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Abstract. We study a finite group with 124p elements of the largest order, where p
is a prime greater than 5 and not equal to 31, and prove that such group is either a
solvable group, or has a normal series like 1 ≤ H ≤ K ≤ G such that H is a nilpotent
{2, 3}-group, G/H ≤ Aut(S), where S ∼= L2(7), L2(8), U3(3).
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1. Introduction

In this paper, all groups considered are finite. Let G be a finite group, πe(G)
denotes the set of orders of elements of G, Mi(G) denotes the set of elements
of order i in G. In the whole paper, k always denote the largest element order
of G, and write Mk(G) as M(G). For a positive integer n, π(n) denotes the set
of prime divisors of n, and π(G) = π(|G|). We use Pr(G) to denote a Sylow
r-subgroup, where r ∈ π(G), and φ(x) the an Euler function of x. If there is no
confusion, Pr(G) is abbreviated as Pr. Sometimes we write the order of a group
in the bracket next to the group, for example A5(2

2 · 3 · 5) means that A5 has
order 22 · 3 · 5.

J. G. Thompson proposed the following famous problem in 1987.

Thompson Problem. Let G1 and G2 be two finite groups. If |Mi(G1)| =
|Mi(G2)| and G1 is solvable, where i = 1, 2, 3, · · · , is G2 solvable?

*. Corresponding author



FINITE GROUPS WITH 124p ELEMENTS OF THE LARGEST ORDER 195

Many mathematicians tried to prove Thompson Problem, but not so many
beautiful results as a positive answer to this problem were obtained, it is worth
to mention that Rulin Shen, Wujie Shi and Feng Tang in 2023 get a positive an-
swer to Thompson Problem for a solvable group with the non-connected prime
graph in [16], and Pawel Piwek in 2024 gives a counter example in [15]. Hence it
is meaningful to study related topics to Thompson Problem. In the past three
decades, several related studies were sponsored, one of them was to study if a
finite group is solvable with a given number of elements of the largest order. In
fact this topic does be related to Thompson Problem, since if we can prove that
a finite group G is solvable with |Mk(G)| = t, then we can conclude that if G1

and G2 satisfy |Mk(G1)| = |Mk(G2)| = t, then both G1 and G2 are solvable,
hence if G1 and G2 satisfy conditions of Thompson Problem and |Mk(G1)| = t,
then G2 is solvable, Thompson Problem holds for Mk(G1) = t. The first paper
on this topic appeared in 1993, Yang studied finite groups with special num-
ber of elements of the largest order in [1], for example, the number is a prime,
etc. From 1998 to 2004, Jiang, Du, Liu and Qian etc studied finite groups with
the number of the largest order elements is less than 20, or equal to 32, 44,
52, 2p2, 2p3, 10m, or 6p in [3] -[9], where p is a prime, and m is a positive
integer coprime to 10. From 2005 to 2012, Yan, He and Chen studied finite
groups with the number of elements of the largest order equal to 42, 68p(p > 7),
2p4(p > 3), 52p(p > 5), 10pm(p > 5 and m is a natural number), 76p(p > 5),
4pq, 10pq(p, q > 5), where p and q are prime, see [10] -[13], [20] - [24]. It is
worth to mention that because the approaches used in previous articles are not
effective for the number of elements of the largest order divided by 15, Chen
and Shi studied a finite group with the number of elements of the largest order
equal to 30 in [1]. In this paper, we continue this topic to study the finite group
having 124p elements of the largest order, where p is a prime> 5 and not equal
to 31. We shall prove the following theorem.

Main Theorem. Suppose that G is a finite group with 124p elements of the
largest order, where p is a prime > 5 and p ̸= 31, then G is either a solvable
group, or has a normal series like 1 ≤ H ≤ K ≤ G, such that H is a nilpotent
{2, 3}-group, G/H ≤ Aut(S), where S ∼= L2(7), L2(8), U3(3).

2. Preliminaries

At first we introduce some necessary lemmas.

