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Abstract. A finite group G is called (l,m, n)-generated, if it is a quotient group of
the triangle group T (l,m, n) =

〈
x, y, z|xl = ym = zn = xyz = 1

〉
. In [25], Moori posed

the question of finding all the (p, q, r) triples, where p, q and r are prime numbers,
such that a non-abelian finite simple group G is a (p, q, r)-generated. In this paper we
establish all the (p, q, r)-generations of the Mathieu sporadic simple group M23. GAP
[16] and the Atlas of finite group representations [30] are used in our computations.
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1. Introduction

Generations of finite groups by suitable subsets is of great interest and has many
applications to groups and their representations. For example, the computations
of the genus of simple groups can be reduced to the generations of the relevant
simple groups (see Woldar [32] for details). Also Di Martino et al. [23] estab-
lished a useful connection between generation of groups by conjugates and the
existence of elements representable by almost cyclic matrices. Their motivation
was to study irreducible projective representations of sporadic simple groups.

*. Corresponding author
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Recently more attention was given to the generation of finite groups by conju-
gate elements. In his PhD Thesis [29], Ward considered generation of a simple
group by conjugate involutions satisfying certain conditions. In this paper we
are interested in the generation of the Mathieu sporadic simple group M23 by
two elements of prime orders not necessary distinct such that the product is an
element of a prime order.

A finite group G is said to be (l,m, n)-generated, if G = ⟨x, y⟩ , with o(x) =
l, o(y) = m and o(xy) = o(z) = n. Here [x] = lX, [y] = mY and [z] =
nZ, where [x] is the conjugacy class of X in G containing elements of order l.
The same applies to [y] and [z]. In this case G is also a quotient group of the
triangular group T (l,m, n) and, by definition of the triangular group, G is also
(σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may assume
that l ≤ m ≤ n. In a series of papers [18, 19, 20, 21, 22, 24, 25], Moori and
Ganief established all possible (p, q, r)-generations, where p, q and r are distinct
primes, of the sporadic groups J1, J2, J3, HS, McL, Co3, Co2 and F22.
Ashrafi in [3, 4] did the same for the sporadic simple groups He and HN. Also
Darafsheh and Ashrafi established in [11, 12, 13, 14], the (p, q, r)-generations
of the sporadic simple groups Co1, Ru, O

′
N and Ly. The motivation for this

study is outlined in these papers and the reader is encouraged to consult these
papers for background material as well as basic computational techniques.

In establishing the (p, q, r)-generations of the groupM23, we follow the meth-
ods used in [6], [7]and [8], and also methods used in the recent papers [1] and [2]
by Ali, Ibrahim and Woldar. Note that, in general, if G is a (2, 2, n)-generated
group, then G is a dihedral group and therefore G is not simple. Also by [9], if G
is a non-abelian (l,m, n)-generated group, then either G ∼= A5 or

1
l +

1
m + 1

n < 1.
Thus for our purpose of establishing the (p, q, r)-generations of G = M23, the
only cases we need to consider are when 1

p + 1
q + 1

r < 1. The result on the
(p, q, r)-generations of M23 can be summarized in the following theorem.

Theorem 1.1. The sporadic simple group M23 is generated by all the triples
(p, q, r), p, q and r primes dividing |M23|, except for the cases (p, q, r) ∈
{(2, 3, r), (2, 5, 5), (2, 5, 7), (3, 3, 3), (3, 3, 5), (3, 3, 7)}, for all r.

2. Preliminaries

Let G be a finite group and for k ≥ 3, suppose C1, C2, . . . , Ck (not necessarily
distinct) be conjugacy classes of G with g1, g2, . . . , gk being representatives for
these classes respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1,
denote by ∆G = ∆G(C1, C2, . . . , Ck) the number of distinct (k − 1)-tuples
(g1, g2, . . . , gk−1) ∈ C1 × C2 × . . . × Ck−1 such that g1g2 . . . gk−1 = gk. This
number is known as class algebra constant or structure constant. With Irr(G) =
{χ1, χ2, . . . , χr}, the number ∆G is easily calculated from the character table of
G through the formula
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(1) ∆G(C1, C2, . . . , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) . . . χi(gk−1)χi(gk)

(χi(1G))k−2
.

Also for a fixed gk ∈ Ck we denote by ∆∗
G(C1, C2, . . . , Ck) the number of

distinct (k − 1)-tuples (g1, g2, . . . , gk−1) satisfying

(2) g1g2 . . . gk−1 = gk and G = ⟨g1, g2, . . . , gk−1⟩ .

Definition 2.1. If ∆∗
G(C1, C2, . . . , Ck) > 0, the group G is said to be (C1, C2, . . . ,

Ck)-generated.

Furthermore if H is any subgroup of G containing a fixed element hk ∈ Ck,
we let ΣH(C1, C2, . . . , Ck) be the total number of distinct tuples (h1, h2, . . . , hk−1)
such that

(3) h1h2 . . . hk−1 = hk and ⟨h1, h2, . . . , hk−1⟩ ≤ H.

The value of ΣH(C1, C2, . . . , Ck) can be obtained as a sum of the structure
constants ∆H(c1, c2, . . . , ck) of H-conjugacy classes c1, c2, . . . , ck such that ci ⊆
H ∩ Ci.

Theorem 2.1. Let G be a finite group and H be a subgroup of G containing a
fixed element g such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of
conjugates of H containing g is χH(g), where χH(g) is the permutation character
of G with action on the conjugates of H. In particular

h(g,H) =

m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, . . . , xm are representatives of the NG(H)-conjugacy classes fused
to the G-class of g.

Proof of Theorem 2.1. See Ganief and Moori [19, 22].

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2, . . . ,

Ck), namely ∆∗
G(C1, C2, . . . , Ck), where

(4) ∆∗
G(C1, . . . , Ck) = ∆G(C1, . . . , Ck)−

∑
h(gk, H)ΣH(C1, . . . , Ck),

gk is a representative of the class Ck and the sum is taken over all the rep-
resentatives H of G-conjugacy classes of maximal subgroups of G containing
elements of all the classes C1, C2, . . . , Ck. Since we have all the maximal sub-
groups of the sporadic simple groups except for G = M the Monster group,
it is possible to build a small subroutine in GAP to compute the values of
ΘG = ΘG(C1, C2, . . . , Ck) for any collection of conjugacy classes and a sporadic
simple group.

Lemma 2.1, Theorems 2.2 and 2.3 are in some cases useful in establishing
non-generation of finite groups.
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Lemma 2.1. Let G be a finite centerless group. If ∆∗
G(C1, C2, . . . , Ck) <

|CG(gk)|, gk ∈ Ck, then ∆∗
G(C1, C2, . . . , Ck) = 0 and therefore G is not

(C1, C2, . . . , Ck)-generated.

Proof of Theorem 2.2. See [5].

Theorem 2.2 ([26]). Let G be a transitive permutation group generated by
permutations g1, g2, . . . , gs acting on a set of n elements such that g1g2 . . . gs =

1G. If the generator gi has exactly ci cycles for 1 ≤ i ≤ s, then
s∑

i=1

ci ≤ (s −

2)n+ 2.

For the Mathieu sporadic simple group G = M23 and from the Atlas of
finite group representations [30] we have G acting on 23 points, so that n = 23
and since our generation is triangular, we have s = 3. Hence if G is (l,m, n)-
generated, then

∑
ci ≤ 25.

Theorem 2.3 ([27]). Let g1, g2, . . . , gs be elements generating a group G with
g1g2 . . . gs = 1G and V be an irreducible module for G with dimV = n ≥ 2. Let
CV(gi) denote the fixed point space of ⟨gi⟩ on V and let di be the codimension of

CV(gi) in V. Then
s∑

i=1

di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible
module V and 1⟨gi⟩ being the trivial character of the cyclic group ⟨gi⟩ , the
codimension di of CV(gi) in V can be computed using the following formula
([15]):

di = dim(V)− dim(CV(gi)) = dim(V)−
〈
χ↓G⟨gi⟩,1⟨gi⟩

〉
= χ(1G)−

1

| ⟨gi⟩ |

o(gi)−1∑
j=0

χ(gji ).(5)

Theorem 2.4 ([18]). Let G be a (2X, sY, tZ)-generated simple group, then G
is (sY, sY, (tZ)2)-generated.

Theorem 2.5 ([18]). Let G be a finite group and let l,m and n be integers that
are pairwise coprime. Then for any integer t coprime to n, we have

∆(lx,mY, nZ) = ∆(lX,mY, (nZ)t).

Remark 2.1. Moreover, G is (lX,mY, nZ)-generated if and only ifG is (lX,mY,
(nZ)t)-generated.

We see that (7A)−1 = 7B, (11A)−1 = 11B and (23A)−1 = 23B in M23. As
an application of Theorem 2.5, the group M23 is (p, q, 7A)-generated if and only
if it is (p, q, 7B)-generated, is (p, q, 11A)-generated if and only if it is (p, q, 11B)-
generated and it is also (p, q, 23A)-generated if and only if it is (p, q, 23B)-
generated. Therefore, it is sufficient to check the (p, q, 7A)-, (p, q, 11A)- and
(p, q, 23A)-generations of M23.
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3. The Mathieu sporadic simple group M23

In this section we apply the results discussed in Section 2, to the group M23.
We determine all the (p, q, r)-generations of M23, where p, q and r are primes
dividing the order of M23.

The group M23 is a simple group of order 10200960 = 27×32×5×7×11×23.
By the Atlas of finite groups [10], the groupM23 has exactly 17 conjugacy classes
of its elements and 7 conjugacy classes of its maximal subgroups. Representa-
tives of these classes of maximal subgroups can be taken as follows:

K1 = M22 K2 = L3(4):22 K3 = 24:A7 K4 = A8

K5 = M11 K6 = 24:(3×A5):2 K7 = 23:11

In this section we let G = M23. From the electronic Atlas of finite group
representations [30], we can see that M23 has a permutation representation on
23. Generators g1 and g2 can be taken as follows g1 = (1, 2)(3, 4)(7, 8)(9, 10)(13,
14)(15, 16)(19, 20)(21, 22), g2 = (1, 16, 11, 3)(2, 9, 21, 12)(4, 5, 8, 23)(6, 22, 14,
18)(13, 20)(15, 17), with o(g1) = 2, o(g2) = 4 and o(g1g2) = 23.

In Table 1, we list the values of the cyclic structure for each conjugacy of
G which containing elements of prime order together with the values of both ci
and di obtained from Ree and Scotts theorems, respectively.

Table 2 gives all the values of dnX = dim(V/CV(nX)) for nX classes of
prime order for the G with dim(V) = 7. This table will be referred to when we
are proving non-generation of a triple for the group G.

In Table 3 we list the representatives of classes of the maximal subgroups
together with the orbits lengths of M23 on these groups and the permutation
characters except for the smallest maximal subgroup of M23.

Table 4 gives us partial fusion maps of classes of maximal subgroups into
the classes of M23. These will be used in our computations.

