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Abstract. In this note, particular two-dimensional inequalities of Drépal-Valent type
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In [3], A. Drépal and V. Valent proved that in a finite quasigroup @ of
order n the number of associative triples a(Q) > 2n — i(Q) + (01 + J2), where
i(Q) is the number of idempotents in Q, ie., i(Q) = {z € Qlzx = x}|,
h=NHzeQlzz#zforallzeQ} and do = |[{z€ Q|azz#z forall z € Q}
[3,Theorem 2.5]. This important result is an easy consequence of the inequality

n k
> (aF + 07 +aib) = Y (a;+b;) > 3n—2k+ (r+ ),

i=1 i=1
where n > k > 0, a1,...,a,,b1...,b, are non-negative integers such that
Soiia; =n =y b,a >1and by > 1for 1 < i < k, r is the num-
ber of i with a; = 0 and s is the number of ¢ with b; = 0 ([3, Proposition
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2.4(ii)]. The lengthy and complicated proof of this DVT-inequality (inequality
of Drapal-Valent type) in [3] is based on highly semantically involved insight.

In [4], a very short elementary arithmetical proof of a more general inequal-
ity of this type was found. This inequality is two-dimensional in the sense that
it works with two m-tuples of integers. The approach in [4] opens a road to
investigation of similar inequalities of DVT-type which could be useful in fur-
ther investigations of estimates in non-associative algebra and they are also of
independent interest. Hence, they deserve a thorough examination, however
the research is only at its beginning. In [1] and [2], the one-dimensional case
working with one n-tuple of real numbers was investigated. In this note, the
two-dimensional case of inequalities of Drapal’s type is investigated. Among
other results, it is shown that

n

23 (a7 + b7 +aib) =3 (ai+b;)+2(r +s),
=1 i=1

where a1, ..., an,b1,..., by, are arbitrary integers with > 1" a; > n, > 1" by > n,
r is the number of 7 with a; = 0 and s is the number of ¢ with b; = 0. The case
when the equality holds is characterized and several other inequalities of this
type are investigated.

1. First concepts

Let n > 1 and let o = (aq,...,an), 8 = (b1,...,b,) be an ordered n-tuples of
integers. We put

1. z(a,a) = {i|1 <i<mn,a; =a}l|, for every a € R;

2. z(a) = ( 0);
)

6. p(OZ,B) Z 1azbu
7 T(O%B) Zz 1 'L Zz 1 1+22 1(11 i)
8. t(a,B) = 2300 a7 + 2300 07 + 2500 aibi =33 ai — 330 bi

2z(a) — 2z(P).
We thus have
(9) 7, B) = iy (ai + b)) = ple, B) (= r(a+ B) = ple, B));

(10) t(a, B) = 2r(e, B) — 3s(a) — 3s(B) — 22(e) — 22(B) (= 2(
Z(ﬁ))—38(a+ﬁ) =2(r(e, B) — s(a) = s(B) — 2(a) — 2(B)
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If s(a) = n = s(8) then
(11) ta, B) = 2(r(a, B) — 3n — 2(a) — 2(8)).

Lemma 1.1. (o, 8) = 2t(a) + 2t(8) + 2p(a, B) — s(a) — s(B).

Proof. Easy to check directly. 0

Lemma 1.2. Puty =a+f = (a1 +b1,...,an +by). Then, t(a,f) = t(a) —
2(0) +H(8) — 2(8) +H(7) + 2(7) — 5(7) = t(2) — 2(a) + t(8) — =(8) + () — 25().

Proof. By 1.1, t(a, 8) = 2t(a) +2t(3) + 2p(a, B) — s(a) — s(B) = t(a) +t(B) +
(@) +7(B8) + 2p(a, B) — 2s(a) — 25(8) — 2(a) — 2(8) = t(a) + t(B) + () —
2s(y) — z(a) — z(B) and the rest is clear.

O

Lemma 1.3. Put § = a+ 8 —-1= (a1 +b1 — 1,...,an + b, — 1). Then,
t(a, ) = t(a) — z(a) + t(B) — z(B) + () — n.

