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Abstract. This research work focused on studying an exponential Diophantine equa-
tion involving Mersenne numbers. Specifically, it sought to find the nonnegative integer
solutions (Mn, x, y, z) of the Diophantine equation Mx

n + (Mn + 1)y = z2. To obtain
the solutions, a combination of modular arithmetic method and factoring method, to-
gether with some other results like Mihailescu’s theorem, was utilized. Results of the
Diophantine analysis revealed that aside from (3, 2, 2, 5) and (7, 0, 1, 3), the equation
has infinitely many solutions of the form (22k − 1, 1, 0, 2k) where k is a positive integer.
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1. Introduction

Number theory is regarded as one of the purest areas of mathematics studied
because of the intellectual fascination with properties of integers. Recently,
it has been an area that also has significant applications to subjects such as
cryptography [6].

Number theory researchers are very interested in the search for integer so-
lutions to equations. These equations are termed Diophantine equations. Dio-
phantine equations have a wide range of applications in coordinate geometry,
cryptography, trigonometry, and applied algebra. It is also extremely useful in
determining the solutions to many puzzle problems [1].

One of the most explored Diophantine equations is the equation of the form

(1) ax + by = z2.

Equation (1) has been studied in connection with Mersenne primes by numer-
ous researchers. Some of them focused on the case in which one of a and b
in equation (1) is a Mersenne prime. Particularly, some considered the first
three Mersenne prime numbers 3, 7, and 31. For instance, Asthana and Singh
[2] showed that 3x + 13y = z2 has four nonnegative integer solutions which are
(1, 0, 2), (1, 1, 4), (3, 2, 14) and (5, 1, 6). Also, Rabago [8] proved that the triples
(4, 1, 10) and (1, 0, 2) are the only two nonnegative integer solutions to the Dio-
phantine equation 3x + 19y = z2, and that the triples (2, 1, 10) and (1, 0, 2) are
the only nonnegative integer solutions to 3x +91y = z2. Furthermore, Sroysang
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[10] showed that (x, y, z) = (0, 1, 3) is the unique solution of 7x+8y = z2. How-
ever, in another work of Sroysang [9], he showed that the equation 31x+32y = z2

has no nonnegative integer solution.
In recent years, Gayo and Bacani worked on Diophantine equations that in-

volve Mersenne primes. In 2021, they solved the nonnegative integer solutions
(Mp,Mq, x, y, z) of the Diophantine equation Mx

p + (Mq + 1)y = z2, where Mp

and Mq are Mersenne primes using elementary methods in number theory [3]. In
2022, they also showed that the quadruples (3, 1, 0, 2), (3, 0, 3, 3) and (3, 2, 4, 5)
are the only nonnegative integer solutions (M,x, y, z) of the exponential Dio-
phantine equation Mx + (M − 1)y = z2, where M is a Mersenne prime [4]. In
2023, the same authors determined the nonnegative integer solutions (pM , a, b, c)
of the Diophantine equation (pM )a − (pM + 1)b = z2 and its more generalized
form (pM )a−(pM+1)b = c2n, where pM is a Mersenne prime number [5]. A vari-
ation of the studies of the two aforementioned authors was made for this research
study. Instead of Mersenne prime, a larger set of numbers to which Mersenne
primes belong is being considered; that is the set of Mersenne numbers. Hence,
the present study focused on the Diophantine equation Mx

n + (Mn + 1)y = z2

where Mn is a Mersenne number.

2. Preliminaries

This part presents the concepts, definitions, lemmas, and theorems necessary to
solve the Diophantine equation Mx

n + (Mn + 1)y = z2.

2.1 Mersenne numbers

Definition 2.1. Mersenne numbers are numbers of the form 2n− 1, where n is
a positive integer.

Two properties needed to solve the Diophantine equation under considera-
tion are given by the next two lemmas.

Lemma 2.1. The only Mersenne number congruent to 1 (mod 4) is M1 = 1.
All others are congruent to 3 (mod 4). In symbols,

Mn ≡

{
1 (mod 4), if n = 1,

3 (mod 4), if n > 1
.

Proof. Note that Mn = 2n − 1 for positive integer n. If n = 1, then Mn = 1.
This is obviously congruent to 1 modulo 4. If n > 1, then 2n ≡ 0 (mod 4). This
means that 2n − 1 ≡ −1 (mod 4). Thus, Mn ≡ −1 (mod 4), or equivalently
Mn ≡ 3 (mod 4).

Lemma 2.2. Positive even and odd powers of Mersenne numbers greater than
1 are congruent to 1 and 3 modulo 4, respectively.
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Proof. From Lemma 2.1, a Mersenne number greater than 1 is congruent
3 (mod 4). Raising it to a positive integer x leads to

Mx
n ≡ 3x (mod 4).

If x is even, let x = 2k, k ∈ N. Then, Mx
n ≡ 32k (mod 4) which is equivalent

to Mx
n ≡ 9k (mod 4). This is also the same as Mx

n ≡ 1k (mod 4), or equivalently
Mx

n ≡ 1 (mod 4).
If x is odd, let x = 2k + 1, k ∈ N0. Then, Mx

n ≡ 32k+1 (mod 4) which is
equivalent to Mx

n ≡ 3 ·9k (mod 4). This is also the same as Mx
n ≡ 3 ·1k (mod 4),

or equivalently Mx
n ≡ 3 (mod 4).

