Area integral characterizations and Φ -Carleson measures for harmonic Bergman-Orlicz spaces

Xi Fu

School of Mathematics Physics and Statistics Shanghai Polytechnic University Shanghai 201209 P.R. China fuxi@sspu.edu.cn

Meina Gao^{*}

School of Mathematics Physics and Statistics Shanghai Polytechnic University Shanghai 201209 P.R. China mngao@sspu.edu.cn

Xiaoqiang Xie

School of Mathematics Physics and Statistics Shanghai Polytechnic University Shanghai 201209, P.R. China xqxie@sspu.edu.cn

Abstract. Let Φ be a growth function. In this paper, we define a harmonic Bergman-Orlicz space $\mathcal{B}^{\Phi}_{\alpha}$ and characterize it in terms of area integral functions. Furthermore, we define Φ -Carleson measures and then discuss Φ -Carleson measures for harmonic Bergman-Orlicz spaces.

Keywords: growth function, area integral, Bergman-Orlicz space, Carleson measure. **MSC 2020:** 31B05, 31C05, 31C25

1. Introduction

Let $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ be two vectors in the *n*-dimensional real vector space \mathbb{R}^n . We write

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n$$
 and $|x| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \ldots + x_n^2}.$

For $a \in \mathbb{R}^n$, let $\mathbb{B}(a,r) = \{x : |x-a| < r\}$, $\mathbb{S}(a,r) = \partial \mathbb{B}(a,r)$ and $\overline{\mathbb{B}(a,r)} = \mathbb{B}(a,r) \cup \mathbb{S}(a,r)$. In particular, let $\mathbb{B} = \mathbb{B}(0,1)$, $\mathbb{S} = \partial \mathbb{B}(0,1)$ and $\overline{\mathbb{B}} = \mathbb{B} \cup \mathbb{S}$ the closure of \mathbb{B} . We denote by dv the normalized volume measure on \mathbb{B} and $h(\mathbb{B})$ the class of all harmonic functions on \mathbb{B} . For each $\alpha > -1$, the weighted normalized volume measure $dv_{\alpha}(x) = c_{\alpha}(1-|x|^2)^{\alpha}dv(x)$ and c_{α} is a positive constant so that $v_{\alpha}(\mathbb{B}) = 1$.

^{*.} Corresponding author

A function $\Phi : [0, \infty) \to [0, \infty)$ with $\Phi(0) = 0$ is called a growth function if it is continuous and non-decreasing. The growth function Φ satisfies the Δ_2 condition if there exists a constant K > 1 such that

$$\Phi(2t) \le K\Phi(t), \quad t \in [0,\infty).$$

For $\alpha > -1$ and a growth function Φ satisfying Δ_2 -condition, the Orlicz space $L^{\Phi}(\mathbb{B}, dv_{\alpha})$ is the set of all measurable functions f such that

$$||f||_{\alpha,\Phi} = \int_{\mathbb{B}} \Phi(|f(x)|) dv_{\alpha}(x) < \infty$$

The harmonic Bergman-Orlicz space $\mathcal{B}^{\Phi}_{\alpha}$ is the subspace of $L^{\Phi}(\mathbb{B}, dv_{\alpha})$ consisting of all $f \in h(\mathbb{B})$. The Luxembourg gauge on $\mathcal{B}^{\Phi}_{\alpha}$ is defined by

$$||f||_{\alpha,\Phi}^{lux} = \inf\{\lambda > 0 : \int_{\mathbb{B}} \Phi\left(\frac{|f(x)|}{\lambda}\right) dv_{\alpha}(x) \le 1\}.$$

We observe that $\Phi(t) = t^p$, the associated harmonic Bergman-Orlicz space is the classical weighted harmonic Bergman space \mathcal{B}^p_{α} (cf. [1, 9]).

For $f \in h(\mathbb{B})$, recall that the radial derivative \mathcal{R} of f is given by

$$\mathcal{R}f(x) = x \cdot \nabla f(x) = \frac{\partial}{\partial t}(f(tx))_{t=1} = \sum_{m=1}^{\infty} m f_m(x),$$

where ∇ is the usual gradient and the last form is the homogeneous expansion of f. The fundamental theorem of calculus shows that

$$f(x) - f(0) = \int_0^1 (\mathcal{R}f)(tx) \frac{dt}{t}.$$

For $a \in \mathbb{B}$, we denote by φ_a the Möbius transformation in \mathbb{B} . It's an involution of \mathbb{B} such that $\varphi_a(0) = a$ and $\varphi_a(a) = 0$, which is of the form

$$\varphi_a(x) = \frac{|x-a|^2 a - (1-|a|^2)(x-a)}{[x,a]^2}, \ x \in \mathbb{B},$$

where $[x, a] = \sqrt{1 - 2\langle x, a \rangle + |x|^2 |a|^2}.$

Let $a \in \mathbb{B}$ and $r \in (0, 1)$, the *pseudo-hyperbolic ball* with center a and radius r is denoted by

$$E(a,r) = \{ x \in \mathbb{B} : |\varphi_a(x)| < r \}.$$

Indeed, E(a, r) is a Euclidean ball with center c_a and radius r_a given by

(1)
$$c_a = \frac{(1-r^2)a}{1-|a|^2r^2}$$
 and $r_a = \frac{r(1-|a|^2)}{1-|a|^2r^2}$,

respectively (cf. [16]). It is well known that for $\alpha > -1$ and any $x \in E(a, r)$,

(2)
$$1 - |a|^2 \approx 1 - |x|^2 \approx [a, x]$$
 and $v_\alpha(E(a, r)) \approx (1 - |a|^2)^{n+\alpha}$.

For fixed $0 < s < \infty$ and $0 < r < \frac{1}{2}$, we consider the following area integral functions which were introduced by Chen and Ouyang (see [3, 4])

•
$$A^{s}_{\mathcal{R}}(f)(x) = \left(\int_{E(x,r)} |(1-|y|^{2})\mathcal{R}f(y)|^{s}d\tau(y)\right)^{1/s},$$

• $A^{s}_{\nabla}(f)(x) = \left(\int_{E(x,r)} |(1-|y|^{2})\nabla f(y)|^{s}d\tau(y)\right)^{1/s},$
• $A^{s}(f)(x) = \left(\int_{E(x,r)} |f(y)|^{s}d\tau(y)\right)^{1/s},$

where $d\tau(x) = (1 - |x|^2)^{-n} dv(x)$ is the *invariant measure* on \mathbb{B} .

