all R ∈ F1(X ) \ N1(X ) and all λ ∈ C \ {0}.
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Proof. 1. Let α ∈ C \ {0} and λ ∈ C. For µ ∈ C such that µ ̸= λ
α , we have

αµ ̸= λ and

(A− µI)EαA({λ}) = (αA− αµI)EαA({λ}) = EαA({λ}).

The fact that EA({λ
α}) is the largest subspaceM ofX for which (A−µI)M = M

for every µ ̸= λ
α , implies that

EαA({λ}) ⊂ EA({
λ

α
}).

Conversely, let µ ∈ C such that µ ̸= λ, we have µ
α ̸= λ

α and

(αA− µI)EA({
λ

α
}) = α(A− µ

α
I)EA({

λ

α
}) = αEA({

λ

α
}) = EA({

λ

α
}).

Therefore,

EA({
λ

α
}) ⊂ EαA({λ}).

Thus,

EαA({λ}) = EA({
λ

α
}).

2. We know that I −µI is invertible for all µ ̸= 1, so (I −µI)X = X , for all
µ ̸= 1.

Since EI({1}) is the largest subspace M such that (I − µI)M = M , for all
µ ̸= 1, it follows that EI({1}) = X .

3. Let R ∈ F1(X ) \ N1(X ) and λ ∈ C \ {0}. Using (1), we get

EAR({λ}) = E
A(

λ0
λ
R)
({λ0})

= E
B(

λ0
λ
R)
({λ0})

= EBR({λ}).

4. Fix R ∈ F1(X ) \ N1(X ), λ ∈ C∗ and µ0 such that µ2
0 = λ0

λ . Using (1)
once again, we have

ERAR({λ}) = Eλ0
λ
RAR

({λ0})

= E(µ0R)A(µ0R)({λ0})
= E(µ0R)B(µ0R)({λ0})
= Eλ0

λ
RBR

({λ0})

= ERBR({λ}).

The next lemma gives an explicit formula for the algebraic spectral subspace
of the operators that has at most rank one associated with a nonzero fixed
complex scalar.
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Lemma 2.2. For x ∈ X \ {0}, f ∈ X ∗ and λ0 ∈ C \ {0}, we have

Ex⊗f ({λ0}) =

{
span{x}, if f(x) = λ0

{0}, if f(x) ̸= λ0.

Proof. Let λ0 be a fixed nonzero complex scalar, x ∈ X \ {0} and f ∈ X ∗.
Since (x⊗ f)Ex⊗f ({λ0}) = Ex⊗f ({λ0}), then

Ex⊗f ({λ0}) ⊂ C(x⊗ f).

The description of the algebraic core in terms of sequences shows that C(x⊗f) ⊂
span{x}. Therefore,

(3) Ex⊗f ({λ0}) ⊂ span{x}.

Now, we shall discuss two cases.

Case 1. f(x) = λ0. Let us show first that (x ⊗ f − µI)span{x} = span{x},
for all µ ̸= λ0. Indeed, let µ ∈ C such that µ ̸= λ0 = f(x). We have (x ⊗ f −
µI)((f(x) − µ)−1x) = x. Then, x ∈ (x ⊗ f − µI)span{x}, which proves that
span{x} ⊂ (x⊗ f −µI)span{x}. The reverse implication deserves to be added.
Indeed, let y ∈ span{x}, then y = λx for some λ ∈ C \ {0}. Hence, we have

(x⊗ f − µI)(y) = (x⊗ f − µI)(λx) = λ(λ0 − µ)x ∈ span{x}.

Therefore, for all µ ∈ C \ {λ0}, it follows that

(x⊗ f − µI)span{x} = span{x} .

Since Ex⊗({λ0}) is the largest subspace M of X such that (x⊗ f −µI)M = M ,
for all µ ̸= λ0, we conclude that

span{x} ⊂ Ex⊗f ({λ0}).

Together with the Eq.(3), we obtain:

Ex⊗f ({λ0}) = span{x}.

Case 2. f(x) ̸= λ0. Suppose that Ex⊗f ({λ0}) = span{x}. Then, for every
µ ̸= λ0, we have

(x⊗ f − µI)span{x} = span{x}.

In particular, for µ = f(x), we obtain

span{x} = (x⊗ f − f(x)I)span{x} = {0}

which gives a contradiction . By (3), we get that Ex⊗f ({λ0}) = {0}.

