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Abstract. Let Φ be a growth function. In this paper, we define a harmonic Bergman-
Orlicz space BΦ

α and characterize it in terms of area integral functions. Furthermore,
we define Φ-Carleson measures and then discuss Φ-Carleson measures for harmonic
Bergman-Orlicz spaces.
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1. Introduction

Let x = (x1, ..., xn), y = (y1, ..., yn) be two vectors in the n-dimensional real
vector space Rn. We write

⟨x, y⟩ = x1y1 + ...+ xnyn and |x| =
√

⟨x, x⟩ =
√
x21 + ...+ x2n.

For a ∈ Rn, let B(a, r) = {x : |x − a| < r}, S(a, r) = ∂B(a, r) and B(a, r) =
B(a, r) ∪ S(a, r). In particular, let B = B(0, 1), S = ∂B(0, 1) and B = B ∪ S
the closure of B. We denote by dv the normalized volume measure on B and
h(B) the class of all harmonic functions on B. For each α > −1, the weighted
normalized volume measure dvα(x) = cα(1 − |x|2)αdv(x) and cα is a positive
constant so that vα(B) = 1.

*. Corresponding author
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A function Φ : [0,∞) → [0,∞) with Φ(0) = 0 is called a growth function
if it is continuous and non-decreasing. The growth function Φ satisfies the ∆2-
condition if there exists a constant K > 1 such that

Φ(2t) ≤ KΦ(t), t ∈ [0,∞).

For α > −1 and a growth function Φ satisfying ∆2-condition, the Orlicz
space LΦ(B, dvα) is the set of all measurable functions f such that

∥f∥α,Φ =

∫
B
Φ(|f(x)|)dvα(x) < ∞.

The harmonic Bergman-Orlicz space BΦ
α is the subspace of LΦ(B, dvα) consisting

of all f ∈ h(B). The Luxembourg gauge on BΦ
α is defined by

∥f∥luxα,Φ = inf{λ > 0 :

∫
B
Φ
( |f(x)|

λ

)
dvα(x) ≤ 1}.

We observe that Φ(t) = tp, the associated harmonic Bergman-Orlicz space is
the classical weighted harmonic Bergman space Bp

α (cf. [1, 9]).
For f ∈ h(B), recall that the radial derivative R of f is given by

Rf(x) = x · ∇f(x) =
∂

∂t
(f(tx))t=1 =

∞∑
m=1

mfm(x),

where ∇ is the usual gradient and the last form is the homogeneous expansion
of f . The fundamental theorem of calculus shows that

f(x)− f(0) =

∫ 1

0
(Rf)(tx)

dt

t
.

For a ∈ B, we denote by φa the Möbius transformation in B. It’s an involu-
tion of B such that φa(0) = a and φa(a) = 0, which is of the form

φa(x) =
|x− a|2a− (1− |a|2)(x− a)

[x, a]2
, x ∈ B,

where [x, a] =
√
1− 2⟨x, a⟩+ |x|2|a|2.

Let a ∈ B and r ∈ (0, 1), the pseudo-hyperbolic ball with center a and radius
r is denoted by

E(a, r) = {x ∈ B : |φa(x)| < r}.

Indeed, E(a, r) is a Euclidean ball with center ca and radius ra given by

ca =
(1− r2)a

1− |a|2r2
and ra =

r(1− |a|2)
1− |a|2r2

,(1)

respectively (cf. [16]). It is well known that for α > −1 and any x ∈ E(a, r),

1− |a|2 ≈ 1− |x|2 ≈ [a, x] and vα(E(a, r)) ≈ (1− |a|2)n+α.(2)
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For fixed 0 < s < ∞ and 0 < r < 1
2 , we consider the following area integral

functions which were introduced by Chen and Ouyang (see [3, 4])

