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Abstract. Given a group G, let αG be a normal soft int-group in G. We construct
the factor group G/α relative to αG by defining a congruence relation on G. Using this
construction, we establish soft Isomorphism Theorems which generalize the classical
group Isomorphism Theorems. Finally, we give some topological structures on G and
G/α.
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1. Introduction

In 1965, the concept of fuzzy set theory has been introduced by Zadeh [18]. The
application of fuzzy sets can be found in many branches of mathematics and
engineering sciences. Molodtsov in [11] introduced the soft set as a generalization
of the fuzzy set to deal with uncertainty. A soft set (fuzzy soft sets, see[4]) is
a set-valued function from a set of parameters to the power set( all fuzzy sets)
of a universe set. The concept of soft groups (semigroups) is defined in [1, 2]
as a collection of subgroups (subsemigroups) of a group (semigroup). In this
direction, new types of soft ideals over semigroups are presented in recent works
[6, 12, 13]. Cagman et al. [3], based on intersection and inclusion relation of
sets, defined the soft int-group which are unlike that in [1, 14]. Some properties
of soft int-groups and normal soft int-groups are introduced in [8, 9, 15]. Ideal
theory in semigroups and ordered semigroups based on soft int- (uni-)semigroup
is investigated in [5, 7, 17]. In this paper, we introduce a method to construct
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factor groups related to normal soft int-groups. We apply this construction
to establish soft Isomorphism Theorems which generalize the classical group
Isomorphism Theorems. Topological structures on G and the factor group G/α
are introduced.

2. Preliminaries

In this Section, we recall some definitions and results of soft set. Throughout
our discussion, U refers to a universal set, P(U) the power set of U and E the
set of parameters where A,B,C, ... ⊆ E .

Definition 2.1 ([3]). A soft set (α,A) over U is a set of ordered pairs

(α,A) := {(x, α(x)) : x ∈ E , α(x) ∈ P(U)},

where α : E −→ P(U) such that α(x) = ϕ if x /∈ A.

From now on, we write αA instead of (α,A).

Definition 2.2 ([3]). Let αA and αB be soft sets over U . Then, union αA ⊔αB

and intersection αA ⊓ αB of αA and αB are defined by

(αA ⊔ αB)(x) = αA(x) ∪ αB(x), (αA ⊓ αB)(x) = αA(x) ∩ αB(x)

respectively, for all x ∈ E.

Definition 2.3 ([3]). Let G be a group and αG be a soft set over U . Then, αG
is called a soft intersection group (soft int-group) over U if

1. αG(xy) ⊇ αG(x) ∩ αG(y) for all x, y ∈ G, and

2. αG(x
−1) = αG(x) for all x ∈ G.

Or, equivalenty, if αG(xy
−1) ⊇ αG(x) ∩ αG(y) for all x, y ∈ G.

Theorem 2.1 ([8]). Let αG be a soft int-group and x, y ∈ G. Then

1. αG(e) ⊇ αG(x),

2. αG(xy
−1) = αG(e) ⇒ αG(x) = αG(y).

Definition 2.4 ([3]). A soft int-group αG over U is called normal, if for all
x, y ∈ G, it satisfies one of the following equivalent conditions:

1. αG(xyx
−1) ⊇ αG(y),

2. αG(xyx
−1) ⊆ αG(y),

3. αG(xy) = αG(yx).
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Definition 2.5 ([9]). Let αA be a soft set over U and V ∈ P(U)). Then,
V -inclusion of the soft set αA, denoted by αV is defined as

αV = {x ∈ A : α(x) ⊇ V }.

It is proved in [9] that “A soft set αG is a (normal) soft int-group over U iff
for all V ∈ P(U), αV is either empty or a (normal) subgroup of G”.

Definition 2.6 ([15]). Let f : G → H be a function between groups. Then, the
soft image f(αG) of a soft set αG and the soft preimage f−1(βH) of a soft set
βH under f are defined as

f(αG)(y) =

{⋃
{αG(x) : x ∈ G, f(x) = y}, for y ∈ f(G),

ϕ, otherwise,

and
f−1(βH)(x) = βH(f(x)), ∀x ∈ G.

Theorem 2.2 ([15]). If f : G → H is an epimorphism of groups, and αG is a
normal soft int-group, then f(αG) is a normal soft int-group.