In the following lemma, we give an identity principle that we will use to
prove our main results.
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Lemma 2.3. Let T, S ∈ B(X ), and λ0 be a fixed nonzero scalar in C. The
following statements are equivalent:

1. T = S

2. ETR({λ})) = ESR({λ}), for all R ∈ F1(X ) \ N1(X ) and all λ ∈ C \ {0}.

3. ETR({λ0})) = ESR({λ0}), for all R ∈ F1(X ) \ N1(X ).

4. ERTR({λ}) = ERSR({λ}), for all R ∈ F1(X ) \N1(X ) and all λ ∈ C \ {0}.

5. ERTR({λ0}) = ERSR({λ0}), for all R ∈ F1(X ) \ N1(X ).

Proof. Obviously, by Lemma 2.1, we have (1) ⇒ (2) ⇐⇒ (3) and (1) ⇒
(4) ⇐⇒ (5). Thus, it remains to show that the implications (2) ⇒ (1) and
(4) ⇒ (1) are true.

(2) ⇒ (1). Suppose that (2) holds, and let x be a nonzero vector in X .

Let f ∈ X ∗ such that f(x) ̸= 0. For R = x⊗ f , we have TR = Tx⊗ f and
SR = Sx⊗ f . Suppose first that f(Tx) ̸= 0. By Lemma 2.2, we get that

span{Tx} = ETR({f(Tx)}) = ESR({f(Tx)}).

This implies that f(Tx) = f(Sx).

If f(Tx) = 0. Suppose, on the contrary, that f(Sx) ̸= 0. Using Lemma 2.2
once again, we obtain

span{Sx} = ESR({f(Sx)}) = ETR({f(Sx)}) = {0}.

This contradiction entails that f(Tx) = f(Sx) = 0. Therefore, f(Tx) = f(Sx),
for all f ∈ X ∗ for which f(x) ̸= 0.

Now, if f(x) = 0, one can find a functional g ∈ X ∗ such that g(x) ̸= 0. By
applying what has been shown above to g and f + g, we get that (f + g)(Tx) =
(f + g)(Sx) and g(Tx) = g(Sx), which proves that f(Tx) = f(Sx), for all
f ∈ X ∗. Thus, by Hahn-Banach theorem we have T = S.

(4) ⇒ (1) Is done by the same reasoning.

The following lemma gives a characterization of rank-one operators in term
of the algebraic spectral subspace.

Lemma 2.4. Let λ0 be a nonzero fixed scalar of C, and R be a nonzero operator
of B(X ). The following statements are equivalent:

1. R is a rank-one operator.

2. dimETR({λ0}) ≤ 1, for all T ∈ B(X ) of rank at most two.

3. dimETRT ({λ0}) ≤ 1, for all T ∈ B(X ) of rank at most four.
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Proof. It is easy to see that 1) ⇒ 2) and 1) ⇒ 3) are evident. Thus, it remains
to show that 2) ⇒ 1) and 3) ⇒ 1) hold.

Suppose that, R has rank at least two, and let y1 and y2 be two linearly
independent vectors in the range of R. Let x1 and x2 be two vectors of X such
that Rx1 = y1 and Rx2 = y2, and note that x1 and x2 are linearly independent
too. We show that dimETR({λ0}) ≥ 2 for some T ∈ F2(X). Let fi ∈ X∗(i =
1, 2) such that fi(yj) = δij (δij is a Kronecker delta) for i, j = 1, 2. Set T =
λ0x1 ⊗ f1 + λ0x2 ⊗ f2 and note that TRx1 = λ0x1 and TRx2 = λ0x2. Which
implies that x1, x2 ∈ N (TR − λ0I). By (2), we conclude that span{x1, x2} ⊂
N (TR− λ0I) ⊂ ETR({λ0}). Thus,

dimETR({λ0}) ≥ 2.

Consequently, 2) ⇒ 1) is established.
Now, we show that dimETRT ({λ0}) ≥ 2 for some T ∈ F4(X ). Since X is an

infinite dimension space, one can choose y3 and y4 in X such that y1, y2, y3 and
y4 are linearly independent. Let fi,j ∈ X ∗(i, j = 1, 2, 3, 4) such that fi(yj) = δi,j
for i, j = 1, 2, 3, 4. Consider T ∈ B(X ) such that

T = x1 ⊗ f3 + x2 ⊗ f4 + λ0y3 ⊗ f1 + λ0y4 ⊗ f2.