• As
R(f)(x) =

(∫
E(x,r)

|(1− |y|2)Rf(y)|sdτ(y)
)1/s

,

• As
∇(f)(x) =

(∫
E(x,r)

|(1− |y|2)∇f(y)|sdτ(y)
)1/s

,

• As(f)(x) =
(∫

E(x,r)
|f(y)|sdτ(y)

)1/s
,

where dτ(x) = (1− |x|2)−ndv(x) is the invariant measure on B.
Let Bn be the unit ball of the n-dimensional complex vector space Cn. For

0 < p < ∞ and α > −1, the standard weighted Bergman space Ap
α(Bn) consists

of all holomorphic functions g on Bn such that∫
Bn

|g(z)|pdvα(z) < ∞.

It is well known that a holomorphic function g ∈ Ap
α(Bn) if and only if

(1− |z|2)∇g(z) ∈ Lp(Bn, dvα). In [18], B. Sehba extended this characterization
to the holomorphic Bergman-Orlicz space. By adding the restriction s > 1, Chen
and Ouyang [3, 4] proved that g ∈ Ap

α(Bn) is equivalent to one (and hence
all) of the conditions As

R(g) ∈ Lp(Bn, dvα), As
∇(g) ∈ Lp(Bn, dvα), As(g) ∈

Lp(Bn, dvα). As a consequence, they obtained some new maximal and area
integral characterizations for Besov spaces. For the further discussions on this
topic, we refer to [12].

Motivated by [3, 4, 18], our first aim in this paper is to extend Chen and
Ouyang’s result to the setting of harmonic Bergman-Orlicz space BΦ

α . In order
to state our results, we need some more definitions on the growth function Φ.

We say that a growth function Φ is of upper type q ≥ 1 if there exists C > 0
such that, for s > 0 and t ≥ 1,

Φ(st) ≤ CtqΦ(s).(3)

Denote by Uq the set of growth functions Φ of upper type q, (for some q ≥ 1),

such that the function t → Φ(t)
t is non-decreasing.

We say that Φ is of lower type p > 0 if there exists C > 0 such that, for
s > 0 and 0 < t ≤ 1,

Φ(st) ≤ CtpΦ(s).(4)

Denote by Lp the set of growth functions Φ of lower type p, (for some p ≤ 1),

such that the function t → Φ(t)
t is non-increasing.
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Let

U =
⋃
q≥1

Uq and L =
⋃

0<p≤1

Lp.

From the above definitions on Φ, we may always suppose that any Φ ∈ U
(resp. L), is convex (resp. concave) and that Φ is a C1 function with derivative

Φ′(t) ≈ Φ(t)
t (cf. [17, 18]).

Recall that the complementary function Ψ of a convex growth function Φ,
is the function defined from R+ onto itself by

Ψ(s) = sup
t∈R+

{ts− Φ(t)}.

A growth function Φ is said to satisfy the ∇2-condition whenever both Φ and
its complementary function Ψ satisfy the ∆2-condition. See [15, 18] for more
details on the complementary function Ψ.

Theorem 1.1. Let α > −1, f ∈ h(B). Assume that Φ is a growth function
satisfying one of the following conditions:

(i) Φ ∈ Uq and satisfies the ∇2-condition;

(ii) Φ ∈ Lp and the function Φp(t) = Φ(t
1
p ) satisfies the ∇2-condition.

Then the following statements are equivalent.

(a) f ∈ BΦ
α ;

(b) As
R(f) ∈ LΦ(B, dvα);

(c) As
∇(f) ∈ LΦ(B, dvα);

(d) As(f) ∈ LΦ(B, dvα).

For a ∈ B \ {0} and δ > 0, the Carleson cone is defined as

Cδ(a) =
{
x ∈ B :

∣∣∣x− a

|a|

∣∣∣ < δ
}
.

Let µ be a positive Borel measure on B and s > 0. We say that µ is an s-
Carleson measure on B if there exists a constant C such that for any a ∈ B\{0}
and any 0 < δ < 2 such that

µ(Cδ(a)) ≤ Cδ(n−1)s.

