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Abstract. Let G = HK be a finite group, where H and K are proper subgroups of G.
A group G is called a mutually N -permutable product of H and K if H permutes with
every normal subgroup of K, and K permutes with every normal subgroup of H. In
this paper, as a next step of some recently studies, we examine the structural properties
of finite group G that is a mutually N -permutable product of two subgroups, with the
additional assumption that all maximal subgroups of G are generalized smooth groups.
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1. Introduction

In this paper, only finite groups are considered. For a group G, let π(G) stand
for the set of primes dividing |G|, L(G) the subgroup lattice of G and n the
maximal length of L(G).

Let 1 = G0 < G1 < G2 < ... < Gn = G be a maximal chain of subgroups of
a group G. An interval [Gi+j/Gj ] = {X ≤ G : Gj ≤ X ≤ Gi+j} is the set of all
subgroups of Gi+j which contain Gj . A maximal chain is called smooth if any
two intervals have the same length are isomorphic. If all maximal chains from
any subgroup of G of prime order to G (L < ... < G where L is any subgroup of
G of prime order) are smooth chains, then G is called a GS-group (a generalized
smooth group) (see [10]). To clarify the concept of GS-groups more effectively,
we present some examples:

� Let G ∼= Q8 (the quaternion group of order 8). It is well-known that Q8

has a unique subgroup of prime order ⟨−1⟩, and three maximal chains
extending from ⟨−1⟩ to Q8. Specifically, we have ⟨−1⟩ < ⟨i⟩ < Q8, ⟨−1⟩ <
⟨j⟩ < Q8 and ⟨−1⟩ < ⟨k⟩ < Q8. Each of these chains is smooth. Hence, G
is a GS-group.

� Let G ∼= Z24 (cyclic group of order 24). The subgroup ⟨12⟩ has order
2, and the chain ⟨12⟩ < ⟨4⟩ < ⟨2⟩ < Z24 forms a maximal chain from
⟨12⟩ to Z24. It is evident that [Z24/⟨4⟩] = {Z24, ⟨2⟩, ⟨4⟩} and [⟨2⟩/⟨12⟩] =
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{⟨2⟩, ⟨4⟩, ⟨6⟩, ⟨12⟩}. Clearly, the intervals [Z24/⟨4⟩] and [⟨2⟩/⟨12⟩] are not
isomorphic, even though they have the same length. Thus, G is not a
GS-group.

A group G is called a P -group if either G is an elementary abelian or G =
GpGq, where Gp is an elementary abelian normal Sylow p-subgroup and Gq is
a Sylow q-subgroup of order q which induces a non-trivial power automorphism
on Gp, and q | p− 1 (see [16, p. 49]).

Let H and K be subgroups of a group G with G = HK. We say that, G is
a mutually permutable product of H and K if H permutes with every subgroup
of K and K permutes with every subgroup of H (see [6]), also G is called a
mutually m-permutable product of H and K if H permutes with every maximal
subgroup of K and K permutes with every maximal subgroup of H (see [5]). In
this paper, we introduce the following concept:

Definition. Let G = HK be a group with proper subgroups H and K. We say
that, G is a mutually N -permutable product of H and K if H permutes with
every normal subgroup of K and K permutes with every normal subgroup of
H.

Many papers introduced the structure of a group whose maximal subgroups
are GS-groups under suitable conditions (see[1]-[3] and [7]-[9]). In [3], the au-
thors studied the structure of a group G which is a mutually permutable product
or a mutuallym-permutable product of two proper subgroups under the assump-
tion that, all maximal subgroups of G are GS-groups. In this paper, as a next
step, we replace these permutability conditions by a new one. More precisely,
we prove the following result:

Main theorem. Assume that G = HK is a mutually N -permutable product
of its proper subgroups H and K. Suppose further that all maximal subgroups
of G are GS-groups with n ≥ 4. Then, one of the following holds:

(i) |G| = p1p2p3p4, where p1, p2, p3 and p4 are not necessarily distinct primes.

(ii) G is a P -group.

(iii) G is cyclic of square free order.

(iv) G = Gp1A, where |Gp1 | = p1, Gp1 ◁ G and A is cyclic of order p2p3...pm
and operates faithfully on Gp1 where pi are primes with pi ̸= pj for i ̸= j
and i, j ∈ 1, 2, ...,m.

(v) G = GpGq where Gp is an elementary abelian normal Sylow p-subgroup
of order p2, Gq is cyclic of order q3 and every subgroup of Gq operates
irreducibly on Gp.

(vi) G = GpGq where Gp = P1P2 is an elementary abelian normal Sylow p-
subgroup of order p4 such that Pi (i = 1, 2) is a minimal normal subgroup
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of G of order p2, Gq is a Sylow q-subgroup of order q and Gq operates
irreducibly on Pi (i = 1, 2).

(vii) G ∼= L2(11).

