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Abstract. A subgroup H of a group G is said to be an ICs-subgroup of G if
the intersection of H and [H,G] is contained in HsG, where HsG is the maximal s-
semipermutable subgroup of G contained in H. In this paper, we investigate the
influence of ICs-subgroups on the structure of finite groups. Some new results of
p-nilpotency and supersolvability of finite groups are obtained.
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1. Introduction

In this paper, all groups are finite, G always denotes a finite group. π(G) denotes
the set of all primes dividing |G|. Sylp(G) denotes the set of Sylow p-subgroups
of G. U is the class of all supersolvable groups. ZU(G) denotes the product of all
normal subgroups N of G such that every chief factor of G below N has prime
order. The F-residual of G, denoted by GF, is the smallest normal subgroup of
G with the quotient in F. We use standard notation as in [1] and [2].

Let H be a subgroup of a group G. It is well known that the normal closure
HG of H in G is the smallest normal subgroup of G containing H and HG =
H[H,G], where [H,G] is the commutator subgroup of H and G. From [3], we
know that a subgroup H of a group G has IC-property if the intersection of
H and [H,G] satisfies some conditions. It is an interesting question to research
the relationship between IC-property of some subgroups and the structure of G.
Many results have been obtained. For example, in [3], Gao and Li introduced the
concept of ICΦ-subgroup. A subgroup H of G is said to be an ICΦ-subgroup of
G if the intersection of H and [H,G] is contained in Φ(H). They proved that a
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group G is p-nilpotent if every cyclic subgroup of G with order p and 4(if p = 2)
or every maximal subgroup of P is an ICΦ-subgroup of G, where P ∈ Sylp(G)
and p is the smallest prime divisor of |G|. Kaspczyk in [16] generalized these
results and proved that a group G is p-nilpotent if there is a subgroup D of
P with 1 < |D| ≤ |P | such that every subgroup of P with order |D| and 4 (if
|D| = 2 and |P | ≥ 8 ) is an ICΦ-subgroup of G. In [17], Gao and Li introduced
the concept of ICΦs-subgroup. A subgroup H of G is said to be an ICΦs-
subgroup of G if (H ∩ [H,G])HG/HG ≤ Φ(H/HG)HsG/HG, where HsG is the
maximal s-permutable subgroup of G contained in H. They proved that a group
G is p-nilpotent if there is a subgroup D of P with 1 < |D| < |P | such that
every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian
2-group) is an ICΦs-subgroup of G, where P ∈ Sylp(G) and p is the smallest
prime divisor of |G|. Zhang and Xu in [18] generalized this result and proved the
following result. Let N be a normal subgroup of G and P a Sylow p-subgroup
of N . Assume that there is a subgroup D of P with 1 < |D| < |P | such that
every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian
2-group) is an ICΦs-subgroup of G, then N ≤ ZpU(G). Later, in [19], Gao and
Li also introduced the concept of ICC-subgroup. A subgroup H of G is said
to be an ICC-subgroup of G if the intersection of H and [H,G] is contained in
HcG, where HcG is a CAP -subgroup of G contained in H. They proved that a
group G is p-nilpotent if there is a subgroup D of P with 1 < |D| < |P | such
that every subgroup of P with order |D| and 4 (if |D| = 2 and P is a non-abelian
2-group) is an ICC-subgroup of G, where P ∈ Sylp(G) and p is the smallest
prime divisor of |G|. In this paper, we continue to study the IC-property of
some subgroups.

Recall that a subgroup H is s-semipermutable in G if H permutes with
every Sylow q-subgroup of G for prime q not dividing |H|. Once the notion of
s-semipermutable subgroup was introduced, many authors have been interested
in it and have applied it to investigate the structure of groups. For example, Li
et al. in [15] proved that a group G is p-nilpotent if P satisfies the following:
P has a subgroup D such that 1 < |D| < |P | and all subgroups H of P with
order |H| = |D| are s-semipermutable in G. When P is a non-abelian 2-group
and |P : D| > 2, in addition, H is s-semipermutable in G if there exists H1 ⊴
H ≤ P with 2|H1| = |D| and H/H1 is cyclic of order 4, where P ∈ Sylp(G)
and p is the smallest prime divisor of |G|. Here, combining IC-property and
s-semipermutable subgroup we give a new concept which covers properly s-
semipermutable subgroup of G.