Lemma 2.1. Suppose that G is a finite group and has n cyclic subgroups of
order l, then |Ml(G)| = nφ(l). In particular, |M(G)| = nφ(k). If n = 1, then
G is supersolvable. If k is an odd prime number, then n ≡ 1( mod k).

Proof. The conclusion is evident from Lemma 2.2 and Theorem 1 in [25] , as
well as Theorem 2.1 in [19].
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Lemma 2.2 ([4]). If x ∈ G and |x| = k, M(G) ⊆ CG(x), then πe(CG(x)) =
πe(⟨x⟩), CG(x) = ⟨M(G)⟩ and CG(x)⊴G.

Lemma 2.3 ([19]). If |G| = 2n and n is an odd number, then G is solvable.

For a positive integer n, a finite group is called a Kn-group if its order
contains exactly n distinct primes.

Lemma 2.4 ([14]). Suppose that G is a simple K3-group, then G is exactly
isomorphic to one of the following simple groups:

A5(2
2 ·3 ·5), A6(2

3 ·32 ·5), L2(7)(2
2 ·3 ·7), L2(8)(2

3 ·32 ·7), L2(17)(2
4 ·32 ·17),

L3(3)(2
4 · 34 · 13), U3(3)(2

5 · 33 · 7), U4(2)(2
6 · 34 · 5).

Corollary 2.1. If |π(G)| = 3 and π(G) ̸= {2, 3, 5}, {2, 3, 7}, {2, 3, 13},
{2, 3, 17}, then G is solvable.

Lemma 2.5 ([17]). Let G be a simple K4-group with 3 ̸∈ π(G), then G ∼=
Sz(8)(2

5 · 5 · 7 · 13) or G ∼= Sz(32)(2
10 · 52 · 31 · 41).

Corollary 2.2. If G is a K4-group, and (15, |G|) = 1, then G is solvable.

Lemma 2.6 ([17]). Suppose that G is a simple K4-group. Then, G can only be
isomorphic to one of the following groups:

(1) A7(2
3 · 32 · 5 · 7), A8(2

6 · 32 · 5 · 7), A9(2
6 · 34 · 5 · 7), A10(2

7 · 34 · 52 · 7) ;
(2) M11(2

4 · 32 · 5 · 11), M12(2
6 · 33 · 5 · 11), J2(27 · 33 · 52 · 7);

(3) L2(16)(2
4 ·3 ·5 ·17), L2(25)(2

3 ·3 ·52 ·13), L2(49)(2
4 ·3 ·52 ·72), L2(81)(2

4 ·
34 · 5 · 41), L3(4)(2

6 · 32 · 5 · 7), L3(5)(2
5 · 3 · 53 · 31), L3(7)(2

5 · 32 · 73 · 19),
L3(8)(2

9·32·72·73), L3(17)(2
9·32·173·307), L4(3)(2

7·36·5·13), S4(4)(2
8·32·52·17),

S4(5)(2
6 ·32 ·54 ·13), S4(7)(2

8 ·32 ·52 ·74), S4(9)(2
8 ·38 ·52 ·41), S6(2)(2

9 ·34 ·5 ·7),
O+

8 (2)(2
12 ·35 ·52 ·7), G2(3)(2

6 ·36 ·7 ·13), U3(4)(2
6 ·3 ·52 ·13), U3(5)(2

4 ·32 ·53 ·7),
U3(7)(2

7 ·3 ·73 ·43), U3(8)(2
9 ·34 ·7 ·19), U3(9)(2

5 ·36 ·52 ·73), U4(3)(2
7 ·35 ·5 ·7),

U5(2)(2
10·35·5·11), Sz(8)(2

6·5·7·13), Sz(32)(2
10·52·31·41), 2D4(2)(2

12·34·72·13),
2F4(2)(2

11 · 33 · 52 · 13).
(4) L2(r), where r is a prime satisfying the equation: r2 − 1 = 2a · 3b · uc for

positive integers a ≥ 1, b ≥ 1, c ≥ 1 and a prime u > 3.

