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On the SS-supplemented modules over Dedekind domains
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Abstract. A module M is called ss-supplemented if every submodule U of M has
a supplement V in M such that U ∩ V is semisimple. In this paper, we completely
determine the structure of (amply) ss-supplemented modules over Dedekind domains.
In particular, we prove that an abelian group M is ss-supplemented (as a Z-module)

if and only if M ∼= (
⊕

p∈I Z
(υ)
p )⊕ (

⊕
q∈J Z(ν)

q2 ), where P is the set of all prime integers,
I, J are some subsets of P and υ, ν are any index sets.
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1. Introduction

In [5], the concept of ss-supplement submodules have been introduced as a type
of supplement submodules. In the same paper authors have obtained detailed
information about modules with the help of ss-supplement submodules.

A submodule V of M of an R-module M is called a supplement of a submod-
ule U in M if it is minimal with respect to M = U+V , equivalently M = U+V
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and U ∩ V ≪ V (see [8]). It follows from [8] that a module M is called supple-
mented if every submodule of M has a supplement in M . A submodule U of M
has ample supplements in M if every submodule L of M such that M = U + L
contains a supplement of U in M . The module M is called amply supplemented
if every submodule of M has ample supplements in M . As a generalization of
semisimple modules, supplemented modules play an important role in module
and ring theory, and Abelian groups.

Recall from [3] that a submodule V of a module M is a Rad-supplement of
a submodule U in M if M = U + V and U ∩ V ⊆ Rad(V ). Since Rad(V ) is the
sum of all small submodules of V , every supplement submodule of M is a Rad-
supplement submodule of M . M is called Rad-supplemented if all submodules
have a Rad-supplement in M . Every module M with M = Rad(M) is Rad-
supplemented.

There are generally two different ways of working in module classes. The first
one is the characterization of some important rings. A ring R is (semi) perfect
if and only if every left (finitely generated) R-module is (amply) supplemented
(see [8, 42.6§43.9]). R

P (R) is perfect, where P (R) is the sum of all radical left
ideals of R if and only if every left R-module is Rad-supplemented, that is,
every submodule of a module has a Rad-supplement in the module ([3, Theorem
6.1]). The other one is determine the structure of given modules classes over a
Dedekind domain. It follows from [9, Proposition A.7 and Proposition A.8] and
[3, Theorem 7.2 and Theorem 7.4] that the structure of (Rad−) supplemented
modules over a (local) Dedekind domain is given.

For a module M , we consider the following submodule of M as in [4]:

Socs(M) =
∑

{N ≪ M |N is simple}

Since Socs(V ) ⊆ Rad(V ), it is of interest to investigate the analogue of this
notion by replacing “Rad(V )”with “Socs(V )”. We will use the same definition
and notation as in [5] to call a submodule V of a module M ss-supplement of a
submodule U in M if M = U + V and U ∩ V ⊆ Socs(V ). It is shown in [5] that
a submodule V of M is ss-supplement of some submodule U in M if and only if
V is a supplement of U in M and U ∩ V is semisimple. Following [5], a module
M is said to be ss-supplemented if every submodule of M has an ss-supplement
in M . A submodule U of a module M has ample ss-supplements in M if every
submodule V of M such that M = U + V contains a ss-supplement of U in M .
Also, It is called that a module M amply ss-supplemented if every submodule
of M has ample ss-supplements in M . It is clear that every ss-supplemented
module is supplemented. The basic properties of these modules were obtained
in [5]. Clearly, the class of ss-supplemented modules is between the class of
semisimple modules and the class of supplemented modules. It is shown in [5,
Theorem 41] that a ring R is semiperfect with semisimple radical if and only if
every left R-module is (amply) ss-supplemented.
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2. Preliminaries

Throughout this study, all rings are associative with identity and all modules
are unitary left modules. Let R be a ring and M be an R-module. The notation
U ⊆ M will mean that U is a submodule of M .

Definition 2.1 ([8]). A submodule N of an R-module M is said to be small in
M , denoted by N ≪ M , if M ̸= N +K for every proper submodule K of M .

Definition 2.2 ([8]). Let M be an R-module. The sum of simple submodules
of M is called the socle of M and is denoted by Soc(M). If there are no simple
submodules in M we put Soc(M) = 0. Also, Soc(M) is the largest semisimple
submodule of M .

Definition 2.3 ([8]). Let M be an R-module. The intersection of all maximal
submodules of M or the sum of all small submodules of M is called the radical
of M and is denoted by Rad(M). If M has no maximal submodules we set
Rad(M) = M .