Definition 1.1. Let H be a subgroup of a group G, then H is called ICs-
subgroup of G if H ∩ [H,G] ≤ HsG, where HsG is the maximal s-semipermutable
subgroup of G contained in H.

Obviously, a s-semipermutable subgroup of G is an ICs-subgroup of G. The
converse does not hold in general.
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Example 1.1. Let G = S4. Take H = ⟨(34)⟩, then [H,G] ≤ A4 and H ∩
[H,G] = 1. Hence, H is an ICs-subgroup of G. But, clearly, H is not s-
semipermutable subgroup of G because of ⟨(123)⟩H ̸= H⟨(123)⟩.

In this paper, we study the structure of a group G under the assumption
that some subgroups of G are ICs-subgroups and get some characterzations of
p-nilpotency and supersolvability of finite groups.

2. Preliminary results

Lemma 2.1 ([4, Lemma 2.2]). Let G be a group. Suppose that H is an s-
semipermutable subgroup of G. Then

(1) If H ≤ K ≤ G, then H is s-semipermutable in K.

(2) Let N be a normal subgroup of G. If H is a p-group for some prime
p ∈ π(G) , then HN/N is s-semipermutable in G/N .

(3) If H ≤ Op(G), then H is s-permutable in G.

(4) Suppose that H is a p-group for some prime p ∈ π(G) and N is normal
in G. Then, H ∩N is also an s-semipermutable subgroup of G.

Lemma 2.2 ([5, Lemma A]). If H is an s-permutable subgroup of G and H is
a p-group. Then, Op(G) ≤ NG(H).

Lemma 2.3. Let G be a group, H ≤ G, N ⊴ G. Suppose that H is an ICs-
subgroup of G. Then

(1) If H ≤ K ≤ G, then H is an ICs-subgroup of K.

(2) Let N ≤ H. If H is a p-group for some prime p ∈ π(G), then H/N is an
ICs-subgroup of G/N .

(3) If H is a p-group and N is a p′-group for some prime p ∈ π(G), then
HN/N is an ICs-subgroup of G/N .

Proof. (1) By the hypothesis, H ∩ [H,G] ≤ HsG. Then, H ∩ [H,K] ≤ H ∩
[H,G] ≤ HsG ≤ HsK by Lemma 2.1(1). Hence, H is an ICs-subgroup of
K.

(2) By Lemma 2.1(2) and the hypothesis, we have H/N ∩ [H/N,G/N ] =
(H ∩ [H,G]N)/N = (H ∩ [H,G])N/N ≤ HsG/N ≤ (H/N)s(G/N). Hence,
H/N is an ICs-subgroup of G/N .

(3) By the hypothesis, we have H ∩ [H,G] = H ∩ [H,G]N . Hence, HN/N ∩
[HN/N,G/N ] = (HN ∩ [H,G]N)/N = (H ∩ [H,G]N)N/N = (H ∩
[H,G])N/N ≤ HsGN/N ≤ (HN/N)s(G/N) by Lemma 2.1(2). This shows
that HN/N is an ICs-subgroup of G/N .
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Lemma 2.4 ([6, Theorem A]). Let H be an s-semipermutable π-subgroup of G.
Then, HG contains a nilpotent π-complement and all π-complements in HG are
conjugate. Also, if π consists of a single prime, then HG is solvable.

Lemma 2.5 ([2, Lemma 1.2]). Let U, V and W be subgroups of a group G.
Then, the following statements are equivalent:

(1) U ∩ VW = (U ∩ V )(U ∩W ).

(2) UV ∩ UW = U(V ∩W ).

Lemma 2.6 ([7, Lemma 2.4]). Let N be a normal subgroup of a group G such
that G/N is p-nilpotent and let P be a Sylow p-subgroup of N , where p is a
prime divisor of |G|. If |P | ≤ p2 and one of the following conditions holds, then
G is p-nilpotent.

(1) (|G|, p− 1) = 1 and |P | ≤ p.

(2) G is A4-free if p = minπ(G).

(3) (|G|, p2 − 1) = 1 .

