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Abstract. The task of compressing large topologies into more manageable, smaller
ones while leveraging the power of homomorphisms is a pivotal concern. Therefore, this
paper focuses on the compression of topologies through the utilization of homomor-
phisms. In this paper, we devise a subbase-consistent function tailored specifically for
topological spaces. To preserve certain properties of the original topological spaces, the
concept of topological homomorphism is introduced. Additionally, we delve into the
subbase reduction under homomorphism and subsequently construct the correspond-
ing discernibility matrix. An experiment is conducted to validate the feasibility and
effectiveness of our approach.
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1. Introduction

As a fundamental mathematical discipline, topology theory has many prac-
tical applications, such as computer science [15, 19, 20], computational geometry
[16], graph theory [4, 23], structural biology [12], chemistry [21], physics [7], data
mining [1, 9] and rough sets [8, 13, 14, 22, 27, 28]. For a finite topological space,
the base and subbase contribute to improve the efficiency of data analysis.

*. Correspond author
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Communication between data spaces is a very important topic in the field
of artificial intelligence [18, 6, 3, 17]. The primary motivation for examining
the communication between data spaces lies in the pursuit of identifying a rel-
atively smaller database, a quest that often leads to techniques like data fusion
and compression. These can be explained as a mapping between data spaces in
mathematics. Grzymala-Busse first investigated the methodology of homomor-
phism between information systems [5], and he then considered the conditions
that make the data space be selective under endomorphism [6]. A homomor-
phism serves as a valuable tool for aggregating sets of objects, attributes and
descriptors from the original space, an it can be perceived as a distinctive form
of communication between various data spaces. According to [3, 17], communi-
cations can be elucidated as the process of translating the information embedded
in one granular realm into another, bridging the gap between disparate granular
worlds. Li et al. [10] investigated homomorphism between information systems.
Wang et al. [24, 25, 26] delved into the study of generalized information sys-
tems, fuzzy information systems and decision systems, employing the concept of
homomorphism as a key analytical tool. Therefore, we will utilize the concept
of homomorphism to delve into the comprehensive study of topological spaces.

The discernibility matrix holds a crucial role in the realm of knowledge re-
ductions. Each element within this matrix represents the ensemble of attributes
that uniquely differentiate a pair of corresponding objects. In simpler terms,
it comprises the set of attributes on which the two objects exhibit contrasting
values. Li and Zhang [11] first introduced discernibility matrix into topologi-
cal space. Each entry within this matrix comprises a collection of topologies,
uniquely identifying a pair of points. Furthermore, they delved into the subject
of subbase reduction in families of subbases, emphasizing its role in preserving
the topological rough membership function.

In this paper, our attention lies in exploring the to the reduction of sub-
bases derived from homomorphism. The remainder of this paper is organized
as follows. In Section 2, we provide a review the relevant concepts of topology
theory, serving as a foundation for the subsequent discussions. In Section 3, the
definition of subbase consistent function in topological space is proposed and its
properties are delved into. In Section 4, a subbase discernibility matrix is con-
structed based on homomorphism to find reduction of subbases. Simultaneously,
judgement theorem of reducts is put forward. we introduce a graph approach
that facilitates the identification of a reduct of f−induced topological space in
Section 5. Section 6 concludes this paper with a summary and discussion of our
further work.

2. Preliminaries

For each i=1, . . . , n, let τi be a topology onX with subbase γi,A={γ1, γ2, . . . , γn},
and γA =

∧n
i=1 γi = {

⋂n
i=1Ki : Ki ∈ γi, i = 1, . . . , n}. Then, γA is a subbase

for a topology on X, and
⋂
(γA)x =

⋂n
i=1(

⋂
(γi)x), for x ∈ X. For B ⊆ A and
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γ ∈ A, denote (x)B =
⋂
(γB)x, simply denote (x){γ} by (x)γ . For any x, y ∈ X,

we have the following properties[11]:

1. If y ∈ (x)B, then (y)B ⊆ (x)B.

2. If y /∈ (x)B, there is γ ∈ B satisfying y /∈ (x)γ .

3. If (y)B = (x)B, then (y)γ = (x)γ , for each γ ∈ B.

Let γ be a subbase for topology τ on X. K ∈ γ is deemed reducible of γ if
the set γ − {K} is a subbase for τ . In essence, a reducible element K satisfies
the condition that there exists γ′ ⊆ γ − {K} such that, for any x ∈ K, we have
x ∈

⋂
γ′ ⊆ K. If α ⊆ γ is a subbase for τ and any proper subset of α is not

a subbase for τ , then α is said to be a reduct of γ, which is sometimes also
called a minimal subbase for τ . Alternatively, if α ⊆ γ is a reduct of γ, then
(x)α = (x)γ , for any x ∈ X. As is well-known, a subbase uniquely determines
a topology on X and induces a basis for that topology. If an element K ∈ γ is
the union of some elements from γ, then K is called a union reducible element
of γ; Conversely, if K ∈ γ is the intersection of some members of γ, then K
is called an intersection reducible element of γ. To get a reduct of γ, one can
simply eliminate the reducible elements from γ in a prescribed order. (see [11])

Let A denote a family of subbases representing distinct topologies on X.
B ⊆ A is called a subbase consistent set if (x)A = (x)B, for every x ∈ X. If B
is a subbase consistent set and no proper subset of B satisfies this consistency
property, then B is called a reduct of A. To facilitate the identification of all
reducts of A, we introduce the concept of a subbase discernibility matrix, which
is defined as follows:[11]:

d((x)A, (y)A) =

{
{γ ∈ A : y /∈ (x)γ}, y /∈ (x)A,

∅, otherwise.

is called subbase discernibility set for (x)A and (y)A and D = (d((x)A, (y)A) :
x, y ∈ X) is called subbase discernibility matrix.

