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Abstract. In this paper, we define the Mycielskian of a signed graph and discuss the
properties of balance and switching in the Mycielskian of a given signed graph. We
provide a condition for ensuring the Mycielskian of a balanced signed graph remains
balanced, leading to the construction of a balanced Mycielskian. We establish a relation
between the chromatic numbers of a signed graph and its Mycielskian. We also study
the structure of different matrices related to the Mycielskian of a signed graph.
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1. Introduction

A signed graph Σ = (G, σ) consists of an underlying graph G = (V,E), together
with a function σ : E → {−1, 1}, called the signature or sign function. The sign
of a cycle C in Σ, denoted by σ(C), is defined as the product of the signs of its
edges, and the cycle C is said to be positive if σ(C) = +1. A signed graph Σ is
said to be balanced if every cycle in it is positive, otherwise, Σ is unbalanced.
A signed graph is called all-positive (all-negative) if all the edges are positive
(negative).

A switching function for Σ is a function ζ : V (Σ) → {−1, 1}. For an edge
e = uv in Σ, the switched signature σζ is defined as σζ(e) = ζ(u)σ(e)ζ(v), and
the switched signed graph is Σζ = (G, σζ). The signs of cycles are unchanged
by switching, and any balanced signed graph can be switched to an all-positive
signed graph. If one signed graph can be switched from the other, they are said
to be switching equivalent (see, [8, Section 3]).
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The net-degree of a vertex v in a signed graph Σ, denoted by d±Σ(v) is defined
as d±Σ(v) = d+Σ(v) − d−Σ(v), where d+Σ(v) and d−Σ(v) respectively denotes the
number of positive and negative edges incident with v in Σ. The total number
of edges incident with v in Σ is denoted by dΣ(v) and dΣ(v) = d+Σ(v) + d−Σ(v).

Throughout this paper, we consider only finite, simple, connected, and undi-
rected graphs and signed graphs. For the standard notation and terminology in
graphs and signed graphs not given here, the reader may refer to [3, 9, 12].

The Mycielski construction of a simple graph was introduced by J. Mycielski
[7] in his search for triangle-free graphs with arbitrarily large chromatic number.
The Mycielskian for a finite, simple, connected graph G = (V,E) is defined as
follows.

Definition 1.1 ([1]). The Mycielskian M(G) of G is a graph whose vertex set
is the disjoint union V ∪V ′ ∪{w}, where V ′ = {v′ : v ∈ V }, and whose edge set
is E ∪{u′v : uv ∈ E}∪ {v′w : v′ ∈ V ′}. The vertex w is called the root of M(G)
and v′ ∈ V ′ is called the twin of v in M(G).

The Mycielski construction is useful in various applications, including the
study of planar graphs and coloring problems, as triangle-free graphs have
unique properties and often behave differently from graphs with triangles. When
it comes to signed graphs, triangle-free signed graphs are even more important,
as recent studies indicate that the negative triangles affects the balance of a
signed graph more than other negative cycles.

1.1 Mycielskian of signed graphs

Motivated from the Definition 1.1, we define the Mycielskian M(Σ) of the signed
graph Σ as follows.

Definition 1.2 (Mycielskian). The Mycielskian of Σ is the signed graph M(Σ) =
(M(G), σM ), where M(G) is the Mycielskian of the underlying graph G of Σ,
and the signature function σM is defined as σM (uv) = σM (u′v) = σ(uv) and
σM (v′w) = 1

The following are some immediate observations.

Observation 1.1. Let Σ be a signed graph with p vertices and q edges and let
M(Σ) be its Mycielskian. Then, we have the following.

(i) M(Σ) has 2p+ 1 vertices and 3q + p edges.

(ii) If Σ contains r positive edges and q−r negative edges, then M(Σ) contains
3r + p positive edges and 3(q − r) negative edges.

(iii) If Σ is triangle-free, then M(Σ) is also triangle-free.

(iv) For each vertex v ∈ V , d±M(Σ)(v) = 2d±Σ(v) and dM(Σ)(v) = 2dΣ(v).
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(v) For each vertex v′ ∈ V ′, d±M(Σ)(v
′) = d±Σ(v)+1 and dM(Σ)(v

′) = dΣ(v)+1.