3. Construction of the factor group

In this Section, we represent our main findings. Given a group G we denote the
identity element of G by eG , and the set of all soft int-groups over U with G as
a set of parameters by S(G,U).

Recall that an equivalence relation δ on G is called a congruence relation
if

xδy ⇒ xzδyz, zxδzy

for all x, y, z ∈ G.
Let αG ∈ S(G,U) be a normal soft int- group. For any x, y ∈ G, we define

the relation R on G by

xRy ⇔ αG(xy
−1) = αG(eG).

Lemma 3.1. R is a congruence relation on G.

Proof. Clearly, R is reflexive and symmetric. Also, R is transitive. Indeed,
let xRy and yRz, then αG(xy

−1) = αG(yz
−1) = αG(eG). Then, αG(xz

−1) =
αG(xy

−1yz−1) ⊇ αG(xy
−1) ∩ αG(yz

−1) = αG(eG). Hence, αG(xz
−1) = αG(eG),

which proves that xRz and so R is an equivalence relation. If xRy, then
αG(xy

−1) = αG(eG). Thus, for all z ∈ G we have

αG((xz)(yz)
−1) = αG(xzz

−1y−1) = αG(xy
−1) = αG(eG).

Hence, xzRyz. Since αG is normal, we get αG((zx)(zy)
−1) = αG(zxy

−1z−1) =
αG(xy

−1) = αG(eG). This gives zxRzy, and we conclude that R is a congruence
relation on G.
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By [x]α, we denote the equivalence class containing x ∈ G and by G/α the
corresponding factor set relative to αG .

Theorem 3.1. G/α is a group with the operation [x]α[y]α = [xy]α.

Proof. Straightforward.

Example 3.1. Assume that U = S3 is the set of permutations on {1, 2, 3}. Let
G = Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} be the set of parameters. We define a soft set αG over
U by

αG(0̄) = U,

αG(1̄) = {(12), (13), (132)},
αG(2̄) = {(12), (13), (23), (123), (132)},
αG(3̄) = {(1), (12), (13), (132)},
αG(4̄) = {(12), (13), (23), (123), (132)},
αG(5̄) = {(12), (13), (132)}.

Clearly, αG is a normal soft int-group over U and

G/α = {[0̄]α, [1̄]α, [2̄]α, [3̄]α, [4̄]α, [5̄]α}.

By Definition 2.5, the set KαG = {x ∈ G : αG(x) = αG(eG)} is a (normal)
subgroup of G iff αG is a (normal)soft int-group over U .

Proposition 3.1. Let f : G −→ H be a homomorphism of groups and αG ∈
S(G,U), then

(i) f(KαG ) ⊆ Kf(αG),

(ii) If αG is constant on Kerf , then f(αG)(f(x)) = αG(x) for all x ∈ G.

Proof. (i) Let y ∈ f(KαG ), then y = f(x) for some x ∈ KαG . Since αG(x) =
αG(eG), then

f(αG)(y) =
⋃

x∈f−1(y)

{αG(x)} = αG(eG) = f(αG)(eH).

Therefore, y ∈ Kf(αG).

(ii) Let y = f(x), then f(αG)(y) =
⋃

z∈f−1(y){αG(z)}. But f(zx−1) = eH
for all z ∈ f−1(y). Hence, αG(zx

−1) = αG(eG) because αG is constant on
Kerf . By Theorem 2.1, we have αG(z) = αG(x) for all z ∈ f−1(y). Therefore,
f(αG)(f(x)) = αG(x).

Theorem 3.2. Let f : G −→ H be an epimorphism of groups and αG ∈ S(G,U)
be normal with kerf ⊆ KαG , then G/α ∼= H/f(αG).
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Proof. From Theorem 2.2, f(αG) is a normal soft int-group and hence H/f(αG)
is a group. We define θ : G/α −→ H/f(αG), such that θ([x]α) = [f(x)]f(αG).
Firstly, θ is well defined since [x]α = [y]α implies αG(xy

−1) = αG(eG). Since
kerf ⊆ KαG , then αG is constant on kerf, and by Proposition 3.1, we have

f(αG)(f(xy
−1)) = f(αG)(f(eG)).

