Topological factor groups relative to normal soft int-groups

Essam H. Hamouda

Department of Basic Sciences Faculty of Technology and Education Beni-Suef University Egypt ehamouda70@gmail.com

Howida Adel AlFran^{*}

Mathematics Department Al-Leith University College Umm Al Qura University Kingdom of Saudi Arabia hafran@uqu.edu.sa

Abstract. Given a group \mathcal{G} , let $\alpha_{\mathcal{G}}$ be a normal soft int-group in \mathcal{G} . We construct the factor group \mathcal{G}/α relative to $\alpha_{\mathcal{G}}$ by defining a congruence relation on \mathcal{G} . Using this construction, we establish soft Isomorphism Theorems which generalize the classical group Isomorphism Theorems. Finally, we give some topological structures on \mathcal{G} and \mathcal{G}/α .

Keywords: topological groups, soft int-groups, normal soft int-groups, soft isomorphism theorems.

MSC 2020: 40H05, 46A45

1. Introduction

In 1965, the concept of fuzzy set theory has been introduced by Zadeh [18]. The application of fuzzy sets can be found in many branches of mathematics and engineering sciences. Molodtsov in [11] introduced the soft set as a generalization of the fuzzy set to deal with uncertainty. A soft set (fuzzy soft sets, see[4]) is a set-valued function from a set of parameters to the power set(all fuzzy sets) of a universe set. The concept of soft groups (semigroups) is defined in [1, 2] as a collection of subgroups (subsemigroups) of a group (semigroup). In this direction, new types of soft ideals over semigroups are presented in recent works [6, 12, 13]. Cagman et al. [3], based on intersection and inclusion relation of sets, defined the soft int-group which are unlike that in [1, 14]. Some properties of soft int-groups and ordered semigroups based on soft int- (uni-)semigroup is investigated in [5, 7, 17]. In this paper, we introduce a method to construct

^{*.} Corresponding author

factor groups related to normal soft int-groups. We apply this construction to establish soft Isomorphism Theorems which generalize the classical group Isomorphism Theorems. Topological structures on \mathcal{G} and the factor group \mathcal{G}/α are introduced.

2. Preliminaries

In this Section, we recall some definitions and results of soft set. Throughout our discussion, \mathcal{U} refers to a universal set, $\mathcal{P}(\mathcal{U})$ the power set of \mathcal{U} and \mathcal{E} the set of parameters where $A, B, C, \ldots \subseteq \mathcal{E}$.

Definition 2.1 ([3]). A soft set (α, A) over \mathcal{U} is a set of ordered pairs

$$(\alpha, A) := \{ (x, \alpha(x)) : x \in \mathcal{E}, \alpha(x) \in \mathcal{P}(\mathcal{U}) \},\$$

where $\alpha : \mathcal{E} \longrightarrow \mathcal{P}(\mathcal{U})$ such that $\alpha(x) = \phi$ if $x \notin A$.

From now on, we write α_A instead of (α, A) .

Definition 2.2 ([3]). Let α_A and α_B be soft sets over \mathcal{U} . Then, union $\alpha_A \sqcup \alpha_B$ and intersection $\alpha_A \sqcap \alpha_B$ of α_A and α_B are defined by

$$(\alpha_A \sqcup \alpha_B)(x) = \alpha_A(x) \cup \alpha_B(x), \qquad (\alpha_A \sqcap \alpha_B)(x) = \alpha_A(x) \cap \alpha_B(x)$$

respectively, for all $x \in \mathcal{E}$.

Definition 2.3 ([3]). Let \mathcal{G} be a group and $\alpha_{\mathcal{G}}$ be a soft set over \mathcal{U} . Then, $\alpha_{\mathcal{G}}$ is called a soft intersection group (soft int-group) over \mathcal{U} if

1. $\alpha_{\mathcal{G}}(xy) \supseteq \alpha_{\mathcal{G}}(x) \cap \alpha_{\mathcal{G}}(y)$ for all $x, y \in \mathcal{G}$, and

2.
$$\alpha_{\mathcal{G}}(x^{-1}) = \alpha_{\mathcal{G}}(x)$$
 for all $x \in \mathcal{G}$.

Or, equivalenty, if $\alpha_{\mathcal{G}}(xy^{-1}) \supseteq \alpha_{\mathcal{G}}(x) \cap \alpha_{\mathcal{G}}(y)$ *for all* $x, y \in \mathcal{G}$ *.*

Theorem 2.1 ([8]). Let $\alpha_{\mathcal{G}}$ be a soft int-group and $x, y \in \mathcal{G}$. Then

1.
$$\alpha_{\mathcal{G}}(e) \supseteq \alpha_{\mathcal{G}}(x),$$

2.
$$\alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e) \Rightarrow \alpha_{\mathcal{G}}(x) = \alpha_{\mathcal{G}}(y).$$

Definition 2.4 ([3]). A soft int-group $\alpha_{\mathcal{G}}$ over \mathcal{U} is called **normal**, if for all $x, y \in \mathcal{G}$, it satisfies one of the following equivalent conditions:

- 1. $\alpha_{\mathcal{G}}(xyx^{-1}) \supseteq \alpha_{\mathcal{G}}(y)$,
- 2. $\alpha_{\mathcal{G}}(xyx^{-1}) \subseteq \alpha_{\mathcal{G}}(y),$
- 3. $\alpha_{\mathcal{G}}(xy) = \alpha_{\mathcal{G}}(yx).$

Definition 2.5 ([9]). Let α_A be a soft set over \mathcal{U} and $V \in \mathcal{P}(\mathcal{U})$. Then, *V*-inclusion of the soft set α_A , denoted by α^V is defined as

$$\alpha^V = \{ x \in A : \alpha(x) \supseteq V \}.$$

It is proved in [9] that "A soft set $\alpha_{\mathcal{G}}$ is a (normal) soft int-group over \mathcal{U} iff for all $V \in \mathcal{P}(\mathcal{U})$, α^{V} is either empty or a (normal) subgroup of \mathcal{G} ".

