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Abstract. Probabilistic dual hesitant fuzzy sets (PDHFSs) are constantly used to
handle uncertainty problems. However, measures associated with PDHFSs have yet
to be widely studied and may have limitations in application. In this paper, a weak
equality is suggested to facilitate the conditional reflexivity of distance measures. Then,
the consistency, probabilistic fuzziness and Hausdorff distances are defined to integrate
different information in PDHFSs. Based on the above definitions, distance and similar-
ity measures for PDHFSs that are not limited by the number of elements are presented.
A simple example indicates that new distance measures can effectively differentiate be-
tween PDHFSs. Furthermore, a new entropy measure is built for PDHFSs by combining
the sine function. Finally, the practicality and feasibility of development methods are
demonstrated through two practical examples: pattern recognition and VIKOR-based
multi-criteria decision-making (MCDM). Moreover, parameter analyses and compara-
tive analyses indicate that these measures are superior to their existing counterparts.
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1. Introduction

Solving fuzzy phenomena and uncertain events in real life is necessary as science
and technology advance. Uncertainty theory brings usefulness and convenience
to people’s lives and is interconnected with many knowledge systems [17, 20,
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27]. Zadeh [36] explicitly and systematically proposed fuzzy sets (FSs) to solve
ambiguity problems. Atanassov described the meanings of non-membership
degree and hesitation degree, leading to the development of intuitionistic fuzzy
sets (IFSs) [2]. Torra [29] changed the decision rule by hesitant fuzzy sets
(HFSs), which permits decision makers(DMs) to take multiple potential values
on interval [0, 1]. HFSs describe the hesitation of DMs in evaluation. Then, a
series of aggregation operators for HFSs that could aggregate the values under
each attribute were developed [30]. Alcantud [1] introduced a novel HFS with an
inclusive ranking that obeys strict sorting in the stratified assessment. Further,
Zhu et al. [41] proposed dual hesitant fuzzy sets (DHFSs), where FSs and IFSs
were regarded as particular components of DHFSs. Some scholars systematically
explained the operations and basic rules of DHFSs [40, 38, 26]. Xu and Zhou
[33] considered the influence of DMs’ knowledge level and subjective factors and
introduced probability into HFSs to define the probability hesitation fuzzy sets
(PHFSs). Krishankumaar [11] proposed a new ranking approach for PHFSs,
which made the method more flexible by adding evidence theory. Hao [8] used
PDHFSs to translate vague information more appropriately and then studied
visualization techniques for PDHFSs to deal with risk evaluation problems. It is
worth noting that PDHFSs comprehensively express the fuzziness and hesitancy
of human thinking and the importance of different elements.

Measure methods were significant in dealing with uncertainty problems, such
as decision analysis, pattern recognition and artificial intelligence [12, 23, 39, 24].
Xu and Xia [31] developed some distance measures to enrich the study of HFSs
[32]. Considering DMs’ preference, Tong and Yu [28] proposed a new distance
measure for HFS to address the defects of measure in [31]. However, when
constructing the above measure, assuming that the number of hesitant fuzzy el-
ements isn’t equal, DMs needed to increase elements to make them equal. This
approach may violate the authenticity of data. Hussain and Yang [9] charac-
terized the connection between HFSs and their complement to construct a new
entropy measure. This measure relied on particular data values and had a rel-
atively narrow range of applications. Yang and Hussain [34] complemented the
existing measures of HFSs, simplifying the calculation. Farhadinia and Xu [6]
extended the Euclidean distance between single-point sets to HFSs and defined a
new distance measure. For the problem of unequal-length for elements, Chen et
al. [3] described some new distance measures. Zhang [37] also constructed sev-
eral distance and entropy measures suitable for pattern recognition. To a certain
extent, these measures [3, 37] maintained the authenticity of data but did not
have triangular inequality property. Su et al. [25] proposed a new entropy called
membership entropy based on exponential functions. It provides an innovative
method for measuring the uncertainty of PHFSs. In [16] and [15], the charac-
teristics of PHFSs were comprehensively considered and a distance measure was
developed. In addition, considering the influence of psychological changes when
DMs encounter risk, a TODIM-based multi-criteria decision-making (MCDM)
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method was proposed [16]. Fang [5] proposed a series of entropy and cross-
entropy with strong discrimination ability and wide application.

PDHFSs have apparent advantages in presenting fuzzy information, and
their research value is evident. In [21], the equiprobability distance measure
was also an available metric for PDHFSs, but it changed the original structure
of PDHFSs and weakened the psychological factor of DMs. Garg and Kau [7]
successfully extended distance measures and then brought rationality and loss of
DMs into the aggregation operators, underlining the contribution of probability
to PDHFSs. Ning et al. [18] proposed some distance measures for PDHFSs
from the perspective of averaging and dispersion. However, the study [18] has a
defect: the measures cannot distinguish different PDHFSs in exceptional cases,
which violates conditional reflexivity. Ning et al. [19] also built some new dis-
tance measures that considered the discrete, continuous, ordered and disordered
conditions of PDHFSs. Such distances are novel in form but do not satisfy tri-
angular inequality. It is readily apparent from the above analyses that there are
few studies and shortcomings on the relevant measures of PDHFS at present,
and further studies are needed.

In order to enhance the conditional reflexivity of distance measures, we define
weak equality. According to several properties of PDHFSs, distance measures
with parameters are constructed. Moreover, a new entropy measure is proposed
by combining the sine function. The proposed methods are applied in pattern
recognition and VIKOR-based MCDMmethods. The contributions of this paper
are as follows:

(1) A weak equivalence between PDHFSs is defined to enhance the conditional
reflexivity of distance measures.

(2) Assuming that all values in probabilistic dual hesitant fuzzy elements
(PDHFEs) are in increasing order, we combine the consistency and prob-
abilistic fuzziness of PDHFEs to obtain some distance measures with
parameters. New distance measures are more discriminating between
PDHFSs. They are suitable for the axioms of distance measure, espe-
cially the triangular inequality.

(3) A new entropy measure with an auxiliary function is presented, enriching
the research of entropy measures in the PDHFS environment.

The rest of this paper is arranged as follows: Section 2 introduces the con-
cepts related to with PDHFS and existing research. Section 3 proposes some
new distance and similarity measures and discusses their properties. Section 4
defines the entropy measure of PDHFS in combination with the sine function.
Section 5 applies the above distance, similarity and entropy measures to two
examples. Finally, the conclusion and expectations are in Section 6.
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2. Preliminaries

2.1 HFSs and PDHFSs

In this subsection, we introduce the concept of HFSs and PDHFSs and some
existing outcomes. The notations used in this section are explained in Table 1.

Table 1: Notations interpretation I

Notations Details Notations Details

Ô,M PDHFSs ∂̂ PDHFE
G(x) membership degree κ(x) non-membership degree

p(x)
nembership
probabilistic

q(x)
non-nembership
probabilistic

γ, η possible elements #G,#κ number of elements

λ̄(∂̂), λ̄(Ô(x)) score function ℓ(∂̂), ℓ(Ô(x)) accuracy function

℘(∂̂), ℘(Ô(xi)) membership means ℑ(∂̂),ℑ(Ô(xi))non-membership means

Φ(Ô(xi))
membership standard

deviation
Ψ(Ô(xi))

non-membership
standard deviation

℘(xi),ℑ(xi) means distance Φ(xi),Ψ(xi)
standard deviation

distance

Let X be a universal set, F = {⟨x, ℏF (x)⟩ : x ∈ X} is called an HFS, where
ℏF (x) ∈ [0, 1] are hesitant fuzzy elements, representing the set of possible mem-
berships of x of X [29].