Lemma 2.7 ([8, Theorem 10.4.1]). Let G be a finite group, p be an odd prime
and P be a Sylow p-subgroup of G. Then, G is p-nilpotent if and only if
NG(J(P )) and CG(Z(P )) are p-nilpotent.

Lemma 2.8 ([9, Theorem B]). Let F be a formation and let E be a normal
subgroup of G. If F ∗(E) ≤ ZF(G), then E ≤ ZF(G).

Lemma 2.9 ([10, Lemma 3.3]). Let F be a solubly saturated formation contain-
ing all supersoluble groups. Suppose that E is a normal subgroup of G such that
G/E ∈ F. If E ≤ ZF(G), then G ∈ F. In particular, if E is cyclic, then G ∈ F.

Lemma 2.10 ([11, Lemma 2.12]). Let F be a solubly saturated formation. Sup-
pose that P is a normal p-subgroup of G and C is a Thompson critical subgroup
of P . If either P/Φ(P ) ≤ ZF(G/Φ(P )) or Ω(C) ≤ ZF(G), then P ≤ ZF(G).

3. New characterization of p-nilpotentcy of groups

Theorem 3.1. Let N ⊴G such that G/N is p-nilpotent, where p is the smallest
prime divisor of |G|. Suppose that every cyclic subgroup of N with order p and
4 (if p = 2) is an ICs-subgroup of G, then G is p-nilpotent.

Proof. Assume that the result is false. Let (G,N) be a minimal counterexample
with minimal order |G|+ |N |.

(1) G is a minimal nonnilpotent group.
Let L be a proper subgroup of G. Since L/(L ∩ N) ∼= LN/N ≤ G/N and

G/N is p-nilpotent, we have L/(L∩N) is p-nilpotent. It is clear that every cyclic
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subgroup of L ∩ N with order p and 4 (if p = 2) is an ICs-subgroup of L by
hypothesis and Lemma 2.3(1). Therefore, (L,L ∩N) satisfies the hypothesis of
the theorem. The minimal choice of (G,N) implies that L is p-nilpotent. This
shows that G is a minimal non-p-nilpotent group. In view of ([1], Proposition
5.4; [2], Theorem 6.18), G is a minimal nonnilpotent group, G = P ⋊Q, where
P is a Sylow p-subgroup of G, Q is a Sylow q-subgroup of G and p ̸= q; P = GN,
that is, P is the intersection of all normal subgroups K of G satisfying G/K is
nilpotent; P/Φ(P ) is a chief factor of G; the exponent of P is p or 4(when P is
a nonabelian 2-group).

(2) Let x ∈ P such that x /∈ Φ(P ), then ⟨x⟩G = ⟨x⟩[⟨x⟩, G] = P .

Since P⊴G, we have ⟨x⟩[⟨x⟩, G] = ⟨x⟩G ≤ P and Φ(P ) are normal subgroups
of G, so ⟨x⟩[⟨x⟩, G]Φ(P ) ⊴ G, obviously, Φ(P ) < ⟨x⟩[⟨x⟩, G]Φ(P ) ≤ P . Since
P/Φ(P ) is a chief factor of G, we have P = ⟨x⟩[⟨x⟩, G]Φ(P ) = ⟨x⟩[⟨x⟩, G].

(3) p = 2 and P has an element of order 4.

Obviously, P ≤ N . If P has not an element of order 4, let x ∈ P such that
x /∈ Φ(P ), then |⟨x⟩| = p and P = ⟨x⟩[⟨x⟩, G]. By hypothesis, ⟨x⟩ ∩ [⟨x⟩, G] ≤
⟨x⟩sG. If ⟨x⟩sG = 1, then Φ(P ) ⩽ [⟨x⟩, G] < P , Since P/Φ(P ) is a chief factor
of G, so P = ⟨x⟩[⟨x⟩, G] = ⟨x⟩Φ(P ) = ⟨x⟩. Since p is the smallest prime divisor
of |G|, we have G is p-nilpotent, a contradiction. If ⟨x⟩ = ⟨x⟩sG, then ⟨x⟩Q is a
subgroup of G. Since P ̸= ⟨x⟩, we have ⟨x⟩Q < G is nilpotent, so ⟨x⟩ ≤ NG(Q),
Therefore, P ≤ NG(Q) and so Q ⊴ G. This implies that G is nilpotent, a
contradiction.

(4) The final contradiction.