2.2 Square of an integer

The right-hand side of the equation Mx
n + (Mn + 1)y = z2 is a perfect square.

Since we will be utilizing modular arithmetic method as one of the methods, it
is just right to find modular properties of the square of an integer.

Lemma 2.3. The square of an integer is either congruent to 0 or 1 modulo 4.
Specifically, the squares of an even integer and odd integer are congruent to 0
modulo 4 and 1 modulo 4, respectively.

Proof. Let z be an integer. Then, by Division Algorithm, z can be written in
the form 2n or 2n + 1. If z is even or of the form 2n, then z2 = 4n2, which is
obviously congruent to 0 (mod 4). On the other hand, if z is odd or of the form
2n+ 1, then z2 = 4n2 + 4n+ 1, which is congruent to 1 (mod 4).

2.3 The Mihailescu’s theorem

In 1844, Charles Catalan conjectured that if min{a, b, x, y} > 1, then the only
solution to the Diophantine equation ax − by = 1 is the quadruple (a, b, x, y) =
(3, 2, 2, 3), which was famously known as the Catalan conjecture. Since then, a
number of mathematicians have attempted to prove the conjecture, but it was
only in 2002 that the conjecture was finally proven by Mihailescu [7]. Hence,
the conjecture was renamed Mihailescu’s Theorem. This theorem led to the
solvability of many Diophantine equations and will also be used to prove our
results. Mihailescu’s Theorem is stated below.

Theorem 2.1 ([7], Mihailescu’s Theorem). The triple (3, 2, 2, 3) is the unique
solution (a, b, x, y) for the Diophantine equation ax − by = 1, where a, b, x and
y are integers with min{a, b, x, y} > 1.

3. Main results

This section presents the solutions of the Diophantine equationMn+(Mn+1)y =
z2. The cases when x = 0 or y = 0 will be solved first.
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3.1 The equation 1 + (Mn + 1)y = z2

The case when x = 0 is solved here. This is when the equation is 1+(Mn+1)y =
z2. The solution of this equation is given in the following lemma.

Lemma 3.1. The triple (7, 1, 3) is the unique solution (Mn, y, z) for the Dio-
phantine equation 1 + (Mn + 1)y = z2, where Mn > 1 is a Mersenne number
and y, z are a nonnegative integer.

Proof. Let Mn > 1 be a Mersenne number, and y, z be nonnegative integers
such that 1 + (Mn + 1)y = z2. Then, there exists a positive integer n such that
Mn = 2n − 1, n > 1. This results to

1 + 2ny = z2.

Three cases for the value of y are considered.

If y = 0, then z2 = 2, which has no integer solution.

If y = 1, then 1 + 2n = z2, which can be expressed as z2 − 1 = 2n. This can
be factored as (z−1)(z+1) = 2n. There exist nonnegative integers u and v such
that u+ v = n and u > v. So, the equation now becomes (z− 1)(z+1) = 2u+v.
Since (z − 1) < (z + 1) and u > v, it follows that{

z + 1 = 2u,

z − 1 = 2v
.

Combining the two equations in the system gives 2 = 2u − 2v. Because the
greatest common factor of 2u and 2v is 2v, this can be factored out, yielding to
2 = 2v(2u−v − 1). Note that 2v and 2u−v − 1 are relatively prime. Equating
powers of 2 and non-powers of 2 results to{

2v = 2,

2u−v − 1 = 1
.

The first equation in the system gives the value v = 1. So, the value of z is
z = 2v + 1 = 21 + 1 = 3. Moreover, the second equation in the same system
becomes 2u−1 = 2, which has the solution u = 2. Computing for the value
of n based from u = 2 and v = 1 results to n = 3. This further results to
Mn = 23 − 1 = 7. Thus, (Mn, x, z) = (7, 1, 3) is a solution.

If y > 1, then by Mihailescu’s Theorem, the Diophantine equation 1+2ny =
z2 can have a solution if ny = 3 and z = 3. Since y > 1, it follows that y = 3
and n = 1. This implies that Mn = 1, which contradicts the assumption that
Mn > 1.
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3.2 The equation Mx
n + 1 = z2

The case when y = 0 is solved here. This is when the equation is Mx
n + 1 = z2.

The solution of this equation is given in the following lemma.

Lemma 3.2. The solutions (Mn, x, z) of the Diophantine equation Mx
n+1 = z2,

where Mn > 1 is a Mersenne number and x, z are nonnegative integers are of
the form (22k − 1, 1, 2k) where k is a positive integer.

Proof. Let Mn > 1 be a Mersenne number, and x, z be nonnegative integers
such that Mx

n + 1y = z2. Then, there exists a positive integer n such that
Mn = 2n − 1, n > 1. This results to

(2n − 1)x + 1 = z2.

