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Abstract. Regular ring lattices (RRLs) are defined as peculiar undirected circulant
graphs constructed from a cycle graph, wherein each node is connected to pairs of
neighbors that are spaced progressively in terms of vertex degree. This kind of network
topology is extensively adopted in several graph-based distributed scalable protocols
and their spectral properties often play a central role in the determination of conver-
gence rates for such algorithms. In this work, basic properties of RRL graphs and the
eigenvalues of the corresponding Laplacian and Randić matrices are investigated. A
deep characterization for the spectra of these matrices is given and their relation with
the Dirichlet kernel is illustrated. Consequently, the Fiedler value of such a network
topology is found analytically. With regard to RRLs, properties on the bounds for the
spectral radius of the Laplacian matrix and the essential spectral radius of the Randić
matrix are also provided, proposing interesting conjectures on the latter quantities.
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1. Introduction

Regular Ring Lattices (RRLs) are often exploited in a wide range of research
fields and they are also known in literature as k-cycles or “pristine worlds”[1,
2, 3, 4]. A RRL can be considered a peculiar undirected circulant network
[5] constructed from a cycle graph, wherein each node is connected to pairs of
neighbors spaced progressively in terms of vertex degree. Remarkably, RRLs are
employed in many graph-based distributed scalable algorithms (see, e.g., [6, 7, 8,
9, 10, 11, 12]), as their symmetry can be exploited for design purposes. Possible
applications for this class of networks may encompass intelligent surveillance of
public spaces [13], tracking-by-detection [14], identification of sparse reciprocal
graphical models [15], definition of shift in graph signal processing [16], modeling
of quantum walks [17], video circulant sampling schemes [18], compressive three-
dimensional sensing techniques [19] and sensor network monitoring algorithms
[20]. The latter examples, in fact, represent only few state-of-the-art topics
that motivate this study. Also, although being of straightforward derivation, a
rigorous characterization for the basic and spectral properties of RRLs is lacking
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or, in some dissertations, incorrect information about their features is provided
(see, e.g., the computation of the largest Laplacian eigenvalue λM associated to
a RRL in the recently published [21]).

In light of this premise, RRLs are here examined in detail. In particular, the
main contributions of this note consist in:

• the investigation of some of their basic properties;
• the spectral analysis of the associated Laplacian and Randić matrices.

Furthermore, an exact relationship for the spectra of these matrices is yielded
through the Dirichlet kernel. A special effort is then directed towards the ana-
lytical computation of the Fiedler value [22, 23, 24], representing the algebraic
connectivity of such graphs. With regard to RRLs, properties on the bounds for
the spectral radius of the Laplacian matrix [25, 26] and the essential spectral
radius of the Randić matrix [27, 28] are also provided. Lastly, conjectures on
the latter quantities are also proposed.

The remainder of the note is organized as follows. The mathematical pre-
liminaries in Sec. 2 offer an overview on RRLs. The main results of this work
are then presented in Sec. 3, where basic and spectral properties of RRLs are
widely explored. The study continues with the discussion in Sec. 4, in which
two conjectures related to the spectral radius (for the Laplacian matrix) and the
essential spectral radius (for the Randić matrix) of a RRL are given. To con-
clude, Sec. 5 summarizes all the reported findings and examines future research
directions.

Notation The sets of integer, natural, real, complex numbers are indicated
by N, Z, R, C, respectively; whereas, the empty set and the imaginary unit
are denoted by ∅ and i, respectively. The cosine and sine functions of α ∈ R
are respectively denoted with cos(α) and sin(α), or abbreviated as cα and sα.
The inverse sine and cosine function of α ∈ [−1, 1] are denoted by arcsin(α) and
arccos(α); while, the inverse tangent function of α ∈ R is denoted by arctan(α).
The complex exponential, floor and ceiling functions are defined respectively as
e : z ∈ C 7→ ez ∈ C \ {0}, ⌊⌋ : x ∈ R 7→ ⌊x⌋ ∈ Z and ⌈⌉ : x ∈ R 7→ ⌈x⌉ ∈ Z.
Given N ∈ N \ {0}, the quantity θ = π/N is assigned and used throughout
the note to shortly address the N -th part of a straight angle π; moreover, n =
⌊N/2⌋ is set. The modulo and transpose operations are denoted by mod and ⊤,
respectively. Given an n-dimensional real-valued vector w = (wk) ∈ Rn, the j-

th cyclic permutation over w =
[
w1 w2 · · · wN

]⊤
, with j ∈ Z, is defined as

wj =
[
w1+(j mod N) w1+(j−1 mod N) · · · w1+(j−1+N mod N)