Proof. We have r(a + ) — 2s(a + 8) = >0 (a; + b;)? =250 (a; + b;) =

D1 G+ b2 aibi =230 ai =230 by =30 (ai+bi—1)? —n =
r(d) —n and it remains to use 1.2. O

Lemma 1.4. Pute = a+8—-2 = (a1 + b1 — 2,...,an + by — 2). Then,
t(a, B) = t(a) — z(a) + t(B) — z(B) + r(e) + 2s(e).

Proof. We have r(¢) 4 2s(e) = r(a+ 3) —4s(a + ) + 4n+ 2s(a + ) — 4n =
r(a+ B) — 2s(a + B) and it remains to use 1.2. O

Lemma 1.5. Put oy = a—1 and 5y = 5—1. Then, t(a, 5) = 2r(ay)+2r(81) +
2p(aq, f1) + 3s(aq) + 3s(B1) — 22(aq, —1) — 22(By, —1).

Proof. Easy to check directly. O

Lemma 1.6. (i) 7(a) > > |ai| > |s(a)].

(ii) 7(cr) + s(a) > 0.
(i) (o) = > .0 |as| if and only if a; € {0,1, -1}, for every i.
(iv) r(a) = s(«) if and only if a; € {0,1}, for every i.

Proof. Easy to see. O

Lemma 1.7. (i) If s(o) > 0 then r(a) + 2s(a) > r(a) > 0.
(i) If >°0 lai + 1] > n then r(a) + 2s(a) > 0.

Proof. (i) This is obvious.
(i) We have r(a) + 2s(a) =r(a+1)—n> (3, la; +1|) —n > 0. O

Lemma 1.8. If s(a) > 2n or Y " | |a; — 1| > n then r(a) — 2s(a) > 0.

Proof. We have r(a) —2s(o) =r(a—1)—n>>" lai— 1 —n>>" (a; —
1) —n=s(a) —2n. O



4 BARBORA BATIKOVA, ToMAS J. KEPKA AND PETR C. NEMEC

Remark 1.9. First of all, if a; < —2 then a; 2_1>3.Ifa; = —1 then ZQ .
Ifal—Othena —1=-1. Ifaz—lthena —1=0. Ifa122thena12— > 3.
Now, if g = [{iai > 2} then r(a) - n > 3 — =(a).

Remark 1.10. First of all, if a; < —1 then a? —2a; > 3. If a; = 0 then
a?—2ai =0. If a; = lthena?—Qai = —1. If a; = 2thena?—2ai = 0.
If a; > 3 then a? — 2a; > 3. Now, if h = [{i]a; < 0} + |{i|a; > 3}| then
r(a) —2s(a) > 3h — z(a, 1).

Remark 1.11. First of all, if a; < —3 then a? + 2a; > 3. If a; = —2 then
a? +2a; = 0. If ¢q; = —1 then a? + 2a; = —1. If a; = 0 then a? + 2a; = 0.
If a; > 1 then a? + 2a; > 3. Now, if k = [{i]|a; < =3} + |[{i|a; > 0}| then
r(a) + 2s(a) > 3k — z(ao, —1).

Lemma 1.12. (i) r(«) > 22(a) —2n+ 31" |ai| > 22(a) — 2n + 3s(a).

(ii) r(a) = 2z(a) —2n+3s(a) if and only if a; € {0,1,2}, for everyi=1,...,n

Proof. This result was proved in [1,6.1] in a more general setting. O

2. Technical results (a)

Let n > 2 and let « = (ay,...,a,) and 8 = (b1,...,b,) be ordered n-tuples of

integers. Choose 1 < j, k <mn, j 75 k, and define v = (c1,...,¢,) as ¢;j = a; — 1,

¢, = ap+ 1 and ¢; = a; for i # j,k (see [1, Section 2]). Clearly, s(a) = s(y).
The following assertions are easily seen:

Lemma 2.1. p(a, 5) = p(7, B) + (bj — bg).

Lemma 2.2. r(a, ) = (7, 8) + 2(aj — ar — 1) + bj — by

Lemma 2.3. t(«, ) = t(v,8) +4(aj —ap — 1) +2(bj — b) + 22(y) — 22(w).
Lemma 2.4. (i) Ifa; =0 and ar, = —1 then t(a, f) = t(v, 5) +2(b; — by).

(ii) If a; = 1 and a, = 0 then t(c, B) = t(7, B) + 2(bj — by).

(iii) If a; =1 and a = —1 then t(a, B) = t(7, ) + 2(bj — b, +4).