Table 1: Cycle structures of conjugacy classes of M23
nX Cycle Structure ci di

1A 123 23 0

2A 1728 15 8

3A 1536 11 12

4A 132244 9 14

5A 1354 7 16

6A 11223262 7 16

7A 1273 5 18

7B 1273 5 18

8A 11214182 5 18

11A 11112 3 20

11B 11112 3 20

14A 2171141 3 20

14B 2171141 3 20

15A 3151151 3 20

15B 3151151 3 20

23A 231 1 22

23B 231 1 22



THE (p, q, r)-GENERATIONS OF THE MATHIEU SPORADIC SIMPLE GROUP M23 115

Table 2: dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) =
22.

nX 2A 3A 5A 7A 7B 11A 11B 23A 23B

Cycle Structure 17 28 15 36 13 54 12 73 12 73 11 112 11 112 231 231

ci 15 11 7 5 5 3 3 1 1
dnX 8 12 16 18 18 20 20 22 22

Table 3: Maximal subgroups of M23
Maximal Subgroup Order Orbit Lengths Character

M22 27 · 32 · 5 · 7 · 11 [1,22] 1a + 22a

L3(4):22 27 · 32 · 5 · 7 [2,21] 1a + 22a + 230a

24:A7 27 · 32 · 5 · 7 [7,16] 1a + 22a + 230a

A8 26 · 32 · 5 · 7 [8,15] 1a + 22a + 230a + 253

M11 24 · 32 · 5 · 11 [11,12] 1a + 22a + 230a + 1035a

24:(3 × A5):2 27 · 32 · 5 [3,20] 1a + 22a + 230a + 253a + 1035a
23:11 11 · 23 [23]

Table 4: The partial fusion maps into M23
M22-class 2a 3a 5a 7a 7b 11a 11b
→ M23 2A 3A 5A 7A 7B 11A 11B

h 2 2 1 1
L3(4):22-class 2a 2b 3a 5a 7a 7b

→ M23 2A 2A 3A 5A 7A 7B
h 1 1

24:A7-class 2a 2b 3a 3b 5a 7a 7b
→ M23 2A 2A 3A 3A 5A 7A 7B

h 1 1
A8-class 2a 2b 3a 3b 5a 7a 7b
→ M23 2A 2A 3A 3A 5A 7A 7B

h 2 2
M11-class 2a 3a 5a 11a 11b
→ M23 2A 3A 5A 11A 11B

h 1 1

24:(3 × A5):2-class 2a 2b 2c 3a 3b 3c 5a
→ M23 2A 2A 2A 3A 3A 3A 5A

h 1
23:11-class 11a 11b 11c 11d 11e 11f 11g 11h 11i 11j 23a 23b
→ M23 11A 11B 11A 11A 11A 11B 11B 11B 11A 11B 23A 23B

h 1 1 1 1 1 1 1 1 1 1 1 1

4. The (2, q, r)-generations of M23

Let pX, p ∈ {2, 3, 5, 7, 11, 23}, X ∈ {A,B} be a conjugacy class of G = M23 and
ci be the number of disjoint cycles in a representative of pX. For M23 with three
disjoint cycles, and acting on n = 23 points, we get n(s− 2) + 2 = 23 + 2 = 25.
Also G is not (2A, 2A, pX)-generated, for if G is (2A, 2A, pX)-generated, then
G is a dihedral group and thus is not simple. Also we know that if G is (l,m, n)-
generated with 1

l +
1
m + 1

n ≥ 1 and G is simple, then G ∼= A5, but G ∼= M23 and
M23 ̸∼= A5. Hence if G is (p, q, r)-generated, then we must have 1

p + 1
q + 1

r < 1.



116 MALEBOGO J. MOTALANE, AYOUB B. M. BASHEER and THEKISO T. SERETLO

Moreover if G is (2A, 3A, rX)-generated, then we must have r > 6 but we show
in Theorem 4.1 below that in our case G is not (2A, 3A, rX)-generated for all r.

Now, the (2, q, r)-generations of M23 comprises the cases (2, 3, r)-, (2, 5, r)-,
(2, 7, r)-, (2, 11, r)- and (2, 23, r)- generations.

4.1 (2, 3, r)-generations

Proposition 4.1. G is not (2A, 3A, r)-generated for all r.

Proof. The condition 1
2 + 1

3 + 1
r < 1 shows that r > 6. Therefore we have to

consider the cases (2A, 3A, 7X), (2A, 3A, 11X) and (2A, 3A, 23X) for all X ∈
{A,B}. Theorem 1.1 of [28] implies that G is not a Hurwitz group and hence G
is not a (2A, 3A, 7X)-generated for X ∈ {A,B}. Generally, if G is (2A, 3A, r)-
generated group, then we must have c2A+c3A+cp ≤ 25. From Table 1 we see that
c2A + c3A + cr = 15 + 11 + cp > 25 for p ∈ {7A, 7B, 11A, 11B, 23A, 23B}. Now,
using Ree’s Theorem [26], it follows that G is not (2A, 3A, r)-generated.

Remark 4.1. The above results can be deduced by Scott’s Theorem [27], as
from Table 2 we can see that d2A + d3A + dnX = 8 + 12 + dnX < 2 × 22 for
nX ∈ {7A, 7B, 11A, 11B, 23A, 23B}.

4.1.1 (2, 5, r)-generations

The condition 1
2+

1
5+

1
r < 1 shows that r > 10

3 . Thus we have to consider the cases
(2A, 5A, 5A), (2A, 5A, 7X), (2A, 5A, 11X) and (2A, 5A, 23X) for X ∈ {A,B}.

Proposition 4.2. The group G is neither (2A, 5A, 5A)- nor (2A, 5A, 7X)-gene-
rated for X ∈ {A,B}.

Proof. If G is a (2A, 5A, 5A)-generated group, then we must have c2A + c5A +
c5A ≤ 25. From Table 1 we see that c2A + c5A + c5A = 15 + 7 + 7 = 29 > 25.
Now, using Ree’s Theorem, it follows that G is not (2A, 5A, 5A)-generated.

By the same Table 1 we see that c2A + c5A + c7A = 15 + 7 + 5 = 27 > 25.
Again by Ree’s Theorem, it follows that G is not (2A, 5A, 7A)-generated. Since
the same holds for (2A, 5A, 7B), it follows that G is not (2A, 5A, 7X)-generated
for X ∈ {A,B} and the proof is complete.

Proposition 4.3. The group G is (2A, 5A, 11X)-generated for X ∈ {A,B}.

Proof. By Table 4, we see that K1, K5 and K7 are the maximal subgroups
having elements of order 11.

The intersection of the conjugacy classes these three maximal subgroups do
not contain elements of order 11. Considering all various pairwise intersections
of the conjugacy classes for these three maximal subgroups, we found that the
only candidate having elements of order 11 is isomorphic to the group PSL2(11).

The maximal subgroup K7 will not have any contributions because it does
not contain elements of orders 2 and 5. We obtained that

∑
K1

(2a, 5a, 11b) =
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176,
∑

K5
(2a, 5a, 11b) = 33 and

∑
PSL2(11)

(2a, 5x, 11b) = ∆PSL2(11)(2a, 5a, 11b)+
∆PSL2(11)(2a, 5b, 11b) = 11 + 11 = 22. By [17, 31], we have h(11A,K1) =
h(11A,K5) = h(11A,PSL2(11)) = 1. Since by Table 5 we have ∆G(2A, 5A, 11A)
= 253, we then obtain that ∆∗

G(2A, 5A, 11A) ≥ ∆G(2A, 5A, 11A)−
∑

K1
(2a, 5a,

11b)−
∑

K5
(2a, 5a, 11b)+

∑
PSL2(11)

(2a, 5x, 11b) = 253−176−33+22 = 66 > 0.
Hence G is (2A, 5A, 11A)-generated. Since the same holds for (2A, 5A, 11B)
(see Remark 2.1), it follows that G is (2A, 5A, 11X)-generated, for all X ∈
{A,B}.

Proposition 4.4. The group G is (2A, 5A, 23X)-generated for X ∈ {A,B}.

Proof. By Table 4, we see the maximal subgroup K7 is the only one have
elements of order 23. This maximal subgroup will not have any contributions
because it does not have elements of orders 2 and 5.

Since by Table 5, we have ∆G(2A, 5A, 23A) = 138, we then deduce that
∆∗

G(2A, 5A, 23A) = ∆G(2A, 5A, 23A) = 138 > 0. Thus G is (2A, 5A, 23A)-
generated. Since the same holds for (2A, 5A, 23B), it follows that G is a
(2A, 5A, 23X)-generated group, for X ∈ {A,B}.

4.1.2 (2, 7, r)-generations

We check for the generation ofG through the triples (2A, 7X, 7Y ), (2A, 7X, 11Y )
and (2A, 7X, 23Y ) for all X,Y ∈ {A,B}.

Proposition 4.5. The group G is (2A, 7X, 7Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4 we see that the maximal subgroups of G whose orders are
divisible by 7 are K1, K2, K3 and K4.

The intersection of conjugacy classes from these four maximal subgroups do
not contain elements of order 7. The intersection of the conjugacy classes from
any three maximal subgroups do not contain elements of order 7. Considering all
various intersections of the conjugacy classes for pairwise of these three maximal
subgroups, we noticed that the groups PSL3(4), A7 (2-copies), 23:PLS3(2) (2-
copies) and PSL3(2) are the only ones having elements of order 7.

The group PSL3(2) has its relevant structure constant zero and as such
it will not have any contributions. We obtained that

∑
PSL3(4)

(2a, 7a, 7a) =
42,

∑
A7

(2a, 7a, 7a) = 7,
∑

23:PSL3(2)
(2a, 7b, 7b) = 7 and h(7A,PSL3(4)) =

h(7A,A7) = h(7A, 23:PSL3(2)) = 2. For the contributing maximal subgroups,
we have

∑
K1

(2a, 7b, 7b) = 147,
∑

K2
(2x, 7b, 7b) = ∆K2(2a, 7b, 7b) + ∆K2(2b,

7b, 7b) = 0 + 42 = 42,
∑

K3
(2a, 7a, 7a) = 7,

∑
K4

(2x, 7b, 7b) = ∆K4(2a, 7b, 7b) +
∆K4(2b, 7b, 7b) = 14 + 28 = 42 and found that h(7A,K2) = h(7A,K3) = 1 and
h(7A,K1) = h(7A,K4) = 2. Since by Table 5 we have ∆G(2A, 7A, 7A) = 301,
we then obtain that ∆∗

G(2A, 7A, 7A) ≥ ∆G(2A, 7A, 7A) − 2 ·
∑

K1
(2a, 7b, 7b) −∑

K2
(2x, 7b, 7b)−

∑
K3

(2a, 7a, 7a)−2·
∑

K4
(2x, 7b, 7b)+2·

∑
PSL3(4)

(2a, 7b, 7b)+
2 · 2 ·

∑
A7

(2a, 7a, 7a) + 2 · 2 ·
∑

23:PSL3(2)
(2a, 7b, 7b) = 301− 2(147)− 42− 7−

2(42) + 2(42) + 2(2)(7) + 2(2)(7) = 14 > 0 and it follows that (2A, 7A, 7A) is
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a generating triple for G. Since the same holds for (2A, 7B, 7B), it follows that
the group G is (2A, 7X, 7X)-generated, for all X ∈ {A,B}.

We now investigate the (2A, 7A, 7B)- generations for G. From the intersec-
tions, we noticed that the groups PSL3(4), A7 (2-copies), 2

3:PLS3(2) (2-copies)
and PSL3(2) will all contribute here. We obtained that

∑
PSL3(4)

(2a, 7a, 7b) =
63,

∑
A7

(2a, 7a, 7b) = 28,
∑

23:PSL3(2)
(2a, 7b, 7a) = 14,

∑
PSL3(2)

(2a, 7a, 7b) = 7

and h(7B,PSL3(4)) = h(7B,A7) = h(7B, 23:PSL3(2)) = h(7B,PSL3(2)) = 2.