Let \mathbf{B}_n be the unit ball of the *n*-dimensional complex vector space \mathbb{C}^n . For $0 and <math>\alpha > -1$, the standard weighted Bergman space $\mathcal{A}^p_{\alpha}(\mathbf{B}_n)$ consists of all holomorphic functions g on \mathbf{B}_n such that

$$\int_{\mathbf{B}_n} |g(z)|^p dv_\alpha(z) < \infty.$$

It is well known that a holomorphic function $g \in \mathcal{A}^p_{\alpha}(\mathbf{B}_n)$ if and only if $(1-|z|^2)\nabla g(z) \in L^p(\mathbf{B}_n, dv_{\alpha})$. In [18], B. Sehba extended this characterization to the holomorphic Bergman-Orlicz space. By adding the restriction s > 1, Chen and Ouyang [3, 4] proved that $g \in \mathcal{A}^p_{\alpha}(\mathbf{B}_n)$ is equivalent to one (and hence all) of the conditions $A^s_{\mathcal{R}}(g) \in L^p(\mathbf{B}_n, dv_{\alpha}), A^s_{\nabla}(g) \in L^p(\mathbf{B}_n, dv_{\alpha}), A^s(g) \in L^p(\mathbf{B}_n, dv_{\alpha})$. As a consequence, they obtained some new maximal and area integral characterizations for Besov spaces. For the further discussions on this topic, we refer to [12].

Motivated by [3, 4, 18], our first aim in this paper is to extend Chen and Ouyang's result to the setting of harmonic Bergman-Orlicz space $\mathcal{B}^{\Phi}_{\alpha}$. In order to state our results, we need some more definitions on the growth function Φ .

We say that a growth function Φ is of upper type $q \ge 1$ if there exists C > 0 such that, for s > 0 and $t \ge 1$,

(3)
$$\Phi(st) \le Ct^q \Phi(s).$$

Denote by \mathcal{U}^q the set of growth functions Φ of upper type q, (for some $q \ge 1$), such that the function $t \to \frac{\Phi(t)}{t}$ is non-decreasing.

We say that Φ is of lower type p > 0 if there exists C > 0 such that, for s > 0 and $0 < t \le 1$,

(4)
$$\Phi(st) \le Ct^p \Phi(s).$$

Denote by \mathcal{L}_p the set of growth functions Φ of lower type p, (for some $p \leq 1$), such that the function $t \to \frac{\Phi(t)}{t}$ is non-increasing.

Let

$$\mathcal{U} = \bigcup_{q \ge 1} \mathcal{U}^q \quad and \quad \mathcal{L} = \bigcup_{0$$

From the above definitions on Φ , we may always suppose that any $\Phi \in \mathcal{U}$ (resp. \mathcal{L}), is convex (resp. concave) and that Φ is a \mathcal{C}^1 function with derivative $\Phi'(t) \approx \frac{\Phi(t)}{t}$ (cf. [17, 18]).

Recall that the complementary function Ψ of a convex growth function Φ , is the function defined from \mathbb{R}_+ onto itself by

$$\Psi(s) = \sup_{t \in \mathbb{R}_+} \{ ts - \Phi(t) \}.$$

A growth function Φ is said to satisfy the ∇_2 -condition whenever both Φ and its complementary function Ψ satisfy the Δ_2 -condition. See [15, 18] for more details on the complementary function Ψ .

Theorem 1.1. Let $\alpha > -1$, $f \in h(\mathbb{B})$. Assume that Φ is a growth function satisfying one of the following conditions:

- (i) $\Phi \in \mathcal{U}^q$ and satisfies the ∇_2 -condition;
- (ii) $\Phi \in \mathcal{L}_p$ and the function $\Phi_p(t) = \Phi(t^{\frac{1}{p}})$ satisfies the ∇_2 -condition.

Then the following statements are equivalent.

- (a) $f \in \mathcal{B}^{\Phi}_{\alpha}$;
- (b) $A^s_{\mathcal{R}}(f) \in L^{\Phi}(\mathbb{B}, dv_{\alpha});$
- (c) $A^s_{\nabla}(f) \in L^{\Phi}(\mathbb{B}, dv_{\alpha});$
- (d) $A^s(f) \in L^{\Phi}(\mathbb{B}, dv_{\alpha}).$

For $a \in \mathbb{B} \setminus \{0\}$ and $\delta > 0$, the Carleson cone is defined as

$$\mathcal{C}_{\delta}(a) = \left\{ x \in \mathbb{B} : \left| x - \frac{a}{|a|} \right| < \delta \right\}.$$

Let μ be a positive Borel measure on \mathbb{B} and s > 0. We say that μ is an *s*-Carleson measure on \mathbb{B} if there exists a constant *C* such that for any $a \in \mathbb{B} \setminus \{0\}$ and any $0 < \delta < 2$ such that

$$\mu(\mathcal{C}_{\delta}(a)) \le C\delta^{(n-1)s}.$$

When s = 1, the above measure is called a Carleson measure. Carleson measures were first introduced in the unit disk \mathbb{D} of the complex plane \mathbb{C} by Carleson [2]. These measures are pretty adapted to the studies of various questions on function spaces. Given $0 < p, q < \infty$, the question of the characterization of the positive measures μ on \mathbf{B}_n such that the embedding $I_{\mu} : \mathcal{A}^p_{\alpha}(\mathbf{B}_n) \to L^q(\mathbf{B}_n, d\mu)$ is continuous has attracted much attention. In the setting of Bergman spaces of the unit disk \mathbb{D} , this question was answered due to Hastings and Luecking [10, 13] by using Carleson measures. For the extensions of these results to the unit ball \mathbf{B}_n , see [5, 13, 14]. In [19], Ueki established the boundedness and compactness of composition operators between weighted Bergman spaces in \mathbf{B}_n in terms of *s*-Carleson measures.

