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Codes from the incidence matrix of the essential graph
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Abstract. Let R be a commutative ring and M be an R-module. The essential
graph over M , denoted by EG(M), is defined as a graph associated to M with vertex
set Z(M) \ AnnR(M), and a pair of distinct vertices x and y are adjacent if and only
if AnnM (xy) is an essential submodule of M . In this paper, we investigate the linear
codes with respect to the Hamming weight from incidence matrix of the essential graphs
over M . If Zn be the ring of integer module n, then EG(Zn) is a linear code. Let p1
and p2 be distinct prime numbers. It is shown that if n = p1p2, then C2(EG(Zn)) =[
(p1− 1)(p2− 1), p1+ p2− 2,min{p1− 1, p2− 1}

]
2
. Moreover if n = pα1

1 pα2
2 with αi ≥ 1

for i = 1, 2, then C2(EG(Zn)) =
[
|E|, |V | − 1,min{p1 + 1, p2 + 1}

]
2
.
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1. Introduction

The study of graph theoretic methods and algebrice graph structures over linear
codes has attracted a lot of attention in last decades and leads many authors to
study and explore their properties, for instance see [1, 5, 6]. Initially, the concept
of the zero-divisor graph was studied by I. Beck in [4]. Also, the concept of the
zero-divisor graph was studied with a different set of vertices by Anderson et.al
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in [2]. Let R be a commutative ring. The zero divisor graph of R, denoted by
Γ(R), is the graph with vertex set Z(R)∗ = Z(R) \{0} and two distinct vertices
x and y are adjacent if and only if xy = 0. The essential graph of R is a variation
of the zero-divisor graph that changed the edge condition, which was studied
and introduced in [8]. The essential graph of R is an undirected simple graph,
denoted by EG(R), with vertex set Z(R)∗, and two distinct vertices x and y are
adjacent if and only if AnnR(xy) is an essential ideal of R. Recently, the concept
of the essential graph and its related topics on modules over commutative rings
are studied by many authors (see [10, 11]).

First, we recall some basic properties of coding theory and graph theory
which will be used in the sequel. Let Γ(V,E) be a simple graph with the vertex
set V or V (Γ) and the edge set E or E(Γ). The order of Γ is |V | and the
cardinality of the edge set denoted by |E|. A graph with no edge is called the
null graph. For every u, v ∈ V , the distance between u and v is defined as
the length of a shortest path from u to v and is denoted by d(u, v). We write
u ∼ v if d(u, v) = 1 and u ̸∼ v otherwise. The degree of a vertex u, denoted
by deg(u), is the number of edges incident to u. Also, u is called an end-vertex
if deg(u) = 1. The minimum and maximum degree of the vertices of Γ are
denoted by δ(Γ) and ∆(Γ), respectively. The graph is k-regular if all its vertices
have degree k. Assume that u is a vertex of Γ. The open neighborhood of u is
defined as N(u) = {v ∈ V (Γ) : d(u, v) = 1} and the closed neighborhood of u
is N [u] = N(u) ∪ {u}. The graph is connected if there is a path between any
two distinct vertices. The diameter of Γ is diam(Γ) = sup{d(x, y)|x, y ∈ V (Γ)},
where d(x, y) is the length of shortest path between x and y. The girth of
Γ, denoted by gr(Γ), is the length of a shortest cycle contained in the graph;
otherwise gr(Γ) = ∞. A complete graph is a graph in which each pair of vertices
is connected by an edge and a complete graph with n vertices is denoted by Kn.
A graph Γ is called bipartite if its vertex set can be partitioned into two parts
V1 and V2 such that every edge has one end in V1 and one in V2. A complete
bipartite graph is a bipartite graph Km,n which consist of an independent set
of m vertices of V1 completely joined to an independent set of n vertices V2. A
graph H is a subgraph of Γ whose vertex set and edge set are subsets of those
of Γ. A dominating set of Γ is a subset D of V (Γ) such that every vertex in
V (Γ) \D is adjacent to some vertex in D. The domination number γ(Γ) of Γ is
the minimum cardinality of a dominating set.

The notation for designs and codes is as in [3]. An incidence structure
D = (P,B, J), with point set P, block set B and incidence J is a t − (ν, k, λ)
design, if |P| = v, every block B ∈ B is incident with precisely k points, and
every t distinct points are together incident with precisely λ blocks. The code
CF (D) of the design D over the finite field F is the space spanned by the
incidence vectors of the blocks over F . If Q is any subset of P, then we will
denote the incidence vector of Q by nQ, and if Q = {P} where P ∈ P, then we
will write νP instead of ν{P}. Thus, CF (D) = ⟨νB|B ∈ B⟩, and is a subspace
of FP , the full vector space of functions from P to F . For any w ∈ FP and
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P ∈ P, ω(P ) or ωP will denote the value of ω at P . If F = Fp, then we write
Cp(D) for CF (D). We refer the reader to [1] for undefined terms and conditions.