Definition 2.6 ([15]). Let $f : \mathcal{G} \to \mathcal{H}$ be a function between groups. Then, the soft image $f(\alpha_{\mathcal{G}})$ of a soft set $\alpha_{\mathcal{G}}$ and the soft preimage $f^{-1}(\beta_{\mathcal{H}})$ of a soft set $\beta_{\mathcal{H}}$ under f are defined as

$$f(\alpha_{\mathcal{G}})(y) = \begin{cases} \bigcup \{ \alpha_{\mathcal{G}}(x) : x \in \mathcal{G}, f(x) = y \}, & \text{for } y \in f(\mathcal{G}) \\ \phi, & \text{otherwise,} \end{cases}$$

and

$$f^{-1}(\beta_{\mathcal{H}})(x) = \beta_{\mathcal{H}}(f(x)), \quad \forall x \in \mathcal{G}$$

Theorem 2.2 ([15]). If $f : \mathcal{G} \to \mathcal{H}$ is an epimorphism of groups, and $\alpha_{\mathcal{G}}$ is a normal soft int-group, then $f(\alpha_{\mathcal{G}})$ is a normal soft int-group.

3. Construction of the factor group

In this Section, we represent our main findings. Given a group \mathcal{G} we denote the identity element of \mathcal{G} by $e_{\mathcal{G}}$, and the set of all soft int-groups over \mathcal{U} with \mathcal{G} as a set of parameters by $\mathcal{S}(\mathcal{G},\mathcal{U})$.

Recall that an equivalence relation δ on \mathcal{G} is called a **congruence relation** if

$$x\delta y \Rightarrow xz\delta yz, \ zx\delta zy$$

for all $x, y, z \in \mathcal{G}$.

Let $\alpha_{\mathcal{G}} \in \mathcal{S}(\mathcal{G}, \mathcal{U})$ be a normal soft int- group. For any $x, y \in \mathcal{G}$, we define the relation R on \mathcal{G} by

$$xRy \Leftrightarrow \alpha_G(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}).$$

Lemma 3.1. R is a congruence relation on \mathcal{G} .

Proof. Clearly, R is reflexive and symmetric. Also, R is transitive. Indeed, let xRy and yRz, then $\alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(yz^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. Then, $\alpha_{\mathcal{G}}(xz^{-1}) = \alpha_{\mathcal{G}}(xy^{-1}yz^{-1}) \supseteq \alpha_{\mathcal{G}}(xy^{-1}) \cap \alpha_{\mathcal{G}}(yz^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. Hence, $\alpha_{\mathcal{G}}(xz^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$, which proves that xRz and so R is an equivalence relation. If xRy, then $\alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. Thus, for all $z \in \mathcal{G}$ we have

$$\alpha_{\mathcal{G}}((xz)(yz)^{-1}) = \alpha_{\mathcal{G}}(xzz^{-1}y^{-1}) = \alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}).$$

Hence, xzRyz. Since $\alpha_{\mathcal{G}}$ is normal, we get $\alpha_{\mathcal{G}}((zx)(zy)^{-1}) = \alpha_{\mathcal{G}}(zxy^{-1}z^{-1}) = \alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. This gives zxRzy, and we conclude that R is a congruence relation on \mathcal{G} .

By $[x]_{\alpha}$, we denote the equivalence class containing $x \in \mathcal{G}$ and by \mathcal{G}/α the corresponding factor set relative to $\alpha_{\mathcal{G}}$.

Theorem 3.1. \mathcal{G}/α is a group with the operation $[x]_{\alpha}[y]_{\alpha} = [xy]_{\alpha}$.

Proof. Straightforward.

Example 3.1. Assume that $\mathcal{U} = S_3$ is the set of permutations on $\{1, 2, 3\}$. Let $\mathcal{G} = Z_6 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\}$ be the set of parameters. We define a soft set $\alpha_{\mathcal{G}}$ over U by

$$\begin{aligned} \alpha_{\mathcal{G}}(\bar{0}) &= U, \\ \alpha_{\mathcal{G}}(\bar{1}) &= \{(12), (13), (132)\}, \\ \alpha_{\mathcal{G}}(\bar{2}) &= \{(12), (13), (23), (123), (132)\}, \\ \alpha_{\mathcal{G}}(\bar{3}) &= \{(1), (12), (13), (132)\}, \\ \alpha_{\mathcal{G}}(\bar{4}) &= \{(12), (13), (23), (123), (132)\}, \\ \alpha_{\mathcal{G}}(\bar{5}) &= \{(12), (13), (132)\}. \end{aligned}$$

Clearly, $\alpha_{\mathcal{G}}$ is a normal soft int-group over \mathcal{U} and

$$\mathcal{G}/\alpha = \{ [\bar{0}]_{\alpha}, [\bar{1}]_{\alpha}, [\bar{2}]_{\alpha}, [\bar{3}]_{\alpha}, [\bar{4}]_{\alpha}, [\bar{5}]_{\alpha} \}.$$

By Definition 2.5, the set $K_{\alpha_{\mathcal{G}}} = \{x \in \mathcal{G} : \alpha_{\mathcal{G}}(x) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})\}$ is a (normal) subgroup of \mathcal{G} iff $\alpha_{\mathcal{G}}$ is a (normal)soft int-group over \mathcal{U} .

