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Abstract. The notion of linear tangle was initially introduced as an obstacle to mixed
searching number and Linear decomposition, both of which have significant connections
to game theory and graph theory. In this concise paper, we introduce the concept of
ultra matroid on a connectivity system, which combines the matroid concept defined
on a set with the idea of an ultrafilter. Finally, we establish the equivalence between
linear tangle and ultra matroid under certain conditions.
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1. Introduction

The width parameter is a well-established concept in the field of graph theory.
Linear-width, which is one of its variations, has been extensively researched
in graph theory as well as in other fields such as network theory, topology,
geometry, and combinatorial mathematics. Scholars have conducted extensive
research on linear-width and other width parameters (e.g., [1], [2], [3], [4], [12],
[13], [14], [17], [18], [19], [20], [22], [23] [24] [25]).

Linear tangle, which obstructs Linear decomposition, was initially intro-
duced in the literature as an obstacle to mixed searching number, a concept
deeply related to both graph theory and game theory[1]. Given the significance
of studying linear-width as mentioned earlier, studying linear tangles is also
crucial.

Filter is widely used in various areas, such as set theory, combinatorial math-
ematics, and topology. When a filter is ultra, it is well-known that it includes
either the set A or its complement. Numerous studies have been conducted in
this area(e.g., [5], [6], [7]).

Matroids are concepts that find applications in optimization theory, com-
binatorial mathematics, topology, algebra, graph algorithm, game theory, ge-
ometry, network theory, artificial intelligence, fuzzy theory, and coding theory.
Due to their broad range of applications, matroids have gained considerable at-
tention, and several studies have been conducted on this subject(e.g., [8], [9],
[10], [11]). Matroids are characterized by the well-known axiom of augmentation
property or independent set exchange property.
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In this brief paper, we define a connectivity system as a pair (X, f), where
X is a finite set, and f is a symmetric submodular function. We then introduce
the new concept of an ultra matroid on the connectivity system (X, f), which
combines the ultrafilter idea with the matroid concept defined on the set X.
Finally, we establish the equivalence between linear tangle and ultra matroid
under certain conditions. The concept of matroids, which may seem unrelated
to graph theory at first glance, can be shown to be very interesting and novel
when combined with the properties of ultrafilters. This relationship adds a
significant level of relevance, making it a fascinating area of study.

2. Definition and preparation

This section provides mathematical definitions of each concept.

2.1 Symmetric submodular function and connectivity system

The definition of a symmetric submodular function is given below.

Definition 2.1. LetX be a finite set. A function f : X → N is called symmetric
submodular if it satisfies the following conditions:

� For all A ⊆ X, f(A) = f(X \A).

� For all A,B ⊆ X, f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

Lemma 2.2 ([13]). A symmetric submodular function f satisfies

1. For all A ⊆ X, f(A) ≥ f(∅) = f(X),

2. For all A,B ⊆ X, f(A) + f(B) ≥ f(A \B) + f(B \A).

In this short paper, a pair (X, f) of a finite set X and a symmetric submod-
ular function f is called a connectivity system. And we use the notation f for
a symmetric submodular function, a finite set X, and a natural number k.

Example 2.3. Consider X as the finite set {1, 2, 3}. For a symmetric sub-
modular function f : X → N, with A = {1, 2} and B = {2, 3}, we find that
f(A) + f(B) ≥ f(A ∩B) + f(A ∪B), demonstrating the concept of symmetric
submodularity.

2.2 Matroid on boolean algebra (X,∪,∩)

The definition of Matroid on boolean algebra (X,∪,∩) is shown below.

Definition 2.4. In Boolean algebra (X,∪,∩), the set family M ⊆ 2X is called
a matroid if the following axioms hold true:

(MB1) ∅ ∈ M .
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(MB2) If A ∈ M and B ⊆ A then B ∈ M .

(MB3) If A,B ∈ M and |A| < |B| then there exists e ∈ B \A such that A∪{e} ∈
M .

Axiom (MB2) is commonly known as the hereditary property, while axiom
(MB3) is often referred to as the augmentation property or independent set
exchange property. In addition, the combination of axiom (MB1) and axiom
(MB2) defines a combinatorial concept called an independence system, which is
also known as an abstract simplicial complex.

