Inequalities of DVT-type-the two-dimensional case

Barbora Batíková

Department of Mathematics CULS Kamýcká 129 165 21 Praha 6-Suchdol Czech Republic batikova@tf.czu.cz

Tomáš J. Kepka

Faculty of Education Charles University M. Rettigové 4 116 39 Praha 1 Czech Republic tomas.kepka@pedf.cuni.cz

Petr C. Němec*

Department of Mathematics CULS Kamýcká 129 165 21 Praha 6-Suchdol Czech Republic nemec@tf.czu.cz

Abstract. In this note, particular two-dimensional inequalities of Drápal-Valent type in integer numbers are investigated.

Keywords: integer numbers, inequality.

MSC 2020: 11D75.

In [3], A. Drápal and V. Valent proved that in a finite quasigroup Q of order n the number of associative triples $a(Q) \geq 2n - i(Q) + (\delta_1 + \delta_2)$, where i(Q) is the number of idempotents in Q, i.e., $i(Q) = |\{x \in Q | xx = x\}|$, $\delta_1 = |\{z \in Q | zx \neq x \text{ for all } x \in Q\}|$ and $\delta_2 = |\{z \in Q | xz \neq x \text{ for all } x \in Q\}|$ [3, Theorem 2.5]. This important result is an easy consequence of the inequality

$$\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) - \sum_{i=1}^{k} (a_i + b_i) \ge 3n - 2k + (r+s),$$

where $n \geq k \geq 0$, $a_1, \ldots, a_n, b_1, \ldots, b_n$ are non-negative integers such that $\sum_{i=1}^n a_i = n = \sum_{i=1}^n b_i$, $a_i \geq 1$ and $b_i \geq 1$ for $1 \leq i \leq k$, r is the number of i with $a_i = 0$ and s is the number of i with $b_i = 0$ ([3, Proposition

^{*.} Corresponding author

2.4(ii)]. The lengthy and complicated proof of this DVT-inequality (inequality of Drápal-Valent type) in [3] is based on highly semantically involved insight.

In [4], a very short elementary arithmetical proof of a more general inequality of this type was found. This inequality is two-dimensional in the sense that it works with two n-tuples of integers. The approach in [4] opens a road to investigation of similar inequalities of DVT-type which could be useful in further investigations of estimates in non-associative algebra and they are also of independent interest. Hence, they deserve a thorough examination, however the research is only at its beginning. In [1] and [2], the one-dimensional case working with one n-tuple of real numbers was investigated. In this note, the two-dimensional case of inequalities of Drápal's type is investigated. Among other results, it is shown that

$$2\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 3\sum_{i=1}^{n} (a_i + b_i) + 2(r+s),$$

where $a_1, \ldots, a_n, b_1, \ldots, b_n$ are arbitrary integers with $\sum_{i=1}^n a_i \ge n$, $\sum_{i=1}^n b_i \ge n$, r is the number of i with $a_i = 0$ and s is the number of i with $b_i = 0$. The case when the equality holds is characterized and several other inequalities of this type are investigated.

1. First concepts

Let $n \geq 1$ and let $\alpha = (a_1, \ldots, a_n), \beta = (b_1, \ldots, b_n)$ be an ordered *n*-tuples of integers. We put

- 1. $z(\alpha, a) = |\{i | 1 \le i \le n, a_i = a\}|, \text{ for every } a \in \mathbb{R};$
- 2. $z(\alpha) = z(\alpha, 0)$;
- 3. $s(\alpha) = \sum_{i=1}^{n} a_i$;
- 4. $r(\alpha) = \sum_{i=1}^{n} a_i^2$;
- 5. $t(\alpha) = r(\alpha) s(\alpha) z(\alpha)$;
- 6. $p(\alpha, \beta) = \sum_{i=1}^{n} a_i b_i$;
- 7. $r(\alpha, \beta) = \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} a_i b_i$;
- 8. $t(\alpha, \beta) = 2\sum_{i=1}^{n} a_i^2 + 2\sum_{i=1}^{n} b_i^2 + 2\sum_{i=1}^{n} a_i b_i 3\sum_{i=1}^{n} a_i 3\sum_{i=1}^{n} b_i 2z(\alpha) 2z(\beta)$.