Definition 1 (Hao et al. [8]). defined PDHFS Ô on X as:

(1) Ô = {⟨G(x)|p(x), κ(x)|q(x)⟩ |x ∈ X} ,

where G(x) and κ(x) are the the membership and non-membership degrees of
x ∈ X, respectively. The probabilities of G(x) and κ(x) are p(x) and q(x)
separately. Also, there is

(2)

γ ∈ [0, 1] , η ∈ [0, 1] , γ+ + η+ ∈ [0, 1] ,

pj ∈ [0, 1] , qj ∈ [0, 1] ,

#G∑
j=1

pj = 1,

#κ∑
j=1

qj = 1,

where γ, η are some possible elements, γ ∈ G(x), η ∈ κ(x), γ+ ∈ G+(x) =⋃
γ∈G(x)max {γ}, η+ ∈ κ+(x) =

⋃
η∈κ(x)max {η}, pj ∈ p(x) and qj ∈ q(x). #G

and #κ are the total number of elements in G(x)|p(x) and κ(x)|q(x)).
For convenience, the pair ∂̂ = ⟨G(x)|p(x), κ(x)|q(x))⟩ is called as PDHFE,

denoted by ∂̂ = ⟨G|p, κ|q⟩ ([8]).
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Definition 2 ([8]). The complement definition of the PDHFE ∂̂ = ⟨G|p, κ|q⟩ is
as follows:

(3) ∂̂c =
⋃

η∈κ,γ∈G
⟨η|q, γ|p⟩, if κ ̸= ∅ and G ̸= ∅.

Definition 3 ([8]). The score function of PDHFE ∂̂ is:

(4) λ̄(∂̂) =

#G∑
j=1,γ∈G

γjpj −
#κ∑

j=1,η∈κ
ηjqj .

Definition 4 ([33]). The accuracy function of PDHFE ∂̂ is:

(5) ℓ(∂̂) =

#G∑
j=1,γ∈G

γjpj +

#κ∑
j=1,η∈κ

ηjqj .

Let ∂̂1, ∂̂2 be two PDHFEs. The rules for comparing are as follows [33]:
If λ̄(∂̂1) > λ̄(∂̂2), then ∂̂1 > ∂̂2. If λ̄(∂̂1) < λ̄(∂̂2), then ∂̂1 < ∂̂2.
If λ̄(∂̂1) = λ̄(∂̂2), there are the following rules:

(1) If ℓ(∂̂1) > ℓ(∂̂2) , then ∂̂1 > ∂̂2;

(2) If ℓ(∂̂1) < ℓ(∂̂2), then ∂̂1 < ∂̂2;

(3) If ℓ(∂̂1) = ℓ(∂̂2), then ∂̂1 ∼ ∂̂2.

Definition 5 ([18]). Let ∂̂ = ⟨G|p, κ|q⟩ be a PDHFE on X . The means of
membership and non-membership for ∂̂ are:

℘(∂̂) =

#G∑
j=1

γjpj ,

ℑ(∂̂) =
#κ∑
j=1

ηjqj .

2.2 An existing distance measure of PDHFSs

In such subsection, we review a distance measure and properties proposed by
Ning et al [18]. A simple example explains that the measure has a disadvantage.

Definition 6 ([18]). Let ∂̂1 , ∂̂2 and ∂̂3 be three PDHFEs. Call d a distance
measure if the following properties are satisfied:

(D1) 0 ≤ d(∂̂1, ∂̂2) ≤ 1;

(D2) d(∂̂1, ∂̂2) = 0 ⇔ ∂̂1 = ∂̂2;
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(D3) d(∂̂1, ∂̂2) = d(∂̂2, ∂̂1);

(D4) d(∂̂1, ∂̂3) ≤ d(∂̂1, ∂̂2) + d(∂̂2, ∂̂3),

Definition 7. Ning et al. [18] give a distance measure between PDHFSs Ô1

and Ô2.

(6) dgpnd(Ô1, Ô2) =

[
1

n

n∑
i=1

(
a℘λ(xi)+ℑλ(xi)

2 + bΦ
λ(xi)+Ψλ(xi)

2

)]1/λ
where λ > 0, λ ∈ R, a, b ∈ [0, 1], a + b = 1, ℘(xi),ℑ(xi) are means distances,

Φ(xi),Ψ(xi) are standard deviation distances, ℘(Ôm(xi)),ℑ(Ôm(xi)) (m = 1, 2)

are membership and non-membership means, Φ(Ôm(xi)),Ψ(Ôm(xi)) are mem-
bership and non-membership standard deviations, respectively.

℘(xi) =
∣∣∣℘(Ô1(xi))− ℘(Ô2(xi))

∣∣∣=
∣∣∣∣∣∣
#G1∑
j=1

γ1jp1j −
#G2∑
t=1

γ2tp2t

∣∣∣∣∣∣ ,
ℑ(xi) =

∣∣∣ℑ(Ô1(xi))−ℑ(Ô2(xi))
∣∣∣ =

∣∣∣∣∣∣
#κ1∑
j=1

η1jq1j −
#κ2∑
t=1

η2tq2t

∣∣∣∣∣∣ ,
Φ(xi) =

∣∣∣Φ(Ô1(xi))− Φ(Ô2(xi))
∣∣∣

=

∣∣∣∣∣∣
#G1∑

j=1

(
γ1jp1j − ℘(Ô1(xi))

)21/2

−

(
#G2∑
t=1

(
γ2tp2t − ℘(Ô2(xi))

)2)1/2
∣∣∣∣∣∣ ,

Ψ(xi) =
∣∣∣Ψ(Ô1(xi))−Ψ(Ô2(xi))

∣∣∣
=

∣∣∣∣∣∣
#κ1∑

j=1

(
η1jq1j −ℑ(Ô1(xi))

)21/2

−

(
#κ2∑
t=1

(
η2tq2t −ℑ(Ô2(xi))

)2)1/2
∣∣∣∣∣∣ .

This distance measure has applicability but violates the conditional reflex-
ivity (D2) of Definition 6. We illustrate this with an example.

Example 1. Let X = {x1} , and we give two PDHFSs
Ô1 = {⟨x1, {0.25|0.35, 0.35| 0.25, 0.4|0.4} , {0.45|0.6, 0.55|0.4}⟩},
Ô2 = {⟨x1, {0.25|0.35, 0.35|0.25, 0.4|0.4} , {0.4|0.55, 0.6|0.45}⟩} where a = b=1

2 ,

λ ∈ R , and λ ≥ 1 . For Ô1, we have

℘(Ô1(x1)) = 0.25× 0.35 + 0.35× 0.25 + 0.4× 0.4 = 0.3350,

ℑ(Ô1(x1)) = 0.45× 0.6 + 0.55× 0.4 = 0.4900,

Φ(Ô1(x1)) = ((0.25× 0.35− 0.3350)2 + (0.35× 0.25− 0.3350)2

+ (0.4× 0.4− 0.3350)2)1/2 = 0.3913,

Ψ(Ô1(x1)) =

√
(0.45× 0.6− 0.4900)2 + (0.55× 0.4− 0.4900)2 = 0.3483.
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For Ô2, we have

℘(Ô2(x1)) = 0.25× 0.35 + 0.35× 0.25 + 0.4× 0.4 = 0.3350,

ℑ(Ô2(x1)) = 0.4× 0.55 + 0.6× 0.45 = 0.4900,

Φ(Ô2(x1))

=
√

(0.25× 0.35− 0.3350)2 + (0.35× 0.25− 0.3350)2 + (0.4× 0.4− 0.3350)2

= 0.3913,

Ψ(Ô2(x1)) =

√
(0.4× 0.55− 0.4900)2 + (0.6× 0.45− 0.4900)2 = 0.3483.

Therefore, according to Eq. (6), we can have

dgpnd(Ô1, Ô2)

=
(

1
2 × |0.3350−0.3350|λ+|0.4900−0.4900|λ

2 + 1
2 × |0.3913−0.3913|λ+|0.3483−0.3483|λ

2

)1/λ
= 0.

Moreover, score value λ̄(Ô1(x1)) = ℘(Ô1(x1))−ℑ(Ô1(x1)) = 0.3350− 0.4900 =
−0.1550, accuracy value ℓ(Ô1(x1)) = ℘(Ô1(x1))+ℑ(Ô1(x1)) = 0.3350+0.4900 =
0.8250.

Similarly, λ̄(Ô2(x1)) = −0.1550, ℓ(Ô2(x1)) = 0.8250.

