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Abstract. Let X be an infinite-dimensional complex Banach space and B(X') be the
algebra of all bounded linear operators on X. For T € B(X), and a fixed nonzero
complex scalar \g, we denote by Er({\o}), the algebraic spectral subspace of T as-
sociated with {Ap}. In this paper, we characterize maps ¢ on B(X) for which whose
ranges contain all operators of rank at most two (resp. at most four), and that sat-

isfy Ers({Ao}) = Egryss)({Mo}) (resp. Ersr({Xo}) = Egryes)or)({Ao})), for all
T,5 € B(X).
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1. Introduction

Throughout this note, X will denote an infinite-dimensional complex Banach
space, X* the topological dual of X', B(X) the algebra of all bounded linear
operators on X and C the field of complex numbers. For any x € X and f € X*,
x ® f stands for the operator of rank at most one defined by (z® f)(y) = f(y)z
for every y € X. We denote by span{z} the subspace spanned by x. The sets
of all finite rank operators, all operators of rank at most n, all rank-one non-
nilpotent operators, all rank-one idempotent operators are denoted, respectively,
by F(X), Fno(X), F1(X) \ N1(X) and P;(X). Note that, z ® f € P1(X) if and
only if f(z) = 1. For T' € B(X), the kernel and the range of 7" are denoted,
respectively, by NV(T') and R(T). We define the following set

FroX)={z@ f:xec X, fe X" such that f(x)=a},

*. Corresponding author
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where a € C\ {0}.
The algebraic core of T, denoted by C(T), is defined to be the greatest
subspace M of X for which
TM = M.

Note that, y € C(T) if and only if there exists a sequence (y,), C X such that
yo =y and TYp4+1 = Yn, for all n € Z,; see [1, Theorem 1.8 |.

For a vector xg € X, the local resolvent set of an operator T' € B(X) at xo,
denoted by pr(zg), is defined as the union of all open subsets U C C for which
there exists an analytic function f : U — X such that (T — \I)f(\) = xo, for
all A\ € U. The subset op(zg) = C\ pr(zo) is the local spectrum of T at xo.

For every subset €2 of C, the local spectral subspace, X7(12), is defined by

Xr(Q) ={zx € X :0p(x) C Q}.

The algebraic spectral subspace of T" associated with €2, denoted by Ep(Q),
is defined as the algebraic sum of all subspace M of X with the property that

(T — MX)M = M, for every A€ C\ Q.

Evidently, E7r(Q) is the largest subspace of X on which all the restrictions of
M —T, X e C\ Q, are surjective. In particular,

(1) (T —MN)Ep(Q) = Ep(Q2), forall AeC\Q.
Note that, Ep(Q2) C C(T — M), for all XA ¢ Q, and for every A € 2 we have
(2) N(T — \I) C Ep(Q)

(see, for instance, [1, 9]).

For T € B(X), we denote Lat(T') the lattice of T', that is, the set of all
invariant subspaces of T'. Note that, the subspace E7(£2) is an invariant subspace
of T.

In recent decades, a considerable attention has been paid to the nonlinear
preserver problems, which demand the characterization of maps between alge-
bras that leave a given set, property or relation invariant without assuming in
advance algebraic conditions such as linearity, additivity or multiplicity, but a
weak algebraic condition is often imposed through the preserving property.; see
for instance [5, 7, 8, 9, 10] and the reference cited there.

In [5], Dolinar, Du, Hou and Legisa characterized the form of maps pre-
serving the lattice of product of operators. They showed that maps (not nec-
essarily linear) ¢ : B(X) — B(X) satisfy Lat(¢(A)¢(B)) = Lat(AB) (resp.
Lat(¢(A)p(B)p(A)) = Lat(ABA)), for all A, B € B(X), if and only if there is
a map ¢ : B(X) — K such that ¢(A) # 0 if A # 0 and ¢(A) = p(A)A, for
all A € B(X). These results have motivated several authors to study maps on
Banach algebras which preserve invariant subspaces; see for instance [2, 3, 4, 11].
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In [2], the authors characterized maps on B(X') preserving the commutant
of the sum A + B, the product AB, the Jordan triple product ABA and the
Jordan product AB + BA, for all A, B € B(X).