Proposition 3.1. Let $f : \mathcal{G} \longrightarrow \mathcal{H}$ be a homomorphism of groups and $\alpha_{\mathcal{G}} \in \mathcal{S}(\mathcal{G}, \mathcal{U})$, then

- (i) $f(K_{\alpha_{\mathcal{G}}}) \subseteq K_{f(\alpha_{\mathcal{G}})},$
- (ii) If $\alpha_{\mathcal{G}}$ is constant on Kerf, then $f(\alpha_{\mathcal{G}})(f(x)) = \alpha_{\mathcal{G}}(x)$ for all $x \in \mathcal{G}$.

Proof. (i) Let $y \in f(K_{\alpha_{\mathcal{G}}})$, then y = f(x) for some $x \in K_{\alpha_{\mathcal{G}}}$. Since $\alpha_{\mathcal{G}}(x) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$, then

$$f(\alpha_{\mathcal{G}})(y) = \bigcup_{x \in f^{-1}(y)} \{ \alpha_{\mathcal{G}}(x) \} = \alpha_{\mathcal{G}}(e_{\mathcal{G}}) = f(\alpha_{\mathcal{G}})(e_{\mathcal{H}}).$$

Therefore, $y \in K_{f(\alpha_{\mathcal{G}})}$.

(ii) Let y = f(x), then $f(\alpha_{\mathcal{G}})(y) = \bigcup_{z \in f^{-1}(y)} \{\alpha_{\mathcal{G}}(z)\}$. But $f(zx^{-1}) = e_{\mathcal{H}}$ for all $z \in f^{-1}(y)$. Hence, $\alpha_{\mathcal{G}}(zx^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$ because $\alpha_{\mathcal{G}}$ is constant on *Kerf*. By Theorem 2.1, we have $\alpha_{\mathcal{G}}(z) = \alpha_{\mathcal{G}}(x)$ for all $z \in f^{-1}(y)$. Therefore, $f(\alpha_{\mathcal{G}})(f(x)) = \alpha_{\mathcal{G}}(x)$.

Theorem 3.2. Let $f : \mathcal{G} \longrightarrow \mathcal{H}$ be an epimorphism of groups and $\alpha_{\mathcal{G}} \in \mathcal{S}(\mathcal{G}, \mathcal{U})$ be normal with $kerf \subseteq K_{\alpha_{\mathcal{G}}}$, then $\mathcal{G}/\alpha \cong \mathcal{H}/f(\alpha_{\mathcal{G}})$.

Proof. From Theorem 2.2, $f(\alpha_{\mathcal{G}})$ is a normal soft int-group and hence $\mathcal{H}/f(\alpha_{\mathcal{G}})$ is a group. We define $\theta : \mathcal{G}/\alpha \longrightarrow \mathcal{H}/f(\alpha_{\mathcal{G}})$, such that $\theta([x]_{\alpha}) = [f(x)]_{f(\alpha_{\mathcal{G}})}$. Firstly, θ is well defined since $[x]_{\alpha} = [y]_{\alpha}$ implies $\alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. Since $kerf \subseteq K_{\alpha_{\mathcal{G}}}$, then $\alpha_{\mathcal{G}}$ is constant on kerf, and by Proposition 3.1, we have

$$f(\alpha_{\mathcal{G}})(f(xy^{-1})) = f(\alpha_{\mathcal{G}})(f(e_{\mathcal{G}})).$$

Then, $f(\alpha_{\mathcal{G}})(f(x)f(y)^{-1}) = f(\alpha_{\mathcal{G}})(e_{\mathcal{H}})$, and so $[f(x)]_{f(\alpha_{\mathcal{G}})} = [f(y)]_{f(\alpha_{\mathcal{G}})}$. Therefore, θ is well defined.

Secondly, θ is a homomorphism because:

$$\theta([x]_{\alpha}[y]_{\alpha}) = \theta([xy]_{\alpha}) = [f(xy)]_{f(\alpha_{\mathcal{G}})} = [f(x)f(y)]_{f(\alpha_{\mathcal{G}})}$$
$$= [f(x)]_{f(\alpha_{\mathcal{G}})}[f(y)]_{f(\alpha_{\mathcal{G}})} = \theta([x]_{\alpha})\theta([y]_{\alpha}).$$

Now, we show that θ is an epimorphism. For any $[y]_{f(\alpha_{\mathcal{G}})} \in \mathcal{H}/f(\alpha_{\mathcal{G}})$, there exists $x \in \mathcal{G}$ such that f(x) = y (since f is onto). So $\theta([x]_{\alpha}) = [f(x)]_{f(\alpha_{\mathcal{G}})} = [y]_{f(\alpha_{\mathcal{G}})}$, which means that θ is an epimorphism. Finally, θ is a 1-1 homomorphism since

$$\begin{split} [f(x)]_{f(\alpha_{\mathcal{G}})} &= [f(y)]_{f(\alpha_{\mathcal{G}})} \\ & \Longrightarrow f(\alpha_{\mathcal{G}})(f(x)f(y)^{-1}) = f(\alpha_{\mathcal{G}})(e_{\mathcal{H}}) \\ & \Longrightarrow f(\alpha_{\mathcal{G}})(f(xy^{-1})) = f(\alpha_{\mathcal{G}})(f(e_{\mathcal{G}})) \\ & \Longrightarrow \alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}) \\ & \Longrightarrow [x]_{\alpha} = [y]_{\alpha}, \end{split}$$

which proves that θ is injective. We conclude that θ is an isomorphism.