Remark 1. Although dgpnd(Ô1, Ô2) = 0 and Ô1, Ô2 have the same score and

accuracy values, Ô1 and Ô2 are different PDHFSs. Therefore, ∂̂1 = ∂̂2 may be
∂̂1 ∼ ∂̂2 in the conditional reflexivity (D2) of Definition 6. We need to propose
new distance measures to improve the above defect.

3. Novel distance measures of PDHFSs

Since the conditions for equality of two PDHFSs are too strict, weak equality
is constructed by relaxing these conditions appropriately. Then, we develop
some novel notes and four-parameter generalized distance measures. Excellent
properties of distance measures are discussed. Note that all values in PDHFEs
are assumed to be in ascending order. The notations used in this section are
explained in Table 2.

Definition 8. Let Ô1 and Ô2 be two PDHFSs. For any xi ∈ X, score function
λ̄(Ô1(xi)) = λ̄(Ô2(xi)) , accuracy function ℓ(Ô1(xi)) = ℓ(Ô2(xi)) and γ1j = γ2j,
η1j = η2j. Then we call Ô1 and Ô2 week equality, denoted by Ô1=

w Ô2.

Definition 9. Let X = {x1, x2..., xn} be a fixed set, ∂̂= ⟨G|p, κ|q⟩ be a PDHFE
on X.

(1) The consistencies of membership and non-membership degrees are defined
as:

ι(∂̂) =

∣∣∣∣ 1

#G

∣∣∣∣
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Table 2: Notations interpretation II

Notations Details Notations Details

ι(∂̂), ι(Ô(xi))
consistencies of

membership degree
ζ(∂̂), ζ(Ô(xi))

consistencies of
non-membership degree

T(∂̂),T(Ô(xi))
probabilistic fuzziness
of membership degree

Υ(∂̂),Υ(Ô(xi))
probabilistic fuzziness
of non-membership

degree

ι(xi), ζ(xi) consistency distances T(xi),Υ(xi)
probabilistic fuzziness

distances
θ(xi), ψ(xi) Hausdorff distances λ distance parameter
a, b, c, e parameters ωi weight

ζ(∂̂) =

∣∣∣∣ 1

#κ

∣∣∣∣
Our subjective perception is that the more elements in PDHFE, the less

consistent. For example, the maximum consistency is achieved when #G = 1 or
#κ = 1. As the numbers #G and #κ increase, the consistency of ι(∂̂) and ζ(∂̂)
decreases.

(2) The probabilistic fuzziness for membership and non-membership degrees as:

T(∂̂) =
1

#G

#G∑
j=1

(1− 2 |pj − 0.5|)γj ,

Υ(∂̂) =
1

#κ

#κ∑
j=1

(1− 2 |qj − 0.5|)ηj ,

when probability pj = 0.5 or qj = 0.5, the opinions of DMs are most uncertain

and have high ambiguity. On the contrary, the probabilistic fuzziness T(∂̂) or
Υ(∂̂) decreases when probability moves away from 0.5.

Definition 10. Let Ô1 = {⟨xi,G1(xi)|p1(xi), κ1(xi)|q1(xi)⟩ |xi ∈ X} and Ô2 =
{⟨xi,G2(xi)| p2(xi), κ2(xi)|q2(xi)⟩ |xi∈X} be two PDHFSs on X={x1, x2, ..., xn}.
We give some definitions between Ô1 and Ô2:

(1) The consistency distances between Ô1 and Ô2:

ι(xi) =
∣∣∣ι(Ô1(xi))− ι(Ô2(xi))

∣∣∣ = ∣∣∣∣ 1

#G1
− 1

#G2

∣∣∣∣ ,
ζ(xi) =

∣∣∣ζ(Ô1(xi))− ζ(Ô2(xi))
∣∣∣ = ∣∣∣∣ 1

#κ1
− 1

#κ2

∣∣∣∣ .
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(2) The probabilistic fuzziness distances between Ô1 and Ô2:

T(xi) =
∣∣∣T(Ô1(xi))− T(Ô2(xi))

∣∣∣
=

∣∣∣∣∣∣ 1

#G1

#G1∑
j=1

(1− 2 |p1j − 0.5|)γ1j −
1

#G2

#G2∑
t=1

(1− 2 |p2t − 0.5|)γ2t

∣∣∣∣∣∣ ,
Υ(xi) =

∣∣∣Υ(Ô1(xi))−Υ(Ô2(xi))
∣∣∣

=

∣∣∣∣∣∣ 1

#κ1

#κ1∑
j=1

(1− 2 |q1j − 0.5|)η1j −
1

#κ2

#κ2∑
t=1

(1− 2 |q2t − 0.5|)η2t

 .

(3) The Hausdorff distances between Ô1 and Ô2:

θ(xi) = θ
(
Ô1(xi), Ô2(xi)

)
= max{ max

γ1j∈G1

min
γ2t∈G2

∥γ1j − γ2t∥ p1jp2t,

max
γ2t∈G2

min
γ1j∈G1

∥γ1j − γ2t∥ p1jp2t},

ψ(xi) = ψ
(
Ô1(xi), Ô2(xi)

)
= max{ max

η1j∈κ1

min
η2t∈κ2

∥η1j − η2t∥ q1jq2t,

max
η2t∈κ2

min
η1j∈κ1

∥η1j − η2t∥ q1jq2t}.

Note that, ∥∗∥ denotes Euclidean distance from one γ1j(η1j) of Ô1(xi) to another
γ2t(η2t) ∈ Ô2(xi).

(4) The mean distances between Ô1 and Ô2:

℘(xi) =
∣∣∣℘(Ô1(xi))− ℘(Ô2(xi))

∣∣∣ =
∣∣∣∣∣∣
#G1∑
j=1

γ1jp1j −
#G2∑
t=1

γ2tp2t

∣∣∣∣∣∣ ,
ℑ(xi) =

∣∣∣ℑ(Ô1(xi))−ℑ(Ô2(xi))
∣∣∣ =

∣∣∣∣∣∣
#κ1∑
j=1

η1jq1j −
#κ2∑
t=1

η2tq2t

∣∣∣∣∣∣ .
We can define a generalized distance measure between PDHFSs based on

the above results.

Definition 11. Let Ô1 and Ô2 be two PDHFSs on X, the following four-
parameter generalized distance between Ô1 and Ô2 is proposed:

dpgdh(Ô1, Ô2) =

[
1

n

n∑
i=1

(
a
ι(xi) + ζ(xi)

2

+ b
T(xi) + Υ(xi)

2
+ c

θ(xi) + ψ(xi)

2
+ e

℘(xi) + ℑ(xi)
2

)λ]1/λ
,(7)
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where λ ≥ 1, λ ∈ R, 0 < a, b, c, e < 1 and a+ b+ c+ e = 1.

Definition 12. Let Ô1, Ô2 and Ô3 be three PDHFSs. dpgdh is a distance mea-
sure if dpgdh satisfies the following conditions:

(D1) 0 ≤ dpgdh(Ô1, Ô2) ≤ 1 (boundedness);

(D2) dpgdh(Ô1, Ô2) = 0 ⇔ Ô1=
w Ô2 (conditional reflexivity);

(D3) dpgdh(Ô1, Ô2) = dpgdh(Ô2, Ô1) (symmetric);

(D4) dpgdh(Ô1, Ô3) ≤ dpgdh(Ô1, Ô2) + dpgdh(Ô2, Ô3) (triangle inequality).

Theorem 1. dpgdh is a distance measure between PDHFSs and satisfies the four
properties of Definition 12.