(iv) If aj = 0 = ay, then t(a, B) = t(v, B) + 2(bj — by, — 4).

Lemma 2.5. (i) Ifa; # 0,1 and ay, # —1,0 then t(o, f) = t(v, f) +4(a; —ap —
1) +2(b; — by).

(ii) If a; # 0,1 and a, = —1 then t(c, B) = t(v, B) + 4a; + 2(b; — by, + 1).
(iii) If aj =1 and a, # —1,0 then t(a, B) = t(v, B) — 4ay + 2(bj — by, + 1).
(iv) If aj # 0,1 and ay, = 0 then t(a, B) = t(v, B) + 4a; + 2(b; — b, — 3).

(v) If a; =0 and ay, # —1,0 then t(a, B) = t(v, B) — 4ay, + 2(bj — by, — 3).

Lemma 2.6. Ifa; > 2 and a, = 0 then t(o, B) = t(v, ) +2(2a; —3+b; —by) >
t(y,8) +2(b; — b + 1).

Lemma 2.7. Ifa; > 2 and a, = —1 then t(a, 5) = t(v, 5)+2(2a;+14+b;—by) >
t(vy,8) + 2(1)]' — by +5).

Lemma 2.8. Ifa; > 2 and ap, < —2 then t(o, B) = t(7, 8) + 2(2a; — 2a, — 2 +
bj — bk) = t(v,8) + 2(bj — b + 6).
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3. Technical results (b)

Let a,b be integers and put z(0) = 1, z(a) = 0 for a # 0 and t(a,b) = 2a® +
20 + 2ab — 3a — 3b — 2z(a) — 2z(b) (= t(b,a)).

Lemma 3.1. Let a # 0 and b # 0. Then:

(i) z(a) = 0 = 2(b) and t(a,b) > 0.

(ii) t(a,b) = 0 if and only ifa =1 =b.

(iii) t(a,b) # 1.

(iv) t(a,b) = 2 if and only if eithera=1,b=—1 ora=—1, b= 1.
(v) t(a,b) =3 if and only if eithera =2, b=—1 ora=—1, b= 2.

Proof. Taking into account that t(a,b) = t(b, a), the proof is divided into seven
parts:

(1) Assume @ > 2, b > 2. Then, 242 — 3a > 2, 2b> — 3b > 2 and 2ab > 8.
Consequently, t(a,b) > 12.

(2) Assume a > 2, b = 1. Then, 2a% — 3a > 2, 2b> — 3b = —1 and 2ab > 4.
Consequently, t(a,b) > 5.

(3) Assume a =1 =b. Then, t(a,b) = 0.

(4) Assume a + b = 1. Then, t(a,b) = 2a® — 2a — 1. Since a + b = 1, we have
a# 1. If a > 3 then 2a2—2a—1>11. Ifa = 2 then 2a2—2a—1 =3 and b = —1.
If a = —1 then 2a2 —2a — 1 =3 and b= 2. If a < —2 then 2a? — 2a — 1 > 11.
(5) Assume a + b = 2.Then, t(a,b) = 2a% — 4a + 2. Since a + b = 2, we have
a+#2 If a>3then 20> —4a+2>8. Ifa =1 then 24> —4a+2=0and b= 1.
If a < —1 then 2a® — 4a + 2 > 8.

(6) Assume a < 0, b > 0 and put ¢ = 2a®+2b*+4ab—3a—3b = 2(a+b)%2—3(a+Db).
Then, t(a,b) > c¢. If a4+ b < —1 then ¢ > 5 and ¢(a,b) > 6. If a + b = 0 then
t(a,b) = 2a®. Hence, t(a,b) > 8 for a < —2 and 2a®> = 2 for a = —1 (then
b=1). If a+b = 2 then (4) applies. If a + b = 2 then 5) applies. Finally, if
a+b> 3 then t(a,b) = (a+b)(a+b—3)+a? +b* > 17.

(7) Assume a < 0, b < 0. Then, t(a,b) > 12. O

Remark 3.2. Let a be a non-zero integer. Then, t(a,0) = 2a% — 3a — 2, and
hence t(a,0) > 7 for a > 3, t(a,0) = 0 for a = 2, t(a,0) = =3 for a = 1,
t(—1,0) = 3 and t(a,0) > 12 for a < —2. Further, ¢(0,0) = —4.