Then, f(αG)(f(x)f(y)
−1) = f(αG)(eH), and so [f(x)]f(αG) = [f(y)]f(αG). There-

fore, θ is well defined.

Secondly, θ is a homomorphism because:

θ([x]α[y]α) = θ([xy]α) = [f(xy)]f(αG) = [f(x)f(y)]f(αG)

= [f(x)]f(αG)[f(y)]f(αG) = θ([x]α)θ([y]α).

Now, we show that θ is an epimorphism. For any [y]f(αG) ∈ H/f(αG), there
exists x ∈ G such that f(x) = y (since f is onto). So θ([x]α) = [f(x)]f(αG) =
[y]f(αG), which means that θ is an epimorphism. Finally, θ is a 1-1 homomor-
phism since

[f(x)]f(αG) = [f(y)]f(αG)

=⇒ f(αG)(f(x)f(y)
−1) = f(αG)(eH)

=⇒ f(αG)(f(xy
−1)) = f(αG)(f(eG))

=⇒ αG(xy
−1) = αG(eG)

=⇒ [x]α = [y]α,

which proves that θ is injective. We conclude that θ is an isomorphism.

Corollary 3.1. Let f : G −→ H be an onto homomorphism of groups and
βH ∈ S(H,U) be normal , then G/f−1(βH) ∼= H/β.

Proof. It is known that f−1(βH) is a normal soft int-group over U (see, [15]).
Consequently, G/f−1(βH) and H/β are groups. Since f is onto, then βH =
f(f−1(βH)) [9]. Let x be an element in kerf , then f(x) = f(eG), and so
βH(f(x)) = βH(f(eG)), that is f

−1(βH)(x) = f−1(βH)(eG). Hence, x ∈ Kf−1(βH),
which means that kerf ⊆ Kf−1(βH). By applying Theorem 3.2, we get the de-
sired result.

For a nonempty subset A of G, define a map χA : G −→ P(U) as follows:

χA(x) =

{
U , if x ∈ A,

ϕ, otherwise.

Then, χA is a soft set over U , which is called the characteristic soft set (see,
[17]).
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Theorem 3.3. A is a (normal) subgroup of G if and only if χA is a (normal)
soft int-group over U .

Proof. Assume that χA is a normal soft int-group over U . For any x, y ∈ A
we have χA(xy

−1) ⊇ χA(x) ∩ χA(y) = U . Thus, χA(xy
−1) = U and xy−1 ∈ A.

Therefore A is a subgroup of G. Similarly, for any y ∈ A, x ∈ G we have
χA(xyx

−1) ⊇ χA(y) = U . Hence, χA(xyx
−1) = U and xyx−1 ∈ A. This proves

that A is a normal subgroup of G. Conversely, suppose that A is a normal
subgroup of G. If x, y ∈ A, then χA(xy

−1) = χA(x) = χA(y) = U . Hence,
χA(xy

−1) = χA(x) ∩ χA(y). If at least one of x and y is not in A, then at least
one of χA(x) and χA(y) is ϕ. Therefore χA(xy

−1) ⊇ χA(x)∩χA(y). Hence, χA
is a soft int-group over U . Moreover, for any x, y ∈ G, if y ∈ A, then xyx−1 ∈ A
and χA(xyx

−1) = U = χA(y). If y /∈ A, then χA(xyx
−1) ⊇ χA(y) = ϕ. Hence,

χA is normal.

Corollary 3.2. Let f : G −→ H be an onto homomorphism. Then, G/χkerf
∼=

H.

Proof. By Theorem 3.3, the characteristic soft set χ{eH} ∈ S(H,U) is normal.
It is easy to see that the soft preimage f−1(χ{eH}) is the soft set χkerf . Hence,
the factor group H/χ{eH} is isomorphic to H. By applying Corollary 3.1, we
get G/χkerf

∼= H/χ{eH} ∼= H.

In group theory, on the factor group G/kerf we can define an equivalence
relation by x ∼ y ⇔ xy−1 ∈ kerf. Easily, one shows that x ∼ y iff xRy relative
to the normal soft int-group χkerf . Therefore, we have G/χkerf

∼= G/kerf and
Corollary 3.2 becomes the First Group Isomorphism Theorem.