Example 2. We use the data from Example 1, let a = b = c = e = 1
4 ,λ=1, we

have ι(x1) = |13 − 1
3 | = 0, ζ(x1) = |12 − 1

2 | = 0,

T(x1) =

∣∣∣∣∣∣∣∣∣∣∣∣

1
3

 (1− 2 |0.35− 0.5|) 0.25
+ (1− 2 |0.25− 0.5|) 0.35
+ (1− 2 |0.4− 0.5|) 0.4


−1

3

 (1− 2 |0.35− 0.5|) 0.25
+ (1− 2 |0.25− 0.5|) 0.35
+ (1− 2 |0.4− 0.5|) 0.4



∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

Υ(x1) =

∣∣∣∣∣∣∣∣
1
2

(
(1− 2 |0.6− 0.5|) 0.45
+ (1− 2 |0.4− 0.5|) 0.55

)
−1

2

(
(1− 2 |0.55− 0.5|) 0.4
+ (1− 2 |0.45− 0.5|) 0.6

)
∣∣∣∣∣∣∣∣ = 0.0500,

θ(x1) =

{
maxγMj∈GM

{
min {0, 0, 0} ,min {0, 0, 0}

}
,

maxγNj∈GN

{
min {0, 0, 0} ,min {0, 0, 0}

} }
=0,

ψ(x1) =

{
maxγMj∈hM

{
min {0.0165, 0.0405} ,min {0.033, 0.009}

}
,

maxγNj∈hN

{
min {0.0165, 0.033} ,min {0.0405, 0.009}

} }
= 0.0165,

℘(x1) =

∣∣∣∣ (0.25× 0.35 + 0.35× 0.25 + 0.4× 0.4)
− (0.25× 0.35 + 0.35× 0.25 + 0.4× 0.4)

∣∣∣∣ = 0,

ℑ(x1) =
∣∣ (0.45× 0.6 + 0.55× 0.4)− (0.4× 0.55 + 0.6× 0.45)

∣∣ = 0,

According to Eq. (7), the distance dpgdh(Ô1, Ô2) is

dpgdh(Ô1, Ô2) =
1

4
× 0 + 0.0500

2
+

1

4
× 0 + 0

2
+

1

4
× 0 + 0.0165

2
+

1

4
× 0 + 0

2
= 0.0083.

Remark 2. It is clear that Ô1 and Ô2 are distinct PDHFSs, which is confirmed
by Example 2. Compared with the distance measure in [18], the new generalized
distance measure dpgdh can distinguish PDHFSs better.



APPLICATION OF NEW DISTANCE AND ENTROPY MEASURES ... 229

If we consider the weight of xi ∈ X (i = 1, 2, ..., n), a generalized weighted
distance measure with preferences for PDHFS as:

dgwpdh(Ô1, Ô2) =

[ n∑
i=1

ωi

(
a
ι(xi) + ζ(xi)

2

+ b
T(xi) + Υ(xi)

2
+ c

θ(xi) + ψ(xi)

2
+ e

℘(xi) + ℑ(xi)
2

)λ]1/λ
,(8)

where λ ≥ 1, ωi is the weight of xi ∈ X, with ωi ∈ [0, 1] and
∑n

i=1 ωi = 1.

Remark 3. If ωi =
1
n , then dgwpdh can be simplified to dpgdh.

Definition 13. Let Ô1 and Ô2 be two PDHFSs on X. The generalized weighted
similarity measure is defined as:

(9) Sgwpdh(Ô1, Ô2) = 1− dgwpdh(Ô1, Ô2).

Definition 14. Let Ô1 and Ô2 be two PDHFSs, if Sgwpdh(Ô1, Ô2) satisfies three
properties as follows:

(S1) 0 ≤ Sgwpdh(Ô1, Ô2) ≤ 1 (boundedness);

(S2) Sgwpdh(Ô1, Ô2) = 1 ⇔ Ô1=
w Ô2 (conditional reflexivity);

(S3) Sgwpdh(Ô1, Ô2) = Sgwpdh(Ô2, Ô1) (symmetric),

then we call Sgwpdh(Ô1, Ô2) the similarity measure for PDHFSs.

Theorem 2. Sgwpdh is a similarity measure of PDHFS and satisfies the three
properties in Definition 14.

4. Entropy measure of PDHFS

Entropy is crucial in measuring the uncertainty of PDHFSs. This section pro-
poses a new entropy measure, and the properties are discussed.

Let ∂̂ = (G|p, κ|q) be a PDHFE. [18] defines the mean of hesitant degree.

Θ(∂̂) = 1− ℘(∂̂)−ℑ(∂̂) = 1−
#G∑
j=1

γjpj −
#κ∑
j=1

ηjqj .

Definition 15. Let ∂̂ = (G|p, κ|q), ∂̂1 = (G1|p1, κ1|q1) and ∂̂2 = (G2|p2, κ2|q2)
be three PDHFEs. A mapping Ξ : PDHFEs(X) → [0, 1], claiming that Ξ is an
entropy and satisfies the following properties:

(E1) Ξ(∂̂) = 0 (minimum) ⇔ ∂̂ = ({0 |1} , {1 |1}) or ∂̂ = ({1 |1} , {0 |1});

(E2) Ξ(∂̂) = 1 (maximum) ⇔ ℘(∂̂) = ℑ(∂̂);
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(E3) Ξ(∂̂) = Ξ(∂̂c);

(E4) Ξ(∂̂2) ≥ Ξ(∂̂1), if ℘(∂̂2) ≥ ℑ(∂̂2) , there have ℘(∂̂1) ≥ ℘(∂̂2), ℑ(∂̂2) ≥
ℑ(∂̂1); or ℘(∂̂2) ≤ ℑ(∂̂2) , there have ℘(∂̂1) ≤ ℘(∂̂2), ℑ(∂̂2) ≤ ℑ(∂̂1).

Definition 16. Let ∂̂ be a PDHFE, we give the following definition of entropy:

(10) Ξ(∂̂) = 1− sin

∣∣∣∣∣℘(∂̂)−ℑ(∂̂)
2(1 + Θ(∂̂))

π

∣∣∣∣∣ .
Theorem 3. Ξ is an entropy measure for PDHFEs and satisfies the four axioms
in Definition 15.

Naturally, let Ô = {⟨xi,G(xi)|p(xi), κ(xi)|q(xi) |xi ∈ X⟩} be a PDHFS on
X. The entropy Ξ(Ô) for PDHFSs is as follows:

(11) Ξ(Ô) =
1

n

n∑
i=1

(
1− sin

∣∣∣∣∣℘(Ô(xi))−ℑ(Ô(xi))

2(1 + Θ(Ô(xi)))
π

∣∣∣∣∣
)
.

5. Applications and comparisons

Solid theoretical support is involved in solving practical problems. In Subsec-
tion 5.1, an example of wood recognition demonstrates the proposed method’s
effectiveness. In Subsection 5.2, VIKOR-based multi-criteria decision-making
technology is developed and applied to the example of a multinational company
launching new products. The practicability of the proposed method is explained
in parameter analysis and comparative analysis. The studied contributions are
summarized in Subsection 5.3.

5.1 Application of the proposed method in pattern recognition

Wood recognition is taken as an example to display the application of new
distance measures. The new entropy is used as a technique to derive attribute
weights. Moreover, the developed method is compared with the method in [18].
The steps of pattern recognition are as follows:

Step 1. Obtain a PDHFS matrix L = (Lij)n×m from the evaluation of DMs,
then standardize the PDHFS matrix.

Li =

{
⟨G|p, κ|q⟩ , for any benefit criterion Ci,

⟨κ|q,G|p⟩ , for any cost criterion Ci.

Step 2. Calculate the attribute weights ω(xi) by Eq. (12).

(12) ω(Ci) =
1− Ξ(Ci)

n−
∑n

i=1 Ξ(Ci)
,
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where

Ξ(Ci) =
1

m

m∑
j=1

Ξ(Lj(Ci)),

Ξ(Lj(Ci)), (i = 1, 2, ..., n), (j = 1, 2, ...,m) can be determined by Eq. (10).
Step 3. Calculate the distance dgwpdh between PDHFSs by Eq. (8).
Step 4. Sort the patterns based on calculation results. The shorter the distance,
the closer the pattern.

Example 3. When enterprises use building wood, they to identify the classifica-
tion of wood to maximize production benefits. The main characteristics of wood
include: C1: sound insulation performance, C2: processability and C3: corro-
sion resistance. There are three standard classifications of wood: Ôj(j = 1, 2, 3).
Now, the classification of wood N needs to be recognized. The PDHFS infor-
mation for Ôj(j = 1, 2, 3) and M is provided in Table 3.

