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1. Introduction

Let C be the complex field. The symbol Cm×n denotes the set of all m × n
complex matrices over C. Let A ∈ Cm×n. The symbol A∗ denotes the conjugate
transpose of A. The notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn} and
N (A) = {x ∈ Cn : Ax = 0} will be used in the sequel. The smallest positive
integer k such that rank (Ak) = rank(Ak+1) is called the index of A ∈ Cn×n and
denoted by ind(A).

*. Corresponding author
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Let A ∈ Cm×n. If a matrix X ∈ Cn×m satisfies

AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA,

then X is called the Moore-Penrose inverse of A ([16, 20]) and denoted by
X = A†. If AXA = A and (AX)∗ = AX holds, then X is called a {1, 3}-
inverse of A and the set of all {1, 3}-inverse of A is denoted by A{1, 3}. If
XAX = X and (XA)∗ = XA holds, then X is called a {2, 4}-inverse of A and
the set of all {2, 4}-inverse of A is denoted by A{2, 4}. Let A,X ∈ Cn×n with
ind (A) = k. The definition of the Drazin inverse is as follows:

AXA = A, XAk+1 = Ak and AX = XA,

then X is called the Drazin inverse of A. It is unique and denoted by AD ([9]).
If ind (A) ⩽ 1, X is called the group inverse of A and denoted by A#.

The core inverse for a complex matrix were introduced by Baksalary and
Trenkler [5]. Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a core inverse of A, if
it satisfies AX = PA and R(X) ⊆ R(A), where PA is the orthogonal projector
onto R(A). And if such a matrix exists, then it is unique (and denoted by A#O).
Baksalary and Trenkler gave several characterizations of the core inverse by
using the decomposition of Hartwig and Spindelböck [12]. Manjunatha Prasad
and Mohana [17] introduced the core-EP inverse of matrix [17, Definition 3.1].
Let A ∈ Cn×n. If there exists X ∈ Cn×n such that XAX = X,R(X) =
R(X∗) = R(Ak), then X is called the core-EP inverse of A. If such inverse
exists, then it is unique and denoted by A �O. The weak group inverse of a
complex matrix was introduced by Wang and Chen in [25], which is the unique
matrix X suck that AX2 = X and AX = A �OA and denoted by X = AwO. The
CMP inverse for a complex matrix was introduced by Mehdipour and Salemi
[18]. Let A ∈ Cn×n. Mehdipour and Salemi [18] introduced the CMP inverse of
A by using the core part A1 of A and the Moore-Penrose inverse A† of A. The
CMP inverse of A is a matrix X ∈ Cn×n such that the following equations hold:

XAX = X, AXA = A1, AX = A1A
† and XA = A†A1.

Such matrix X is unique and denoted by Ac,†. The CMP inverse can be re-
garded as a tool to study the core part of the core-nilpotent decomposition of a
matrix. The concept of the MPCEP-inverse of a Hilbert space operators was ini-
tially introduced by Chen, Mosić and Xu [8] and this concept was expanded on
quaternion matrices by Kyrchei, Mosić and Stanimirović [13, 14]. Let A ∈ Cn×n

with ind (A) = k. If there exists a matrix X ∈ Cn×n such that

XAX = X, AX = AA �O and XA = A†AA �OA

then, X is called the MPCEP-inverse of A and denoted by A†, �O. The MPWC
inverse of A was introduced by Liu, Miu and Jin [15] by using the weak group
inverse of A and denoted by A◦. Moreover, several characterizations of different
generalized inverses along the core parts of three matrix decompositions can be
found in [7].
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2. Some matrix inverses based on the generalized inverses of ΣK

Every matrix A ∈ Cn×n of rank r can be represented in the form

(1) A = U

[
ΣK ΣL
0 0

]
U∗,

where U ∈ Cn×n is unitary, Σ = σ1Ir1 ⊕ σ2Ir2 ⊕ · · · ⊕ σtIrt is the diagonal
matrix of the nonzero singular values of A, where σ1 > σ2 > · · · > σt > 0,
r1 + · · ·+ rt = r, and K ∈ Cr×r and L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir.

The decomposition in (1) is known as the Hartwig-Spindelböck decomposition
[12].