An incidence matrix |V | × |E| of Γ is matrix G = [g]ij with gij = 1 if
the vertex ui is on the edge ej and gij = 0, otherwise. Let W and X be
non-empty subsets of V with W ∩ X = 0 and let E(W,X) be a subset of E
which is included one end of W and other end of X. Set |E(W,X)| = q(W,X).
An edge-cut of a connected graph Γ, denoted by λe(Γ), is the set S with the
property that Γ \ S = (V,E \ S) is disconnected. Also, the edge-connectivity of
Γ, denoted by λ(Γ), is the minimum cardinality of λe(Γ). In the other words,
λ(Γ) = min∅≠W⊆V q(W,V \ W ). Clearly, for any connected graph Γ, we have
λ(Γ) ≤ δ(Γ), where δ(Γ) is the minimum degree of Γ. The graph Γ is said to
be a supper-λ, whenever λ(Γ) = δ(Γ) and the only edge sets of cardinality λ(Γ)
whose removal disconnected Γ are the set of edges incident with a vertex of
degree δ(Γ).

Let Fq be a finite field with cardinality q and let A = {0, 1, · · · , q − 1} be
an alphabet of order q. The elements of A are called symbols. A q-ary code
C of length n and size |C| is a non empty subset of An, and any element of C
is called a codeword. A q-ary linear code C of length n is a subspace of the
vector space Fn

q over Fq. Let x and y be words of length n over an alphabet A.
The Hamming distance from x to y, denoted by dH(x, y), is defined to be the
number of places at which x and y differ. If x = x1 · · ·xn and y = y1 · · · yn, then
dH(x, y) = dH(x1, y1) + · · ·+ dH(xn, yn), where xi and yi are words of length 1,
and

dH(xi, yi) =

{
1, if xi ̸= yi

0, if xi = yi
.

Note that, dH(x, y) = dH(y, x). The minimum Hamming distance of a code
C, denoted by dH(C), is defined by dH(C) = minc1,c2∈C{dH(c1, c2)|c1 ̸= c2}.
Let c be a codeword of Fq. The Hamming weight wtH(c) is defined by

wtH(c) =

{
0, if c = 0

1, if c ̸= 0
.

Let c be a word in Fn
q . The Hamming weight of c, denoted by wtH(c) (or simply

wt(c)), is defined to be the number of non zero coordinates in c, that is wt(c) =
d(c, 0), where 0 is the zero vector. If c ∈ F q

n with c = (c1, c2, · · · , cn), then
wt(c) =

∑n
i=1w(ci). For any two elements x, y ∈ Fn

q , we have dH(x, y) = wt(x−
y). The minimum weight of a code C is the smallest among all weights of the
non zero codewords of C. For every q-ary liner code C, we have dH(C) = wt(C).
The support of a vector v, denoted by Supp(v), is the set of coordinate positions
where the entry in v is non-zero. Obviously | Supp(v)| = |wt(v)|. A generator
matrix G for a linear code C is a matrix whose rows form a basis for C and
Cp(G) is a code generated by the matrix G over a finite field Fq and dimension
of the code Cq(G) is the rank of the matrix G over the field Fq. A parity-check
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matrix for C is a generator matrix for C⊥ where C⊥ = {v ∈ Fn
q |uv = 0,∀u ∈ C}

is the dual code of C. Here, all the codes are linear codes and the notation
[n, k, d]q will be used for a q-ary code C of length n, dimension k and minimum
distance d over the field Fq. For more details we refer the reader to [7].

Let M be an R-module. The annihilator, the set of zero-divisors, the set of
associated prime ideals and the minimal set of associated prime ideals of M are
denoted by ZR(M), AnnR(M), AssR(M) and MinAnnR(M), respectively. Let
M be an R-module. Then it is proved that ZR(M) =

⋃
p∈Ass(M) p. The sub-

module N of M is called essential, if N ∩K ̸= {0} for every non-zero submodule
K of M . The radical of an ideal I over commutative ring R, denoted by r(I), is
defined to be the set of all elements a of R with an ∈ I for some positive integer
n. Then r(I) =

⋂
p∈Spec(R)

p⊇I

p, see [9].