3. Subbase by consistent function

Definition 3.1. Let X be a finite topological space with subbase γ={K1, . . . ,Kt}.
A surjective map f : X → Y satisfies the following property: If for any x, z ∈ X,
the condition f(x) = f(z) implies that (x)γ = (z)γ, then f is called a subbase
consistent function with respect to γ; Furthermore, given a subset U ⊆ X, if,
for any x, z ∈ X such that f(x) = f(z) and x ∈ U , it follows that z ∈ U , then
f is called a subbase consistent function with respect to U .

Generally, when f is a subbase consistent function, for any x ∈ X, there
exists y ∈ Y satisfying y = f(x′), for each x′ ∈ (x)γ\

⋃
z∈(x)γ∧(z)γ⊂(x)γ (z)γ .

For brevity, we denote this as y = f((x)γ\
⋃

z∈(x)γ∧(z)γ⊂(x)γ (z)γ). From Defini-
tion 3.1, it is easy to see that f is a subbase consistent function with respect
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to the subbase γ if and only if f is a subbase consistent function with respect
to each K ∈ γ. A subbase consistent function is a specific type of mapping
between two topological spaces, and this class of functions has the potential to
compress a topological space into a relatively smaller one.

Example 1. Let X = {1, 2, . . . , 9} be a finite topological space with subbase
γ = {{1, 2, 4, 8}, {3, 4, 6, 7, 8, 9}, {3, 5, 7}}. Then, (1)γ = (2)γ = {1, 2, 4, 8},
(3)γ = (7)γ = {3, 7}, (4)γ = (8)γ = {4, 8}, (5)γ = {3, 5, 7}, (6)γ = (9)γ =
{3, 4, 6, 7, 8, 9}. By Definition 3.1, we define a subbase consistent function
f : X → Y as follows:

y1=f(1)=f(2), y2=f(3)=f(7), y3=f(4)=f(8), y4=f(6)=f(9), y5=f(5).

Then, f(γ) = {{y1, y3}, {y2, y3, y4}, {y2, y5}}.

In the following, we will delve into the examination of several crucial pro-
perties exhibited by the subbase consistent function.

Theorem 1. Let γ be a subbase for X, f is a subbase consistent function with
respect to γ iff f−1(f(K)) = K, for any K ∈ γ.

Proof. ⇒ Since the inclusion K ⊆ f−1(f(K)) is always valid, we only have to
prove the reverse inclusion. For any x ∈ f−1(f(K)), it follows that f(x) ∈ f(K).
Consequently, there exists z ∈ K such that f(x) = f(z). By the definition of
(z)γ , we know that (z)γ ⊆ K. Since f is subbase consistent with respect to
γ, it follows that (x)γ = (z)γ . This, in turn, implies that (x)γ ⊆ K, thereby
establishing that x ∈ K.

⇐ To arrive at a contradiction, suppose there exist x, z ∈ X with f(x) = f(z)
satisfying (x)γ ̸= (z)γ , then z ∈ f−1(f((x)γ)). Without loss of generality,
suppose that there exists ∆ ⊆ {1, 2, . . . , t} such that (x)γ =

⋂
j∈∆Kj . Let

Kj = (x)γ ∪ (Kj\(x)γ), then Kj = f−1(f(Kj)) = f−1(f((x)γ ∪ (Kj\(x)γ))) =
f−1(f((x)γ)) ∪ f−1(f((Kj\(x)γ))), hence f−1(f((x)γ)) ⊆ Kj . This implies z ∈
f−1(f((x)γ)) ⊆

⋂
j∈∆Kj = (x)γ , that is, (z)γ ⊆ (x)γ . Similarly, we can deduce

(x)γ ⊆ (z)γ . This forces that (x)γ = (z)γ , a contradiction. Therefore, f is a
subbase consistent function with respect to γ.

Theorem 2. Let γ be a subbase, for X. For any K ∈ γ, if f is subbase
consistent with respect to γ, then f((x)γ) =

⋂
{f(K) : K ∈ γ ∧ x ∈ K}.