Table 3: The PDHFSs information

C1 C2 C3

Ô1

(
{0.2|0.7, 0.4|0.3} ,
{0.4|0.6, 0.5|0.4}

)(
{0.55|0.8, 0.65|0.2} ,
{0.2|0.5, 0.1|0.5}

) (
{0.1|0.45, 0.3|0.55} ,
{0.5|0.5, 0.65|0.5}

)
Ô2

(
{0.6|0.2, 0.7|0.8} ,
{0.2|0.2, 0.3|0.8}

) (
{0.7|1} ,

{0.2|0.8, 0.3|0.2}

) (
{0.1|0.4, 0.4|0.6} ,
{0.4|0.7, 0.6|0.3}

)
Ô3

(
{0.6|1} ,

{0.1|0.4, 0.3|0.6}

) (
{0.5|0.3, 0.6|0.7} ,

{0.3|1}

) (
{0.2|0.3, 0.4|0.3, 0.5|0.4} ,

{0.4|0.5, 0.5|0.5}

)
M

(
{0.2|0.6, 0.3|0.4} ,
{0.4|0.5, 0.5|0.5}

) (
{0.5|0.4, 0.6|0.6} ,
{0.1|0.45, 0.2|0.55}

) (
{0.2|0.4, 0.3|0.6} ,
{0.6|0.7, 0.65|0.3}

)

Step 1. All attributes are beneficial, so there is no need to be standardized.

Step 2. According to Eqs. (12) and (5.1), we have

Ξ(C1) = 0.6601, Ξ(C2) = 0.6838, Ξ(C2) = 0.6381,

ω(C1) = 0.3339, ω(C2) = 0.3106, ω(C1) = 0.3555.

Step 3. The distance between Ôj(j = 1, 2, 3) and M is calculated according to
Eq. (8), as shown in Table 4, where a = b = c = e = 1

4 .

Step 4. When λ ∈ [1, 20], all the sorting results are d(Ô1,M) < d(Ô2,M) <
d(Ô3,M).

Table 4 and Fig. 1 show that the distance between Ôj(j = 1, 2, 3) and
M increases as λ increases from 1 to 20. This result is that M belongs to
Ô1. Furthermore, the ranking order remains the same, that is, d(Ô1,M) <
d(Ô2,M) < d(Ô3,M) .
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Table 4: The ranking for different values of λ

d(Ô1,M) d(Ô2,M) d(Ô3,M) Ranking

λ = 1 0.0545 0.1142 0.1450 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)

λ = 2 0.0602 0.1262 0.1586 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)

λ = 6 0.0747 0.1435 0.1944 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)

λ = 10 0.0799 0.1482 0.2084 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)

λ = 15 0.0827 0.1508 0.2161 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)

λ = 20 0.0841 0.1524 0.2201 d(Ô1,M) < d(Ô2,M) < d(Ô3,M)
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Figure 1: Distance between Ôj and M with λ ∈ [1, 20]

Remark 4. The results using Eq. (6) [18] also show that M belongs to Ô1,
but the ranking is d(Ô1,M) < d(Ô3,M) < d(Ô2,M). Such a difference can
be attributed to our consideration of weak equality. The new measure can
identify different PDHFSs better so that the data information expression is
comprehensive and valid.

5.2 Application in VIKOR-based multi-criteria decision-making

5.2.1 VIKOR-based multi-criteria decision-making

VIKOR (Serbian name: Vise Kriterijumski Optimizacioni Resenje) is general-
ized from the ensemble function Lp-metric [35]. The compromise solution ob-
tained by VIKOR considers the situation in which conflicting attributes cannot
be satisfied simultaneously, and the decision is made through mutual conces-
sions. The classical TOPSIS technique only considers the distances from al-
ternatives to positive/negative ideal solutions, while VIKOR maximizes group
utility between attributes and minimizes individual regret utility. VIKOR tech-
nology is extended to fuzzy environments, such as intuitional fuzzy VIKOR [4],
hesitant fuzzy VIKOR [13], hesitant fuzzy linguistic VIKOR [14], etc. Ren et al.
[22] proposed a decision technique of integrated VIKOR and the Analytic Hier-
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archy Process (AHP) for PDHFSs. Based on this, we develop a VIKOR-based
MCDM technique. The detailed steps are as follows:

Step 1. Get the MCDM matrix R = (ρij)n×m. The alternatives Mj(j =
1, 2, ...,m) are evaluated by DMs, where Mj have n attributes.

Step 2. Determine the ρ∗i (best evaluation information) and ρ−i (worst evalua-
tion information) for attributes Ci adopting Eqs. (4-5) and standardize.

ρ∗i =

{
maxj=1,2,..,m{ρij}, for any benefit criterion Ci

minj=1,2,..,m{ρij}, for any cost criterion Ci

ρ−i =

{
minj=1,2,..,m{ρij}, for any benefit criterion Ci

maxj=1,2,..,m{ρij}, for any cost criterion Ci

Step 3. Calculate the maximum group utility measure Gj and the individual
regret measure Ij by Eqs. (13) and (14), where ωi is the relevant weight of
attributes Ci. d (ρ

∗
i , ρij) and d

(
ρ∗i , ρ

−
i

)
is given by Eq. (7).

(13) Gj =
n∑

i=1

ωid (ρ
∗
i , ρij)

/
d
(
ρ∗i , ρ

−
i

)
,

(14) Ij = max
i

[
ωid (ρ

∗
i , ρij)

/
d
(
ρ∗i , ρ

−
i

)]
,

where ωi ∈ [0, 1] and
∑n

i=1 ωi = 1.

Step 4. Calculate Vj by Eq. (15).

(15) Vj = θ
(Gj −G∗)

(G− −G∗)
+ (1− θ)

(Ij − I∗)

(I− − I∗)
,

where G− = maxj Gj , G
∗ = minj Gj , I

− = maxj Ij and I∗ = minj Ij . θ is a
parameter, let θ = 0.5.

Step 5. Sort the Gj , Ij and Vj in ascending order.

Step 6. M (1) is an optimal solution if it satisfies the following three conditions:

Condition 1: M (1) has the first minimum in Vj(j = 1, 2, ...m).

Condition 2: V
(
M (2)

)
−V

(
M (1)

)
≥ 1

m−1 , whereM (2) has the second minimum
in Vj .

Condition 3: M (1) has the first minimum in Gj or Ij .

If conditions 2 and 3 cannot be met simultaneously, go to step 7.

Step 7. If the Condition 2 isn’t met. M (§) satisfies V
(
M (§))−V (M (1)

)
< 1

m−1 ,

M (1) is an optimal solution, and M (2),M (3), ...,M (§) are compromise solutions.
If the Condition 3 isn’t met. M (1) is an optimal solution, and M (2) is a com-
promise solution.
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5.2.2 Launching new products by a multinational corporation

Example 4. [[7]]A multinational company wants to launch new products ac-
cording to consumer buying behaviour. Thus, experts from three countries
visited the available information about four productsMj(j = 1, 2, 3, 4) based on
consumer purchasing behavior. There are four attributes of consumer buying
behaviour: C1: suitable cultural environment, C2: conform to global trends,
C3: suitable weather and C4: excellent after-sales service. The evaluation infor-
mation of experts is shown in Table 5. Let weights ω = (0.4385, 0.1986, 0.1815,
0.1814), λ= 1, and a = b = c = e = 1

4 .