Our second aim of this paper is to investigate the Φ -Carleson measure in the real unit ball \mathbb{B} whose definition is given as follows.

Definition 1.1. Let Φ be a growth function. A positive Borel measure μ on \mathbb{B} is called a Φ -Carleson measure if there exists a constant C > 0 such that for any $a \in \mathbb{B} \setminus \{0\}$ and any $0 < \delta < 2$,

$$\mu(\mathcal{C}_{\delta}(a)) \le \frac{C}{\Phi(\frac{1}{\delta^{n-1}})}.$$

Obviously, when $\Phi(t) = t^s$, the Φ -Carleson measure is the usual s-Carleson measure on \mathbb{B} .

The following result provides an equivalent definition of the Φ -Carleson measure.

Theorem 1.2. Let $\tau > 0$, $\Phi \in \mathcal{U} \cup \mathcal{L}$ and μ be a positive measure on \mathbb{B} . Then μ is a Φ -Carleson measure if and only if

(5)
$$\sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \Phi\left(\frac{(1-|a|^2)^{\tau}}{[a,x]^{(n-1)+\tau}}\right) d\mu(x) < \infty.$$

Let Φ_1, Φ_2 be two growth functions. A positive measure μ on \mathbb{B} is called a Φ_2 -*Carleson measure for* $\mathcal{B}^{\Phi_1}_{\alpha}$ if there is a constant C such that

$$\int_{\mathbb{B}} \Phi_2\Big(\frac{|f(x)|}{C\|f\|_{\alpha,\Phi_1}^{lux}}\Big) d\mu(x) \le 1,$$

for all $f \in \mathcal{B}^{\Phi_1}_{\alpha}$ with $||f||^{lux}_{\alpha,\Phi_1} \neq 0$.

In our final result, we discuss the Φ -Carleson measure for harmonic Bergman-Orlicz spaces.

Theorem 1.3. Let $\alpha > -1$, $\Phi_1, \Phi_2 \in \mathcal{U} \cup \mathcal{L}_{(\frac{1}{2})}$ $(\mathcal{L}_{(\frac{1}{2})} = \bigcup_{\frac{1}{2} and <math>\mu$ be a positive measure on \mathbb{B} . If Φ_2/Φ_1 is non-decreasing, then the following statements are equivalent.

(a) There exists a constant $C_1 > 0$ such that for any $a \in \mathbb{B} \setminus \{0\}$ and any $0 < \delta < 1$,

(6)
$$\mu(\mathcal{C}_{\delta}(a)) \leq \frac{C_1}{\Phi_2 \circ \Phi_1^{-1}(\frac{1}{\delta^{n+\alpha}})};$$

- (b) μ is a Φ_2 -Carleson measure for $\mathcal{B}^{\Phi_1}_{\alpha}$;
- (c) There exists a constant $C_3 > 0$ such that

(7)
$$\sup_{a \in \mathbb{B}} \int_{\mathbb{B}} \Phi_2 \Big(\Phi_1^{-1} \Big(\frac{1}{(1-|a|^2)^{n+\alpha}} \Big) \frac{(1-|a|^2)^{2(n+\alpha)}}{[a,x]^{2(n+\alpha)}} \Big) d\mu(x) \le C_3.$$

The organization of this paper is as follows. In Section 2, some necessary terminologies are introduced and several known results are recalled. Sections 3 and 4 are devoted to the proofs of Theorems 1.1 ~ 1.3. Throughout this paper, we always assume without loss of generality that our growth functions Φ are satisfying $\Phi(1) = 1$. The constants are denoted by C, they are positive and may differ from one occurrence to the other. For nonnegative quantities X and $Y, X \leq Y$ means that X is dominated by Y times some inessential positive constant. We write $X \approx Y$ if $Y \leq X \leq Y$.

2. Preliminaries

In this section, we introduce notations and collect some preliminary results that we will need later.

2.1 Operators on Orlicz spaces

Let Φ be a \mathcal{C}^1 growth function. Recall that the lower and the upper indices of Φ are respectively defined by

$$a_{\Phi} = \inf_{t>0} \frac{t\Phi'(t)}{\Phi(t)}$$
 and $b_{\Phi} = \sup_{t>0} \frac{t\Phi'(t)}{\Phi(t)}$

It is known that when Φ is convex, then $1 \leq a_{\Phi} \leq b_{\Phi} < \infty$ and, if Φ is concave, then $0 \leq a_{\Phi} \leq b_{\Phi} \leq 1$. Note that a convex growth function satisfies the ∇_2 -condition if and only if $1 < a_{\Phi} \leq b_{\Phi} < \infty$ (cf. [6], Lemma 2.1).

Definition 2.1. Let Φ be a growth function. A linear operator T defined on $L^{\Phi}(\mathbb{B}, dv_{\alpha})$ is said to be of mean strong type $(\Phi, \Phi)_{\alpha}$ if

$$\int_{\mathbb{B}} \Phi(|Tf|) dv_{\alpha}(x) \le C \int_{\mathbb{B}} \Phi(|f|) dv_{\alpha}(x).$$

for any $f \in L^{\Phi}(\mathbb{B}, dv_{\alpha})$, and T is said to be mean weak type $(\Phi, \Phi)_{\alpha}$ if

$$\sup_{t>0} \Phi(t)v_{\alpha}(\{x \in \mathbb{B} : |Tf(x)| > t\}) \le C \int_{\mathbb{B}} \Phi(|f|) dv_{\alpha}(x),$$

for any $f \in L^{\Phi}(\mathbb{B}, dv_{\alpha})$, where C is independent of f.

We remark that if $\Phi(t) = t^p$, then the mean strong type $(t^p, t^p)_{\alpha}$ is the usual strong type (p, p). The following interpolation result comes from [7, Theorem 4.3].

Lemma 2.1. Let Φ_0, Φ_1 and Φ_2 be three convex growth functions. Suppose that their upper and lower indices satisfy the following condition

$$1 \le a_{\Phi_0} \le b_{\Phi_0} < a_{\Phi_2} \le b_{\Phi_2} < a_{\Phi_1} \le b_{\Phi_1} < \infty.$$

If T is of mean weak types $(\Phi_0, \Phi_0)_{\alpha}$ and $(\Phi_1, \Phi_1)_{\alpha}$, then it is of mean strong type $(\Phi_2, \Phi_2)_{\alpha}$.