When s = 1, the above measure is called a Carleson measure. Carleson measures
were first introduced in the unit disk D of the complex plane C by Carleson
[2]. These measures are pretty adapted to the studies of various questions on
function spaces.
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Given 0 < p, q < ∞, the question of the characterization of the positive
measures µ on Bn such that the embedding Iµ : Ap

α(Bn) → Lq(Bn, dµ) is
continuous has attracted much attention. In the setting of Bergman spaces
of the unit disk D, this question was answered due to Hastings and Luecking
[10, 13] by using Carleson measures. For the extensions of these results to the
unit ball Bn, see [5, 13, 14]. In [19], Ueki established the boundedness and
compactness of composition operators between weighted Bergman spaces in Bn

in terms of s-Carleson measures.
Our second aim of this paper is to investigate the Φ-Carleson measure in the

real unit ball B whose definition is given as follows.

Definition 1.1. Let Φ be a growth function. A positive Borel measure µ on B
is called a Φ-Carleson measure if there exists a constant C > 0 such that for
any a ∈ B \ {0} and any 0 < δ < 2,

µ(Cδ(a)) ≤
C

Φ( 1
δn−1 )

.

Obviously, when Φ(t) = ts, the Φ-Carleson measure is the usual s-Carleson
measure on B.

The following result provides an equivalent definition of the Φ-Carleson mea-
sure.

Theorem 1.2. Let τ > 0, Φ ∈ U ∪ L and µ be a positive measure on B. Then
µ is a Φ-Carleson measure if and only if

sup
a∈B

∫
B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x) < ∞.(5)

Let Φ1,Φ2 be two growth functions. A positive measure µ on B is called a
Φ2-Carleson measure for BΦ1

α if there is a constant C such that∫
B
Φ2

( |f(x)|
C∥f∥luxα,Φ1

)
dµ(x) ≤ 1,

for all f ∈ BΦ1
α with ∥f∥luxα,Φ1

̸= 0.
In our final result, we discuss the Φ-Carleson measure for harmonic Bergman-

Orlicz spaces.

Theorem 1.3. Let α > −1, Φ1,Φ2 ∈ U ∪ L( 1
2
) (L( 1

2
) = ∪ 1

2
<p≤1Lp) and µ be a

positive measure on B. If Φ2/Φ1 is non-decreasing, then the following statements
are equivalent.

(a) There exists a constant C1 > 0 such that for any a ∈ B \ {0} and any
0 < δ < 1,

µ(Cδ(a)) ≤
C1

Φ2 ◦ Φ−1
1 ( 1

δn+α )
;(6)
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(b) µ is a Φ2-Carleson measure for BΦ1
α ;

(c) There exists a constant C3 > 0 such that

sup
a∈B

∫
B
Φ2

(
Φ−1
1

( 1

(1− |a|2)n+α

)(1− |a|2)2(n+α)

[a, x]2(n+α)

)
dµ(x) ≤ C3.(7)

The organization of this paper is as follows. In Section 2, some necessary
terminologies are introduced and several known results are recalled. Sections 3
and 4 are devoted to the proofs of Theorems 1.1 ∼ 1.3. Throughout this paper,
we always assume without loss of generality that our growth functions Φ are
satisfying Φ(1) = 1. The constants are denoted by C, they are positive and
may differ from one occurrence to the other. For nonnegative quantities X and
Y , X ≲ Y means that X is dominated by Y times some inessential positive
constant. We write X ≈ Y if Y ≲ X ≲ Y .

2. Preliminaries

In this section, we introduce notations and collect some preliminary results that
we will need later.

2.1 Operators on Orlicz spaces

Let Φ be a C1 growth function. Recall that the lower and the upper indices of
Φ are respectively defined by

aΦ = inf
t>0

tΦ′(t)

Φ(t)
and bΦ = sup

t>0

tΦ′(t)

Φ(t)
.