(5) L2(2
m), where m satisfies the equation:{

2m − 1 = u,

2m + 1 = 3tb

where m ≥ 1, t > 3, b ≥ 1, u and t are primes.

(6) L2(3
m), where m satisfies the equation:{

3m − 1 = 2uc,

3m + 1 = 4t
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or {
3m − 1 = 2u,

3m + 1 = 4tb

where b ≥ 1, c ≥ 1, u and t are primes.

Definition 1 ([23]). Let k be the largest element order of G, consider the ac-
tion of G on the set of all cyclic subgroups of order k by conjugation, let M1,
M2, · · · , Mt be all conjugacy classes of this action, then the lengthes of con-
jugacy classes are uniquely determined. Take ⟨xi⟩ ∈ Mi, then |Mi| = |G :
NG(⟨xi⟩)|, 1 ⩽ i ⩽ t, are independent of the choice of ⟨xi⟩. For convenience,
let mi = |Mi|, we call the array (m1, m2, · · · , mt) the m-type of G and de-
note it as m(G) = (m1, m2, · · · , mt), and we say that G is of m-type if
m(G) = (m1, m2, · · · , mt).

Lemma 2.7. Let G be of m-type, m(G) = (m1,m2, · · · ,mt), n = m1 +m2 +
· · · + mt the number of all cyclic groups of order k. For any i, if q ∈ π(mi),

then q divides |G|
mi

× n× φ(k). Further π(G) ⊆ π(n) ∪ π(φ(k)) ∪ π(k)).

Proof. Reduction to absurdity. Assume there exists some i, without loss of
generality, say i = 1, and a prime q ∈ π(m1) such that q does not divide
|G|
m1

× n × φ(k), so q ∤ n and q ∤ φ(k), thus there exists some mj (j > 1) not
divided by q for n is a sum of mi, say q ∤ m2. Using notations in Definition 1,
we get the following equations:

m1 · |NG(⟨x1⟩) : CG(x1)| |CG(x1)| = |G| = m2 · |NG(⟨x2⟩) : CG(x2)| |CG(x2)| .

Noticing q does not divide |G|
m1

= |NG(< x1 >)|, we see q ∤ |CG(< x1 >)|.
Now, q ∤ φ(k) yields q does not divide |NG(⟨x2⟩)/CG(⟨x2⟩)|, hence q divides
|CG(⟨x2⟩)| for q ∤ m2 and q

∣∣m1. Because x1 and x2 are two elements of the largest
order in G, so are in CG(x1) and CG(x2) respectively, it forces π(CG(x1)) =
π(|x1|) = π(|x2|) = π(CG(x2)), a contradiction to q

∣∣|CG(x2)| and q ∤ |CG(x1)|.
The first part of the lemma is proved, i.e., π(mi) ⊆ π( |G|

mi
) ∪ π(n) ∪ π(φ(k)).

Now, the second part of the lemma follows from the first part of the lemma and
|G| = mi × |G|

mi
.

Corollary 2.3. Suppose that G is of m-type and m(G) = (m1, m2, · · · , mt),
n = m1+m2+· · ·+mt the number of all cyclic groups of order k, if π(n) ⊆ {2, r},
π(φ(k)) ⊆ {2, p}, π(k) ⊆ {2, 3, q}, then G is a { 2, 3, p, q }-group or
{2, 3, p, q, r}-group.

Lemma 2.8 ([1]). Let G be a finite group with |M(G)| elements of the largest
order k. If k is a prime, then k

∣∣ (|M(G)|+ 1).

Lemma 2.9 ([1]). Let G be a finite group with |M(G)| elements of the largest
order k. Then, there exists a positive integer α such that |G|

∣∣|M(G)| · kα.
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Lemma 2.10. Let x be an element of the largest order in G, and r a prime
dividing |x|, Pr the Sylow r-subgroup of CG(x). If Pr ⊴ CG(x), then Pr ⊴
NG(⟨x⟩), and |G : NG(Pr)| divides |G : NG(⟨x⟩)|. Further, if mr + 1 ∤ |G :
NG(⟨x⟩)| for any positive integer m, then Pr ⊴ G.

