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Some criteria for solvability in finite groups
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Abstract. Let G be a finite group and m(G) =
∑

g∈G
1

o(g) , where o(g) is the order of

the element g ∈ G. In this paper, we show that if G is a finite nonsolvable group with
m(G) = m(A5), then G ∼= A5. Furthermore, we show that if m(G) < m(SL(2, 5)) and
m(G) ̸= m(A5), then G is solvable.
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1. Introduction

Throughout let G be a finite group. There is a wide body of recent literature
exploring the link between structural properties of G and arithmetic functions
constructed on the orders of the elements of G. We denote by o(g) the order
of an element g ∈ G, and set ψ(G) =

∑
g∈G o(g), that is, ψ(G) denote the

sum of the orders of the elements of G. H. Amiri, S. M. Jafarian Amiri and
I. M. Isaacs in [2] proved if |G| = n, then ψ(G) < ψ(Cn), where Cn be the
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cyclic group of order n. Hence, the maximum value of ψ on the set of groups
of order n will occur at the cyclic group Cn. In [1], the minimum value of ψ on
the set of groups of the same order n is investigated. Specifically, it is shown
that for nilpotent groups, the minimum value will be obtained for groups where
each Sylow subgroup has prime exponent. It is also proved that if there exist
nonnilpotent groups of order n, then the minimum value will be obtained for a
nonnilpotent group.

Since then, the investigation of the influence of the value of ψ(G) on the
structure of the finite group G became one of the main topics in finite group
theory. M. Herzog, P. Longobardi and M. Maj [10] proved that if |G| = n
and ψ(G) ≥ ψ(Cn)/6.68, then G is a solvable group, and posed the following
conjecture: If ψ(G) > 211ψ(Cn)/1617, then G is a solvable group. In [3], M.
B. Azad and B. Khosravi prove the validity of this conjecture. Recently, they
proved in [4] that If |G| = n and ψ(G) > 31ψ(Cn)/77, then G is a supersolvable
group. Moreover, they prove that if G is a group of odd order n and ψ(G) >
271ψ(Cn)/3674, then G is a supersolvable group.

Let o(G) = ψ(G)/|G|, that is, o(G) is the average order of the elements of
G. E. I. Khukhro, A. Moretó and M. Zarrin in [14] showed that there is no
polynomial lower bound for o(G) in terms of o(N), where N ⊴G, even when G
is a prime-power order group and N is abelian. This gives a negative answer to
a question of A. Jaikin-Zapira in [13]. M. Herzog, P. Longobardi and M. Maj
[11] proved that if o(G) < o(A5), then G is solvable. This confirm a conjecture
posed by E. I. Khukhro, A. Moretó and M. Zarrin in [14]. M. Tărnăuceanu
proved in [16] a sufficient condition for the supersolvability of finite groups in
terms of o(G). Specifically, if o(G) < 211/60 = o(A4), then G is supersolvable.
The author in fact classifies all finite groups G such that o(G) < 211/60.

M. Garonzi and M. Patassini in [7] introduced the following fuction:

RG(r, s) =
∑
g∈G

o (g)s

φ (o (g))r
,

where r, s are two real numbers and φ denote Euler’s totient function. The
authors of [7] proved several results detecting cyclicity or nilpotency of G in
terms of inequalities involving the fuction RG(r, s).

Note that, RG(0, 1) =
∑

g∈G o(g) = ψ(G) is the sum of the order of elements

in G. On the other hand, RG(0,−1) =
∑

g∈G
1

o(g) is the sum of the inverses of
the element orders in finite groups.

Set m(G) =
∑

g∈G
1

o(g) . Observe that m(A5) = 599/30, and m(A4) = 31/6,
where An is the alternating group of degree n. B. Azad, B. Khosravi and
H. Rashidi in [5] proved that if m(G) < m(A5), then G is solvable and if
m(G) < m(A4), then G is supersolvable. Furthermore, many interesting results
have been given, for example [9, 15].

Following these footsteps, in this paper, we continue to study the relations
between m(G) and the structure of G.
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The notation is standard and follows that of Isaacs [12]. Let π(G) denote
the set of all primes of |G|, SL(2, 5) denote the special linear group of dimension
2 over the field with 5 elements, and Cn denote a cyclic group of order n.

Since A5 is not solvable and A4 is not supersolvable, the bound in the above
results [5] are the best possible. Using the idea in [5], we first prove the following
two results:

Theorem 1.1. Let G be a nonsolvable group with m(G) = m(A5). Then,
G ∼= A5.

Theorem 1.2. Let G be a nonsupersolvable group with m(G) = m(A4). Then,
G ∼= A4.

The following theorems give new criteria for surpersolvability and solvability
of a finite group by the sum of the inverses of the element orders.

Theorem 1.3. Let G be a finite group. If m(G) ≤ |π(G)|, then G is supersolv-
able.