The B-T inverse of A was introduced by Baksalary and Trenkler [6, Defini-
tion 1], which is the Moore-Penrose of A2A† and denoted by A⋄. One can see
that the B-T inverse of A is an outer inverse of A ([6, Corollary]). The B-T in-
verse can be characterized by the Moore-Penorse inverse of ΣK ([6, Lemma 2]),
that is the B-T inverse of A is

(2) A⋄ = U

[
(ΣK)† 0

0 0

]
U∗.

Lemma 2.1 ([12, Corollary 6(a)]). Let A ∈ Cn×n be represented as in (1).
Then A is group invertible if and only if K is nonsingular.

Lemma 2.2 ([4, p2799 (1.4)]). Let A ∈ Cn×n be represented as in (1). Then

(3) A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗.

By Lemma 2.1 and Lemma 2.2, we have the following proposition.

Proposition 2.1. Let A ∈ Cn×n be represented as in (1) and be group invertible.
Then

(4) A† = U

[
(K∗K)(ΣK)−1 0
(L∗K)(ΣK)−1 0

]
U∗.

Proof. By Lemma 2.2, we have

(5) A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗.

The condition A is group invertible gives K is nonsingular by Lemma 2.1, thus

A† = U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗ = U

[
K∗KK−1Σ−1 0
L∗KK−1Σ−1 0

]
U∗

= U

[
(K∗K)(K−1Σ−1) 0
(L∗K)(K−1Σ−1) 0

]
U∗

= U

[
(K∗K)(ΣK)−1 0
(L∗K)(ΣK)−1 0

]
U∗.

(6)
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There are three generalizations of the Proposition 2.1, that is, the CMP
inverse, MPWC inverse and MPCEP inverse.

Lemma 2.3 ([18, p.3 (7)]). Let A ∈ Cn×n be represented as in (1) with
ind (A) = k. Then

(7) Ac,† = U

[
(K∗K)(ΣK)D 0
(L∗K)(ΣK)D 0

]
U∗.

Lemma 2.4 ([15, Lemma 3.1]). Let A ∈ Cn×n be represented as in (1) with
ind (A) = k. Then

(8) A◦ = U

[
(K∗K)(ΣK)wO 0
(L∗K)(ΣK)wO 0

]
U∗.

Lemma 2.5 ([30, Theorem 3.2]). Let A ∈ Cn×n be represented as in (1) with
ind (A) = k. Then

(9) A†, �O = U

[
(K∗K)(ΣK) �O 0
(L∗K)(ΣK) �O 0

]
U∗.

Lemma 2.6 ([28, Lemma 3.3]). Let A ∈ Cn×n be represented as in (1). Then,
ind (A) = k if and only if ind (ΣK) = k − 1.

In Proposition 2.1, Lemma 2.3 and Lemma 2.4, we present that the Moore-
Penrose inverse, CMP inverse and MPWC inverse can relate the inverse, Drazin
inverse and weak core inverse of ΣK, respectively. In general, the group inverse
and Moore-Penrose inverse are two classical generalized inverses, there are two
matrix inverses can relate the group inverse and Moore-Penrose inverse of ΣK,
respectively. For the matrix inverse relate the group inverse of ΣK, we can prove
this matrix inverse is a very special inverse, which can be showed as follows:

Let

(10) X = U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗,

which says that ΣK is group invertible, then ind (ΣK) = 0 by Σ and K are
nonsingular, thus ind (A) = 1 by Lemma 2.6. Then, (10) can be written as

U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ = U

[
(K∗K)(ΣK)−1 0
(L∗K)(ΣK)−1 0

]
U∗

= U

[
(K∗K)(K−1Σ−1) 0
(L∗K)(K−1Σ−1) 0

]
U∗

= U

[
K∗KK−1Σ−1 0
L∗KK−1Σ−1 0

]
U∗

= U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗

= A†.

(11)
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In a similar way as in (11), for the core inverse of A, we have

U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗ = U

[
(K∗K)(ΣK)−1 0
(L∗K)(ΣK)−1 0

]
U∗

= U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗

= A†.

(12)

Lemma 2.7. Let A ∈ Cn×n and be group invertible. If A has the Hartwig-
Spindelböck decomposition as given in(1), then

A† = U

[
(K∗K)(ΣK)−1 0
(L∗K)(ΣK)−1 0

]
U∗

= U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗

= U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗.

(13)

Proof. It is trivial by Proposition 2.1, equalities (11) and (12).