Let $\beta \in \mathbb{R}$ and consider the operator E_{β} defined for functions f on \mathbb{B} by

$$E_{\beta}f(x) = \int_{\mathbb{B}} f(y) \frac{(1-|y|^2)^{\beta}}{[x,y]^{n+\beta}} dv(y).$$

For a proof of the following lemma, see [9, Theorem 1.6].

Lemma 2.2. Let $1 \leq p < \infty$ and $\alpha, \beta > -1$. The operator $E_{\beta} : L^{p}(\mathbb{B}, dv_{\alpha}) \rightarrow L^{p}(\mathbb{B}, dv_{\alpha})$ is bounded if and only if $\alpha + 1 < p(\beta + 1)$.

Combining Lemmas 2.1 and 2.2, the following result can be easily derived, see [18, Theorem 2.5].

Lemma 2.3. Let $\alpha, \beta > -1$ and Φ be a C^1 convex growth function with its lower indice a_{Φ} . If $1 and <math>\alpha + 1 < p(\beta + 1)$, then E_{β} is of mean strong type $(\Phi, \Phi)_{\alpha}$.

2.2 Harmonic functions

It is well-known that the weighted harmonic Bergman spaces \mathcal{B}^2_{α} for $\alpha > -1$ is a reproducing kernel Hilbert space with reproducing kernel $R_{\alpha}(x, y)$:

(8)
$$f(x) = \int_{\mathbb{B}} f(y) R_{\alpha}(x, y) dv_{\alpha}(y), \ f \in \mathcal{B}_{\alpha}^{2}.$$

From [7], we know that (8) is also true for all $f \in \mathcal{B}^1_{\alpha}$.

The reproducing kernels $R_{\alpha}(x, y)$ can be expressed in terms of zonal harmonics as

$$R_{\alpha}(x,y) = \sum_{k=0}^{\infty} \frac{(1+\frac{n}{2}+\alpha)_k}{(\frac{n}{2})_k} Z_k(x,y) = \sum_{k=0}^{\infty} \gamma_k(\alpha) Z_k(x,y),$$

where the series absolutely and uniformly converges on $K \times \mathbb{B}$ for any compact subset K of \mathbb{B} and $(a)_b = \frac{\Gamma(a+b)}{\Gamma(a)}$. A straightforward computation gives that

(9)
$$|R_{\alpha}(x,y)| \lesssim \frac{1}{[x,y]^{n+\alpha}}$$

Note that $R_{\alpha}(x, y)$ is real-valued, symmetric in the variables x and y and harmonic with respect to each variable since the same is true for all $Z_k(x, y)$. For the extension of reproducing kernels $R_{\alpha}(x, y)$ to all $\alpha \in \mathbb{R}$, see [7, 9].

We recall some useful inequalities concerning harmonic functions which are useful for our investigations. **Lemma 2.4** ([7, 16]). Let 0 , <math>0 < r < 1 and $f, g \in h(\mathbb{B})$. Then there exists some positive constant C such that

- (1) $|f(x)|^p \le C \int_{E(x,r)} |f(y)|^p d\tau(y);$
- (2) $|\nabla f(x)|^p \leq \frac{C}{(1-|x|^2)^p} \int_{E(x,r)} |f(y)|^p d\tau(y).$

Moreover, if $0 and <math>\alpha > -1$, then there exists a positive constant C such that

(3)

$$\int_{\mathbb{B}} |f(x)g(x)| (1-|x|^2)^{(n+\alpha)/p-n} dv(x) \le C \Big(\int_{\mathbb{B}} |f(x)g(x)|^p dv_{\alpha}(x) \Big)^{1/p}.$$

The following standard estimate will be needed in the sequel.

Lemma 2.5 ([16]). Let $\alpha > -1$ and $\beta \in \mathbb{R}$. Then for any $x \in \mathbb{B}$,

$$\int_{\mathbb{B}} \frac{(1-|y|^2)^{\alpha}}{[x,y]^{n+\alpha+\beta}} dv(y) \approx \begin{cases} (1-|x|^2)^{-\beta}, & \beta > 0, \\ \log \frac{1}{1-|x|^2}, & \beta = 0, \\ 1, & \beta < 0. \end{cases}$$

3. Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. Before the proof, we need some preparation.

Lemma 3.1 ([8]). Let $\Phi \in \mathcal{L}_p$. Then the growth function Φ_p , defined by $\Phi_p(t) = \Phi(t^{\frac{1}{p}})$ is in \mathcal{U}^q for some $q \ge 1$. Moreover, for s > 0 and $t \ge 1$,

$$\Phi_p(ts) \le t^{\frac{1}{p}} \Phi_p(s).$$

By Lemmas 2.4 and Lemma 3.1, we can obtain the following useful integral estimates.

Lemma 3.2. Let $f \in h(\mathbb{B})$ and $\Phi \in \mathcal{U}^q \cup \mathcal{L}_p$. Then for 0 < r < 1 and $x \in \mathbb{B}$,

(1) $\Phi((1-|x|^2)|\nabla f(x)|) \lesssim \int_{E(x,r)} \Phi(|f(y)|) d\tau(y);$ (2) $\Phi(|f(x)|) \lesssim \int_{E(x,r)} \Phi(|f(y)|) d\tau(y).$

Proof. Let

$$p_{\Phi} = \begin{cases} 1, & \text{if } \Phi \in \mathcal{U}^q, \\ p, & \text{if } \Phi \in \mathcal{L}_p. \end{cases}$$

By Lemma 2.4, for each $x \in \mathbb{B}$,

$$\left((1-|x|^2)|\nabla f(x)|\right)^{p_{\Phi}} \lesssim \int_{E(x,r)} |f(y)|^{p_{\Phi}} d\tau(y).$$

 Set

$$\Phi_p(t) = \begin{cases} \Phi(t), & \text{if } \Phi \in \mathcal{U}^q, \\ \Phi(t^{\frac{1}{p}}), & \text{if } \Phi \in \mathcal{L}_p. \end{cases}$$

It follows from Lemma 3.1 and the convexity of $\Phi_p(t)$ that

$$\Phi((1-|x|^2)|\nabla f(x)|) \lesssim \int_{E(x,r)} \Phi(|f(y)|) d\tau(y).$$

This proves (1).