Proof. The lemma follows by trivial calculation and Sylow Theorem.

Definition 2. Let G be a finite group, the prime graph Γ(G) of G is a graph
with the set of vertices V (G) = π(G). Let p, q be in V (G), there exists an edge
connecting p and q if and only if G has an element of order pq.

Lemma 2.11 ([18]). Let G be a finite group whose prime graph has more than
one component, then one of the following holds:

1. G is a Frobenius group or 2-Frobenius group;

2. G has a normal series 1 ⊴ H ⊴ K ⊴ G such that H and G/K are
π1-groups and K/H is a simple group, where π1 is the prime graph component
containing 2, H is a nilpotent group and |G/K|

∣∣|Out(K/H)|.

3. Conclusions

Now, we prove the Main Theorem and give a positive answer to Thompson
Problem for a finite group with 124p elements of the largest order, where p is a
prime > 5 and p ̸= 31.

Proof of Main Theorem. Take an element x ∈ G of the largest order k, then
|NG(⟨x⟩) : CG(x)|

∣∣φ(k). Let n be the number of cyclic subgroups of order k in
G. The following formula is always true

(3.1) |G| = |G : NG(⟨x⟩)| · |NG(⟨x⟩) : CG(x)| · |CG(x)|.

By Lemma 1, if |M(G)| = 124p, where p is prime> 5 and not equal to
31, then all possibilities for n, φ(k) and k can be determined as the following
Table 1.

Table 1: Values of n, φ(k) and k
n φ(k) k

1 124p k with φ(k) = 124p
2 62p q or 2q, q = 62p+ 1 is a prime
31 4p (1) q or 2q, q = 4p+ 1 is a prime; (2) 3q or 4q or 6q, q = 2p+ 1 is a prime
62 2p q or 2q, q = 2p+ 1 is a prime
31p 4 5, 8, 10, 12
62p 2 3, 4, 6
124p 1 2

In the following, we shall prove that G is solvable case by case upon what n
is.

Case 1. If n = 1, then G is a supersolvable group by Lemma 1.
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Case 2. If n = 2, then by Table 1, φ(k) = 62p, and k equals q or 2q, where q =
62p+1 is a prime. Hence CG(a) is a {2, q}-group or q-group and NG(⟨a⟩)/CG(a)
is a {2, 31, p}- group. By Lemma 4 and Corollary 3, we conclude that CG(a) and
NG(⟨a⟩)/CG(a) are solvable, so NG(⟨a⟩) is solvable. Moreover, |G : NG(⟨a⟩)| ≤
2, which implies that G is solvable.

Case 3. If n = 31, then φ(k) = 4p, either q = 4p + 1 is a prime and k equals
one of q and 2q, or q = 2p+ 1 is a prime and k equals one of 3q, 4q and 6q.

Subcase 3.1. If q = 4p + 1 is a prime and k equals one of q and 2q, then
π(φ(k)) = {2, p}, and π(k) ⊆ {2, q}, thus G is a {2, p, q}-group or {2, 31, p, q}-
group by Corollary 3.

While G is a {2, p, q}-group. Since both p and q = 4p + 1 are primes, the
order of any simple K3-group does not contain such kind of prime factors, so G
is solvable.

While G is a {2, 31, p, q}-group, we have (15, |G|) = 1, so G is solvable by
Corollary 2.

Subcase 3.2. If q = 2p+ 1 is a prime and k = 4q, then π(φ(k)) = {2, p}, and
π(k) ⊆ {2, q}, thus G is {2, p, q}-group or {2, 31, p, q}-group. By the same
reasoning as Subcase 3.1, G is solvable.

Subcase 3.3. If q = 2p + 1 is a prime and k = 3q or 6q, this case is much
complicated, we divide the proof into two steps.