2.3 Matroid on a connectivity system (X, f)

In this manuscript, we present a definition of matroids on connectivity systems
(X, f) that mimics the concept of matroids on Boolean algebra. By imposing
restrictions on submodular functions for each axiom, we ensure a coherent and
natural definition.

Definition 2.5. Let X be a finite set and f be a symmetric submodular func-
tion. In a connectivity system (X, f), the set family M ⊆ 2X is called a matroid
of order k + 1 on (X, f) if the following axioms hold true:

(M0) For every A ∈ M , f(A) ≤ k,

(M1) ∅ ∈ M ,

(M2) If A ∈ M , B ⊆ A, and f(B) ≤ k then B ∈ M ,

(M3) If A,B ∈ M , |A| < |B|, e ∈ X, f({e}) ≤ k, and f(A ∪ {e}) ≤ k, then
there exists e ∈ B \A such that A ∪ {e} ∈ M .

Furthermore, let us define an order k+1 matroid M ⊆ 2X on a connectivity
system (X, f) as an Ultra Matroid if it satisfies the following Axiom (M4):

(M4) For any subset A ⊆ X, if f(A) ≤ k, then either A ∈ M or X \A ∈ M .

Axiom (M4) imitates the idea of Ultrafilters, which states that ”either a set
A or its complement belongs to the (Ultra)filter.” Therefore, ultra matroids can
be interpreted as matroids that include only one side.

2.4 Linear tangle: deep relation to linear width and Linear
decomposition

The definition of a linear tangle on a connectivity system (X, f) is given below.
Linear tangle, which obstructs Linear decomposition, was first introduced in the
literature [1].

Definition 2.6 ([1]). Let X be a finite set and f be a symmetric submodular
function. A linear tangle of order k + 1 on a connectivity system (X, f) is a
family L ⊆ 2X , satisfying the following axioms:
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(L1) ∅ ∈ L,

(L2) For A ⊆ X, if f(A) ≤ k then either A ∈ M or X \A ∈ M ,

(L3) If A,B ∈ L, e ∈ X, and f({e}) ≤ k, then A ∪B ∪ {e} ≠ X.

We propose to use the augmentation property of matroids by considering
the following axiom L3′ instead of L3. We refer to a linear tangle of order k+1
on a connectivity system (X, f) that satisfies the axioms L1, L2, and L3′ as a
restricted linear tangle of order k + 1.

(L3’) If A,B ∈ L, |A| ≠ |B|, e ∈ X, and f({e}) ≤ k, then A ∪B ∪ {e} ≠ X.

3. Main result: equivalence between restricted linear tangle and
ultra matroid

We show equivalence between a restricted linear tangle on a connectivity sys-
tem (X, f) and an ultra matroid on a connectivity system (X, f) under the
assumption that f({e}) ≤ k for every e ∈ X.

Theorem 3.1. LetX be a finite set and f be a symmetric submodular function.
Under the assumption that f({e}) ≤ k for every e ∈ X, the family W ⊆ 2X

being an order k + 1 restricted linear tangle and W ⊆ 2X being an order k + 1
ultra matroid are equivalent necessary and sufficient conditions.

Proof. Suppose that W is an ultra matroid of order k + 1 on the connectivity
system (X, f). We need to show that W is a restricted linear tangle of order
k + 1 on the connectivity system (X, f).

First, we show that W satisfies the axioms (L1) and (L2) of a restricted
linear tangle. Since W is an ultra matroid of order k + 1, it satisfies Axiom
(M4), which implies that for any subset A ⊆ X, if f(A) ≤ k, then either A ∈ W
or X \ A ∈ W . In particular, for the empty set ∅, we have f(∅) = f(A) ≤ k,
and hence ∅ ∈ W . Moreover, if A ⊆ X and f(A) ≤ k, then either A ∈ W or
X \A ∈ W by Axiom (M4), which shows that W satisfies Axiom (L2) as well.