It is known that when Φ is convex, then 1 ≤ aΦ ≤ bΦ < ∞ and, if Φ is concave,
then 0 ≤ aΦ ≤ bΦ ≤ 1. Note that a convex growth function satisfies the ∇2-
condition if and only if 1 < aΦ ≤ bΦ < ∞ (cf. [6], Lemma 2.1).

Definition 2.1. Let Φ be a growth function. A linear operator T defined on
LΦ(B, dvα) is said to be of mean strong type (Φ,Φ)α if∫

B
Φ(|Tf |)dvα(x) ≤ C

∫
B
Φ(|f |)dvα(x),

for any f ∈ LΦ(B, dvα), and T is said to be mean weak type (Φ,Φ)α if

sup
t>0

Φ(t)vα({x ∈ B : |Tf(x)| > t}) ≤ C

∫
B
Φ(|f |)dvα(x),

for any f ∈ LΦ(B, dvα), where C is independent of f .

We remark that if Φ(t) = tp, then the mean strong type (tp, tp)α is the usual
strong type (p, p). The following interpolation result comes from [7, Theorem
4.3].
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Lemma 2.1. Let Φ0,Φ1 and Φ2 be three convex growth functions. Sup- pose
that their upper and lower indices satisfy the following condition

1 ≤ aΦ0 ≤ bΦ0 < aΦ2 ≤ bΦ2 < aΦ1 ≤ bΦ1 < ∞.

If T is of mean weak types (Φ0,Φ0)α and (Φ1,Φ1)α, then it is of mean strong
type (Φ2,Φ2)α.

Let β ∈ R and consider the operator Eβ defined for functions f on B by

Eβf(x) =

∫
B
f(y)

(1− |y|2)β

[x, y]n+β
dv(y).

For a proof of the following lemma, see [9, Theorem 1.6].

Lemma 2.2. Let 1 ≤ p < ∞ and α, β > −1. The operator Eβ : Lp(B, dvα) →
Lp(B, dvα) is bounded if and only if α+ 1 < p(β + 1).

Combining Lemmas 2.1 and 2.2, the following result can be easily derived,
see [18, Theorem 2.5].

Lemma 2.3. Let α, β > −1 and Φ be a C1 convex growth function with its lower
indice aΦ. If 1 < p < aΦ and α+ 1 < p(β + 1), then Eβ is of mean strong type
(Φ,Φ)α.

2.2 Harmonic functions

It is well-known that the weighted harmonic Bergman spaces B2
α for α > −1 is

a reproducing kernel Hilbert space with reproducing kernel Rα(x, y):

(8) f(x) =

∫
B
f(y)Rα(x, y)dvα(y), f ∈ B2

α.

From [7], we know that (8) is also true for all f ∈ B1
α.

The reproducing kernels Rα(x, y) can be expressed in terms of zonal har-
monics as

Rα(x, y) =
∞∑
k=0

(1 + n
2 + α)k

(n2 )k
Zk(x, y) =

∞∑
k=0

γk(α)Zk(x, y),

where the series absolutely and uniformly converges on K × B for any compact
subset K of B and (a)b =

Γ(a+b)
Γ(a) . A straightforward computation gives that

|Rα(x, y)| ≲
1

[x, y]n+α
.(9)

Note that Rα(x, y) is real-valued, symmetric in the variables x and y and har-
monic with respect to each variable since the same is true for all Zk(x, y). For
the extension of reproducing kernels Rα(x, y) to all α ∈ R, see [7, 9].

We recall some useful inequalities concerning harmonic functions which are
useful for our investigations.
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Lemma 2.4 ([7, 16]). Let 0 < p < ∞, 0 < r < 1 and f, g ∈ h(B). Then there
exists some positive constant C such that

(1) |f(x)|p ≤ C
∫
E(x,r) |f(y)|

pdτ(y);

(2) |∇f(x)|p ≤ C
(1−|x|2)p

∫
E(x,r) |f(y)|

pdτ(y).