Table 5: The comprehensive PDHFSs matrix

C1 C2 C3 C4

M1

 {
0.2|0.1333, 0.3|0.3667,
0.5|0.1667, 0.75|0.3333

}
{0.2|0.3333,0.4|0.6667}




{
0.2|0.3333,0.45|0.14,
0.5|0.3333, 0.6|0.1934

}
{

0.2|0.3, 0.3|0.2,
0.5|0.1667, 0.7|0.3333

}



{

0.2|0.3333, 0.3|0.3334,
0.9|0.3333,

}
{

0.1|0.3333, 0.4|0.2667,
0.6|0.4

}
 (

{0.6|0.9, 0.7|0.1} ,
{0.25|0.3333,0.3|0.6667}

)

M2

 {
0.2|0.3333, 0.6|0.2334,
0.8|0.4333

}
,

{0.1|0.6667, 0.7|0.3333}

  {0.2|0.5,0.3|0.5} ,{
0.15|0.1667, 0.2|0.1667,
0.6|0.3333, 0.7|0.3333

} 


{
0.2|0.3334, 0.6|0.3333,
0.9|0.3333

}
,{

0.1|0.6667,0.2|0.1667,
0.6|0.1666

}


 {0.2|0.4333, 0.3|0.5667} ,{
0.5|0.1333, 0.6|0.5333,
0.8|0.3333

} 

M3


 0.05|0.2334, 0.2|0.1,

0.4|0.1333, 0.5|0.2,
0.9|0.3333

 ,

{0.1|0.3333, 0.5|0.6667}




{
0.45|0.3333, 0.5|0.3333,
0.6|0.3334

}
,{

0.1|0.1666, 0.2|0.1667,
0.5|0.6667

}


 {0.6|0.3333, 0.8|0.6667} ,{
0.1|0.1, 0.15|0.3333,
0.2|0.5666

} 


{
0.1|0.3333, 0.12|0.3333,
0.2|0.3334

}
,{

0.6|0.2333, 0.7|0.3,
0.8|0.4667

}


M4


{

0.3|0.2333, 0.4|0.4,
0.5|0.3667

}
,{

0.2|0.1667, 0.3|0.5,
0.4|0.2, 0.5|0.1333

}



{

0.1|0.3334, 0.2|0.1333,
0.5|0.5333

}
,{

0.2|0.1, 0.3|0.2667,
0.4|0.3, 0.8|0.3333

}


 {
0.3|0.6667, 0.4|0.0333,
0.5|0.3

}
,

{0.3|0.6667, 0.65|0.3333}




{
0.35|0.3334, 0.4|0.3333,
0.5|0.3333

}
,{

0.2|0.1, 0.4|0.2334,
0.6|0.6666

}


Step 1. The MCDM matrix R = (ρij)n×m is represented in Table 5.

Step 2. All attributes are beneficial. According to Eqs. (4) and (5), we have

ρ∗i =



〈
{0.2|0.3333, 0.6|0.2334, 0.8|0.4333} ,
{0.1|0.6667, 0.7|0.3333}

〉
〈

{0.45|0.3333, 0.5|0.3333, 0.6|0.3334} ,
{0.1|0.1666, 0.2|0.1667, 0.5|0.6667}

〉
,〈

{0.6|0.3333, 0.8|0.6667} ,
{0.1|0.1, 0.15|0.3333, 0.2|0.5666}

〉
,

⟨{0.6|0.9, 0.7|0.1} , {0.25|0.3333, 0.3|0.6667}⟩



ρ−i =



〈
{0.3|0.2333, 0.4|0.4, 0.5|0.3667} ,
{0.2|0.1667, 0.3|0.5, 0.4|0.2, 0.5|0.1333}

〉
,〈 {0.2|0.5, 0.3|0.5}

,

{
0.15|0.1667, 0.2|0.1667,
0.6|0.3333, 0.7|0.3333

} 〉
〈

{0.3|0.6667, 0.4|0.0333, 0.5|0.3} ,
{0.3|0.6667, 0.65|0.3333}

〉
,〈

{0.1|0.3333, 0.12|0.3333, 0.2|0.3334} ,
{0.6|0.2333, 0.7|0.3, 0.8|0.4667}

〉


.
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Step 3. Compute the values of d
(
ρ∗i , ρ

−
i

)
and d (ρ∗i , ρij) according to Eq. (7).

The values of Gj and Ij are derived by Eqs. (13) and (14), and the full results
are presented in Table 6.

Take product M1 as an example, there is

d
(
ρ∗1, ρ

−
1

)
=

(∣∣1
3 − 1

3

∣∣+ ∣∣12 − 1
4

∣∣)
8

+
(|0.3689− 0.3022|+ |0.2666− 0.1650|)

8

+
(0.0477 + 0.0667)

8
+

(|0.5533− 0.4133|+ |0.3000− 0.3300|)
8

= 0.0878.

Similarly,

d
(
ρ∗2, ρ

−
2

)
= 0.1123, d

(
ρ∗3, ρ

−
3

)
= 0.1708, d

(
ρ∗4, ρ

−
4

)
= 0.2231,

d (ρ∗1, ρ11) = 0.0876, d (ρ∗2, ρ21) = 0.1481, d (ρ∗3, ρ31) = 0.1772,

d (ρ∗4, ρ41) = 0.

We can get

G1 =

4∑
i=1

ωid (ρ
∗
i , ρi1)

/
d
(
ρ∗i , ρ

−
i

)
= 0.4385× 0.0876

0.0878
+ 0.1986× 0.1481

0.1123
+ 0.1815× 0.1772

0.1708
+ 0.1814× 0

0.2231
= 0.8875,

I1 = max
i

[
ωid (ρ

∗
i , ρi1)

/
d
(
ρ∗i , ρ

−
i

)]
= 0.4372.

Step 4. Calculate the values of Vj according to Eq. (15), where G− =
maxj Gj = 1.1237, G∗ = minj Gj = 0.4775, I− = maxj Ij = 0.5168, I∗ =
minj Ij = 0.1980. So,

V1 = θ
(G1 −G∗)

(G− −G∗)
+ (1− θ)

(I1 − I∗)

(I− − I∗)

= 0.5× 0.8875− 0.4775

1.1237− 0.4775
+ 0.5× 0.6924− 0.1980

0.5168− 0.1980

= 0.6924.

Similarly, V2 = 0, V3 = 0.4321, V4 = 1.

Step 5. Sort Gj , Ij and Vj : G2 < G3 < G1 < G4, I2 < I3 < I1 < I4 and
V2 < V3 < V1 < V4.

Step 6. According to the ordering in Step 5, M2 has the first minimum in Vj ,
V (M3) − V (M2) = 0.4321 ≥ 1

4−1 = 0.3333. M2 has again the minimum in Gj

and Ij . Thus, the optimal product is M2.
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Table 6: The distance of ρ∗i , ρ
−
i , ρij

C1 C2 C3 C4 Gj Ij

ω1 = 0.4385 ω2 = 0.1986 ω3 = 0.1815 ω4 = 0.1814

d (ρ∗i , ρi1) 0.0876 0.1481 0.1772 0 0.8875 0.4372
d (ρ∗i , ρi2) 0 0.1123 0.0644 0.1772 0.4775 0.1980
d (ρ∗i , ρi3) 0.0711 0 0 0.0912 0.6203 0.4031
d (ρ∗i , ρi4) 0.0912 0.0854 0.1951 0.1297 1.1237 0.5168
d
(
ρ∗i , ρ

−
i

)
0.0878 0.1123 0.1708 0.2231 – –

5.2.3 Parameter analysis

We analyze the influence of distance parameters (a, b, c, e) on decision. First,
set (a, b, c, e) to (0.2, 0.3, 0.3, 0.2), (0.2, 0.4, 0.2, 0.2), (0.3, 0.5, 0.1, 0.1) and (0.4,
0.1, 0.1, 0.4) randomly without changing the other parameters. The results are
shown in Table 7.
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Figure 2: Values of Mj under parameters (a, b, c, e)

Table 7 and Fig.2 illustrate that the optimal product is M2. However, when
(a, b, c, e) = (0.4, 0.1, 0.1, 0.4), the optimal product is M2, followed by M3. Sup-
pose the company has the strength to support both products. It may launch
M2 and M3. From the actual situation, consumer demand for products may
differ due to cultural differences between countries. Therefore, the results ob-
tained in this paper are reasonable. Furthermore, the proposed method can set
appropriate parameters according to the actual situations, with stability and
practicality.