The maximal subgroup K3 will not have any contributions because its rel-
evant structure constant is zero. For the contributing maximal subgroups, we
have

∑
K1

(2a, 7b, 7a) = 224,
∑

K2
(2x, 7b, 7a) = ∆K2(2a, 7b, 7a)+∆K2(2b, 7b, 7a)

= 0+ 63 = 63,
∑

K4
(2x, 7b, 7a) = ∆K4(2a, 7b, 7a) +∆K4(2b, 7b, 7a) = 21+ 42 =

63 and found that h(7B,K2) = 1 and h(7B,K1) = h(7B,K4) = 2. Since by
Table 5 we have ∆G(2A, 7A, 7B) = 462, we then obtain that ∆∗

G(2A, 7A, 7B) =
∆G(2A, 7A, 7B)− 2 ·

∑
K1

(2a, 7b, 7a)−
∑

K2
(2x, 7b, 7a)− 2 ·

∑
K4

(2x, 7b, 7a) +
2 ·

∑
PSL3(4)

(2a, 7a, 7b) + 2 ·
∑

A7
(2a, 7b, 7a) + 2 ·

∑
23:PSL3(2)

(2a, 7b, 7a) + 2 ·∑
PSL3(2)

(2a, 7b, 7a) = 462− 2(224)− 63− 2(21)+2(63)+2(2)(28)+2(2)(14)+
2(7) = 217 > 0. Therefore G is (2A, 7A, 7B)-generated.

Proposition 4.6. The group G is (2A, 7X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. Looking at Proposition 4.3, we see that PSL2(11) is the only group
having elements of order 11. This group PSL2(11) will not have any contribu-
tions because it does not contain elements of order 7. With regard to maximal
subgroups having elements of order 11, by Table 4 we see that the maximal sub-
group K1 of G is the only one whose order is divisible by 7 and 11. We obtained
that

∑
K1

(2a, 7x, 11y) = 176 and h(11Z,K1) = 1 for Z ∈ {A,B}. By Table 5 we
have ∆G(2A, 7X, 11Y ) = 308 so that ∆∗

G(2A, 7X, 11Y ) ≥ ∆G(2A, 7X, 11Y ) −∑
K1

(2a, 7x, 11y) = 308 − 176 = 132 > 0, implies that G is (2A, 7X, 11Y )-
generated for all X,Y ∈ {A,B}.

Proposition 4.7. The group G is (2A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup K7 does not have elements of order 7. By Table 5 we
have ∆G(2A, 7X, 23Y ) = 184. Since there are no contributions from any of the
maximal subgroups of G, we then have ∆∗

G(2A, 7X, 23Y ) = ∆G(2A, 7X, 23Y ) =
184 > 0, proving that G is (2A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

4.1.3 (2, 11, r)-generations

Also here we check for the generation of G through the triples (2A, 11A, 11A)-
, (2A, 11A, 11B)-, (2A, 11A, 23A)-, (2A, 11A, 23B)-, (2A, 11B, 11B)-, (2A, 11B,
23A)- and (2A, 11B, 23B)-generation. For this we have the following theorems:

Proposition 4.8. The group G is (2A, 11X, 11Y )-generated for X,Y ∈ {A,B}.
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Proof. Looking at the discussions in Proposition 4.3 for the intersections, we
see that the group PSL2(11) may be involved when proving (2A, 11X, 11Y )-
generations. By Table 4 we see that the maximal subgroups of G containing
elements of orders 2 and 11 are K1 and K5. The groups K1, K5 and PSL2(11)
have elements of orders 2 and 11. We obtained that

∑
K1

(2a, 11x, 11x) = 99,∑
K5

(2a, 11x, 11x) = 11 and
∑

PSL2(11)
(2a, 11x, 11x) = 11. We found that

h(11A,K1) = h(11A,K5) = h(11A,PSL2(11)) = 1. Since by Table 5 we have
∆G(2A, 11X, 11X) = 341, so that ∆∗

G(2A, 11X, 11X) ≥ ∆G(2A, 11X, 11X) −∑
K1

(2a, 11x, 11x)−
∑

K5
(2a, 11x, 11x)+

∑
PSL2(11)

(2a, 11x, 11x) = 341−147−
11+11 = 194 > 0, proving that G is (2A, 11X, 11X)-generated for X ∈ {A,B}.

Finally, we show that G is (2A, 11A, 11B)-generated. We obtained that∑
K1

(2a, 11b, 11a) = 132 and
∑

K5
(2a, 11b, 11a) = 11.The group PSL2(11) will

not have any contributions because its relevant structure constant is zero. Since
by Table 5 we have ∆G(2A, 11A, 11B) = 341, so that ∆∗

G(2A, 11A, 11B) =
∆G(2A, 11A, 11B)−

∑
K1

(2a, 11b, 11a)−
∑

K5
(2a, 11b, 11a) = 341− 224− 11 =

106 > 0, implies that G is (2A, 11A, 11B)-generated. We conclude that G is
(2A, 11Y, 11Z)-generated for all Y,Z ∈ {A,B}.

Proposition 4.9. The group G is (2A, 11X, 23Y )-generated for X,Y ∈ {A,B}.

Proof. By Table 4 we see the K7 is the only maximal subgroup of G con-
taining elements of order 23. This maximal subgroup will not have any con-
tributions because it does not have elements of order 2. By Table 5 we have
∆G(2A, 11X, 23Y ) = 391, so that ∆∗(2A, 11X, 23Y ) = ∆G(2A, 11X, 23Y ) =
391 > 0. Hence the group G is (2A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

4.1.4 (2, 23, r)-generations

In here we check for the generation of G through the triples (2A, 23A, 23A),
(2A, 23A, 23B) and (2A, 23B, 23B). For these we have the following theorems:

Proposition 4.10. The group G is (2A, 23X, 23Y )-generated for X,Y ∈ {A,B}.

Proof. By Table 4 we see the K7 is the only maximal subgroup of G con-
taining elements of order 23. This maximal subgroup will not have any con-
tributions because it does not have elements of order 2. By Table 5 we have
∆G(2A, 23X, 23X) = 161 and ∆G(2A, 23A, 23B) = 230 for X ∈ {A,B}. Since
there is no contributing group here, we then obtain that ∆∗

G(2A, 23X, 23X) =
∆G(2A, 23X, 23X) = 161 > 0 and ∆∗

G(2A, 23A, 23B) = ∆G(2A, 23A, 23B) =
230 > 0 for all X ∈ {A,B}. Hence, the group G is a (2A, 23X, 23Y )-generated
for X,Y ∈ {A,B}.

4.2 The (3, q, r)-generations

The condition 1
3 + 1

3 + 1
r < 1 shows that r > 3. We then handle all the pos-

sible (3, q, r)-generations, namely (3A, 3A, 5A)-, (3A, 3A, 7X)-, (3A, 3A, 11X)-
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, (3A, 3A, 23X)-, (3A, 5A, 5A)-, (3A, 5A, 7X)-, (3A, 5A, 11X)-, (3A, 5A, 23X)-,
(3A, 7X, 7Y )-, (3A, 7X, 11Y )-, (3A, 7X, 23Y )-, (3A, 11X, 11Y )-, (3A, 11X, 23Y )-
and (3A, 23X, 23Y )-generations in this section.

4.2.1 (3, 3, r)-generations

Proposition 4.11. The group G is neither (3A, 3A, 5A)- nor (3A, 3A, 7X)-
generated group for X ∈ {A,B}.

Proof. By Table 2, the group G acts on a 22-dimensional irreducible complex
module V. By Scott’s Theorem applied to this module and using the Atlas
of finite groups, we see that d3A = dim(V/CV(3A)) = 2(22−4)

3 = 12, d5A =

dim(V/CV(5A)) = 4(22−2)
5 = 16 and d7A = d7B = dim(V/CV(5A)) = 6(22−1)

7 =
18. For the case (3A, 3A, 5A), we get d3A + d3A + d5A = 2× 12 + 16 = 40 < 44
showing thatG is not (3A, 3A, 5A)-generated. We also get that d3A+d3A+d7X =
2 × 12 + 16 = 42 < 44 for X ∈ {A,B} and by Scott’s Theorem G is not
(3A, 3A, 7X)-generated for all X ∈ {A,B} and the proof is complete.

Proposition 4.12. The group G is (3A, 3A, 11X)-generated for X ∈ {A,B}.

Proof. Looking at Proposition 4.3, we notice that the subgroups of G involved
here are K1, K5 and PSL2(11) because both subgroups have their elements of
respective orders 3 and 11 which fuse to the elements 3A and 11A (or 11B) of
the group G. We obtained that

∑
K1

(3a, 3a, 11b) = 209,
∑

K5
(3a, 3a, 11b) = 11

and
∑

PSL2
(11)(3a, 3a, 11b) = 11. We already have h(11A,K1) = h(11A,K5) =

h(11A,PSL2(11)) = 1. Since by Table 6 we have ∆G(3A, 3A, 11A) = 275, we
then obtain that ∆∗

G(3A, 3A, 11A) ≥ ∆G(3A, 3A, 11A) −
∑

K1
(3a, 3a, 11b) −∑

K5
(3a, 3a, 11b)+

∑
PSL2(11)

(3a, 3a, 11b) = 275−209−11+11 = 66 > 0, proving
that G is (3A, 3A, 11A)-generated. Since the same holds for (3A, 3A, 11B), it
follows that G is (3A, 3A, 11X)-generated, for all X ∈ {A,B}.

Proposition 4.13. The group G is a (3A, 3A, 23X)-generated for X ∈ {A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of order 3. By Table 6 we have that ∆G(3A, 3A, 23X) = 138.
Since there is no contributing group, we then obtain that ∆∗(3A, 3A, 23X) =
∆G(3A, 3A, 23X) = 138 > 0, so that G is (3A, 3A, 23X)-generated for X ∈
{A,B}.

4.2.2 (3, 5, r)-generations

Proposition 4.14. The group G is (3A, 5A, 5A)-generated.

Proof. Looking at Table 4 we see that all the maximal subgroups of G have
elements of order 5 except for the seventh maximal subgroup. Let T be the
set of all maximal subgroups of G except the seventh one. We look at various
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intersections of conjugacy classes for these maximal subgroups. We have the
following:

� The groups arising from the intersections of conjugacy classes for any 4, 5
or 6 maximal subgroups in T do not contain elements of order 5.

� The group arising from intersections of the conjugacy classes for any three
maximal subgroups in T having elements of orders 3 and 5 is S5 (2-copies).
We obtained that

∑
S5
(3a, 5a, 5a) = 10 and h(5A,S5) = 3.