Proof. We only need to show that f(Ki ∩ Kj) = f(Ki) ∩ f(Kj), for any
Ki,Kj ∈ γ. It is straightforward to verify that f(Ki∩Kj) ⊆ f(Ki)∩f(Kj). We
now proceed to prove the converse, starting with the case where Ki ∩Kj = ∅.
For contradiction, suppose f(Ki) ∩ f(Kj) = ∅. Let y be an element in this
intersection, i.e., y ∈ f(Ki) ∩ f(Kj). Then, there are x ∈ Ki and z ∈ Kj

such that f(x) = y = f(z), which implies z ∈ Ki. Thus, z ∈ Ki ∩ Kj ,
a contradiction. Next, we consider the case where Ki ∩ Kj ̸= ∅. To show
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f(Ki) ∩ f(Kj) ⊆ f(Ki ∩ Kj), let y ∈ f(Ki) ∩ f(Kj). There exist x ∈ Ki and
z ∈ Kj such that f(x) = f(z) = y. By the properties of f and the fact that
Ki∩Kj is non-empty, we can infer that {x, z} ⊆ Ki∩Kj . This, in turn, implies
y ∈ f(Ki ∩Kj).

Corollary 3.1. For any Ki,Kj ∈ γ, if f is subbase consistent with respect to
Ki or Kj, then f(Ki ∩Kj) = f(Ki) ∩ f(Kj).

Corollary 3.2. f is a subbase consistent function with respect to γ iff

f−1(f((x)γ)) = (x)γ ,

for each x ∈ X.

Lemma 3.1. Let (X, τ) be a finite topological space endowed with subbase γ =
{K1, . . . ,Kt}. Consider a function f : X → Y that is subbase-consistent with
respect to γ. We define the set f(γ) = {f(Ki) : i ≤ t} and f(τ) = {f(K) : K ∈
τ}. Then, f(γ) constitutes a subbase, for f(τ) on Y .

Corollary 3.3. (1) f((x)γ) = (f(x))f(γ), for any x ∈ X; (2) f((γ)) = (f(γ)).

We may pose a question regarding the interplay between the reducible ele-
ments of γ and f(γ). Specifically, can the reduct of γ be converted into the
reduct of f(γ)? We shall proceed with our investigation to address these ques-
tions.

Theorem 3. Let γ be a subbase, for X and f be a subbase consistent function.
If K ∈ γ is a reducible element of γ, then f(K) is a reducible element of f(γ).
If α ⊆ γ is a reduct of γ, then f(α) is a reduct of f(γ).

Proof. We will initially establish that, for any reducible element K of γ, its
image f(K) under the function f is also a reducible element of f(γ). Specifically,
if K is a union-reducible element of γ, there exists a collection {Ki : i ∈ ∆}
with ∆ ⊂ {1, 2, . . . , t} and K /∈ {Ki : i ∈ ∆} such that K =

⋃
i∈∆Ki. On

the other hand, if K is an intersection-reducible element, then exists a distinct
collection {Kj : j ∈ ∆′} with ∆′ ⊂ {1, 2, . . . , t} and K /∈ {Kj : j ∈ ∆′} such
that K =

⋂
j∈∆′ Kj . It follows from Corollary 3.5 that f(K) =

⋂
j∈∆′ f(Kj).

Next, we aim to demonstrate that if α ⊆ γ is a reduct of γ, then f(α) is
also a reduct of f(γ). Obviously, (x)α = (x)γ , for any x ∈ X. And there is
y ∈ Y such that f(x) = y. Then, (y)f(α) =

⋂
{f(K) : f(x) ∈ f(K) ∧ f(K) ∈

f(α)} = f((x)α) = f((x)γ) = (f(x))f(γ) = (y)f(γ). This shows that f(α) forms
a subbase, for f(τ) on Y . As a matter of fact, any proper subset of α is not a
subbase, for τ , indicating that none of the members of α are reducible elements
of α. Consequently, the members of f(α) are also not reducible elements of
f(α). Therefore, we conclude that f(α) is indeed a reduct of f(γ).

Theorem 4. Let (X, τ) be a finite topological space with subbase γ={K1, . . . ,Kt}
and f : X → Y is a subbase consistent function with respect to γ. Then, the
following statements are equivalent:
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1. K is a reducible element of γ.

2. For y ∈ f(K), there is γ′ ⊆ γ\{K} such that y ∈
⋂
f(γ′) ⊆ f(K).

Proof. (1)⇒ (2) If K is a reducible element of γ, then (y)f(γ)\{f(K)} = (y)f(γ),
for any y ∈ Y .

(2) ⇒ (1) It is easy to verify that f(γ)\{f(K)} constitutes a covering of
Y . For any y ∈ Y , (y)f(γ)\{f(K)} = (y)f(γ) if y /∈ f(K); However, if y ∈ f(K),
there exists a subset γ′ ⊆ γ\{K} such that y ∈

⋂
f(γ′) ⊆ f(K). Consequently,

(y)f(γ) = (y)f(γ)\{f(K)}∩f(K) ⊇ (y)f(γ)\{f(K)}∩(
⋂
f(γ′)) ⊇ (y)f(γ)\{f(K)}. This

equality ensures that (y)f(γ) = (y)f(γ)\{f(K)}, demonstrating that f(γ)\{f(K)}
forms a subbase for f(τ) on Y , then f(K) is a reducible element of f(γ). Next,
we shall demonstrate that K is a reducible element of γ. There exists a subset
∆ ⊆ {1, 2, . . . , t} satisfying f(K) =

⋂
i∈∆ f(Ki) or f(K) =

⋃
i∈∆ f(Ki). Since

f is subbase consistent with respect to γ, we have f−1(f(Ki)) = Ki, for any
Ki ∈ γ by Theorem 3.1. Hence, K = f−1(f(K)) = f−1(

⋂
i∈∆ f(Ki)) =

⋂
i∈∆Ki

if f(K) is an intersection reducible element. Conversely, K =
⋃

i∈∆Ki if f(K)
is a union reducible element. These deductions indicate that K is indeed a
reducible element of γ.