(vi) d±M(Σ)(w) = dM(Σ)(w) = p.

Note that, one can define the signature function for the Mycielskian of a
signed graph in other ways. In this paper, we initiate a study on Mycielskian of
a signed graph using this particular definition.

This particular construction of Mycielskian of a signed graph is illustrated
in Example 1.1.

Example 1.1. Let Σ be the negative cycle C−
4 . The Mycielskian of C−

4 is
constructed in Figure 1b.

v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) M(Σ)

Figure 1: A signed graph and its Mycielskian.

2. Balance and switching in Mycielskian of signed graphs

Balance and switching are two important concepts in signed graph theory.

In this section, we establish how the signed graph and its Mycielskian are
related with respect to balance and switching. One may note that if Σ is unba-
lanced, then M(Σ) is unbalanced. Also, in general, for a balanced signed graph
Σ, the Mycielskian M(Σ) need not be balanced.

The following is a characterization for M(Σ) to be balanced.

Proposition 2.1. The Mycielskian M(Σ) is balanced if and only if Σ is all-
positive.

Proof. If Σ is all-positive, then so is M(Σ), and hence is balanced. Conversely,
If Σ has at least one negative edge, say vivj , then vivjv

′
iwv

′
jvi forms a negative

5 - cycle in M(Σ), making it unbalanced.

Consider any balanced signed graph Σ which is not all-positive. Then, Σ can
be switched to an all-positive signed graph, say Σ′. By Proposition 2.1, M(Σ) is
not balanced, but M(Σ′) is balanced. Hence, the Mycielskians of two switching
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equivalent signed graphs need not to be switching equivalent.

The Mycielskian of an unbalanced signed graph is always unbalanced. How-
ever, for a balanced signed graph Σ, the Mycielskian M(Σ) = (M(G), σM ) can
be made balanced by modifying the signature function σM . Though there are
several ways to do so, to remain consistent with our original definition, we only
look for changes that can be made in the signature of the edges incident to the
root vertex w which makes the Mycielskian balanced, and leave the signatures
of the other edges unchanged.

We need the following theorem [4].

Theorem 2.1 (Harary’s bipartition theorem [4]). A signed graph Σ is balanced
if and only if there is a bipartition of its vertex set, V = V1∪V2, such that every
positive edge is induced by V1 or V2 while every negative edge has one endpoint
in V1 and one in V2. The bipartition V = V1 ∪ V2 is called a Harary bipartition
for Σ.

Note that, if V = V1∪V2 is a Harary bipartition for Σ, then every path in Σ
joining vertices in V1 (similarly V2) is positive, and every path between V1 and
V2 is negative.

Theorem 2.2 provides a method to construct a balanced Mycielskian signed
graph from a balanced signed graph.

Theorem 2.2. Let Σ be a balanced signed graph and M(Σ) = (M(G), σM ) be its
Mycielskian. If σ′

M is a signature function satisfying σ′
M = σM on M(G)\{w}

and satisfies the relation σ′
M (v′iw)σ

′
M (v′jw) = σ(vivj) for every edge vivj in Σ,

then the signed graph M ′(Σ) = (M(G), σ′
M ) is balanced.

Proof. Since Σ is balanced, by Harary bipartition theorem, there exists a bi-
partition V = V1 ∪ V2 of V such that every negative edge in Σ has its one end
vertex in V1 and the other in V2. We construct a Harary bipartition for M ′(Σ)
as follows.

Let V ′
1 = {v′i : vi ∈ V1} and V ′

2 = {v′i : vi ∈ V2} be the subsets of V ′

corresponding to the subsets V1 and V2 of V . Since V = V1 ∪ V2, we have
V ′ = V ′

1 ∪ V ′
2 . Now, every edge with both its end vertices in V1 is positive and

no vertices in V ′
1 are adjacent. Also, for edges of the form viv

′
j , where vi ∈ V1

and v′j ∈ V ′
1 , we have, σ′

M (viv
′
j) = σM (viv

′
j) = σ(vivj) = +1. Thus, every

edge with both its end vertices in V1 ∪ V ′
1 is positive. Similarly, every edge

with both its end vertices in V2 ∪ V ′
2 is positive. Finally, consider any edge e

having one end vertex in V1 ∪ V ′
1 and the other in V2 ∪ V ′

2 . Without loss of
generality, we can assume that e = vivj , where vi ∈ V1 and vj ∈ V2. Then,
σ′
M (e) = σM (e) = σM (vivj) = σ(vivj) = −1. Hence, every edge joining V1 ∪ V ′

1

and V2 ∪ V ′
2 is negative.