Throughout this paper all rings are commutative, all modules are unitary
and all codes assumed to be linear codes. Here is a brief summary of the paper.
In Theorem 2.2, for Noetherian R-module M with r(AnnR(M)) = AnnR(M),
we show that C2(EG(M)) =

[
|E|, |Z(M) \ AnnR(M)| − 1, λ(EG(M))

]
2
, if

|MinAss(M)| = 2. In Theorem 2.3, it is shown that C2(EG(Zn)) =
[
(p1 −

1)(p2−1), p1+p2−2,min{p1−1, p2−1}
]
2
, whenever n = p1p2 where p1 and p2

are distinct prime numbers. Also, in Theorem 2.4, it is proved that if n = pα1
1 pα2

2

is an integer, where p1, p2 are prime numbers, α1, α2 are positive integers and
α1 ≥ 1 and α2 ≥ 1, then C2(EG(Zn)) =

[
|E|, |V | − 1,min{p1 + 1, p2 + 1}

]
2
.

2. Main results

Let R be a commutative ring and let M be an R-module. The essential graph
of M , denoted by EG(M), is a graph with vertex set Z(M)\AnnR(M) and two
distinct vertices x, y ∈ Z(M) \ AnnR(M) are adjacent if and only if AnnM (xy)
is an essential submodule of M , see [10].

The following theorem plays an important role in this paper, so we recall it.

Theorem 2.1 ([5, Theorem 1]). Let Γ = (V,E) be a connected graph and G be
a |V | × |E| incidence matrix for Γ. Then the following statements hold:

(i) C2(G) =
[
|E|, |V | − 1, λ(Γ)

]
2
.

(ii) If Γ is super-λ, then C2(G) =
[
|E|, |V |−1, δ(Γ)

]
2
, and the minimum words

are the rows of G of weight δ(Γ).

Theorem 2.2. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).
If |MinAss(M)| = 2, then

C2(EG(M)) =
[
|E|, |Z(M) \AnnR(M)| − 1, λ(EG(M))

]
2
.

Proof. Assume that c is a non zero codeword in C2(EG(M)) and MinAss(M) =
{p1, p2} where pi = AnnR(mi) with mi ∈ M for i = 1, 2. Then we conclude that
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c =
∑

v∈Z(M)\AnnR(M) piEGv, where EGv is the row of EG(M) corresponding
to the vertex v, by [5, Theorem 1]. Let e = uv be an edge of EG(M). Thus,
EGu,e and EGv,e are incidence where EGe is the column corresponding to the
edge e. Set ce = p1+ p2, where ce is a summation of prime ideals p1 and p2. We
consider that Supp(c) = {e = uv|pi ̸= pj , for all pi, pj ∈ MinAss(M)}. Now,
suppose that EG(M)c is a graph with the set of edges E \Supp(c). Hence, if a, b
are adjacent in EG(M)c, then p1+p2 = 0 and so p1 = p2 and |MinAss(M)| = 1.
Therefore, EG(M) is a null graph or it has only one vertex, by [10, Theorem
3.2]. Then EG(M)c is a disconnected graph. Since otherwise, if EG(M)c is
a connected graph, then c = p1

∑
EGv = p1(0) = 0, which is a contradic-

tion. Therefore, Supp(c) is the set that contained edge connectivity and hence,
wt(c) = |Supp(c)| ≥ λ(EG(M)). Now, we assume that MinAss(M) = {p1, p2},
where pi = AnnR(mi) with m ∈ M , for i = 1, 2. Let u, v ∈ p1 \ {0}. If u and
v are adjacent, then AnnR(uv) is essential and so Ann(uv) ∩ Rm ̸= 0 for some
m ∈ M . Then there exist r ∈ R such that 0 ̸= rm ∈ Ann(uv). Thus, ruv ∈ p2.
Since p1 ∩ p2 = r(AnnR(M)) = 0. Then u ∈ p2 or v ∈ p2 and so u = 0 or
v = 0, which are contradiction. By similar argument it is shown that the pre-
vious result is satisfied for p1. Therefore, the vertices of the graph are divided
two parts. Assume that W and V \W are two parts which included vertices of
the graph with W ∩ (V \W ) = ∅. Now, let S ⊆ E where S is the set of edge
connectivity and λ(EG(M)) is the minimum number. Assume that c is a non
zero codeword of λ(EG(M)). Clearly, if uv ∈ W and so Ann(uv) is essential,
then Ann(uv) is not essential in S. Now, it is enough to show that the edges of
S are edge connectivity between two parts of the graph. Let u ∈ p1 \ {0} and
v ∈ p2 \ {0}. Then uv ∈ p1p2 ⊆ p1 ∩ p2 = 0 and so uvM = 0, that is, each
element of u ∈ p1 \ {0} with element of v ∈ p2 \ {0} are adjacent. So we assume
that c =