From the preceding discussion, we observe that the subbase consistent func-
tion possesses numerous advantageous properties that lend themselves to defin-
ing the concepts of homomorphisms in the following.

Definition 3.2. Let (X, τ) be a finite topological space equipped with subbase
γ = {K1, . . . ,Kt}. If a function f : X → Y is a subbase consistent with respect
to γ, then f is designated as a homomorphism from the triplet (X, τ, γ) to the
f−induced topological space (Y, f(τ), f(γ)) of (X, τ, γ), and f(γ) is called an
f−induced subbase.

Utilizing the aforementioned results, the identification of a many-to-one ho-
momorphism allows for the compression of a space into a relatively smaller size.
Addressing the challenges posed by mathematical models and theories in data
spaces, this compression process simplifies and abstracts the data space while
preserving the topological relationships between its objects.

4. Reduction of a family of topologies based on homomorphism

In this section, we define A = {γ1, γ2, . . . , γn} and Γ = {τ1, . . . , τn}, where each
τi represents a topology on the finite point set X with subbase γi. We refer to
the family A of topologies on X paired with Γ as (X,Γ,A) and abbreviate it as
FTS for brevity.

Definition 4.1. Let f : X → Y be a surjective mapping. If f is subbase
consistent with respect to each γi ∈ A, then f is called a homomorphism on
(X,Γ,A).
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Denote f(A) = {f(γ1), . . . , f(γn)} and f(Γ) = {f(τ1), . . . , f(τn)}. Obvi-
ously, for any y ∈ Y , there exists x ∈ X such that

y = f((x)A \
⋃

z∈(x)A∧(z)A⊂(x)A

(z)A).

Definition 4.2. Let f : X → Y be a homomorphism on (X,Γ,A), then
(Y, f(Γ), f(A)) is called the f−induced FTS of (X,Γ,A).

Example 2. Let (X,Γ,A) be FTS withX={1, 2, . . . , 20} andA={γ1, γ2, γ3, γ4},
where

γ1 = {{2, 6, 7, 8, 10, 15, 16, 18}, {4, 6, 8, 9, 10, 13, 14, 18, 19}, {1, 3, 5, 11, 12, 17, 20}},
γ2 = {{1, 2, 6, 7, 8, 10, 11, 12, 15, 16, 18, 20}, {2, 7, 15, 16}, {3, 4, 5, 9, 13, 14, 17, 19}},
γ3 = {{1, 11, 12, 20}, {2, 3, 5, 7, 15, 16, 17}, {3, 4, 5, 9, 13, 14, 17, 19}, {2, 3, 5, 6, 7, 8,

10, 15, 16, 17, 18}},
γ4 = {{2, 3, 5, 7, 15, 16, 17}, {3, 4, 5, 9, 13, 14, 17, 19}, {1, 3, 5, 6, 8, 10, 11, 12, 17,

18, 20}}.

Hence,

(1)A = (11)A = (12)A = (20)A = {1, 11, 12, 20},
(2)A = (7)A = (15)A = (16)A = {2, 7, 15, 16},
(3)A = (5)A = (17)A = {3, 5, 17},
(4)A = (9)A = (13)A = (14)A = {4, 9, 13, 14},
(6)A = (8)A = (10)A = (18)A = {6, 8, 10, 18}.

Next, we define a subbase consistent function f : X → Y as follows:

f((1)A) = y1, f((2)A) = y2, f((3)A) = y3, f((4)A) = y4, f((6)A) = y5.

Then, f(A) = {f(γ1), f(γ2), f(γ3), f(γ4)}, where

f(γ1)={{y2, y5}, {y4, y5}, {y1, y3}}, f(γ3)={{y1}, {y2, y3}, {y3, y4}, {y2, y3, y5}},
f(γ2) = {{y1, y2, y5}, {y2}, {y3, y4}}, f(γ4) = {{y2, y3}, {y3, y4}, {y1, y3, y5}}.

The proposed definitions introduce a methodology for compressing a family
of topologies into a smaller-sized representation. Subsequently, we shall delve
into the equivalent formulations of subbase consistent functions.

Lemma 4.1. Let f : X → Y be a surjective mapping and let γ1, γ2 be subbases
for different topologies on X. If f is subbase consistent function with respect to
γ1 and γ2 respectively, then

1. f is a subbase consistent with respect to γ1 ∪ γ2.