Now, we list some examples to illustrate the importance of our main theorem:

� Let G ∼= L2(13) (the projective special linear group). All maximal sub-
groups of G are GS-groups; however, G cannot be expressed as a mutually
N -permutable of two subgroups. The same observation holds for L2(19)
and L2(29). Actually, by the main theorem, A5 and L2(11) are the only
simple groups that can be expressed as a mutually N -permutable product
of two subgroups, with all maximal subgroups being GS-groups.

� Let G ∼= S5 (the symmetric group of degree 5). Clearly, S5 = A5P2, where
P2 is a Sylow 2-subgroup of S5. Here, S5 can be expressed as a mutually
N -permutable product of A5 and P2. However, S4 is a maximal subgroup
of S5, is not a GS-group.

� Let G be an abelian group of order 240 = 24.3.5. Clearly, G can be
expressed as a mutually N -permutable subgroup of any two maximal sub-
groups. However, G has a maximal subgroup of order 80 that is not
GS-group.

� Let G ∼= Z210 (the cyclic group of order 210). In this case, all maximal
subgroups of G are GS-groups and G can be expressed as a mutually
N -permutable subgroup of any two maximal subgroups.

2. Preliminaries

Lemma 2.1 ([10], Main Theorem). A group G is a GS-group if and only if one
of the following holds:

(i) |G| = p1p2p3, where p1, p2, and p3 are not necessarily distinct primes.

(ii) G is cyclic of prime power order.

(iii) G is a P -group.

(iv) G is cyclic of square free order.

(v) G = GpGq, where Gp is a minimal normal subgroup of order p2 and Gq is
cyclic of order q2 such that Gq and Φ(Gq) operate irreducibly on Gp.

(vi) G = Gp1A, where |Gp1 | = p1, Gp1 ◁ G and A is cyclic of order p2p3...pm
and operates faithfully on Gp1 where pi are primes with pi ̸= pj for i ̸= j
and i, j ∈ 1, 2, ...,m.

(vii) G ∼= A5.
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Lemma 2.2 ([3], Main Theorem). Assume that G is a mutually m-permutable
product of its proper subgroups H and K with n ≥ 4. Assume further that all
maximal subgroups of G are GS-groups. Then, G is one of the following.

(i) |G| = p1p2p3p4, where p1, p2, p3 and p4 are not necessarily distinct primes.

(ii) G is a P -group.

(iii) G is cyclic of square free order.

(iv) G = Gp1A, where |Gp1 | = p1, Gp1 ◁ G and A is cyclic of order p2p3...pm
and operates faithfully on Gp1 where pi are primes with pi ̸= pj for i ̸= j
and i, j ∈ 1, 2, ...,m.

(v) G = GpGq where Gp is an elementary abelian normal Sylow p-subgroup
of order p2, Gq is cyclic of order q3 and every subgroup of Gq operates
irreducibly on Gp.

(vi) G = GpGq where Gp = P1P2 is an elementary abelian normal Sylow p-
subgroup of order p4 such that Pi (i = 1, 2) is a minimal normal subgroup
of G of order p2, Gq is a Sylow q-subgroup of order q and Gq operates
irreducibly on Pi (i = 1, 2).

Lemma 2.3 ([3], Lemma 8). Assume that G is a supersolvable group. Assume
further that all maximal subgroups of G are GS-groups with n ≥ 4. Then, G is
one of the following.

(i) |G| = p1p2p3p4, where p1, p2, p3 and p4 are not necessarily distinct primes.

(ii) G is cyclic of prime power order.

(iii) G is a P -group.

(iv) G is cyclic of square free order.

(v) G = Gp1A, where |Gp1 | = p1, Gp1 ◁ G and A is cyclic of order p2p3...pm
and operates faithfully on Gp1 where pi are primes with pi ̸= pj for i ̸= j
and i, j ∈ 1, 2, ...,m.

Corollary 2.1. Assume that G is a supersolvable group with |π(G)| = 2. If
all maximal subgroups of G are GS-groups with n > 4, then G is a nonabelian
P -group.

3. Results

In the following, for simplicity, we will concern that G satisfies structure:
(a) if G = GpGq, where Gp is a minimal normal subgroup of order p2 and

Gq is cyclic of order q which operates irreducibly on Gp.
(b) if G = GpGq, where Gp is a minimal normal subgroup of order p2 and

Gq is cyclic of order q2 such that Gq and Φ(Gq) operate irreducibly on Gp.
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Lemma 3.1. Assume that G is a mutually N -permutable product of its proper
subgroups H and K. Assume further that all maximal subgroups of G are GS-
groups. Then, either G is solvable or G ∼= L2(11).

Proof. A group of odd order is solvable so let G be of even order. Firstly,
let both H and K are supersolvable. By ([17]; Lemma 2.4), if G has a Hall
2′-subgroup, then G is not simple and hence by ([3]; Lemma 6), G is solvable.
So, in the following paragraph, in order to prove that G is solvable, we need
only to show that it has a Hall 2′-subgroup.