We now claim that if σ′
M (v′kw) is positive for some vk ∈ V1, then σ′

M (v′iw)
is positive for all vi ∈ V1 and σ′

M (v′jw) is negative for all vj ∈ V2. To prove the
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claim, we first observe that if the relation σ′
M (v′iw)σ

′
M (v′jw) = σ(vivj) holds for

every edge vivj in Σ, then for any path Pvivj joining the vertices vi and vj in Σ,
the sign σ(Pvivj ) satisfies the relation σ′

M (v′iw)σ
′
M (v′jw) = σ(Pvivj ). To prove

this, consider a vi − vj path, say Pvivj = vivi+1vi+2 · · · vj−1vj , in Σ. Then, we
have

σ(Pvivj ) = σ(vivi+1vi+2 · · · vj−1vj)

= σ(vivi+1)σ(vi+1vi+2) · · ·σ(vj−1vj)

= (σ′
M (v′iw)σ

′
M (v′i+1w))(σ

′
M (v′i+1w)σ

′
M (v′i+2w)) · · · (σ′

M (v′j−1w)σ
′
M (v′jw))

= σ′
M (v′iw)(σ

′
M (v′i+1w)σ

′
M (v′i+2w) · · ·σ′

M (v′j−1w))
2σ′

M (v′jw))

= σ′
M (v′iw)σ

′
M (v′jw).

Now, consider vk ∈ V1 and let vi ∈ V1 and vj ∈ V2 be arbitrary. Then, every
vi − vk path is positive (i.e., σ(Pvivk) = +1) and every vj − vk path is negative
(i.e., σ(Pvjvk) = −1). The connectedness of Σ guarantees the existence of such
paths. Now, σ′

M (v′iw)σ
′
M (v′kw) = σ(Pvivk) = +1. Thus, σ′

M (v′iw) and σ′
M (v′kw)

must have the same sign. Similarly, since σ′
M (v′jw)σ

′
M (v′kw) = σ(Pvjvk) = −1,

σ′
M (v′jw) and σ′

M (v′kw) are of the opposite sign. Thus, if σ
′
M (v′kw) is positive for

some vk ∈ V1, then σ′
M (v′iw) is positive for all vi ∈ V1 and σ′

M (v′jw) is negative
for all vj ∈ V2. Hence, the claim is proved.

Now, consider the edges v′iw, where v′i ∈ V ′
1 ∪ V ′

2 . Because of the claim, if
σ′
M (v′kw) is positive for some vk ∈ V1, then σ′

M (v′iw) is positive for all vi ∈ V1

and σ′
M (v′jw) is negative for all vj ∈ V2. In this case, let (VM )1 = V1 ∪ V ′

1 ∪ {w}
and (VM )2 = V2 ∪ V ′

2 . Similarly, if σ′
M (v′kw) is negative for some vk ∈ V1, then

σ′
M (v′iw) is negative for all vi ∈ V1 and σ′

M (v′jw) is positive for all vj ∈ V2. In
this case, let (VM )1 = V1 ∪ V ′

1 and (VM )2 = V2 ∪ V ′
2 ∪ {w}.

Thus, in either case, VM = (VM )1 ∪ (VM )2 forms a Harary bipartition for
M ′(Σ), and hence M ′(Σ) is balanced.

Remark 2.1. One may note that σ′
M is a different signature on M(G) that

coincides with σM on M(G)\{w}. The signature function σ′
M for the remaining

edges v′iw of M(G) has to be defined using the relation stated in Theorem 2.2.
One such construction is discussed in Section 2.1.

It is also worth noting that if σ′
M = σM on M(G), then Theorem 2.2 reduces

to Proposition 2.1.