Let A ∈ Cn×n with ind (A) = 2 and has the Hartwig-Spindelböck decomposi-
tion as given in (1). Then, ind (A) = 2 if and only if ind (ΣK) = 1 by Lemma 2.6.

In the following example, we will show that U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ is differ-

ent from the U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗.

Example 2.1. Let A =

 1 1 0
1 1 1
1 1 1

2

 ∈ C3×3, then it is easy to check that

ind (A) = 2. The Singular Value Decomposition of A is

A = U

[
Σ 0
0 0

]
V ∗,

where unitary maytix U =

 − 519
1025

1210
1593 − 881

2158
−452

703 −197
304 − 881

2158
− 739

1286
270
4841

881
1079

, Σ =

[
715
274 0
0 683

1029

]
and

unitary maytix V =

 − 519
1025

1210
1593 − 881

2158
−452

703 −197
304 − 881

2158
− 739

1286
270
4841

881
1079

. By

V ∗U =

 242
251 − 118

1261
410
1651

153
619 − 244

10171 −402
415

− 327
3385 −1064

1069 0

 ≜

[
K L
M N

]
,
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where K =

[
242
251 − 118

1261
153
619 − 244

10171

]
, L =

[
410
1651
−402

415

]
,M =

[
− 327

3385 −1064
1069

]
, N = 0.

It is easy to check that

(ΣK)# =

[
316
785 − 247

6322
178
6781 − 61

23943

]
and (ΣK)#O =

[
2775
6967

421
16209

421
16209

54
31883

]
.

Thus,

U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ =

 195
1463

933
6998

323
2423

933
6998

181
1357

447
3352

323
2423

447
3352

2319
17393

 ;

U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗ =

 8
77

12
77

10
77

12621
121477

12
77

10
77

8
77

12
77

10
77

 ,

which says that the matrix inverse U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ is different from

the matrix inverse U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗.

Let A ∈ Cn×n with ind (A) = 2 and has the Hartwig-Spindelböck decompo-
sition as given in (1). In the following proposition, we will show that if ΣK is

an EP matrix, then the matrix inverse U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ coincides with

the matrix inverse U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗.

Proposition 2.2. Let A ∈ Cn×n with ind (A) = 2 and has the Hartwig-
Spindelböck decomposition as given in (1). If ΣK is an EP matrix, then the

matrix inverse U

[
(K∗K)(ΣK)# 0
(L∗K)(ΣK)# 0

]
U∗ coincides with the matrix inverse

U

[
(K∗K)(ΣK)#O 0
(L∗K)(ΣK)#O 0

]
U∗.

Proof. It is trivial by [22, Theorem 3.1].

Let A ∈ Cn×n. A generalized inverse relate the Moore-Penrose inverse of
ΣK was introduced by using the the Moore-Penrose inverse and B-T inverse of
A, named the MPBT inverse of A. Let A ∈ Cn×n be represented as in (1). We
will prove that the formula of the MPBT inverse of A is

(14) X = U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗.

Note that the formula in (14) can be found in Theorem 3.2.
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3. The matrix inverse based on the Moore-Penrose inverse and B-T
inverse

Motivated by the definition of the MPWC inverse [15], we introduce the MPBT
inverse by using the Moore-Penrose inverse and B-T inverse.

Let A⋄
1 = AA⋄A, where A⋄ is the B-T inverse of A.

Theorem 3.1. Let A ∈ Cn×n. The matrix X = A†A⋄
1A

† is the unique matrix
that satisfies the following system of equations

(15) XAX = X, XA = A†A⋄
1 and AX = A⋄

1A
†.

Proof. Let X = A†A⋄
1A

†. Note that A⋄AA⋄ = A⋄ by [6, Corollary 1]. Then

XAX = A†A⋄
1A

†AA†A⋄
1A

† = A†A⋄
1A

†A⋄
1A

† = A†AA⋄AA†AA⋄AA†

= A†AA⋄AA⋄AA† = A†AA⋄AA† = A†A⋄
1A

† = X;

XA = A†A⋄
1A

†A = A†AA⋄AA†A = A†AA⋄A = A†A⋄
1;

AX = AA†A⋄
1A

† = AA†AA⋄AA† = AA⋄AA† = A⋄
1A

†,

which says thatX is a solution of system (15). LetX1 andX2 are two candidates
of system (15), then

X1 = X1AX1 = X1A
⋄
1A

† = X1AX2 = A†A⋄
1X2 = X2AX2 = X2,

thus X is unique.

