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Abstract. A hypergraph is a graph that allows any number of vertices to be connected
by an edge. A threshold hypergraph is a hypergraph H for which there exists a function
w : U(H) → N ∪ {0} and a non-negative integer s such that for all V ⊆ U(H), V is
independent if and only if

∑
v∈V w(v) ≤ s. We introduce Intuitionistic Fuzzy Threshold

Hypergraph(IFTHG) along with some of the multiple forms of them such as core, simple,
elementary, sectionally elementary IFTHGs and (µ, ν)- tempered IFTHGs, with few of
its properties. It is further proven that if an IFTHG HG is elementary, support simple
and simply ordered, then HG is a (µ, ν)-tempered IFTHG. Further, we discuss how
this method can be used to recognize water wastage using IFTHG and identify regions
where it can be reduced, demonstrating that it is more effective for controlling water
management systems compared to other methodologies.

Keywords: Intuitionistic fuzzy threshold hypergraph(IFTHG), Core, Simple, Support
Simple, Elementary and Sectionally elementary IFTHGs, (µ, ν)-tempered IFTHG.
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1. Introduction

This research introduces the Inituitionistic Fuzzy Threshold Graphs(IFTHGs)
and some types to address the limitations of traditional water management sys-
tems, which struggle to model complex real-world water distribution networks.
The objective is to enhance the accuracy of detecting water leakage and wastage,
leading to more efficient water management. The gap in existing research is the
inadequacy of conventional graph-based methods to effectively manage intricate
water systems. The novelty of this study is the application of IFTHG, which
provides a more precise and effective solution for optimizing water usage.
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In set theory, Zadeh[21] created fuzzy sets as a technique of conveying ambi-
guity and vagueness. Fuzzy set theory has sparked attention to variety of fields.
Atanassov[4, 7] came up with the concept of Intuitionistic Fuzzy Sets(IFS) as
a generalisation of fuzzy sets, and Atanassov added an additional module to
the concept of fuzzy set (which specifies the degree of non-membership). The
concept behind intuitionistic fuzzy graphs were discussed in [5, 6].

Euler introduced the notion of graph theory in 1736. The graph theory is
a powerful tool for addressing combinatorial issues in a various fields. To deal
with the complexities of application base, the concept of graph was expanded
to provide a hypergraph, which is a set of V vertices including a collection of
V subsets. The notions of graph and hypergraph were introduced by Berge
[8]. Hypergraphs, an extension of classical graphs, are used to model complex
relationships among multiple elements by Lee-Kwang & Lee [11]. Muhammad
Akram have explored the integration of fuzzy logic into hypergraph structures,
known as fuzzy hypergraphs (Akram & Dubek, 2013)[1]. Akram and Luqman
(2020)[12] conducted a comprehensive study on fuzzy hypergraphs, making sig-
nificant contributions to the field. The study of hypergraphs, particularly in
fuzzy and soft computing, plays a crucial role in advancing computational in-
telligence and decision-making methods (Akram et al.,)[2]. These structures
are extensively studied in decision-making and computational applications due
to their versatility by Akram et al.(2022)[3]. Sarwar et al. (2023)[20] intro-
duced a new group decision-making approach using rough soft approximations
of hypergraphs, demonstrating their practical applications. Akram and Nawaz
(2023)[13] applied single-valued neutrosophic soft hypergraphs to model the hu-
man nervous system, showing the interdisciplinary nature of hypergraph theory.
Nawaz, Akram, and Alcantud (2022)[16] developed an algorithm to compute the
strength of competing interactions in the Bering Sea using Pythagorean fuzzy
hypergraphs.

Intuitionistic fuzzy graphs and Intuitionistic fuzzy hypergraphs and intu-
itionistic fuzzy directed hypergraphs have been introduced in [17, 18, 19]. Some
types of intuitionistic fuzzy directed hypergraphs are discussed in [14]. Lanzhen
Yang and Hua Mao [10] introduced intuitionistic fuzzy threshold graph and
explained its applications. Chvatal and Hammer were the first to introduce
threshold graphs. Historical work by Chvatal and Hammer (1973)[9] on set-
packing problems and threshold graphs underscores the longstanding interest
in hypergraph theory. Myithili and Nandhini (2024)[15] reviewed intuitionistic
fuzzy threshold hypergraphs, contributing to the theoretical expansion of fuzzy
hypergraphs.

The new features of the proposed method in the water management system
include its ability to accurately model complex structures using IFTHG, which
surpasses traditional graph-based methods that often fall short in capturing real-
life complexities. The main advantages of the results are the precise detection
of water leakage or wastage in specific regions, facilitated by threshold values
that maintain optimal water levels, leading to more efficient and targeted water
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management. This approach helps prioritize maintenance resources, such as
manpower and materials, ensuring they are used where they are most needed,
reducing overall costs.