In the context of local spectral subspace, we cite the results found in [3],
in which the authors described surjective maps ¢ : B(X) — B(X) satisfying
Xoayom) (M) = Xap({A}) (resp. Xgays()oa)({A}) = Xapa({A}),) for all
A,B € B(X) and \ € C.

For a fixed scalar \g € C, in [4], Bouchangour and Jaatit find a similar result
as in [3] by removing the surjectivity condition on ¢ for product or Jordan triple
product of operators. They determine the form of all maps on B(X') which satis-
fying Xrs({Ao}) = Xymyss)({Ao}) (resp-Xrsr({Ao}) = Xomy(s)eer) ({Ao})),
for all T, S € B(X') with Ag is a fixed complex scalar.

In this paper, we continue our study of mappings that preserve invariant
subspaces. We, therefore, propose to determine the forms of all surjective maps
¢ : B(X) — B(X)(not necessarily additive or surjective) which preserve the
algebraic spectral subspace of the product or Jordan triple product of operators
associated with a fixed singleton {Ao} (Ao € C\ {0}).

The paper is organized as follows:

In the second section we give the basic properties of the algebraic spectral sub-
space and the lemmas necessary of the proofs of the main results.

In the third section, we describe maps ¢ on B(&X'), for which their ranges con-
tain all operators of rank at most two, and that preserve the algebraic spectral
subspace of product of operators associated with the singleton {\g}.

In the fourth section, we determine the structure of maps ¢ on B(X), for
which their ranges contain all operators of rank at most four, and that preserve
the algebraic spectral subspace of Jordan triple product of operators associated
with the singleton {Ao}. Note that certain ideas in our main results are inspired

by [4].

2. Preliminaries

In this section, we state some useful lemmas needed for the proof of our main
results. The first one summarizes some properties of the algebraic spectral
subspace which will be used frequently.

Lemma 2.1. Let A,B € B(X) and Ao be a fized nonzero complex scalar. The
following statements hold:

1. Eaa({\}) = Ea({2}), for all a € C\ {0} and all X € C.
2. Er({1}) = X.

3. If Ear({ho}) = Enr({Mo}), for all R € Fy(X)\NL(X), then Ear({\}) =
Epr({A\}), for all R € Fi(X) \ Ni(X) and all A € C\ {0}.

4. [fERAR({)\O}) = ERBR({)\O})y fOT' all R € fl(X)\./\/’l(X), then ERAR({)\})
= Erpr({\}), for all R € F1(X)\ N1(X) and all X € C\ {0}.
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Proof. 1. Let a € C\ {0} and A € C. For u € C such that pu # %, we have
ap # A and
(A= pl)Eaa({A}) = (@A — apl) Eaa({A}) = Eaa({A}).

The fact that EA({g}) is the largest subspace M of X for which (A—ul)M = M
for every u # g, implies that

Faal{AD) € Eal{2})

Conversely, let 4 € C such that p # X, we have £ # % and

(0d— D EA({2}) = a4 - LDEA((2) = aBa((2)) = Eat2)).

Therefore,

Ea({2)) € Basl{N).
Thus,

Eaa(iA) = Eal ).

2. We know that I — pul is invertible for all p # 1, so (I — pl)X = X, for all

p# 1.
Since Er({1}) is the largest subspace M such that (I — uI)M = M, for all

w# 1, it follows that Er({1}) = X.
3. Let R e Fi(X)\ N1 (X) and X € C\ {0}. Using (1), we get
Ear({A}) = EA()‘TOR)({)\O})
Ep 20 gy({Ao})
= Epr({\}).
4. Fix R € Fi(X) \ Mi(X), X € C* and po such that p? = 22. Using (1)
once again, we have
ERAR({)\}) = E)‘TORAR({)\O})

E(uor) A(nor) ({20})
= E(HOR)B(HOR)({)\O})
= By g0
= Erpr({7\}). O
The next lemma gives an explicit formula for the algebraic spectral subspace

of the operators that has at most rank one associated with a nonzero fixed
complex scalar.
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Lemma 2.2. For x € X\ {0}, f € X* and Ao € C\ {0}, we have
B i N
os(12o}) {{0}, if f(x)# No.