3.3.1 To prove that G is solvable if p > 13, q = 2p+ 1 is prime and k = 3q.

In this case, G is a {2, 3, p, q}-group or {2, 3, 31, p, q}-group. Let a be
an element of the largest order in G, then CG(a) is a {3, q}-group. Suppose
that |CG(a)| = 3u · qv. Obviously, CG(a) has no element of order 9 or q2. If
u ≥ 4, then there are at least (34 − 1)(q − 1) = 160p elements of order 3q in
CG(a), a contradiction to |M(G)| = 124p. Therefore, u ≤ 3. If v > 1, we get a
contradiction by similar reason. Hence v = 1, and |CG(a)| = 3u ·q, where u ≤ 3.
Let Q be a Sylow q-group of CG(a). Obviously, Q⊴ CG(a), then Q⊴NG(⟨a⟩).
Since n = 31, we have |G : NG(⟨a⟩)| ≤ 31. Notice q > 31 in this case, we come
to Q⊴G. Let P3 be the Sylow p−subgroup of G, and |P3| = 3β, then it follows
from |P3| = |G|3 = |G : NG(⟨a⟩)|3 × |CG(a)|3 that β ≤ 6.

While G is a {2, 3, p, q}-group, as G/Q is a {2, 3, p}-group, both p and
q = 2p+1 are primes and p > 13, so G/Q has no section isomorphic to a simple
K3-group, G/Q is solvable, so is G.

While G is a {2, 3, 31, p, q}-group, G/Q is a {2, 3, 31, p}-group. Let
G = G/Q, then |G| = |G/Q| = 2α · 3β · 31 · pγ , where α ≤ 2, β ≤ 3, γ ≤ 1. By
Lemma 3, we may assume that α = 2, |G| = 22 · 3β · 31 · pγ , where β ≤ 3, γ ≤ 1.

1) If γ = 0, then |G| = 22 · 3β · 31. By Corollary 1, G is solvable, so is G.

2) If γ = 1, then |G| = |G/Q| = 22 · 3β · 31 · p.
Clearly, no section of G is isomorphic to a simple K3-group. Suppose G is

non-solvable, then there exists a section of G, say W/S, isomorphic to a simple
K4-group, and |W/S| = 22 · 3t · 31 · p, where t ≤ β ≤ 3. Moreover, W/S is
isomorphic to one of K4-groups listed in (4), (5) and (6) in Lemma 6.
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(a) Assume W/S ∼= L2(r), where r is a prime such that r2 − 1 = 2a · 3b · vc,
where a ≥ 1, 3 ≥ b ≥ 1, c ≥ 1, and v > 3 is a prime. It is easy to see r ̸= 31, and
then r = p. Since (r2 − 1)/(2, r − 1) divides |L2(r)|, we have vc divides |W/S|,
which concludes v = 31 and c = 1. Comparing orders of Sylow 2−subgroups
of G and L2(r), we get a = 3. Solving equations p2 − 1 = 23 · 3b · 31 for
1 ≤ b ≤ 3 respectively, we find that there is no prime p satisfying the equation,
a contradiction. Therefore W/S ≇ L2(r).

(b) Assume W/S ∼= L2(2
m), and m satisfies the system of equations:{

2m − 1 = u,

2m + 1 = 3tb

where m ≥ 1, t ≥ 3, b ≥ 1, u and t are primes. Since |L2(2
m)| = 2m · (2m +

1)(2m−1) = 2m ·3tb ·u, we get u ̸= 31, t = 31, u = p, b = 1, which is impossible
by checking the system of equations, so W/S ≇ L2(2

m).

(c) Assume W/S ∼= L2(3
m), and m satisfies the system of equations:{

3m − 1 = 2uc,

3m + 1 = 4t

or {
3m − 1 = 2u,

3m + 1 = 4tb

where b ≥ 1, c ≥ 1, u and t are primes, we can prove W/S ≇ L2(3
m) by the

same reasoning as (b).