]⊤
and it holds

wj = w for all j ∈ Z such that j mod N = 0. Also, ∥w∥1 denotes the 1-norm of
w. Given an N×N -dimensional squared real-valued matrix T = (th,k) ∈ RN×N

its h-th row is denoted by rowh(T); furthermore, its j-th eigenvalue of is denoted
by λT

j , with j ∈ {0, . . . , N − 1}. The spectrum of T is defined as the set

Λ(T) = {λT
0 , . . . , λ

T
N−1}. Notably, it is assumed that eigenvalues λT

j are not
necessarily ordered according to their index j. To conclude, IN denotes the
identity matrix of dimension N and the matrix diag(δ1, . . . , δN ) ∈ RN×N is
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equivalent to a squared diagonal matrix ∆ = (δh,k) ∈ RN×N such that δk,k = δk,
for k ∈ {1, . . . , N}; δh,k = 0, if h ̸= k.

2. Preliminaries

This research begins by briefly illustrating some bases of graph theory and a
few well-known mathematical preliminaries about circulant matrices, showing
familiar algebraic relations. Also, the definition and a few properties of the
Dirichlet kernel are reported.

2.1 Basic notions of graph theory

An undirected graph G = (V, E) is a networked structure formed by a vertex set
V = {v1, . . . , vN} and an edge set E ⊆ V×V, in which each edge eh,k = (vh, vk) =
(vk, vh), with h ̸= k, belongs to E if and only if there exists a connection between
vertices vh and vk. The cardinality of the edge set is denoted respectively by
M(G) = |E|. Equivalently, the whole structure of G can be described by the
so-called adjacency matrix A = (ah,k) ∈ {0, 1}N×N , where ah,k = 1 if eh,k ∈
E ; ah,k = 0, otherwise. The k-th neighborhood of vertex vk is then defined
as Nk = {vk ∈ V | eh,k ∈ E} and its cardinality dk = |Nk| is called vertex
degree. The latter quantity also contributes to the definition of the degree matrix
D = diag(d1, . . . , dN ). Graph G is said to be regular if all the vertex degrees
are equal to some common degree d(G) ∈ N. The volume of G is defined as
vol(G) =

∑
vk∈V dk. Vertex vk is said to be isolated if dk = 0. From the above

entities, three very relevant matrices associated to G can be finally defined: the
Laplacian matrix L = D − A and, assuming that none of the vertices in V
is isolated, the normalized Laplacian matrix L = D− 1

2LD− 1
2 and the Randić

matrix R = D− 1
2AD− 1

2 [29, 30, 31, 32, 33, 34]. Assuming that regularity
holds for G, the adjacency, Randić, normalized Laplacian and Laplacian matrices
associated to G can be mutually computed through

(1) L = d(G)IN −A = d(G)(IN −R) = d(G)L.

In addition, a sequence of edges without repetition πh,k ⊆ E that links ver-
tices vh and vk, in which all traversed vertices are distinct, is called path. A
cycle πk passing through vertex vk can be identified as a particular nondegen-
erate path for which vh = vk, i.e. πk = πk,k, with πk,k ̸= ∅. If it holds πh,k ̸= ∅
for all the couples of vertices vh and vk such that vh ̸= vk then G is said to be
connected. The length of a path πh,k is identified with its cardinality |πh,k|, the
distance between vh and vk is yielded by dist(vh, vk) = min{|πh,k| | πh,k ⊆ E}
(note that dist(vk, vk) = 0) and the eccentricity of vertex vk is computed as
ϵ(vk) = max{dist(vh, vk) | vh ∈ V}. The diameter ϕ(G) and radius r(G) of G
are defined as ϕ(G) = max{ϵ(vk) | vk ∈ V} and r(G) = min{ϵ(vk) | vk ∈ V}.
Also, the periphery P(G) and center C(G) of G are defined as the sets P(G) =
{vk ∈ V | ϵ(vk) = ϕ(G)} and C(G) = {vk ∈ V | ϵ(vk) = r(G)}. Quantities
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g(G) = min{|πk| | vk ∈ V} and c(G) = max{|πk| | vk ∈ V} are said respectively
girth and circumference of G.

Lastly, a cycle graph CN is an undirected connected regular graph with N
vertices such that d(CN ) = 2; a complete graph KN is an undirected connected
regular graph with N vertices such that d(KN ) = N − 1; an edgeless graph KN

is a nonconnected regular graph with N isolated vertices (d(KN ) = 0). An
undirected connected graph is Eulerian if and only if every vertex in it has even
degree [35]. An undirected graph is said Hamiltonian if it has a cycle passing
through each vertex in it. The smallest number of colors needed to color1 a
graph G is denoted by the chromatic number χ(G). A graph G with χ(G) = 2 is
said bipartite. The following lemma concludes this paragraph.

Lemma 2.1 (Handshaking lemma [35]). For an undirected graph G, the sum of
all its degrees equals twice the number of its edges, i.e. vol(G) = 2M(G).