Moreover, if 0 < p ≤ 1 and α > −1, then there exists a positive constant C such
that

(3) ∫
B
|f(x)g(x)|(1− |x|2)(n+α)/p−ndv(x) ≤ C

(∫
B
|f(x)g(x)|pdvα(x)

)1/p
.

The following standard estimate will be needed in the sequel.

Lemma 2.5 ([16]). Let α > −1 and β ∈ R. Then for any x ∈ B,

∫
B

(1− |y|2)α

[x, y]n+α+β
dv(y) ≈


(1− |x|2)−β, β > 0,

log
1

1− |x|2
, β = 0,

1, β < 0.

3. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Before the proof, we need
some preparation.

Lemma 3.1 ([8]). Let Φ ∈ Lp. Then the growth function Φp, defined by Φp(t) =

Φ(t
1
p ) is in Uq for some q ≥ 1. Moreover, for s > 0 and t ≥ 1,

Φp(ts) ≤ t
1
pΦp(s).

By Lemmas 2.4 and Lemma 3.1, we can obtain the following useful integral
estimates.

Lemma 3.2. Let f ∈ h(B) and Φ ∈ Uq ∪ Lp. Then for 0 < r < 1 and x ∈ B,

(1) Φ
(
(1− |x|2)|∇f(x)|

)
≲

∫
E(x,r)Φ(|f(y))|dτ(y);

(2) Φ(|f(x)|) ≲
∫
E(x,r)Φ(|f(y)|)dτ(y).

Proof. Let

pΦ =

{
1, if Φ ∈ Uq,

p, if Φ ∈ Lp.
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By Lemma 2.4, for each x ∈ B,(
(1− |x|2)|∇f(x)|

)pΦ ≲
∫
E(x,r)

|f(y)|pΦdτ(y).

Set

Φp(t) =

{
Φ(t), if Φ ∈ Uq,

Φ(t
1
p ), if Φ ∈ Lp.

It follows from Lemma 3.1 and the convexity of Φp(t) that

Φ((1− |x|2)|∇f(x)|) ≲
∫
E(x,r)

Φ(|f(y)|)dτ(y).

This proves (1).
By Lemma 2.4 and an argument similar to the above, the assertion of (2)

follows.

Lemma 3.3. Assume that Φ is a growth function satisfying one of the following
conditions:

(i) Φ ∈ Uq and satisfies the ∇2-condition;

(ii) Φ ∈ Lp and the function Φp(t) = Φ(t
1
p ) satisfies the ∇2-condition.

If α > −1 and f ∈ h(B), then∫
B
Φ(|f(x)− f(0)|)dvα(x) ≲

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x);(10)

and ∫
B
Φ((1− |x|2)|∇f(x)|)dvα(x) ≲

∫
B
Φ(|f(x)|)dvα(x).(11)

Proof. We first prove (10). Let f ∈ h(B). Then for s > −1,

Rf(x) =

∫
B
Rf(y)Rs(x, y)dvs(y).

Since
∫
BRf(y)dvs(y) = 0, subtracting this from the previous equation yields

Rf(x) =

∫
B
Rf(y)(Rs(x, y)− 1)dvs(y).

Consequently,

|f(x)− f(0)| =
∣∣∣ ∫ 1

0

∫
B
Rf(y)(Rs(tx, y)− 1)dvs(y)

dt

t

∣∣∣
=

∣∣∣ ∫
B
Rf(y)

∫ 1

0

Rs(tx, y)− 1

t
dtdvs(y)

∣∣∣.
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Set

G(x, y) =

∫ 1

0

Rs(tx, y)− 1

t
dt.

From the proof of [9, Lemma12.1], it deduces that

|G(x, y)| ≤
∫ 1

0

∣∣∣Rs(tx, y)− 1

t

∣∣∣dt ≲ ∫ 1

0

dt

[tx, y]n+s
≲

1

[x, y]n+s−1
.