Let, without loss of generality, that 2 | |H|. As H is supersolvable, it has a
normal 2-complement H2′ . If K is of odd order, then by hypothesis G2′ = H2′K
is a subgroup of G. So, let both H and K are of even order. Also, K has a
normal 2-complement K2′ as it is supersolvable. By our hypothesis, HK2′ and
H2′K are subgroups of G. If HK2′ or H2′K has a cyclic Sylow 2-subgroup then
it has a normal 2-complement which implies that G2′ = H2′K2′ is a subgroup
of G. Clearly, if H or K is 2-group, then G2′ = K2′ or G2′ = H2′ respectively.
Now, we can say that, H and K are supersolvable GS-groups with non cyclic
Sylow 2-subgroups and |H| and |K| are divided at least by two different primes.
According to Lemma 2.1, |H| = 22q and |K| = 22r where q and r are primes.
If q = r, then |π(G)| = 2 and hence G is solvable. So, let q ̸= r. Say G2 be
the Sylow 2-subgroup of G, if |G2| > 22, then by hypothesis HKr is a proper
subgroup of G but not a GS-group, a contradiction. Therefore, [G : H] = r and
[G : K] = q and hence by ([4]; Lemma 10), G is solvable. Now, assume that H
is not supersolvable. According to Lemma 2.1, either H ∼= A5 or H = HpHq

and satisfies structure (a) or (b). If both H and K are isomorphic to A5, then
by [13], either G ∼= A5 × A5 or G ∼= A6. Since there is no a GS-group contains
A5, we have G ≇ A5 × A5. Also A6 has a subgroup isomorphic to S4 which is
not a GS-group, a contradiction. Thus, we can assume that K ≇ A5. According
to Lemma 2.1, K would be a solvable group. It follows that, K has a minimal
normal subgroup L, say, which is elementary abelian. By hypothesis HL is a
subgroup of G. We handel the following cases:

1. H ≨ HL ≨ G. If H satisfies structure (b) or H ∼= A5, then H would be
a maximal subgroup of G as there is no a GS-group contains it. Hence
H satisfies structure (a). By hypothesis HL is a GS-group. Applying
Lemma 2.1, HL ∼= A5 which implies that H ∼= A4 and |L| = 5 is a Sylow
5-subgroup of A5. Hence H2 ◁ H where H2 is a Sylow 2-subgroup of H
and L ≨ K as HL ≨ G. By hypothesis, H2K is a proper GS-subgroup of
G. Applying Lemma 2.1, H2K is of order 2252 and satisfies structure (b).
This implies that A5 has a subgroup of order 225, a contradiction.

2. G = HL. Hence H is of prime power index. If G is not simple then by
([3]; Lemma 6), G is solvable. So, let G be a simple group. By ([14];
Theorem 1), H ∼= A5 and G ∼= L2(11). Note that, If H ∼= A4 and G ∼= A5,
then by hypothesis G has a subgroup of order 20, a contradiction.



6 MOHAMED. H. ABD-ELLATIF

3. H = HL. Hence L ≤ H ∩ K for each minimal normal subgroup of K.
As the previous case if H is of prime index, we are done. So, let [G : H]
is divided at least by two different primes and consequently, |π(K)| ≥ 2.
Assume that |π(K)| ≥ 3. Applying Lemma 2.1, K is of square free order
and hence has a Sylow tower property. Say K = Kr1Kr2 ...Krm , where Kri

(i = 1, 2, ...,m) is a Sylow ri-subgroup of K with ri > ri+1. Since each
minimal normal subgroup of K is a subgroup of H, we get Kr1 < H. By
hypothesis, HKr1Kr2 = HKr2 is a subgroup of G. If H ≨ HKr2 ≤ G,
then similar as the previous cases we are done. So, let H = HKr2 . If
|π(K)| = 3, then H is of prime index, a contradiction. Thus, |π(K)| > 3.
But in this case, HKr1Kr2Kr3 = HKr3 is a proper subgroup of G but not
a GS-group, a contradiction. Thus, |π(K)| = 2. Since L < H and [G : H]
is not prime power, L can’t be a Sylow subgroup of K. Say K = Kr1Kr2

(it’s not necessary that r1 > r2) and L ≨ Kr1 . If |Kr1 | > r21, then by
Lemma 2.1, K is a nonabelian P -group and hence every subgroup of Kr1

is a subgroup of H, a contradiction. Thus, |Kr1 | = r21. Since L ≨ Kr1

and K is a GS-group, we get by Lemma 2.1, K is a supersolvable group
of order r21r2. Clearly, either Kr1 or Kr2 is a normal subgroup of K and
hence a subgroup of H which contradicts with our assumption that [G : H]
is divided by at least two different primes. By this final contradiction our
proof is completed.