We have TRTy3 = λ0y3 and TRTy4 = λ0y4. This gives y3, y4 ∈ N (TRT −
λ0I). The Eq.(2), once more, ensures that span{y3, y3} ⊂ ETRT ({λ0}). Thus,
dimETRT ({λ0}) ≥ 2, which end the proof.

We close this section with the following lemma, which we will use for the
proof of our main theorems.

Lemma 2.5. Let T and S be two non-scalar operators in B(X ):

1. If TP ∈ P(X ) \ {0} implies SP ∈ P(X ) \ {0}, for all P ∈ P1(X ), then
S = λI + (1− λI)T for some λ ∈ C \ {1}.

2. If PTP ∈ P(X ) \ {0} implies PSP ∈ P(X ) \ {0}, for all P ∈ P1(X ), then
S = λI + (1− λI)T for some λ ∈ C \ {1}. Where P(X ) denotes the set of
idempotent operators on X .

Proof. See [6, Proposition 2.3] and [12, Proposition 3.3].

3. Maps preserving the algebraic spectral subspace of product of
operators

The following theorem is our main result in this section.

Theorem 3.1. Let λ0 be a fixed nonzero scalar in C, and ϕ : B(X ) −→ B(X )
be a map such that its range contains all operators of rank at most two. Then,
ϕ satisfies

(4) ETS({λ0}) = Eϕ(T )ϕ(S)({λ0}), (T, S ∈ B(X )),



OPERATOR PRODUCTS AND ALGEBRAIC SPECTRAL SUBSPACE PRESERVERS 43

if and only if there exists α ∈ C, with α2 = 1, such that ϕ(T ) = αT , for all
T ∈ B(X ).

Proof. The ”if” part is easily verified by using Lemma 2.1, so we only need to
prove the ” only if ” part. Indeed, assume that ϕ is a map from B(X ) into itself
such that its range contains all operators of rank at most two and satisfies the
Eq.(4). We fix a nonzero scalar z0 in C such that z20 = λ0. We divide the proof
into different propositions.

Proposition 3.1. ϕ is injective and ϕ(0) = 0 .

Proof. Let T, S ∈ B(X ) such that ϕ(T ) = ϕ(S). For any R ∈ F1(X ) \ N1(X ),
we have

ETR({λ0}) = Eϕ(T )ϕ(R)({λ0})
= Eϕ(S)ϕ(R)({λ0})
= ESR({λ0}).

By Lemma 2.3 we conclude that T = S, and ϕ is injective.
Now, let us show that ϕ(0) = 0. Indeed, for any T ∈ B(X ), we have

{0} = E0T ({λ0}) = Eϕ(0)ϕ(T )({λ0}) and {0} = E0ϕ(T )({λ0}). Then,

Eϕ(0)ϕ(T )({λ0}) = E0ϕ(T )({λ0}),

for all T ∈ B(X ).
It follows from the fact that F2(X )⊂ϕ(B(X )) that E0R({λ0})=Eϕ(0)R({λ0}),

for all R ∈ F1(X ) \ N1(X ). Lemma 2.3 implies that ϕ(0) = 0, as desired.

Proposition 3.2. ϕ preserves rank-one operators and ϕ(R) = αRR For every
R ∈ F1,z0(X ), where αR ∈ C \ {0}.

Proof. First, let R = x⊗ f be a rank-one operator, where x ∈ X and f ∈ X ∗.
By Proposition 3.1, we have ϕ(R) ̸= 0. For every T ∈ B(X ), we see that

dimETR({λ0}) = dimEϕ(T )ϕ(R)({λ0}) ≤ 1.

The fact that F2(X ) ⊂ ϕ(B(X )) implies that dimESϕ(R)({λ0}) ≤ 1, for all
S ∈ F2(X ). Therefore, by Lemma 2.4, ϕ(R) is an operator of rank one.

Next, let R = x ⊗ f be a rank-one operator in F1,z0(X ) (x ∈ X , f ∈ X ∗).
Thus, ϕ(R) is a rank-one operator, say ϕ(x ⊗ f) = y ⊗ g, where y ∈ X and
g ∈ X ∗. By hypothesis and Lemma 2.2, we have

span{x} = Ef(x)x⊗f ({λ0}) = E(x⊗f)(x⊗f)({λ0}) = Eg(y)y⊗g({λ0}).