By Lemma 2.4 and an argument similar to the above, the assertion of (2) follows. $\hfill \Box$

Lemma 3.3. Assume that Φ is a growth function satisfying one of the following conditions:

(i) $\Phi \in \mathcal{U}^q$ and satisfies the ∇_2 -condition;

(ii) $\Phi \in \mathcal{L}_p$ and the function $\Phi_p(t) = \Phi(t^{\frac{1}{p}})$ satisfies the ∇_2 -condition.

If $\alpha > -1$ and $f \in h(\mathbb{B})$, then

(10)
$$\int_{\mathbb{B}} \Phi(|f(x) - f(0)|) dv_{\alpha}(x) \lesssim \int_{\mathbb{B}} \Phi((1 - |x|^2) |\mathcal{R}f(x)|) dv_{\alpha}(x);$$

and

(11)
$$\int_{\mathbb{B}} \Phi((1-|x|^2)|\nabla f(x)|) dv_{\alpha}(x) \lesssim \int_{\mathbb{B}} \Phi(|f(x)|) dv_{\alpha}(x).$$

Proof. We first prove (10). Let $f \in h(\mathbb{B})$. Then for s > -1,

$$\mathcal{R}f(x) = \int_{\mathbb{B}} \mathcal{R}f(y) R_s(x, y) dv_s(y).$$

Since $\int_{\mathbb{B}} \mathcal{R}f(y) dv_s(y) = 0$, subtracting this from the previous equation yields

$$\mathcal{R}f(x) = \int_{\mathbb{B}} \mathcal{R}f(y)(R_s(x,y) - 1)dv_s(y)$$

Consequently,

$$|f(x) - f(0)| = \left| \int_0^1 \int_{\mathbb{B}} \mathcal{R}f(y) (R_s(tx, y) - 1) dv_s(y) \frac{dt}{t} \right|$$
$$= \left| \int_{\mathbb{B}} \mathcal{R}f(y) \int_0^1 \frac{R_s(tx, y) - 1}{t} dt dv_s(y) \right|.$$

 Set

$$G(x,y) = \int_0^1 \frac{R_s(tx,y) - 1}{t} dt.$$

From the proof of [9, Lemma12.1], it deduces that

$$|G(x,y)| \le \int_0^1 \Big| \frac{R_s(tx,y) - 1}{t} \Big| dt \lesssim \int_0^1 \frac{dt}{[tx,y]^{n+s}} \lesssim \frac{1}{[x,y]^{n+s-1}}.$$

Therefore,

$$|f(x) - f(0)| \leq \int_{\mathbb{B}} (1 - |y|^2) |\mathcal{R}f(y)| \frac{1}{[x, y]^{n+s-1}} dv_{s-1}(y).$$

We first consider the case Φ satisfies the condition (i) of the lemma. Fix p so that 1 . By taking <math>s large enough so that $\alpha + 1 < ps$, we conclude from Lemma 2.3 that

$$\int_{\mathbb{B}} \Phi(|f(x) - f(0)|) dv_{\alpha}(x) \lesssim \int_{\mathbb{B}} \Phi((1 - |x|^2) |\mathcal{R}f(x)|) dv_{\alpha}(x).$$

We next consider the case of $\Phi \in \mathcal{L}_p$ and $\Phi_p(t) = \Phi(t^{\frac{1}{p}})$ satisfies the ∇_2 condition. Set $s = (n + \alpha')/p - n$ and $\alpha' > \alpha + p$. By Lemma 2.4, it deduces
that

$$\begin{split} |f(x) - f(0)|^p &\lesssim \int_{\mathbb{B}} |\mathcal{R}f(y)|^p |G(x,y)|^p dv_{\alpha'}(y) \\ &\lesssim \int_{\mathbb{B}} \frac{|\mathcal{R}f(y)|^p}{[x,y]^{p(n+s-1)}} dv_{\alpha'}(y) \\ &\lesssim \int_{\mathbb{B}} \frac{|(1-|y|^2)\mathcal{R}f(y)|^p}{[x,y]^{n+\alpha'-p}} dv_{\alpha'-p}(y). \end{split}$$

As the growth function $t \to \Phi_p(t) = \Phi(t^{\frac{1}{p}})$ is in \mathcal{U}^q and satisfies the ∇_2 -condition, proceeding as in the first part of this proof yields that

$$\begin{split} \int_{\mathbb{B}} \Phi(|f(x) - f(0)|) dv_{\alpha}(x) &= \int_{\mathbb{B}} \Phi_p(|f(x) - f(0)|^p) dv_{\alpha}(x) \\ &\lesssim \int_{\mathbb{B}} \Phi_p((1 - |x|^2)|\mathcal{R}f(x)|)^p) dv_{\alpha}(x) \\ &= \int_{\mathbb{B}} \Phi((1 - |x|^2)|\mathcal{R}f(x)|) dv_{\alpha}(x). \end{split}$$

We now come to prove (11). By Lemma 3.2, we have

$$\Phi((1-|x|^2)|\nabla f(x)|) \lesssim \int_{E(x,r)} \Phi(|f(y)|) d\tau(y), \quad x \in \mathbb{B}.$$

Integrating both sides of the above inequality over \mathbb{B} with respect to $dv_{\alpha}(x)$ and applying Fubini's theorem, we get

$$\int_{\mathbb{B}} \Phi((1-|x|^2)|\nabla f(x)|) dv_{\alpha}(x) \lesssim \int_{\mathbb{B}} \Phi(|f(x)|) dv_{\alpha}(x).$$

This completes the proof.

Proof of Theorem 1.1. We only prove $(a) \Leftrightarrow (b)$. Similar discussions can be applied to prove $(a) \Leftrightarrow (c)$ and $(a) \Leftrightarrow (d)$.