2. Preliminaries

We stepped over some fundamental definitions in this section that are related
to our main concept.

Definition 2.1 ([7]). Let a set E be fixed. An intuitionistic fuzzy set (IFS)
V in E is an object of the form V = {⟨vi, µi(vi), νi(vi)⟩ /vi ∈ E}, where the
function µi : E → [0, 1] and νi : E → [0, 1] determine the degree of membership
and the degree of non-membership of the element vi ∈ E, respectively and for
every vi ∈ E, 0 ≤ µi(vi) + νi(vi) ≤ 1.

Definition 2.2 ([5]). The six Cartesian products of two IFSs V1, V2 of V over
E are defined as
V1 ×1 V2 = {⟨(v1, v2), µ1.µ2, ν1.ν2⟩ |v1 ∈ V1, v2 ∈ V2},
V1 ×2 V2 = {⟨(v1, v2), µ1 + µ2 − µ1.µ2, ν1.ν2⟩ |v1 ∈ V1, v2 ∈ V2},
V1 ×3 V2 = {⟨(v1, v2), µ1.µ2, ν1 + ν2 − ν1.ν2⟩ |v1 ∈ V1, v2 ∈ V2},
V1 ×4 V2 = {⟨(v1, v2),min(µ1, µ2),max(ν1, ν2)⟩ |v1 ∈ V1, v2 ∈ V2},
V1 ×5 V2 = {⟨(v1, v2),max(µ1, µ2),min(ν1, ν2)⟩ |v1 ∈ V1, v2 ∈ V2}.
V1 ×6 V2 = {

〈
(v1, v2),

µi(v1)+µi(v2)
2 , νi(v1)+νi(v2)

2 ,
〉
|v1 ∈ V1, v2 ∈ V2}.

It must be noted that vi ×s vj is an IFS, where s = 1, 2, 3, 4, 5, 6.

Definition 2.3 ([17]). An intuitionistic fuzzy graph (IFG) is of the form G =
(V,E), where

(i) V = {v1, v2, . . . , vn} such that µi : V → [0, 1] and νi : V → [0, 1] denote
the degrees of membership and non-membership of the element vi ∈ V
respectively and 0 ≤ µi(vi) + νi(vi) ≤ 1 for every vi ∈ V , i = 1, 2, . . . , n.

(ii) E ⊆ V × V and µij : V × V → [0, 1] and νij : V × V → [0, 1] are such that
µij ≤ µi ∧ µj , νij ≤ νi ∨ νj and 0 ≤ µi(vi) + νi(vi) ≤ 1, where µij and νij
are the membership and non-membership values of the edge (νi, νj). The
values of µi ∧ µj and νi ∨ νj can be determined by one of the cartesian
products ×s, s = 1, 2, . . . , 6 for all i and j given in Definition 2.2.

Note: Throughout this paper, it is assumed that the fourth Cartesian product

Vi1 × Vi2 × Vi3 × . . .× Vin = {⟨(v1, v2, . . . , vn),min(µ1, µ2, . . . , µn),

max(ν1, ν2, . . . , νn)⟩|v1 ∈ V1, v2 ∈ V2, . . . , vn ∈ Vn},

is used to determine the edge membership µij and the edge non-membership
νij .

Definition 2.4 ([19]). An intuitionistic fuzzy hypergraph(IFHG) is an ordered
pair H = (V,E) where



70 MYITHILI KOTHANDAPANI and NANDHINI CHANDRASEKAR

(i) V = {v1, v2, . . . , vn} is a finite set of intuitionistic fuzzy vertices;

(ii) E = {E1, E2, . . . , Em} is a family of crisp subsets of V ;

(iii) Ej = {(vi, µj(vi), νj(vi)) : µj(vi), νj(vi) ≥ 0 and µj(vi) + νj(vi) ≤ 1},
j = 1, 2, . . . ,m;

(iv) Ej ̸= ∅, j = 1, 2, . . . ,m;

(v)
⋃

j supp(Ej) = V , j = 1, 2, . . . ,m.

Here, the hyperedges Ej are crisp sets of intuitionistic fuzzy vertices. Moreover,
µj(vi) and νj(vi) denote the degrees of membership and non-membership of
vertex vi to edge Ej . Thus, the elements of the incidence matrix of IFHG are
of the form (vij , µj(vi), νj(vi)). The sets (V,E) are crisp sets.

Notation list[14]

� ⟨µ(ui), ν(ui)⟩ or simply ⟨µi, νi⟩ denote the degrees of membership and non-
membership of the vertex vi ∈ V , such that 0 ≤ µi + νi ≤ 1.

� ⟨µ(uij), ν(uij)⟩ or simply ⟨µij , νij⟩ denote the degrees of membership and
non-membership of the hyperedge (ui, uj) ∈ V × V , such that 0 ≤ µij +
νij ≤ 1.