We thus have

(9)
$$r(\alpha, \beta) = \sum_{i=1}^{n} (a_i + b_i)^2 - p(\alpha, \beta) (= r(\alpha + \beta) - p(\alpha, \beta));$$

(10)
$$t(\alpha,\beta) = 2r(\alpha,\beta) - 3s(\alpha) - 3s(\beta) - 2z(\alpha) - 2z(\beta) \ (= 2(r(\alpha,\beta) - z(\alpha) - z(\beta)) - 3s(\alpha + \beta) = 2(r(\alpha,\beta) - s(\alpha) - s(\beta) - z(\alpha) - z(\beta)) - s(\alpha) - s(\beta) \).$$

If $s(\alpha) = n = s(\beta)$ then

$$(11) \ t(\alpha, \beta) = 2(r(\alpha, \beta) - 3n - z(\alpha) - z(\beta)).$$

Lemma 1.1. $t(\alpha, \beta) = 2t(\alpha) + 2t(\beta) + 2p(\alpha, \beta) - s(\alpha) - s(\beta)$.

Proof. Easy to check directly.

Lemma 1.2. Put $\gamma = \alpha + \beta = (a_1 + b_1, \dots, a_n + b_n)$. Then, $t(\alpha, \beta) = t(\alpha) - z(\alpha) + t(\beta) - z(\beta) + t(\gamma) + z(\gamma) - s(\gamma) = t(\alpha) - z(\alpha) + t(\beta) - z(\beta) + r(\gamma) - 2s(\gamma)$.

Proof. By 1.1, $t(\alpha, \beta) = 2t(\alpha) + 2t(\beta) + 2p(\alpha, \beta) - s(\alpha) - s(\beta) = t(\alpha) + t(\beta) + r(\alpha) + r(\beta) + 2p(\alpha, \beta) - 2s(\alpha) - 2s(\beta) - z(\alpha) - z(\beta) = t(\alpha) + t(\beta) + r(\gamma) - 2s(\gamma) - z(\beta)$ and the rest is clear.

Lemma 1.3. Put $\delta = \alpha + \beta - 1 = (a_1 + b_1 - 1, ..., a_n + b_n - 1)$. Then, $t(\alpha, \beta) = t(\alpha) - z(\alpha) + t(\beta) - z(\beta) + r(\delta) - n$.

Proof. We have $r(\alpha + \beta) - 2s(\alpha + \beta) = \sum_{i=1}^{n} (a_i + b_i)^2 - 2\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sum_{i=1}^{n} a_i b_i - 2\sum_{i=1}^{n} a_i - 2\sum_{i=1}^{n} b_i = \sum_{i=1}^{n} (a_i + b_i)^2 - n = r(\delta) - n$ and it remains to use 1.2.

Lemma 1.4. Put $\varepsilon = \alpha + \beta - 2 = (a_1 + b_1 - 2, \dots, a_n + b_n - 2)$. Then, $t(\alpha, \beta) = t(\alpha) - z(\alpha) + t(\beta) - z(\beta) + r(\varepsilon) + 2s(\varepsilon)$.

Proof. We have $r(\varepsilon) + 2s(\varepsilon) = r(\alpha + \beta) - 4s(\alpha + \beta) + 4n + 2s(\alpha + \beta) - 4n = r(\alpha + \beta) - 2s(\alpha + \beta)$ and it remains to use 1.2.

Lemma 1.5. Put $\alpha_1 = \alpha - 1$ and $\beta_1 = \beta - 1$. Then, $t(\alpha, \beta) = 2r(\alpha_1) + 2r(\beta_1) + 2p(\alpha_1, \beta_1) + 3s(\alpha_1) + 3s(\beta_1) - 2z(\alpha_1, -1) - 2z(\beta_1, -1)$.

Proof. Easy to check directly.