We first assume that $A^s_{\mathcal{R}}(f) \in L^{\Phi}(\mathbb{B}, dv_{\alpha})$. By Lemma 2.4, for each $x \in \mathbb{B}$, we have

$$|(1-|x|^2)\mathcal{R}f(x)| \lesssim A^s_{\mathcal{R}}(f)(x)$$

Then $(b) \Rightarrow (a)$ follows from Lemma 3.3.

For the converse, we assume that $f \in \mathcal{B}^{\Phi}_{\alpha}$. For each fixed $x \in \mathbb{B}$, let

$$h(x) = \sup\{(1 - |\zeta|^2) |\mathcal{R}f(\zeta)| : \zeta \in E(x, \frac{1}{2})\}.$$

From (1), we can find r' such that $0 < \frac{1}{2} < r' < 1$ and $E(\xi, \frac{1}{2}) \subset E(x, r')$ for every $\xi \in E(x, \frac{1}{2})$. It follows from Lemma 3.2 that

$$\Phi(|A^s_{\mathcal{R}}(f)(x))| \lesssim \Phi(h(x)) \lesssim \int_{E(x,r')} \Phi(|f(y)|) d\tau(y)$$

Hence by Fubini's theorem and (2),

$$\begin{split} \int_{\mathbb{B}} \Phi\big(|A^{s}_{\mathcal{R}}(f)(x)\big)|dv_{\alpha}(x) &\lesssim \int_{\mathbb{B}} (1-|x|^{2})^{\alpha} \int_{E(x,r')} \Phi(|f(y)|)d\tau(y)dv(x) \\ &\lesssim \int_{\mathbb{B}} \Phi(|f(y)|)d\tau(y) \int_{E(y,r')} (1-|x|^{2})^{\alpha}dv(x) \\ &\lesssim \int_{\mathbb{B}} \Phi(|f(y)|)dv_{\alpha}(y). \end{split}$$

This completes the proof.

4. Proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Assume first that (5) holds. For each $a \in \mathbb{B} \setminus \{0\}$, set $\delta = 1 - |a|$. A simple computation gives that

$$[a, x] \le 1 - |a|^2 \le 2\delta,$$

for $x \in \mathcal{C}_{\delta}(a)$. Therefore

$$\begin{split} \mu(\mathcal{C}_{\delta}(a))\Phi(\frac{1}{\delta^{n-1}}) &= \int_{\mathcal{C}_{\delta}(a)} \Phi(\frac{1}{\delta^{n-1}})d\mu(x) \\ &\lesssim \int_{\mathcal{C}_{\delta}(a)} \Phi(\frac{2^{n-1}}{[a,x]^{n-1}})d\mu(x) \\ &\lesssim \int_{\mathcal{C}_{\delta}(a)} \Phi(\frac{2^{n-1}(1-|a|^2)^{\tau}}{[a,x]^{n-1+\tau}})d\mu(x) \\ &\lesssim \int_{\mathbb{B}} \Phi\left(\frac{(1-|a|^2)^{\tau}}{[a,x]^{(n-1)+\tau}}\right)d\mu(x), \end{split}$$

where the last inequality follows from the monotonicity of Φ or $\frac{\Phi(t)}{t}$.

Conversely, assume that μ is a Φ -Carleson measure. The proof is based on a standard slicing trick, see [11, Lemma 2.2]. Without loss of generality, let $\frac{1}{2} < |a| < 1$. Denote $Q_0(a) = \emptyset$ and

$$Q_k(a) = \left\{ x \in \mathbb{B} : \left| x - \frac{a}{|a|} \right| < 2^{k-1}(1-|a|) \right\}, \ k = 1, 2, ..., N,$$

where N is the smallest integer such that $2^{N-1}(1-|a|) \ge 2$. Since for each $x \in Q_k(a) \setminus Q_{k-1}(a)$, $[a, x] \ge |a|2^{(k-2)}(1-|a|)$, we have

$$\begin{split} &\int_{\mathbb{B}} \Phi\Big(\frac{(1-|a|^2)^{\tau}}{[a,x]^{(n-1)+\tau}}\Big) d\mu(x) \\ &\lesssim \sum_{k=1}^{N} \int_{Q_k(a) \setminus Q_{k-1}(a)} \Phi\Big(\frac{(1-|a|^2)^{\tau}}{2^{(k-2)(n-1+\tau)}(1-|a|)^{(n-1)+\tau}}\Big) d\mu(x) \\ &\lesssim \sum_{k=1}^{N} \frac{\Phi\Big(\frac{1}{2^{(k-2)(n-1+\tau)}(1-|a|)^{n-1}}\Big)}{\Phi\Big(\frac{1}{2^{(k-1)(n-1)}(1-|a|)^{n-1}}\Big)} \\ &\lesssim \sum_{k=1}^{N} \frac{1}{2^{k\tau\varsigma}} < \infty, \end{split}$$

where $\varsigma = 1$ if $\Phi \in \mathcal{U}$ and $\varsigma = p$ if $\Phi \in \mathcal{L}$ is of lower type 0 . The proofis complete.

In order to prove Theorem 1.3, we need the following two lemmas.

Lemma 4.1. Let $\alpha > -1$, $\Phi \in \mathcal{U} \cup \mathcal{L}$ and $f \in \mathcal{B}^{\Phi}_{\alpha}$. Then there exists a positive constant C such that for each $a \in \mathbb{B}$,

(12)
$$|f(a)| \le C\Phi^{-1} \left(\frac{1}{(1-|a|^2)^{n+\alpha}}\right) ||f||_{\alpha,\Phi}^{lux}.$$

Proof. If $||f||_{\alpha,\Phi}^{lux} = 0$, then f = 0 a.e. on \mathbb{B} so that (12) obviously holds. Suppose that $||f||_{\alpha,\Phi}^{lux} \neq 0$. In view of (2) and Lemma 2.4, we see that for $a \in \mathbb{B}$ and 0 ,

$$|f(a)|^p \lesssim \int_{E(a,r)} |f(x)|^p \Big(\frac{(1-|a|^2)}{[x,a]^2}\Big)^{n+\alpha} dv_{\alpha}(x).$$

It follows a similar discussion in the proof of Lemma 3.2,

$$\begin{split} \Phi\Big(\frac{|f(a)|}{\|f\|_{\alpha,\Phi}^{lux}}\Big) &\lesssim \int_{E(a,r)} \Phi\Big(\frac{|f(x)|}{\|f\|_{\alpha,\Phi}^{lux}}\Big)\Big(\frac{(1-|a|^2)}{[x,a]^2}\Big)^{n+\alpha} dv_{\alpha}(x) \\ &\lesssim \frac{1}{(1-|a|^2)^{n+\alpha}}, \end{split}$$

which gives (12).