� µij and νij are the membership and non-membership value of ith vertex
in jth hyperedge.

� The support of an IFS V in E is denoted by supp(Ej) = {ui|µij(ui) > 0
and νij(ui) > 0}, where Ej is a hyperedge in intuitionistic fuzzy threshold
hypergraph.

3. Intuitionistic fuzzy threshold hypergraph

Definition 3.1 ([15]). The Intuitionistic Fuzzy Threshold Hypergraph(IFTHG)
is defined as HG = (U, E ; s1, s2) where

(i) U = {u1, u2, ..., un} is a finite set of intuitionistic fuzzy vertices;

(ii) E = {E1, E2, ..., Em} is a family of crisp subsets of U;

(iii) Ej = {ui, µj(ui), νj(ui)/0 ≤ µj(ui) + νj(ui) ≤ 1}, j = 1, 2, ...m;

(iv) Ej ̸= ∅, j = 1, 2, . . . ,m;

(v)
⋃

j supp(Ej) = U , j = 1, 2, . . . ,m;

(vi) an independent set V ⊆ U has a set of all distinct combinations of a
non-adjacent vertices in HG if and only if there exists a threshold values
s1, s2 > 0 such that

∑
ui∈V µj(ui) ≤ s1 and

∑
ui∈V (1− νj(ui)) ≤ s2.
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Example. Consider an IFTHG HG such that U = {u1, u2, u3, u4, u5, u6} and
E = {E1, E2, E3, E4, E5, E6}, where E1 = {u1, u6}, E2 = {u2, u6}, E3 = {u2, u3},
E4 = {u3, u6}, E5 = {u3, u4} and E6 = {u4, u5, u6} with threshold value ⟨0.4, 0.5⟩
is represented in the following incidence matrix.



E1 E2 E3 E4 E5 E6
u1 ⟨0.3, 0.6⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0.2, 0.6⟩ ⟨0.2, 0.6⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩ ⟨0.3, 0.5⟩ ⟨0.3, 0.5⟩ ⟨0, 1⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.7⟩ ⟨0.3, 0.7⟩
u5 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩
u6 ⟨0.4, 0.5⟩ ⟨0.4, 0.5⟩ ⟨0.4, 0.5⟩ ⟨0.4, 0.5⟩ ⟨0.4, 0.5⟩ ⟨0.4, 0.5⟩


The IFTHG HG = (U, E ; 0.4, 0.5) has been given below.

Figure 1: IFTHG

Proposition 3.1. An IFTHG is an expansion of intuitionistic fuzzy threshold
graph(IFTG).

Proof. Let HG = (U, E ; s1, s2) be an intuitionistic fuzzy threshold hypergraph.
Then by its definition, an independent set V ⊆ U has a set of all distinct
combinations of non-adjacent vertices in HG if and only if there exists threshold
values s1, s2 > 0 such that

∑
ui∈V µj(ui) ≤ s1 and

∑
ui∈V (1− νj(ui)) ≤ s2.

We know that, in an IFTG, an edge has only two vertices. As a result, we
consider a hyperedge instead of an edge, which contains two or more vertices
which is an intuitionistic fuzzy threshold hypergraph. Therefore, an IFTHG is
an expansion of IFTG.



72 MYITHILI KOTHANDAPANI and NANDHINI CHANDRASEKAR

Definition 3.2. Let HG = (U, E ; s1, s2) be an IFTHG. Then the height of HG is
defined by h(HG) = {max(min(µij)),max(max(νij))}, for which

∑
ui∈V µj(ui) ≤

s1 and
∑

ui∈V (1− νj(ui)) ≤ s2 for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n, where

µij and νij is the membership and non-membership value of ith vertex in jth

hyperedge respectively.

Definition 3.3. An IFTHG HG = (U, E ; s1, s2) is simple if there exists an inde-
pendent set V ⊆ U such that E has no repeated intuitionistic fuzzy hyperedges
and whenever Ej , Ek ∈ E and Ej ⊆ Ek then Ej = Ek for which

∑
ui∈V µij(ui) ≤ s1

and
∑

ui∈V (1− νij)(ui) ≤ s2 for all j and k.

Example. Consider an IFTHG HG such that U = {u1, u2, u3, u4, u5}, E =
{E1, E2, E3} according to the incidence matrix below with threshold value ⟨0.3, 0.6⟩.



E1 E2 E3
u1 ⟨0.3, 0.4⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0.2, 0.6⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.1, 0.7⟩
u5 ⟨0.3, 0.6⟩ ⟨0.3, 0.6⟩ ⟨0.3, 0.6⟩


The IFTHG HG = (U, E ; 0.3, 0.6) has been shown below.