Definition 3.1. Let A ∈ Cn×n. The solution of the system (15) is called the
Moore-Penrose B-T inverse, the MPBT inverse is short for the Moore-Penrose
B-T inverse, denoted by A†,⋄.

Example 3.1. In general, the MPBT inverse is different from the MPWC in-
verse, CMP inverse, MPCEP inverse and Moore-Penrose inverse. Let A =

0 0 2 1
0 0 −1 0
0 3 2 3
0 3 3 3

 ∈ C4×4. Then

A†,⋄ =


0 0 0 0
−1 − 3

62
15
62

9
31

0 − 1
62

5
62

3
31

1 1
31 − 5

31 − 6
31

 ,
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however

A◦ =


0 0 0 0
0 − 163

13545 − 10
387 − 187

13545
0 163

2709
50
387

187
2709

0 326
4515

20
129

374
4515

 , Ac,† =


0 0 0 0
0 − 1

75 − 2
75 − 1

75
0 1

15
2
15

1
15

0 2
25

4
25

2
25

 ,

A†, �O =


0 0 0 0

− 8
903

5
1806 − 25

1806 − 5
301

40
903 − 25

1806
125
1806

25
301

16
301 − 5

301
25
301

30
301

 , A† =


0 0 0 0
−1 −7

9 −2
9

5
9

0 −2
3 −1

3
1
3

1 4
3

2
3 −2

3

 .

Theorem 3.2. Let A ∈ Cn×n. If A has the Hartwig-Spindelböck decomposition
as given in (1), then

(16) A†,⋄ = U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗.

Proof. By Theorem 3.1, we have A†A⋄
1A

† is the MPBT inverse of A, thus

A†A⋄
1A

† =A†AA⋄AA†

=U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗U

[
ΣK ΣL
0 0

]
U∗U

[
(ΣK)† 0

0 0

]
U∗

U

[
ΣK ΣL
0 0

]
U∗U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗

=U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗.

Let A,B,C ∈ Cn×n. We say that Y ∈ Cn×n is a (B,C)-inverse of A if we
have Y AB = B, CAY = C, N (C) ⊆ N (Y ) and R(Y ) ⊆ R(B). If such Y
exists, then it is unique (see, [1, Definition 4.1] and [21, Definition 1.2]), we also
call the (B,C)-inverse of A is the inverse of A along B and C. Note that the
(B,C)-inverse was introduced in the setting of semigroups [10]. The (B,C)-
inverse of A will be denoted by A∥(B,C). Note that Bapat et al. investigated
an outer inverse in [2, Theorem 5] is exactly the same as the (y, x)-inverse,
where x and y are element in a semigroup. In [23], Rao and Mitra showed that
A∥(B,C) = B(CAB)−C, where (CAB)− stands for arbitrary inner inverse of
CAB.

Theorem 3.3. Let A ∈ Cn×n. The MPBT inverse of A is the (A†A⋄
1, A

⋄
1A

†)-
inverse of A.

Proof. Let Y = A†A⋄
1A

† be the MPBT inverse of A. Then

Y A(A†A⋄
1) = A†A⋄

1A
†AA†A⋄

1 = A†A⋄
1A

†A⋄
1 = A†AA⋄AA†AA⋄A

= A†AA⋄AA⋄A = A†AA⋄A = A†A⋄
1;

(A⋄
1A

†)AY = A⋄
1A

†AA†A⋄
1A

† = A⋄
1A

†A⋄
1A

† = AA⋄AA†AA⋄AA†

= AA⋄AA⋄AA† = AA⋄AA† = A⋄
1A

†.
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For any u ∈ N (A⋄
1A

†), then we have Y u = A†A⋄
1A

†u = A†(A⋄
1A

†u) = 0, which
gives N (A⋄

1A
†) ⊆ N (Y ). R(Y ) ⊆ R(A†A⋄

1) is trivial. Thus, the (A†A⋄
1, A

⋄
1A

†)-
inverse of A by the definition of the (B,C)-inverse.

In the following proposition, we will give some properties of the MPBT
inverse and the matrix A⋄

1.