Lemma 3.2. Let A be a normal subgroup of G and αG a normal soft int-group
over U . Then, the restriction αG | A is a normal soft int-group over U and A/α
is a normal subgroup of G/α.

Proof. It is obvious from [9, Theorem 2.13] that αG | A is a soft int-group.
Since A is normal, (αG | A)(xy) = (αG | A)(yx) for any x, y ∈ A. Hence,
αG | A is a normal soft int-group. If [a]α, [b]α ∈ A/α, where a, b ∈ A, then
([a]α)([b]α)

−1 = ([a]α)([b
−1]α) = [ab−1]α ∈ A/α. Hence, A/α is a subgroup of

G/α. If [a]α ∈ A/α, [x]α ∈ G/α, where a ∈ A and x ∈ G, then xax−1 ∈ A and

([x]α)([a]α)([x]α)
−1 = ([x]α)([a]α)([x

−1]α) = [xax−1]α ∈ A/α.

Thus, A/α is a normal subgroup of G/α.

Notation. For A,B ⊆ G, we set A · B = {ab : a ∈ A, b ∈ B}.

Theorem 3.4. If αG and βG are normal soft int-groups over U such that
αG(eG) = βG(eG), then (KαG ·KβG )/βG

∼= KαG/(αG ⊓ βG).
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Proof. Before we proceed and for simplicity, put γG = αG ⊓ βG . Since γG is
a normal soft int-group over U (see, [9]) and by Lemma 3.2, the restrictions
βG | (KαG · KβG ) and γG | KαG are a normal soft int-groups over U . Then,
the factor sets (KαG · Kβ)/β and KαG/γ are groups by Lemma 3.1. For any
x ∈ KαG · KβG , x = ab, where a ∈ KαG and b ∈ KβG , we define Ω : (KαG ·
KβG )/β −→ KαG/γ such that f([x]β) = [a]γ . The mapping Ω is well-defined.
Indeed, if [x]β = [y]β, where y = wz ∈ KαG ·KβG , then

βG(xy
−1) = βG(ab(wz)

−1) = βG(abz
−1w−1) = βG(w

−1abz−1)

= βG(w
−1a(zb−1)−1) = βG(eG).

Hence, βG(w
−1a) = βG(zb

−1) = βG(eG). Thus,

γG(aw
−1) = αG(aw

−1) ∩ βG(aw
−1) = αG(eG) ∩ βG(w

−1a)

= αG(eG) ∩ βG(eG) = γG(eG),

that is [a]γ = [w]γ .
Now, we prove that Ω is a homomorphism. Let [x]β, [y]β ∈ (KαG ·KβG )/β,

where x = ab, y = wz, a, w ∈ KαG and b, z ∈ KβG , then xy = abwz. Since KαG

is normal, bwz ∈ KαG . Hence,

Ω([x]β[y]β) = Ω([xy]β) = [a(bwz)]γ = [a]γ [bwz]γ

and

γG((bwz)w
−1) = αG((bwz)w

−1) ∩ βG((b(wzw
−1))

= αG(eG) ∩ βG(eG) = γG(eG).

Hence, [w]γ = [bwz]γ , i.e.

Ω([x]β[y]β) = [a]γ)[w]γ = Ω([x]β)Ω([y]β),

which implies that Ω is a homomorphism. It is also onto, since for any [a]γ ∈
KαG/γ and b ∈ KβG , we have x = ab ∈ KαG ·KβG and Ω([x]β) = [a]γ). Finally,
we show that Ω is injective. Let x, y ∈ KαG ·KβG , where x = ab, y = wz. Assume
that [a]γ = [w]γ , then γG(aw

−1) = γG(eG), that is

αG(aw
−1) ∩ βG(aw

−1) = αG(eG) ∩ βG(eG).

But αG(eG) = βG(eG) and αG(aw
−1) = αG(eG) imply that βG(aw

−1) = βG(eG).
Therefore,

βG(xy
−1) = βG(ab(wz)

−1) = βG(abz
−1w−1) = βG(w

−1abz−1)

⊇ βG(w
−1a) ∩ βG(bz

−1) = βG(aw
−1) ∩ βG(bz

−1) = βG(eG).