Three cases for the value of x are considered. These are x = 0, x = 1, and x > 1.
When x = 0, the equation becomes z2 = 2. This quadratic equation has no

integer solution.
For x = 1, the equation becomes z2 = 2n. Let z = 2k, where k ∈ N. Then,

22k = 2n, and thus, n = 2k. It follows that Mn = 22k−1. Hence, (22k−1, 1, 22k)
are solutions of the Diophantine equation.

If x > 1, then by Mihailescu’s Theorem, z = 3, x = 3, and 2n − 1 = 2.
However, the last equation does not have an integer solution.

3.3 The Diophantine equation Mx
n + (Mn + 1)y = z2

In this part, the Diophantine equation Mx
n + (Mn + 1)y = z2 is solved. Its

solutions are given in the following theorem.

Theorem 3.1. The solutions (Mn, x, y, z) of the Diophantine equation Mx
n +

(Mn + 1)y = z2 with nonnegative integers x, y, z and Mersenne number Mn > 1
are (7, 0, 1, 3), (3, 2, 2, 5) and (22k − 1, 1, 0, 2k), where k is a positive integer.

Proof. Let Mn > 1 be a Mersenne number, and x, y, z be nonnegative integers
such thatMx

n+(Mn+1)y = z2. If x = 0, then 1+(Mn+1)y = z2. By Lemma 3.1,
this equation has the only solution (7, 1, 3). Thus, (Mn, x, y, z) = (7, 0, 1, 3) is a
solution to Mx

n+(Mn+1)y = z2. On the other hand, if y = 0, then Mx
n+1 = z2.

By virtue of Lemma 3.2, this equation has solutions of the form (22k − 1, 1, 2k)
where k is a positive integer. Hence, (Mn, x, y, z) ∈ {(2k − 1, 1, 0, 2k)} is a
solution set of Mx

n + (Mn + 1)y = z2.
Now, suppose x, y ≥ 0. Since Mn = 2n − 1 > 1, it is clear that n > 1. From

this, it is easy to observe that Mn ≡ −1 (mod 4). So, Mn + 1 ≡ 0 (mod 4). It
follows then by Lemma 2.2 that for every positive integer x,

Mx
n ≡

{
1 (mod 4), if x is even,

3 (mod 4), if x is odd
.
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Also, it is easy to see that for every positive integer y, (Mn+1)y ≡ 0 (mod 4).
This means that

Mx
n + (Mn + 1)y ≡

{
1 (mod 4), if x is even,

3 (mod 4), if x is odd
.

Because z2 ≡ 1 (mod 4), it must be true that x is even. There exists a
positive integer k such that x = 2k. So, the equation now becomes M2k

n +
(Mn + 1)y = z2. This can be expressed as z2 − M2k

n = (Mn + 1)y. Since the
left-hand side of the equation is a difference of two squares, it can be factored
into (z − Mk

n)(z + Mk
n) = (Mn + 1)y. For the reason that Mn = 2n − 1, the

equation can be written as (z − Mk
n)(z +Mk

n) = 2ny. There exist nonnegative
integers u and v such that u+v = ny and u > v. So, the equation now becomes
(z−Mk

n)(z+Mk
n) = 2u+v. Since (z−Mk

n) < (z+Mk
n) and u > v, it follows that{

z +Mk
n = 2u,

z −Mk
n = 2v

.

Subtracting the two equations in the system results to 2Mk
n = 2u − 2v. Note

that the greatest common factor of 2u and 2v is 2v. This can be factored out,
resulting to 2Mk

n = 2v(2u−v−1). Note that 2v and 2u−v−1 are relatively prime.
Equating powers of 2 and non-powers of 2 results to{

2 = 2v,

Mk
n = 2u−v − 1

.

The first equation implies that v = 1, which implies that u > 1 , u+1 = ny
and z = Mk

n +2. Because v = 1 and Mn = 2n − 1, the second equation becomes

(2n − 1)k = 2u−1 − 1.

Three cases for the value of k and u are considered.

If u > 2 and k > 1, by Mihailescu’s Theorem, the equation has no integer
solution.

If u = 2, then (2n−1)k = 1, which implies that k = 0. This is a contradiction
to k being positive.

If k = 1, then x = 2, z = Mn + 2 and 2u−1 − 1 = 2n − 1. The latter
equation is equivalent to 2u−1 = 2n, which implies that u− 1 = n. It is known
that u + 1 = ny. The equations u − 1 = n and u + 1 = ny, when combined,
becomes 2 = ny − n = n(y − 1). Since n > 1, it can be concluded that n = 2
and y = 2. It follows that Mn = 3. This further implies that z = 5. Hence,
(Mn, x, y, z) = (3, 2, 2, 5).
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4. Concluding remarks

In this research study, we solve the exponential Diophantine equation Mx
n +

(Mn + 1)y = z2 in the set of nonnegative integers. Results show that when
y = 0, the equation has infinitely many solutions of the form (22k − 1, 1, 0, 2k)
where k is a positive integer. Also, when x = 0, it has only one solution which
is (7, 0, 1, 3). Moreover, when x and y are positive integers, the unique solution
is the quadruple (3, 2, 2, 5).
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