Lemma 1.6. (i) $r(\alpha) \ge \sum_{i=1}^{n} |a_i| \ge |s(\alpha)|$.

- (ii) $r(\alpha) + s(\alpha) \ge 0$.
- (iii) $r(\alpha) = \sum_{i=1}^{n} |a_i|$ if and only if $a_i \in \{0, 1, -1\}$, for every i.
- (iv) $r(\alpha) = s(\alpha)$ if and only if $a_i \in \{0, 1\}$, for every i.

Proof. Easy to see.

Lemma 1.7. (i) If $s(\alpha) \ge 0$ then $r(\alpha) + 2s(\alpha) \ge r(\alpha) \ge 0$.

(ii) If $\sum_{i=1}^{n} |a_i + 1| \ge n$ then $r(\alpha) + 2s(\alpha) \ge 0$.

Proof. (i) This is obvious.

(ii) We have
$$r(\alpha) + 2s(\alpha) = r(\alpha + 1) - n \ge (\sum_{i=1}^{n} |a_i + 1|) - n \ge 0.$$

Lemma 1.8. If $s(\alpha) \ge 2n$ or $\sum_{i=1}^{n} |a_i - 1| \ge n$ then $r(\alpha) - 2s(\alpha) \ge 0$.

Proof. We have
$$r(\alpha) - 2s(\alpha) = r(\alpha - 1) - n \ge \sum_{i=1}^{n} |a_i - 1| - n \ge \sum_{i=1}^{n} (a_i - 1) - n = s(\alpha) - 2n$$
.

Remark 1.9. First of all, if $a_i \le -2$ then $a_i^2 - 1 \ge 3$. If $a_i = -1$ then $a_i^2 - 1 = 0$. If $a_i = 0$ then $a_i^2 - 1 = -1$. If $a_i = 1$ then $a_i^2 - 1 = 0$. If $a_i \ge 2$ then $a_i^2 - 1 \ge 3$. Now, if $g = |\{i \mid |a_i| \ge 2\}|$ then $r(\alpha) - n \ge 3g - z(\alpha)$.

Remark 1.10. First of all, if $a_i \leq -1$ then $a_i^2 - 2a_i \geq 3$. If $a_i = 0$ then $a_i^2 - 2a_i = 0$. If $a_i = 1$ then $a_i^2 - 2a_i = -1$. If $a_i = 2$ then $a_i^2 - 2a_i = 0$. If $a_i \geq 3$ then $a_i^2 - 2a_i \geq 3$. Now, if $h = |\{i \mid a_i < 0\}| + |\{i \mid a_i \geq 3\}|$ then $r(\alpha) - 2s(a) \geq 3h - z(\alpha, 1)$.

Remark 1.11. First of all, if $a_i \leq -3$ then $a_i^2 + 2a_i \geq 3$. If $a_i = -2$ then $a_i^2 + 2a_i = 0$. If $a_i = -1$ then $a_i^2 + 2a_i = -1$. If $a_i = 0$ then $a_i^2 + 2a_i = 0$. If $a_i \geq 1$ then $a_i^2 + 2a_i \geq 3$. Now, if $k = |\{i \mid a_i \leq -3\}| + |\{i \mid a_i > 0\}|$ then $r(\alpha) + 2s(\alpha) \geq 3k - z(\alpha, -1)$.

Lemma 1.12. (i) $r(\alpha) \ge 2z(\alpha) - 2n + 3\sum_{i=1}^{n} |a_i| \ge 2z(\alpha) - 2n + 3s(\alpha)$. (ii) $r(\alpha) = 2z(\alpha) - 2n + 3s(\alpha)$ if and only if $a_i \in \{0, 1, 2\}$, for every $i = 1, \dots, n$.

Proof. This result was proved in [1,6.1] in a more general setting.

2. Technical results (a)

Let $n \geq 2$ and let $\alpha = (a_1, \ldots, a_n)$ and $\beta = (b_1, \ldots, b_n)$ be ordered *n*-tuples of integers. Choose $1 \leq j, k \leq n, j \neq k$, and define $\gamma = (c_1, \ldots, c_n)$ as $c_j = a_j - 1$, $c_k = a_k + 1$ and $c_i = a_i$ for $i \neq j, k$ (see [1, Section 2]). Clearly, $s(\alpha) = s(\gamma)$.