� The groups arising from intersections of the conjugacy classes for any
two maximal subgroups in T having elements of orders 3 and 5 are 24:S5

(3-copies), PSL3(4), A7 (2-copies), 24:A6, PSL2(11), A6:2, A5 and S5 (2-
copies). We obtained that

∑
24:S5

(3a, 5a, 5a) = 160,
∑

PSL3(4)
(3a, 5x, 5y) =

∆PSL3(4)(3a, 5a, 5a) + ∆PSL3(4)(3a, 5a, 5b) + ∆PSL3(4)(3a, 5b, 5b) = 445 +
445 + 445 = 1335,

∑
A7

(3x, 5a, 5a) = ∆A7(3a, 5a, 5a) + ∆A7(3b, 5a, 5a) =
20+60 = 80,

∑
24:A6

(3x, 5y, 5z) = ∆24:A6
(3a, 5a, 5a)+∆24:A6

(3a, 5a, 5b)+
∆24:A6

(3a, 5b, 5b)+∆24:A6
(3b, 5a, 5a)+∆24:A6

(3b, 5a, 5b)+∆24:A6
(3b, 5b, 5b)

= 80+160+80+20+40+20 = 400,
∑

PSL2(11)
(3a, 5x, 5y) = ∆PSL2(11)(3a,

5a, 5a)+∆PSL2(11)(3a, 5a, 5b)+∆PSL2(11)(3a, 5b, 5b) = 20+20+20 = 60,∑
A6:2

(3a, 5a, 5a) = 30,
∑

A5
(3a, 5x, 5y) = ∆A5(3a, 5a, 5a)+∆A5(3a, 5a, 5b)

+∆A5(3a, 5b, 5b) = 5 + 5 + 5 = 15 and
∑

S5
(3a, 5a, 5a) = 10. We found

that the value of h for each of these eight groups is 3.

By Table 6 we have ∆G(3A, 5A, 5A) = 6550.We obtained that
∑

K1
(3a, 5a, 5a)

= 2800,
∑

K2
(3a, 5a, 5a) = 910,

∑
K3

(3x, 5a, 5a) = ∆K3(3a, 5a, 5a)+∆K3(3b, 5a,
5a) = 320 + 240 = 560,

∑
K4

(3x, 5a, 5a) = ∆K4(3a, 5a, 5a) + ∆K4(3b, 5a, 5a) =
25 + 135 = 160,

∑
K5

(3a, 5a, 5a) = 80,
∑

K6
(3x, 5a, 5a) = ∆K6(3a, 5a, 5a) +

∆K6(3b, 5a, 5a) + ∆K6(3c, 5a, 5a) = 0 + 0 + 160 = 160. The value of h for
each maximal subgroup is 3 except for K4 and K6. The value of h is 1 for
each of these maximal subgroups K4 and K6. It follows that ∆

∗
G(3A, 5A, 5A) ≥

∆G(3A, 5A, 5A)−3 ·
∑

K1
(3a, 5a, 5a)−3 ·

∑
K2

(3a, 5a, 5a)−3 ·
∑

K3
(3x, 5a, 5a)−∑

K4
(3x, 5a, 5a)−3 ·

∑
K5

(3a, 5a, 5a)−
∑

K6
(3x, 5a, 5a)−2 ·3 ·

∑
S5
(3a, 5a, 5a)+

3 · 3 ·
∑

24:S5
(3a, 5a, 5a) + 3 ·

∑
PSL3(4)

(3a, 5x, 5y) + 2 · 3 ·
∑

A7
(3x, 5a, 5a) +

3 ·
∑

24:A6
(3x, 5y, 5z) + 3 ·

∑
PSL2(11)

(3a, 5x, 5y) + 3 ·
∑

A6:2
(3a, 5a, 5a) + 3 ·∑

A5
(3a, 5x, 5y) + 2 · 3 ·

∑
S5
(3a, 5a, 5a) = 6550 − 3(2800) − 3(910) − 3(560) −

1(160)− 3(80)− 1(160)− 2(3)(10) + 3(3)(160) + 3(1335) + 2(3)(80) + 3(400) +
3(60) + 3(30) + 3(15) + 2(3)(10) = 620 > 0. It follows that the group G is
(3A, 5A, 5A)-generated.

Proposition 4.15. The group G is (3A, 5A, 7X)-generated for X ∈ {A,B}.

Proof. As in Proposition 4.5, the groups PSL3(4), A7 (2-copies), 23:PLS3(2)
(2-copies) and PSL3(2) may have contributions here.The groups 23:PLS3(2)
and PSL3(2) will not have any contributions because they do not have ele-
ments of order 5.We obtained that

∑
PSL3(4)

(3a, 5x, 7b) = ∆PSL3(4)(3a, 5a, 7b)+
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∆PSL3(4)(3a, 5b, 7b) = 441 + 441 = 882,
∑

A7
(3x, 5a, 7b) = ∆A7(3a, 5a, 7b) +

∆A7(3b, 5a, 7b) = 56 + 7 = 63 and h(7A,PSL3(4)) = h(7A,A7) = 2.

The maximal subgroups K1, K2, K3 and K4 meet the 3A, 5A, 7A classes of
G. We obtained that

∑
K1

(3a, 5a, 7b) = 2464,
∑

K2
(3a, 5a, 7b) = 882,

∑
K3

(3x,
5a, 7a) = ∆K3(3a, 5a, 7a)+∆K3(3b, 5a, 7a) = 112+224 = 336,

∑
K4

(3x, 5a, 7b) =
∆K4(3a, 5a, 7b) + ∆K4(3b, 5a, 7b) = 77 + 7 = 84. We found that h(7A,K1) =
h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table 6 we have ∆G(3A, 5A, 7A) = 5124, we then obtain that
∆∗

G(3A, 5A, 7A) ≥ ∆G(3A, 5A, 7A) − 2 ·
∑

K1
(3a, 5a, 7b) −

∑
K2

(3a, 5a, 7b) −∑
K3

(3x, 5a, 7a)−2 ·
∑

K4
(3a, 5a, 7b)+2 ·

∑
PSL3(4)

(3a, 5x, 7b)+2 ·2 ·
∑

A7
(3x, 5a,

7b) = 5124−2(2464)−882−336−2(84)+2(882)+2(2)(63) = 826 > 0. Therefore,
the group G is (3A, 5A, 7A)-generated. Since the same holds for (3A, 5A, 7B),
it follows that the group G is (3A, 5A, 7X)-generated for X ∈ {A,B}.

Proposition 4.16. The group G is (3A, 5A, 11X)-generated for X ∈ {A,B}.

Proof. By Table 4 we see that the maximal subgroups of G containing el-
ements of orders 3 and 11 are K1 and K5. The group PSL2(11)contains el-
ements of orders 3, 5 and 11. We obtained that

∑
K1

(3a, 5a, 11b) = 2112,∑
K5

(3a, 5a, 11a) = 99 and
∑

PSL2(11)
(3a, 5x, 11b) = ∆PSL2(11)(3a, 5a, 11b) +

∆PSL2(11)(3a, 5b, 11b) = 22+22 = 44.We already have h(11A,K1) = h(11A,K5)
= h(11A,PSL2(11)) = 1. Since by Table 6 we have ∆G(3A, 5A, 11A) = 4136, we
then have ∆∗

G(3A, 5A, 11A) ≥ ∆G(3A, 5A, 11A) −
∑

K1
(3a, 5a, 11b) −

∑
K5

(3a,
5a, 11b) +

∑
PSL2(11)

(3a, 5x, 11b) = 4136 − 2112 − 99 + 44 = 1969 > 0, so that
G is (3A, 5A, 11A)-generated. Since the same holds for (3A, 5A, 11B), it follows
that the group G is (3A, 5A, 11X)-generated for X ∈ {A,B}.

Proposition 4.17. The group G is (3A, 5A, 23X)-generated group for X ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of order 5. By Table 6 we have that ∆G(3A, 5A, 23X) = 2438.
Since there is no contributing group, we then obtain that ∆∗

G(3A, 5A, 23X) =
∆G(3A, 5A, 23X) = 2438 > 0, so that G is (3A, 5A, 23X)-generated for X ∈
{A,B}.

4.2.3 (3, 7, r)-generations

In this subsection we discuss the case (3, 7, r)-generations. It follows that we
will end up with 11 cases, namely (3A, 7A, 7A)-, (3A, 7A, 7B)-, (3A, 7A, 11A)-
, (3A, 7A, 11B)-, (3A, 7A, 23A)-, (3A, 7A, 23B)-, (3A, 7B, 7B)-, (3A, 7B, 11A)-,
(3A, 7B, 11B)-, (3A, 7B, 23A) and (3A, 7B, 23B)-generation.

Proposition 4.18. The group G is (3A, 7X, 7Y )-generated for all X,Y ∈ {A,B}
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Proof. As in Proposition 4.5, the groups PSL3(4), A7 (2-copies), 23:PLS3(2)
(2-copies) and PSL3(2) have elements of order 7.We obtained that

∑
PSL3(4)

(3a,
7b, 7b) = 357,

∑
A7

(3x, 7b, 7b) = ∆A7(3a, 7b, 7b)+∆A7(3b, 7b, 7b) = 56+21 = 77,∑
23:PSL3(2)

(3a, 7b, 7b) = 28,
∑

PSL3(2)
(3a, 7a, 7a) = 7 and h(7A,PSL3(4)) =

h(7A,A7) = h(7A, 23:PSL3(2)) = h(7A,PSL3(2)) = 2.

The maximal subgroupsK1,K2,K3 andK4 meet the 3A, 7A classes ofG.We
obtained that

∑
K1

(3a, 7b, 7b) = 1792,
∑

K2
(3a, 7b, 7b) = 357,

∑
K3

(3x, 7a, 7a) =
∆K3(3a, 7a, 7a)+∆K3(3b, 7a, 7a) = 168+126 = 294,

∑
K4

(3x, 7b, 7b) = ∆K4(3a,
7b, 7b)+∆K4(3b, 7b, 7b) = 147+21 = 168.We found that h(7A,K1) = h(7A,K4) =
2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table 6 we have ∆G(3A, 7A, 7A) = 4886, we then obtain that
∆∗

G(3A, 7A, 7A) ≥ ∆G(3A, 7A, 7A) − 2 ·
∑

K1
(3a, 7b, 7b) −

∑
K2

(3a, 7b, 7b) −∑
K3

(3x, 7a, 7a)−2·
∑

K4
(3a, 7b, 7b)+2·

∑
PSL3(4)

(3a, 7b, 7b)+2·2·
∑

A7
(3x, 7b, 7b)+

2 · 2 ·
∑

23:PSL3(2)
(3a, 7b, 7b) + 2 ·

∑
PSL3(2)

(3a, 7a, 7a) = 4886− 2(1792)− 357−
394 − 2(168) + 2(357) + 2(2)(77) + 2(2)(28) + 2(7) = 1363 > 0. Therefore, the
group G is (3A, 7A, 7A)-generated. Since the same holds for (3A, 7B, 7B), it
follows that the group G is (3A, 7X, 7X)-generated for X ∈ {A,B}.

We now prove that G is (3A, 7A, 7B)-generated.

We obtained that
∑

PSL3(4)
(3a, 7b, 7a) = 357,

∑
A7

(3x, 7b, 7b) = ∆A7(3a,
7b, 7b)+∆A7(3b, 7b, 7b) = 28+14 = 32,

∑
23:PSL3(2)

(3a, 7b, 7b) = 28,
∑

PSL3(2)
(3a,

7a, 7b) = 7,
∑

K1
(3a, 7b, 7a) = 1792,

∑
K2

(3a, 7b, 7a) = 357,
∑

K3
(3x, 7a, 7b) =

∆K3(3a, 7a, 7b) + ∆K3(3b, 7a, 7b) = 112 + 70 = 182,
∑

K4
(3x, 7b, 7a) = ∆K4(3a,

7b, 7a)+∆K4(3b, 7b, 7a) = 21+147 = 168,
∑

PSL3(4)
(3a, 7b, 7a) = 357,

∑
A7

(3x,
7b, 7a) = ∆A7(3a, 7b, 7a)+∆A7(3b, 7b, 7a) = 56+21 = 77,

∑
23:PSL3(2)

(3a, 7b, 7a)
= 28 and

∑
PSL3(2)

(3a, 7a, 7b). Since by the same Table 6 we have ∆G(3A, 7A, 7B)
= 4886, so that ∆∗

G(3A, 7A, 7B) ≥ ∆G(3A, 7A, 7B) − 2 ·
∑

K1
(3a, 7b, 7a) −∑

K2
(3a, 7b, 7a)−

∑
K3

(3x, 7a, 7b)−2·
∑

K4
(3x, 7a, 7b)+2·

∑
PSL3(4)

(3a, 7b, 7a)+
2 · 2 ·

∑
A7

(3x, 7b, 7a) + 2 · 2 ·
∑

23:PSL3(2)
(3a, 7b, 7a) + 2 ·

∑
PSL3(2)

(3a, 7a, 7b) =
4886−2(1792)−357−182−2(168)+2(357)+2(2)(42)+2(2)(28)+2(7) = 1435 > 0.
This proves that G is (3A, 7A, 7B)-generated group.

