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Abstract. Let G = HK be a finite group, where H and K are proper subgroups of G.
A group G is called a mutually N-permutable product of H and K if H permutes with
every normal subgroup of K, and K permutes with every normal subgroup of H. In
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1. Introduction

In this paper, only finite groups are considered. For a group G, let m(G) stand
for the set of primes dividing |G|, L(G) the subgroup lattice of G and n the
maximal length of L(G).

Let 1 = Gy < G1 < Gg < ... < G, = G be a maximal chain of subgroups of
a group G. An interval [Giy;/G;] ={X < G:G; < X < Gy} is the set of all
subgroups of G;4; which contain G;. A maximal chain is called smooth if any
two intervals have the same length are isomorphic. If all maximal chains from
any subgroup of G of prime order to G (L < ... < G where L is any subgroup of
G of prime order) are smooth chains, then G is called a GS-group (a generalized
smooth group) (see [10]). To clarify the concept of GS-groups more effectively,
we present some examples:

e Let G = Qg (the quaternion group of order 8). It is well-known that Qs
has a unique subgroup of prime order (—1), and three maximal chains
extending from (—1) to Qs. Specifically, we have (—1) < (i) < Qs, (—1) <
(4) < Qs and (—1) < (k) < Qs. Each of these chains is smooth. Hence, G
is a GS-group.

o Let G = Zyy (cyclic group of order 24). The subgroup (12) has order
2, and the chain (12) < (4) < (2) < Za4 forms a maximal chain from
(12) to Za4. Tt is evident that [Zog/(4)] = {Zo4, (2), (4)} and [(2)/(12)] =
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{(2), (4),(6), (12)}. Clearly, the intervals [Z24/(4)] and [(2)/(12)] are not
isomorphic, even though they have the same length. Thus, G is not a
GS-group.

A group G is called a P-group if either GG is an elementary abelian or G =
G,Gy, where G, is an elementary abelian normal Sylow p-subgroup and G is
a Sylow g-subgroup of order ¢ which induces a non-trivial power automorphism
on Gp, and ¢ | p— 1 (see [16, p. 49]).

Let H and K be subgroups of a group G with G = HK. We say that, G is
a mutually permutable product of H and K if H permutes with every subgroup
of K and K permutes with every subgroup of H (see [6]), also G is called a
mutually m-permutable product of H and K if H permutes with every maximal
subgroup of K and K permutes with every maximal subgroup of H (see [5]). In
this paper, we introduce the following concept:

Definition. Let G = HK be a group with proper subgroups H and K. We say
that, G is a mutually N-permutable product of H and K if H permutes with
every normal subgroup of K and K permutes with every normal subgroup of
H.

Many papers introduced the structure of a group whose maximal subgroups
are GS-groups under suitable conditions (see[1]-[3] and [7]-[9]). In [3], the au-
thors studied the structure of a group G which is a mutually permutable product
or a mutually m-permutable product of two proper subgroups under the assump-
tion that, all maximal subgroups of G are GS-groups. In this paper, as a next
step, we replace these permutability conditions by a new one. More precisely,
we prove the following result:

Main theorem. Assume that G = HK is a mutually N-permutable product
of its proper subgroups H and K. Suppose further that all maximal subgroups
of G are G.S-groups with n > 4. Then, one of the following holds:

(1) |G| = p1p2psps, where p1, pa, p3 and py are not necessarily distinct primes.
(ii) G is a P-group.
(iii) G is cyclic of square free order.

(iv) G = Gp, A, where |G, | = p1, Gp, < G and A is cyclic of order paps...pm
and operates faithfully on G, where p; are primes with p; # p; for i # j
and i,j € 1,2,...,m.

v) G = G,G, where G, is an elementary abelian normal Sylow p-subgroup
pYq D
of order p?, G, is cyclic of order ¢ and every subgroup of G, operates
q y y g q
irreducibly on G.

(vi) G = G,G4 where G, = PP, is an elementary abelian normal Sylow p-
subgroup of order p* such that P; (i = 1,2) is a minimal normal subgroup
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of G of order p?, G, is a Sylow g-subgroup of order ¢ and G, operates
irreducibly on P; (i = 1,2).