Lemma 3.2. Assume that G is a solvable group with all maximal subgroups of
G are GS-groups. If |π(G)| ≠ 2, then G is supersolvable or |G| = p2qr where p,
q and r are distinct primes.

Proof. As we know if G is a p-group, then G is supersolvable. And by our
hypothesis |π(G)| ̸= 2. So, |π(G)| ≥ 3. Firstly, let |π(G)| > 3. Since G is
solvable, then there exist for each prime pi ∈ π(G), a maximal subgroup Mi

such that [G : Mi] = pei (e ≥ 1). By hypothesis, Mi is a GS-group. Applying
Lemma 2.1, Mi is of square free order ∀i. It’s follows that G itself is of square
free order and consequently G is supersolvable.

Now, let |π(G)| = 3. Then, G = Gp1Gp2Gp3 where Gpi is a Sylow pi-
subgroup of G. Solvability of G implies that Gp1Gp2 is a proper subgroup of
G. Let Gp1Gp2 is not a maximal subgroup of G. Then, there exist a subgroup
M , say, of G such that Gp1Gp2 < M < G. By hypothesis, M is a GS-group.
Applying Lemma 2.1, M is of square free order. It follows that |Gpi | = pi
(i = 1, 2). As n ≥ 4, |Gp3 | ≥ p23. Clearly, if |Gp3 | = p23, then |G| = p1p2p

2
3 and

we are done. So, assume that |Gp3 | > p23. By applying Lemma 2.1, Gp3Gpi is a
nonabelian P -group with p3 > pi (i = 1, 2). So, every subgroup of Gp3 is normal
in G. This implies that G∗

p3Gp1Gp2 is a proper subgroup of G, where G∗
p3 is a

maximal subgroup of Gp3 . But G
∗
p3Gp1Gp2 can’t be a GS-group, a contradiction.

Thus, assume that, GpiGpj is a maximal subgroup of G ∀ i, j ∈ {1, 2, 3} and
i ̸= j.
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Since G is solvable, it has a minimal normal subgroup L, say, which is ele-
mentary abelian. Without loss of generality let L ≤ Gp1 . Maximality of Gp2Gp3

in G implies that L = Gp1 . Also by the maximality of Gp1Gpi (i = 2, 3) in G,
Gp2 and Gp3 must be maximal subgroups in Gp2Gp3 . By hypothesis, Gp2Gp3 is
a GS-group. Then, either |Gp2Gp3 | = p2p3 or Gp2Gp3 satisfies structure (a). Let
|Gp2Gp3 | = p2p3. If |L| > p21, then Gp1Gpi (i = 2, 3) is a nonabelian P -group
and hence every subgroup of L is normal in G, a contradiction. Thus, |L| = p21
and hence |G| = p21p2p3. Now, let |Gp2Gp3 | = p22p3 and satisfies structure (a).
Once again |G| = p1p

2
2p3 if |L| = p1. If else, LGp2 is a proper subgroup of G with

order divided by p21p
2
2. Applying Lemma 2.1, LGp2 satisfies structure (b) with

Gp2 is cyclic. It follows that Gp2Gp3 is supersolvable which contradicts with
Gp3 is a maximal subgroup of Gp2Gp3 . By this final contradiction our proof is
completed.

Lemma 3.3. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |π(G)| = 2. Suppose further that all maximal
subgroups of G are GS-groups with n > 4. If H is a nonabelian P -group so as
G.

Proof. Let H = HpHq be of order pjq (j ≥ 1). If |Gq| = q, then by ([18],
Corollary 1.10, p. 6), G is supersolvable and hence by Corollary 2.1, G is a
nonabelian P -group. So, let |Gq| ≥ q2.

Let |Hp| ≥ p2. By hypothesis, HpK ≤ G. Assume that G = HpK. Choose
H∗

p be a maximal subgroup of Hp such that H∗
pK is a proper subgroup of

G. Since [G : H∗
pK] = p, |Gq| ≥ q2 and n > 4, we get by Lemma 2.1 that

H∗
pK satisfies structure (b) which contradicts with H is a nonabelian P -group.

Thus, HpK is a proper subgroup of G. Applying Lemma 2.1, HpK is either a
nonabelian P -group with p > q or satisfies structure (b). Then, Hp ◁HpK and
since Hp ◁ H, we get Hp ◁ G. If HpK is a nonabelian P -group, then HpGq

is a proper subgroup of G of order pjq2 (j ≥ 2) and by applying Lemma 2.1,
HpGq satisfies structure (b) which contradicts with H is a nonabelian P -group.
Also if HpK satisfies structure (b), then HpG

∗
q is a proper subgroup of G for

each maximal subgroup G∗
q of Gq and by applying Lemma 2.1, HpG

∗
q satisfies

structure (b), once again we get a contradiction with H is a nonabelian P -group.
This final contradiction shows that |Hp| = p. If |π(K)| = 1, then |K| ≥ q3 as
|Gq| ≥ q2 and n > 4. By hypothesis, HK∗ is a proper subgroup of G for some
maximal subgroup K∗ of K. As pq3 | |HK∗| with p > q, HK∗ can’t be a GS-
group, a contradiction. Thus, |π(K)| = 2. Applying Lemma 2.1, we have the
following:

1. K satisfies structure (b). IfH∩K = 1, then by hypothesisHpK is a proper
subgroup of G but not a GS-group, a contradiction. Thus, either Hp < K
or Hq < K. Assume that Hq < K. Then, |G| = p3q2 with p > q. By ([15],
Theorem 6.5.5, p. 147), G has a normal Sylow subgroup. If Gp ◁G, then
by Lemma 2.1, GpG

∗
q is a nonabelian P -group which contradicts with K
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satisfies structure (b). Thus, Gq ◁G. Choose G∗
p be a maximal subgroup

of Gp such that Hp < G∗
p. Hence G

∗
pGq is a proper subgroup of G of order

p2q2 and H < G∗
pGq. Clearly, G

∗
pGq can’t be a GS-group, a contradiction.

Now, letHp < K. IfKq◁K, then by hypothesisHKq is a proper subgroup
of G of order pq3 (p > q). Applying Lemma 2.1, HKq is not a GS-group,
a contradiction. Thus, Kp◁K. By hypothesis, KpH is a proper subgroup
of G with |KpH| = p2q. By ([15], Theorem 6.2.11, p. 138), Kp ◁ KpH
and consequently, Kp ◁G. Choose G∗

q be a maximal subgroup of Gq with
Hq < G∗

q . Then, KpG
∗
q is a proper subgroup of G of order p2q2 which

contains H. By Lemma 2.1, KpG
∗
q is not a GS-group, a contradiction.

2. K is a nonabelian P -group. Then, Hq ̸= Kq as |Gq| ≥ q2. By hypothesis,
KpH is a proper subgroup of G. Applying Lemma 2.1, KpH is a non-
abelian P -group. It follows that every subgroup of Kp is normal in KpH
and hence normal in G. By similar, every subgroup of Hp is normal in
G. Therefore, every subgroup of Gp is normal in G and hence G∗

pGq is a
proper subgroup of G but not a GS-group, a contradiction.

3. |K| = p2q. Clearly, H ∩ K = 1 as n > 4. By ([15], Theorem 6.2.11,
p. 138), Kp ◁K. Our hypothesis and Lemma 2.1 implies that KpH and
HpK are nonabelian P -groups. Hence every subgroup of Gp is normal in
G. Once again G∗

pGq is a proper subgroup of G but not a GS-group, a
contradiction.

4. |K| = pq2. Clearly, H ∩K = 1 as n > 4. If Kq ◁K, then HKq is a proper
subgroup of G but not a GS-group, a contradiction. Thus, Kp ◁K and
hence K has a subgroup of order pq. Since Hp ◁H, we get by hypothesis
that HpK is a proper subgroup of G of order p2q2. But it is not a GS-
group, a contradiction.

Lemma 3.4. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |π(G)| = 2. Suppose further that all maximal
subgroups of G are GS-groups with n > 4. If H satisfies structure (b), then
G = GpGq where Gp is an elementary abelian normal Sylow p-subgroup of order
p2, Gq is cyclic of order q3 and every subgroup of Gq operates irreducibly on Gp.

Proof. Let H = HpHq, where Hp is a minimal normal subgroup of order p2 and
Hq is cyclic of order q2 such that Hq and Φ(Hq) operate irreducibly on Hp. By
hypothesis, HpK ≤ G. Firstly, let G = HpK. Then, K has a cyclic subgroup
of order q2. If |π(K)| = 2, then by Lemma 2.1, either K is supersolvable
of order pq2 or K satisfies structure (b). Since Hp ◁ H and Hp ◁ Gp, we
get Hp ◁ G. Then, HpKpK

∗
q is a proper subgroup of G and by Lemma 2.1,

HpKpK
∗
q is a nonabelian P -group which contradicts with H satisfies structure

(b). Thus, K = Gq. By Lemma 2.1, K is either cyclic or nonabelian of order q3.
Solvability of G implies that, it has a minimal normal subgroup L, say, which
is elementary abelian. Let L ≤ Gq. Since Gq is either cyclic or nonabelian of
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order q3, we have |L| = q2 or |L| = q. If |L| = q2 (or |L| = q), then HpL
(or HpH

∗
qL), respectively, is a proper subgroup of G but not a GS-group, a

contradiction. Thus, L ≤ Gp = Hp. Clearly, if L is a proper subgroup of Hp, we
get a contradiction with the structure of H. So, L = Hp and hence HpK

∗ is a
proper subgroup of G for every maximal subgroup K∗ of K. Applying Lemma
2.1, HpK

∗ satisfies structure (b). Therefore, every subgroup of K is cyclic of
order q2 and hence by ([12], Satz 8.2, p. 310), either K is cyclic or K ∼= Q8

(quaternion group of order 8). If K ∼= Q8, then by ([18], Corollary 1.10, p. 6),
HpΦ(Hq) is supersolvable which contradicts with Φ(Hq) operates irreducibly on
Hp. Thus, K is cyclic and every subgroup of K operates irreducibly on Hp and
we are done.