The following assertions are easily seen:

Lemma 2.1. $p(\alpha, \beta) = p(\gamma, \beta) + (b_i - b_k)$.

Lemma 2.2. $r(\alpha, \beta) = r(\gamma, \beta) + 2(a_j - a_k - 1) + b_j - b_k$.

Lemma 2.3. $t(\alpha, \beta) = t(\gamma, \beta) + 4(a_j - a_k - 1) + 2(b_j - b_k) + 2z(\gamma) - 2z(\alpha)$.

Lemma 2.4. (i) If $a_j = 0$ and $a_k = -1$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(b_j - b_k)$.

- (ii) If $a_j = 1$ and $a_k = 0$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(b_j b_k)$.
- (iii) If $a_j = 1$ and $a_k = -1$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(b_j b_k + 4)$.
- (iv) If $a_j = 0 = a_k$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(b_j b_k 4)$.

Lemma 2.5. (i) If $a_j \neq 0, 1$ and $a_k \neq -1, 0$ then $t(\alpha, \beta) = t(\gamma, \beta) + 4(a_j - a_k - 1) + 2(b_j - b_k)$.

- (ii) If $a_j \neq 0, 1$ and $a_k = -1$ then $t(\alpha, \beta) = t(\gamma, \beta) + 4a_j + 2(b_j b_k + 1)$.
- (iii) If $a_j = 1$ and $a_k \neq -1, 0$ then $t(\alpha, \beta) = t(\gamma, \beta) 4a_k + 2(b_j b_k + 1)$.
- (iv) If $a_j \neq 0, 1$ and $a_k = 0$ then $t(\alpha, \beta) = t(\gamma, \beta) + 4a_j + 2(b_j b_k 3)$.
- (v) If $a_j = 0$ and $a_k \neq -1, 0$ then $t(\alpha, \beta) = t(\gamma, \beta) 4a_k + 2(b_j b_k 3)$.

Lemma 2.6. If $a_j \ge 2$ and $a_k = 0$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(2a_j - 3 + b_j - b_k) \ge t(\gamma, \beta) + 2(b_j - b_k + 1)$.

Lemma 2.7. If $a_j \ge 2$ and $a_k = -1$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(2a_j + 1 + b_j - b_k) \ge t(\gamma, \beta) + 2(b_j - b_k + 5)$.

Lemma 2.8. If $a_j \ge 2$ and $a_k \le -2$ then $t(\alpha, \beta) = t(\gamma, \beta) + 2(2a_j - 2a_k - 2 + b_j - b_k) \ge t(\gamma, \beta) + 2(b_j - b_k + 6)$.

3. Technical results (b)

Let a, b be integers and put z(0) = 1, z(a) = 0 for $a \neq 0$ and $t(a, b) = 2a^2 + 2b^2 + 2ab - 3a - 3b - 2z(a) - 2z(b)$ (= t(b, a)).

Lemma 3.1. Let $a \neq 0$ and $b \neq 0$. Then:

- (i) z(a) = 0 = z(b) and $t(a, b) \ge 0$.
- (ii) t(a, b) = 0 if and only if a = 1 = b.
- (iii) $t(a,b) \neq 1$.
- (iv) t(a,b) = 2 if and only if either a = 1, b = -1 or a = -1, b = 1.
- (v) t(a, b) = 3 if and only if either a = 2, b = -1 or a = -1, b = 2.