By (3), we obtain that P is a nonabelian 2-group and the exponent of Φ(P )
is 2. Let x be an element of P with order 4, then P = ⟨x⟩[⟨x⟩, G] by (2). If
[⟨x⟩, G] < P , then P/[⟨x⟩, G] is a nontrivial cyclic group. Let M/[⟨x⟩, G] be
the unique maximal subgroup of P/[⟨x⟩, G]. Then, [⟨x⟩, G] ≤ M < P,M ⊴ G,
obviously, Φ(P ) ≤ M , hence M = Φ(P ). So P is cyclic. It follows that G
is 2-nilpotent, a contradiction. This contradiction shows that P = [⟨x⟩, G].
By hypothesis, ⟨x⟩ = ⟨x⟩ ∩ [⟨x⟩, G] ≤ ⟨x⟩sG, hence ⟨x⟩ = ⟨x⟩sG. Notice that
⟨x⟩Q is a proper subgroup of G, so ⟨x⟩Q is nilpotent, then ⟨x⟩ ≤ NG(Q). Let
y be an element of P with order 2. By hypothesis, ⟨y⟩ ∩ [⟨y⟩, G] ≤ ⟨y⟩sG.
If ⟨y⟩sG = 1, then ⟨y⟩ ∩ [⟨y⟩, G] = 1. Suppose that ⟨y⟩[⟨y⟩, G] = P , then
Φ(P ) ⩽ [⟨y⟩, G] < P , Since P/Φ(P ) is a chief factor of G, we get Φ(P ) = [⟨y⟩, G]
and so P = ⟨y⟩, a contradiction. Hence, ⟨y⟩[⟨y⟩, G]Q is a proper subgroup of G
and so ⟨y⟩ ≤ NG(Q). If ⟨y⟩sG = ⟨y⟩, then ⟨y⟩ ≤ NG(Q). Therefore, P ≤ NG(Q)
and so Q⊴G. This implies that G is nilpotent, a contradiction.

This completes the proof.

Corollary 3.1. Let p be the smallest prime divisor of |G|. If every cyclic
subgroup of G with order p and 4 (if p = 2) is an ICs-subgroup of G, then
G is p-nilpotent.
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Theorem 3.2. Let G be a group and P ∈ Sylp(G), where p is the smallest prime
divisor of |G|. Suppose that every maximal subgroup of P is an ICs-subgroup
of G, then G is p-nilpotent.

Proof. Assume that the result is false. Let G be a minimal counterexample
with minimal order.

(1) G has a unique minimal normal subgroup N , G/N is p-nilpotent and
Φ(G) = 1.

Let N be a minimal normal subgroup of G and M/N be a maximal subgroup
of PN/N . Then, M = M ∩PN = (M ∩P )N . Let M ∩P = P1, then P1 ∩N =
P ∩N and |P : P1| = |PN/N : M/N | = p, this shows that P1 is maximal in P .
Since P1 ∩N = P ∩N is a Sylow p-subgroup of N , hence

|N ∩ P1[P1, G]|p = |N |p = |N ∩ P1| = |(N ∩ P1)(N ∩ [P1, G])|p

and

|N ∩ P1[P1, G]|p′ =
|N |p′ |P1[P1, G]|p′
|NP1[P1, G]|p′

=
|N |p′ |[P1, G]|p′
|N [P1, G]|p′

= |N ∩ [P1, G]|p′=|(N ∩ P1)(N ∩ [P1, G])|p′ .

This implies that N∩P1[P1, G] = (N∩P1)(N∩ [P1, G]). By Lemma 2.5, we have
P1N ∩ [P1, G]N = (P1 ∩ [P1, G])N , and because P1 is an ICs-subgroup of G,
hence M/N ∩ [M/N,G/N ] = P1N/N ∩ [P1N/N,G/N ] = (P1N ∩ [P1, G]N)/N =
(P1 ∩ [P1, G])N/N ≤ (P1)sGN/N ≤ (P1N/N)s(G/N) = (M/N)s(G/N) by Lemma
2.1(2). This shows that G/N satisfies the hypothesis of the theorem. The
minimal choice of G implies that G/N is p-nilpotent. Since the class of all
p-nilpotent groups is a saturated formation, we have N is a unique minimal
normal subgroup of G and Φ(G) = 1.