2.1 A balance-preserving construction

Given any balanced signed graph Σ = (G, σ), there exist a switching function
ζ : V (Σ) → {−1,+1} that switches Σ to all-positive. Define MB(Σ) as the
signed graph with underlying graph M(G) and having the signature function
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σB defined as

σB(vivj) = σ(vivj),

σB(v
′
ivj) = σB(viv

′
j) = σ(vivj),

σB(v
′
iw) = ζ(vi).

Define a switching function ζB : V (MB(Σ)) → {−1,+1} by

ζB(vi) = ζ(vi),

ζB(v
′
i) = ζ(vi),

ζB(w) = 1.

Since ζ switches Σ to all-positive, for edges vivj ,

σζB
B (vivj) = ζB(vi)σB(vivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Similarly, for edges v′ivj ,

σζB
B (v′ivj) = ζB(v

′
i)σB(v

′
ivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Also, for edges v′iw,

σζB
B (v′iw) = ζB(v

′
i)σB(v

′
iw)ζB(w)

= ζ(vi)ζ(vi)(+1)

= (ζ(vi))
2

= +1.

Hence, ζB switches MB(Σ) to all-positive. Thus, MB(Σ) = (M(G), σB) is ba-
lanced, and we call it as the balanced Mycielskian of Σ.

Definition 2.1 (Balanced Mycielskian). Let Σ = (G, σ) be a balanced signed
graph, where the underlying graph G = (V,E), is a finite simple connected graph.
The signed graph MB(Σ) = (M(G), σB) is called the balanced Mycielskian of Σ.

One can observe that under this construction, if two balanced signed graphs
Σ1 and Σ2 are switching equivalent, then their corresponding balanced Myciel-
skians MB(Σ1) and MB(Σ2) are also switching equivalent.
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v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) MB(Σ)

Figure 2: A balanced signed graph Σ and its balanced Mycielskian MB(Σ).

Example 2.1. Let Σ be the balanced 4-cycle shown in Figure 2a. The switching
function ζ : V (Σ) → {−1, 1} defined by ζ(v1) = ζ(v3) = ζ(v4) = −1 and
ζ(v2) = 1 switches Σ to all-positive. The corresponding balanced Mycielskian is
constructed in Figure 2b.

Remark 2.2. Note that, since σζ(vivj) = +1, for every edge vivj in Σ, we have
ζ(vi)ζ(vj) = σ(vivj). Thus,

σB(v
′
iw)σB(v

′
iw) = ζ(vi)ζ(vj) = σ(vivj).

Hence, the signature function defined for the balanced Mycielskian satisfies the
condition given in Theorem 2.2.

3. The chromatic number of Mycielskian of signed graphs

In 1981, Zaslavsky [10] introduced the concept of coloring a signed graph. For a
signed graph Σ, he defined the signed coloring of Σ in µ colors, or in 2µ+1 signed
colors as a mapping c : V (Σ) → {−µ,−µ+ 1, . . . , 0, . . . , µ− 1, µ}. Whenever a
coloring never assumes the value 0, it is referred to as a zero-free coloring. A
coloring c is said to be proper if c(u) ̸= σ(e)c(v) for every edge e = uv of Σ (see,
[10, Section 1]).

Máčajová et al. in [5] defined the chromatic number of a signed graph as
follows.

Definition 3.1 ([5]). An n - coloring of a signed graph Σ is a proper coloring
that uses colors from the set Mn, which is defined for each n ≥ 1 as

Mn =

{
{±1,±2, . . . ± k}, if n = 2k

{0,±1,±2, . . . ± k}, if n = 2k + 1.

The smallest n such that Σ admits an n - coloring is called the chromatic number
of Σ and is denoted by χ(Σ).

The chromatic number of a balanced signed graph coincides with the chro-
matic number of its underlying unsigned graph.
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Proposition 3.1. Let M(Σ)\{w} be the signed graph obtained by removing the
root vertex w (and the corresponding edges) from M(Σ). Then, χ(M(Σ)\{w}) =
χ(Σ).

Proof. Let χ(Σ) = n and let c : V (Σ) → Mn be an n - coloring for Σ. Define
c′ : V ((M(Σ)\{w}) → Mn by c′(v′i) = c′(vi) = c(vi) for all i. Since c(vi) ̸=
σ(vivj)c(vj), it follows that c

′(vi) ̸= σM (vivj)c
′(vj) and c′(v′i) ̸= σM (v′ivj)c

′(vj).
Hence, c′ is an n - coloring for M(Σ)\{w}.