Figure 2: Simple IFTHG

Definition 3.4. An IFTHG, HG = (U, E ; s1, s2) is support simple, if there is an
independent set V ⊆ U such that Ej , Ek ∈ E , Ej ⊆ Ek and supp(Ej) = supp(Ek)
then Ej = Ek for which

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1 − νij)(ui) ≤ s2, for

all j and k. Here, the hyperedges Ej and Ek are called supporting hyperedges.
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Example. Consider an IFTHG, HG such that U = {u1, u2, u3, u4, u5, u6},
E = {E1, E2, E3, E4} according to the incidence matrix below with threshold value
⟨0.3, 0.7⟩.



E1 E2 E3 E4
u1 ⟨0.1, 0.7⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0.2, 0.5⟩ ⟨0, 1⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.2, 0.6⟩ ⟨0, 1⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩
u5 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩ ⟨0, 1⟩
u6 ⟨0.3, 0.7⟩ ⟨0.3, 0.7⟩ ⟨0.3, 0.7⟩ ⟨0.3, 0.7⟩


The IFTHG HG = (U, E ; 0.3, 0.7) has been illustrated below.

Figure 3: Support simple IFTHG

Here, E2 and E4 are supporting hyperedges.

Definition 3.5. Let HG = (U, E ; s1, s2) be an IFTHG and an independent
set V ⊆ U exists, if Ej , Ek ∈ E and 0 < α, β ≤ 1. Then the (α, β)-level is

defined by (Ej , Ek)(α,β) = {ui ∈ U |min(µα
ij(ui)) ≥ α,max(νβij(ui)) ≤ β} for

which
∑

ui∈V µij(ui) ≤ s1 and
∑

ui∈V (1− νij)(ui) ≤ s2.

Definition 3.6. Let HG = (U, E ; s1, s2) be an IFTHG, there exists an inde-
pendent set V ⊆ U such that HG

yi,zi = ⟨Uyi,zi , Eyi,zi⟩ be the (yi, zi)-level
of HG. The sequence of real numbers {y1, y2, . . . , yn; z1, z2, . . . , zn} such that
0 ≤ yi ≤ hµ(HG) and 0 ≤ zi ≤ hν(HG), satisfying the properties:

(i) If y1 < α ≤ 1 and 0 ≤ β < z1 then Eα,β = ∅;

(ii) If yi+1 ≤ α ≤ yi; zi ≤ β ≤ zi+1 then Eα,β = Eyi,zi ;
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(iii) Eyi,zi ⊏ Eyi+1,zi+1 ;

for which
∑

ui∈V µij(ui) ≤ s1 and
∑

ui∈V (1 − νij)(ui) ≤ s2 is called the funda-
mental sequence of HG and is denoted by F (HG).

Example. Consider an IFTHG, HG such that U = {u1, u2, u3, u4, u5}, E =
{E1, E2, E3} according to the incidence matrix below with threshold value ⟨0.4, 0.6⟩.



E1 E2 E3
u1 ⟨0.2, 0.7⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0.3, 0.6⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.4, 0.5⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.4, 0.4⟩
u5 ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩


The IFTHG HG = (U, E ; 0.4, 0.6) has been given below.

Figure 4: HG
(µj(y,z),νj(y,z))-level IFTHG

By examining the (yn, zn)-level IFTHG of HG, we see that HG
⟨0.2,0.7⟩ =

HG
⟨0.3,0.6⟩ = HG

⟨0.4,0.6⟩ and F (HG) = {⟨0.2, 0.7⟩ , ⟨0.3, 0.6⟩ , ⟨0.4, 0.6⟩}.

Definition 3.7. Let HG = (U, E ; s1, s2) be an IFTHG, also an independent
set V ⊆ U exists. Then, the core set of HG is denoted by C (HG) for 0 <
(yi, zi) ≤ h(HG), and is defined by C (HG) = {HG

y1,z1 ,HG
y2,z2 , . . . ,HG

yn,zn}.
The corresponding set of (yi, zi)-level hypergraphs is HG

y1,z1 ⊂ HG
y2,z2 ⊂ . . . ⊂

HG
yn,zn for which

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1− νij)(ui) ≤ s2 is called the

HG-induced fundamental sequence and is denoted by I (HG). The (yn, zn)-level
is called the support level of HG and the HG

yn,zn is called the support of HG.

Definition 3.8. Let HG = (U, E ; s1, s2) be an IFTHG is said to be elementary,
if an independent set V ⊆ U exists. Then µij : U → [0, 1] and νij : U → [0, 1]
are constant functions or has a range {0, r}, r ̸= 0 for which

∑
ui∈V µij(ui) ≤ s1

and
∑

ui∈V (1− νij)(ui) ≤ s2. If | supp(µij , νij)| = 1, then it is called a spike.
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Example. Consider an IFTHG, HG such that U = {u1, u2, u3, u4, u5, u6},
E = {E1, E2, E3, E4} according to the incidence matrix below with threshold value
⟨0.4, 0.5⟩.