∑
vG22∈W EGv =

∑
v∈V µvEGv, where if v ∈ W , then µv = p1 and if

v ∈ V \ W , then µ2 = p2. Thus, uv ∈ Supp(c) if and only if p1 ̸= p2 if and
only if uv ∈ S. Hence, wt(c) = |Suup(c)| = |S| = λ(EG(M)). Therefore, the
minimum Hamming weight of incidence matrix over the essential graph equals
to the minimum cardinality of the edge connectivity λ(EG(M)).

Corollary 2.1. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).
If |MinAss(M)| = 2 and EG(M) is a super-λ, then

C2(EG(M)) =
[
|E|, |Z(M) \AnnR(M)| − 1, δ(EG(M))

]
2
.

Proof. It follows from Theorems 2.2 and [12, Theorem 2.4].

Corollary 2.2. Let M be a Noetherian R-module with r(AnnR(M)) ̸= AnnR(M)
and let EG(M) be k-regular graph. Then C2(EG(M)) is a binary code with
minimum weight k.

Proof. Assume thatM is a NoetherianR-module with r(AnnR(M)) ̸= AnnR(M).
Then diam(EG(M)) ≤ 2 and gr(EG(M)) ∈ {3,∞}, by [10, Theorem 2.6]. Since
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EG(M) is k-regular, it is a complete graph. Moreover, G is an incidence matrix
n × nk

2 . Thus, C2(EG(M)) is a binary code with minimum weight k, by [5,
Corollary 1].

Example 2.1. Consider the ring Z8. It is clear that Ass(Z8) = {2Z8} and
Z(Z8)

∗ = Nil(Z8) = 2Z8. Thus, EG(Z8) is a complete graph with 3 vertices,
see Figure 1. Moreover, the incidence matrix G is:

G =
v1=2

v2=4

v3=6


e2
1

e3
0

e1
1

0 1 1
1 1 0


3×3

Hence the minimum weight is 2 and so C2(EG(Z8)) is a binary code.

4 6

2

e3

e2e1

Figure 1: The essential graph EG(Z8) with minimum weight 2.

Theorem 2.3. Let n = p1p2, where p1 and p2 are distinct prime numbers. Let
Zn be the ring of integers modulo n. Then EG(Zn) is a linear code and

C2(EG(Zn)) =
[
(p1 − 1)(p2 − 1), p1 + p2 − 2,min{p1 − 1, p2 − 1}

]
2
.

Proof. Assume that n = p1p2, where p1 and p2 are distinct prime numbers.
Then Z(Zn) = p1Zn∪p2Zn and Nil(Zn) = {0}. It is easy to see that |Z(Zn)

∗| =
p1 + p2 − 1. Then in view of [10, Theorem 3.7], EG(Zn) is a bipartite complete
graph. We divided the vertices with two parts:

V1 = {Ann(a)|Ann(a) = pZ/qZ, a = p1ki, p|q, (p1, ki) = 1, 1 ≤ i ≤ n};
V2 = {Ann(b)|Ann(b) = pZ/qZ, a = p2si, p|q, (p2, si) = 1, 1 ≤ i ≤ n}.

Now, it is enough to find an incidence matrix of EG(Zn). Without loss of
generality we may assume that p1 < p2. Then the incidence block matrix of
EG(Zn) is

G =



Ip2−1 Ip2−1 · · · Ip2−1

1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1


|V |×|E|



CODES FROM THE INCIDENCE MATRIX OF THE ESSENTIAL GRAPH 251

where Ip2−1 is the (p2 − 1) × (p2 − 1), 1 = [1, 1, · · · , 1]1×(p2−1) and
0 = [0, · · · , 0]1×(p2−1). Therefore, by Theorem 2.2 and [12, Theorem 3.3], we get
that EG(Zn) is a code with minimum distance λ(EG(Zn)) and so we conclude
that C2(EG(Zn)) =

[
(p1 − 1)(p2 − 1), p1 + p2 − 2,min{p1 − 1, p2 − 1}

]
2
.

Example 2.2. Consider the ring Z15. It is clear that Ass(Z15) = {3Z15, 5Z15}
and Nil(Z15) = 3Z15 ∩ 5Z15 = 0. In view of [10, Theorem 3.7] and [11, Theorem
2.3], we get that EG(Z15) = K2,4 is a complete bipartite graph with 6 vertices
and D = {3, 5} is a dominating set for EG(Z15), see Figure 2. In this case

5 10

3 6 9 12

e1
e3 e5 e7e2 e4 e6

e8

Figure 2: The essential graph EG(Z15) with linear code
[
8, 4, 2

]
2
.