(vil) G = Ly(11).
Now, we list some examples to illustrate the importance of our main theorem:

e Let G = Ly(13) (the projective special linear group). All maximal sub-
groups of G are G S-groups; however, G cannot be expressed as a mutually
N-permutable of two subgroups. The same observation holds for Ly(19)
and Ly(29). Actually, by the main theorem, A5 and Lo(11) are the only
simple groups that can be expressed as a mutually N-permutable product
of two subgroups, with all maximal subgroups being G S-groups.

e Let G = S5 (the symmetric group of degree 5). Clearly, S5 = A5 P,, where
P, is a Sylow 2-subgroup of S5. Here, S5 can be expressed as a mutually
N-permutable product of A5 and P». However, Sy is a maximal subgroup
of S5, is not a G.S-group.

e Let G be an abelian group of order 240 = 2%*.3.5. Clearly, G can be
expressed as a mutually N-permutable subgroup of any two maximal sub-
groups. However, G has a maximal subgroup of order 80 that is not
G S-group.

o Let G = Zy (the cyclic group of order 210). In this case, all maximal
subgroups of G are GS-groups and G can be expressed as a mutually
N-permutable subgroup of any two maximal subgroups.

2. Preliminaries

Lemma 2.1 ([10], Main Theorem). A group G is a GS-group if and only if one
of the following holds:

(1) |G| = pip2ps, where p1, p2, and p3 are not necessarily distinct primes.
(ii) G is cyclic of prime power order.

(iii) G is a P-group.

(iv) G is cyclic of square free order.

v) G = G,G,, where G, is a minimal normal subgroup of order p* and G, is
pUq P q
cyclic of order ¢* such that G, and ®(G,) operate irreducibly on Gp.

(vi) G = G, A, where |Gp,| = p1, Gp, <G and A is cyclic of order paps...pm
and operates faithfully on Gy, where p; are primes with p; # p; for i # j
and i,j5 € 1,2,...,m.

(vii) G = As.
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Lemma 2.2 ([3], Main Theorem). Assume that G is a mutually m-permutable
product of its proper subgroups H and K with n > 4. Assume further that all
mazximal subgroups of G are GS-groups. Then, G is one of the following.

(1) |G| = p1p2pspa, where p1, p2, ps and py are not necessarily distinct primes.
(ii) G is a P-group.
(iii) G is cyclic of square free order.

(iv) G = G, A, where |Gp,| = p1, Gp, QG and A is cyclic of order paps...pm
and operates faithfully on G, where p; are primes with p; # p; for i # j
and t,7 € 1,2,...,m.

(v) G = GG, where Gy, is an elementary abelian normal Sylow p-subgroup
of order p?, Gq 1s cyclic of order q® and every subgroup of G4 operates
irreducibly on G,.

(vi) G = G,G4 where G, = PP is an elementary abelian normal Sylow p-
subgroup of order p* such that P; (i = 1,2) is a minimal normal subgroup
of G of order p*, G is a Sylow q-subgroup of order q and G, operates
irreducibly on P; (i =1,2).

Lemma 2.3 ([3], Lemma 8). Assume that G is a supersolvable group. Assume
further that all maximal subgroups of G are GS-groups with n > 4. Then, G is
one of the following.

(1) |G| = p1p2psps, where p1, pa2, ps and py are not necessarily distinct primes.
(ii) G is cyclic of prime power order.

(iii) G is a P-group.

(iv) G is cyclic of square free order.

(v) G = Gp, A, where |Gy, | = p1, Gp, <G and A is cyclic of order paps...pm
and operates faithfully on Gy, where p; are primes with p; # p; for i # j
and i, € 1,2,...,m.

Corollary 2.1. Assume that G is a supersolvable group with |7(G)| = 2. If
all maximal subgroups of G are GS-groups with n > 4, then G is a nonabelian
P-group.

3. Results

In the following, for simplicity, we will concern that G satisfies structure:

(a) if G = GGy, where G is a minimal normal subgroup of order p? and
G, is cyclic of order g which operates irreducibly on G,,.

(b) if G = GGy, where G, is a minimal normal subgroup of order p? and
G, is cyclic of order ¢? such that G, and ®(G,) operate irreducibly on G,,.
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Lemma 3.1. Assume that G is a mutually N-permutable product of its proper
subgroups H and K. Assume further that all maximal subgroups of G are GS-
groups. Then, either G is solvable or G = Lo(11).

Proof. A group of odd order is solvable so let G be of even order. Firstly,
let both H and K are supersolvable. By ([17]; Lemma 2.4), if G has a Hall
2’-subgroup, then G is not simple and hence by ([3]; Lemma 6), G is solvable.
So, in the following paragraph, in order to prove that G is solvable, we need
only to show that it has a Hall 2’-subgroup.