This implies that g(y)2 = λ0 and span{x} = span{y}. Without loss of gene-
rality, we may and shall assume that x = y, and therefore ϕ(x⊗ f) = x⊗ g.

Now, let us prove that f and g are linearly dependent. Indeed, assume, by
the way of contradiction, that f and g are linearly independent, and let z be a
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nonzero vector in X such that f(z) = z0 and g(z) = 0. From what was shown
above, there exists gz,f a linear functional on X such that ϕ(z ⊗ f) = z ⊗ gz,f .
Note that, (x⊗ f)(z ⊗ f) = f(z)x⊗ f and (x⊗ g)(z ⊗ gz,f ) = 0. By hypothesis
and Lemma 2.2, we obtain

span{x} = E(x⊗f)(z⊗f)({λ0}) = E(x⊗g)(z⊗gz,f )({λ0}) = {0}.

This contradiction shows that there is a nonzero scalar αR ∈ C, such that
ϕ(R) = αRR.

Proposition 3.3. ϕ((z0I)) = α(z0I), where α be a nonzero scalar of C such
that α2 = 1.

Proof. Assuming that ϕ(z0I) and z0I are linearly independent implies that
there exists a nonzero vector x such that ϕ(z0I)x and z0x are linearly inde-
pendent. Let f ∈ X ∗ such that f(ϕ(z0I)x) = 0 and f(z0x) = z20 = λ0. For
R = x ⊗ f ∈ F1,z0(X ), we have from Proposition 3.2 ϕ(R) = αRR, where
αR ∈ C \ {0}. By hypothesis and Lemma 2.2, we arrive at

span{x} = E(z0I)R{λ0} = EαRϕ(z0I)R({λ0}) = EαRϕ(z0I)x⊗f ({λ0}) = {0}.

This contradiction tells us that ϕ((z0I)) = α(z0I), where α ∈ C \ {0}.
On the other hand, we have

X = EI({1})
= E(z0I)(z0I)({λ0})
= Eα2λ0I({λ0})
= Eα2I({1}).

Then, by the Eq.(1), (α2I − µI)X = X , for all µ ∈ C \ {1}, which forces that
α2 = 1.

Proof of Theorem 3.1. First, let us prove that ϕ(R) = αR, for all R ∈
F1,z0(X ). Let R be a rank- one operator in F1,z0(X ), say R = x ⊗ f , where
x ∈ X and f ∈ X ∗ such that f(x) = z0. Note that, by Proposition 3.2, we have
ϕ(R) = αRR. Since

span{x} = E(z0I)(x⊗f)({λ0})
= E(z0I)R({λ0})
= Eϕ(z0I)ϕ(R)({λ0})
= EααR(z0I)R({λ0}).

Then, f(ααRz0x) = λ0. Thus, ααR = 1, which implies that αR does not depend
on the operator R and we may write α instead of αR. Therefore,

ϕ(R) = αR.
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Now, let us prove that ϕ takes the desired form. Note that, for every P ∈
P1(X )(z0P ∈ F1,z0(X )). Then, ϕ(z0P ) = α(z0P ).

On the other hand, let R ∈ F1(X ) \ N1(X ). For every P ∈ P1(X ), we have

ERP ({1}) = E(z0R)(z0P ({λ0})
= Eϕ(z0R)ϕ(z0P )({λ0})
= Eαz0ϕ(z0R)P ({λ0})
= E α

z0
ϕ(z0R)P ({1}).

It follows by Lemma 2.2 that

RP ∈ P(X ) \ {0} ⇒ 1

αz0
ϕ(z0R)P ∈ P(X ) \ {0},

for all P ∈ P1(X ). By Proposition 3.2 once again, ϕ(z0R) is a rank-one operator,
then R and 1

αz0
ϕ(z0R) are non-scalar operators. Lemma 2.5 implies that

1

αz0
ϕ(z0R) = λRI + (1− λR)R,

for some λR ∈ C \ {1}. Since ϕ(z0R) has rank one, then λRI has rank at most
two, which implies that λR = 0. Thus, ϕ(z0R) = αz0R. Consequently,

ϕ(R) = αR, for all R ∈ F1(X) \ N1(X ).