Theorem 1.4. Let G be a finite group. If m(A5) ̸= m(G) < m(SL(2, 5)), then
G is solvable.

2. Some known lemmas

In this section, we collect some known results which will be used in the proof of
main theorems.

Lemma 2.1 ([5, Lemma 2.1]). Let G be a finite group with m(G) ≤ t for some
natural number t. Then, there exists a cyclic subgroup ⟨x⟩ such that |G : ⟨x⟩| ≤ t.

Lemma 2.2 ([5, Lemma 1.3]). If G is a finite noncyclic group of order n, then
m(Cn) < m(G).

Lemma 2.3 ([12, Theorem 2.20]). Let A be a cyclic proper subgroup of a finite
group G, and let K = CoreG(A). Then, |A : K| < |G : A|, and in particular, if
|A| > |G : A|, then K > 1.

Lemma 2.4 ([5, Lemma 2.2]). Let G be a finite group and H ≤ G. Then,
m(H) ≤ m(G), with equality if and only if H = G.

Lemma 2.5 ([5, Lemma 2.3]). Let G be a finite group and N ⊴ G. Then,
m(G/N) ≤ m(G), with equality if and only if N = 1.

Lemma 2.6 ([5, Lemma 2.6]). Let G and H be finite groups. Then, m(G×H) ≥
m(G)m(H), with equality if and only if gcd(|G|, |H|) = 1.

Lemma 2.7 ([12, Lemma 9.1]). Let G be a finite group, and suppose G/Z(G)
is simple. Then, G/Z(G) is nonabelian, and G′ is perfect. Also, G′/Z(G′) is
isomorphic to G/Z(G).
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Lemma 2.8 ([5, Lemma 2.4]). Let G be a finite group, P ∈ Sylp(G) be a normal
and cyclic subgroup of G. Then, m(Px) ≥ m(P )/o(Px), where Px ∈ G/P , and
the equality holds if and only if x centralizes P . Also, m(G) ≥ m(P )m(G/P )
with equality if and only if P is central in G.

Lemma 2.9 ([9, Proposition 2.5]). Let G be a finite group and suppose that
there exists x ∈ G such that |G : ⟨x⟩| < 2p, where p is the maximal prime
divisor of |G|. Then, one of the following holds:

(1) G has a normal cyclic Sylow p-subgroup,
(2) G is solvable and ⟨x⟩ is a maximal subgroup of G of index either p or

p+ 1.

3. Proofs of the main theorems

Proof of Theorem 1.1 Assume that G contains a non-trivial normal subgroup
N . Then, by Lemmas 2.4 and 2.5, we have that m(N) < m(G) = m(A5), and
m(G/N) < m(G) = m(A5). It follows from [5, Theorem 2.7] that N and G/N
are solvable, and thus G is solvable, which is a contradiction. Thus, G is a
simple group.

Assume that |G| > 361. By Lemma 2.1, There exists x ∈ G such that
|G : ⟨x⟩| ≤ 599/30. Now using Lemma 2.3, we get that |⟨x⟩ : CoreG(⟨x⟩)| < |G :
⟨x⟩| ≤ 19. Thus, |⟨x⟩| > 361

|G:⟨x⟩| ≥ |G : ⟨x⟩|. Again by Lemma 2.3, CoreG(⟨x⟩)
is a non-trivial normal subgroup of G, which is a contradiction. Therefore,
|G| ≤ 361.

By [6], the simple nonabelian groups of order less than 362 are A5, A6 and
PSL(2,7). If G ∼= A6, then the number of Sylow 5-subgroup of G is n5(G) = 36.
Therefore, G has 144 elements of order 5. By the definition of m(G), we get
that m(G) > m(A5) which is a contradiction. Similarly, if G ∼= PSL(2, 7), then
we get a contradiction. Thus, G ∼= A5, as desired. □

Proof of Theorem 1.2. Assume that G contains a nontrivial normal cyclic
subgroup N . Then, by Lemma 2.5, we have that m(G/N) < m(G) = m(A4).
It follows from [5, Theorem 2.8] that G/N is supersolvable. Therefore, G is
supersolvable, which is a contradiction. Thus, G has no a non-trivial normal
cyclic subgroup.

Assume that |G| > 25. By Lemma 2.1, there exists x ∈ G such that |G :
⟨x⟩| ≤ 31/6. By Lemma 2.3, we get that |⟨x⟩ : CoreG(⟨x⟩)| < |G : ⟨x⟩| ≤ 5.
Thus, |⟨x⟩| > 25

|G:⟨x⟩| ≥ |G : ⟨x⟩|.
Again by Lemma 2.3, CoreG(⟨x⟩) is a nontrivial normal cyclic subgroup of

G, which is a contradiction. Thus, |G| ≤ 25.
Since G is a non-supersolvable group of order less than 26, we have that

G ∼= A4, SL(2,3), S4 or C2 × A4. If G ∼= SL(2, 3), S4 or C2 × A4, then the
number of Sylow 3-subgroup of G is 4, and so G has 8 elements order of 3 and
at least one element order of 2. Thus, m(G) > m(A4), which is a contradiction.
Therefore, we obtain that G ∼= A4, as desired. □
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Proof of Theorem 1.3. We prove by induction on |π(G)|.
Let |G| = pα1

1 pα2
2 · · · pαr

r , where p1 < p2 < · · · < pr = p are primes, and
αi > 0, for each 1 ≤ i ≤ r.