Hence, [x]β = [y]β. Therefore, Ω is an isomorphism.
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In case A,B ⊆ G are normal subgroups, the result (A · B)/χB ∼= B/χA∩B
comes as a corollary of Theorem 3.4. and then we get the Second Group Isomor-
phism Theorem. Finally, the Third Group Isomorphism Theorem is outcome of
the following result.

Theorem 3.5. Let αG , βG ∈ S(G,U) be normal such that βG ⊑ αG and αG(eG) =
βG(eG). Then, (G/β)/(KαG/β)

∼= G/α

Proof. For all x ∈ G, we define θ : G/β −→ G/α by θ([x]β) = [x]α. The
mapping is well defined since [x]β = [y]β implies βG(xy

−1) = βG(eG) = αG(eG).
By assumption, we get αG(xy

−1) ⊇ βG(xy
−1) = αG(eG) and hence αG(xy

−1) =
αG(eG), that is [x]α) = [y]α. By definition, θ is an onto homomorphism. We
have kαG/β = {[z]β : z ∈ kαG} = {[z]β : αG(z) = αG(eG)} = {[z]β : [z]α =
[eG ]α} = {[z]β ∈ G/β : θ([z]α) = [eG ]α} = kerθ. Therefore, it follows that
(G/β)/(KαG/β)

∼= G/α.

4. Topological structures on G/α

Group G with the congruence relation R construct an approximation space
([16]). The lower and upper approximations of H ⊆ G are defined respectively
as

R⋆(H) = {x ∈ G : [x]α ⊆ H},
R⋆(H) = {x ∈ G : [x]α ∩H ≠ ϕ}.

The lower approximation induces a topology on G.

Proposition 4.1 ([10]). TR = {H ⊆ G : R⋆(H) = H} is a topology on G.

Furthermore, we have the following result.

Theorem 4.1. (G, TR) is a topological group.

Proof. Let x and y be elements in G. Every open set U ∈ TR containing the
element xy satisfies the condition R⋆(U) = U. This implies [xy]α ⊆ U. Since R
is a congruence relation on G, we have [x]α[y]α ⊆ [xy]α ⊆ U. Notice that, [x]α
and [y]α are open sets containing x, y respectively such that [x][y] ⊆ U. Hence,
the group operation : G × G → G is a continuous mapping. To complete the
proof, we have to verify continuity of the inversion mapping x → x−1. Let x
be an element in G and V ∈ TR an open set containing the element x−1, then
[x−1]α ⊆ V. Let y−1 ∈ [x]−1 = {y−1 : y ∈ [x]} then

αG(x
−1(y−1)−1) = αG(x

−1y) = αG(yx
−1) = αG(e).

That is, y−1 ∈ [x−1]. Since [x] is an open set containing x such that [x]−1 ⊆
[x−1] ⊆ V, then the inverse operation on G is continuous. Therefore, (G, TR) is
a topological group.
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Example 4.1. Assume that G = S3 is the set of permutations on {1, 2, 3} and
U = Z is the set of parameters. We define a soft set αG over U by

αG(e) = Z,
αG((12)) = αG((13)) = αG((23)) = {−2,−1, 0, 1, 2},

αG((123)) = αG((132)) = {−3,−2,−1, 0, 1, 2, 3}.

αG is a soft int-group ([3]). Easily, one can verify that αG is a normal soft
int-group over U .

Obviously, the equivalence class [p]α contains only the element p, for every
p ∈ G. This implies that the topology TR is the discrete topology, that is
TR = P(G). Then, group G endowed with the topology TR is a topological
group.

Consider the quotient map π : G −→ G/α defined by x → [x]α, for all x ∈ G.
We equip the factor group G/α with the quotient topology τ = {K ⊆ G/α :
π−1(K) ∈ TR}. In general topology, not every quotient map is open.

Proposition 4.2. The quotient map π : (G, TR) −→ (G/α, τ) is open.

Proof. For any open set V ∈ TR, we show that π(V ) ∈ τ,

π−1(π(V )) = π−1(
⋃
x∈V

[x]α) =
⋃
x∈V

π−1([x]α) = V.

So π−1(π(V )) is open set and hence, by definition of quotient topology, π(V ) is
open

Theorem 4.2. (G/α, τ) is a topological group.