Proposition 3.1. Let A ∈ Cn×n, A⋄
1 = AA⋄A and A†,⋄ be the MPBT inverse

of A, where A⋄ is the B-T inverse of A. If A has the Hartwig-Spindelböck
decomposition as given in(1), then

(1) AA†,⋄ = AA⋄ = A⋄
1A

† = U

[
(ΣK)(ΣK)† 0

0 0

]
U∗;

(2) A†,⋄A = A†A⋄
1 = U

[
K∗K K∗K(ΣK)†ΣL
L∗K L∗K(ΣK)†ΣL

]
U∗;

(3) A⋄
1A

† = (A⋄
1A

†)2 = (A⋄
1A

†)∗;

(4) A†A⋄
1 = (A†A⋄

1)
2;

(5) A⋄
1A

†A⋄
1 = A⋄

1;

(6) R(A†A⋄
1) = R(A†AA⋄) = R(A†A2(A†)2);

(7) N (A⋄
1A

†) = N (A⋄AA†) = N (AA⋄).

Proof. (1). By Theorem 3.2 and equality (2), note that KK∗+LL∗ = Ir, then
we have

AA†,⋄ = U

[
ΣK ΣL
0 0

]
U∗U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗

= U

[
ΣK(K∗K)(ΣK)† +ΣL(L∗K)(ΣK)† 0

0 0

]
U∗

= U

[
Σ(KK∗ + LL∗)K(ΣK)† 0

0 0

]
U∗

= U

[
(ΣK)(ΣK)† 0

0 0

]
U∗;

AA⋄ = U

[
ΣK ΣL
0 0

]
U∗U

[
(ΣK)† 0

0 0

]
U∗ = U

[
(ΣK)(ΣK)† 0

0 0

]
U∗.

Since AA†,⋄ = AA†A⋄
1A

† = AA†AA⋄AA†AA⋄AA† = A†A⋄
1, so

A⋄
1A

† = U

[
(ΣK)(ΣK)† 0

0 0

]
U∗.
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(2). By Theorem 3.2, we have

A†,⋄A = U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗U

[
ΣK ΣL
0 0

]
U∗

= U

[
(K∗K)(ΣK)†ΣK (K∗K)(ΣK)†ΣL
(L∗K)(ΣK)†ΣK (L∗K)(ΣK)†ΣL

]
U∗

= U

[
(K∗Σ−1ΣK)(ΣK)†ΣK (K∗K)(ΣK)†ΣL
(L∗Σ−1ΣK)(ΣK)†ΣK (L∗K)(ΣK)†ΣL

]
U∗

= U

[
(K∗Σ−1)ΣK(ΣK)†ΣK (K∗K)(ΣK)†ΣL
(L∗Σ−1)ΣK(ΣK)†ΣK (L∗K)(ΣK)†ΣL

]
U∗

= U

[
(K∗Σ−1)ΣK (K∗K)(ΣK)†ΣL
(L∗Σ−1)ΣK (L∗K)(ΣK)†ΣL

]
U∗

= U

[
K∗K K∗K(ΣK)†ΣL
L∗K L∗K(ΣK)†ΣL

]
U∗.

Since A†,⋄A = A†A⋄
1A

†A = A†AA⋄AA†A = A†AA⋄A = A⋄
1A

†, so

A†A⋄
1 = U

[
K∗K K∗K(ΣK)†ΣL
L∗K L∗K(ΣK)†ΣL

]
U∗.

(3) is trivial by item (1).
(4). By the definition of the MPBT inverse, we have A†,⋄AA†,⋄ = A†,⋄, then

by item (2), we have

(A†A⋄
1)

2 = (A†,⋄A)2 = A†,⋄AA†,⋄A = A†A⋄
1.

(5). A⋄
1A

†A⋄
1 = AA⋄AA†AA⋄A = AA⋄A = A⋄

1.
(6). The equality R(A†A⋄

1) = R(A†AA⋄) holds by A⋄
1 = AA⋄A and A⋄ is an

outer inverse of A. Moreover,

R(A†AA⋄) = R
(
A†A(A2A†)†

)
= R

(
A†A(A2A†)∗

)
= R

(
A†A(AA†)∗A∗

)
= R

(
A†A2A†A∗

)
= R

(
A†A2A†A†

)
= R

(
A†A2(A†)2

)
.

(7) is trivial by item (1) and A⋄ is an outer inverse of A.