E1 E2 E3 E4
u1 ⟨0.4, 0.6⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0.4, 0.6⟩ ⟨0, 1⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0.4, 0.6⟩ ⟨0, 1⟩ ⟨0, 1⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.4, 0.6⟩ ⟨0, 1⟩
u5 ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩ ⟨0, 1⟩
u6 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.4, 0.5⟩


The IFTHG HG = (U, E ; 0.4, 0.5) has been shown below.

Figure 5: Elementary IFTHG

Theorem 3.1. The intuitionistic fuzzy threshold hyperedges of an IFTHG are
elementary.

Definition 3.9. Consider HG = (U, E ; s1, s2) be an IFTHG, if there exists an in-
dependent set V ⊆ U such thatHG be an IFTHG and F (HG) = {yn, yn−1, . . . , y1,
z1, z2, . . . , zn} for which

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1− νij)(ui) ≤ s2. Then

HG is called sectionally elementary if for each µij , νij ∈ E and yn, zn ∈ F (HG),

µα
ij = µyi

ij and νβij = νziij for all α, β ∈ (yi+1, zi].(we assume yi+1 = 0).

Example. Consider an IFTHG, HG such that U = {u1, u2, u3, u4, u5}, E =
{E1, E2, E3}, and it is denoted by the upcoming incidence matrix with threshold
value ⟨0.4, 0.6⟩.



E1 E2 E3
u1 ⟨0.4, 0.5⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0.4, 0.5⟩ ⟨0, 1⟩ ⟨0, 1⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.5⟩
u4 ⟨0, 1⟩ ⟨0.3, 0.5⟩ ⟨0.3, 0.5⟩
u5 ⟨0.4, 0.6⟩ ⟨0.4, 0.6⟩ ⟨0, 1⟩


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The IFTHG HG = (U, E ; 0.4, 0.6) has been shown below.

Figure 6: Sectionally Elementary IFTHG

Definition 3.10. Suppose HG = (U, E ; s1, s2) and HG
′ = (U ′, E ′; s′1, s

′
2) are

IFTHGs, HG is called a partial IFTHG of HG
′ if there exists an independent set

V ⊆ U such that

u′ =

{
min (supp (µij))&

∑
ui∈V µij(ui) ≤ s1 |µij ∈ E ′

max (supp (νij))&
∑

ui∈V (1− νij)(ui) ≤ s2 | νij ∈ E ′

The partial IFTHG generated by E ′ and is denoted by HG ⊆ HG
′. Also, HG ⊂

HG
′ if HG ⊆ HG

′ and HG ̸= HG
′.

Definition 3.11. Let HG = (U, E ; s1, s2) be an IFTHG, there exists an indepen-
dent set V ⊆ U such that C (HG) = {HG

y1,z1 ,HG
y2,z2 , . . . ,HG

yn,zn} for which∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1 − νij)(ui) ≤ s2. HG is said to be ordered

if C (HG) is ordered. That is HG
y1,z1 ⊂ . . . ⊂ HG

y2,z2 ⊂ HG
yn,zn for which∑

ui∈V µij(ui) ≤ s1 and
∑

ui∈V (1 − νij)(ui) ≤ s2. The IFTHG is said to be
simply ordered if the sequence {HG

yi,zi |i = 1, 2, . . . , n} is simply ordered, that is
if it is ordered and if whenever E ∈ HG

yi+1,zi+1\HG
yi,zi then E ⊈ HG

yi,zi .

Theorem 3.2. If HG is an elementary intuitionistic fuzzy threshold hyper-
graph, then HG is ordered. Also, if HG is ordered IFTHG with C (HG) =
{HG

y1,z1 ,HG
y2,z2 , . . . ,HG

yn,zn} and if HG
yn,zn is simple, then HG is elementary.
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Definition 3.12. Let an IFTHG HG = (U, E ; s1, s2) and an independent set
V ⊆ U . Then HG is called (µ, ν)-tempered intuitionistic fuzzy threshold hyper-
graph(tIFTHG), if there exists an intuitionistic fuzzy subset, µij : U → [0, 1]
and νij : U → [0, 1] such that E = {(µij(ui), νij(ui)|ui ∈ Ei} where

µij =

{
∧µj(a) and

∑
ui∈V µij(ui) ≤ s1|a ∈ E , if ui ∈ Ei

0, otherwise

and

νij =

{
∨νj(a) and

∑
ui∈V (1− νij)(ui) ≤ s2|a ∈ E , if ui ∈ Ei

0, otherwise

where µij(ui) and νij(ui) are degrees of membership and non-membership func-
tions of the element ui ∈ E respectively for every ui ∈ E , 0 < µij(ui)+νij(ui) ≤ 1.