Lemma 3.3. Leta > 2 and b > 1. Then, t(a,b) > t(a,—b) + 2.

Proof. We have t(a,b) — t(a,—b) = 4ab — 6b > 2b > 2. O
Lemma 3.4. Leta>1 and b > 0. Then:

(i) t(a+1,b) > t(a,b).

(ii)) Ifc>a,d>band c+d > a+0b then t(c,d) > t(a,b).

Proof. We have t(a + 1,b) — t(a,b) =4a+2b—1 > 4a — 1 > 0 and the rest is
clear. O
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4. The inequalities

Throughout this section, let n > 1, a,b be integers, a = (a1, ...,a,) and
(b1,...,b,) be ordered n-tuples of integers. Put I = {1,...,n}, A = {4
I'la; > 0,b; > 0,a; +b; > 3}, B, = {Z € Il(ai,b;) = (2,0)}, By = {Z
I‘ (ai,bi) = (0,2)}, B3 = {Z S I|(ai,b7;) = (1,1)}, B = By UByU B3, (4
{i S I\(ai,bi) = (2,—1)}, Cy = {l S I\(ai,bi) = (—1,2)}, C = C1 UC(Cy,
D :{i€I|(ai,b¢) = (0,1)}, D, :{’i €I|((li,bi) = (1,0)}, D = Dy U Dy and
E={ieTI|(ajb;) =(0,0)}. For X = A By,...,E, denote x = |X|. Clearly,
t(a, B) = Z?zl t(ai, b;).

Example 4.1. Taking into account 3.1 and 3.2, it is easy to see that if [ =
BUCUDUE and 3c = 3d + 4e then t(a, 5) = 0.

mm

Theorem 4.2. Lety . ja; >nandy ;b >n. Put zy ={iel|a; =0} =
z(a) and zg = |{i € I|b; =0}| = z(8). Then:

(1) 230 (a2 + b2 4+ aib;) > 350 (ai +b;) +2(21 + 22).

(i) 2> (a; + b;)? > 2 Yo aibi £330 (@i 4+ bi) + 2(z1 + 22).

(iii) The equalities hold if and only if I = B, by = by, 2b; < n and by = n—2b;.
In this case, Y ja;=n=> 1 b.

Proof. Clearly, (i) & (ii) & t(o,8) > 0. By 1.2, t(a,8) = t(a) — z(a) +
t(B) — z(B) + q, where ¢ = r(a+ ) — 2s(a + (). By [1,6.1(1)],t(r) — z(ax) =
St ial =" jai— 2z > 23" a; —n) > 0 and ¢(3) — 2(8) > 0. By 1.8,

q > 0, and hence t(«, 8) > 0.

Now, assume that t(«, ) = 0. Then, t(a) = z(a), t(5) = 2(8) and ¢ = 0.
By 1.12(i), 0 = t(a) — z(a) = r(a) — s(a) — 2z(a) > 2s(a) — 2n > 0, and hence
s(a) = n. Then, >0 ja; = n, Y-y b; = n and a;,b; € {0,1,2}, for every
i € I by 1.12(ii). Further, by 1.4, ¢ =r(a+ 8 —2) + 2s(a + 5 — 2) = 0. Since
s(a+p—2) =s(a)+s(f)—2n =0, we get «+ 5 —2=0. Thus a; +b; = 2, for
every i € I and (a;,b;) € B. Finally, s(a) = 2b; + bs = n = s(5) = 2by + ba.
Hence, by = bs, 2b; < n and bg = n — 2by. Conversely, if 2b; < n, by = by and
b3 =n—2by then > ; a; =2b;+bg =n=2by+bz =37, b and t(a, ) =0
by 3.1. O

Remark 4.3. By 4.2(iii), the situation Y a; > n, Y - b; > n, t(a,B) =0
is completely described. In order to find all such pairs «, 8, choose p > 0 such
that 2p < n and take p pairs (2,0), p pairs (0,2) and n — 2p pairs (1,1).

Remark 4.4. Consider the situation from 4.2. The following inequalities follow
from 4.2(i),(i1): 327 (af + b7 + aibs) > 320, (i +bi) +n+ 21 + 22, 351 (aF +
b2 4+ aib;) > 3n+ 21 + 22, Yor (@i +b;)% > 30 (a5 + bi 4+ aib;) + 1+ 21 + 29,
S (ai +b;)% > 3" aib; + 3n+ 21 + 22 and the equalities hold if and only if
the conditions from 4.2(iii) are satisfied.