Corollary 3.1. Let $f : \mathcal{G} \longrightarrow \mathcal{H}$ be an onto homomorphism of groups and $\beta_{\mathcal{H}} \in \mathcal{S}(\mathcal{H}, \mathcal{U})$ be normal, then $\mathcal{G}/f^{-1}(\beta_{\mathcal{H}}) \cong \mathcal{H}/\beta$.

Proof. It is known that $f^{-1}(\beta_{\mathcal{H}})$ is a normal soft int-group over \mathcal{U} (see, [15]). Consequently, $\mathcal{G}/f^{-1}(\beta_{\mathcal{H}})$ and \mathcal{H}/β are groups. Since f is onto, then $\beta_{\mathcal{H}} = f(f^{-1}(\beta_{\mathcal{H}}))$ [9]. Let x be an element in kerf, then $f(x) = f(e_{\mathcal{G}})$, and so $\beta_{\mathcal{H}}(f(x)) = \beta_{\mathcal{H}}(f(e_{\mathcal{G}}))$, that is $f^{-1}(\beta_{\mathcal{H}})(x) = f^{-1}(\beta_{\mathcal{H}})(e_{\mathcal{G}})$. Hence, $x \in K_{f^{-1}(\beta_{\mathcal{H}})}$, which means that $kerf \subseteq K_{f^{-1}(\beta_{\mathcal{H}})}$. By applying Theorem 3.2, we get the desired result.

For a nonempty subset \mathcal{A} of \mathcal{G} , define a map $\chi_{\mathcal{A}} : \mathcal{G} \longrightarrow \mathcal{P}(\mathcal{U})$ as follows:

$$\chi_{\mathcal{A}}(x) = \begin{cases} \mathcal{U}, & \text{if } x \in \mathcal{A}, \\ \phi, & \text{otherwise.} \end{cases}$$

Then, $\chi_{\mathcal{A}}$ is a soft set over \mathcal{U} , which is called the characteristic soft set (see, [17]).

Theorem 3.3. \mathcal{A} is a (normal) subgroup of \mathcal{G} if and only if $\chi_{\mathcal{A}}$ is a (normal) soft int-group over \mathcal{U} .

Proof. Assume that $\chi_{\mathcal{A}}$ is a normal soft int-group over \mathcal{U} . For any $x, y \in \mathcal{A}$ we have $\chi_{\mathcal{A}}(xy^{-1}) \supseteq \chi_{\mathcal{A}}(x) \cap \chi_{\mathcal{A}}(y) = \mathcal{U}$. Thus, $\chi_{\mathcal{A}}(xy^{-1}) = U$ and $xy^{-1} \in \mathcal{A}$. Therefore \mathcal{A} is a subgroup of \mathcal{G} . Similarly, for any $y \in \mathcal{A}, x \in \mathcal{G}$ we have $\chi_{\mathcal{A}}(xyx^{-1}) \supseteq \chi_{\mathcal{A}}(y) = \mathcal{U}$. Hence, $\chi_{\mathcal{A}}(xyx^{-1}) = \mathcal{U}$ and $xyx^{-1} \in \mathcal{A}$. This proves that \mathcal{A} is a normal subgroup of \mathcal{G} . Conversely, suppose that \mathcal{A} is a normal subgroup of \mathcal{G} . If $x, y \in \mathcal{A}$, then $\chi_{\mathcal{A}}(xy^{-1}) = \chi_{\mathcal{A}}(x) = \chi_{\mathcal{A}}(y) = \mathcal{U}$. Hence, $\chi_{\mathcal{A}}(xy^{-1}) = \chi_{\mathcal{A}}(x) \cap \chi_{\mathcal{A}}(y)$. If at least one of x and y is not in \mathcal{A} , then at least one of $\chi_{\mathcal{A}}(x)$ and $\chi_{\mathcal{A}}(y)$ is ϕ . Therefore $\chi_{\mathcal{A}}(xy^{-1}) \supseteq \chi_{\mathcal{A}}(x) \cap \chi_{\mathcal{A}}(y)$. Hence, $\chi_{\mathcal{A}}$ is a soft int-group over \mathcal{U} . Moreover, for any $x, y \in \mathcal{G}$, if $y \in \mathcal{A}$, then $xyx^{-1} \in \mathcal{A}$ and $\chi_{\mathcal{A}}(xyx^{-1}) = \mathcal{U} = \chi_{\mathcal{A}}(y)$. If $y \notin \mathcal{A}$, then $\chi_{\mathcal{A}}(xyx^{-1}) \supseteq \chi_{\mathcal{A}}(y) = \phi$. Hence, $\chi_{\mathcal{A}}$ is normal.

Corollary 3.2. Let $f : \mathcal{G} \longrightarrow \mathcal{H}$ be an onto homomorphism. Then, $\mathcal{G}/\chi_{kerf} \cong \mathcal{H}$.