Example. Consider an IFTHG, HG such that U = {u1, u2, u3, u4, u5, u6},
E = {E1, E2, E3, , E4} according to the incidence matrix below with threshold
value ⟨0.3, 0.4⟩.



E1 E2 E3 E4
u1 ⟨0.2, 0.5⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩
u2 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.2, 0.5⟩
u3 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.4⟩ ⟨0, 1⟩
u4 ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.3, 0.4⟩ ⟨0, 1⟩
u5 ⟨0, 1⟩ ⟨0.3, 0.4⟩ ⟨0.3, 0.4⟩ ⟨0, 1⟩
u6 ⟨0.2, 0.5⟩ ⟨0, 1⟩ ⟨0, 1⟩ ⟨0.2, 0.5⟩


The following hypergraph depicts the IFTHG HG = (U, E ; 0.3, 0.4).

Figure 7: (µ, ν)-tIFTHG
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E(0.3,0.4) = {{u3, u5}, {u4, u5}}
E(0.2,0.5) = {{u3, u5}, {u4, u5}, {u2, u6}, {u1, u6}}
Define µij : U → [0, 1] and νij : U → [0, 1] by
µ1j(u1) = 0.2, µ2j(u2) = 0.2, µ3j(u3) = 0.3, µ4j(u4) = 0.3, µ5j(u5) = 0.3,
µ6j(u6) = 0.2 and
ν1j(u1) = 0.5, ν2j(u2) = 0.5, ν3j(u3) = 0.4, ν4j(u4) = 0.4, ν5j(u5) = 0.4,
ν6j(u6) = 0.5
Note that
µij(E1) = µ1j(u1) ∧ µ6j(u6) = 0.2
µij(E2) = µ5j(u5) ∧ µ6j(u6) = 0.2
µij(E3) = µ3j(u3) ∧ µ4j(u4) ∧ µ5j(u5) = 0.3
µij(E4) = µ2j(u2) ∧ µ6j(u6) = 0.2 and
νij(E1) = ν1j(u1) ∨ ν6j(u6) = 0.5
νij(E2) = ν5j(u5) ∨ ν6j(u6) = 0.5
νij(E3) = ν3j(u3) ∨ ν4j(u4) ∨ ν5j(u5) = 0.4
νij(E4) = ν2j(u2) ∨ ν6j(u6) = 0.5
Thus, HG is (µ, ν) - tIFTHG.

Theorem 3.3. An IFTHG is (µ, ν)-tIFTHG of some crisp hypergraph HG, if
and only if HG is elementary, support simple and simply ordered.

Proof. Let HG = (U, E ; s1, s2) be an (µ, ν)-tIFTHG of some crisp hypergraph
HG. There exists an independent set V ⊆ U in HG. Since, (µ, ν)-tempered the
membership values and non-membership values of intuitionistic fuzzy hyper-
edges with

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1− νij)(ui) ≤ s2 of HG are constant,

hence it is elementary.

Clearly if support of two intuitionistic fuzzy hyperedges of the (µ, ν)-tIFTHG
are equal then the intuitionistic fuzzy hyperedges with

∑
ui∈V µij(ui) ≤ s1 and∑

ui∈V (1− νij)(ui) ≤ s2 are also equal. Therefore, it is support simple.

Let C (HG) = {HG
y1,z1 ,HG

y2,z2 , . . . ,HG
yn,zn}. Since HG is elementary, it is

ordered.

To prove: HG is simply ordered.

Let E ∈ HG
yi+1,zi+1\HG

yi,zi , then there exists ui ∈ E such that µij(ui) = yi+1

and νij(ui) = zi+1. Since yi+1 > yi and zi+1 > zi , it follows that ui /∈ HG
yi,zi

and E ⊈ HG
yi,zi for which

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1 − νij)(ui) ≤ s2.

Thus, HG is simply ordered.

Conversely, suppose HG = (U, E ; s1, s2) is elementary, support simple and
simply ordered.

To prove: (µ, ν) is tIFTHG.

We know that HG
yi,zi = HGi = (Ui, Ei; s1, s2). Also define µij : Ui → [0, 1]

and νij : Ui → [0, 1] by

µij(ui) =

{
y1, if ui ∈ E1
yi, if ui ∈ Ei\Ei−1, i = 1, 2, . . . , n
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and

νij(ui) =

{
z1, if ui ∈ E1
zi, if ui ∈ Ei\Ei−1, i = 1, 2, . . . , n

To prove: E = {(µij(ui), νij(ui))|ui ∈ Ei} where

µij(ui) =

{
∧µi(a) and

∑
ui∈V µij(ui) ≤ s1|a ∈ E , if ui ∈ Ei

0, otherwise

and

νij(ui) =

{
∨νi(a) and

∑
ui∈V (1− νij)(ui) ≤ s2|a ∈ E , if ui ∈ Ei

0, otherwise

Let E ′ ∈ Ei.
Since HG is elementary and support simple, the intuitionistic fuzzy hyper-

edge (cij , dij) is unique in E which has support E ′. In fact, distinct hyperedges
in E should have distinct supports which lie in Ei with