Proposition 4.19. The group G is (3A, 7X, 11Y )-generated for all X,Y ∈
{A,B}.

Proof. Looking at Proposition 4.3, K1, K5, K7 and PSL2(11) are the only
groups having elements of order 11. The group PSL2(11) will not have any
contributions because it does not have elements of order 7. Looking at Table 4,
we see that K1 is the only maximal subgroup of G having elements of orders 3,
7 and 11. We obtained that

∑
K1

(3a, 7x, 11y) = 1760 and h(11X,K1) = 1 for
X ∈ {A,B}. By Table 6 we have ∆G(3A, 7X, 11Y ) = 4136. We obtained that
∆∗

G(3A, 7X, 11Y ) ≥ ∆G(3A, 7X, 11Y )−
∑

K1
(3a, 7x, 11y) = 4136−1760 = 2376

and so that the group G becomes is (3A, 7X, 11Y )-generated for all X,Y ∈
{A,B}.



124 MALEBOGO J. MOTALANE, AYOUB B. M. BASHEER and THEKISO T. SERETLO

Proposition 4.20. The group G is (3A, 7X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of orders 3 and 7. By Table 6 we have that ∆G(3A, 7X, 23Y ) =
3312. Since there is no contributing group, we then obtain that ∆∗

G(3A, 7X, 23Y )
= ∆G(3A, 7X, 23Y ) = 3312 > 0, so that the group G is (3A, 7X, 23Y )-generated
for all X,Y ∈ {A,B}.

4.2.4 (3, 11, r)-generations

In this subsection we discuss the case (3, 11, r)-generations.

It follows that we will end up with 7 cases, namely (3A, 11A, 11A)-, (3A, 11A,
11B)-,(3A, 11A, 23A)-, (3A, 11A, 23B)-, (3A, 11B, 11B)-, (3A, 11B, 23A)-, (3A,
11B, 23B)-generation.

Proposition 4.21. The group G is (3A, 11X, 11Y )-generated for all X,Y ∈
{A,B}.

Proof. Looking at Proposition 4.3, K1, K5, K7 and PSL2(11) are the only
groups having elements of order 11. The maximal subgroup K7 will not have
any contributions because it does not have elements of order 3. We obtained that∑

K1
(3a, 11b, 11b) = 1320,

∑
K5

(3a, 11b, 11b) = 22 and
∑

PSL2(11)
(3a, 11b, 11b) =

0. The value of h for each group is 1. Since by Table 6 we have ∆G(3A, 11A, 11A) =
5126, it follows that ∆∗

G(3A, 11A, 11A) ≥ ∆G(3A, 11A, 11A)−
∑

K1
(3a, 11b, 11b)−∑

K5
(3a, 11b, 11b) +

∑
PSL2(11)

(3a, 11b, 11b) = 5126− 1320− 22+ 0 = 3784 > 0.
Therefore, the group G is (3A, 11A, 11A)-generated. Since the same holds for
(3A, 11B, 11B),the group G becomes (3A, 11X, 11X)-generated for X ∈ {A,B}.

We now prove that G is (3A, 11A, 11B)-generated.

We obtained that
∑

K1
(3a, 11a, 11b) = 1276,

∑
K5

(3a, 11a, 11b) = 77 and∑
PSL2(11)

(3a, 11a, 11b) = 22. By the same Table 6 we have ∆G(3A, 11A, 11B) =
5379. Then, we obtain that ∆∗

G(3A, 11A, 11B) ≥ ∆G(3A, 11A, 11B)−
∑

K1
(3a,

11b, 11a)−
∑

K5
(3a, 11b, 11a)+

∑
PSL2(11)

(3a, 11b, 11a) = 5379−1276−77+22 =
4048 > 0, proving that G is (3A, 11A, 11B)-generated. Hence, the group G is
(3A, 11X, 11Y )-generated for all X,Y ∈ {A,B}.

Proposition 4.22. The group G is (3A, 11X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of order 3. By Table 6 we have that ∆G(3A, 11X, 23Y ) = 5129.
Since there is no contributing group, we then obtain that ∆∗(3A, 11X, 23Y ) =
∆G(3A, 11X, 23Y ) = 5129 > 0, so that the group G is (3A, 11X, 23Y )-generated
for all X,Y ∈ {A,B}.
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4.2.5 (3, 23, r)-generations

In this subsection we discuss the case (3, 23, r)-generations. It follows that we
will end up with 3 cases, namely (3A, 23A, 23A)-, (3A, 23A, 23B)-, (3A, 23B, 23B)-
generation which will be handled in the following Proposition 4.23.

Proposition 4.23. The group G is (3A, 23X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does
not have elements of order 3. By Table 6 we have ∆G(3A, 23A, 23A) = 3082.
Since there is no contributing group, we then obtain that ∆∗(3A, 23X, 23X) =
∆G(3A, 23A, 23A) = 3082 > 0, so that the group G is (3A, 23A, 23A)-generated.
Since the same holds for (3A, 23B, 23B), the group G will be (3A, 23B, 23B)-
generated. Similarly, ∆∗(3A, 23A, 23B) = ∆G(3A, 23A, 23B) = 2714 > 0, so
that the group G becomes (3A, 23A, 23B)-generated.

4.3 Other results

In this section we handle all the remaining cases, namely the (5, q, r)-, (7, q, r)-,
(11, q, r)- and (23, q, r)-generations.

4.3.1 (5, 5, r)-generations

In this subsection we discuss the case (5, 5, r)-generations. It follows that we
will end up with 5 cases, namely (5A, 5A, 5A)-, (5A, 5A, 11A)-, (5A, 5A, 11B)-,
(5A, 5A, 23A)-, (5A, 5A, 23B)-generation.

Proposition 4.24. The group G is (5A, 5A, 5A)-generated.

Proof. From Table 4 we see that all the maximal subgroups of G have elements
of order 5 except for the seventh maximal subgroup. Let T be the set of all
maximal subgroups ofG except the seventh one. We look at various intersections
of conjugacy classes for these maximal subgroups. We have the following:

� The groups arising from the intersections of conjugacy classes for any 4, 5
or 6 maximal subgroups in T do not contain elements of order 5.

� The groups arising from intersections of the conjugacy classes for any three
maximal subgroups in T having elements of order 5 are S5 (2-copies),
D10 and 5:4. We obtained that

∑
S5
(5a, 5a, 5a) = 8,

∑
D10

(5x, 5y, 5z) =
∆D10(5a, 5a, 5a) + ∆D10(5a, 5a, 5b) + ∆D10(5a, 5b, 5b) + ∆D10(5b, 5b, 5b) =
0 + 1 + 1 + 0 = 2 and

∑
5:4(5a, 5a, 5a) = 3. We found that the value of h

for each of these three groups is 3.

� The groups arising from intersections of the conjugacy classes for any two
maximal subgroups in T having elements of order 5 are 24:S5 (3-copies),
PSL3(4), A7 (2-copies), 24:A6, PSL2(11), A6:2, A5 and S5 (2-copies).
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We obtained that
∑

24:S5
(5a, 5a, 5a) = 128,

∑
PSL3(4)

(3a, 5x, 5y) =
∆PSL3(4)(5a, 5a, 5a) + ∆PSL3(4)(5a, 5a, 5b) + ∆PSL3(4)(5a, 5b, 5b) +
∆PSL3(4)(5b, 5b, 5b) = 845 + 781 + 781 + 845 = 3252,

∑
A7

(a, 5a, 5a) =
∆A7(5a, 5a, 5a) = 108,

∑
24:A6

(5x, 5y, 5z) = ∆24:A6
(5a, 5a, 5a)+∆24:A6

(5a,
5a, 5b)+∆24:A6

(5a, 5b, 5b)+∆24:A6
(5b, 5b, 5b) = 320+176+176+320 = 992,∑

PSL2(11)
(5x, 5y, 5z) = ∆PSL2(11)(5a, 5a, 5a) + ∆PSL2(11)(5a, 5a, 5b) +

∆PSL2(11)(5a, 5b, 5b) + ∆PSL2(11)(5b, 5b, 5b) = 20 + 31 + 31 + 20 = 102,∑
A6:2

(5a, 5a, 5a) = 53,
∑

A5
(5x, 5y, 5z) = ∆A5(5a, 5a, 5a)+∆A5(5a, 5a, 5b)

+∆A5(5a, 5b, 5b)+∆A5(5b, 5b, 5b) = 5+1+1+5 = 12 and
∑

S5
(5a, 5a, 5a) =

8. We found that the value of h for each of these eight groups is 3.

By Table 7 we have ∆G(5A, 5A, 5A) = 61058. We obtained that
∑

K1
(5a, 5a, 5a)

= 18368,
∑

K2
(5a, 5a, 5a) = 3188,

∑
K3

(5a, 5a, 5a) = 1728,
∑

K4
(5a, 5a, 5a) =

173,
∑

K5
(5a, 5a, 5a) = 378,

∑
K6

(5a, 5a, 5a) = 128 The value of h for each maxi-
mal subgroup is 3 except forK4 andK6. The value of h is 1 for each of these max-
imal subgroups K4 and K6. It follows that ∆

∗
G(5A, 5A, 5A) ≥ ∆G(5A, 5A, 5A)−

3·
∑

K1
(5a, 5a, 5a)−3·

∑
K2

(5a, 5a, 5a)−3·
∑

K3
(5a, 5a, 5a)−

∑
K4

(5a, 5a, 5a)−3·∑
K5

(5a, 5a, 5a)−
∑

K6
(5a, 5a, 5a)−2 ·3 ·

∑
S5
(5a, 5a, 5a)−3 ·

∑
D10

(5x, 5y, 5z)−
3 ·

∑
5:4(5a, 5a, 5a) + 3 · 3 ·

∑
24:S5

(5a, 5a, 5a) + 3 ·
∑

PSL3(4)
(5x, 5y, 5z) + 2 · 3 ·∑

A7
(5a, 5a, 5a)+3 ·

∑
24:A6

(5x, 5y, 5z)+3 ·
∑

PSL2(11)
(5x, 5y, 5z)+3 ·

∑
A6:2

(5a,
5a, 5a)+3·

∑
A5

(5x, 5y, 5z)+2·3·
∑

S5
(5a, 5a, 5a) = 61058−3(18368)−3(3188)−

3(1728)−1(173)−3(378)−1(128)−2(3)(11)−3(2)−3(3)+3(3)(128)+3(3252)+
2(3)(108)+3(992)+3(102)+3(53)+3(12)+2(3)(8) = 6499 > 0. It follows that
the group G is (5A, 5A, 5A)-generated.