Lemma 3.1 ([3, Remark 2.2 (i)]). Let A,B,C,U, V ∈ Cn×n. If R(B) = R(U)
and N (C) = N (V ), then A is (B,C)-invertible if and only if A is (U, V )-
invertible. In this case, we have A∥(B,C) = A∥(U,V ).

Theorem 3.4. Let A ∈ Cn×n. The MPBT inverse of A is the (A†AA⋄, A⋄AA†)-
inverse of A.

Proof. It is obvious by Theorem 3.3, Proposition 3.1 and Lemma 3.1.

Proposition 3.2. Let A ∈ Cn×n, then A⋄
1 ∈ A†{2, 4}.
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Proof. It is trivial by items (3) and (5) in Proposition 3.1.

In the next example, we will shows that A†A⋄
1 in Proposition 3.1 is not

Hermitian and A†A⋄
1A

† ̸= A† in general, that is A⋄
1 /∈ A†{1, 3}.

Example 3.2. Let A =

 1 1 −1
1 0 2
2 1 1

. It is easy to check that

A† =

 4
21

1
21

5
21

3
14 − 1

14
1
7

−11
42

13
42

1
21

 ,

thus A†A⋄
1 =

 3
7

1
7

3
7

3
28

1
28

3
28

15
28

5
28

15
28

, which says A†A⋄
1 ̸= (A†A⋄

1)
∗ and A†A⋄

1A
† = 0 1

7
1
7

0 1
28

1
28

0 5
28

5
28

 ̸= A†.

In the following two tables, we will collect some facts on the MPBT inverse,
MPD inverse, MPCEP inverse, MPWC inverse and MPCEP inverse.

Table 1: Formulae of the MPBT, MPD, CMP, MPWC and MPCEP inverses

generalized inverses formulae sources

MPBT inverse U

[
(K∗K)(ΣK)† 0
(L∗K)(ΣK)† 0

]
U∗ Theorem 3.2

MPD inverse U

[
(K∗K)(ΣK)D K∗K((ΣK)D)2ΣL
(L∗K)(ΣK)D L∗K((ΣK)D)2ΣL

]
U∗ [19, Remark 2.9]

CMP inverse U

[
(K∗K)(ΣK)D 0
(L∗K)(ΣK)D 0

]
U∗ Lemma 2.3

MPWC inverse U

[
(K∗K)(ΣK)wO 0
(L∗K)(ΣK)wO 0

]
U∗ Lemma 2.4

MPCEP inverse U

[
(K∗K)(ΣK) �O 0
(L∗K)(ΣK) �O 0

]
U∗ Lemma 2.5

Table 2: The MPBT, MPD, CMP, MPWC and MPCEP inverses

generalized inverses column parts null parts sources

MPBT inverse A†AA⋄ A⋄AA† Theorem 3.4
MPD inverse A†Ak Ak [11, Theorem 3.2]
CMP inverse A†Ak AkA† [11, Theorem 3.2]

MPWC inverse A†Ak (Ak)∗A2A† [15, Theorem 2.7]
MPCEP inverse A†Ak (Ak)∗ [29, Theorem 3.11]
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Theorem 3.5. Let A ∈ Cn×n with ind (A) = k. We have

(1) If N
(
(Ak)∗

)
= N

(
(Ak)∗A2A†), then A◦ = A†, �O;

(2) If N
(
(Ak)∗A2A†) = N (AkA†), then A◦ = Ac,†.

Proof. It is trivial by Lemma 3.1 and Table 1.

Corollary 3.1. Let A ∈ Cn×n with ind (A) = 2, then A◦ = Ac,†.

Proof. For ind (A)=2, we haveN
(
(A2)∗A2A†)=N

(
A2(A2)†A2A†) = N (A2A†),

then, the proof is finished by Theorem 3.5.

4. Conclusions

For a given complex matrix with a given index, one can get that the computation
of the MPBT inverse by using the Hartwig-Spindelböck decomposition of this
matrix. The future perspectives for research are proposed:

Part 1. The MPBT inverse is one of the useful tools to investigate the
Hartwig-Spindelböck decomposition of a complex matrix.

Part 2. The rank properties of a given matrix, such as rank (AA†,⋄ −A†,⋄A).

Part 3. The relationships between different generalized inverses relate the
generalized inverses of ΣK in Hartwig-Spindelböck decomposition.
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