Proof. By Theorem 3.3, the characteristic soft set $\chi_{\{e_{\mathcal{H}}\}} \in \mathcal{S}(\mathcal{H}, \mathcal{U})$ is normal. It is easy to see that the soft preimage $f^{-1}(\chi_{\{e_{\mathcal{H}}\}})$ is the soft set χ_{kerf} . Hence, the factor group $\mathcal{H}/\chi_{\{e_{\mathcal{H}}\}}$ is isomorphic to \mathcal{H} . By applying Corollary 3.1, we get $\mathcal{G}/\chi_{kerf} \cong \mathcal{H}/\chi_{\{e_{\mathcal{H}}\}} \cong \mathcal{H}$.

In group theory, on the factor group $\mathcal{G}/kerf$ we can define an equivalence relation by $x \sim y \Leftrightarrow xy^{-1} \in kerf$. Easily, one shows that $x \sim y$ iff xRy relative to the normal soft int-group χ_{kerf} . Therefore, we have $\mathcal{G}/\chi_{kerf} \cong \mathcal{G}/kerf$ and Corollary 3.2 becomes the First Group Isomorphism Theorem.

Lemma 3.2. Let \mathcal{A} be a normal subgroup of \mathcal{G} and $\alpha_{\mathcal{G}}$ a normal soft int-group over \mathcal{U} . Then, the restriction $\alpha_{\mathcal{G}} \mid \mathcal{A}$ is a normal soft int-group over \mathcal{U} and \mathcal{A}/α is a normal subgroup of \mathcal{G}/α .

Proof. It is obvious from [9, Theorem 2.13] that $\alpha_{\mathcal{G}} \mid \mathcal{A}$ is a soft int-group. Since \mathcal{A} is normal, $(\alpha_{\mathcal{G}} \mid \mathcal{A})(xy) = (\alpha_{\mathcal{G}} \mid \mathcal{A})(yx)$ for any $x, y \in \mathcal{A}$. Hence, $\alpha_{\mathcal{G}} \mid \mathcal{A}$ is a normal soft int-group. If $[a]_{\alpha}, [b]_{\alpha} \in \mathcal{A}/\alpha$, where $a, b \in \mathcal{A}$, then $([a]_{\alpha})([b]_{\alpha})^{-1} = ([a]_{\alpha})([b^{-1}]_{\alpha}) = [ab^{-1}]_{\alpha} \in \mathcal{A}/\alpha$. Hence, \mathcal{A}/α is a subgroup of \mathcal{G}/α . If $[a]_{\alpha} \in \mathcal{A}/\alpha, [x]_{\alpha} \in \mathcal{G}/\alpha$, where $a \in \mathcal{A}$ and $x \in \mathcal{G}$, then $xax^{-1} \in \mathcal{A}$ and

$$([x]_{\alpha})([a]_{\alpha})([x]_{\alpha})^{-1} = ([x]_{\alpha})([a]_{\alpha})([x^{-1}]_{\alpha}) = [xax^{-1}]_{\alpha} \in \mathcal{A}/\alpha.$$

Thus, \mathcal{A}/α is a normal subgroup of \mathcal{G}/α .

Notation. For $\mathcal{A}, \mathcal{B} \subseteq \mathcal{G}$, we set $\mathcal{A} \cdot \mathcal{B} = \{ab : a \in \mathcal{A}, b \in \mathcal{B}\}.$

Theorem 3.4. If $\alpha_{\mathcal{G}}$ and $\beta_{\mathcal{G}}$ are normal soft int-groups over \mathcal{U} such that $\alpha_{\mathcal{G}}(e_{\mathcal{G}}) = \beta_{\mathcal{G}}(e_{\mathcal{G}})$, then $(K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}})/\beta_{\mathcal{G}} \cong K_{\alpha_{\mathcal{G}}}/(\alpha_{\mathcal{G}} \sqcap \beta_{\mathcal{G}})$.

Proof. Before we proceed and for simplicity, put $\gamma_{\mathcal{G}} = \alpha_{\mathcal{G}} \sqcap \beta_{\mathcal{G}}$. Since $\gamma_{\mathcal{G}}$ is a normal soft int-group over \mathcal{U} (see, [9]) and by Lemma 3.2, the restrictions $\beta_{\mathcal{G}} \mid (K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}})$ and $\gamma_{\mathcal{G}} \mid K_{\alpha_{\mathcal{G}}}$ are a normal soft int-groups over \mathcal{U} . Then, the factor sets $(K_{\alpha_{\mathcal{G}}} \cdot K_{\beta})/\beta$ and $K_{\alpha_{\mathcal{G}}}/\gamma$ are groups by Lemma 3.1. For any $x \in K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}}, x = ab$, where $a \in K_{\alpha_{\mathcal{G}}}$ and $b \in K_{\beta_{\mathcal{G}}}$, we define $\Omega : (K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}})/\beta \longrightarrow K_{\alpha_{\mathcal{G}}}/\gamma$ such that $f([x]_{\beta}) = [a]_{\gamma}$. The mapping Ω is well-defined. Indeed, if $[x]_{\beta} = [y]_{\beta}$, where $y = wz \in K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}}$, then

$$\begin{split} \beta_{\mathcal{G}}(xy^{-1}) &= \beta_{\mathcal{G}}(ab(wz)^{-1}) = \beta_{\mathcal{G}}(abz^{-1}w^{-1}) = \beta_{\mathcal{G}}(w^{-1}abz^{-1}) \\ &= \beta_{\mathcal{G}}(w^{-1}a(zb^{-1})^{-1}) = \beta_{\mathcal{G}}(e_{\mathcal{G}}). \end{split}$$

Hence, $\beta_{\mathcal{G}}(w^{-1}a) = \beta_{\mathcal{G}}(zb^{-1}) = \beta_{\mathcal{G}}(e_{\mathcal{G}})$. Thus,

$$\gamma_{\mathcal{G}}(aw^{-1}) = \alpha_{\mathcal{G}}(aw^{-1}) \cap \beta_{\mathcal{G}}(aw^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}) \cap \beta_{\mathcal{G}}(w^{-1}a) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}) \cap \beta_{\mathcal{G}}(e_{\mathcal{G}}) = \gamma_{\mathcal{G}}(e_{\mathcal{G}}),$$

that is $[a]_{\gamma} = [w]_{\gamma}$.