2. f is a subbase consistent with respect to γ1 ∩ γ2.
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Proof. We only prove (1). We observe that, for any x ∈ X (x)γ1∪γ2 =
⋂
{K ∈

γ1 ∪ γ2 : x ∈ K}. This can be expressed as (x)γ1∪γ2 = (x)γ1 ∩ (x)γ2 . Since
f is subbase consistent with respect to γ1 and γ2 respectively, it follows that
(x)γi = (z)γi (i = 1, 2), for any x, z ∈ X such that f(x) = f(z). Therefore,
(x)γ1 ∩ (x)γ2 = (z)γ1 ∩ (z)γ2 , which implies (x)γ1∪γ2 = (z)γ1∪γ2 . Consequently,
f is a subbase consistent with respect to γ1 ∪ γ2.

Lemma 4.2. Let f : X → Y and γ1, γ2 be subbases for topologies on X. If f is
a subbase consistent with respect to γ1 or γ2, then f((x)γ1 ∩ (x)γ2) = f((x)γ1)∩
f((x)γ2), for any x ∈ X.

Proof. We only need to prove f((x)γ1) ∩ f((x)γ2) ⊆ f((x)γ1 ∩ (x)γ2). Without
loss of generality, we assume that the function f is subbase consistent with
respect to γ1. Let y ∈ f((x)γ1)∩f((x)γ2). This means that there exist z1 ∈ (x)γ1
and z2 ∈ (x)γ2 such that f(z1) = f(z2) = y, which implies that (z1)γ1 ⊆ (x)γ1
and (z1)γ1 = (z2)γ1 . Therefore, (z2)γ1 ⊆ (x)γ1 . It follows that z2 ∈ (x)γ1 ∩ (x)γ2 .
This implies y ∈ f((x)γ1 ∩ (x)γ2). Consequently, f((x)γ1)∩ f((x)γ2) ⊆ f((x)γ1 ∩
(x)γ2).

Thus, if f is homomorphism on (X,Γ,A), then f((x)B) =
⋂

γ∈B f((x)γ)
with each x ∈ X, for any B ⊆ A. Moreover, f(

⋂
γ∈A γ) =

⋂
γ∈A f(γ).

Theorem 5. If f : X → Y is a homomorphism on (X,Γ,A), then B ⊆ A is
a subbase consistent set of A if and only if f(B) is a subbase consistent set of
f(A).

Proof. ⇒ For each x ∈ X, f((x)B) = f((x)A) since (x)B = (x)A. That is,
(y)f(B) = (y)f(A), for any y ∈ Y , hence f(B) is a subbase consistent of f(A).

⇐ For any y ∈ Y , f−1((y)f(A)) =
⋂

γ∈A f−1((y)f(γ)) =
⋂

γ∈A
⋂

y∈f(K)∈f(γ)K.
By applying this to the definition of (x)A, for any x ∈ X, we obtain (x)A
=

⋂
y∈f((x)A)(

⋂
γ∈A

⋂
y∈f(K)∈f(γ)K)=

⋂
y∈f((x)A) f

−1((y)f(A)).

Analogously, (x)B =
⋂

y∈f((x)B) f
−1((y)f(B)), for each x ∈ X. Since (y)f(B) =

(y)f(A) holds, for each y ∈ Y , it follows that (x)B = (x)A, for all x ∈ X. This
demonstrates that B is a subbase consistent set of A.

Theorem 6. Let f : X→Y be a homomorphism on (X,Γ,A) and (Y, f(Γ), f(A))
be the f−induced FTS. For any B ⊆ A, B is a reduct of A if and only if f(B)
is a reduct of f(A).

Proof. ⇒ Assume that there is a γ ∈ B such that (y)f(B)\{f(γ)} = (y)f(A),
for every y ∈ Y , i.e., (y)f(B\{γ}) = (y)f(A). This implies that f(B\{γ}) is a
subbase consistent of f(A). Invoking Theorem 4.6, we can see that B\{γ} is a
subbase consistent with A. However, this conclusion contradicts the fact that
B is a reduct of A. This implies f(B) is a reduct of f(A).

⇐ Conversely, if f(B) is a subbase consistent set of f(A), then B must be
also a subbase consistent set of A. To illustrate this, suppose there exists γ ∈ B
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such that (x)B\{γ} = (x)A, for any x ∈ X. Then, B\{γ} is a subbase consistent
set of A. That is, f(B\{γ}) is a subbase consistent set of f(A), this creates a
contradiction.

Definition 4.3. Let f : X → Y be a homomorphism on (X,Γ,A) and (Y, f(Γ),
f(A)) be the f−induced FTS. For any yi, yj ∈ Y , the subbase discernibility set
related to yi and yj is defined by

d(yi, yj) =

{
{f(γ) : yj /∈ (yi)f(γ), γ ∈ A}, yj /∈ (yi)f(A),

∅, otherwise.

And D = (dij)|Y |×|Y | is called a subbase discernibility matrix, where dij =
d(yi, yj).