Finally, let T ∈ B(X ). For every R ∈ F1(X ) \ N1(X ), we have

ETR({λ0}) = Eαϕ(T )R({λ0}).

Lemma 2.3 implies that αϕ(T ) = T . Therefore, ϕ(T ) = αT , for all T ∈ B(X ).
The proof is complete.

4. Maps preserving the algebraic spectral subspace of Jordan triple
product of operators

As in the previous section, we determine, using the same approach, the form of
a map ϕ on B(X ) that preserves the algebraic spectral subspace of Jordan triple
product of operators. Our main result in this section is the following theorem.

Theorem 4.1. Let λ0 be a fixed nonzero scalar of C, and ϕ : B(X ) −→ B(X )
be a map such that its range contains all operators of rank at most four. Then,
ϕ satisfies

(5) ETST ({λ0}) = Eϕ(T )ϕ(S)ϕ(T )({λ0}), (T, S ∈ B(X )),

if and only if there exists α ∈ C, with α3 = 1, such that ϕ(T ) = αT , for all
T ∈ B(X ).
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We only need to show that the ”only if” part holds. Let ϕ be a map such
that its range contains all operator of rank at most four and satisfies (5). Just as
in the proof of Theorem 3.1, we fix a nonzero scalar µ0 ∈ C such that µ3

0 = λ0.
We break the proof into several propositions.

Proposition 4.1. ϕ(0) = 0 and ϕ is injective.

Proof. For every T ∈ B(X ), we have

{0} = ET0T ({λ0}) = Eϕ(T )ϕ(0)ϕ(T )({λ0}) = Eϕ(T )0ϕ(T )({λ0}).

It follows from the assumption on range of ϕ that

ER0R({λ0}) = ERϕ(0)R({λ0}), for all R ∈ F1(X ) \ N1(X ).

Thus, by Lemma 2.3, ϕ(0) = 0.

Now, let A,B ∈ B(X ) such that ϕ(A) = ϕ(B). For every T ∈ F1(X )\N1(X ),
we have

ETAT ({λ0}) = Eϕ(T )ϕ(A)ϕ(T )(λ0)

= Eϕ(T )ϕ(B)ϕ(T )({λ0})
= ETBT ({λ0}).

It follows, from Lemma 2.3, that A = B, thus ϕ is injective, as desired.

Proposition 4.2. For every R ∈ F1,µ0(X ), there exists a nonzero scalar αR ∈ C
such that ϕ(R) = αRR.

Proof. Let R = x ⊗ f be a rank-one operator, where x ∈ X and f ∈ X ∗ such
that f(x) = µ0. Note that, ϕ(R) ̸= 0, since Proposition 4.1. Firstly, for every
T ∈ B(X ), we have

dimETRT ({λ0}) = dimESϕ(R)S({λ0}) = dimEϕ(T )ϕ(R)ϕ(T )({λ0}) ≤ 1.

Since F4(X ) ⊂ ϕ(B(X )), then dimESϕ(R)S({λ0}) ≤ 1, for all S ∈ F4(X ). There-
fore, by Lemma 2.4, ϕ(R) is a rank-one operator, say ϕ(R) = y⊗g, where y ∈ X
and g ∈ X ∗.

Now, we show that there exists an αx,f ∈ C such that ϕ(x⊗f) = αx,f (x⊗f).
Indeed, by hypothesis and Lemma 2.1, we have

span{x} = ER3({λ0}) = Eϕ(R)3 = Eg(y)2y⊗g({λ0}).

This implies that g(y) ̸= 0 and span{y} = span{x}. Assume without loss of
generality that x = y. Thus, it remains to show that f and g are linearly
dependent. Suppose, for the sake of contradiction, that f and g are linearly
independent and let z ∈ X such that f(z) = µ0 and g(z) = 0. Then, there exists
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an gz,f ∈ X ∗ such that ϕ(z ⊗ f) = z ⊗ gz,f . Note that, (x⊗ f)(z ⊗ f)(x⊗ f) =
µ2
0x⊗ f and (y ⊗ g)(z ⊗ gz,f )(y ⊗ g) = 0. By hypothesis, we have

span{x} = E(x⊗f)(z⊗f)(x⊗f)({λ0})
= E(y⊗g)(z⊗gz,f )(y⊗g)({λ0})
= {0}.