Now, we prove that Ω is a homomorphism. Let $[x]_{\beta}, [y]_{\beta} \in (K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}})/\beta$, where $x = ab, y = wz, a, w \in K_{\alpha_{\mathcal{G}}}$ and $b, z \in K_{\beta_{\mathcal{G}}}$, then xy = abwz. Since $K_{\alpha_{\mathcal{G}}}$ is normal, $bwz \in K_{\alpha_{\mathcal{G}}}$. Hence,

$$\Omega([x]_{\beta}[y]_{\beta}) = \Omega([xy]_{\beta}) = [a(bwz)]_{\gamma} = [a]_{\gamma}[bwz]_{\gamma}$$

and

$$\gamma_{\mathcal{G}}((bwz)w^{-1}) = \alpha_{\mathcal{G}}((bwz)w^{-1}) \cap \beta_{\mathcal{G}}((b(wzw^{-1})))$$
$$= \alpha_{\mathcal{G}}(e_{\mathcal{G}}) \cap \beta_{\mathcal{G}}(e_{\mathcal{G}}) = \gamma_{\mathcal{G}}(e_{\mathcal{G}}).$$

Hence, $[w]_{\gamma} = [bwz]_{\gamma}$, i.e.

$$\Omega([x]_{\beta}[y]_{\beta}) = [a]_{\gamma}[w]_{\gamma} = \Omega([x]_{\beta})\Omega([y]_{\beta}),$$

which implies that Ω is a homomorphism. It is also onto, since for any $[a]_{\gamma} \in K_{\alpha_{\mathcal{G}}}/\gamma$ and $b \in K_{\beta_{\mathcal{G}}}$, we have $x = ab \in K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}}$ and $\Omega([x]_{\beta}) = [a]_{\gamma}$. Finally, we show that Ω is injective. Let $x, y \in K_{\alpha_{\mathcal{G}}} \cdot K_{\beta_{\mathcal{G}}}$, where x = ab, y = wz. Assume that $[a]_{\gamma} = [w]_{\gamma}$, then $\gamma_{\mathcal{G}}(aw^{-1}) = \gamma_{\mathcal{G}}(e_{\mathcal{G}})$, that is

$$\alpha_{\mathcal{G}}(aw^{-1}) \cap \beta_{\mathcal{G}}(aw^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}}) \cap \beta_{\mathcal{G}}(e_{\mathcal{G}}).$$

But $\alpha_{\mathcal{G}}(e_{\mathcal{G}}) = \beta_{\mathcal{G}}(e_{\mathcal{G}})$ and $\alpha_{\mathcal{G}}(aw^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$ imply that $\beta_{\mathcal{G}}(aw^{-1}) = \beta_{\mathcal{G}}(e_{\mathcal{G}})$. Therefore,

$$\begin{aligned} \beta_{\mathcal{G}}(xy^{-1}) &= \beta_{\mathcal{G}}(ab(wz)^{-1}) = \beta_{\mathcal{G}}(abz^{-1}w^{-1}) = \beta_{\mathcal{G}}(w^{-1}abz^{-1}) \\ &\supseteq \beta_{\mathcal{G}}(w^{-1}a) \cap \beta_{\mathcal{G}}(bz^{-1}) = \beta_{\mathcal{G}}(aw^{-1}) \cap \beta_{G}(bz^{-1}) = \beta_{\mathcal{G}}(e_{\mathcal{G}}). \end{aligned}$$

Hence, $[x]_{\beta} = [y]_{\beta}$. Therefore, Ω is an isomorphism.

In case $\mathcal{A}, \mathcal{B} \subseteq \mathcal{G}$ are normal subgroups, the result $(\mathcal{A} \cdot \mathcal{B})/\chi_{\mathcal{B}} \cong \mathcal{B}/\chi_{\mathcal{A} \cap \mathcal{B}}$ comes as a corollary of Theorem 3.4. and then we get the Second Group Isomorphism Theorem. Finally, the Third Group Isomorphism Theorem is outcome of the following result.

Theorem 3.5. Let $\alpha_{\mathcal{G}}, \beta_{\mathcal{G}} \in \mathcal{S}(\mathcal{G}, \mathcal{U})$ be normal such that $\beta_{\mathcal{G}} \sqsubseteq \alpha_{\mathcal{G}}$ and $\alpha_{\mathcal{G}}(e_{\mathcal{G}}) = \beta_{\mathcal{G}}(e_{\mathcal{G}})$. Then, $(\mathcal{G}/\beta)/(K_{\alpha_{\mathcal{G}}}/\beta) \cong \mathcal{G}/\alpha$