Now, assume that HpK is a proper subgroup of G. Let |π(HpK)| = 1.
Clearly, Gp = HpK and Gq = Hq. We will study the structure of NG(Gq).
If NG(Gq) = Gq, then by ([12], Hauptsatz 2.6, p. 419), Gp ◁ G and hence
GpG

∗
q is a proper subgroup of G. By Lemma 2.1, GpG

∗
q is a nonabelian P -

group which contradicts with H satisfies structure (b). Also NG(Gq) ∩Hp = 1
as Gq operates irreducibly on Hp. Thus, NG(Gq) is a proper subgroup of G
with p2 | [G : NG(Gq)] and |NG(Gq)| = piq2 (i ≥ 1). Applying Lemma 2.1,
NG(Gq) must be of order pq2. Hence NG(Gq) has a maximal subgroup N∗,
say, of order pq. As Hp ◁ H and Hp ◁ Gp, we have Hp ◁ G and hence HpN

∗

is a proper subgroup of G and we get the same previous contradiction. This
final contradiction implies that |π(HpK)| = 2. By Lemma 2.1, either HpK is a
nonabelian P -group (p > q) or |HpK| = p2q or HpK satisfies structure (b).

We argue that Hp ◁G and |Gq| = q3. Firstly, let HpK be a nonabelian P -
group. Then, Hp◁HpK and hence Hp◁G. If Kq < Hq then H has a subgroup
of order pq which contradicts with Φ(Hq) operates irreducibly on Hp. Thus,
|Gq| = q3. Now, let |HpK| = p2q. Clearly |Gq| = q3 as n > 4. If q < p, then
Hp ◁HpK and hence Hp ◁G. So, let q > p. By ([15], Theorem 6.5.5, p. 147),
G has a normal Sylow subgroup. If Gq ◁G, then GqG

∗
p is a proper subgroup of

G but not a GS-group, a contradiction. Thus, Gp = Hp ◁G. Finally, let HpK
satisfies structure (b). Once again Hp ◁HpK and hence Hp ◁G. If |Gq| > q3,
then HpG

∗
q is a proper subgroup of G but not a GS-group, a contradiction.

Since n > 4, we get |Gq| = q3. Therefore, our argument is done. Hence HpG
∗
q

is a proper subgroup of G of order p2q2. Applying Lemma 2.1, HpG
∗
q satisfies

structure (b). Hence every subgroup of Gq is cyclic. Since Gq is not cyclic as
Gq = HqKq is a factorized group, we have Gq

∼= Q8. Once again, by ([18],
Corollary 1.10, p. 6), HpΦ(G

∗
q) is a supersolvable group which contradicts with

HpG
∗
q satisfies structure (b).

Lemma 3.5. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |π(G)| = 2. Suppose further that all maximal
subgroups of G are GS-groups with n > 4. If |H| = p2q, then either G is a
nonabelian P -group or G = GpGq where Gp = P1P2 is an elementary abelian
normal Sylow p-subgroup of order p4 such that Pi (i = 1, 2) is a minimal normal
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subgroup of G of order p2, Gq is a Sylow q-subgroup of order q and Gq operates
irreducibly on Pi (i = 1, 2).

Proof. Let H be abelian. Then, H ia a maximal subgroup of G as there is
no a GS-group contains it. Solvability of G implies that H is of prime power
index. Firstly, assume that [G : H] = qe (e ≥ 2 as n > 4). Then, Gp = Hp

and |Gq| ≥ q3. Maximality of H in G implies that Hp is not normal in G.
Therefore, NG(Gp) = CG(Gp) = H and hence Gq ◁G. It follows that G∗

pGq is a
proper subgroup of G but not a GS-group, a contradiction. Thus, [G : H] = pe

(e ≥ 2). Then, Gq = Hq and |Gp| ≥ p4. By Lemma 2.1, Gp is either cyclic or
elementary abelian. Clearly, if Gp is cyclic, then G is supersolvable and we get
a contradiction with maximality of H. Thus, Gp is elementary abelian. Since
H∗

p ◁H and H∗
p ◁Gp, we get H∗

p ◁G. By ([15], Theorem 9.3.7, p. 225), H∗
p is

complemented in G but this complement can’t be a GS-group, a contradiction.
This final contradiction shows that either Hp or Hq is not normal subgroup of
H. We have the following two cases:

Case (i). Hq ◁ H and Hp ⋪ H. Then, H is supersolvable and hence q > p.
Let |Gp| ≥ p3. If |Gp| = p3, then |Gq| ≥ q2 as n > 4 and hence [G : H] is
divided by pq. Solvability of G implies that, H is not a maximal subgroup of
G. Then, G has a maximal subgroup contains H but it is not a GS-group, a
contradiction. Thus, |Gp| ≥ p4. Since q > p, we get Gp is a maximal subgroup of
G as there is no a GS-group contains it. Hence either NG(Gp) = Gp or Gp ◁G.
If Gp ◁G, then by ([11], Theorem 4.5, p. 253), NG(Hq)/CG(Hq) is q-subgroup.
But Hq ◁ H. Then, Hp < CG(Hq) and hence H is abelian, a contradiction.
Thus, NG(Gp) = Gp. Since Gp is abelian, we have by ([12], Hauptsatz 2.6, p.
419), Gq ◁G and hence GqG

∗
p is a proper subgroup of G but not a GS-group, a

contradiction. This final contradiction shows that Gp = Hp and hence |Gq| ≥ q3

as n > 4.

By hypothesis HqK ≤ G. Let G = HqK. Then, K is a GS-group with
p2q2 | |K| and by Lemma 2.1, K satisfies structure (b). By ([15], Theorem
6.5.5, p. 147), G has a normal Sylow subgroup. Since Gp = Hp is not normal
in H, we get Gq ◁ G and hence GqG

∗
p is a proper subgroup of G of order

q3p. Applying Lemma 2.1, GqG
∗
p is a nonabelian P -group which contradicts

with K satisfies structure (b). Thus, HqK is a proper subgroup of G with
[G : HqK] = pe (e = 1, 2). If [G : HqK] = p2, then Gq = HqK. By Lemma
2.1, K is either cyclic, elementary abelian or nonabelian of order q3 and hence
each maximal subgroup of K is normal in K. By hypothesis, HK∗ ≤ G for each
maximal subgroup K∗ of K with p2q2 | |HK∗|. Choose K∗ such that HK∗ be
a proper subgroup of G. Applying Lemma 2.1, HK∗ can’t be a GS-group, a
contradiction. Thus, [G : HqK] = p and by Lemma 2.1, HqK is a nonabelian
P -group which implies that Hq ◁ G. By ([15], Theorem 9.3.7, p. 225), Hq has
a complement U , say. Applying Lemma 2.1, U satisfies structure (b) which
contradicts with HqK is a nonabelian P -group.
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Case (ii). Hp ◁H and Hq ⋪ H. By hypothesis HpK ≤ G. Assume first that,
G = HpK.

Let |Gq| = q. Then, |Gp| ≥ p4 as n > 4. By Lemma 2.1, K is a nonabelian
P -group or |K| = p2q. If K is a nonabelian P -group, then by Lemma 3.3, G
is a nonabelian P -group and we are done. So, we can assume that, |K| = p2q
with Hp ∩ Kp = 1 and both of H and K are not nonabelian P -groups. Since
Hp◁H and Hp◁Gp, we get Hp◁G. If K has a subgroup K∗, say, of order pq,
then HpK

∗ is a proper subgroup of G which contains H. Applying Lemma 2.1,
HpK

∗ is a nonabelian P -group, a contradiction. Thus, Gq operates irreducibly
on Hp and Kp and we are done.

Now, let |Gq| = q2. Since G = HpK, we have pq2 | |K|. By Lemma 2.1,
either |K| = pq2 or K satisfies structure (b). Assume that K = KpKq satisfies
structure (b). If Kp ◁ K, then by hypothesis, HKp is a proper subgroup of
G. Applying Lemma 2.1, HKp is a nonabelian P -group which contradicts with
Φ(Kq) operates irreducibly on Kp. If Kq◁K, then Kq is elementary abelian. By
hypothesis, HKq is a proper subgroup of G and by Lemma 2.1, HpKq satisfies
structure (b). ButHp◁H which follows thatKq is cyclic, a contradiction. Thus,
|K| = pq2. It follows that H ∩ K = Hq and hence [G : H] = pq. Solvability
of G implies that, H is not maximal subgroup of G. Then, G has a maximal
subgroup G∗, say, containsH. Applying Lemma 2.1, G∗ is a nonabelian P -group
or satisfies structure (b). If G∗ is a nonabelian P -group, then by Lemma 3.3, G
is a nonabelian P -group, a contradiction. Thus, G∗ = HpKq satisfies structure
(b)and hence Hp ◁ G and Kq is cyclic. By ([15], Theorem 13.3.1, p. 383), K
is supersolvable and consequently has a maximal subgroup K∗ of order pq. By
Lemma 2.1, HpK

∗ is a nonabelian P -group which contradicts with G∗ satisfies
structure (b).