Corollary 4.1. For any xi, xj ∈ X, d((xi)A, (xj)A) is the subbase discernibility
set for (xi)A and (xj)A, then

1. d((xi)A, (xj)A) = ∅ if and only if d(f(xi), f(xj)) = ∅.

2. γ ∈ d((xi)A, (xj)A) if and only if f(γ) ∈ d(f(xi), f(xj)).

Theorem 7. For B ⊆ A, f(B) is a subbase consistent set iff for d(yi, yj) ̸= ∅,
f(B) ∩ d(yi, yj) ̸= ∅.

Proof. ⇒. Suppose f(B) is subbase consistent set for B ⊆ A. If d(yi, yj) ̸= ∅,
then yj /∈ (yi)f(A). If there exists no γ ∈ B such that yj /∈ (yi)f(γ), that is,
yj ∈ (yi)f(γ) for any γ ∈ B, then yj ∈ (yi)f(B) = (yi)f(A), a contradiction.
Thus, there is γ ∈ B satisfying yj /∈ (yi)f(γ), then f(γ) ∈ f(B) ∩ d(yi, yj) ̸= ∅.
⇐. For each yi ∈ Y , it holds that yi ∈ (yi)f(B). Suppose (yi)f(B) ̸= (yi)f(A).

Then, there must exist some yj ∈ (yi)f(B) but yj /∈ (yi)f(A). Since d(yi, yj) ̸= ∅,
it follows that f(B) ∩ d(yi, yj) ̸= ∅. This means there is some γ ∈ B such
that f(γ) ∈ f(B) ∩ d(yi, yj), this implies yj /∈ (yi)f(γ) and consequently, yj /∈
(yi)f(B) ⊆ (yi)f(γ). This creates a contradiction. Therefore, we must have
(yi)f(B) = (yi)f(A), indicating that f(B) is a subbase consistent set.

Definition 4.4. A subbase discernibility function FY of (Y, f(Γ), f(A)) is de-
fined by FY (f(γ1), . . . , f(γn)) = ∧{∨d(yi, yj) : yi, yj ∈ Y, d(yi, yj) ̸= ∅} with
Boolean variables f(γ1), . . . , f(γn), where ∧ is conjunction operation and ∨ is
disjunction operation. Each conjunction operator of the minimal disjunctive
form is called a reduct of f(A).

Example 3. Let X = {1, 2, . . . , 15}, A = {γ1, γ2, γ3, γ4}, where

γ1 = {{1, 2, 3, 4, 5, 8, 10, 15}, {3, 5, 7, 11, 12}, {4, 6, 8, 9, 10, 13, 14}},
γ2 = {{1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15}, {3, 4, 5, 8, 10}, {3, 5, 6, 9, 13, 14}},
γ3 = {{1, 2, 3, 4, 5, 8, 10, 15}, {6, 9, 13, 14}, {4, 7, 8, 10, 11, 12}},
γ4 = {{1, 2, 3, 5, 15}, {6, 7, 9, 11, 12, 13, 14}, {3, 4, 5, 8, 10}}.



A COMPRESSION OF FINITE TOPOLOGICAL SPACES BASED ON HOMOMORPHISM 41

Then, we have (1)A = (2)A = (15)A = {1, 2, 3, 5, 15}, (4)A = (8)A = (10)A =
{4, 8, 10}, (6)A = (9)A = (13)A = (14)A = {6, 9, 13, 14}, (7)A = (11)A =
(12)A = {7, 11, 12}, (3)A = (5)A = {3, 5}. Let Y = {y1, y2, y3, y4, y5}, de-
fine a homomorphism f : X → Y as follows: f((1)A) = {y1, y2}, f((3)A) =
{y2}, f((4)A) = {y3}, f((6)A) = {y4}, f((7)A) = {y5}. Hence,

f(γ1) = {{y1, y2, y3}, {y2, y5}, {y3, y4}},
f(γ2) = {{y1, y2, y3, y5}, {y2, y3}, {y3, y4}},
f(γ3) = {{y1, y2, y3}, {y4}, {y3, y5}},
f(γ4) = {{y1, y2}, {y2, y3}, {y4, y5}}.

Then, (y1)f(A) = {y1, y2}, (y2)f(A) = {y2}, (y3)f(A) = {y3}, (y4)f(A) = {y4},
(y5)f(A) = {y5}. Thus, we can easy to obtain the discernibility matrix D =

∅ ∅ {f(γ4)} f(A) {f(γ1), f(γ3), f(γ4)}
{f(γ1), f(γ2), f(γ4)} ∅ {f(γ1), f(γ4)} f(A) f(A)

f(A) {f(γ1), f(γ2), f(γ3)} ∅ f(A) f(A)
f(A) f(A) {f(γ3), f(γ4)} ∅ {f(γ1), f(γ2), f(γ3)}

{f(γ1), f(γ3), f(γ4)} {f(γ3), f(γ4)} {f(γ1), f(γ4)} {f(γ1), f(γ2), f(γ3)} ∅

 ,

The discernibility subbase function

FY (f(γ1), f(γ2), f(γ3), f(γ4)) = f(A) ∧ f(γ4) ∧ (f(γ1) ∨ f(γ3) ∨ f(γ4)) ∧ (f(γ1)