Next, we prove that W satisfies the axiom (L3’) of a restricted linear tangle.
Let A,B ∈ W and e ∈ X be such that f({e}) ≤ k. We need to show that
A ∪B ∪ {e} ≠ X. Suppose, on the contrary, that A ∪B ∪ {e} = X. We choose
a triple (A,B, {e}) that minimizes |A ∩ B| among such triples. First, we claim
that A ∩B = ∅.

Since 2k ≥ f(A) + f(B) ≥ f(A \ B) + f(B \ A), at least one of f(A \ B)
or f(B \ A) is at most k. Without loss of generality, assume that f(A \ B) is
at most k. Hence, by axiom (M2), A \ B ∈ M . If A ∩ B ̸= ∅, then we have
|A ∩ B| > |(A \ B) ∩ B|, which contradicts the choice of the triple. Thus, we
have shown that A ∩B = ∅.

Next, we claim that e /∈ A and e /∈ B. Suppose, on the contrary, that e ∈ A
or e ∈ B. If e ∈ A, then A ∪ B = X, which implies that X \ A = B ∈ M , but
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this contradicts the axiom (M4). Similarly, we know that e /∈ B holds. Now,
we know that the triple (A,B, {e}) consists of a partition of X. Hence, we have
f(A ∪ {e}) = f(X \B) = f(B) ≤ k.

If |A| < |B|, by axiom (M3) there exists e′ ∈ B \A such that A ∪ {e′} ∈ M .
This contradicts that there not exists e′ ∈ B \A such that A∪{e′} ∈ M because
the triple (A,B, {e}) consists of a partition of X. If |B| < |A|, by axiom (M3)
there exists e′′ ∈ A\B such that B∪{e′′} ∈ M . This contradicts that the triple
(A,B, {e}) consists of a partition of X. So W satisfies the axiom (L3’).

Therefore, we have shown that W satisfies all the axioms (L1), (L2), and
(L3’) of a restricted linear tangle. Hence, W is a restricted linear tangle of order
k + 1 on the connectivity system (X, f).

Assume that f({e}) ≤ k for every e ∈ X and let W be a restricted linear
tangle of order k + 1 on the connectivity system (X, f). We will show that W
satisfies the axioms of an ultra matroid of order k+1 on the connectivity system
(X, f).

(M0) For any A ∈ W , we have by definition of a restricted linear tangle that
f(A) ≤ k, hence (M0) is satisfied.

(M1) Since ∅ is an element of W by definition of a restricted linear tangle,
it is also an element of W , hence the axiom (M1) is satisfied.

(M2) Let A ∈ W , B ⊆ A, and f(B) ≤ k. We need to show that B ∈ W .
Suppose, to the contrary, that there exist subsets A and B such that A ⊆ B,
f(A) ≤ k, B ∈ W , and A /∈ W . Then, we have X \ A ∈ W by the axiom (L2),
and for any e ∈ X, (X \A)∪{e}∪B = X holds, but this contradicts the axiom
(L3’) of a restricted linear tangle. So the axiom (M2) is satisfied.

(M3) Let A,B ∈ W , |A| < |B|, e ∈ X, f({e}) ≤ k, and f(A ∪ {e}) ≤
k. We need to show that there exists e ∈ B \ A such that A ∪ {e} ∈ W .
Suppose, to the contrary, that there exists a subset A, B ∈ W and an element
e ∈ B \ A such that f(A ∪ {e}) ≤ k and A ∪ {e} /∈ W hold. Then, we have
(X \A)∩ (X \ {e}) ∈ W by the axiom (L2). Hence A, (X \A)∩ (X \ {e}) ∈ W
and A∪ (X \A)∩ (X \{e})∪{e} = X hold. However, this contradicts the axiom
(L3’). So the axiom (M3) is satisfied.

Therefore, W satisfies all the axioms of an ultra matroid of order k + 1 on
the connectivity system (X, f). This proof is completed.

4. Conclusion

In this brief manuscript, we have established the equivalence between linear
tangles and ultra matroids, subject to certain conditions. Going forward, we
intend to further explore the connections between not only matroids, but also
antimatroids and greedoids.
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