Let, without loss of generality, that 2 | |H|. As H is supersolvable, it has a
normal 2-complement Hy/. If K is of odd order, then by hypothesis Gor = Hor K
is a subgroup of G. So, let both H and K are of even order. Also, K has a
normal 2-complement Ko as it is supersolvable. By our hypothesis, H Ko and
Hy K are subgroups of G. If HKy or Hy K has a cyclic Sylow 2-subgroup then
it has a normal 2-complement which implies that Gor = Hy Ko/ is a subgroup
of G. Clearly, if H or K is 2-group, then Gor = Ko or Gor = Hyr respectively.
Now, we can say that, H and K are supersolvable GS-groups with non cyclic
Sylow 2-subgroups and |H| and | K| are divided at least by two different primes.
According to Lemma 2.1, |H| = 22¢q and |K| = 227 where ¢ and r are primes.
If ¢ = r, then |7(G)| = 2 and hence G is solvable. So, let ¢ # r. Say G2 be
the Sylow 2-subgroup of G, if |Ga| > 22, then by hypothesis HK, is a proper
subgroup of G but not a G.S-group, a contradiction. Therefore, [G : H] = r and
[G : K] = q and hence by ([4]; Lemma 10), G is solvable. Now, assume that H
is not supersolvable. According to Lemma 2.1, either H = A5 or H = H,H,
and satisfies structure (a) or (b). If both H and K are isomorphic to As, then
by [13], either G = A5 x A5 or G = Ag. Since there is no a GS-group contains
As, we have G 2 As x As. Also Ag has a subgroup isomorphic to Sy which is
not a GS-group, a contradiction. Thus, we can assume that K 2 As. According
to Lemma 2.1, K would be a solvable group. It follows that, K has a minimal
normal subgroup L, say, which is elementary abelian. By hypothesis HL is a
subgroup of G. We handel the following cases:

1. HS HL £ G. If H satisfies structure (b) or H = As, then H would be
a maximal subgroup of G as there is no a G.S-group contains it. Hence
H satisfies structure (a). By hypothesis HL is a GS-group. Applying
Lemma 2.1, HL = A5 which implies that H = A4 and |L| = 5 is a Sylow
5-subgroup of As. Hence Hy <t H where Hs is a Sylow 2-subgroup of H
and L S K as HL S G. By hypothesis, HoK is a proper GS-subgroup of
G. Applying Lemma 2.1, Hy K is of order 2252 and satisfies structure (b).
This implies that A has a subgroup of order 225, a contradiction.

2. G = HL. Hence H is of prime power index. If G is not simple then by
([3]; Lemma 6), G is solvable. So, let G be a simple group. By ([14];
Theorem 1), H = As and G = Lo(11). Note that, If H = A4 and G = A,
then by hypothesis G has a subgroup of order 20, a contradiction.
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3. H= HL. Hence L < HN K for each minimal normal subgroup of K.
As the previous case if H is of prime index, we are done. So, let [G : H|
is divided at least by two different primes and consequently, |7 (K)| > 2.
Assume that |7(K)| > 3. Applying Lemma 2.1, K is of square free order
and hence has a Sylow tower property. Say K = K, K,,...K, , where K,
(i =1,2,...,m) is a Sylow r;-subgroup of K with r; > r;11. Since each
minimal normal subgroup of K is a subgroup of H, we get K,, < H. By
hypothesis, HK,, K,, = HK,, is a subgroup of G. If H £ HK,, < G,
then similar as the previous cases we are done. So, let H = HK,,. If
|7(K)| = 3, then H is of prime index, a contradiction. Thus, |7(K)| > 3.
But in this case, H K, K, K,, = HK,, is a proper subgroup of G but not
a GS-group, a contradiction. Thus, |7(K)| = 2. Since L < H and [G : H]
is not prime power, L can’t be a Sylow subgroup of K. Say K = K, K,
(it’s not necessary that ry > r9) and L S K,,. If |K,,| > 7%, then by
Lemma 2.1, K is a nonabelian P-group and hence every subgroup of K,
is a subgroup of H, a contradiction. Thus, |K,,| = r?. Since L £ K,
and K is a GS-group, we get by Lemma 2.1, K is a supersolvable group
of order r?ry. Clearly, either K,, or K,, is a normal subgroup of K and
hence a subgroup of H which contradicts with our assumption that [G : H|
is divided by at least two different primes. By this final contradiction our
proof is completed. O

Lemma 3.2. Assume that G is a solvable group with all mazimal subgroups of
G are GS-groups. If |n(G)| # 2, then G is supersolvable or |G| = p?qr where p,
q and r are distinct primes.