Therefore,

|f(x)− f(0)| ≲
∫
B
(1− |y|2)|Rf(y)| 1

[x, y]n+s−1
dvs−1(y).

We first consider the case Φ satisfies the condition (i) of the lemma. Fix p so
that 1 < p < aΦ. By taking s large enough so that α + 1 < ps, we conclude
from Lemma 2.3 that∫

B
Φ(|f(x)− f(0)|)dvα(x) ≲

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x).

We next consider the case of Φ ∈ Lp and Φp(t) = Φ(t
1
p ) satisfies the ∇2-

condition. Set s = (n + α′)/p − n and α′ > α + p. By Lemma 2.4, it deduces
that

|f(x)− f(0)|p ≲
∫
B
|Rf(y)|p|G(x, y)|pdvα′(y)

≲
∫
B

|Rf(y)|p

[x, y]p(n+s−1)
dvα′(y)

≲
∫
B

|(1− |y|2)Rf(y)|p

[x, y]n+α′−p
dvα′−p(y).

As the growth function t → Φp(t) = Φ(t
1
p ) is in Uq and satisfies the∇2-condition,

proceeding as in the first part of this proof yields that∫
B
Φ(|f(x)− f(0)|)dvα(x) =

∫
B
Φp(|f(x)− f(0)|p)dvα(x)

≲
∫
B
Φp((1− |x|2)|Rf(x)|)p)dvα(x)

=

∫
B
Φ((1− |x|2)|Rf(x)|)dvα(x).

We now come to prove (11). By Lemma 3.2, we have

Φ((1− |x|2)|∇f(x)|) ≲
∫
E(x,r)

Φ(|f(y)|)dτ(y), x ∈ B.
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Integrating both sides of the above inequality over B with respect to dvα(x) and
applying Fubini’s theorem, we get∫

B
Φ((1− |x|2)|∇f(x)|)dvα(x) ≲

∫
B
Φ(|f(x)|)dvα(x).

This completes the proof.

Proof of Theorem 1.1. We only prove (a) ⇔ (b). Similar discussions can be
applied to prove (a) ⇔ (c) and (a) ⇔ (d).

We first assume that As
R(f) ∈ LΦ(B, dvα). By Lemma 2.4, for each x ∈ B,

we have

|(1− |x|2)Rf(x)| ≲ As
R(f)(x).

Then (b) ⇒ (a) follows from Lemma 3.3.

For the converse, we assume that f ∈ BΦ
α . For each fixed x ∈ B, let

h(x) = sup{(1− |ζ|2)|Rf(ζ)| : ζ ∈ E(x,
1

2
)}.

From (1), we can find r′ such that 0 < 1
2 < r′ < 1 and E(ξ, 12) ⊂ E(x, r′) for

every ξ ∈ E(x, 12). It follows from Lemma 3.2 that

Φ
(
|As

R(f)(x)
)
| ≲ Φ(h(x)) ≲

∫
E(x,r′)

Φ(|f(y)|)dτ(y)

Hence by Fubini’s theorem and (2),∫
B
Φ
(
|As

R(f)(x)
)
|dvα(x) ≲

∫
B
(1− |x|2)α

∫
E(x,r′)

Φ(|f(y)|)dτ(y)dv(x)

≲
∫
B
Φ(|f(y)|)dτ(y)

∫
E(y,r′)

(1− |x|2)αdv(x)

≲
∫
B
Φ(|f(y)|)dvα(y).

This completes the proof. □

4. Proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Assume first that (5) holds. For each a ∈ B \ {0}, set
δ = 1− |a|. A simple computation gives that

[a, x] ≤ 1− |a|2 ≤ 2δ,



188 XI FU, MEINA GAO and XIAOQIANG XIE

for x ∈ Cδ(a). Therefore

µ(Cδ(a))Φ(
1

δn−1
) =

∫
Cδ(a)

Φ(
1

δn−1
)dµ(x)

≲
∫
Cδ(a)

Φ
( 2n−1

[a, x]n−1

)
dµ(x)

≲
∫
Cδ(a)

Φ
(2n−1(1− |a|2)τ

[a, x]n−1+τ

)
dµ(x)

≲
∫
B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x),

where the last inequality follows from the monotonicity of Φ or Φ(t)
t .