5.2.4 Comparative analysis

Our method is compared with three methods: the probabilistic dual hesitant
fuzzy ordered weighted Einstein averaging (PDHFOWEA) operator [7], the
probabilistic dual hesitant fuzzy weighted average (PDHFWA) operator in [8],
and distance measure dgpnd in [18]. The results are given in Table 8.

The PDHFWA operator [8] calculates that the best product is M2, con-
sistent with our result. The PDHFOWEA operator [7] represents that M3 is
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Table 7: The ranking result with different parameter a, b, c, e

Gj Ij Vj Ranking

(a, b, c, e) = (0.2, 0.3, 0.3, 0.2)

M1 0.9177 0.4464 0.9551
M2 0.4152 0.1986 0 M2 ≻M3 ≻M1 ≻M4

M3 0.5585 0.3736 0.4725
M4 0.9390 0.4593 1

(a, b, c, e) = (0.2, 0.4, 0.2, 0.2)

M1 0.8940 0.4537 0.9165
M2 0.4132 0.1986 0 M2 ≻M3 ≻M1 ≻M4

M3 0.5940 0.4080 0.5574
M4 0.9616 0.4654 1

(a, b, c, e) = (0.3, 0.5, 0.1, 0.1)

M1 0.7708 0.3903 0.6657
M2 0.4113 0.1986 0 M2 ≻M3 ≻M1 ≻M4

M3 0.6090 0.4212 0.5822
M4 0.9872 0.4697 1

(a, b, c, e) = (0.4, 0.1, 0.1, 0.4)

M1 0.8167 0.4135 0.8772
M2 0.4019 0.1986 0 M2 ≻M3 ≻M1 ≻M4

M3 0.4893 0.3070 0.3132
M4 0.8730 0.4445 1

Table 8: Comparison of existing methods

References Method Ranking

[7] PDHFOWEA M3 ≻M1 ≻M2 ≻M4

[18] dgpnd M1 ≻M2 ≻M3 ≻M4

[8] PDHFWA M2 ≻M3 ≻M1 ≻M4

Our devised method dpgdh M2 ≻M3 ≻M1 ≻M4

the best product. M1 is the optimal product of dgpnd [18]. Different MCDM
methods have their advantages in the fuzzy environment, respectively. Our pro-
posed method considers the importance of overall balance and extreme data,
but PDHFOWEA and PDHFWA operators pay more attention to the overall
balance. dgpnd [18] only considers the mean and standard deviation of PDHFSs.
However, our proposed method considers the influence of consistency and proba-
bilistic fuzziness of PDHFSs, expressing the hidden data information. With the
support of weak equality, the measurement results are more reasonable. There-
fore, compared with existing methods, the novel method is comprehensive and
superior in processing MCDM problems.
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5.3 The contribution to previous studies

This paper’s theoretical results and applications are relatively outstanding com-
pared to previous research.

Theoretically, weak equality is a new definition between similarity and equal-
ity. Secondly, the proposed distance measures are taken as a combination of
consistency, probabilistic fuzziness, Hausdorff distance and mean. They are
an extension of partially existing research. Moreover, the proposed distance
measures satisfy triangular inequality, and this property is only found in a few
results. New entropy is relatively simple to calculate and provides a tool for
determining attribute weights.

For applications, the distance measures are suitable for dealing with unequal-
length data. They also have good applicability when compared with existing
studies. Weak equality relaxes the constraint on set equality, allowing for a
broader application. These comparisons of several examples show that our ap-
proach is practical.

6. Conclusion

The different PDHFSs are perfectly equal at zero distance. It is challenging
to guarantee this with existing distance measures. Therefore, we defined weak
equality. Considering some properties of PDHFSs, new distance measures were
proposed and performed well in distinguishing data. We described a similar-
ity measure in conjunction with the correlation between distance and similarity
measures. In addition, we developed a new entropy measure and applied it
to finding attribute weights. Finally, a pattern recognition method with dis-
tance and entropy measures was developed. Moreover, we combined traditional
VIKOR methods with the PDHFS environment to construct a new MCDM tech-
nology. Through comparative analysis and parameter analysis, we verified the
practicality of our proposed methods.

In the future, we will continue to study the weak equality problem of PDHFSs
to achieve complete equality. This question will involve investigating more ad-
vanced techniques to improve the accuracy of our method. Additionally, we
plan to explore the potential of applying distance measures of PDHFSs to other
fields, such as stock risk analysis and medical diagnostics.

Appendix A. The proof of Theorem 1

Lemma 1 ([10]). Let (ξ1, ξ2, ..., ξz), (η1, η2, ..., ηz) ∈ Rz(i = 1, 2, ..., z), and 1 ≤
λ < +∞, then(

z∑
i=1

|ξi + ηi|λ
)1/λ

≤

(
z∑

i=1

|ξi|λ
)1/λ

+

(
z∑

i=1

|ηi|λ
)1/λ

.
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Lemma 2 ([34]). Let Ô1 , Ô2 and Ô3 be three HFSs, then

max
{
maxγ1j∈G1 minγ2t∈G2 ∥γ1j − γ2t∥ ,maxγ2t∈G2 minγ1j∈G1 ∥γ1j − γ2t∥

}
+max {maxγ2t∈G2 minγ3l∈G3 ∥γ2t − γ3l∥ , maxγ3l∈G3 minγ2t∈G2 ∥γ2t − γ3l∥}
≥ max

{
maxγ1j∈G1 minγ3l∈G3 ∥γ1j − γ3l∥ ,maxγ3l∈G3 minγ1j∈G1 ∥γ1j − γ3l∥

}
.

The proof of Theorem 1 is as follows:

Proof. (D1). Using Eq. (2), know that γ, p, η, q ∈ [0, 1] . It is easily obtained
0 ≤ ι(xi), ζ(xi),T(xi),Υ(xi), θ(xi), ψ(xi), ℘(xi),ℑ(xi) ≤ 1. Besides, a+ b+ c+
e = 1, and λ ≥ 1. So , 0 ≤ dpgdh(Ô1, Ô2) ≤ 1

(D2). If dpgdh(Ô1, Ô2) = 0 , from Eq. (7), for any xi ∈ X, we have ι(xi)=0,
ζ(xi) = 0, T(xi)=0,Υ(xi)= 0, θ(xi) = 0, ψ(xi) = 0, ℘(xi) = 0 and ℑ(xi) = 0 ,
then 

1

#G1
=

1

#G2
1

#κ1
=

1

#κ2

,



#G1∑
j=1

γ1jp1j=

#G2∑
t=1

γ2tp2t

#κ1∑
j=1

η1jq1j=

#κ2∑
t=1

η2tq2t

,

maxγ1j∈G1 minγ2t∈G2 ∥γ1j − γ2t∥ p1jp2t = 0 and

max
γ2t∈G2

min
γ1j∈G1

∥γ1j − γ2t∥ p1jp2t = 0,

where the PDHFEs are sorted in ascending order in this article, thus ∥γ1j − γ2j∥ =
0, (j = t). Similarly, ∥η1j − η2j∥ = 0 , we can get{

#G1=#G2

#κ1=#κ2
,

{
γ1j=γ2j

η1j=η2j
.

Besides, for any xi ∈ X , score function λ̄(Ô1(xi)) = λ̄(Ô2(xi)) , accuracy
function ℓ(Ô1(xi)) = ℓ(Ô2(xi)), according to Definition 8, we have Ô1=

w Ô2. If
Ô1=

w Ô2, then dpgdh(Ô1, Ô2) = 0.
(D3). Straightforward.
(D4). By Lemma 2 , we can easily get

max

{
maxγ1j∈G1 minγ2t∈G2 ∥γ1j − γ2t∥ p1jp2t,
maxγ2t∈G2 minγ1j∈G1 ∥γ1j − γ2t∥ p1jp2t

}
+max

{
maxγ2t∈G2 minγ3l∈G3 ∥γ2t − γ3l∥ p2tp3l,
maxγ3l∈G3 minγ2t∈G2 ∥γ2t − γ3l∥ p2tp3l

}
≥ max

{
maxγ1j∈G1 minγ3l∈G3 ∥γ1j − γ3l∥ p1jp3l,
maxγ3l∈G3 minγ1j∈G1 ∥γ1j − γ3l∥ p1jp3l

} ,

then θÔ1Ô2
(xi) + θÔ2Ô3

(xi) ≥ θÔ1Ô3
(xi). Similarly, ψÔ1Ô2

(xi) + ψÔ2Ô3
(xi) ≥

ψÔ1Ô3
(xi).