Proof. Let Ao be a fixed nonzero complex scalar, x € X \ {0} and f € A™.
Since (2 & f)Euy({Ao}) = Euos({Ao}), then

Ergr({Mo}) CCz @ f).

The description of the algebraic core in terms of sequences shows that C(z® f) C
span{x}. Therefore,

3) Erer({Mo}) C span{z}.
Now, we shall discuss two cases.

Case 1. f(x) = M. Let us show first that (x ® f — ul)span{z} = span{z},
for all pu # Ag. Indeed, let p € C such that pu # Ao = f(z). We have (z ® f —
u)((f(x) — p)™lz) = 2. Then, » € (x ® f — ul)span{x}, which proves that
span{z} C (x ® f — pl)span{z}. The reverse implication deserves to be added.
Indeed, let y € span{z}, then y = Az for some A € C\ {0}. Hence, we have

(@ f—pl)(y) = (x® f —pl)(Az) = A(Ao — p)z € span{z}.
Therefore, for all € C\ {\o}, it follows that
(x ® f — pl)span{z} = span{x} .

Since E,g({M\o}) is the largest subspace M of X such that (z® f —pul)M = M,
for all u # Ao, we conclude that

span{z} C Ergf({Ao})-

Together with the Eq.(3), we obtain:

Eyer({Ao}) = span{z}.
Case 2. f(x) # Xo. Suppose that E,gr({Ao}) = span{z}. Then, for every
1 # Ao, we have
(x @ f — pl)span{z} = span{z}.
In particular, for u = f(x), we obtain
span{z} = (z ® f — f(x)I)span{z} = {0}
which gives a contradiction . By (3), we get that E,g¢({Ao}) = {0}. O

In the following lemma, we give an identity principle that we will use to
prove our main results.
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Lemma 2.3. Let T,S € B(X), and Ay be a fixzed nonzero scalar in C. The
following statements are equivalent:

1. T=S5

2. Err({\})) = Esr({\}), for all R € Fi(X)\ N1(X) and all X € C\ {0}.
3. ETR({)\Q})) = ESR({)\O}); for all R € ]:1(X) \Nl(.)()

4. Errr({\}) = Ersr({\}), for all R € Fi(X)\N1(X) and all X € C\ {0}.

5. ERTR({)\O}) = ERSR({)\O}); fOT all R € fl(X) \Nl()()

Proof. Obviously, by Lemma 2.1, we have (1) = (2) < (3) and (1) =
(4) <= (5). Thus, it remains to show that the implications (2) = (1) and
(4) = (1) are true.

(2) = (1). Suppose that (2) holds, and let « be a nonzero vector in X.

Let f € &* such that f(z) #0. For R=z ® f, we have TR = Tz ® f and
SR = Sz ® f. Suppose first that f(T'z) # 0. By Lemma 2.2, we get that

span{Tz} = Err({f(Tz)}) = Esr({f(T2)}).

This implies that f(Tz) = f(Sx).
If f(Tx) = 0. Suppose, on the contrary, that f(Sz) # 0. Using Lemma 2.2
once again, we obtain

span{ Sz} = Esr({f(S2)}) = Err({f(52)}) = {0}

This contradiction entails that f(Tx) = f(Sx) = 0. Therefore, f(Tz) = f(Sx),
for all f € X* for which f(z) # 0.

Now, if f(z) = 0, one can find a functional g € X* such that g(z) # 0. By
applying what has been shown above to g and f + g, we get that (f 4+ ¢)(Tz) =
(f + g)(Sx) and ¢g(Tx) = g(Sx), which proves that f(Tx) = f(Sxz), for all
f € X*. Thus, by Hahn-Banach theorem we have T' = S.