From (a), (b) and (c), G has no section is isomorphic to a simple K4-group,
which concludes that G is solvable.

3.3.2 To prove that G is solvable if p > 13, q = 2p+1 is a prime and k = 6q.

Clearly, n = 31, π(φ(k)) = {2, p}, π(k) = {2, 3, q}, and G is a {2, 3, p, q}-
group or {2, 3, 31, p, q}-group.

If G is a {2, 3, p, q}-group, we can prove that G is solvable by the same
argument as k = 3q.

If G is a {2, 3, 31, p, q}-group, then CG(a) is a {2, 3, q}-group. Let
|CG(a)| = 2δ · 3ϵ · qε, where δ ≤ 5, ϵ ≤ 3, ε ≤ 1. It is easy to see that CG(a) has
no element of order 9 or q2. Let Q be a Sylow q-subgroup of CG(a), we assert
Q ⊴ G. In fact, it is enough to show Q ⊴ CG(a), then by the same reason as
Step 3.3.1 we get Q⊴G. Otherwise, CG(a) has at least q+1 Sylow q-subgroups,
this means that CG(a) has 3(q2 − 1) elements of order 6q since p > 13, more
than 124p, a contradiction. Hence Q ⊴ G. Suppose that G = G/Q, then
|G| = 2α · 3β · 31 · pγ , where α ≤ 7, β ≤ 3, γ ≤ 1.

While γ = 0, |G| = 2α · 3β · 31, then G is a {2, 3, 31}-group. By Corollary 1,
G is solvable.
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While γ = 1, |G| = 2α · 3β · 31 · p. Due to the absence of 31 and p in the
order of a simple K3-group, if G is non-solvable, then it should have a section
isomorphic to a simple K4-group, by the same reasoning as k = 3q, we can prove
that this is impossible, so G is solvable, and then G is solvable.

3.3.3 To prove G is solvable if p = 7, 11, 13.

(1) If p = 7, then φ(k) = 28, k = 29 or 58, n = 31 by Table 1, so π(φ(k)) =
{2, 7}, π(k) ⊆ {2, 29}. Hence G is a {2, 7, 29}-group or {2, 7, 29, 31}-group, so
(15, |G|) = 1, and then G is solvable.

(2) If p = 11, then φ(k) = 44, k = 3q, 4q, 6q by Table 1, where q = 23.

(a) If k = 4q = 4× 23, then n = 31, π(φ(k)) = {2, 11}, π(k) = {2, 23} and
G is a {2, 11, 23}-group or {2, 11, 23, 31}-group. Hence (15, |G|) = 1, then
G is solvable by Corollary 1.

(b) If k = 3q = 3× 23, then n = 31, φ(k) = 44, and G is a {2, 3, 11, 23}-
group or {2, 3, 11, 23, 31}-group.

Assume that G is a {2, 3, 11, 23}-group. Since the absence of 11 and 23
in the order of a simple K3-group, G has no section isomorphic to a simple K3-
group. Hence if G is non-solvable, then there exists a section of G isomorphic
to a simple K4-group. By the same reasoning as the case of k = 3q and p > 13,
we come to a contradiction, so G is solvable.

Now, G is a {2, 3, 11, 23, 31}-group. In this case, 31 divides |G|, so it
follows by Lemma 7 and Formula 3.1 that there exists an element a of the
largest order such that |G : NG(⟨a⟩)| = 31. Then, CG(a) is a {3, 23}-group, and
there is no element of order 9 or 232 in CG(a). Suppose that |CG(a)| = 3u · 23v,
then 3u · 23, 3 · 23v ≤ 124p = 124 × 11, which implies that u ≤ 3, v ≤ 1. By
Formula 3.1 we get that |G| divides 31 ·4 ·11 ·3u ·23, thus |G| = 2α ·3β ·11γ ·23 ·31
with α ≤ 2, β ≤ 3, γ ≤ 1. Let Q be a Sylow 23-subgroup of CG(a), which is also
a Sylow subgroup of G. Obviously, Q⊴CG(⟨a⟩), and then Q⊴NG(⟨a⟩). Hence
the number of Sylow q-subgroups of G is 23t+ 1, it divides |G : NG(⟨a⟩)| = 31,
this forces 23t+ 1 = 1, hence Q⊴G. Now, G = G/Q is a {2, 3, 11, 31}-group
of order 2α · 3β · 11γ · 31, where α ≤ 2, β ≤ 3, γ ≤ 1. By the same reasoning as
k = 3q, p > 13, G has no section isomorphic to a simple K3-group or K4-group,
so G is solvable, and then G is solvable.