(2) Op′(G) = 1.

If Op′(G) ̸= 1, then N ≤ Op′(G) and G/N is p-nilpotent by (1). This implies
that G is p-nilpotent, a contradiction.

(3) Op(G) ̸= 1.

If Op(G) = 1, then by (2), G is not solvable, so p = 2. If PN < G,
then PN satisfies the hypothesis of the theorem by Lemma 2.3(1), hence PN
is 2-nilpotent, so N is also 2-nilpotent. By (1), G/N is 2-nilpotent, hence G
is solvable, a contradiction. If PN = G, let P1 be a maximal subgroup of
P , by the hypothesis, P1 ∩ [P1, G] ≤ (P1)sG. If [P1, G] = 1, then P1 ⊴ G, so
|P | = p, thus G is 2-nilpotent, a contradiction. Hence, [P1, G] ̸= 1. Then,
P1 ∩ N ≤ P1 ∩ [P1, G] ≤ (P1)sG, therefore P1 ∩ N = (P1)sG ∩ N , obviously,
P1 ∩N ̸= 1, so (P1 ∩N)G = N is soluble by Lemma 2.1(4) and Lemma 2.4, so
is G, a contradiction.

(4) The final contradiction.
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By (1), Φ(Op(G)) ≤ Φ(G) = 1, so Op(G) is an elementary abelian p-
subgroup. By (3), N ≤ Op(G). If N ≤ Φ(P ), then N ≤ Φ(G) = 1, a con-
tradiction. If N ≰ Φ(P ), let P1 be a maximal subgroup of P such that N ≰ P1,
then P = P1N . If N ∩ P1 = 1, then |N | = p, by (1), G/N is p-nilpotent,
hence G is p-nilpotent by Lemma 2.6, a contradiction. If N ∩P1 ̸= 1, obviously,
[P1, G] ̸= 1, then 1 ̸= P1∩N ≤ P1∩[P1, G] ≤ (P1)sG, hence P1∩N = (P1)sG∩N ,
soOp(G) ≤ NG(P1∩N) by Lemma 2.1(3)(4) and Lemma 2.2. Clearly, P1∩N⊴P ,
so P1 ∩N ⊴G , we obtain P1 ∩N = N by the minimality and uniqueness of N ,
hence N ≤ P1, a contradiction.

This completes the proof.

Corollary 3.2. If every maximal subgroup of every Sylow subgroup of G is an
ICs-subgroup of G, then G is a Sylow tower group of supersolvable type.

Theorem 3.3. Let G be a group and P ∈ Sylp(G), where p is a prime divisor
of |G|. Suppose that NG(P ) is p-nilpotent and every maximal subgroup of P is
an ICs-subgroup of G, then G is p-nilpotent.

Proof. If p = minπ(G), then G is p-nilpotent by Theorem 3.2. Now, we con-
sider the case when p ̸= minπ(G), that is, p is an odd prime. Assume that the
result is false. Let G be a minimal counterexample with minimal order.

(1) G has a unique minimal normal subgroup N , G/N is p-nilpotent and
Φ(G) = 1.

Let N be a minimal normal subgroup of G, then PN/N is a Sylow p-
subgroup ofG/N . IfNG(P )N = G, thenG/N = NG(P )N/N ∼= NG(P )/NG(P )∩
N is p-nilpotent. If NG(P )N ̸= G, then NG(P )N satisfies the hypothesis of the
theorem by Lemma 2.3(1), so NG(P )N is p-nilpotent by the minimal choice of
G, hence NG/N (PN/N) ∼= NG(P )N/N is p-nilpotent. We may obtain that every
maximal subgroup of PN/N is an ICs-subgroup of G/N by a similar discus-
sion as in Theorem 3.2(1). This shows that G/N satisfies the hypothesis of the
theorem. The minimal choice of G implies that G/N is p-nilpotent. Since the
class of all p-nilpotent groups is a saturated formation, we have N is a unique
minimal normal subgroup of G and Φ(G) = 1.