This contradiction shows that f and g are linearly dependent, then ϕ(x⊗ f) =
αx,fx⊗ f , where αx,f is a scalar in C, as desired.

Proposition 4.3. ϕ(µ0I) = α(µ0I), where α ∈ C is such that α3 = 1.

Proof. Suppose, by the way of contradiction, that there exists a non zero vector
x ∈ X such that ϕ(µ0I)x and (µ0I)x are linearly independent. Let f ∈ X ∗ such
that f(ϕ(µ0I)x) = 0 and f((µ0I)x) = µ2

0. For R = x⊗ f , it is easy to see that
R ∈ F1,µ0(X ). By Proposition 4.2, we have ϕ(R) = αRR where αR ∈ C \ {0}.
Then, from Lemma 2.2, we have

span{x} = ER(µ0I)R({λ0})
= Eα2

RRϕ(µ0I)R({λ0})
= {0}.

This gives a contradiction. Thus, ϕ(µ0I) = α(µ0I) where α ∈ C \ {0}.
On the other hand, since

X = EI({1})
= E(µ0I)(µ0I)(µ0I)({λ0})
= Eα3µ3

0I
({λ0})

= Eα3I({1}).

By using (1), we conclude that (α3I − µI)X = X , for all µ ∈ C \ {1}, which
implies that α3 = 1.

Proof of Theorem 4.1. First, let us show that ϕ(R) = αR, for all R ∈
F1,µ0(X ). Let R = x ⊗ f ∈ F1,µ0(X ), where x ∈ X and f ∈ X ∗. Note that,
ϕ(R) = αRR with αR ∈ C \ {0}. Using Proposition 4.2, we obtain

span{x} = E(µ0I)R(µ0I)({λ0}) = Eα2αR(µ0I)R(µ0I)({λ0}).

Lemma 2.2 implies that f(α2αRµ
2
0x) = λ0. Thus, α2αR = 1, which implies

that αR does not depend on the operator R, and we my write α instead of αR.
Therefore,

ϕ(R) = αR.

Next, we show that ϕ(R) = αR, for all R ∈ F1(X ) \ N1(X ). Note that, for
every P ∈ P1(X ) (µ0P ∈ F1,µ0(X )), we have

ϕ(µ0P ) = α(µ0P ).
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Let R ∈ F1(X ) \ N1(X ) be a rank one non-nilpotent operator. For every P ∈
P1(X ), we have

EPRP ({1}) = E(µ0P )(µ0R)(µ0P )({λ0})
= Eα2(µ0P )ϕ(µ0R)(µ0P )({λ0})
= EP ( 1

αµ0
ϕ(µ0R))P ({1}).

It follows from Lemma 2.2 that

PRP ∈ P(X ) \ {0} ⇒ P (
1

αµ0
ϕ(µ0R))P ∈ P(X ) \ {0},

for all P ∈ P1(X ). Since R is a rank-one operator(non-scalar operator), by
what has been shown in Proposition 4.2, 1

αµ0
ϕ(µ0R) is also a rank-one operator.

Therefore, from lemma 2.5, there exists an λR ∈ C \ {1} such that

1

αµ0
ϕ(µ0R) = λRI + (1− λR)R.

Since ϕ(µ0R) has rank one, it follows that λR = 0. This implies that

ϕ(µ0R) = αµ0R.

Therefore,

ϕ(R) = ϕ(µ0(
1

µ0
R)) = αR.

Finally, let T ∈ B(X ). For all R ∈ F1(X ) \ N1(X ), we have

ERTR({λ0}) = Eϕ(R)ϕ(T )ϕ(R)({λ0})
= Eα2Rϕ(T )R({λ0})
= ER( 1

α
ϕ(T ))R({λ0}).

This implies, by Lemma 2.3, that ϕ(T ) = αT , and the proof is complete.

References

[1] P. Aiena, Fredholm and local spectral theory, with application to multipliers,
Kluwer Academic Publishers, Dordrecht, 2004.

[2] H. Benbouziane, Y. Bouramdane, M. Ech-Chérif El Kettani, A. Lahs-
saini, Nonlinear commutant preservers, Linear and Multilinear Algebra,
66 (2018), 593-601.
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