Proof. Taking into account that t(a,b) = t(b,a), the proof is divided into seven parts:

- (1) Assume $a \ge 2$, $b \ge 2$. Then, $2a^2 3a \ge 2$, $2b^2 3b \ge 2$ and $2ab \ge 8$. Consequently, $t(a,b) \ge 12$.
- (2) Assume $a \ge 2$, b = 1. Then, $2a^2 3a \ge 2$, $2b^2 3b = -1$ and $2ab \ge 4$. Consequently, $t(a,b) \ge 5$.
- (3) Assume a = 1 = b. Then, t(a, b) = 0.
- (4) Assume a + b = 1. Then, $t(a, b) = 2a^2 2a 1$. Since a + b = 1, we have $a \neq 1$. If $a \geq 3$ then $2a^2 2a 1 \geq 11$. If a = 2 then $2a^2 2a 1 = 3$ and b = -1. If a = -1 then $2a^2 2a 1 = 3$ and b = 2. If $a \leq -2$ then $2a^2 2a 1 \geq 11$.
- (5) Assume a + b = 2. Then, $t(a, b) = 2a^2 4a + 2$. Since a + b = 2, we have $a \neq 2$. If $a \geq 3$ then $2a^2 4a + 2 \geq 8$. If a = 1 then $2a^2 4a + 2 = 0$ and b = 1. If $a \leq -1$ then $2a^2 4a + 2 \geq 8$.
- (6) Assume a < 0, b > 0 and put $c = 2a^2 + 2b^2 + 4ab 3a 3b = 2(a+b)^2 3(a+b)$. Then, t(a,b) > c. If $a+b \le -1$ then $c \ge 5$ and $t(a,b) \ge 6$. If a+b=0 then $t(a,b) = 2a^2$. Hence, $t(a,b) \ge 8$ for $a \le -2$ and $2a^2 = 2$ for a = -1 (then b = 1). If a+b=2 then (4) applies. If a+b=2 then 5) applies. Finally, if $a+b \ge 3$ then $t(a,b) = (a+b)(a+b-3) + a^2 + b^2 \ge 17$.
- (7) Assume a < 0, b < 0. Then, $t(a, b) \ge 12$.

Remark 3.2. Let *a* be a non-zero integer. Then, $t(a,0) = 2a^2 - 3a - 2$, and hence $t(a,0) \ge 7$ for $a \ge 3$, t(a,0) = 0 for a = 2, t(a,0) = -3 for a = 1, t(-1,0) = 3 and $t(a,0) \ge 12$ for $a \le -2$. Further, t(0,0) = -4.

Lemma 3.3. Let $a \ge 2$ and $b \ge 1$. Then, $t(a, b) \ge t(a, -b) + 2$.

Proof. We have $t(a, b) - t(a, -b) = 4ab - 6b \ge 2b \ge 2$.

Lemma 3.4. Let $a \ge 1$ and $b \ge 0$. Then:

- (i) t(a+1,b) > t(a,b).
- (ii) If $c \ge a$, $d \ge b$ and c + d > a + b then t(c, d) > t(a, b).

Proof. We have $t(a+1,b)-t(a,b)=4a+2b-1\geq 4a-1>0$ and the rest is clear.

4. The inequalities

Throughout this section, let $n \geq 1$, a, b be integers, $\alpha = (a_1, \ldots, a_n)$ and $\beta =$ (b_1,\ldots,b_n) be ordered n-tuples of integers. Put $I=\{1,\ldots,n\},\ A=\{i\in$ $I \mid a_i \geq 0, b_i \geq 0, a_i + b_i \geq 3$, $B_1 = \{i \in I \mid (a_i, b_i) = (2, 0)\}, B_2 = \{i \in I \mid (a_i, b_i) = (2, 0)\}$ $I | (a_i, b_i) = (0, 2)\}, B_3 = \{ i \in I | (a_i, b_i) = (1, 1)\}, B = B_1 \cup B_2 \cup B_3, C_1 = (0, 2)\}$ $\{i \in I \mid (a_i, b_i) = (2, -1)\}, C_2 = \{i \in I \mid (a_i, b_i) = (-1, 2)\}, C = C_1 \cup C_2,$ $D_1 = \{ i \in I \mid (a_i, b_i) = (0, 1) \}, D_2 = \{ i \in I \mid (a_i, b_i) = (1, 0) \}, D = D_1 \cup D_2 \text{ and }$ $E = \{i \in I \mid (a_i, b_i) = (0, 0)\}.$ For $X = A, B_1, \dots, E$, denote x = |X|. Clearly, $t(\alpha, \beta) = \sum_{i=1}^{n} t(a_i, b_i).$

Example 4.1. Taking into account 3.1 and 3.2, it is easy to see that if I = $B \cup C \cup D \cup E$ and 3c = 3d + 4e then $t(\alpha, \beta) = 0$.