Proposition 4.25. The group G is (5A, 5A, 7X)-generated for X ∈ {A,B}.

Proof. As in Proposition 4.5, we observe that the groups PSL3(4), A7 (2-
copies), 23:PLS3(2) (2-copies) and PSL3(2) may have contributions here.The
groups 23:PLS3(2) and PSL3(2) will not have any contributions because they
do not have elements of order 5. We obtained that

∑
PSL3(4)

(5x, 5y, 7b) =
∆PSL3(4)(5a, 5a, 7b) + ∆PSL3(4)(5a, 5b, 7b) + ∆PSL3(4)(5b, 5b, 7b) = 819 + 819 +
819 = 2457,

∑
A7

(5a, 5a, 7b) = 84 and h(7A,PSL3(4)) = h(7A,A7) = 2.
The maximal subgroupsK1,K2,K3 andK4 meet the 5A, 7A classes ofG.We

obtained that
∑

K1
(5a, 5a, 7b) = 17920,

∑
K2

(5a, 5a, 7b) = 3276,
∑

K3
(5a, 5a, 7a)

= 1344,
∑

K4
(5a, 5a, 7b) = 91. We found that h(7A,K1) = h(7A,K4) = 2 and

h(7A,K2) = h(7A,K3) = 1.
Since by Table 7 we have ∆G(5A, 5A, 7A) = 54320, we then obtain that

∆∗
G(5A, 5A, 7A) ≥ ∆G(5A, 5A, 7A) − 2 ·

∑
K1

(5a, 5a, 7b) −
∑

K2
(5a, 5a, 7b) −∑

K3
(5a, 5a, 7a)−2·

∑
K4

(5a, 5a, 7b)+2·
∑

PSL3(4)
(5x, 5y, 7b)+2·2·

∑
A7

(5a, 5a, 7b)
= 54320 − 2(17920) − 3276 − 1344 − 2(91) + 2(2457) + 2(2)(84) = 18928 > 0.
Therefore, the group G is (5A, 5A, 7A)-generated. Since the same holds for
(5A, 5A, 7B), it follows that the group G is (5A, 5A, 7X)-generated for X ∈
{A,B}.

Proposition 4.26. The group G is (5A, 5A, 11X)-generated for X ∈ {A,B}.
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Proof. By Proposition 4.3 we proved that the group G is (2A, 5A, 11X)-gene-
rated for X ∈ {A,B}. It follows by Theorem 2.4 that G is (5A, 5A, (11A)2)- and
(5A, 5A, (11B)2)-generated. By GAP, we see that (11A)2 = 11B and (11B)2 =
11A and the results follow.

Proposition 4.27. The group G is (5A, 5A, 23X)-generated for X ∈ {A,B}.

Proof. By Proposition 4.4 we proved that G is (2A, 5A, 23X)-generated for
X ∈ {A,B}. It follows by Theorem 2.4 that the group G is (5A, 5A, (23A)2)-
and (5A, 5A, (23B)2)-generated. Since by GAP we have (23A)2 = 23A and
(23B)2 = 23B, then the results follow.

4.3.2 (5, 7, r)-generations

In this subsection we discuss the case (5, 7, r)-generations.
It follows that we will end up with 11 cases, namely (5A, 7A, 7A) -, (5A, 7A,

7B) -, (5A, 7A, 11A) - , (5A, 7A, 11B)-, (5A, 7A, 23A)-, (5A, 7A, 23B)-, (5A, 7B,
7B)-, (5A, 7B, 11A)-, (5A, 7B, 11B)-, (5A, 7B, 23A)-, (5A, 7B, 23B)-generation.

Proposition 4.28. The group G is (5A, 7X, 7Y )-generated for all X,Y ∈ {A,B}.

Proof. As in Proposition 4.5, we observe that the groups PSL3(4), A7 (2-
copies), 23:PLS3(2) (2-copies) and PSL3(2) may have contributions here.The
groups 23:PLS3(2) and PSL3(2) will not have any contributions because they
both do not have elements of order 5. We obtained that

∑
PSL3(4)

(5x, 7b, 7b) =
∆PSL3(4)(5a, 7b, 7b)+∆PSL3(4)(5b, 7b, 7b) = 567+567 = 1134,

∑
A7

(5a, 7b, 7b) =
84 and h(7A,PSL3(4)) = h(7A,A7) = 2.

The maximal subgroupsK1,K2,K3 andK4 meet the 5A, 7A classes ofG.We
obtained that

∑
K1

(5a, 7b, 7b) = 12544,
∑

K2
(5a, 7b, 7b) = 1134,

∑
K3

(5a, 7a, 7a)
= 672,

∑
K4

(5a, 7b, 7b) = 189. We found that h(7A,K1) = h(7A,K4) = 2 and
h(7A,K2) = h(7A,K3) = 1.

Since by Table 7 we have ∆G(5A, 7A, 7A) = 52584, we then obtain that
∆∗

G(5A, 7A, 7A) ≥ ∆G(5A, 7A, 7A) − 2 ·
∑

K1
(5a, 7b, 7b) −

∑
K2

(5a, 7b, 7b) −∑
K3

(5a, 7a, 7a)−2·
∑

K4
(5a, 7b, 7b)+2·

∑
PSL3(4)

(5x, 7b, 7b)+2·2·
∑

A7
(5a, 7b, 7b)

= 52584 − 2(12544) − 1134 − 672 − 2(189) + 2(1134) + 2(2)(84) = 27916 > 0.
Therefore, the group G is (5A, 7A, 7A)-generated. Since the same holds for
(5A, 7B, 7B), it follows that the group G is (5A, 7X, 7X)-generated for X ∈
{A,B}.

We now prove that the group G is (5A, 7A, 7B)-generated. We obtained
that

∑
PSL3(4)

(5x, 7b, 7a) = ∆PSL3(4)(5a, 7b, 7a) + ∆PSL3(4)(5b, 7b, 7a) = 567 +
567 = 1134,

∑
A7

(5a, 7b, 7b) = 84,
∑

K1
(5a, 7b, 7a) = 12544,

∑
K2

(5a, 7b, 7a) =
1134,

∑
K3

(5a, 7a, 7b) = 672 and
∑

K4
(5a, 7b, 7a) = 189. Since by same Table

7 we have ∆G(5A, 7A, 7B) = 52584, we then obtain that ∆∗
G(5A, 7A, 7B) ≥

∆G(5A, 7A, 7B)− 2 ·
∑

K1
(5a, 7b, 7a)−

∑
K2

(5a, 7b, 7a)−
∑

K3
(5a, 7a, 7b)− 2 ·∑

K4
(5a, 7b, 7a) + 2 ·

∑
PSL3(4)

(5x, 7b, 7a) + 2 · 2 ·
∑

A7
(5a, 7b, 7a) = 52584 −

2(12544)− 1134− 672− 2(189) + 2(1134) + 2(2)(84) = 27916 > 0, proving that
the group G is (5A, 7A, 7B)-generated.
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Proposition 4.29. The group G is (5A, 7X, 11Y )-generated for all X,Y ∈
{A,B}.

Proof. Looking at Proposition 4.3, we see that K1, K5, K7 and PSL2(11) are
the only groups having elements of order 11. The groups K5, K7 and PSL2(11)
will not have any contributions because they both do not have elements of or-
der 7. We obtained that

∑
K1

(5a, 7x, 11y) = 12672 and h(11Z,K1) = 1 for Z ∈
{A,B}. By Table 7 we have ∆G(5A, 7X, 11Y ) = 48576 for allX,Y ∈ {A,B}.We
then obtain that ∆∗

G(5A, 7X, 11Y ) ≥ ∆G(5A, 7X, 11Y ) −
∑

K1
(5a, 7x, 11y) =

48576 − 12672 = 35904 > 0, so that the group G becomes (5A, 7X, 11Y )-
generated for all X,Y ∈ {A,B}.

Proposition 4.30. The group G is (5A, 7X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of orders 5 and 7. By Table 7 we have ∆G(5A, 7X, 23Y ) = 44160
for all X,Y ∈ {A,B}. Since there is no contributing group, we then obtain that
∆∗

G(5A, 7X, 23Y ) = ∆G(5A, 7X, 23Y ) = 44160 > 0 , so that the group G is
(5A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

4.3.3 (5, 11, r)-generations

In this subsection we discuss the case (5, 11, r)-generations. It follows that we
will end up with 7 cases, namely (5A, 11A, 11A)-, (5A, 11A, 11B)-, (5A, 11A, 23A)-
, (5A, 11A, 23B), (5A, 11B, 11B)-, (5A, 11B, 23A)- and (5A, 11B, 23B)-generation.

Proposition 4.31. The group G is (5A, 11X, 11Y )-generated for all X,Y ∈
{A,B}.

Proof. Looking at Proposition 4.3, we see that K1, K5, K7 and PSL2(11)
are the only groups having elements of order 11. The group K7 will not have
any contributions because it does not have elements of order 5. We obtained that∑

K1
(5a, 11b, 11b) = 8448,

∑
K5

(5a, 11b, 11b) = 198 and
∑

PSL2(11)
(5x, 11b, 11b) =

∆PSL2(11)(5a, 11b, 11b)+∆PSL2(11)(5b, 11b, 11b) = 11+11 = 22. By Table 7, we
have ∆G(5A, 11A, 11A) = 62238. We already have h(11A,K1) = h(11A,K5) =
h(11A,PSL2(11)) = 1. We then have ∆∗

G(5A, 11X, 11X) ≥ ∆G(5A, 11A, 11A)−∑
K1

(5a, 11b, 11b)−
∑

K5
(5a, 11b, 11b)+

∑
PSL2(11)

(5a, 11b, 11b) = 62238−8448−
198 + 22 = 53614 > 0, showing that the group G is (5A, 11A, 11A)-generated.

Since the same holds for (5A, 11B, 11B) implies that the groupG is (5A, 11A,
11A)-generated. For the (5A, 11A, 11B)-generations, we obtained that

∑
K1

(5a,
11b, 11a) = 8448,

∑
K5

(5a, 11b, 11a) = 99 and
∑

PSL2(11)
(5a, 11x, 11y) =

∆PSL2(11)(5a, 11b, 11b) + ∆PSL2(11)(5b, 11b, 11b) = 11 + 11 = 22. Since by Ta-
ble 7 we have ∆G(5A, 11A, 11B) = 61479, we obtain that ∆∗

G(5A, 11A, 11B) ≥
∆G(5A, 11A, 11B)−

∑
K1

(5a, 11b, 11a)−
∑

K5
(5a, 11b, 11a)+

∑
PSL2(11)

(5a, 11b,
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11a) = 61479 − 8448 − 99 + 22 = 52954 > 0, proving that the group G is
(5A, 11A, 11B)-generated.

Proposition 4.32. The group G is (5A, 11X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of or-
der 23. This maximal subgroup will not have any contributions because it
does not have elements of order 5. By Table 7 we have ∆G(5A, 11X, 23Y ) =
61893 for all X,Y ∈ {A,B}. Since there is no contributing group, we then ob-
tain that ∆∗

G(5A, 11X, 23Y ) = ∆G(5A, 11X, 23Y ) = 61893 > 0, so that G is
(5A, 11X, 23Y )-generated group for all X,Y ∈ {A,B}.