For any given signed graph Σ, there exist a signed graph −Σ obtained by
reversing the signs of all edges of Σ. We say Σ is antibalanced when −Σ is
balanced. Note that, Σ is antibalanced if and only if it can be switched to all-
negative.

We restate the Lemma 2.4 from [11] as follows.

Lemma 3.1 ([11]). A signed graph Σ is antibalanced if and only if χ(Σ) ≤ 2.

Theorem 3.1. Let Σ be a signed graph and M(Σ) be its Mycielskian. Then,
χ(M(Σ)) ≤ 2 if and only if Σ is all-negative.

Proof. If Σ is an all-negative signed graph with vertex set {v1, v2, . . . vp}, then
the only positive edges of M(Σ) are v′iw, 1 ≤ i ≤ p. Now, the switching function
ζ ′M : V (M(Σ)) → {−1, 1} defined by ζ ′M (vi) = ζ ′M (v′i) = 1 for all 1 ≤ i ≤ p and
ζ ′M (w) = −1 switches M(Σ) to all-negative. Therefore, M(Σ) is antibalanced
and hence χ(M(Σ)) ≤ 2, by Lemma 3.1. Conversely, if Σ is not all-negative, it
contains at least one positive edge, say vivj . Then, vivjv

′
iwv

′
jvi forms a negative

5 - cycle in −M(Σ), making it unbalanced. Thus, M(Σ) is not antibalanced and
therefore, by Lemma 3.1, χ(M(Σ)) > 2.

We have the following theorem in [1].

Theorem 3.2 ([7]). Let χ(G) and χ(M(G)) be the chromatic numbers of a
graph G and its Mycielskian M(G) respectively. Then χ(M(G)) = χ(G) + 1.

Theorem 3.3. Let M(Σ) be the Mycielskian of a signed graph (Σ). Then,
χ(Σ) ≤ χ(M(Σ)) ≤ χ(Σ) + 1. Furthermore, χ(M(Σ)) = χ(Σ) if Σ is all-
negative and χ(M(Σ)) = χ(Σ) + 1 if Σ is all-positive.

Proof. Let χ(Σ) = n and let c : V → Mn be an n - coloring for Σ. We extend c
to an (n+1) - coloring of M(Σ). If n = 2k, we extend c to an (n+1) - coloring
of M(Σ) by setting c(v′i) = c(vi) for all i and c(w) = 0. If n = 2k+1, we extend
c to an (n + 1) - coloring of M(Σ) as follows. Let vt be any vertex in V with
c(vt) = 0. Then, for all vi ̸= vt, set c(v′i) = c(vi) , c(v′t) = c(vt) = k + 1 and
c(w) = −(k + 1). Hence, χ(M(Σ)) ≤ χ(Σ) + 1.

Now, if Σ is all-negative, it can be colored using just one color, namely
−1. Let c : V (Σ) → {±1} be the proper 2 - coloring for Σ. This can be
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extended to a proper 2 - coloring for M(Σ) by setting c(v′i) = c(vi) = −1 for
all i and c(w) = +1. If Σ is all-positive, then M(Σ) is all-positive. Thus,
χ(M(Σ)) = χ(M(G)) = χ(G) + 1 = χ(Σ) + 1.

Remark 3.1. Let Σ be a signed graph with χ(Σ) = n and let c : V (Σ) → Mn

be an n - coloring of Σ. The deficiency of the coloring c is the number of unused
colors from Mn (see, [6]). The existence of signed graphs satisfying χ(M(Σ)) =
χ(Σ) is a consequence of the deficiency of the coloring of Σ. Specifically, if the
coloring of Σ has a deficiency of at least 1, then an unused color can be assigned
to w, making the chromatic number of M(Σ) and Σ equal. As an example,
consider Σ as the balanced 3 - cycle shown in Figure 3a. Note that, χ(Σ) = 3
and the color −1 in the color set {0,±1} is unused.