∨ f(γ2) ∨ f(γ4)) ∧ (f(γ1) ∨ f(γ4)) ∧ (f(γ1)

∨ f(γ2) ∨ f(γ3)) ∧ (f(γ3) ∨ f(γ4))

= f(γ4) ∧ (f(γ1) ∨ f(γ2) ∨ f(γ3))

= (f(γ1) ∧ f(γ4)) ∨ (f(γ2) ∧ f(γ4)) ∨ (f(γ3) ∧ f(γ4)),

then {f(γ1), f(γ4)}, {f(γ2), f(γ4)} and {f(γ3), f(γ4)} are the reducts of f(A).
In other words, {γ1, γ4}, {γ2, γ4} and {γ3, γ4} are the reducts of A.

Obviously, if (X,Γ,A) is a quasi-discrete FTS, then (Y, f(Γ), f(A)) is f−in-
duced discrete FTS. And for any yi, yj ∈ Y , d(yi, yj) = {f(γ) : γ ∈ A ∧ yj /∈
(yi)f(γ)}.
Example 4. From Example 4.3, we can get the subbase discernibility matrix
D =

∅ {f(γ1), f(γ3), f(γ4)} {f(γ2), f(γ3)} f(A) {f(γ1), f(γ3)}
f(A) ∅ {f(γ1), f(γ2)} f(A) {f(γ2), f(γ3), f(γ4)}

{f(γ2), f(γ3), f(γ4)} f(A) ∅ {f(γ1), f(γ3), f(γ4)} f(A)
f(A) f(A) {f(γ1)} ∅ {f(γ2), f(γ3), f(γ4)}

{f(γ1), f(γ3)} {f(γ1), f(γ4)} {f(γ1), f(γ2)} f(A) ∅

 ,

then FY (f(γ1), f(γ2), f(γ3), f(γ4)) = f(γ1)∧(f(γ2)∨f(γ3)) and so {f(γ1, f(γ2))}
and {f(γ1, f(γ3))} are all the subbase reducts of f(A). Namely, {γ1, γ2},
{γ1, γ3} are the subbase reducts of A.

To summarize, when dealing with a given FTS, we can utilize the homo-
morphism technique to efficiently identify a relatively compact representation.
Specifically, this approach allows us to swiftly perform equivalent reductions of
subbases in a compressed image of the FTS, all without altering the topological
structure of the original space.
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5. Vertex cover method for the reduction of FTS

As is widely known, computing all possible reducts of subbases based on dis-
cernibility matrices or discernibility subbase functions is an NP-hard problem.
However, it is often unnecessary to obtain all possible reducts.

Note that the discernibility matrix D can also be represented in set notation,
denoted as D = {d(yi, yj) : (yi, yj) ∈ Y × Y }. Recall that each subset Y ′ of
Y = {y1, y2, . . . , ym} can be expressed through a row vector g(Y ′), where g is the
characteristic function. For example, Y ′ = {y1, y3} of Y = {y1, y2, y3, y4} can be
represented as g(Y ′) = (1, 0, 1, 0). Consequently, any non-empty subbase dis-
cernibility set d(yi, yj) ⊆ f(A) can be rewritten as g(d(yi, yj)). By selecting an
ordering for D = {d(yi, yj) : (yi, yj) ∈ Y ×Y }, the subbase discernibility matrix
can be represented as a Boolean matrix. We refer to this as the subbase discerni-
bility Boolean matrix, denoted by M(d(yi, yj) : (yi, yj) ∈ Y × Y ). In simpler
terms, this Boolean matrix corresponds uniquely to the subbase discernibility
function FY (f(γ1), . . . , f(γt)).

Example 5. According to Example 4.12, {f(γ1), f(γ3), f(γ4)}, {f(γ1), f(γ2),
f(γ4)}, {f(γ1), f(γ4)}, {f(γ1), f(γ2), f(γ3)}, {f(γ3), f(γ4)}, {f(γ4)}, f(A) are
all the subbase discernibility sets. From the subbase discernibility matrix D, we
can get M shown as follows:

MT =

1 1 1 0 1 1 1
1 0 0 1 1 0 1
0 1 0 1 0 0 1
1 1 1 1 0 0 1

 .

In the following, we propose a method to derive a reduct.
Firstly, it has been suggested by [2] that the matrix M can be viewed as

the incidence matrix of a hypergraph G = (f(A), {d(yi, yj) : (yi, yj) ∈ Y × Y }),
in which d(yi, yj) is considered as the hyperedge, and f(A) is the collection
of vertices. Subsequently, the task of obtaining reduction of subbases can be
reframed as the problem of identifying minimal vertex covers in this hypergraph.