Lemma 4.2. Let $\alpha > -1$, $\frac{1}{2} and <math>\Phi \in \mathcal{U} \cup \mathcal{L}_p$. Then each $a \in \mathbb{B}$, the following function

$$f_a(x) = \Phi^{-1} \left(\frac{1}{(1-|a|^2)^{n+\alpha}} \right) R_{n+2\alpha}(x,a) (1-|a|^2)^{2(n+\alpha)}$$

belongs to $\mathcal{B}^{\Phi}_{\alpha}$.

Proof. Let

$$h_a(x) = \frac{(1 - |a|^2)^{2(n+\alpha)}}{[x, a]^{2(n+\alpha)}}.$$

Since $\alpha > -1$, from (8),

$$\begin{split} &\int_{\mathbb{B}} \Phi(|f_{a}(x)|) dv_{\alpha}(x) \\ &= \int_{\mathbb{B}} \Phi\Big(\Phi^{-1} \Big(\frac{1}{(1-|a|^{2})^{n+\alpha}} \Big) |R_{n+2\alpha}(x,a)| (1-|a|^{2})^{2(n+\alpha)} \Big) dv_{\alpha}(x) \\ &\lesssim \int_{\mathbb{B}} \Phi\Big(\Phi^{-1} \Big(\frac{1}{(1-|a|^{2})^{n+\alpha}} \Big) h_{a}(x) \Big) dv_{\alpha}(x) \\ &= I_{1} + I_{2}, \end{split}$$

where

$$I_1 = \int_{\{x \in \mathbb{B}: h_a(x) \le 1\}} \Phi\Big(\Phi^{-1}\Big(\frac{1}{(1-|a|^2)^{n+\alpha}}\Big)h_a(x)\Big)dv_\alpha(x)$$

and

$$I_2 = \int_{\{x \in \mathbb{B}: h_a(x) \ge 1\}} \Phi\Big(\Phi^{-1}\Big(\frac{1}{(1-|a|^2)^{n+\alpha}}\Big)h_a(x)\Big)dv_\alpha(x).$$

We now divide the remainder of the proof into the following two cases. Case I. $\Phi \in \mathcal{U}$. By the monotonicity of $\frac{\Phi(t)}{t}$ and Lemma 2.5,

189

$$I_1 \lesssim \int_{\{x \in \mathbb{B}: h_a(x) \le 1\}} h_a(x) \Phi\left(\Phi^{-1}\left(\frac{1}{(1-|a|^2)^{n+\alpha}}\right)\right) dv_\alpha(x)$$

$$\lesssim \int_{\mathbb{B}} \frac{(1-|a|^2)^{(n+\alpha)}}{[x,a]^{2(n+\alpha)}} dv_\alpha(x) \lesssim 1.$$

Using (3), there exists some $q \ge 1$ such that

$$I_{2} = \int_{\{x \in \mathbb{B}: h_{a}(x) \ge 1\}} \Phi\left(\Phi^{-1}\left(\frac{1}{(1-|a|^{2})^{n+\alpha}}\right)h_{a}(x)\right) dv_{\alpha}(x).$$

$$\lesssim \int_{\mathbb{B}} \frac{(1-|a|^{2})^{(2q-1)(n+\alpha)}}{[x,a]^{2q(n+\alpha)}} dv_{\alpha}(x) \lesssim 1.$$

Case II. $\Phi \in \mathcal{L}_p$ with $p > \frac{1}{2}$. Using (4) and Lemma 2.5, we have

$$I_{1} \lesssim \int_{\{x \in \mathbb{B}: h_{a}(x) \leq 1\}} h_{a}(x)^{p} \Phi\left(\Phi^{-1}\left(\frac{1}{(1-|a|^{2})^{n+\alpha}}\right)\right) dv_{\alpha}(x)$$

$$\lesssim \int_{\mathbb{B}} \frac{(1-|a|^{2})^{(2p-1)(n+\alpha)}}{[x,a]^{2p(n+\alpha)}} dv_{\alpha}(x) \lesssim 1.$$

By the monotonicity of $\frac{\Phi(t)}{t}$ and Lemma 2.5 again,

$$I_{2} = \int_{\{x \in \mathbb{B}: h_{a}(x) \ge 1\}} \Phi\left(\Phi^{-1}\left(\frac{1}{(1-|a|^{2})^{n+\alpha}}\right)h_{a}(x)\right) dv_{\alpha}(x)$$

$$\lesssim \int_{\mathbb{B}} \frac{(1-|a|^{2})^{(n+\alpha)}}{[x,a]^{2(n+\alpha)}} dv_{\alpha}(x) \lesssim 1.$$

Combining the above two cases, the assertion of this lemma follows.

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof will follow by the routes $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$.

We first prove $(a) \Rightarrow (b)$. For $y \in \mathbb{B} \setminus \{0\}$ and $\frac{1}{4} < r < 1$. By (1) and (2), we see that for large enough $k, E(y, r) \subset Q_k(y)$ and

(13)
$$\mu(E(y,r)) \le \mu(Q_k(y)) \lesssim \frac{1}{\Phi_2 \circ \Phi_1^{-1}(\frac{1}{2^{(k-1)(n+\alpha)}(1-|y|)^{n+\alpha}})}.$$