1 1

0

(a) Σ

1
1

0

1 1 0

−1

(b) M(Σ)

Figure 3: A signed graph Σ satisfying χ(M(Σ)) = χ(Σ)

We now establish some results on the balanced Mycielskian of signed graphs.

Proposition 3.2. Let Σ = (G, σ) be a balanced signed graph and MB(Σ) =
(M(G), σB) be its balanced Mycielskian. Then, χ(MB(Σ)) = χ(Σ) + 1.

Proof. Since Σ and MB(Σ) are both balanced, χ(MB(Σ)) = χ(M(G)) and
χ(Σ) = χ(G). The result then follows from Theorem 3.2.

The following theorem was put forward by Mycielski in [7]

Theorem 3.4 ([7]). For any positive integer n, there exists a triangle-free graph
with chromatic number n.

The next theorem is an analogous result for balanced signed graphs.

Theorem 3.5. For any positive integer n, there exists a balanced triangle-free
signed graph that is not all-positive, and having chromatic number n.
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Proof. The proof is based on mathematical induction. For n = 1 and n =
2, the signed graphs Σ1 = K1 and Σ2 = K−

2 , where K−
2 is the all-negative

signed complete graph on two vertices have the required property. Suppose that
for k > 2, such a signed graph Σk satisfying the induction hypothesis exists.
Then, MB(Σk) is a balanced signed graph that is not all-positive. Also, by
Proposition 3.2, we have, χ(Σk+1) = χ(Σk) + 1 = k + 1.

4. Matrices of the Mycielskian of signed graphs

Given a signed graph Σ = (V,E, σ) where V = {v1, v2, . . . , vp} is the vertex set,
E = {e1, e2, . . . , eq} is the edge set and σ : E → {−1, 1} is the sign function.
Let M(Σ) be the Mycielskian of Σ. In this section, we introduce the adjacency
matrix, the incidence matrix and the Laplacian matrix of the Mycielskian M(Σ)
of Σ.

4.1 The adjacency matrix

The adjacency matrix of Σ, denoted by A = A(Σ), is a p × p matrix (aij) in
which aij = σ(vivj) if vi and vj are adjacent and 0 otherwise (see, [9, Section 3]).

Since vi is adjacent to v′j and v′i is adjacent to vj in M(Σ) whenever vi and
vj are adjacent in Σ, the adjacency matrix AM of the Mycielskian M(Σ)
takes the block form

AM = A(M(Σ)) =

A(Σ) A(Σ) 0p×1

A(Σ) 0p×p jp×1

0t1×p jt1×p 0

 ,

where 0 is a matrix of zeros and j is a matrix of ones of the specified order.
AM is a symmetric matrix of order 2p+ 1.

Given a graph G with adjacency matrix A(G), the connection between the
ranks of A(G) and A(M(G)), the connection between the number of positive,
negative and zero eigenvalues A(G) and A(M(G)) were studied by Fisher et al.
in [2]. We initiate a similar study in the case of signed graphs.

Let Σ = (V,E, σ) be a given signed graph and let t /∈ V . We denote the
signed graph obtained by joining all the vertices of Σ to t with negative edges
by Σt− . That is, Σt− is the negative join Σ ∨− K1. The adjacency matrix of Σt

takes the block form

At− = A(Σt−) =

[
A -j
-jt 0

]
.

We now have the following theorem.

Theorem 4.1. Let Σ be a signed graph and A(Σ) be the adjacency matrix of
Σ. Let r(A) denote the rank and n+(A), n−(A) and n0(A) respectively denote
the number of positive, negative and zero eigenvalues of a symmetric matrix A,
then we have the following.
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(i) r(AM) = r(A) + r(At−)

(ii) n+(AM) = n+(A) + n+(At−)

(iii) n−(AM) = n−(A) + n−(At−)

(iv) n0(AM) = n0(A) + n0(At−)

Proof. The adjacency matrix AM can be factorized as

AM =

A A 0
A 0 j
0t jt 0

 =

I 0 0
I -I 0
0 0t 1

A 0 0
0 -A -j
0t -jt 0

 I I 0
0 -I 0
0t 0t 1

 = PBPt

where P =

I 0 0
I -I 0
0 0t 1

 is an invertible matrix and B =

[
A 0
0 At−

]
.