(4) = (1) Is done by the same reasoning. O

The following lemma gives a characterization of rank-one operators in term
of the algebraic spectral subspace.

Lemma 2.4. Let Ay be a nonzero fized scalar of C, and R be a nonzero operator
of B(X). The following statements are equivalent:

1. R is a rank-one operator.
2. dimErr({No}) <1, for all T € B(X) of rank at most two.

3. dimErrr({Mo}) <1, for all T € B(X) of rank at most four.
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Proof. It is easy to see that 1) = 2) and 1) = 3) are evident. Thus, it remains
to show that 2) = 1) and 3) = 1) hold.

Suppose that, R has rank at least two, and let y; and ys be two linearly
independent vectors in the range of R. Let 1 and x5 be two vectors of X such
that Rx1 = y; and Rxo = y2, and note that x; and xo are linearly independent
too. We show that dim Err({\o}) > 2 for some T' € Fo(X). Let f; € X*(i =
1,2) such that fi(y;) = 0i; (i is a Kronecker delta) for 7,5 = 1,2. Set T' =
AoZ1 ® f1 4+ Ax2 ® fo and note that TRx1 = Agx1 and T Rxo = Agxo. Which
implies that z1,29 € N(TR — M\oI). By (2), we conclude that span{xi,z2} C
N(TR — )\()I) C ETR({A()}) Thus,

dim Err({Xo}) > 2.

Consequently, 2) = 1) is established.

Now, we show that dim Errr({Ao}) > 2 for some T' € F4(X). Since X is an
infinite dimension space, one can choose y3 and y4 in X such that y1, y2, y3 and
y4 are linearly independent. Let f; j; € X*(i,j = 1,2, 3,4) such that f;(y;) = d;;
for i, =1,2,3,4. Consider T' € B(X) such that

T=21® f3+22® fa+ Moys @ f1 + Aoys ® fo.

We have TRTy3 = \oys and TRTys = Moys. This gives ys,ys € N(TRT —
AoI). The Eq.(2), once more, ensures that span{ys,ys} C Errr({\o}). Thus,
dim Errr({Ao}) > 2, which end the proof. O

We close this section with the following lemma, which we will use for the
proof of our main theorems.

Lemma 2.5. Let T and S be two non-scalar operators in B(X):

1. If TP € P(X) \ {0} implies SP € P(X) \ {0}, for all P € P1(X), then
S =M+ (1= X)T for some A € C\ {1}.

2. If PTP € P(X)\ {0} implies PSP € P(X)\ {0}, for all P € P1(X), then
S =X+ (1—=X)T for some A € C\ {1}. Where P(X) denotes the set of

idempotent operators on X.

Proof. See [6, Proposition 2.3] and [12, Proposition 3.3]. O

3. Maps preserving the algebraic spectral subspace of product of
operators

The following theorem is our main result in this section.

Theorem 3.1. Let \g be a fized nonzero scalar in C, and ¢ : B(X) — B(X)
be a map such that its range contains all operators of rank at most two. Then,
¢ satisfies

(4) Ers({Xo}) = Egyecs)({Ao}), (T, S € B(X)),
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if and only if there exists o € C, with o = 1, such that ¢(T) = oT, for all
T € B(X).

Proof. The ”if” part is easily verified by using Lemma 2.1, so we only need to
prove the ” only if ” part. Indeed, assume that ¢ is a map from B(X') into itself
such that its range contains all operators of rank at most two and satisfies the
Eq.(4). We fix a nonzero scalar zy in C such that 22 = \g. We divide the proof
into different propositions.

Proposition 3.1. ¢ is injective and ¢(0) =0 .
Proof. Let T, S € B(X) such that ¢(T) = ¢(S). For any R € F1(X) \ M1(X),

we have

Err({Mo}) = Eymer)({Mo})
Egsy0(r)({A0})
= Esr({Mo}).