Finally, let |Gq| ≥ q3. If Gq ≨ K, then by Lemma 2.1, K is a nonabelian
P -group and by Lemma 3.3, G is a nonabelian P -group, a contradiction. Thus,
Gq = K. Choose K∗ be a maximal subgroup of K which contains Hq. By
hypothesis, HK∗ is a proper subgroup of G. Applying Lemma 2.1, HK∗ =
HpG

∗
q satisfies structure (b). Hence G∗

q is cyclic of order q2 and consequently
K is either cyclic or nonabelian with |K| = q3. Clearly if K is cyclic, then our
result holds and we are done. So, let K be nonabelian. Since G is solvable,
it has a minimal normal subgroup L, say. Let L ≤ Gq. If L = Gq, then LH∗

p

is a proper subgroup of but not a GS-group, a contradiction. Also we get a
contradiction if L < Gq as HL is a proper subgroup of but not a GS-group.
Thus, L ≤ Hp. If L < Hp, then HK∗ has a subgroup of order pq, a contradiction
with structure (b). Therefore, L = Hp and hence all maximal subgroups of K
are cyclic. By ([12], Satz 8.2, p. 310), K ∼= Q8. But by ([18], Corollary 1.10, p.
6), HpΦ(G

∗
q) is supersolvable which contradicts with Φ(G∗

q) operates irreducibly
on Hp.

Now, assume that, HpK is a proper subgroup of G. If HpK = Gp, then
|Gq| = q and |Gp| ≥ p4 as n > 4. Applying Lemma 2.1, Gp is either cyclic or
elementary abelian. If Gp is cyclic, then by ([15], Theorem 13.3.1, p. 383), G is
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supersolvable and by Corollary 2.1, G is a nonabelian P -group, a contradiction.
Thus, Gp is elementary abelian. Clearly, K has a maximal subgroup K∗ such
that HK∗ is a proper subgroup of G with |HK∗| = pjq (j ≥ 3). Applying
Lemma 2.1, HK∗ is a nonabelian P -group and henceH is a nonabelian P -group.
By Lemma 3.3, G is a nonabelian P -group and we are done. So, let |π(HpK)| = 2
and hence |Gq| ≥ q2. By Lemma 2.1, HpK is either a nonabelian P -group or
satisfies structure (b). Since p2q2 | |G|, G can’t be a nonabelian P -group and
hence if HpK is a nonabelian P -group, then we get a contradiction with Lemma
3.3. Thus, HpK satisfies structure (b). Since HpK is a proper subgroup of
G with [G : HpK] = q, we have |Gq| = q3. Let Hp ◁ HpK. Then, Hp ◁ G
and hence HpG

∗
q is a proper subgroup of G for each maximal subgroup G∗

q of
Gq. Applying Lemma 2.1, HpG

∗
q satisfies structure (b). Therefore, all maximal

subgroups of Gq are cyclic. Similar as we show in the last paragraph of the proof
of Lemma 3.4, Gq

∼= Q8. This implies that HpK
∗
q is a supersolvable group which

contradicts with K∗
q operates irreducibly on Hp. Now, let Kq ◁ HpK. Then,

Kq ◁G. Since Hp is cyclic, we get H is supersolvable and hence has a subgroup
H∗ of order pq. By applying Lemma 2.1, KqH

∗ is a nonabelian P -group which
contradicts with HpK satisfies structure (b).

Lemma 3.6. Assume that G = HK is a mutually N -permutable product of its
proper subgroups H and K with |π(G)| = 2. Suppose further that all maximal
subgroups of G are GS-groups with n ≥ 4. Then, one of the following holds:

(i) |G| = p2q2 or p3q, where p and q are distinct primes.

(ii) G is a nonabelian P -group.

(iii) G = GpGq where Gp is an elementary abelian normal Sylow p-subgroup
of order p2, Gq is cyclic of order q3 and every subgroup of Gq operates
irreducibly on Gp.

(iv) G = GpGq where Gp = P1P2 is an elementary abelian normal Sylow p-
subgroup of order p4 such that Pi (i = 1, 2) is a minimal normal subgroup
of G of order p2, Gq is a Sylow q-subgroup of order q and Gq operates
irreducibly on Pi (i = 1, 2).

Proof. If both H and K are nilpotent, then G is a mutually m-permutable
product of H and K and by Lemma 2.2, we are done. So, let H be not nilpotent.
Applying Lemma 2.1, either H is a nonabelian P -group, H satisfies structure
(b) or |H| = p2q. Clearly, if n = 4, then either |G| = p2q2 or p3q and (i) holds.
So, let n > 4 and hence by the previous three Lemmas, we are done.

Proof of the main theorem

It is a direct result from Lemma 3.1, Lemma 3.2, Lemma 2.3 and Lemma 3.6.
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Conclusion

One of the most important objectives in group theory is to explore the structure
of groups through certain properties of their subgroups. This paper deepens that
concept by linking the properties of smooth chains and mutually N -permutable
subgroups, aiming to determine the structure of a group. To extend this work,
we can replace our hypothesis with weaker ones. For instance, we hope to
determine the structure of a group G that is mutually N -permutable of two
generalized smooth subgroups.
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