Theorem 4.2. Let $\sum_{i=1}^{n} a_i \ge n$ and $\sum_{i=1}^{n} b_i \ge n$. Put $z_1 = |\{i \in I \mid a_i = 0\}| = 1$ $z(\alpha) \ and \ z_2 = |\{i \in I | b_i = 0\}| = z(\beta). \ Then:$

- (i) $2\sum_{i=1}^{n}(a_i^2+b_i^2+a_ib_i) \geq 3\sum_{i=1}^{n}(a_i+b_i)+2(z_1+z_2).$ (ii) $2\sum_{i=1}^{n}(a_i+b_i)^2 \geq 2\sum_{i=1}^{n}a_ib_i+3\sum_{i=1}^{n}(a_i+b_i)+2(z_1+z_2).$ (iii) The equalities hold if and only if I=B, $b_1=b_2$, $2b_1 \leq n$ and $b_3=n-2b_1.$ In this case, $\sum_{i=1}^{n} a_i = n = \sum_{i=1}^{n} b_i$.

Proof. Clearly, (i) \Leftrightarrow (ii) \Leftrightarrow $t(\alpha, \beta) \geq 0$. By 1.2, $t(\alpha, \beta) = t(\alpha) - z(\alpha) + z($ $t(\beta) - z(\beta) + q$, where $q = r(\alpha + \beta) - 2s(\alpha + \beta)$. By $[1,6.1(i)], t(\alpha) - z(\alpha) = \sum_{i=1}^{n} a_i^2 - \sum_{i=1}^{n} a_i - 2z_1 \ge 2(\sum_{i=1}^{n} a_i - n) \ge 0$ and $t(\beta) - z(\beta) \ge 0$. By 1.8, $q \geq 0$, and hence $t(\alpha, \beta) \geq 0$.

Now, assume that $t(\alpha, \beta) = 0$. Then, $t(\alpha) = z(\alpha)$, $t(\beta) = z(\beta)$ and q = 0. By 1.12(i), $0 = t(\alpha) - z(\alpha) = r(\alpha) - s(\alpha) - 2z(\alpha) \ge 2s(\alpha) - 2n \ge 0$, and hence $s(\alpha) = n$. Then, $\sum_{i=1}^n a_i = n$, $\sum_{i=1}^n b_i = n$ and $a_i, b_i \in \{0, 1, 2\}$, for every $i \in I$ by 1.12(ii). Further, by 1.4, $q = r(\alpha + \beta - 2) + 2s(\alpha + \beta - 2) = 0$. Since $s(\alpha+\beta-2)=s(\alpha)+s(\beta)-2n=0$, we get $\alpha+\beta-2=0$. Thus $a_i+b_i=2$, for every $i \in I$ and $(a_i, b_i) \in B$. Finally, $s(\alpha) = 2b_1 + b_3 = n = s(\beta) = 2b_2 + b_3$. Hence, $b_1 = b_2$, $2b_1 \le n$ and $b_3 = n - 2b_1$. Conversely, if $2b_1 \le n$, $b_2 = b_1$ and $b_3 = n - 2b_1$ then $\sum_{i=1}^n a_i = 2b_1 + b_3 = n = 2b_2 + b_3 = \sum_{i=1}^n b_i$ and $t(\alpha, \beta) = 0$ by 3.1.

Remark 4.3. By 4.2(iii), the situation $\sum_{i=1}^n a_i \ge n$, $\sum_{i=1}^n b_i \ge n$, $t(\alpha, \beta) = 0$ is completely described. In order to find all such pairs α, β , choose $p \geq 0$ such that $2p \le n$ and take p pairs (2,0), p pairs (0,2) and n-2p pairs (1,1).