(2) Op′(G) = 1.
If Op′(G) ̸= 1, then N ≤ Op′(G) and G/N is p-nilpotent by (1). This implies

that G is p-nilpotent, a contradiction.
(3) G is solvable.
Since G is not p-nilpotent and p is an odd prime, by Lemma 2.7, there

exists a nontrivial characteristic subgroup H of P such that NG(H) is not p-
nilpotent, obviously, P ≤ NG(H). If NG(H) < G, then clearly NG(H) satisfies
the hypothesis of the theorem, henceNG(H) is p-nilpotent, a contradiction. This
contradiction shows that NG(H) = G. Therefore,1 ̸= H ⊴ G,H ≤ Op(G) and
so N ≤ Op(G). By (1), G/Op(G) is p-nilpotent and so G is p-solvable. Then,
by [14,Theorem3.5], there exists a Sylow q-subgroup Q of G such that PQ is a
subgroup of G, where q||G| and q ̸= p. If PQ < G, obviously, PQ satisfies the
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hypothesis of the theorem, hence PQ is p-nilpotent. So Op(G)Q = Op(G) × Q
and Q ≤ CG(Op(G)) ≤ Op(G) by [14,Theorem3.2], a contradiction. Hence,
G = PQ is solvable.

(4) The final contradiction.
By (2) and (3), Op(G) ̸= 1, then N ≤ Op(G) and Op(G) is an elementary

abelian p-group by (1). Hence, there exists a maximal subgroup M of G such
that G = N ⋊M . Obviously, Op(G)∩M ⊴M , Op(G)∩M ⊴Op(G), so Op(G)∩
M⊴G. If Op(G)∩M ̸= 1 , then N ≤ Op(G)∩M and so N ≤ M , a contradiction.
Hence, Op(G) ∩ M = 1. This induces that N = Op(G) = CG(N). Let Mp =
P ∩ M be a Sylow p-subgroup of M , then P = NMp. It is easy to see that
Mp ̸= 1. Let P1 be a maximal subgroup of P containing Mp, by the hypothesis,
P1 ∩ [P1, G] ≤ (P1)sG, obviously, N ≰ P1 and N ≤ [P1, G], then P1 ∩ N ≤
P1 ∩ [P1, G] ≤ (P1)sG, so P1 ∩N = (P1)sG ∩N . If P1 ∩N ̸= 1, We may obtain
P1∩N⊴G by a similar discussion as in Theorem 3.2(4), hence P1∩N = N and so
N ≤ P1, a contradiction. If P1∩N = 1, it follows that |N | = p and P = N×P1.
Hence, P ≤ CG(N) = N , therefore, P = N and G = NG(N) = NG(P ) is
p-nilpotent, a contradiction.

This completes the proof.

Remark 3.1. In Theorem 3.1, 3.2, 3.3, the assumptions that p is the smallest
prime divisor of |G| and NG(P ) is p-nilpotent are necessary. To illustrate the
situation, we consider the semidirect product G = H ⋊ ⟨c⟩, where H = ⟨a⟩× ⟨b⟩
with o(a) = o(b) = 5 and o(c) = 2 defined by ac = a−1 and bc = b−1. Then, the
subgroups of G of order 5 are normal in G, but G is not 5-nilpotent.

4. New characterization of supersolubility of groups

Lemma 4.1. Let P be a normal p-subgroup of G. If every cyclic subgroup of P
with order p and 4 (if p = 2) is an ICs-subgroup of G, then P ≤ ZU(G).

Proof. Assume that the result is false. Let (G,P ) be a minimal counterexample
with |G|+ |P | minimal. Let K be a normal subgroup of G such that P/K is a
cheif factor of G. Obviously, (G,K) satisfies the hypothesis of the theorem and
so K ≤ ZU(G). Suppose that P/L is another cheif factor of G which is different
from P/K, then L ≤ ZU(G) and so P = KL ≤ ZU(G), a contradiction. This
contradiction shows that K is the unique normal subgroup of G such that P/K
is a cheif factor of G. Obviously, |P/K| ̸= p. Let C be a Thompson critical
subgroup of P . If Ω(C) < P , then Ω(C) ≤ K ≤ ZU(G), so P ≤ ZU(G) by
Lemma 2.10, a contradiction. If Ω(C) = P , then exp(P ) = p or 4. Let Gp be a
Sylow p-subgroup of G containing P , obviously, P/K ∩Z(Gp/K) ̸= 1. Suppose
that M/K ≤ P/K ∩Z(Gp/K) and |M/K| = p. Let x ∈ M\K, then M = ⟨x⟩K
and ⟨x⟩ ∩ [⟨x⟩, G] ≤ ⟨x⟩sG. If ⟨x⟩ = ⟨x⟩sG, then M/K is s-semipermutable in
G/K by Lemma 2.1(2), clearly, M/K ⊴ Gp/K, and Op(G/K) ≤ NG/K(M/K)
by Lemma 2.1(3) and Lemma 2.2. So M/K⊴G/K. Hence, |M/K| = |P/K| = p
, a contradiction. If ⟨x⟩ ̸= ⟨x⟩sG, then 1 < [⟨x⟩, G] < P , so [⟨x⟩, G] ≤ K. It
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follows that K < M = ⟨x⟩K = ⟨x⟩[⟨x⟩, G]K = ⟨x⟩GK ≤ P , since K is the
unique normal subgroup of G such that P/K is a cheif factor of G, we have
M = P , a contradiction.