Proof. As we know if GG is a p-group, then G is supersolvable. And by our
hypothesis |7(G)| # 2. So, |7(G)| > 3. Firstly, let |[7(G)| > 3. Since G is
solvable, then there exist for each prime p; € 7(G), a maximal subgroup M;
such that [G : M;] = p¢ (e > 1). By hypothesis, M; is a GS-group. Applying
Lemma 2.1, M; is of square free order Vi. It’s follows that G itself is of square
free order and consequently G is supersolvable.

Now, let |7(G)| = 3. Then, G = Gp,Gp,Gp, where G, is a Sylow p;-
subgroup of G. Solvability of G implies that G, G, is a proper subgroup of
G. Let Gy, Gp, is not a maximal subgroup of G. Then, there exist a subgroup
M, say, of G such that G, Gp, < M < G. By hypothesis, M is a GS-group.
Applying Lemma 2.1, M is of square free order. It follows that |G,,| = p;
(i =1,2). Asn >4, |Gp| > p3. Clearly, if |Gp,| = p3, then |G| = p1pep3 and
we are done. So, assume that |Gp,| > p3. By applying Lemma 2.1, G, G, is a
nonabelian P-group with p3 > p; (i = 1,2). So, every subgroup of G, is normal
in G. This implies that G Gy, Gy, is a proper subgroup of G, where G, is a
maximal subgroup of Gp,. But G}, G), G), can’t be a GS-group, a contradiction.
Thus, assume that, G, G, is a maximal subgroup of G V i,j € {1,2,3} and

i j.
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Since G is solvable, it has a minimal normal subgroup L, say, which is ele-
mentary abelian. Without loss of generality let L < G,,. Maximality of G,,Gp,
in G implies that L = G,,. Also by the maximality of G, G,, (i = 2,3) in G,
Gp, and G, must be maximal subgroups in G,,Gp,. By hypothesis, G,,Gy, is
a GS-group. Then, either |G,,Gp,| = paps or Gy, Gp, satisfies structure (a). Let
|GpyGps| = pops. If |L| > p?, then G,,G,, (i = 2,3) is a nonabelian P-group
and hence every subgroup of L is normal in G, a contradiction. Thus, |L| = p?
and hence |G| = pipaps. Now, let |Gp,Gp,| = p3ps and satisfies structure (a).
Once again |G| = p1p3ps if |L| = p1. If else, LG, is a proper subgroup of G with
order divided by p?p3. Applying Lemma 2.1, LG, satisfies structure (b) with
Gy, is cyclic. It follows that G,,G)p, is supersolvable which contradicts with
Gy, is a maximal subgroup of G,,G),. By this final contradiction our proof is
completed. O

Lemma 3.3. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |7(G)| = 2. Suppose further that all mazimal
subgroups of G are GS-groups with n > 4. If H is a nonabelian P-group so as
G.

Proof. Let H = H,H, be of order p/q (j > 1). If |G,| = g, then by ([18],
Corollary 1.10, p. 6), G is supersolvable and hence by Corollary 2.1, G is a
nonabelian P-group. So, let |G4| > ¢2.

Let |H,| > p?. By hypothesis, H,K < G. Assume that G = H,K. Choose
H; be a maximal subgroup of Hj such that H,K is a proper subgroup of
G. Since [G : HiK] = p, |Gy| > ¢* and n > 4, we get by Lemma 2.1 that
H K satisfies structure (b) which contradicts with H is a nonabelian P-group.
Thus, H,K is a proper subgroup of G. Applying Lemma 2.1, H,K is either a
nonabelian P-group with p > ¢ or satisfies structure (b). Then, H, < H,K and
since H, < H, we get H, < G. If H,K is a nonabelian P-group, then H,G|,
is a proper subgroup of G of order p’q? (j > 2) and by applying Lemma 2.1,
H, G, satisfies structure (b) which contradicts with H is a nonabelian P-group.
Also if HpK satisfies structure (b), then H,GY, is a proper subgroup of G for
each maximal subgroup G; of G, and by applying Lemma 2.1, H,G; satisfies
structure (b), once again we get a contradiction with H is a nonabelian P-group.
This final contradiction shows that |Hp,| = p. If |7(K)| = 1, then |K| > ¢> as
|Gq| > ¢%> and n > 4. By hypothesis, HK* is a proper subgroup of G for some
maximal subgroup K* of K. As pg® | |HK*| with p > ¢, HK* can’t be a GS-
group, a contradiction. Thus, |7(K)| = 2. Applying Lemma 2.1, we have the
following;:

1. K satisfies structure (b). If HNK = 1, then by hypothesis H,K is a proper
subgroup of G' but not a G'S-group, a contradiction. Thus, either H, < K
or H, < K. Assume that H, < K. Then, |G| = p?¢* with p > ¢. By ([15],
Theorem 6.5.5, p. 147), G has a normal Sylow subgroup. If G, < G, then
by Lemma 2.1, G,G7 is a nonabelian P-group which contradicts with K
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satisfies structure (b). Thus, G, < G. Choose G, be a maximal subgroup
of G}, such that H, < G},. Hence GG, is a proper subgroup of G of order
p?q? and H < G,Gy. Clearly, G;G can’t be a G'S-group, a contradiction.
Now, let H,, < K. If K;<K, then by hypothesis H K is a proper subgroup
of G of order pg® (p > q). Applying Lemma 2.1, HK,, is not a G S-group,
a contradiction. Thus, K, << K. By hypothesis, K, H is a proper subgroup
of G with |K,H| = p?q. By ([15], Theorem 6.2.11, p. 138), K, < K,H
and consequently, K;, <G. Choose G} be a maximal subgroup of G, with
H, < Gj. Then, KyGy is a proper subgroup of G of order p?q® which
contains H. By Lemma 2.1, K;,Gj is not a G'S-group, a contradiction.

2. K is a nonabelian P-group. Then, H, # K, as |G4| > ¢*. By hypothesis,
K,H is a proper subgroup of G. Applying Lemma 2.1, K,H is a non-
abelian P-group. It follows that every subgroup of K, is normal in K,H
and hence normal in G. By similar, every subgroup of H), is normal in
G. Therefore, every subgroup of G, is normal in G and hence GGy is a
proper subgroup of G but not a GS-group, a contradiction.

3. |[K| = p’q. Clearlyy, HN K = 1 as n > 4. By ([15], Theorem 6.2.11,
p. 138), K, < K. Our hypothesis and Lemma 2.1 implies that K, H and
H,K are nonabelian P-groups. Hence every subgroup of G, is normal in
G. Once again GG, is a proper subgroup of G but not a GS-group, a
contradiction.

4. |K| =pg® Clearly, HNK = 1asn > 4. If K, <K, then HK is a proper
subgroup of G but not a GS-group, a contradiction. Thus, K, < K and
hence K has a subgroup of order pg. Since H,, << H, we get by hypothesis
that H,K is a proper subgroup of G of order p?¢®>. But it is not a GS-
group, a contradiction. O

Lemma 3.4. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |m(G)| = 2. Suppose further that all mazimal
subgroups of G are GS-groups with n > 4. If H satisfies structure (b), then
G = GGy where Gy, is an elementary abelian normal Sylow p-subgroup of order
p%, Gy is cyclic of order ¢* and every subgroup of G, operates irreducibly on G,,.

Proof. Let H = H,H,, where H,, is a minimal normal subgroup of order p? and
H, is cyclic of order ¢* such that H, and ®(H,) operate irreducibly on H,. By
hypothesis, H,K < G. Firstly, let G = H,K. Then, K has a cyclic subgroup
of order ¢ If |7(K)| = 2, then by Lemma 2.1, either K is supersolvable
of order pg? or K satisfies structure (b). Since H, <« H and H, < G,, we
get Hy, < G. Then, HyK,KJ is a proper subgroup of G and by Lemma 2.1,
H,K,Kj is a nonabelian P-group which contradicts with H satisfies structure
(b). Thus, K = G,. By Lemma 2.1, K is either cyclic or nonabelian of order ¢3.
Solvability of G implies that, it has a minimal normal subgroup L, say, which
is elementary abelian. Let L < Gg. Since Gy is either cyclic or nonabelian of



CHARACTERIZING FINITE GROUPS WITH MUTUALLY N-PERMUTABLE ... 9

order ¢3, we have |L| = ¢® or |L| = ¢. If |L| = ¢* (or |L| = q), then H,L
(or H,H;L), respectively, is a proper subgroup of G' but not a GS-group, a
contradiction. Thus, L < G\, = H),. Clearly, if L is a proper subgroup of H,, we
get a contradiction with the structure of H. So, L = H,, and hence H,K™ is a
proper subgroup of G for every maximal subgroup K* of K. Applying Lemma
2.1, H,K* satisfies structure (b). Therefore, every subgroup of K is cyclic of
order ¢ and hence by ([12], Satz 8.2, p. 310), either K is cyclic or K = Qg
(quaternion group of order 8). If K = Qg, then by ([18], Corollary 1.10, p. 6),
H,®(H,) is supersolvable which contradicts with ®(H,) operates irreducibly on
H,. Thus, K is cyclic and every subgroup of K operates irreducibly on H,, and
we are done.