4.3.4 (5, 23, r)-generations

In this subsection we discuss the case (5, 23, r)-generations. It follows that we
will end up with 3 cases, namely (5A, 23A, 23A)-, (5A, 23A, 23B)- and (5A, 23B,
23B)-generation.

Proposition 4.33. The group G is (5A, 23X, 23Y )-generated for all X,Y ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of order 5. By Table 7 we have ∆G(5A, 23X, 23Y ) = 32706 for
all X,Y ∈ {A,B}. Since there is no contributing group, we then obtain that
∆∗

G(5A, 23X, 23Y ) = ∆G(5A, 23X, 23Y ) = 32706 > 0, so that the group G is
(5A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

4.3.5 (7, 7, r)-generations

In this subsection we discuss the case (7, 7, r)-generations.

It follows that we will end up with 16 cases, namely (7A, 7A, 7A)-, (7A, 7A,
7B)-, (7A, 7A, 11A)-, (7A, 7A, 11B), (7A, 7A, 23A)-, (7A, 7A, 23B)-, (7A, 7B, 7B)-
, (7A, 7B, 11A)-, (7A, 7B, 11B), (7A, 7B, 23A)-, (7A, 7B, 23B), (7B, 7B, 7B)-,
(7B, 7B, 11A)-, (7B, 7B, 11B)-, (7B, 7B, 23A)- and (7B, 7B, 23B)-generation.

Proposition 4.34. The group G is (7X, 7Y, 7Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Proposition 4.5 we proved that G is (2A, 7A, 7X)-generated for X ∈
{A,B}. It follows by Theorem 2.4 that the group G is (7A, 7A, (7A)2)- and
(7A, 7A, (B)2)-generated. Since by the power maps, we have (7A)2 = 7A and
(7B)2 = 7B, the group G becomes (7A, 7A, 7A)- and (7A, 7A, 7B)-generated.
Since G is (7A, 7A, 7A)-generated, the same will hold for (7B, 7B, 7B).

We are left only to investigate of the (7A, 7B, 7B) generation for the group
G. As in Proposition 4.5, we observe that the groups PSL3(4), A7 (2-copies),
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23:PLS3(2) (2-copies) and PSL3(2) have contributions. We obtained that∑
PSL3(4)

(7b, 7a, 7a) = 357,
∑

A7
(7b, 7a, 7a) = 36,

∑
23:PSL3(2)

(7b, 7a, 7a) = 8,∑
PSL3(2)

(7a, 7b, 7b) = 1 and h(7A,PSL3(4)) = h(7A,A7) = h(7A, 23:PSL3(2))
= h(7A,PSL3(2)) = 2.

The maximal subgroupsK1, K2, K3 andK4 have elements of order 7.We ob-
tained that

∑
K1

(7b, 7a, 7a) = 8576,
∑

K2
(7b, 7a, 7a) = 379,

∑
K3

(7a, 7b, 7b) =
148,

∑
K4

(7b, 7a, 7a) = 379. We found that h(7A,K1) = h(7A,K4) = 2 and
h(7A,K2) = h(7A,K3) = 1.

Since by Table 7 we have ∆G(7A, 7B, 7B) = 51948, we then obtain that
∆∗

G(7A, 7B, 7B) ≥ ∆G(7A, 7B, 7B) − 2 ·
∑

K1
(7b, 7a, 7a) −

∑
K2

(7b, 7a, 7a) −∑
K3

(7a, 7b, 7b)−2·
∑

K4
(7b, 7a, 7a)+2·

∑
PSL3(4)

(7b, 7a, 7a)+2·2·
∑

A7
(7b, 7a, 7a)+

2 · 2 ·
∑

23:PSL3(2)
(7b, 7a, 7a)+2 ·

∑
PSL3(2)

(7a, 7b, 7b) = 51948− 2(8576)− 379−
148 − 2(379) + 2(379) + 2(2)(36) + 2(2)(8) + 2(1) = 34447 > 0. Therefore, the
group G is (7A, 7B, 7B)-generated.

Proposition 4.35. The group G is (7X, 7Y, 11Z)-generated for X,Y, Z ∈ {A,B}.

Proof. By Proposition 4.6 we have proved that G is (2A, 7X, 11Y )-generated
for all X,Y ∈ {A,B}. It follows by Theorem 2.4 that G is (7X, 7X, (11Y )2)-
generated. It follows thatG is (7X, 7X, (11A)2)- and (7X, 7X, (11B)2)-generated
for X ∈ {A,B}. Since by the power maps we have (11A)2 = 11B and (11B)2 =
11A, it then follows thatG is (7X, 7X, 11B)- and (7X, 7X, 11A)-generated group
for X ∈ {A,B}.

We investigate the (7A, 7B, 11X) generations of G, whereX ∈ {A,B}. Look-
ing at Proposition 4.3, we see thatK1, K5, K7 and PSL2(11) are the only groups
having elements of order 11. The groups K5, K7 and PSL2(11) will not have any
contributions because they both do not have elements of order 7. We obtained
that

∑
K1

(7b, 7a, 11x) = 9856 for x ∈ {a, b}. We already have h(11X,K1) = 1
for X ∈ {A,B}. Since by Table 7 we have ∆G(7A, 7B, 11X) = 56496 for
X ∈ {A,B}, we then obtain that ∆∗

G(7A, 7B, 11X) ≥ ∆G(7A, 7B, 11X) −∑
K1

(7b, 7a, 11x) = 56496 − 9856 = 46640 > 0, proving G is (7A, 7B, 11X)-
generated for X ∈ {A,B}.

Proposition 4.36. The group G is (7X, 7Y, 23Z)-generated for X,Y, Z∈{A,B}.

Proof. By Proposition 4.7 we have proved that G is (2A, 7X, 23Y )-generated
for all X,Y ∈ {A,B}. It follows by Theorem 2.4 that G is (7X, 7X, (23Y )2)-
generated. Since (23A)2 = 23A and (23B)2 = 23B then it follows that G is
(7X, 7X, 23A)- and (7X, 7X, 23B)-generated for X ∈ {A,B}.

We prove that G is (7A, 7B, 23X)-generated for X ∈ {A,B}. By Table 4,
K7 is the only maximal subgroup having elements of order 23. This maximal
subgroup will not have any contributions because it does not have elements
of order 7. By Table 7 we have ∆G(7A, 7B, 23X) = 45264 for X ∈ {A,B}.
Since there is no contributing group, we then obtain that ∆∗(7A, 7B, 23X) =
∆G(7A, 7B, 23X) = 45264 > 0, so that G is (7A, 7B, 23X)-generated group for
X ∈ {A,B}.
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4.3.6 (7, 11, r)- and (7, 23, 23)-generations

In this subsection we discuss the cases (7, 11, r)- and (7, 23, r)-generations.

It follows that we will end up with 20 cases, namely (7A, 11A, 11A)-, (7A, 11A,
11B)-, (7A, 11A, 23A)-, (7A, 11A, 23B)-, (7A, 11B, 11B)-, (7A, 11B, 23A)-, (7A,
11B, 23B)-, (7B, 11A, 11A)-, (7B, 11A, 11B)-, (7B, 11A, 23A)-, (7B, 11A, 23B)-
, (7B, 11B, 11B)-, (7B, 11B, 23A)-, (7B, 11B, 23B)-, (7A, 23A, 23A)-, (7A, 23A,
23B)-, (7A, 23B, 23B)-(7B, 23A, 23A)-, (7B, 23A, 23B)- and (7B, 23B, 23B)-ge-
neration.

Proposition 4.37. The group G is (7X, 11Y, 11Z)-generated for X,Y, Z ∈
{A,B}.

Proof. Looking at Proposition 4.3, we see that K1, K5, K7 and PSL2(11) are
the only groups having elements of order 11. The groups K5, K7 and PSL2(11)
will not have any contributions because they both do not have elements of order
7. We obtained that

∑
K1

(7X, 11Y, 11Z) = 5632 and h(11Z,K1) = 1 for all
X,Y, Z ∈ {A,B}. By Table 7 we have ∆G(7X, 11Y, 11Z) = 64416. We then
obtained that ∆∗

G(7X, 11Y, 11Z) ≥ ∆G(7X, 11Y, 11Z) −
∑

K1
(7X, 11Y, 11Z) =

64416 − 5632 = 58784 > 0 and so G is (7X, 11Y, 11Z)-generated group for all
X,Y, Z ∈ {A,B}.

Proposition 4.38. The group G is (7X, 11Y, 23Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of or-
der 23. This maximal subgroup will not have any contributions because it does
not have elements of order 7. By Table 7 we have ∆G(7X, 11Y, 23Z) = 67712
for all X,Y, Z ∈ {A,B}. Since there is no contributing group, we then ob-
tain that ∆∗(7X, 11Y, 23Z) = ∆G(7X, 11Y, 23Z) = 67712 > 0, so that G is
(7X, 11Y, 23Z)-generated group for all X,Y, Z ∈ {A,B}.

Proposition 4.39. The group G is (7X, 23Y, 23Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Table 4, K7 is the only maximal subgroup having elements of order
23. This maximal subgroup will not have any contributions because it does not
have elements of order 7. By Table 7 we have ∆G(7X, 23Y, 23Z) = 32384 for
all X,Y, Z ∈ {A,B}. Since there is no contributing group, we then obtain that
∆∗(7X, 23Y, 23Z) = ∆G(7X, 23Y, 23Z) = 32384 > 0, so that the group G is
(7X, 23Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

4.3.7 (11, 11, r)-generations

In this subsection we discuss the case (11, 11, r)-generations.

It follows that we will end up with 10 cases, namely (11A, 11A, 11A)-, (11A,
11A, 11B)-, (11A, 11A, 23A)-, (11A, 11A, 23B)-, (11A, 11B, 11B)-, (11A, 11B,
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23A)-, (11A, 11B, 23B)-, (11B, 11B, 11B)-, (11B, 11B, 23A)- and (11B, 11B,
23B)-generation.

Proposition 4.40. The group G is (11X, 11Y, 11Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Proposition 4.8 we have proved that G is (2A, 11X, 11Y )-generated
for all X,Y ∈ {A,B}. Then, by Theorem 2.4 it follows that G is (11X, 11X,
(11Y )2)-generated for all X,Y, Z ∈ {A,B}. Since (11A)2 = 11B and (11B)2) =
11A then it follows thatG is (11X, 11X, 11Y )-generated for allX,Y, Z ∈ {A,B}.

We prove that G is (11A, 11B, 11B)-generated. Looking at Proposition 4.3,
we see that K1, K5, K7 and PSL2(11) are the only groups having elements of
order 11. The maximal subgroup K7 have its relevant structure constant zero,
so it will not have any contributions. We obtained that

∑
K1

(11b, 11a, 11a) =
3632,

∑
K5

(11b, 11a, 11a) = 35 and
∑

PSL2(11)
(11b, 11a, 11a) = 2. We have

found that h(11B,K1) = h(11B,K5) = h(11B,PSL2(11)) = 1. By Table 8
we have ∆G(11A, 11B, 11B) = 87485, we then obtain ∆∗

G(11A, 11B, 11B) ≥
∆G(11A, 11B, 11B)−

∑
K1

(11b, 11a, 11a)−
∑

K5
(11b, 11a, 11a)+

∑
PSL2(11)

(11b,
11a, 11a) = 87485 − 3632 − 35 + 2 = 83820 > 0, proving that the group G is
(11A, 11B, 11B)-generated.