(c) Let k = 6q. Since φ(6q) = φ(3q), we can use the same approach as the
case k = 3q to prove that G is solvable.

(3) If p = 13, φ(k) = 4p, then k = q or 2q, where q = 4p + 1 is a prime,
n = 31, π(φ(k)) = {2, 13}, π(k) ⊆ {2, 53}. Hence G is a {2, 13, 53}-group or
{2, 13, 31, 53}-group. Hence (15, |G|) = 1, which concludes that G is solvable
by Corollary 2.

Case 4. Assume n = 62 and φ(k) = 2p. By Table 1, we have k = q or 2q, where
q = 2p+ 1 is a prime. Clearly, π(n) = {2, 31}, π(φ(k)) = {2, p}, π(k) ⊆ {2, q}.
Then, G is a {2, p, q}-group or {2, 31, p, q}-group.

If G is a {2, p, q}-group, then G is solvable by Corollary 1.

If G is a {2, 31, p, q}-group, then (15, |G|) = 1, and G is solvable by
Corollary 2.
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Case 5. Assume n = 31p and φ(k) = 4. By Table 1, k is one of 5, 8, 10 and
12, then π(n) = {31, p}, π(φ(k)) = {2}. If k = 5 or 8, then |π(G)| ≤ 2, so G is
solvable.

If k = 10, then 31 ̸∈ π(G). By Lemma 9, π(G) ⊆ {2, 5, 31, p}, then
π(G) ⊆ {2, 5, 7}. By Corollary 1, G is solvable.

If k = 12, then 31 ̸∈ π(G). By Lemma 9, π(G) ⊆ {2, 3, 31, p}, then G is a
{2, 3, p}-group, where p = 7, 11. If p = 11, then G is solvable by Corollary 1.
If p = 7, then G is a {2, 3, 7}-group.

By Lemma 9, 7 ∥ |G|. Suppose that |G| = 2α ·3β ·7, where α ≥ 2, β ≥ 1. If G
is non-solvable, then by Lemma 11, G has a normal series 1 ⊴ H ⊴ K ⊴ G such
that K/H ∼= L2(7) or L2(8) or U3(3) and |G/K|

∣∣|Out(K/H)|, H is a nilpotent
{2, 3}-group.
Case 6. Assume n = 62p, then φ(k) = 2. By Table 1, we have k = 3, 4, 6,
then G is a {2, 3}-group, and G is solvable.

Case 7. If n = 124p, then φ(k) = 1. Hence k = 2, and G is a 2-group.
Clearly, G has |G| − 1 elements of order 2, and |G| − 1 cannot be equal to 124p,
a contradiction.

Now, Main Theorem follows from cases 1 to 7. □

4. Remark

It is meaningful to study if the non-solvable group in the Main Theorem could
be eleminated.

5. Acknowledgement

This work is supported by the National Natural Science Foundation of China
(Grant No.12071376). The authors are grateful to the reviewers for their valu-
able suggestions to revise the paper.

References

[1] G.Y. Chen, W.J. Shi, Finite groups with 30 elements of maximal order,
App. Cat. Str., 16 (2008), 239-247.

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas
of finite groups, Oxford Univ. Press, Eynsham, 1985.

[3] Y.Y. Jiang, Finite groups having less than 20 maximal order elements are
solvable, J. of Southwest China Normal Univ. (Nat. Sci. Ed.), 23 (1998),
14-19.