Lemma 2.1 ([5, Lemma 2]). Let M be a module. Then, Socs(M) = Rad(M)∩
Soc(M).

Reduced modules and coatomic modules have a very important place in the
theory of supplemented modules. Now we recall:

Definition 2.4 ([6]). A module M is called reduced if whenever A ⊆ M with
A = Rad(A) implies A = 0.

Definition 2.5 ([6]). A module M is called coatomic if every proper submodule
of M is contained in a maximal submodule of M .

Note that, a coatomic module has small radical. Semisimple modules or
finitely generated modules are coatomic.

Definition 2.6 ([8]). A non-zero module M is called hollow if every proper
submodule of M is small in M and is called local if M has a largest submodule,
i.e. a proper submodule which contains all other proper submodules.

It is obvious that a largest submodule has to be equal to the radical of M
and that in this case Rad(M) is maximal and small in M . It follows from [8,
41.4 (2)] that a module M is hollow and cyclic if and only if it is local. Note
that hollow modules are clearly amply supplemented. A ring R is called local
ring if RR is a local module.

Proposition 2.1 ([9, Proposition A.7 and Proposition A.8]). Let R be a local
Dedekind domain with maximal ideal P , quotient field K, and Q = K

R . Let a,
b, c and n be natural numbers, and let B(n1, ..., ns) denote the direct sum of
arbitrarily many copies of R

Pn1 , ... , R
Pn
s
. Then, an R-module M is supplemented

if and only if M is isomorphic to the direct sum Ra ⊕KB ⊕Qc ⊕B(1, 2, ..., n).
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If R is a non-local Dedekind domain, an R-module M is supplemented if and
only if every P -primary component (viewed as module over the localization RP )
has the structure described in the above form.

Definition 2.7 ([5]). A module M strongly local if it is local and Rad(M) ⊆
Soc(M) and a ring R left strongly local ring if RR is a strongly local module.

It is also state that the following implications on modules:

simple =⇒ strongly local =⇒ local.

The following lemma comes from [5, Lemma 13].

Lemma 2.2 ([5, Lemma 13]). Let M be an ss-supplemented module and N be
a small submodule of M . Then, N ⊆ Socs(M).

In this paper, we completely determine the structure of ss-supplemented
and amply ss-supplemented modules over Dedekind domains. We show that M
is ss-supplemented if and only if it is isomorphic to a direct sum of strongly
local R-modules. We prove that over a local Dedekind domain a module M
is ss-supplemented if and only if it is amply ss-supplemented if and only if
M is a bounded module with semisimple radical. In particular, we show that
an abelian group M is ss-supplemented (as a Z-module) if and only if M ∼=
(
⊕

p∈I Z
(υ)
p ) ⊕ (

⊕
q∈J Z

(ν)
q2

), where P is the set of all prime integers, I, J are
some subsets of P and υ, ν are any index sets.

3. SS-supplemented modules over Dedekind domains

In this section, we aim to determine the structure of ss-supplemented modules
over Dedekind domains. Unless stated otherwise, here we assume that every
ring is a Dedekind domain which is not a field.

Remark 3.1. Let R be a Dedekind domain and K be the quotient field of R.
Since K

R is the hollow R-module which is not local, it follows from [5, Proposition
16] that K

R is not ss-supplemented. Hence, again applying [5, Proposition 16],
K is also not ss-supplemented.

The following proposition gives the classes of ss-supplemented modules.

Proposition 3.1. Let R be a Dedekind domain with the quotient field K and
M be a left R-module. If M is ss-supplemented, then M is reduced, coatomic
and Rad(M) ⊆ Soc(M).

Proof. Let M be a ss-supplemented module and N be a radical submodule of
M . Then, by [7, Lemma 4.4], N is injective and so there exists a submodule L
of M such that M = N⊕L. Therefore, N is ss-supplemented by [5, Proposition
26]. Note that N ∼= K(I) ⊕ (KR )(J) for some index sets I and J . It follows from
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[5, Proposition 26] and Remark 3.1 that I = J = ∅. It means that N = 0, that
is, M is reduced.

Let U be a proper submodule of M . Then, U has a ss-supplement, say V ,
in M . Since M is reduced, V has a maximal submodule P . It is easy to see
that U + P is a maximal submodule of M and so M is coatomic. Moreover,
Rad(M) ⊆ Soc(M) by Lemma 2.2.

Note that a reduced hollow module is local.

Proposition 3.2. Let R be a Dedekind domain and M be a non-zero left R-
module. Then, M is ss-supplemented if and only if it is isomorphic to a direct
sum of strongly local R-modules.