Remark 4.5. Consider the situation from 4.2 and its proof. Now, by 1.6(i),
rla+p—-1) > s(a+p—-1) =s(a) + s(B) —n, so that ¢ > s(a) + s(8) — 2n.
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Consequently, 2r(a) +2r(8) + 2p(a, B) — 4s(a) — 45(B) + 20 — 22(a) — 22(B)
Hao B) — s(a) — 5(8) +2n = t(a) — 2(a) + £(8) — 2(8) + q — s(a) — 5(5)
2n > 0. From this, t(a, 8) > s(a) + s(8) — 2n and Y. (a? + b7 + a;b;)
23" (ai + b;) — n+ z1 + z2. This inequality is a slight improvement of 4.2(i),
since 4(s(a) 4+ s(B)) — 2n > 3(s(a) + s(B)). Of course, if s(a) =n = s(B) then
we get Y1 (a? + b7 + a;b;) > 3n+ 21 + 2.

+
>

Remark 4.6. In view of 4.4, put ' (a, 8) = r(«, 8) — 2s(a)) — 2s(8) +n— z(«a) —

2(B). Now, t(a, ) — 2t'(a, B) = s(a) + s(B8) — 2n. Thus t(«a,B) > 2t'(«, B) if
and only if s(a + 8) > 2n. Notice also that t/(a, 8) = r(a) — 2s(a) —

z(a)
) +4(B) = s(8) +p(e, B) +n

I+

r(B) = 2s(8) = 2(B) + p(, B) + n = t(a) — s(a
r(a+pB) =2s(a+p) —pla, B) +n—z(a) = 2(8) = r(a=1) —z() +r(8 - 1) —
2(B) +pla, ) —n=r(a+8—=2)+2s(a+5+2) —ple, f) +n —z(e) — 2(B) =
r(a+ B —1) = pla, B) — z(a) — 2(B).
Using 1.4, we have 2t'(«, B) = t(«, 8) — s(a) — s(8) + 2n = t(a) — z(a) +
t(B) = 2(B) +r(a+f —2) +2s(a+ 5 - 2) — s(a) — s(B) + =t(a) = z(a) +
t(B)—z(B)+r(a+B-2)+s(a+p—-2) > t(a) — z(a) + (B ) z() by 1.6(ii).

Theorem 4.7. Let " ,|a;| > n and >, |bi| > n. Put z1 = z(a) and
zo = z(f). Then:

(1) Yo (af + 07 +abi) > 2370 (@i + i) —n+ 21 + 2.

(i) Yor q(ai + )% > 30 aibi + 250 (a; + b)) —n+ 21 + 2.

(iii) The equalities hold if and only if the conditions from 4.2(iii) are satisfied.

Proof. Clearly, the inequalities are equivalent to t'(«, ) > 0. By 1.12(i), t(a) —
2(a) = (@)~ X0 (@) -22(a) > ra) S0, fai] ~22(a) > r(@)~3 0, |a)il+
2n — 2z(«) > 0. Similarly, t(8) — z(8) > 0 and t'(«, 8) > 0 by 4.6.

If t'(cv, B) = 0 then t(a) — z(a)) = 0 = t(B) — z(3), hence (see the proof of 4.2)
s(a) = n = s(B) and from 4.6 follows that t(«, 3) = 2t'(«, B) +s(a) +s(b) —2n =
0. The rest follows from 4.2. O

Remark 4.8. It follows from 4.6 and 4.7 that t(a, 3) > 0, provided that
Doy lail =, 350 [bi| > noand s(a) + s(8) > 2n.

Proposition 4.9. Let a = (ay,...,ay) and B = (b1,...,b,) be n-tuples of non-
zero integers. Then:

(1) 25" (a2 + b2 + a;bi) > 3> 1 (a; + bi) +2(21 + 22).

(i) 2300 (@i +b:)* > 2300 agb; + 3350 1<az +b;) + 2(Z1 + zz)

(iii) The equalities hold if and only if a1 = --- = a, = by = by, = 1.

Proof. Use 4.1(i),(ii). O
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