[4] Y.Y. Jiang, Finite groups with the number of maximal order 32 elements
are solvable, J. of Hebei Univ. (Nat. Sci. Ed.), 19 (1999), 215-219.



FINITE GROUPS WITH 124p ELEMENTS OF THE LARGEST ORDER 203

[5] Y.Y. Jiang, Finite groups with the number of maximal order 2p2 elements
are solvable, Chin. Annals of Math., 21A (2000), 61-64.

[6] Y.Y. Jiang, X.L. Du, X.F. Liu, On finite groups having 2p3 maximal order
elements, J. of Sichuan Univ. (Nat. Sci. Ed.), 40 (2003), 185-189.

[7] Y.Y. Jiang, On finite groups with 44 or 52 maximal order elements, J. of
Hebei Univ. (Nat. Sci. Ed.), 24 (2004), 113-116+134.

[8] Y.Y. Jiang, Finite groups having 2× 5m maximal order elements are solv-
able, J. of Math.(PRC), 24 (2004), 631-634.

[9] Y.Y. Jiang, G.H. Qian, Finite groups having 6p elements of maximal order,
Chin. Annals of Math., 27A (2006), 325-330.

[10] Z.J. Han, G.Y. Chen, Finite groups with 2pq elements of maximal order are
solvable, J. of Southwest China Normal Univ. (Nat. Sci. Ed.), 29 (2004),
198-200.

[11] L.G. He, G.Y. Chen, Y.X. Yan, Finite groups with 10pm elements of max-
imal order are solvable, J. of Southwest Univ. (Nat. Sci. Ed.), 29 (2007),
1-4.

[12] L.G. He, G.Y. Chen, Finite groups with 4pq elements of maximal order, J.
of Shanxi Univ. (Nat. Sci. Ed.), 31 (2008), 472-476.

[13] L.G. He, G.Y. Chen, On finite groups with 10pq elements of maximal order,
J. of Southwest China Normal Univ. (Nat. Sci. Ed.), 37 (2012), 9-11.

[14] M. Herzog, On finite simple groups of order divisible by three primes only,
J. of Alg., 10 (1968), 383-388.

[15] P. Piwek, Solvable and non-solvable finite groups of the same order type,
Sci. Sinica Math., arXiv preprint arXiv: 2403.02197, 2024.

[16] R.L. Shen, W.J. Shi, F. Tang, On Thompson problem, Sci. Sinica, Math.,
40 (2010), 533-537.

[17] W.J. Shi, On the simple K4-groups, Chin. Sci. Bull., 17 (1991), 1281-1283.

[18] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69
(1981), 487-513.

[19] M.Y. Xu, An introduction to finite groups, Sci. Press, Bejing, 1999.

[20] Y.X. Yan, G.Y. Chen, L.G. He, Finite groups with 42 elements of maximal
order are solvable, J. of Chongqing Normal Univ. (Nat. Sci. Ed.), 22 (2005),
63-65.



204 YIHU XIE, LI GAO and GUIYUN CHEN

[21] Y.X. Yan, G.Y. Chen, L.G. He, Finite groups with 68p elements of maximal
order, Guangxi Sci., 12 (2005), 241-245.

[22] Y.X. Yan, G.Y. Chen, X.H. Deng, Finite groups with 2p4 elements of max-
imal order are solvable, J. of Qingdao Tech. Univ., 27 (2006), 122-125.

[23] Y.X. Yan, G.Y. Chen, L.G. He, Finite groups with 52p elements of maximal
order, J. of Chongqing Univ. (Nat. Sci. Ed.), 29 (2006), 75-80.

[24] Y.X. Yan, G.Y. Chen, Finite groups with 76p elements of maximal order,
J. of Chongqing Univ. (Nat. Sci. Ed.), 30 (2007), 92-95.

[25] C. Yang, Finite groups with different numbers of maximal order, Chin.
Annals of Math., 14A (1993), 561-567.

Accepted: May 21, 2024