This completes the proof.

Theorem 4.1. Let F be a solubly saturated formation containing U and let
E be a normal subgroup of G such that G/E ∈ F. Suppose that X = E or
X = F ∗(E). If every cyclic subgroup of every noncyclic Sylow subgroup of X
with order p and 4 (if p = 2) is an ICs-subgroup of G, then G ∈ F.

Proof. We first prove that the theorem is true if X = E. Assume that the
result is false. Let (G,E) be a minimal counterexample with |G|+ |E| minimal.

(1) E is soluble.

If E is not soluble, then 2||E|. Suppose that E has a cyclic Sylow 2-subgroup,
then E is 2-nilpotent and so E is soluble, a contradiction. This contradiction
shows that every Sylow 2-subgroup of E is noncyclic. By the hypothesis and
Corollary 3.1, we have E is 2-nilpotent and so E is soluble, a contradiction
again. Thus, (1) holds.

(2) GF ≤ E and GF is a p-group.

Since G/E ∈ F, we have GF ≤ E and so GF is soluble by (1) . If GF ≤ Φ(G),
then GF ≤ MG for every maximal subgroup M of G and so G/MG ∈ F. Hence,
GF is a p-group by [13, Theorem 3.4.2]. If GF ≰ Φ(G), let K be a maximal
subgroup of G such that GF ≰ K. Then, K/K ∩ E ∼= KE/E = G/E ∈ F and
every cyclic subgroup of every noncyclic Sylow subgroup of K ∩ E with order
p and 4 is an ICs-subgroup of K by Lemma 2.3(1). Thus, K ∈ F. So GF is a
p-group by [13, Theorem 3.4.2].

(3) The final contradiction.

If GF is noncyclic, then GF ≤ ZU(G) by the hypothesis and Lemma 4.1. If GF

is cyclic, obviously, GF ≤ ZU(G). Hence, G ∈ F by Lemma 2.9, a contradiction.
This contradiction shows that the theorem holds if X = E.

Now, we prove that the theorem holds for X = F ∗(E).

We may obtain F ∗(E) is soluble by a similar discussion as in (1) and so
F (E) = F ∗(E). Let P be a Sylow p-subgroup of F (E), then P ⊴ G. If P is
noncyclic, then P ≤ ZU(G) by the hypothesis and Lemma 4.1. If P is cyclic,
obviously, P ≤ ZU(G). It follows that F (E) ≤ ZU(G). Thus, we have G ∈ F by
Lemma 2.8 and Lemma 2.9.

This completes the proof.

Lemma 4.2. Let P be a normal p-subgroup of G. If every maximal subgroup
of P is an ICs-subgroup of G, then P ≤ ZU(G).