Conversely, assume that µ is a Φ-Carleson measure. The proof is based on
a standard slicing trick, see [11, Lemma 2.2]. Without loss of generality, let
1
2 < |a| < 1. Denote Q0(a) = ∅ and

Qk(a) =
{
x ∈ B :

∣∣∣x− a

|a|

∣∣∣ < 2k−1(1− |a|)
}
, k = 1, 2, ..., N,

where N is the smallest integer such that 2N−1(1− |a|) ≥ 2.
Since for each x ∈ Qk(a)\Qk−1(a), [a, x] ≥ |a|2(k−2)(1− |a|), we have∫

B
Φ
( (1− |a|2)τ

[a, x](n−1)+τ

)
dµ(x)

≲
N∑
k=1

∫
Qk(a)\Qk−1(a)

Φ
( (1− |a|2)τ

2(k−2)(n−1+τ)(1− |a|)(n−1)+τ

)
dµ(x)

≲
N∑
k=1

Φ
(

1
2(k−2)(n−1+τ)(1−|a|)n−1

)
Φ
(

1
2(k−1)(n−1)(1−|a|)n−1

)
≲

N∑
k=1

1

2kτς
< ∞,

where ς = 1 if Φ ∈ U and ς = p if Φ ∈ L is of lower type 0 < p ≤ 1. The proof
is complete.

In order to prove Theorem 1.3, we need the following two lemmas.

Lemma 4.1. Let α > −1, Φ ∈ U ∪ L and f ∈ BΦ
α . Then there exists a positive

constant C such that for each a ∈ B,

|f(a)| ≤ CΦ−1
( 1

(1− |a|2)n+α

)
∥f∥luxα,Φ.(12)

Proof. If ∥f∥luxα,Φ = 0, then f = 0 a.e. on B so that (12) obviously holds.

Suppose that ∥f∥luxα,Φ ̸= 0. In view of (2) and Lemma 2.4, we see that for a ∈ B
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and 0 < p < ∞,

|f(a)|p ≲
∫
E(a,r)

|f(x)|p
((1− |a|2)

[x, a]2

)n+α
dvα(x).

It follows a similar discussion in the proof of Lemma 3.2,

Φ
( |f(a)|
∥f∥luxα,Φ

)
≲

∫
E(a,r)

Φ
( |f(x)|
∥f∥luxα,Φ

)((1− |a|2)
[x, a]2

)n+α
dvα(x)

≲
1

(1− |a|2)n+α
,

which gives (12).

Lemma 4.2. Let α > −1, 1
2 < p ≤ 1 and Φ ∈ U ∪ Lp. Then each a ∈ B, the

following function

fa(x) = Φ−1
( 1

(1− |a|2)n+α

)
Rn+2α(x, a)(1− |a|2)2(n+α)

belongs to BΦ
α .

Proof. Let

ha(x) =
(1− |a|2)2(n+α)

[x, a]2(n+α)
.

Since α > −1, from (8),∫
B
Φ(|fa(x)|)dvα(x)

=

∫
B
Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
|Rn+2α(x, a)|(1− |a|2)2(n+α)

)
dvα(x)

≲
∫
B
Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

= I1 + I2,

where

I1 =

∫
{x∈B:ha(x)≤1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

and

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x).

We now divide the remainder of the proof into the following two cases.

Case I. Φ ∈ U . By the monotonicity of Φ(t)
t and Lemma 2.5,
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I1 ≲
∫
{x∈B:ha(x)≤1}

ha(x)Φ
(
Φ−1

( 1

(1− |a|2)n+α

))
dvα(x)

≲
∫
B

(1− |a|2)(n+α)

[x, a]2(n+α)
dvα(x) ≲ 1.