By Lemma 2.3 we conclude that T'= S, and ¢ is injective.
Now, let us show that ¢(0) = 0. Indeed, for any 7' € B(X), we have

{0} = Eor({Mo}) = Eg0)s(r)({Ao}) and {0} = Eogy1)({Ao}). Then,
Egoys(r)({20}) = Eog(r) ({Ao});

for all T € B(X).
It follows from the fact that F2(X)C¢(B(X)) that Eor({Xo})=Eg0)r({Mo})
for all R € F1(X) \ N1(X). Lemma 2.3 implies that ¢(0) = 0, as desired.

Proposition 3.2. ¢ preserves rank-one operators and ¢(R) = arR For every
R e Fi ., (X), where ag € C\ {0}.

Proof. First, let R =2 ® f be a rank-one operator, where x € X and f € X™*.
By Proposition 3.1, we have ¢(R) # 0. For every T € B(X), we see that

dim ETR({AO}) = d1mE¢(T)¢(R)({)\0}) S 1.

The fact that Fo(X) C ¢(B(X)) implies that dim Eggr)({Mo}) < 1, for all
S € Fo(X). Therefore, by Lemma 2.4, ¢(R) is an operator of rank one.

Next, let R =  ® f be a rank-one operator in Fj ,,(X) (z € X, f € &™).
Thus, ¢(R) is a rank-one operator, say ¢(z ® f) = y ® g, where y € X and
g € X*. By hypothesis and Lemma 2.2, we have

span{r} = E¢zeer({Mo}) = Eaef)@ar{A0}) = Egyyyes({Ao})-

This implies that g(y)? = Ao and span{z} = span{y}. Without loss of gene-

rality, we may and shall assume that x = y, and therefore ¢(z ® f) =2 ® g.
Now, let us prove that f and ¢ are linearly dependent. Indeed, assume, by

the way of contradiction, that f and g are linearly independent, and let z be a
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nonzero vector in X such that f(z) = zp and g(z) = 0. From what was shown
above, there exists g, ¢ a linear functional on X" such that ¢(z ® f) = 2 ® g, 5.
Note that, (z® f)(2® f) = f(2)z® f and (z ® g)(2 ® g»,¢) = 0. By hypothesis
and Lemma 2.2, we obtain

span{z} = E(z@f)(z@f)({)‘O}) = E(z@g)(Z@gz,f)({)‘O}) = {0}.

This contradiction shows that there is a nonzero scalar ap € C, such that
¢(R) = arR. O

Proposition 3.3. ¢((z0!)) = a(z0l), where a be a nonzero scalar of C such
that o = 1.

Proof. Assuming that ¢(z9l) and zol are linearly independent implies that
there exists a nonzero vector x such that ¢(zol)z and zoz are linearly inde-
pendent. Let f € X* such that f(¢(20l)z) = 0 and f(z0w) = 22 = A\o. For
R =2®f € Fi,(X), we have from Proposition 3.2 ¢(R) = arR, where
apr € C\ {0}. By hypothesis and Lemma 2.2, we arrive at

span{z} = E nr{ro} = Eagezonr({M0}) = Eapezoneer({Xo}) = {0}

This contradiction tells us that ¢((z0l)) = a(z0I), where a € C\ {0}.
On the other hand, we have

X = Er({1})
= Eoneon({ro})
= Ea2)\01({)‘0})
= Eo ({1}).
Then, by the Eq.(1), (o?I — ul)X = X, for all u € C\ {1}, which forces that
a?=1. t

Proof of Theorem 3.1. First, let us prove that ¢(R) = «aR, for all R €
Fi2(X). Let R be a rank- one operator in Fj ,,(X), say R =  ® f, where
x € X and f € X* such that f(z) = zy9. Note that, by Proposition 3.2, we have
¢(R) = arR. Since

span{z} = Eiinaen({Ao})
= Eronr({Ao})
= Eyongr){No})
= EBaap(znr{Ao})-

Then, f(aagrzox) = Ag- Thus, aar = 1, which implies that ag does not depend
on the operator R and we may write « instead of ag. Therefore,

¢(R) = aR.
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Now, let us prove that ¢ takes the desired form. Note that, for every P €
P1(X)(20P € Fi(X)). Then, ¢p(20P) = a(20P).
On the other hand, let R € F1(X) \ N1(X). For every P € P1(X), we have

Erp({1}) = Er)zor({Mo})
= EyoRr)p(z0P)({A0})

= FEaezoryp({A0})

= anszoR p({1}).