Remark 4.4. Consider the situation from 4.2. The following inequalities follow from 4.2(i),(ii): $\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge \sum_{i=1}^{n} (a_i + b_i) + n + z_1 + z_2$, $\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 3n + z_1 + z_2$, $\sum_{i=1}^{n} (a_i + b_i)^2 \ge \sum_{i=1}^{n} (a_i + b_i + a_i b_i) + n + z_1 + z_2$, $\sum_{i=1}^{n} (a_i + b_i)^2 \ge \sum_{i=1}^{n} (a_i + b_i)^2 \ge \sum_{i=1}^{n}$ the conditions from 4.2(iii) are satisfied.

Remark 4.5. Consider the situation from 4.2 and its proof. Now, by 1.6(i), $r(\alpha + \beta - 1) \ge s(\alpha + \beta - 1) = s(\alpha) + s(\beta) - n$, so that $q \ge s(\alpha) + s(\beta) - 2n$.

Consequently, $2r(\alpha) + 2r(\beta) + 2p(\alpha, \beta) - 4s(\alpha) - 4s(\beta) + 2n - 2z(\alpha) - 2z(\beta) =$ $t(\alpha,\beta) - s(\alpha) - s(\beta) + 2n = t(\alpha) - z(\alpha) + t(\beta) - z(\beta) + q - s(\alpha) - s(\beta) + q - s(\alpha) - s(\alpha)$ $2n \geq 0$. From this, $t(\alpha, \beta) \geq s(\alpha) + s(\beta) - 2n$ and $\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \geq s(\alpha)$ $2\sum_{i=1}^{n}(a_i+b_i)-n+z_1+z_2$. This inequality is a slight improvement of 4.2(i), since $4(s(\alpha) + s(\beta)) - 2n \ge 3(s(\alpha) + s(\beta))$. Of course, if $s(\alpha) = n = s(\beta)$ then we get $\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 3n + z_1 + z_2$.

Remark 4.6. In view of 4.4, put $t'(\alpha, \beta) = r(\alpha, \beta) - 2s(\alpha) - 2s(\beta) + n - z(\alpha) - 2s(\beta) + n - z(\alpha)$ $z(\beta)$. Now, $t(\alpha,\beta)-2t'(\alpha,\beta)=s(\alpha)+s(\beta)-2n$. Thus $t(\alpha,\beta)\geq 2t'(\alpha,\beta)$ if and only if $s(\alpha + \beta) \geq 2n$. Notice also that $t'(\alpha, \beta) = r(\alpha) - 2s(\alpha) - z(\alpha) +$ $r(\beta) - 2s(\beta) - z(\beta) + p(\alpha, \beta) + n = t(\alpha) - s(\alpha) + t(\beta) - s(\beta) + p(\alpha, \beta) + n = t(\alpha) + t(\beta) +$ $r(\alpha+\beta) - 2s(\alpha+\beta) - p(\alpha,\beta) + n - z(\alpha) - z(\beta) = r(\alpha-1) - z(\alpha) + r(\beta-1) - r(\alpha-1) - r($ $z(\beta) + p(\alpha, \beta) - n = r(\alpha + \beta - 2) + 2s(\alpha + \beta + 2) - p(\alpha, \beta) + n - z(\alpha) - z(\beta) =$ $r(\alpha + \beta - 1) - p(\alpha, \beta) - z(\alpha) - z(\beta)$.

Using 1.4, we have $2t'(\alpha, \beta) = t(\alpha, \beta) - s(\alpha) - s(\beta) + 2n = t(\alpha) - z(\alpha) +$ $t(\beta) - z(\beta) + r(a + \beta - 2) + 2s(\alpha + \beta - 2) - s(\alpha) - s(\beta) + 2n = t(\alpha) - z(\alpha) + 2n = t(\alpha)$ $t(\beta) - z(\beta) + r(\alpha + \beta - 2) + s(\alpha + \beta - 2) \ge t(\alpha) - z(\alpha) + t(\beta) - z(\beta)$ by 1.6(ii).