Proposition 4.41. The group G is (11X, 11Y, 23Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Proposition 4.9 we have proved that G is (2A, 11X, 23Y )-generated
for all X,Y ∈ {A,B}. Then, by Theorem 2.4 it follows that G is (11X, 11X,
(23Y )2)-generated for allX,Y ∈ {A,B}. Since (23A)2 = 23A and (23B)2 = 23B
we then obtained that G is (11X, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

We still have to prove the (11A, 11B, 23X)-generations where X ∈ {A,B}.
By Table 4 we see that K7 is the only maximal subgroup having elements of or-
ders 11 and 23. We then obtain that

∑
K7

(11x, 11y, 23z) = ∆K7(11a, 11j, 23z)+
∆K7(11c, 11h, 23z) + ∆K7(11d, 11g, 23z) + ∆K7(11e, 11f, 23z) + ∆K7(11i, 11b,
23x) = 23 + 23 + 23 + 23 + 23 = 115 for z ∈ {a, b}. We have found that
h(23X,K7) = 1 forX ∈ {A,B}. Since by Table 8 we have ∆G(11A, 11B, 23X) =
79994, then we obtained that ∆∗

G(11A, 11B, 23X) ≥ ∆G(11A, 11B, 23Z) −∑
K7

(11x, 11y, 23z) = 79994 − 115 = 79879 > 0 for all Z ∈ {A,B}. Hence
G is (11A, 11B, 23X)-generated group for X ∈ {A,B}.

4.3.8 (11, 23, r)-generations

We will be looking at the cases (11A, 23A, 23A)-, (11A, 23A, 23B)-, (11A, 23B,
23B)-, (11B, 23A, 23A)-, (11B, 23A, 23B)- and (11B, 23B, 23B)-generation.

Proposition 4.42. The group G is (11X, 23Y, 23Z)-generated for all X,Y, Z ∈
{A,B}.
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Proof. By Table 4, K7 is the only maximal subgroup having elements of or-
ders 11 and 23. This maximal subgroup K7 will not have any contributions
because its relevant structure constants are all zero. By Table 8 we have
∆G(11X, 23Y, 23Z) = 42067 for allX,Y, Z ∈ {A,B}. Since there is no contribut-
ing group, we then obtain that ∆∗

G(11X, 23Y, 23Z) = ∆G(11X, 23Y, 23Z) =
42067 > 0, showing that G is (11X, 23Y, 23Z)-generated group for all X,Y, Z ∈
{A,B}.

4.3.9 (23, 23, r)-generations

We conclude our investigation on the (p, q, r)-generations of the Mathieu spo-
radic simple group G by considering the (23, 23, 23)-generations. We will be
looking at the cases (23A, 23A, 23A)-, (23A, 23A, 23B)-, (23A, 23B, 23B)- and
(23B, 23B, 23B)-generation.

Proposition 4.43. The group G is (23X, 23Y, 23Z)-generated for all X,Y, Z ∈
{A,B}.

Proof. By Proposition 4.10 we have proved that G is (2A, 23X, 23Y )-generated
for all X,Y ∈ {A,B}. Then, by Theorem 2.4 it follows that G is (23X, 23X,
(23Y )2)-generated for allX,Y ∈ {A,B}. Since (23A)2 = 23A and (23B)2 = 23B
then it follows that G is (23X, 23X, 23Y )-generated for all X,Y ∈ {A,B}. We
now check the (23A, 23B, 23B)-generation of G. By Table 4, K7 is the only max-
imal subgroup having elements of order 11.We obtained that

∑
K7

(23a, 23b, 23b)
= 5 and h(23B,K7) = 1. Since by Table 8 we have ∆G(23A, 23B, 23B) = 17646,
then we obtained that ∆∗

G(23A, 23B, 23B) ≥ ∆G(23A, 23B, 23B) −
∑

K7
(23a,

23b, 23b) = 17646 − 5 = 17641 > 0. Hence the group G is (23A, 23B, 23B)-
generated.

5. Conclusion

As mentioned at the introduction of this paper that it is natural to ask whether
a finite simple group G is (l,m, n)-generated or not. The motivation for this
question came from the calculation of the genus of finite simple groups [34]. It
can be shown that the problem of finding the genus of a finite simple group can
be reduced to one of generations (see [33] for further details). Our aim in this
paper was to establish all the (p, q, r)-generations of the Mathieu group M23,
where p, q and r are prime numbers dividing |M23|. The main result of the paper
was to prove Theorem 1.1 and this was done though sequence of propositions.
We found that the Mathieu group M23 is generated by the following:

� (2A, 5A, 11X), (2A, 5A, 23X), (2A, 7X, 7Y ), (2A, 7X, 11Y ), (2A, 7X, 23Y ),
(2A, 11X, 11Y ), (2A, 11X, 23Y ) and (2A, 23X, 23Y ) for all X,Y ∈ {A,B}.

� (3A, 3A, 11X), (3A, 3A, 23X), (3A, 5A, 5A), (3A, 5A, 7X), (3A, 5A, 11X),
(3A, 5A, 23X), (3A, 7X, 7Y ), (3A, 7X, 11Y ), (3A, 7X, 23Y ), (3A, 11X, 11Y ),
(3A, 11X, 23Y ) and (3A, 23X, 23Y ) for all X,Y ∈ {A,B}.
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� (5A, 5A, 5A), (5A, 5A, 7X), (5A, 5A, 11X), (5A, 5A, 23X), (5A, 7X, 7Y ),
(5A, 7X, 11Y ), (5A, 7X, 23Y ), (5A, 11X, 11Y ), (5A, 11X, 23Y ) and (5A,
23X, 23Y ) for all X,Y ∈ {A,B}.

� (7X, 7Y, 7Z), (7X, 7Y, 11Z), (7X, 7Y, 23Z), (7X, 11Y, 11Z), (7X, 11Y, 23Z)
and (7X, 23Y, 23Z) for all X,Y, Z ∈ {A,B}.

� (11X, 11Y, 11Z), (11X, 11Y, 23Z) and (11X, 23Y, 23Z) for all X,Y, Z ∈
{A,B}.

� (23X, 23Y, 23Z) for all X,Y, Z ∈ {A,B}.

Theorem 1.1 tells us also that the Mathieu group M23 is not generated by the
following: (p, q, r) ∈ {(2, 3, r), (2, 5, 5), (2, 5, 7), (3, 3, 3), (3, 3, 5), (3, 3, 7)}, for all
primes r that divides |M23|.

Tables : Structure constants of M23

Tables 5 to 8 following here below give the partial structure constants of M23

computed using GAP that were used in the calculations above.

Table 5:
pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆M23
(2A, 2A, pX) 98 30 5 0 0 0 0 0 0

∆M23
(2A, 3A, pX) 448 180 65 35 35 11 11 0 0

∆M23
(2A, 5A, pX) 896 780 605 364 364 253 253 138 138

∆M23
(2A, 7A, pX) 0 450 390 301 462 308 308 184 184

∆M23
(2A, 7B, pX) 0 450 390 462 301 308 308 184 184

∆M23
(2A, 11A, pX) 0 180 345 392 392 341 341 391 391

∆M23
(2A, 11B, pX) 0 180 345 392 392 341 341 391 391

∆M23
(2A, 23A, pX) 0 0 90 112 112 187 187 161 230

∆M23
(2A, 23B, pX) 0 0 90 112 112 187 187 230 161

|CM23
(pX)| 688 180 15 14 14 11 11 23 23

Table 6:
pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆M23
(3A, 3A, pX) 2688 1681 855 511 511 275 275 138 138

∆M23
(3A, 5A, pX) 11648 10260 5490 4886 4886 4136 4136 2438 2438

∆M23
(3A, 7A, pX) 6720 6570 5490 4886 4886 4136 4136 3312 3312

∆M23
(3A, 7B, pX) 6720 6570 5490 4886 4886 4136 4136 3312 3312

∆M23
(3A, 11A, pX) 2688 4500 5175 5264 5264 5126 5379 5129 5129

∆M23
(3A, 11B, pX) 2688 4500 5175 5264 5264 5379 5126 5129 5129

∆M23
(3A, 23A, pX) 0 1080 1590 2016 2016 2453 2453 3082 2714

∆M23
(3A, 23B, pX) 0 1080 1590 2016 2016 2453 2453 2714 3082

|CM23
(pX)| 688 180 15 14 14 11 11 23 23
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Table 7:
pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆M23
(5A, 5A, pX) 108416 78600 61058 54320 54320 45287 45287 37582 37582

∆M23
(5A, 7A, pX) 69888 65880 58200 52584 52584 48576 48576 44160 44160

∆M23
(5A, 7B, pX) 69888 65880 58200 52584 52584 48576 48576 44160 44160

∆M23
(5A, 11A, pX) 61824 62100 61755 61824 61824 62238 61479 61893 61893

∆M23
(5A, 11B, pX) 61824 62100 61755 61824 61824 61479 62238 61893 61893

∆M23
(5A, 23A, pX) 16128 19080 24510 26880 26880 29601 29601 32706 32706

∆M23
(5A, 23B, pX) 16128 19080 24510 26880 26880 29601 29601 32706 32706

∆M23
(7A, 7A, pX) 88704 62820 56340 51948 60412 48400 48400 52992 52992

∆M23
(7A, 7B, pX) 57792 62820 56340 51948 51948 56496 56496 45264 45264

∆M23
(7A, 11A, pX) 75264 67680 66240 71904 61600 64416 64416 67712 67712

∆M23
(7A, 11B, pX) 75264 67680 66240 71904 61600 64416 64416 67712 67712

∆M23
(7A, 23A, pX) 21504 25920 28800 27552 32256 32384 32384 32384 32384

∆M23
(7A, 23B, pX) 21504 25920 28800 27552 32256 32384 32384 32384 32384

∆M23
(7B, 7B, pX) 88704 62820 56340 60412 51948 48400 48400 52992 52992

∆M23
(7B, 11A, pX) 75264 67680 66240 61600 71904 64416 64416 67712 67712

∆M23
(7B, 11B, pX) 75264 67680 66240 61600 71904 64416 64416 67712 67712

∆M23
(7B, 23A, pX) 21504 25920 28800 32256 27552 32384 32384 32384 32384

∆M23
(7B, 23B, pX) 21504 25920 28800 32256 27552 32384 32384 32384 32384

|CM23
(pX)| 688 180 15 14 14 11 11 23 23

Table 8:
pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆M23
(11A, 11A, pX) 83328 88020 83835 81984 81984 87485 88520 81029 81029

∆M23
(11A, 11B, pX) 83328 83880 84870 81984 81984 87485 87485 79994 79994

∆M23
(11A, 23A, pX) 45696 40140 40365 41216 41216 38258 38753 42067 42067

∆M23
(11A, 23B, pX) 45696 40140 40365 41216 41216 38258 38753 42067 42067

∆M23
(11B, 11B, pX) 83328 88020 83835 81984 81984 88520 87485 81029 81029

∆M23
(11B, 23A, pX) 45696 40140 40365 41216 41216 38753 38258 42067 42067

∆M23
(11B, 23B, pX) 45696 40140 40365 41216 41216 38753 38258 42067 42067

∆M23
(23A, 23A, pX) 26880 21240 21330 19712 19712 20119 20119 17646 18222

∆M23
(23A, 23B, pX) 18816 24120 21330 19712 19712 20119 20119 17646 17646

∆M23
(23B, 23B, pX) 26880 21240 21330 19712 19712 20119 20119 18222 17646

|CM23
(pX)| 688 180 15 14 14 11 11 23 23
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