Now, assume that H,K is a proper subgroup of G. Let |1(H,K)| = 1.
Clearly, Gp = HpK and G4 = H,. We will study the structure of Ng(G,).
If No¢(Gy) = Gy, then by ([12], Hauptsatz 2.6, p. 419), G), < G and hence
G,Gy is a proper subgroup of G. By Lemma 2.1, G,Gy is a nonabelian P-
group which contradicts with H satisfies structure (b). Also Ng(G,) N H, =1
as G, operates irreducibly on H,. Thus, Ng(G,) is a proper subgroup of G
with p? | [G : Ng(Gy)] and |Ng(G,)| = p'¢*> (i > 1). Applying Lemma 2.1,
Ng(G,) must be of order pg?. Hence Ng(G,) has a maximal subgroup N*,
say, of order pg. As H, < H and H, <1 G, we have H, < G and hence H,N*
is a proper subgroup of G and we get the same previous contradiction. This
final contradiction implies that |7 (H,K)| = 2. By Lemma 2.1, either H,K is a
nonabelian P-group (p > q) or |H,K| = p?q or H,K satisfies structure (b).

We argue that H, <\ G and |G| = ¢®. Firstly, let H,K be a nonabelian P-
group. Then, H, < H,K and hence H, <G. If K, < H, then H has a subgroup
of order pg which contradicts with ®(H,) operates irreducibly on H,. Thus,
|Gyl = ¢3. Now, let |H,K| = p*q. Clearly |Gy| = ¢> as n > 4. If ¢ < p, then
H, < H,K and hence H, < G. So, let ¢ > p. By ([15], Theorem 6.5.5, p. 147),
G has a normal Sylow subgroup. If G4 <G, then G,G), is a proper subgroup of
G but not a GS-group, a contradiction. Thus, G, = H, < G. Finally, let H,K
satisfies structure (b). Once again H, < H,K and hence H, < G. If |G,| > ¢?,
then H,G; is a proper subgroup of G but not a GS-group, a contradiction.
Since n > 4, we get |G,| = ¢®. Therefore, our argument is done. Hence HyGy
is a proper subgroup of G of order p?¢®. Applying Lemma 2.1, H,Gj, satisfies
structure (b). Hence every subgroup of Gy is cyclic. Since Gy is not cyclic as
Gy = HyK, is a factorized group, we have G; = QQg. Once again, by ([18],
Corollary 1.10, p. 6), H,®(G7) is a supersolvable group which contradicts with
H, G satisfies structure (b). O

Lemma 3.5. Assume that G = HK is a mutually N-permutable product of its
proper subgroups H and K with |w(G)| = 2. Suppose further that all mazimal
subgroups of G are GS-groups with n > 4. If |H| = p?q, then either G is a
nonabelian P-group or G = GGy where G, = P1 P is an elementary abelian
normal Sylow p-subgroup of order p* such that P; (i = 1,2) is a minimal normal
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subgroup of G of order p?, Gq is a Sylow g-subgroup of order q and G4 operates
irreducibly on P; (i = 1,2).

Proof. Let H be abelian. Then, H ia a maximal subgroup of G as there is
no a GS-group contains it. Solvability of G implies that H is of prime power
index. Firstly, assume that [G : H] = ¢° (e > 2 as n > 4). Then, G, = H,
and |G,| > ¢®. Maximality of H in G implies that H, is not normal in G.
Therefore, Ng(G)) = Ca(Gp) = H and hence G, < G. It follows that G;G,, is a
proper subgroup of G but not a G\S-group, a contradiction. Thus, [G : H] = p°
(e > 2). Then, G, = H, and |G,| > p*. By Lemma 2.1, G, is either cyclic or
elementary abelian. Clearly, if G), is cyclic, then G is supersolvable and we get
a contradiction with maximality of H. Thus, G}, is elementary abelian. Since
Hy < H and Hj <1 Gy, we get Hy < G. By ([15], Theorem 9.3.7, p. 225), H; is
complemented in G but this complement can’t be a GS-group, a contradiction.
This final contradiction shows that either H, or H, is not normal subgroup of
H. We have the following two cases:

Case (i). H; < H and H, ¢ H. Then, H is supersolvable and hence ¢ > p.
Let |Gp| > p3. If |Gp| = p?, then |G,| > ¢*> as n > 4 and hence [G : H] is
divided by pq. Solvability of G implies that, H is not a maximal subgroup of
G. Then, GG has a maximal subgroup contains H but it is not a G.S-group, a
contradiction. Thus, |G,| > p*. Since ¢ > p, we get G, is a maximal subgroup of
G as there is no a GS-group contains it. Hence either Ng(G)p) = Gp or G, < G.
If G, < G, then by ([11], Theorem 4.5, p. 253), N¢(Hy)/Ca(Hy) is g-subgroup.
But H, < H. Then, H, < Cg(H,) and hence H is abelian, a contradiction.
Thus, Ng(Gp) = Gp. Since G), is abelian, we have by ([12], Hauptsatz 2.6, p.
419), G4 < G and hence GG}, is a proper subgroup of G but not a G'S-group, a
contradiction. This final contradiction shows that G, = H, and hence |G| > ¢3
as n > 4.

By hypothesis H,K < G. Let G = HyK. Then, K is a GS-group with
p?q¢® | |K| and by Lemma 2.1, K satisfies structure (b). By ([15], Theorem
6.5.5, p. 147), G has a normal Sylow subgroup. Since G), = H,, is not normal
in H, we get Gy < G and hence G¢Gy, is a proper subgroup of G' of order
¢>p. Applying Lemma 2.1, G,G,, is a nonabelian P-group which contradicts
with K satisfies structure (b). Thus, H,K is a proper subgroup of G with
(G : HK] = p° (e = 1,2). If [G: HyK] = p? then G, = H,K. By Lemma
2.1, K is either cyclic, elementary abelian or nonabelian of order ¢ and hence
each maximal subgroup of K is normal in K. By hypothesis, HK* < G for each
maximal subgroup K* of K with p?¢? | |[HK*|. Choose K* such that HK* be
a proper subgroup of G. Applying Lemma 2.1, HK* can’t be a GS-group, a
contradiction. Thus, [G : H,K] = p and by Lemma 2.1, H K is a nonabelian
P-group which implies that H, << G. By ([15], Theorem 9.3.7, p. 225), H, has
a complement U, say. Applying Lemma 2.1, U satisfies structure (b) which
contradicts with H,K is a nonabelian P-group.
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Case (ii). H, < H and H, £ H. By hypothesis H, K < G. Assume first that,
G=H,K.

Let |G4| = q. Then, |G,| > p* as n > 4. By Lemma 2.1, K is a nonabelian
P-group or |K| = p?q. If K is a nonabelian P-group, then by Lemma 3.3, G
is a nonabelian P-group and we are done. So, we can assume that, |K| = p?q
with H, N K}, = 1 and both of H and K are not nonabelian P-groups. Since
H, < H and H, <G, we get H,<{G. If K has a subgroup K*, say, of order pq,
then H,K™ is a proper subgroup of G which contains H. Applying Lemma 2.1,
H,K* is a nonabelian P-group, a contradiction. Thus, G, operates irreducibly
on Hy, and K, and we are done.

Now, let |G4| = ¢?. Since G = H,K, we have pg® | |[K|. By Lemma 2.1,
either |K| = pg? or K satisfies structure (b). Assume that K = K, K, satisfies
structure (b). If K, < K, then by hypothesis, HK,, is a proper subgroup of
G. Applying Lemma 2.1, HK), is a nonabelian P-group which contradicts with
®(K,) operates irreducibly on K,,. If K, <K, then K| is elementary abelian. By
hypothesis, H K, is a proper subgroup of G and by Lemma 2.1, H, K, satisfies
structure (b). But H,<{H which follows that K is cyclic, a contradiction. Thus,
|K| = pg®. It follows that H N K = H, and hence [G : H] = pq. Solvability
of G implies that, H is not maximal subgroup of G. Then, G has a maximal
subgroup G*, say, contains H. Applying Lemma 2.1, G* is a nonabelian P-group
or satisfies structure (b). If G* is a nonabelian P-group, then by Lemma 3.3, G
is a nonabelian P-group, a contradiction. Thus, G* = H, K, satisfies structure
(b)and hence H, < G and K, is cyclic. By ([15], Theorem 13.3.1, p. 383), K
is supersolvable and consequently has a maximal subgroup K* of order pq. By
Lemma 2.1, H,K™ is a nonabelian P-group which contradicts with G* satisfies
structure (b).