Proof. Let M be a ss-supplemented module. By Proposition 3.1, we have M
is reduced. Therefore, it is supplemented and so we can write M ∼=

⊕
i∈I Li,

where each Li is local by Proposition 2.1. Since M is ss-supplemented, it follows
from [5, Proposition 26] that each Li is ss-supplemented. By [5, Proposition
16], each Li is a strongly local module. This is desired conclusion. The converse
follows from [5, Theorem 27].

Example 3.1. Consider the left Z-module M =
⊕

p∈P Zp2 . It follows from [5,
Theorem 27] that M is ss-supplemented.

A module M over a commutative domain R is said to be bounded if rM = 0
for some non-zero r ∈ R.

Proposition 3.3. Let R be a local Dedekind domain and M be a left R-module.
Then, M is ss-supplemented if and only if it is a bounded module with semisim-
ple radical.

Proof. If M is ss-supplemented, then it is coatomic and Rad(M) ⊆ Soc(M)
by Proposition 3.1. By [6, Lemma 2.1], there exists a nonnegative integer and
a bounded submodule N of M such that M ∼= R(n) ⊕ N . By [5, Proposition
26], R is ss-supplemented. It follows from [5, Proposition 16] that R is strongly
local and so n = 0 by [5, Proposition 11]. It means that M is bounded.

Conversely, let M be a bounded module with Rad(M) ⊆ Soc(M). Then,
there exists an ideal I of R such that IM = 0. So, M can be considered as
a R

I -module. Since R
I is an artinian ring, it follows from [8, 43.9] that M is a

supplemented R
I -module. Therefore, M is a supplemented R-module. Hence it

is ss-supplemented by [5, Lemma 19].

Lemma 3.1. Let R be a local Dedekind domain and M be a left R-module.
Then, M is a strongly local module if and only if M ∼= R

pR or M ∼= R
p2R

, where
p is the prime element of R.

Proof. Since M is a strongly local module, it is local and so M ∼= R
pnR for some

n ≥ 1. Therefore, we can write Rad( R
pnR) = pR

pnR ⊆ Soc( R
pnR)

∼= R
pR , and so

n = 1 or n = 2. The converse is clear.
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Theorem 3.1. Let R be a local Dedekind domain and M be a left R-module.
The following statements are equivalent:

(1) M is ss-supplemented.

(2) M is bounded and Rad(M) ⊆ Soc(M).

(3) For every submodule N of M , N is bounded and Rad(N) ⊆ Soc(N).

(4) Every submodule of M is ss-supplemented.

(5) M is amply ss-supplemented.

(6) M is isomorphic to a direct sum of R
pR ’s and R

p2R
’s, where p is the prime

element of R.

Proof. (1) ⇐⇒ (2) By Proposition 3.3.
(2) =⇒ (3) Let N ⊆ M . Therefore, N is bounded as a submodule of the

bounded module M . By [8, 21.2 (2)], we obtain that Rad(N) ⊆ Rad(M)∩N ⊆
Soc(M) ∩N = Soc(N).

(3) =⇒ (4) It follows from Proposition 3.3
(4) =⇒ (5) By [5, Corollary 36].
(5) =⇒ (6) and (6) =⇒ (1) By Proposition 3.2 and Lemma 3.1.

Theorem 3.2. Let R be a non-local Dedekind domain and M be a left R-module.
The following statements are equivalent:

(1) M is ss-supplemented.

(2) M is supplemented, coatomic and Rad(M) ⊆ Soc(M).

(3) M is isomorphic to a direct sum of strongly local R-modules.

Proof. (1) ⇐⇒ (3) By Proposition 3.2.
(1) ⇐⇒ (2) It follows from By Proposition 3.1 and [5, Lemma 19].

Lemma 3.2. An abelian group M is strongly local (as a Z-module) if and only
if M ∼= Zp or M ∼= Zp2, where p is a prime integer in Z.

Proof. Let M be a strongly local group. Then, M is local and so there exists a
prime integer p and 1 ≤ n ∈ Z+ such thatM ∼= Zpn . Note that Rad(M) ∼= Zpn−1

and Soc(M) ∼= Zp. Since M is strongly local, we have Rad(M) ⊆ Soc(M) and
so n = 1 or n = 2. The converse is clear.

Combining Proposition 3.2 and Lemma 3.2, we give the structure of ss-
supplemented abelian groups.