∑
ui∈V µij(ui) ≤ s1 and∑

ui∈V (1− νij)(ui) ≤ s2.
To prove: For each E ′ ∈ Ei, µij(ui) = cij , νij(ui) = dij .
Since, all the hyperedges are elementary and different hyperedges have dif-

ferent supports, it follows from the definition of fundamental sequence, that
h(cij , dij) is equal to some number of (yi, zi) in F (HG).

Consequently, E ′ ⊆ Ui. Moreover if i > 1, then E ′ ∈ E ′\Ei−1. Since E ⊆ Ui, it
follows from the definition of (µ, ν)-tempered that for each ui ∈ Ei, µij(ui) ≥ yi
and µij(ui) ≤ zi with

∑
ui∈V µij(ui) ≤ s1 and

∑
ui∈V (1− νij)(ui) ≤ s2.

Claim: µij(ui) = yi and νij(ui) = zi for some ui ∈ Ei. By definition of (µ, ν)-
tempered µij(ui) ≥ yi−1 and νij(ui) ≤ zi−1 for all Ui ∈ Ei ⇒ E ⊆ Ui−1 and so
E ∈ Ei\Ei−1 and since HG is simply ordered E ⊈ Ui−1, which is a contradiction.
Hence, it follows from the definition that µij = cij , νij = dij .

4. Application of IFTHG

Water is required for the survival of all living organisms throughout the universe.
Water is, without a doubt, the reason why the earth is still the only planet
on which life can survive. This universal solvent is one of the most essential
resources we have on this world. Life would be difficult to survive without
water. Furthermore, it feeds nearly 70% of the world’s population. A water
distribution system is a segment of a water supply network that distributes
drinking water from a centralised treatment plant or wells to people to meet the
needs of residential, commercial, industrial and firefighting users.

The value of other commodities rises as a result of wasting water. Water
shortages makes it more difficult to manufacture certain goods that require it.
As a result, certain commodities would become scarce or may be priced higher.
It’s worth noting that there’s a critical challenge with leakages in underground
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pipelines, which results in water waste in each area. Clearly, we need to know
the quantity of actual water usage, estimated water leakage and unexpected
water consumption in order to manage and control water supplies in each area.
The pictorial representation of water distribution system is shown in Figure
8. The houses in the particular areas and two major suppliers are denoted as
vertices and the supply of water to certain areas are considered as hyperedges.
Furthermore, the two reservoirs must deliver the appropriate quantity of water
to ensure the basic water usage of nine areas, as well as the minimum quantity
of water storage required to maintain the suppliers normal water level.

Consider nine areas e1, e2, e3, ..., e9 and there are two suppliers p and q.
During that particular period, water was distributed one by one from major
suppliers to all areas of town.

Figure 8: IFTHG linked to water management system

Now, consider a vertex(house) u1 in the hyperedge(area) e1 and the supplier p

� µi(u1)-denotes the actual water usage of the vertex u1;

� νi(u1)-denotes the quantity of water leakage of the vertex u1;

� 1− µi(u1)− νi(u1)-(the index of u1)- denotes the quantity of unexpected
water usage of u1;

� µi(p)-denotes the quantity of water supply of the supplier p;

� νi(p)-denotes the minimal quantity of water storage of supplier p;

� 1 − µi(p) − νi(p)-(the index of v1)- denotes the quantity of unexpected
water usage of p;
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� µij(e1)-denotes the total water distributed to the houses u1, u2, u3;

� νij(e1)-denotes the quantity of water leakage of the area e1.

The values of vertices are tabulated below:

u1 − (0.6, 0.002) u12 − (0.5, 0.001)

u2 − (0.5, 0.0015) u13 − (0.3, 0.002)

u3 − (0.55, 0.002) u14 − (0.4, 0.0015)

u4 − (0.5, 0.001) u15 − (0.6, 0.003)

u5 − (0.4, 0.001) u16 − (0.2, 0.004)

u6 − (0.5, 0.001) u17 − (0.5, 0.001)

u7 − (0.6, 0.0015) u18 − (0.7, 0.0015)

u8 − (0.3, 0.004) u19 − (0.6, 0.001)

u9 − (0.5, 0.005) u20 − (0.7, 0.002)

u10 − (0.3, 0.05) u21 − (0.65, 0.0015)

u11 − (0.2, 0.045)

4.1 Working mechanism

The water distribution system begins by emphasizing the necessity of a raw
water source such as a lake, river or groundwater. Water is stored in reservoirs
to ensure a consistent supply for the system, with pumps facilitating its trans-
portation from the source to storage facilities. Prior to entering the system,
water undergoes filtration to prevent corrosion, followed by purification to meet
quality standards.