Using (3), there exists some q ≥ 1 such that

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x).

≲
∫
B

(1− |a|2)(2q−1)(n+α)

[x, a]2q(n+α)
dvα(x) ≲ 1.

Case II. Φ ∈ Lp with p > 1
2 . Using (4) and Lemma 2.5, we have

I1 ≲
∫
{x∈B:ha(x)≤1}

ha(x)
pΦ

(
Φ−1

( 1

(1− |a|2)n+α

))
dvα(x)

≲
∫
B

(1− |a|2)(2p−1)(n+α)

[x, a]2p(n+α)
dvα(x) ≲ 1.

By the monotonicity of Φ(t)
t and Lemma 2.5 again,

I2 =

∫
{x∈B:ha(x)≥1}

Φ
(
Φ−1

( 1

(1− |a|2)n+α

)
ha(x)

)
dvα(x)

≲
∫
B

(1− |a|2)(n+α)

[x, a]2(n+α)
dvα(x) ≲ 1.

Combining the above two cases, the assertion of this lemma follows.

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof will follow by the routes (a) ⇒ (b) ⇒ (c) ⇒
(a).

We first prove (a) ⇒ (b). For y ∈ B \ {0} and 1
4 < r < 1. By (1) and (2), we see

that for large enough k, E(y, r) ⊂ Qk(y) and

µ(E(y, r)) ≤ µ(Qk(y)) ≲
1

Φ2 ◦ Φ−1
1 ( 1

2(k−1)(n+α)(1−|y|)n+α )
.(13)

Let f ∈ BΦ1
α with ∥f∥luxα,Φ1

̸= 0. Note that Φ2 ∈ U ∪ L( 1
2
), then

Φ2(
|f(x)|
∥f∥luxα,Φ1

) ≲
∫
E(x, 1

4
)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−(n+α)dvα(y)
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by Lemma 3.2. Thus

L =

∫
B
Φ2(

|f(x)|
∥f∥luxα,Φ1

)dµ(x)

≲
∫
B
dµ(x)

∫
E(x, 1

4
)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−(n+α)dvα(y)

≲
∫
B

(∫
B
χE(y, 1

4
)(x)dµ(x)

)
Φ2(

|f(y)|
∥f∥luxα,Φ1

)(1− |y|2)−ndv(y).

From (1), we can find an integer k such that and E(x, 14) ⊂ Qk(y) for every
x ∈ E(y, 14). It follows from Lemma 3.2 and (13) that

L ≲
∫
B
Φ2(

|f(y)|
∥f∥luxα,Φ1

)µ(Qk(y))(1− |y|2)−ndv(y).

By the assumption Φ2/Φ1 is non-decreasing and (12),

L ≲
∫
B
Φ1(

|f(y)|
∥f∥luxα,Φ1

)
Φ2 ◦ Φ−1

1 ( 1
(1−|y|2)n+α )

Φ1 ◦ Φ−1
1 ( 1

(1−|y|2)n+α )
(1− |y|2)−nµ(Qk(y))dv(y)

≲
∫
B
Φ1(

|f(y)|
∥f∥luxα,Φ1

)dvα(y) ≤ 1.

This implies that we can find a constant C2 > 0 such that∫
B
Φ2

( |f(x)|
C2∥f∥luxα,Φ1

)
dµ(x) ≤ 1.

(b) ⇒ (c). For a ∈ B, recall that

fa(x) = Φ−1
1

( 1

(1− |a|2)n+α

)
Rn+2α(x, a)(1− |a|2)2(n+α) ∈ BΦ1

α

from Lemma 4.2. Thus, the implication easily follows by testing fa and using
the monotonicity of Φ2 or the monotonicity of the function Φ2(t)

t .

(c) ⇒ (a). The implication (c) ⇒ (a) follows the same way as in the proof of
Theorem 1.2. We omit the details here. □
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