It follows by Lemma 2.2 that
1
RP € P(X)\ {0} = ——o(20R)P € P(X) \ {0},
0

forall P € Pl( ). By Proposition 3.2 once again, ¢(zpR) is a rank-one operator,
then R and - gb(zOR) are non-scalar operators. Lemma 2.5 implies that

1
7¢(20R) = Arl + (1 — )\R>R,
azp

for some Ap € C\ {1}. Since ¢(zpR) has rank one, then Ar/ has rank at most
two, which implies that A = 0. Thus, ¢(20R) = azpR. Consequently,

#(R) = aR, forall Re Fi(X)\Ni(X).
Finally, let T' € B(X). For every R € F1(X) \ N1(X), we have

Err({Mo}) = Eapryr({Ao})-

Lemma 2.3 implies that a¢(T) = T. Therefore, ¢(T) = aT, for all T € B(X).
The proof is complete. O

4. Maps preserving the algebraic spectral subspace of Jordan triple
product of operators

As in the previous section, we determine, using the same approach, the form of
a map ¢ on B(X) that preserves the algebraic spectral subspace of Jordan triple
product of operators. Our main result in this section is the following theorem.

Theorem 4.1. Let A\ be a fized nonzero scalar of C, and ¢ : B(X) — B(X)
be a map such that its range contains all operators of rank at most four. Then,
¢ satisfies

(5) Erst({Mo}) = Egmye(s)s(r)({Ao}), (T, S € B(X)),

if and only if there exists a € C, with o = 1, such that ¢(T) = oT, for all
T e B(X).



46 I. EL KHCHIN, H. BENBOUZIANE aND M. ECH-CHERIF ELKETTANI

We only need to show that the "only if” part holds. Let ¢ be a map such
that its range contains all operator of rank at most four and satisfies (5). Just as
in the proof of Theorem 3.1, we fix a nonzero scalar uo € C such that u3 = \o.
We break the proof into several propositions.

Proposition 4.1. ¢(0) =0 and ¢ is injective.

Proof. For every T € B(X), we have

{0} = Eror({ho}) = 7 ({Ao}) = Egryopr) {Ao})-

It follows from the assumption on range of ¢ that

EROR({)\O}) ER¢ ({)\0}) forall R € ]'—1(.)() \Nl()()

Thus, by Lemma 2.3, ¢(0) =0
Now, let A, B € B(X) such that ¢(A) = ¢(B). For every T € F1(X)\N1(X),

we have

Erar({M}) = Eymygayem)(Mo)
Egsmyomyo(r)({Ao})
= Erpr({Mo})-

It follows, from Lemma 2.3, that A = B, thus ¢ is injective, as desired. O

Proposition 4.2. For every R € Fi ,,,(X), there exists a nonzero scalar ar € C
such that ¢(R) = agR.

Proof. Let R = x ® f be a rank-one operator, where z € X and f € X* such
that f(x) = po. Note that, ¢(R) # 0, since Proposition 4.1. Firstly, for every
T € B(X), we have

dim Erpr({Mo}) = dim Eggrys({Ao}) = dim Egpyeryer)({Ao}) < 1

Since F4(X) C ¢(B(X)), then dim Egyg)s({Mo}) < 1, for all S € Fy(X). There-
fore, by Lemma 2.4, ¢(R) is a rank-one operator say d)( ) =y®g, wherey € X
and g € X*.