2.2 Circulant matrices

In this paragraph, a few fundamental facts about circulant matrices are pro-
vided2. A circulant matrix is a matrix where each row in it is shifted one entry
to the right relative to the previous row vector. The following lines provide its
formal definition.

Definition 2.1 (Circulant matrix [5]). Given an arbitrary vector w = (wk) ∈
RN , the matrix T ∈ RN×N is circulant if its h-th rows satisfies rowh(T) =
(wh−1)⊤, for all h ∈ {1, . . . , N}. The vector w is called generator of T.

A circulant topology is thus a structure such that each element in it shares
the same “local panorama” w.r.t. the other elements. Remarkably, a general
expression for the spectrum of circulant matrices can be found. The latter is
given in the next theorem.

Theorem 2.1 (Spectrum of circulant matrices [5]). Let T ∈ RN×N be a cir-
culant matrix according to Def. 2.1. The spectrum Λ(T) is composed by the
eigenvalues λT

j such that

(2) λT
j =

N−1∑
k=0

wk+1e
−ijk 2π

N , ∀j ∈ {0, . . . , N − 1}.

2.3 Definition and properties of the Dirichlet kernel

According to [36], the definition and few fundamental properties of the Dirichlet
kernel are provided in the sequel.

1. Coloring is intended as labeling each vertex with a nonnegative integer such that no two
vertices sharing the same edge have the same label.

2. Only squared real-valued matrices are considered, as this investigation focuses on undi-
rected (unweighted) RRLs.
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Definition 2.2 (Dirichlet kernel [36]). The Dirichlet kernel of order m ∈ N is
defined as the function Dm : x ∈ R 7→ Dm(x) = 1

2

∑m
k=−m eikx.

Theorem 2.2 (Well-known properties of the Dirichlet kernel [36, 37, 38]). The
following properties for the Dirichlet kernel in Def. 2.2 hold.

1. Each Dm(x) is a real-valued, continuous, 2π-periodic, even function and
(for m > 0) assumes both positive and negative values.

2. For each m ∈ N, the Dirichlet kernel can be rewritten as

(3) Dm(x) =


sin
((
m+ 1

2

)
x
)

2sin
(
x
2

) , if x ̸= 2πℓ, with ℓ ∈ Z,

m+ 1
2 , otherwise

or as

(4) Dm(x) =
1

2
+

m∑
k=1

cos(kx).

3. For each m ∈ N it holds that |Dm(x)| ≤ m+ 1/2, ∀x ∈ R.

4. For each m ∈ N \ {0} the Dirichlet kernel restricted to [0, 2π) has 2m
zeros at x⋆k = 2kπ/(2m + 1), ∀k ∈ {1, . . . , 2m}. In particular, between
each pair of consecutive zeros (x⋆k, x

⋆
k+1), Dm(x) has one local extremum:

a minimum, if k is odd, or a maximum, if k is even.

5. For each m ∈ N \ {0} the Dirichlet kernel restricted to [0, 2π) has one
global maximum at x0 = 0, for which Dm(x0) = m + 1/2, and two global
minima at x1 ∈ (x⋆1, x

⋆
2) and xm = 2π − x1 ∈ (x⋆2m−1, x

⋆
2m). The value of

x1 is approximately given by x1 ≈ υx⋆1/π, with υ = 4.493409457909064.

3. Main results related to RRLs

In this section, the main results on the spectral properties of RRLs are given.
In detail, the RRLs are firstly defined and some basic properties are presented.
Then, a spectral analysis of the graph Laplacian matrix L via the Dirichlet kernel
is carried out. This discussion will yield a characterization of its spectrum Λ(L),
with particular attention directed towards the Fiedler value (i.e. the smallest
nonzero eigenvalue of L) and its spectral radius (i.e. the largest eigenvalue of
L). Then, the investigation continues with a study on the so-called essential
spectral radius of the Randić matrix R associated to a RRL.

3.1 Definition and basic properties

Hereafter, a particular kind of circulant graphs is addressed. The elements
belonging to the class in question are referred to as RRLs and described in the
following definition.
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Definition 3.1 (RRL Cm
N ). Let N and m be two natural numbers such that N ≥

4 and 1 ≤ m < n = ⌊N/2⌋. A RRL Cm
N = Cm

N (V, E) of order m is an undirected
graph with N vertices having a circulant adjacency matrix A generated by a
vector w ∈ {0, 1}N whose components are such that

(5) wk =

{
1, if k ∈ {2, . . . ,m+ 1} ∪ {N −m+ 1, . . . , N},
0, otherwise.

Remark 3.1. The order m of a RRL Cm
N can be interpreted as the identical

local field-of-view width of each vertex. In other words, a RRL Cm
N can ba also

said to be a k-cycle with N vertices, wherein k = 2m neighbors are adjacent to
each vertex as depicted in Fig. 1.