G =

v1=3

v2=6

v3=9

v4=12

v5=5

v6=10



e1
1

e3
0

e5
0

e7
0

e2
1

e4
0

e6
0

e8
0

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1


6×8

is an incidence matrix for EG(Z15). Then the minimum distance of the code
generated by the matrix G is 2 by [12, Theorem 3.3]. Therefore, C2(Z15) =[
8, 4, 2

]
2
by Theorem 2.3.

Theorem 2.4. Let n = pα1
1 pα2

2 , where p1, p2 are prime numbers, α1, α2 are
positive integers and α1 ≥ 1 and α2 ≥ 1. Then EG(Zn) is a linear code and

C2(EG(Zn)) =
[
|E|, |V | − 1,min{p1 + 1, p2 + 1}

]
2
.

Proof. Assume that n = pα1
1 pα2

2 , where pi is prime number and αi is positive
integer with αi ≥ 1, for i = 1, 2. If α1 = α2 = 1, then it follows from Theorem
2.3. Without loss of generality we may assume that α1 ≥ 2, α2 ≥ 1 and
p1 < p2. It is clear that Z(Zn) = p1Zn ∪ p2Zn, Ass(Zn) = {p1Zn, p2Zn},
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Nil(Zn) = p1Zn ∩ p2Zn and |Z(Zn)
∗| = pα1−1

1 pα2−1
2 (p1 + p2 − 1) − 1. Now, we

divided the vertices by the following subsets:

V1 = {Ann(a)|Ann(a) = pZ/qZ, a = kip
α1
1 , p|q, (ki, p) = 1, 1 ≤ i ≤ n},

V2 = {Ann(b)|Ann(b) = pZ/qZ, b = sip
α2
2 , p|q, (si, p) = 1, 1 ≤ i ≤ n},

V3 = {Ann(c)|c = sip1p2, (p1, p2) = 1, 1 ≤ i ≤ n}.

where |V1| = pα1−1
1 (p1 − 1), |V2| = pα2−1

2 (p2 − 1) and |V3| = 1. Then all edges of
the graph is |E| = |V1||V2|+ |V1||V3|+ |V2||V3|. In the other words,

|E| = (|V | − 1)− (|V |2 − 1)

2
− 1,

where |V | is the number of vertices. Since E(V1) is adjacent with E(V2) and
E(V3) is adjacent with others, we define the incidence matrix of EG(Zn) as
follows:

G =

V1

V2

V3


E(Vij)

I
E(Vij)

I
E(Vij)

0

1 0 I

0 1 0

0 0 1


|V |×|E|

where I is a pα1
1 ×pα1

1 identity matrix and 0 is a zero block matrix pα1
1 ×pα2

2 in the
first row. Also, 1 = [1, 1, · · · , 1]1×p

α1
1

and 0 = [0, · · · , 0]1×p
α1
1
, in other rows. In

the last column, I is a pα2
2 ×pα2

2 identity matrix and 1 = [1, 1, · · · , 1]1×p
α2
2
. There-

fore, by Theorem 2.2 and [12, Theorem 3.3], C2(EG(Zn)) = [n, k, d]2, where n =
|E(EG(Zn))|, k = |V (EG(Zn))|−1 and d = λ(EG(Zn)) = min1≤i≤2{pi+1}.

Example 2.3. Consider the ring Z12. It is clear that Ass(Z12) = {2Z12, 3Z12},
Nil(Z12) = 2Z12 ∩ 3Z12 = 6Z12 and D = {6} is a dominating set for EG(Z12) ,
see Figure 3. Then

2 4 8 10

3 6 9

e1
e2

e3
e4 e5

e6 e7
e8 e9

e10
e11

e12

e13 e14

Figure 3: The essential graph EG(Z12) with linear code
[
14, 6, 3

]
2
.
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G =

v1=2

v2=4

v3=8

v4=10

v5=3

v6=9

v7=6



e1
1

e4
0

e7
0

e10
0

e2
1

e5
0

e8
0

e11
0

e3
1

e6
0

e9
0

e12
0

e13
0

e14
0

0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0

1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1


7×14

is an incidence matrix of EG(Z12). Consequently, the minimum distance of
the code generated by the matrix G is 3 by [12, Theorem 3.3]. Therefore,
C2(EG(Zn)) =

[
14, 6, 3

]
2
by Theorem 2.4.
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