Proof. For all $x \in \mathcal{G}$, we define $\theta : \mathcal{G}/\beta \longrightarrow \mathcal{G}/\alpha$ by $\theta([x]_{\beta}) = [x]_{\alpha}$. The mapping is well defined since $[x]_{\beta} = [y]_{\beta}$ implies $\beta_{\mathcal{G}}(xy^{-1}) = \beta_{\mathcal{G}}(e_{\mathcal{G}}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$. By assumption, we get $\alpha_{\mathcal{G}}(xy^{-1}) \supseteq \beta_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$ and hence $\alpha_{\mathcal{G}}(xy^{-1}) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})$, that is $[x]_{\alpha}) = [y]_{\alpha}$. By definition, θ is an onto homomorphism. We have $k_{\alpha_{\mathcal{G}}}/\beta = \{[z]_{\beta} : z \in k_{\alpha_{\mathcal{G}}}\} = \{[z]_{\beta} : \alpha_{\mathcal{G}}(z) = \alpha_{\mathcal{G}}(e_{\mathcal{G}})\} = \{[z]_{\beta} : [z]_{\alpha} = [e_{\mathcal{G}}]_{\alpha}\} = \{[z]_{\beta} \in \mathcal{G}/\beta : \theta([z]_{\alpha}) = [e_{\mathcal{G}}]_{\alpha}\} = ker\theta$. Therefore, it follows that $(\mathcal{G}/\beta)/(K_{\alpha_{\mathcal{G}}}/\beta) \cong \mathcal{G}/\alpha$.

4. Topological structures on \mathcal{G}/α

Group \mathcal{G} with the congruence relation R construct an approximation space ([16]). The lower and upper approximations of $\mathcal{H} \subseteq \mathcal{G}$ are defined respectively as

$$R_{\star}(\mathcal{H}) = \{ x \in \mathcal{G} : [x]_{\alpha} \subseteq \mathcal{H} \},\$$

$$R^{\star}(\mathcal{H}) = \{ x \in \mathcal{G} : [x]_{\alpha} \cap \mathcal{H} \neq \phi \}.$$

The lower approximation induces a topology on \mathcal{G} .

Proposition 4.1 ([10]). $T_R = \{ \mathcal{H} \subseteq \mathcal{G} : R_{\star}(\mathcal{H}) = \mathcal{H} \}$ is a topology on \mathcal{G} .

Furthermore, we have the following result.

Theorem 4.1. (\mathcal{G}, T_R) is a topological group.

Proof. Let x and y be elements in \mathcal{G} . Every open set $U \in T_R$ containing the element xy satisfies the condition $R_\star(U) = U$. This implies $[xy]_\alpha \subseteq U$. Since R is a congruence relation on \mathcal{G} , we have $[x]_\alpha[y]_\alpha \subseteq [xy]_\alpha \subseteq U$. Notice that, $[x]_\alpha$ and $[y]_\alpha$ are open sets containing x, y respectively such that $[x][y] \subseteq U$. Hence, the group operation : $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$ is a continuous mapping. To complete the proof, we have to verify continuity of the inversion mapping $x \to x^{-1}$. Let x be an element in \mathcal{G} and $V \in T_R$ an open set containing the element x^{-1} , then $[x^{-1}]_\alpha \subseteq V$. Let $y^{-1} \in [x]^{-1} = \{y^{-1} : y \in [x]\}$ then

$$\alpha_{\mathcal{G}}(x^{-1}(y^{-1})^{-1}) = \alpha_{\mathcal{G}}(x^{-1}y) = \alpha_{\mathcal{G}}(yx^{-1}) = \alpha_{\mathcal{G}}(e).$$

That is, $y^{-1} \in [x^{-1}]$. Since [x] is an open set containing x such that $[x]^{-1} \subseteq [x^{-1}] \subseteq V$, then the inverse operation on \mathcal{G} is continuous. Therefore, (\mathcal{G}, T_R) is a topological group.

Example 4.1. Assume that $\mathcal{G} = S_3$ is the set of permutations on $\{1, 2, 3\}$ and $\mathcal{U} = \mathbb{Z}$ is the set of parameters. We define a soft set $\alpha_{\mathcal{G}}$ over U by

$$\alpha_{\mathcal{G}}(e) = \mathbb{Z},$$

$$\alpha_{\mathcal{G}}((12)) = \alpha_{\mathcal{G}}((13)) = \alpha_{\mathcal{G}}((23)) = \{-2, -1, 0, 1, 2\},$$

$$\alpha_{\mathcal{G}}((123)) = \alpha_{\mathcal{G}}((132)) = \{-3, -2, -1, 0, 1, 2, 3\}.$$

 $\alpha_{\mathcal{G}}$ is a soft int-group ([3]). Easily, one can verify that $\alpha_{\mathcal{G}}$ is a normal soft int-group over \mathcal{U} .

Obviously, the equivalence class $[p]_{\alpha}$ contains only the element p, for every $p \in \mathcal{G}$. This implies that the topology T_R is the discrete topology, that is $T_R = \mathcal{P}(\mathcal{G})$. Then, group \mathcal{G} endowed with the topology T_R is a topological group.

Consider the quotient map $\pi : \mathcal{G} \longrightarrow \mathcal{G}/\alpha$ defined by $x \to [x]_{\alpha}$, for all $x \in \mathcal{G}$. We equip the factor group \mathcal{G}/α with the quotient topology $\tau = \{K \subseteq \mathcal{G}/\alpha : \pi^{-1}(K) \in T_R\}$. In general topology, not every quotient map is open.

Proposition 4.2. The quotient map $\pi : (\mathcal{G}, T_R) \longrightarrow (\mathcal{G}/\alpha, \tau)$ is open.