Let $f \in \mathcal{B}^{\Phi_1}_{\alpha}$ with $||f||^{lux}_{\alpha,\Phi_1} \neq 0$. Note that $\Phi_2 \in \mathcal{U} \cup \mathcal{L}_{(\frac{1}{2})}$, then

$$\Phi_2(\frac{|f(x)|}{\|f\|_{\alpha,\Phi_1}^{lux}}) \lesssim \int_{E(x,\frac{1}{4})} \Phi_2(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_1}^{lux}})(1-|y|^2)^{-(n+\alpha)} dv_\alpha(y)$$

by Lemma 3.2. Thus

$$\begin{split} L &= \int_{\mathbb{B}} \Phi_{2}(\frac{|f(x)|}{\|f\|_{\alpha,\Phi_{1}}^{lux}}) d\mu(x) \\ &\lesssim \int_{\mathbb{B}} d\mu(x) \int_{E(x,\frac{1}{4})} \Phi_{2}(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_{1}}^{lux}}) (1-|y|^{2})^{-(n+\alpha)} dv_{\alpha}(y) \\ &\lesssim \int_{\mathbb{B}} \left(\int_{\mathbb{B}} \chi_{E(y,\frac{1}{4})}(x) d\mu(x) \right) \Phi_{2}(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_{1}}^{lux}}) (1-|y|^{2})^{-n} dv(y) \end{split}$$

191

From (1), we can find an integer k such that and $E(x, \frac{1}{4}) \subset Q_k(y)$ for every $x \in E(y, \frac{1}{4})$. It follows from Lemma 3.2 and (13) that

$$L \lesssim \int_{\mathbb{B}} \Phi_2(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_1}^{lux}}) \mu(Q_k(y)) (1-|y|^2)^{-n} dv(y).$$

By the assumption Φ_2/Φ_1 is non-decreasing and (12),

$$L \lesssim \int_{\mathbb{B}} \Phi_{1}(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_{1}}^{lux}}) \frac{\Phi_{2} \circ \Phi_{1}^{-1}(\frac{1}{(1-|y|^{2})^{n+\alpha}})}{\Phi_{1} \circ \Phi_{1}^{-1}(\frac{1}{(1-|y|^{2})^{n+\alpha}})} (1-|y|^{2})^{-n} \mu(Q_{k}(y)) dv(y)$$

$$\lesssim \int_{\mathbb{B}} \Phi_{1}(\frac{|f(y)|}{\|f\|_{\alpha,\Phi_{1}}^{lux}}) dv_{\alpha}(y) \leq 1.$$

This implies that we can find a constant $C_2 > 0$ such that

$$\int_{\mathbb{B}} \Phi_2 \Big(\frac{|f(x)|}{C_2 \|f\|_{\alpha, \Phi_1}^{lux}} \Big) d\mu(x) \le 1.$$

 $(b) \Rightarrow (c)$. For $a \in \mathbb{B}$, recall that

$$f_a(x) = \Phi_1^{-1} \left(\frac{1}{(1-|a|^2)^{n+\alpha}} \right) R_{n+2\alpha}(x,a) (1-|a|^2)^{2(n+\alpha)} \in \mathcal{B}_{\alpha}^{\Phi_1}$$

from Lemma 4.2. Thus, the implication easily follows by testing f_a and using the monotonicity of Φ_2 or the monotonicity of the function $\frac{\Phi_2(t)}{t}$.

 $(c) \Rightarrow (a)$. The implication $(c) \Rightarrow (a)$ follows the same way as in the proof of Theorem 1.2. We omit the details here.

Acknowledgements

The authors heartily thank the referee for a careful reading of the paper as well as for many useful comments and suggestions. The research was partly supported by the Natural Science Foundation of China (No. 12371073, No. 11971299).

References

- S. Axler, P. Bourdon, W. Ramey, *Harmonic function theory*, Springer-Verlag, New York, 1992.
- [2] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921–930.
- [3] Z. Chen, W. Ouyang, Maximal and area integral characterizations of Bergman spaces in the unit ball of Cⁿ, J. Funct. Spaces Appl., 13 (2013), Article ID 167514.
- [4] Z. Chen, W. Ouyang, Tent spaces and Littlewood-Paley g-functions associated with Bergman spaces in the unit ball of Cⁿ, Complex Var. Elliptic Equ., 63 (2018), 406-419.
- [5] J. A. Cima, W. Wogen, A Carleson measure theorem for the Bergman space on the unit ball of Cⁿ, J. Operator Theory, 7 (1982), 157-165.
- [6] Y. Deng, L. Huang, T. Zhao, D. Zheng, Bergman projection and Bergman spaces, J. Operator Theory, 46 (2001), 3-24.
- [7] O. Doğan, Harmonic Besov spaces with small exponents, Complex Var. Elliptic Equ., 65 (2020), 1051-1075.
- [8] X.Fu, Q. Shi, Lipschitz type characterizations for Bergman-Orlicz spaces of eigenfunctions on hyperbolic space, Complex Var. Elliptic Equ., 68 (2023), 1459-1472.
- [9] S. Gergün, H. Kaptanğlu, A. Üreyen, Harmonic Besov spaces on the ball, Internat. J. Math., 27 (2016), 1650070, 59 pp.
- [10] W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc., 52 (1975), 237-241.
- [11] M. Kotilainen, V. Latvala, J. Rättyä, Carleson measures and conformal self-mappings in the real unit ball, Math. Nachr., 281 (2008), 1582-1589.
- [12] M, López-García, C. Lozano, S. Pérez-Esteva, Area functions characterizations of weighted Bergman spaces, J. Math. Anal. Appl., 447 (2017), 529-541.
- [13] D. Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc., 87 (1983), 656-660.
- [14] D. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math., 107 (1985), 85-111.
- [15] M. M. Rao, Z.D. Ren, *Theory of Orlicz functions*, Pure and Applied Mathematics 146, Marcel Dekker Inc, New York, 1991.

- [16] G. Ren, U. Kähler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc., 48 (2005), 743-755.
- [17] B. Sehba, Φ -Carleson measures and multipliers between Bergman-Orlicz spaces on the unit ball of \mathbb{C}^n , J. Aust. Math. Soc., 104 (2018), 63-79.
- [18] B. Sehba, Derivatives characterization of Bergman-Orlicz spaces, boundedness and compactness of Cesàro-type operator, Bull. Sci. Math., 180 (2022), 103193.
- [19] S. Ueki, Weighted composition operators between weighted Bergman spaces in the unit ball of Cⁿ, Nihonkai Math. J., 16 (2005), 31-48.

Accepted: November 22, 2023