Now, we show that there exists an o ¢ € C such that ¢p(z® f) = ag (2@ f).
Indeed, by hypothesis and Lemma 2.1, we have

spcm{x} - ER3({)‘0}) = E¢(R)3 - Eg(y)2y®g({/\0})'

This implies that g(y) # 0 and span{y} = span{x}. Assume without loss of
generality that x = y. Thus, it remains to show that f and g are linearly
dependent. Suppose, for the sake of contradiction, that f and g are linearly
independent and let z € X’ such that f(z) = po and g(z) = 0. Then, there exists
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an g, 5 € X* such that ¢(z ® f) = 2® g, 5. Note that, (z®@ f)(2® f)(z® f) =
pdz @ f and (y ® g)(2 ® g..5)(y ® g) = 0. By hypothesis, we have

span{z} = Elgp)ef)@on({ro})
E(y®g)(Z®gz,f)(y®g) ({Ao})
= {0}.

This contradiction shows that f and g are linearly dependent, then ¢(x ® f) =
oy rx @ f, where a, 5 is a scalar in C, as desired. ]

Proposition 4.3. ¢(uol) = a(uol), where o € C is such that o® = 1.

Proof. Suppose, by the way of contradiction, that there exists a non zero vector
x € X such that ¢(uol)z and (uol)x are linearly independent. Let f € X* such
that f(¢(uol)x) = 0 and f((uol)x) = p3. For R =z ® f, it is easy to see that
R € Fi,,(X). By Proposition 4.2, we have ¢(R) = arR where ar € C\ {0}.
Then, from Lemma 2.2, we have

span{r} = Egg,nr({Mo})
Ea%Rd}(uoI)R({)‘O})
= {0}

This gives a contradiction. Thus, ¢(uol) = a(uel) where a € C\ {0}.
On the other hand, since

X = E({1})
Euon)(uon) (o) {Ao})
= Euaugr({Ao})
= Eer({1}).
By using (1), we conclude that (o3I — ul)X = X, for all p € C\ {1}, which
implies that a3 = 1. O

Proof of Theorem 4.1. First, let us show that ¢(R) = aR, for all R €
Fipuo(X). Let R =2® f € Fi,,(X), where z € X and f € A*. Note that,
¢(R) = arR with ap € C\ {0}. Using Proposition 4.2, we obtain

span{x} = B Rruen)({A0}) = Eazap(uonR(uor) ({Ao})-

Lemma 2.2 implies that f(a?agrudz) = Ag. Thus, a’ag = 1, which implies
that ap does not depend on the operator R, and we my write « instead of ag.
Therefore,

#(R) = aR.

Next, we show that ¢(R) = aR, for all R € F;(X) \ N1(X). Note that, for
every P € P1(X) (noP € Fi,(X)), we have

P(poP) = apoP).
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Let R € F1(X) \ NM1(X) be a rank one non-nilpotent operator. For every P €
P1(X), we have

Eprp({1}) = E(up)(uoR)(op)({Ao})
Ea?(uoP)qﬁ(uoR)(uoP)({)\0})
= EP(a—thﬁ(ugR))P({l})'

It follows from Lemma 2.2 that

PRP € P(X)\ {0} = P(Cfm(mR))P e P(X)\ {0},

for all P € P(X). Since R is a rank-one operator(non-scalar operator), by
what has been shown in Proposition 4.2, a—}mqb(uoR) is also a rank-one operator.
Therefore, from lemma 2.5, there exists an Az € C\ {1} such that

1
—(uoR) = Arl + (1 — Ap)R.
Qo

Since ¢(upR) has rank one, it follows that A = 0. This implies that

d(noR) = apoR.
Therefore,

d(R) = ¢(po(—R)) = aR.
Ho

Finally, let T' € B(X). For all R € F1(X) \ N1(X), we have

Errr({Mo}) = Eygmyeme(r)({ o))
Eo2pe(ryr({Ao})
= Ergayrt{o})-

This implies, by Lemma 2.3, that ¢(T") = oT', and the proof is complete.
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