Definition 5.1. Let (Y, f(Γ), f(A)) be f−induced FTS with subbase discerni-
bility matrix D. For d(yi, yj) ̸= ∅ and d(yi, yj) ̸= f(A), let w(d(yi, yj)) be
equal to the repeated times of d(yi, yj) in D. Then, for any f(γ) ∈ f(A), the
importance of f(γ) is define by:

sig(f(γ)) =
∑

f(γ)∈d(yi,yj)∧(yi,yj)∈Y×Y

w(d(yi, yj)).

Sometimes, we call sig(f(γ)) the weight of f(γ).

In fact, sig(f(γ)) can be seen as the degree of vertex f(γ) in the graph G.
Secondly, the conjunction operation ∧ satisfies absorption law, which states

that a ∧ (a ∨ b) = a. If there exist core elements within f(A), meaning that at
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least one subbase discernibility set is a singleton, then any other discernibility
sets that contain this core will be absorbed by the conjunction operation. In
the graph representation, the edges corresponding to these core elements form
cycles.

Thirdly, if there exists no circles in the graph, to get the minimal vertex
covers, a greedy strategy can be employed to identify minimal vertex covers.
This strategy involves selecting the vertex with the currently maximum degree.

Given a hypergraph G = (E, V ) with vertices V and edges E, let M be its in-
cidence matrix. For any v ∈ V and T ⊂ E, we define N(v, T ) = {e ∈ T : v ∈ e}
and d(e, V ) = {v ∈ V : v ∈ e}. Let M(v) be the column vector of M associated
with vertex v and M(N(v, T )) represent the rows of M corresponding to the
edges in N(v, T ). Based on the above analysis, we now outline an algorithm to
achieve a reduction of subbases using the hypergraph representation:

Algorithm 1 reduct base weighted hypergraph(RWH)
RWH(S,A, δ) \\ S = (X,A) is an information system, δ is threshold
Output: One reduct red
1: Generating the f−induced topology Y and baseY
2: Generateing the subbase discernibility matrix D
3: Important vector s← ∅
4: for a ∈ A
5: sig(f(γa))←

∑
f(γa)∈d(yi,yj)∧(yi,yj)∈Y ×Y w(d(yi, yj)), s←s ∪ {sig(f(γa))}

6: end for
7: Generating hypergraph G = (V,E) and its incident matrix M , where V = {f(γa) : a ∈ A} and
E = {d(yi, yj) : (yi, yj) ∈ Y × Y }
8: red← ∅
9: while M ̸= ∅
10: for e ∈ E
11: if |d(e, V )| = 1
12: red← red ∪ {f(γa) : f(γa) ∈ d(e, V )}
13: M ←M −M(f(γa))−M(N(f(γa), E)) \\here M is incident matrix of sub-graph
14: E ← E −N(f(γa), E), A← A− {a}, s← s− sig(f(γa))
15: end if
16: end for
17: end while
18: while M ̸= ∅
19: Computing s′ = {sig′(f(γa)) : a ∈ A}
20: B←{f(γa) : sig′(f(γa)) = max(s′)}
21: red← red ∪ {f(γa)}, where f(γa) ∈ B such that sig(f(γa)) = max(s)
22: M ←M −M(f(γa))−M(N(f(γa), E)) , E ← E −N(f(γa), E), A← A− {a} and
s← s− sig(f(γa))
23: end while

In Algorithm 1, both steps 1 and 2 can be done in O(|X|2|A|), steps 4 − 6
also require less than O(|X|2|A|), while step 7, step 9−23 can be finished in less
than O(|X|2). Therefore, the overall complexity of Algorithm 1 is dominated
by steps 1, 2, and 4 through 6, resulting in a time complexity of is O(|X|2|A|).

Example 6. From Example 5.1, it is easy to see that

s = (sig(f(γ1)), sig(f(γ2)), sig(f(γ3)), sig(f(γ4))) = (16, 13, 14, 16).
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By steps 9 to 16, f(γ4) ∈ red and M ← M −M(f(γa)) −M(N(f(γa), E)) =
(1, 1, 1) and f(A) = {f(γ1), f(γ2), f(γ3)}. Then, from steps 18 to 23, since
sig′(f(γ1)) = sig′(f(γ3)) = sig′(f(γ3)), furthermore, sig(f(γ1)) > sig(f(γ2))
and sig(f(γ1)) > sig(f(γ3)), then f(γ1) ∈ red and so M = ∅ by step 22 and the
loop end. Hence, red = {f(γ1), f(γ4)}, then {γ1, γ4} is a reduct of A.

6. Conclusion and future work

In this paper, we have introduced a theoretical framework grounded in homo-
morphism to investigate the reduction of subbases. We demonstrate that the
reduct of a subbase for a topological space is equivalent to the reduct of the sub-
base for the f−induced topological space, effectively transforming a complex
topology into a more concise one. Additionally, we show that the reductions
of subbases are equivalent to those of the f−induced FTS, which may be of a
reduced size compared to the original. To facilitate the search for all possible re-
ductions, we propose the subbase discernibility matrix for the f−induced FTS.
However, it is worth noting that this is an NP-hard problem. As a result, we
turn to graph theory to devise a heuristic approach to find a minimal subbase
reduction. While we have made significant progress, there remain intriguing
problems worthy of further consideration and discussion.
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