Proof. For any open set $V \in T_R$, we show that $\pi(V) \in \tau$,

$$\pi^{-1}(\pi(V)) = \pi^{-1}(\bigcup_{x \in V} [x]_{\alpha}) = \bigcup_{x \in V} \pi^{-1}([x]_{\alpha}) = V.$$

So $\pi^{-1}(\pi(V))$ is open set and hence, by definition of quotient topology, $\pi(V)$ is open

Theorem 4.2. $(\mathcal{G}/\alpha, \tau)$ is a topological group.

Proof. For $x, y \in \mathcal{G}$, let $[x]_{\alpha}, [y]_{\alpha}$ be elements in \mathcal{G}/α such that $[x]_{\alpha}[y]_{\alpha} = [xy]_{\alpha} \in W \in \tau$. Since $\pi(xy) = \pi(x)\pi(y) = [xy]_{\alpha}$ then $xy \in \pi^{-1}(W)$. Being (\mathcal{G}, T_R) a topological group and $xy \in \pi^{-1}(W)$, there exists $V_x, V_y \in T_R$ containing x, y respectively and $V_x V_y \subseteq \pi^{-1}(W)$. Notice that $\pi(V_x)\pi(V_y) = \pi(V_x V_y) \in \pi(\pi^{-1}(W)) = W$. Since $\pi(x) = [x]_{\alpha} \in \pi(V_x), \pi(y) = [y]_{\alpha} \in \pi(V_y)$ and by Proposition 4.2, we verified that the product operation on \mathcal{G}/α is continuous. Now, we have to show that the inverse operation is also continuous. Let $[x]_{\alpha}$ be an element in \mathcal{G}/α and $V \in \tau$ an open set containing the element $[x]_{\alpha}^{-1} = [x^{-1}]_{\alpha}$, then $\pi(x^{-1}) = [x^{-1}]_{\alpha} \in V$ which implies $x^{-1} \in \pi^{-1}(V)$. Since (\mathcal{G}, T_R) is a topological group, there exists $U \in T_R$ containing $x^{-1} \in \mathcal{G}$ such that $U^{-1} = \{z^{-1} \in \mathcal{G} : z \in U\} \subseteq \pi^{-1}(V)$. Since $\pi(x) = [x]_{\alpha} \in \pi(U) \in \tau$ and $\pi(U^{-1}) = \pi(U)^{-1}$ then we have $\pi(U)^{-1} \subseteq \pi(\pi^{-1}(V)) = V$. Therefore the mapping $[x]_{\alpha} \to [x^{-1}]_{\alpha}$ is continuous and hence $(\mathcal{G}/\alpha, \tau)$ is a topological group. \Box

5. Conclusion

In this paper, we constructed factor groups caused by normal soft int-groups. With the help of this construction, we established the group Isomorphism theorems. Further research can examine the factor groups caused by normal soft uni-groups.

References

- H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007), 2726-2735.
- [2] I.M. Ali, M. Shabir, P.K. Shum, On soft ideals over semigroups, Southeast Asian Bulletin of Mathematics, 34 (2010), 595-610.
- [3] N. Cagman, F. Citak, H. Aktas, Soft int-group and its applications to group theory, Neural Comput. Appl., 21 (2012), 151-158.
- [4] F, Feng, M. Khan, V. Leoreanu-Fotea, S. Anis, N. Ajaib, Fuzzy soft set approach to ideal theory of regular AG-groupoids, An. St. Univ. Ovidius Constanta, 24 (2016), 263-288.
- [5] E. Hamouda, Soft ideals in ordered semigroups, Rev. Un. Mat. Argentina, 58 (2017), 85-94.
- [6] E. Hamouda, A. Ramadan, A. Seif, Extensions of soft ideals over semigroups, J. of Mult.-Valued Logic and Soft Computing, 37 (2021) 481-492.
- [7] Y.B. Jun, S.Z. Song, G. Muhiuddin, Concave soft sets, critical soft points, and union-soft ideals of ordered semigroups, The Scientific World J., Vol.2014, Article ID 467968, 11 pages.
- [8] K. Kaygisiz, On soft int-groups, Ann. Fuzzy Math. Inform., 4 (2012), 365-375.
- [9] K. Kaygisiz, Normal soft int-groups, arXiv:1209.3157.
- [10] M. Kondo, On the structure of generalized rough sets, Information Sciences, 176 (2006), 589-600.
- [11] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19-31.
- [12] A. Ramadan, E. Hamouda, A. Seif, Soft interior ideals over semigroups, Ital. J. Pure Appl. Math, 46 (2021), 874-884.
- [13] A. Ramadan, E. Hamouda, A. Seif, Generalized soft bi-ideals over semigroups, International Journal of Mathematics and Computer Science, 16 (2021), 1-9.

- [14] A. Sezgin, A.O. Ataguen, Soft groups and normalistic soft groups, Comput. Math. Appl., 62 (2011), 685-698.
- [15] I. Simsek, N. Cagman, K. Kaygisiz, On normal soft intersection groups, Contemporary Analysis and Applied Mathematics, 2 (2014), 258-267.
- [16] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341-356.
- [17] S.Z. Song, H.S. Kim, Y.B. Jun, Ideal theory in semigroups based on intersectional soft sets, The Scientific World J., 2014, Article ID 136424, 7 pages.
- [18] L.A. Zadeh, *Fuzzy sets*, Inform. Control, 8 (1965), 338-353.

Accepted: March 13, 2023