Corollary 3.1. An abelian group M is ss-supplemented (as a Z-module) if and

only if M ∼= (
⊕

p∈I Z
(υ)
p )⊕ (

⊕
q∈J Z

(ν)
q2

), where P is the set of all prime integers,
I, J are some subsets of P and υ, ν are any index sets.
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Example 3.2. Given the Abelian group G = Z(N)
4 . Following Corollary 3.1, G

is ss-supplemented as a Z-module.

The following lemma is an analogous of [6, Lemma 2.3] for ss-supplement
submodules.

Lemma 3.3. Let R be a local Dedekind domain and M be an R-module. A
submodule U of Rad(M) has a ss-supplement in M if and only if U = Rad(U)⊕
S, where S is a semisimple submodule of U .

Proof. Let V be a ss-supplement of U in M . Then, we can write M = U + V ,
U ∩ V << V and U ∩ V is semisimple. By [8, 41.1.(5)], U ∩ V + Rad(U) =
(U ∩ V )∩Rad(M) +Rad(U) = U ∩ (V ∩Rad(M)) +Rad(U) = U ∩ (Rad(V ) +
Rad(U)) = U ∩ (pV + pU) = U ∩ pM = U ∩Rad(M) = U , where p is the prime
element of R. Thus, U = Rad(U)⊕ S for some S ⊆ U ∩ V .

Conversely, since U = Rad(U) ⊕ S, we get Rad(U) = Rad(Rad(U)) and so
Rad(U) is injective by [7, Lemma 4.1]. It follows that M = Rad(U) ⊕ V for
some submodule V of M . By the module law, we can write that U = U ∩M =
U ∩ (Rad(U)⊕ V ) = Rad(U)⊕ (U ∩ V ). Since R is a local ring, it follows from
[2, Theorem 3.5] that U ∩ V ∼= U

Rad(U) is semisimple. Since M = U + V and

U ∩V ⊆ U ⊆ Rad(M), it follows from [8, 19.3 (5)] and [5, Lemma 1] that U ∩V
is small in V . It means that V is a ss-supplement of U in M .

Let R be an arbitrary ring and M be an R-module. Recall from [8] that
an injective module E together with essential monomorphism Φ : M −→ E
injective hull of M . It is known in [8, 17.9] that every R-module has only one
(up to isomorphism) injective hull. We denote by E(M) the injective hull of a
module M .

Next, we obtain the following result which determines the structure of a
module has a ss-supplement in its injective hull over local Dedekind domains.

Theorem 3.3. Let R be a local Dedekind domain and M be a left R-module.
The following statements are equivalent:

(1) M has a ss-supplement in E(M), where E(M) is the injective hull of M ,

(2) M ∼= K(I)⊕(KR )(J)⊕S, where K is the quotient field of R, I and J denote
some index sets and S is a semisimple R-module,

(3) Rad(M) is a direct summand of M .

Proof. (1) =⇒ (2) By [7, Lemma 4.1], E(M) is a radical module and so M ⊆
E(M) = Rad(E(M)). Suppose that M has a ss-supplement in E(M). Applying
Lemma 3.3, we obtain that M = Rad(M)⊕S, where S is semisimple. Therefore,
Rad(M) = P (M) ∼= K(I) ⊕ (KR )(J) for some index sets I and J . Hence M ∼=
K(I) ⊕ (KR )(J) ⊕ S, where S is a semisimple R-module.

(2) =⇒ (1) It is clear by Lemma 3.3.
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(1) ⇐⇒ (3) This can be proved by taking U = Rad(M) in the Lemma 3.3.

Example 3.3. Put M = Q⊕ Z3, where Q is the fractional field of the domain
Z. Therefore, Rad(M) = Q ⊕ {0} and thus M = Rad(M) ⊕ Z3. So, Rad(M)
is a direct summand of M . Hence, by Theorem 3.3, M has a ss-supplement in
E(M) = Q⊕ Z∞

3 .

In [1], a module M is said to be ⊕-radical supplemented if Rad(M) has a
supplement that is a direct summand of M . It is shown in [1, Theorem 3.1]
that over a local Dedekind domain a module M is ⊕-radical supplemented if
and only if M ∼= K(I)⊕ (KR )(J)⊕R(n)⊕N , where K is the quotient field of R, I
and J denote some index sets, n is a non-negative integer and N is a bounded
R-module. Note that over a local Dedekind domain (which is not field) every
semisimple module is bounded. Using this fact, Theorem 3.3 and [1, Theorem
3.1], we get the following result:

Corollary 3.2. Let R be a local Dedekind domain and M be a left R-module.
If Rad(M) has a ss-supplement in M , then it is ⊕-radical supplemented.
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