Proof. For x, y ∈ G, let [x]α, [y]α be elements in G/α such that [x]α[y]α =
[xy]α ∈ W ∈ τ. Since π(xy) = π(x)π(y) = [xy]α then xy ∈ π−1(W ). Be-
ing (G, TR) a topological group and xy ∈ π−1(W ), there exists Vx, Vy ∈ TR

containing x, y respectively and VxVy ⊆ π−1(W ). Notice that π(Vx)π(Vy) =
π(VxVy) ∈ π(π−1(W )) = W. Since π(x) = [x]α ∈ π(Vx), π(y) = [y]α ∈ π(Vy)
and by Proposition 4.2, we verified that the product operation on G/α is con-
tinuous. Now, we have to show that the inverse operation is also continuous.
Let [x]α be an element in G/α and V ∈ τ an open set containing the element
[x]−1

α = [x−1]α, then π(x−1) = [x−1]α ∈ V which implies x−1 ∈ π−1(V ). Since
(G, TR) is a topological group, there exists U ∈ TR containing x−1 ∈ G such
that U−1 = {z−1 ∈ G : z ∈ U} ⊆ π−1(V ). Since π(x) = [x]α ∈ π(U) ∈ τ and
π(U−1) = π(U)−1 then we have π(U)−1 ⊆ π(π−1(V )) = V. Therefore the map-
ping [x]α → [x−1]α is continuous and hence (G/α, τ) is a topological group.
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5. Conclusion

In this paper, we constructed factor groups caused by normal soft int-groups.
With the help of this construction, we established the group Isomorphism the-
orems. Further research can examine the factor groups caused by normal soft
uni-groups.

References

[1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci., 177 (2007),
2726-2735.

[2] I.M. Ali, M. Shabir, P.K. Shum, On soft ideals over semigroups, Southeast
Asian Bulletin of Mathematics, 34 (2010), 595-610.

[3] N. Cagman, F. Citak, H. Aktas, Soft int-group and its applications to group
theory, Neural Comput. Appl., 21 (2012), 151-158.

[4] F, Feng, M. Khan, V. Leoreanu-Fotea, S. Anis, N. Ajaib, Fuzzy soft set
approach to ideal theory of regular AG-groupoids, An. St. Univ. Ovidius
Constanta, 24 (2016), 263-288.

[5] E. Hamouda, Soft ideals in ordered semigroups, Rev. Un. Mat. Argentina,
58 (2017), 85-94.

[6] E. Hamouda, A. Ramadan, A. Seif, Extensions of soft ideals over semi-
groups, J. of Mult.-Valued Logic and Soft Computing, 37 (2021) 481-492.

[7] Y.B. Jun, S.Z. Song, G. Muhiuddin, Concave soft sets, critical soft points,
and union-soft ideals of ordered semigroups, The Scientific World J.,
Vol.2014, Article ID 467968, 11 pages.

[8] K. Kaygisiz, On soft int-groups, Ann. Fuzzy Math. Inform., 4 (2012), 365-
375.

[9] K. Kaygisiz, Normal soft int-groups, arXiv:1209.3157.

[10] M. Kondo, On the structure of generalized rough sets, Information Sciences,
176 (2006), 589-600.

[11] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999),
19-31.

[12] A. Ramadan, E. Hamouda, A. Seif, Soft interior ideals over semigroups,
Ital. J. Pure Appl. Math, 46 (2021), 874-884.

[13] A. Ramadan, E. Hamouda, A. Seif, Generalized soft bi-ideals over semi-
groups, International Journal of Mathematics and Computer Science, 16
(2021), 1-9.



TOPOLOGICAL FACTOR GROUPS RELATIVE TO NORMAL SOFT INT-GROUPS 217

[14] A. Sezgin, A.O. Ataguen, Soft groups and normalistic soft groups, Comput.
Math. Appl., 62 (2011), 685-698.

[15] I. Simsek, N. Cagman, K. Kaygisiz, On normal soft intersection groups,
Contemporary Analysis and Applied Mathematics, 2 (2014), 258-267.

[16] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341-356.

[17] S.Z. Song, H.S. Kim, Y.B. Jun, Ideal theory in semigroups based on in-
tersectional soft sets, The Scientific World J., 2014, Article ID 136424, 7
pages.

[18] L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.

Accepted: March 13, 2023