Thus, the matrices AM and B are congruent, and hence by Sylvester’s law
of inertia, they have the same rank and the same number of positive, negative
and zero eigenvalues.

4.2 The incidence matrix

The incidence matrix of Σ, denoted by H = H(Σ), is the p× q matrix

H(Σ) =
[
x(e1) x(e2) · · · x(eq)

]
,

where for each edge ek = vivj , 1 ≤ k ≤ q, the vector x(ek) =

x1k
...

xpk

 ∈ Rp×1

has its ith and jth entries as xik = ±1 and xjk = ∓σ(ek) respectively and all
other entries as 0 (see, [9, Section 3]).

Let us denote the vertex set VM and the edge set EM of M(Σ) as

VM = {v1, v2, . . . , vp, v′1, v′2, . . . , v′p, w},
EM = {e1, e2, . . . , eq, e′1, e′′1, e′2, e′′2, . . . , e′q, e′′q , f1, f2, · · · , fp}

respectively, where, for each 1 ≤ k ≤ q, the edges e′k and e′′k of M(Σ) are
defined by e′k = viv

′
j and e′′k = v′ivj whenever ek = vivj is an edge of Σ with

1 ≤ i < j ≤ q and fi is defined by fi = v′iw for 1 ≤ i ≤ p. Then, the incidence
matrix HM = H(M(Σ)) takes the block form

HM = H(M(Σ)) =

 H(Σ)p×q x1 y1 x2 y2 · · · xp yp 0p×p

0p×q y1 x1 y2 x2 · · · yp xp Ip×p

01×3q -j1×p

 .

Here, H(Σ) is the incidence matrix of Σ, I is the identity matrix, 0 is the
zero matrix and -j is the matrix with all entries −1 of the specified order. xi’s
and yi’s are matrices of order p × 1 and satisfies the condition xi + yi = x(ei)
for all 1 ≤ i ≤ q.
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4.3 The Laplacian matrix

The Laplacian matrix of Σ, denoted by L = L(Σ) is the p× p matrix

L(Σ) = D(|Σ|)−A(Σ),

where A(Σ) is the adjacency matrix of Σ and D(|Σ|) is the degree matrix of the
underlying graph |Σ| (see, [9, Section 3]).

Accordingly, we define the Laplacian matrix for the Mycielskian of Σ
as

LM = L(M(Σ)) = D(|M(Σ)|)−A(M(Σ)) = DM −AM,

where AM is the adjacency matrix and DM is the diagonal degree matrix of the
Mycielskian of Σ. Now, DM takes the block form

DM =

2D(|Σ|)p×p 0p×p 0p×1

0p×p (D(|Σ|) + I)p×p 0p×1

0t1×p 0t1×p p

 ,

where p = |V |, D(Σ) is the diagonal degree matrix of Σ, I is the identity matrix
and 0 is the zero matrix of the specified order.

Consequently, the Laplacian matrix LM = L(M(Σ)) takes the block form

LM =

(2D(|Σ|)−A(Σ))p×p -A(Σ)p×p 0p×1

-A(Σ)p×p (D(|Σ|) + I)p×p -jp×1

0t1×p -jt1×p p

 .

5. Conclusion and scope

In this paper, we have defined the Mycielskian of a signed graph and discussed
some of its properties. We have seen that the Mycielskian of a balanced signed
graph need not be balanced and hence we provide an alternate construction
in which the Mycielskian of Σ is balanced whenever Σ is balanced, This paper
also discusses the chromatic number of the Mycielskian of a signed graph and
established that the chromatic number of a signed graph and its Mycielskian
are related. We also established the block forms of various matrices of the My-
cielskian of a signed graph such as the adjacency matrix, the incidence matrix,
and the Laplacian matrix.

This work finds its application in many areas, especially in sociology, where
social systems can be represented by signed graphs. Triangle-free signed graphs
are important for balanced social systems, and our construction creates larger
triangle-free signed graphs from a given triangle-free signed graph. The balanced
Mycielskian construction provides a method to extend a balanced system to a
much larger system without affecting balance. Developing another balance pre-
serving, switching preserving constructions for the Mycielskian of signed graphs,
and computing the spectra of various matrices of the Mycielskian of signed
graphs are some exciting areas for further investigation.
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