If |π(G)| = 1, then G is a p-group, therefore G is supersolvable. Assume
that |π(G)| ≥ 2. We consider the following two cases:

Assume that G has no normal cyclic Sylow subgroups. By Lemma 2.1, there
exists x ∈ G such that |G : ⟨x⟩| ≤ |π(G)| < p and by Lemma 2.9, we get a
contradiction.

Thus, G has some normal cyclic Sylow p-subgroup, say Q. If Q is a prime
order cyclic group and |π(G)| = 2, then G is supersolvable. If not, then by
Lemma 2.8, we have that

m(G/Q)m(Q) ≤ m(G) ≤ |π(G)|.
And thus

m(G/Q) ≤ m(G)/m(Q) ≤ m(G)/2 ≤ |π(G)|/2 ≤ |π(G)| − 1 = |π(G/Q)|.
By the inductive hypothesis, G/Q is a supersolvable group. Therefore, G is
supersolvable. □

Proof of Theorem 1.4. Assume that G is nonsolvable. By Lemma 2.1, there
exists x ∈ G such that |G : ⟨x⟩| ≤ 131/5 < 27. Let H = CoreG(⟨x⟩), then H
is a normal cyclic subgroup of G. By Lemma 2.3, we get that |⟨x⟩ : H| < |G :
⟨x⟩| ≤ 26. Hence,

|G : H| = |G : ⟨x⟩||⟨x⟩ : H| ≤ 25× 26 = 650.

Since G is nonsolvable, it follows that G/H is nonsolvable. Let G = G/H.
Then, we have that |G| = |G/H| ≤ 650. By Lemma 2.5,

m(G) ≤ m(G) < m(SL(2, 5)) =
131

5
.

By GAP [8], we find that the only possibility for G of order up to 650 is G ∼= A5.
Therefore, H is a maximal normal subgroup of G andH ≤ CG(H). On the other
hand, CG(H)⊴NG(H) = G. Thus, CG(H) = H or CG(H) = G.

In the case CG(H) = H, then NG(H)/CG(H) = G/H ∼= A5 ≲ Aut(H),
which is a contradiction, since H is cyclic.

In the case CG(H) = G, then H ≤ Z(G). Therefore, H = Z(G) and
G/Z(G) = G/H ∼= A5. Thus, G

′ ≰ Z(G) and G′Z(G)⊴G, by the definition of
maximal normal subgroup, we have G = G′Z(G) and

G′/(G′ ∩ Z(G)) ∼= G′Z(G)/Z(G) = G/Z(G) ∼= A5.

By Lemma 2.8, G′ is perfect and G′/Z (G′) ∼= G/Z(G) ∼= A5. Hence G
′ is a

central extension of Z (G′) by A5. Since the Schur multiplier of A5 has order 2
and G′ is perfect, it follows that G′ ∼= SL(2, 5) or G′ ∼= A5.
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If G′ ∼= SL(2, 5), then |G′ ∩ Z(G)| = 2 and

G/(G′ ∩ Z(G)) = G′Z(G)/(G′ ∩ Z(G)) ∼= G′/(G′ ∩ Z(G))
× Z(G)/(G′ ∩ Z(G)) ∼= A5 × Cn,

where n = |G|/120. By Lemmas 2.2 and 2.6,

599

30
m (Cn) = m(A5)m(Cn) ≤ m(A5 × Cn) = m(G/G′ ∩ Z(G)) ≤ m(G) <

131

5
.

Therefore, m(Cn) < 786/599. This implies that n = 1 and G ∼= SL(2, 5), a
contradiction.

If G′ ∼= A5, then |G′ ∩ Z(G)| = 1 and G = G′ × Z(G) ∼= A5 × Z(G). Set
|Z(G)| = n. By Lemmas 2.2 and 2.6,

599

30
m(Cn) = m(A5)m(Z(G)) ≤ m(A5 × Z(G)) = m(G) <

131

5
.

By the above discussion, we have that n = 1. Thus Z(G) = 1 and G ∼= A5, a
contradiction. □

4. Conclusions

All the previous conclusions indicate that the sum of the inverses of the order
of elements can effectively characterize the solvability and supersolvability of
finite groups, and provide us with ideas and directions for future research on
similar problems, such as the extension of known important conclusions and
the necessary and sufficient conditions for A4 and A5. These will surely be the
subject of some further research.
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