Theorem 4.7. Let $\sum_{i=1}^{n} |a_i| \geq n$ and $\sum_{i=1}^{n} |b_i| \geq n$. Put $z_1 = z(\alpha)$ and $z_2 = z(\beta)$. Then:

- (i) $\sum_{i=1}^{n} (a_i^2 + b_i^2 + a_i b_i) \ge 2 \sum_{i=1}^{n} (a_i + b_i) n + z_1 + z_2.$ (ii) $\sum_{i=1}^{n} (a_i + b_i)^2 \ge \sum_{i=1}^{n} a_i b_i + 2 \sum_{i=1}^{n} (a_i + b_i) n + z_1 + z_2.$
- (iii) The equalities hold if and only if the conditions from 4.2(iii) are satisfied.

Proof. Clearly, the inequalities are equivalent to $t'(\alpha, \beta) \geq 0$. By 1.12(i), $t(\alpha)$ – $z(\alpha) = r(\alpha) - \sum_{i=1}^{n} (\alpha) - 2z(\alpha) \ge r(\alpha) - \sum_{i=1}^{n} |a_i| - 2z(\alpha) \ge r(\alpha) - 3\sum_{i=1}^{n} |a_i| + 2z(\alpha) \ge r(\alpha) - 3\sum_{i=1}^{n} |a_i| + 2z(\alpha) \ge r(\alpha) - 2z(\alpha) - 2z(\alpha) \ge r(\alpha) - 2z(\alpha) - 2z(\alpha) \ge r(\alpha) - 2z(\alpha) 2n-2z(\alpha)\geq 0$. Similarly, $t(\beta)-z(\beta)\geq 0$ and $t'(\alpha,\beta)\geq 0$ by 4.6.

If $t'(\alpha, \beta) = 0$ then $t(\alpha) - z(\alpha) = 0 = t(\beta) - z(\beta)$, hence (see the proof of 4.2) $s(\alpha) = n = s(\beta)$ and from 4.6 follows that $t(\alpha, \beta) = 2t'(\alpha, \beta) + s(\alpha) + s(b) - 2n = s(\beta)$ 0. The rest follows from 4.2.

Remark 4.8. It follows from 4.6 and 4.7 that $t(\alpha, \beta) \geq 0$, provided that $\sum_{i=1}^{n} |a_i| \ge n$, $\sum_{i=1}^{n} |b_i| \ge n$ and $s(\alpha) + s(\beta) \ge 2n$.

Proposition 4.9. Let $\alpha = (a_1, \ldots, a_n)$ and $\beta = (b_1, \ldots, b_n)$ be n-tuples of nonzero integers. Then:

- (i) $2\sum_{i=1}^{n}(a_i^2+b_i^2+a_ib_i) \ge 3\sum_{i=1}^{n}(a_i+b_i)+2(z_1+z_2).$ (ii) $2\sum_{i=1}^{n}(a_i+b_i)^2 \ge 2\sum_{i=1}^{n}a_ib_i+3\sum_{i=1}^{n}(a_i+b_i)+2(z_1+z_2).$
- (iii) The equalities hold if and only if $a_1 = \cdots = a_n = b_1 = \cdots = b_n = 1$.

Proof. Use 4.1(i),(ii).

References

[1] B. Batíková, T. J. Kepka, P.C. Němec, Inequalities of DVT-type-the onedimensional case, Comment. Math. Univ. Carolin., 61 (2020), 411-426.

- [2] B. Batíková, T. J. Kepka, P.C Němec, Inequalities of DVT-type-the onedimensional case continued, Ital. J. Pure Appl. Math., 49 (2023), 687-693
- [3] A. Drápal, V. Valent, High non-associativity in order 8 and an associative index estimate, J. Combin. Des., 27 (2019), 205-228.
- [4] T.J. Kepka and P.C. Němec, A note on one inequality of Drápal-Valent type, J. Combin. Des., 28 (2020), 141-143.

Accepted: July 23, 2024