Main pumping stations near storage facilities supply water directly into the
piping system. Reservoirs play a crucial role in system capacity, supporting both
consumer consumption and fire protection needs during peak demand periods.
Ground-level and raised storage options are common.

Water is then distributed to users through pipes, with each area typically
receiving water from reservoirs within a two-hour timeframe. If unexpected
water needs arise, interconnected reservoirs can provide additional water via
hyperedges. Once all areas are serviced, reservoirs replenish tanks for the next
distribution cycle. This process ensures consistent water supply and addresses
fluctuating demand effectively.

From the above comparison that using IFTHG in the water distribution sys-
tem is essential. It can also be used to regulate water resources. Furthermore, in
a water distribution system, IFTHGs are more appropriate than fuzzy threshold
graph and intuitionistic fuzzy threshold graphs.

4.2 Analysis

Our water management system has two major suppliers, each with a capacity of
1000 litres. And each vertices (houses/industries) has a regular water allocation.
Suppose that house 1 takes 60 litres of water per day, which indicates that the
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membership value of that vertex is 0.6. Similarly, intuitionistic fuzzy data from
a collected data has been generated.

Because reservoirs influence the quantity of water required in each area,
also, known that the threshold dimension can simply calculated by the number
of reservoirs. As seen in the figures 9 and 10, in which the threshold dimension
is 2 and the intuitionistic fuzzy threshold partition number is 2 as considered
in [10]. As a result, we could generate two intuitionistic fuzzy threshold sub-
hypergraphs(IFTsHGs). It must be observed that as thresholds s1 and m− s2
refer to the maximum quantity of water replenishment and unexpected water
consumption respectively, where m is the number of elements in the maximum
independent set of subhypergraphs. For e.g., consider s1 = 0.96 and s2 = 4.98
for first IFTsHG(Fig:9). Here, number of elements in the maximum independent
set is {u1, u4, u7, u9, u10} and

µi(u1) + µi(u4) + µi(u7) + µi(u9) + µi(u10) = 2.5.

As a conclusion, it is clear that the reservior p can supply 0.96 quantity of
water for the five areas, which requires at least 2.5 quantity of water for actual
consumption and 0.02 (5-4.96=0.02) quantity of water goes under unforeseen
water consumption/leakage. We can conclude from this that the p supplier can
supply 960 litres for five areas, with at least 250 litres for actual consumption
and 2 litres for unforeseen water consumption/leakage.

Figure 9: The first IFTHsG linked to water management system

Similarly, consider s1 = 0.92 and s2 = 3.96 for second IFTsHG(Fig:10) and
the number of elements in the maximum independent set is {u12, u15, u18, u20}
which results in

µi(u12) + µi(u15) + µi(u18) + µi(u20) = 2.5.
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Finally, the reservior q can supply 0.92 quantity of water for the four areas, with
at least 2.5 quantity of water for actual consumption and 0.04 (4-3.96=0.04)
quantity of water goes under unforeseen water consumption/leakage. Now, con-
clude from this that the q supplier can supply 920 litres for four areas, with
at least 250 litres for actual consumption and 4 litres for unforeseen water con-
sumption/leakage.

Figure 10: The second IFTsHG linked to water management system

In the first area, there are significant water leakages near houses u1, u4, u7,
u9, and u10. Similarly, in the second area, leakages are observed around houses
u12, u15, u18, and u20, or in the pipes near these locations. By identifying these
problem areas, we can take targeted actions to reduce water waste effectively.
As a result of above analysis, it is easily seen that the importance of IFTHG
as an application part to manage water resources. Furthermore, it is analyzed
that IFTHGs are better than fuzzy threshold graphs for controlling water man-
agement systems through threshold values. In this application, threshold values
are most important to maintain the certain limit of each vertices. Additionally,
this method excels in identifying water wastage and, while illustrated here with
a smaller example, it can be applied to larger and more complex structures with
equal effectiveness.

5. Conclusion

In many real-world problems, data exhibit uncertain behavior and can vary sig-
nificantly based on different parameters, highlighting the need for IFTHG. The
application of fuzzy graph theory in addressing real-time situations is expand-
ing, with IF models offering greater precision and compatibility than traditional
methods. IFTHGs, in particular, are better equipped to handle uncertainty
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and ambiguity, making them a powerful tool in various applications. In this
paper, we introduced the concept and definitions of IFTHGs, including core,
fundamental sequence, elementary, and sectionally elementary types, and dis-
cussed several key results. Our IFTHGmodel, designed to reduce water wastage,
demonstrates the practical significance of this approach. Future research in this
area holds promise for a wide range of applications.
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