On the other hand, using Lemma 1 and Eq. (7), we have dpgdh(Q1, Q3) ≤
dpgdh(Q1, Q2) + dpgdh(Q2, Q3).
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Appendix B. The proof of Theorem 2

Proof. This is similar to the proof of property (D1) - (D3) of Theorem 1.

Appendix C. The proof of Theorem 3

Proof. Since Eq. (2), we have ℘(∂̂),ℑ(∂̂) ∈ [0, 1], thus Θ(∂̂) ∈ [0, 1]. Again,∣∣∣℘(∂̂)−ℑ(∂̂)
∣∣∣ ≤ ∣∣∣1 + Θ(∂̂)

∣∣∣ , then 0 ≤
∣∣∣℘(∂̂)−ℑ(∂̂)

1+Θ(∂̂)

∣∣∣ ≤ 1, 0 ≤
∣∣∣∣℘(∂̂)−ℑ(∂̂)

2(1+Θ(∂̂))
π

∣∣∣∣ ≤ π
2 ,

thus 0 ≤ Ξ(∂̂) ≤ 1.

(E1) If Ξ(∂̂) = 0 , then sin
∣∣∣℘(∂̂)−ℑ(∂̂)

2(1+Θ(∂̂))
π
∣∣∣=1 ⇔

∣∣∣℘(∂̂)−ℑ(∂̂)

1+Θ(∂̂)

∣∣∣=1, we can get ℘(∂̂)−

ℑ(∂̂) = 1 + Θ(∂̂) or ℑ(∂̂) − ℘(∂̂) = 1 + Θ(∂̂). Because Θ(∂̂) = 1 − ℘(∂̂) −
ℑ(∂̂), ℘(∂̂),ℑ(∂̂),Θ(∂̂) ∈ [0, 1] , then ℘(∂̂) − ℑ(∂̂) = 2 − ℘(∂̂) − ℑ(∂̂) or ℑ(∂̂) −
℘(∂̂) = 2 − ℘(∂̂) − ℑ(∂̂). We have ℘(∂̂) = 1,ℑ(∂̂)=0 or ℘(∂̂) = 0,ℑ(∂̂)= 1.
Therefore, Ξ(∂̂) = 0 ⇔ ∂̂ = ({0 |1} , {1 |1}) or ∂̂ = ({1 |1} , {0 |1}).
(E2) If Ξ(∂̂) = 1, then sin

∣∣∣℘(∂̂)−ℑ(∂̂)

2(1+Θ(∂̂))
π
∣∣∣= 0 ⇔

∣∣∣℘(∂̂)−ℑ(∂̂)
∣∣∣=0 ⇔ ℘(∂̂) = ℑ(∂̂).

Thus, Ξ(∂̂) = 1 ⇔ ℘(∂̂) = ℑ(∂̂).
(E3) By Definition (1-2), then the following conclusions hold: ℘(∂̂) = ℑ(∂̂c),
ℑ(∂̂) = ℘(∂̂c), Θ(∂̂) = Θ(∂̂c), which means that

Ξ(∂̂c) = 1− sin

∣∣∣∣∣ℑ(∂̂c)− ℘(∂̂c)

2(1 + Θ(∂̂c))
π

∣∣∣∣∣=1− sin

∣∣∣∣∣℘(∂̂)−ℑ(∂̂)
2(1 + Θ(∂̂))

π

∣∣∣∣∣=Ξ(∂̂).

(E4) Let ℘(∂̂2) ≥ ℑ(∂̂2), there have ℘(∂̂1) ≥ ℘(∂̂2), ℑ(∂̂2) ≥ ℑ(∂̂1), then ℘(∂̂1) ≥
ℑ(∂̂1). Here we give a suppose. If

∣∣∣℘(∂̂1)−ℑ(∂̂1)

1+Θ(∂̂1)

∣∣∣ < ∣∣∣℘(∂̂2)−ℑ(∂̂2)

1+Θ(∂̂2)

∣∣∣ , then
[
2− ℘(∂̂2)−ℑ(∂̂2)

] [
℘(∂̂1)−ℑ(∂̂1)

]
<
[
2− ℘(∂̂1)−ℑ(∂̂1)

] [
℘(∂̂2)−ℑ(∂̂2)

]
⇔ ℘(∂̂2)ℑ(∂̂1)− ℘(∂̂1)ℑ(∂̂2) + ℘(∂̂1)− ℘(∂̂2)−ℑ(∂̂1) + ℑ(∂̂2) < 0.

We have

(16)
[
℘(∂̂2)− 1

]
ℑ(∂̂1) +

[
1− ℘(∂̂1)

]
ℑ(∂̂2) + ℘(∂̂1)− ℘(∂̂2) < 0.

Moreover 1− ℘(∂̂1) ≥ 0, ℑ(∂̂2) ≥ ℑ(∂̂1), then

[
℘(∂̂2)− 1

]
ℑ(∂̂1) +

[
1− ℘(∂̂1)

]
ℑ(∂̂2) + ℘(∂̂1)− ℘(∂̂2)

≥
[
℘(∂̂2)− 1

]
ℑ(∂̂1) +

[
1− ℘(∂̂1)

]
ℑ(∂̂1) + ℘(∂̂1)− ℘(∂̂2)

=ℑ(∂̂1)℘(∂̂2)−ℑ(∂̂1)℘(∂̂1) + ℘(∂̂1)− ℘(∂̂2)=
[
℘(∂̂1)− ℘(∂̂2)

] [
1−ℑ(∂̂1)

]
≥ 0.



APPLICATION OF NEW DISTANCE AND ENTROPY MEASURES ... 241

This is contradictory to Eq. (16). Therefore,∣∣∣∣∣℘(∂̂1)−ℑ(∂̂1)
1 + Θ(∂̂1)

∣∣∣∣∣ ≥
∣∣∣∣∣℘(∂̂2)−ℑ(∂̂2)

1 + Θ(∂̂2)

∣∣∣∣∣ .
When ℘(∂̂2) ≤ ℑ(∂̂2) , there is ℘(∂̂1) ≤ ℘(∂̂2), ℑ(∂̂2) ≤ ℑ(∂̂1), similarly∣∣∣∣∣℘(∂̂1)−ℑ(∂̂1)

1 + Θ(∂̂1)

∣∣∣∣∣ ≥
∣∣∣∣∣℘(∂̂2)−ℑ(∂̂2)

1 + Θ(∂̂2)

∣∣∣∣∣ ,
then 0 ≤

∣∣∣∣℘(∂̂2)−ℑ(∂̂2)

2(1+Θ(∂̂2))
π

∣∣∣∣ ≤ ∣∣∣∣℘(∂̂1)−ℑ(∂̂1)

2(1+Θ(∂̂1))
π

∣∣∣∣ ≤ π
2 . Form the monotonicity of the sine

function on the interval
[
0, π2

]
, we can easily obtain

sin

∣∣∣∣∣∣℘(∂̂2)−ℑ(∂̂2)

2
(
1 + Θ(∂̂2)

)π
∣∣∣∣∣∣ ≤ sin

∣∣∣∣∣∣℘(∂̂1)−ℑ(∂̂1)

2
(
1 + Θ(∂̂1)

)π
∣∣∣∣∣∣ ,

then 1− sin

∣∣∣∣℘(∂̂2)−ℑ(∂̂2)

2(1+Θ(∂̂2))
π

∣∣∣∣ ≥ 1− sin

∣∣∣∣℘(∂̂1)−ℑ(∂̂1)

2(1+Θ(∂̂1))
π

∣∣∣∣ . So, Ξ(∂̂2) ≥ Ξ(∂̂1).
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