Proof. Assume that the result is false. Let (G,P ) be a minimal counterexample
with |G| + |P | minimal. Let N be a minimal normal subgroup of G such that
N ≤ P , by Lemma 2.3(2), (G/N,P/N) satisfies the hypothesis of the theorem
and so P/N ≤ ZU(G/N) . Obviously, |N | ≠ p. Suppose that G has another
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minimal normal subgroup K ≤ P , then P/K ≤ ZU(G/K). It follows that
NK/K ≤ ZU(G/K) and so |N | = p, a contradiction. This contradiction shows
that N is the unique minimal normal subgroup of G contained in P . By Lemma
2.10, we have N ≰ Φ(P ), so Φ(P ) = 1, then there exists a subgroup T of P such
that P = N⋊T . Let N1 be a maximal subgroup of N and N1⊴P . It is clear that
P1 = N1T is maximal in P , so P1∩ [P1, G] ≤ (P1)sG. Since P1[P1, G] = PG

1 ≤ P
, we have [P1, G] ≤ P . If [P1, G] = 1, then P1 ≤ Z(G) and P1 ∩ N ⊴ G. If
[P1, G] ̸= 1, then N ≤ [P1, G], we may obtain P1∩N ⊴G by a similar discussion
as in Theorem 3.2(4), hence N1 = P1 ∩N = 1, that is, |N | = p, a contradiction.

This completes the proof.

Theorem 4.2. Let F be a solubly saturated formation containing U and let E be
a normal subgroup of G such that G/E ∈ F. Suppose that X = E or X = F ∗(E).
If every maximal subgroup of every Sylow subgroup of X is an ICs-subgroup of
G, then G ∈ F.

Proof. We first prove that the theorem is true if X = E. Assume that the
result is false. Let G be a minimal counterexample with minimal order.

(1) G has a minimal normal subgroup N ≤ P and N is an elementary abelian
p-group, where P ∈ Sylp(E) and p is the largest prime divisor of |E|.

By the hypothesis and Lemma 2.3(1), every maximal subgroup of every
Sylow subgroup of E is an ICs-subgroup of E, so E is a Sylow tower group of
supersolvable type by Corollary 3.2. Thus, P is a normal Sylow p-subgroup of
E, where p is the largest prime divisor of E, and so P ⊴G. Hence, we have (1).

(2) G/N ∈ F and N = P .

Since (G/N)/(E/N) ∼= G/E ∈ F and every maximal subgroup of every
Sylow subgroup of E/N is an ICs-subgroup of G/N by Lemma 2.3(2)(3), we
have G/N ∈ F. The solvability of E implies that F (E) = N and CE(N) ≤ F (E)
by [13, Theorem 1.8.17 and Theorem 1.8.18], so CE(N) = N = F (E) as N is
elementary abelian. Clearly, P ≤ F (E), hence N = P .

(3) The final contradiction.

By the hypothesis and Lemma 4.2, P ≤ ZU(G). By (2), G/P ∈ F. Hence,
G ∈ F by Lemma 2.9, a contradiction. This contradiction shows that the theo-
rem holds if X = E.

Now, we prove that the theorem holds for X = F ∗(E).

Assume that F ∗(E) is not soluble, then 2||F ∗(E)|. By the hypothesis and
Theorem 3.2, we have F ∗(E) is 2-nilpotent and so F ∗(E) is soluble, a contradic-
tion. This contradiction shows that F ∗(E) is soluble. Hence, F (E) = F ∗(E).
Let Q be a Sylow q-subgroup of F (E), then Q ⊴ G. By the hypothesis and
Lemma 4.2, Q ≤ ZU(G). It follows that F (E) ≤ ZU(G). Thus, we have G ∈ F
by Lemma 2.8 and Lemma 2.9.

This completes the proof.



ON ICs-SUBGROUPS OF FINITE GROUPS 57

5. Conclusion

An interesting question in finite group theory is to determine the influence of the
embedding properties of members of some distinguished families of subgroups
on the structure of the group. The present paper adds some results to this line
of research. We proved that a group G is p-nilpotent if every cyclic subgroup
of G with order p and 4 (if p = 2) or every maximal subgroup of P is an ICs-
subgroup of G, where P ∈ Sylp(G) and p is the smallest prime divisor of |G|.
We also proved the following results: Let F be a solubly saturated formation
containing U and let E be a normal subgroup of G such that G/E ∈ F. Suppose
that X = E or X = F ∗(E). If every cyclic subgroup of every noncyclic Sylow
subgroup of X with order p and 4 (if p = 2) or every maximal subgroup of every
Sylow subgroup of X is an ICs-subgroup of G, then G ∈ F. The ICs-subgroup
in Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 4.1 and Theorem 4.2 can
be replaced by s-semipermutable subgroup and the results are also true. Hence,
we generalize some results on the basis of s-semipermutability.
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