Finally, let |Gq4| > ¢3. If G, S K, then by Lemma 2.1, K is a nonabelian
P-group and by Lemma 3.3, G is a nonabelian P-group, a contradiction. Thus,
G4 = K. Choose K* be a maximal subgroup of K which contains H,. By
hypothesis, HK* is a proper subgroup of G. Applying Lemma 2.1, HK* =
H,G satisfies structure (b). Hence G is cyclic of order ¢* and consequently
K is either cyclic or nonabelian with |K| = ¢®. Clearly if K is cyclic, then our
result holds and we are done. So, let K be nonabelian. Since G is solvable,
it has a minimal normal subgroup L, say. Let L < G,. If L = Gy, then LH,
is a proper subgroup of but not a GS-group, a contradiction. Also we get a
contradiction if L < G, as HL is a proper subgroup of but not a GS-group.
Thus, L < Hp. If L < Hy,, then HK™* has a subgroup of order pgq, a contradiction
with structure (b). Therefore, L = H), and hence all maximal subgroups of K
are cyclic. By ([12], Satz 8.2, p. 310), K = Qg. But by ([18], Corollary 1.10, p.
6), H,®(Gy) is supersolvable which contradicts with ®(Gy) operates irreducibly
on Hp.

Now, assume that, H,K is a proper subgroup of G. If H,K = G), then
|G4| = ¢ and |G,| > p* as n > 4. Applying Lemma 2.1, G,, is either cyclic or
elementary abelian. If G), is cyclic, then by ([15], Theorem 13.3.1, p. 383), G is
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supersolvable and by Corollary 2.1, G is a nonabelian P-group, a contradiction.
Thus, G) is elementary abelian. Clearly, K has a maximal subgroup K* such
that HK* is a proper subgroup of G with |HK*| = piq (j > 3). Applying
Lemma 2.1, H K* is a nonabelian P-group and hence H is a nonabelian P-group.
By Lemma 3.3, G is a nonabelian P-group and we are done. So, let |7(H,K)| = 2
and hence |G4| > ¢*>. By Lemma 2.1, H,K is either a nonabelian P-group or
satisfies structure (b). Since p?¢? | |G|, G can’t be a nonabelian P-group and
hence if H, K is a nonabelian P-group, then we get a contradiction with Lemma
3.3. Thus, H,K satisfies structure (b). Since H,K is a proper subgroup of
G with [G : H,K] = ¢, we have |G,| = ¢*>. Let H, < H,K. Then, H, < G
and hence H,Gy is a proper subgroup of G for each maximal subgroup Gy of
G,. Applying Lemma 2.1, H,G7 satisfies structure (b). Therefore, all maximal
subgroups of G, are cyclic. Similar as we show in the last paragraph of the proof
of Lemma 3.4, G, = @s. This implies that HyKj is a supersolvable group which
contradicts with Kj operates irreducibly on Hy. Now, let K, < H,K. Then,
K, <G. Since Hy, is cyclic, we get H is supersolvable and hence has a subgroup
H* of order pq. By applying Lemma 2.1, K,H* is a nonabelian P-group which
contradicts with H,K satisfies structure (b). O

Lemma 3.6. Assume that G = HK is a mutually N-permutable product of its
proper subgroups H and K with |w(G)| = 2. Suppose further that all mazimal
subgroups of G are GS-groups with n > 4. Then, one of the following holds:

(i) |G| = p?q?® or p3q, where p and q are distinct primes.
(ii) G is a nonabelian P-group.

(iii) G = G,G, where G is an elementary abelian normal Sylow p-subgroup
of order p*, G, is cyclic of order ¢ and every subgroup of G, operates
irreducibly on Gp.

(iv) G = G,G, where G, = P1 P is an elementary abelian normal Sylow p-
subgroup of order p* such that P; (i = 1,2) is a minimal normal subgroup
of G of order p?, G4 1s a Sylow q-subgroup of order q and G, operates
irreducibly on P; (i = 1,2).

Proof. If both H and K are nilpotent, then G is a mutually m-permutable
product of H and K and by Lemma 2.2, we are done. So, let H be not nilpotent.
Applying Lemma 2.1, either H is a nonabelian P-group, H satisfies structure
(b) or |H| = p?q. Clearly, if n = 4, then either |G| = p?q® or p3¢q and (i) holds.
So, let n > 4 and hence by the previous three Lemmas, we are done. O

Proof of the main theorem

It is a direct result from Lemma 3.1, Lemma 3.2, Lemma 2.3 and Lemma 3.6.
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Conclusion

One of the most important objectives in group theory is to explore the structure
of groups through certain properties of their subgroups. This paper deepens that
concept by linking the properties of smooth chains and mutually N-permutable
subgroups, aiming to determine the structure of a group. To extend this work,
we can replace our hypothesis with weaker ones. For instance, we hope to
determine the structure of a group G that is mutually N-permutable of two
generalized smooth subgroups.
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