It is worth to notice that a RRL Cm
N is uniquely determined by its number of

vertices N and order m only. The following propositions yield all the remaining
derived quantities and properties introduced in Ssec. 2.1.

Proposition 3.1 (Regularity and common degree of RRLs). Any RRL Cm
N (V, E)

is regular, with common degree

(6) d(Cm
N ) = 2m.

Consequently, any Cm
N is Eulerian.

Proof of Proposition 3.1. The adjacency matrix A of Cm
N is circulant and

generated by vector w, thus the regularity is shown by observing that for all
vk ∈ V it holds that dk = |Nk| = ∥rowk(A)∥1 = ∥w∥1 = d(Cm

N ). From (5), the
common degree d(Cm

N ) is given by the cardinality of {2, . . . ,m+1} ∪ {N −m+
1, . . . , N}. Therefore, one has d(Cm

N ) = (m+1−2+1)+(N−N+m−1+1) = 2m.
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Figure 1: All the three RRLs with N = 9 vertices. A layer of edges is added
for each increasing value of m ∈ {1, 2, 3}: (a) first layer in black, (b)
second layer in green, (c) third layer in red.
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Proposition 3.2 (Connectivity of RRLs). Any RRL Cm
N (V, E) is connected.

Proof of Proposition 3.2. By definition, the adjacency matrix A = (ah,k)
of Cm

N satisfies ah,h+1 = 1 for all h ∈ {1, . . . , N − 1}. Hence, the path π1,N =
{e1,2, e2,3, . . . , eN−1,N} exists in Cm

N , implying its connectivity.

Remark 3.2. From Prop. 3.1 and Prop. 3.2 it follows that C1
N = CN , since

RRLs are connected and d(Cm
N ) = 2 if m = 1. This implies that cycle graphs are

a subclass of RRLs and represent a proper basic case in this setting. Moreover,
one can also observe that limm→nC

m
N = KN follows directly from (5). Therefore,

complete graphs represent a degenerate upper limit case for RRLs. One the
other hand, one has that limm→0C

m
N = KN follows directly from (5). Hence,

edgeless graphs represent a degenerate lower limit case for RRLs.

Corollary 3.1 (Volume and number of edges of a RRL). The volume vol(Cm
N )

and number of edges M(Cm
N ) of a RRL Cm

N (V, E) are yielded by

vol(Cm
N ) = 2mN,(7)

M(Cm
N ) = mN.(8)

Proof of Corollary 3.1. By leveraging the definition of volume of a graph and
the regularity of RRLs shown in (6), relation (7) is verified. Whereas, exploiting
Lem. 2.1 on Cm

N , the result in (8) follows.

Proposition 3.3 (Chromatic number of RRLs). A RRL Cm
N (V, E) has chro-

matic number

(9) χ(Cm
N ) = m+ 1 + (N mod (m+ 1)).

Proof of Proposition 3.3. A RRL Cm
N can be minimally colored exploiting

its circulant symmetry. Starting e.g. from vertex v1, one can use a group of
m+ 1 distinct colors to label subsequent subsets of m+ 1 vertices. In this way,
vertices vk share the same color (k mod (m + 1)) ∈ {0, . . . ,m} for all k such
that 1 ≤ k ≤ N − (N mod (m+ 1)). Finally, the remaining (N mod (m+ 1))
vertices need to be labeled with (N mod (m+ 1)) additional distinct colors.

Corollary 3.2 (Bipartiteness of RRLs). A RRL Cm
N (V, E) is bipartite if and

only if m = 1 and N is even.

Proof of Corollary 3.2. From Prop. 3.3, expression (9) yields χ(Cm
N ) = 2 if

and only if m = 1 and N mod 2 = 0.

Proposition 3.4 (Diameter and radius of a RRL). The diameter ϕ(Cm
N ) and

radius r(Cm
N ) of a RRL Cm

N (V, E) are yielded by

(10) ϕ(Cm
N ) = r(Cm

N ) = ⌈⌊N/2⌋/m⌉.



144 M. FABRIS

No. Vertices No. Edges Common degree
N : N ≥ 4 M(Cm

N ) = mN d(Cm
N ) = 2m

Order Volume Chromatic number
m : 1 ≤ m < ⌊N/2⌋ vol(Cm

N ) = 2mN χ(Cm
N ) = m+ 1 + (N mod (m+ 1))

Diameter Periphery Circumference
ϕ(Cm

N ) = ⌈⌊N/2⌋/m⌉ P(Cm
N ) = V c(Cm

N ) = N

Radius Center Girth
r(Cm

N ) = ⌈⌊N/2⌋/m⌉ C(Cm
N ) = V g(Cm

N ) = ⌈N/m⌉

Table 1: Basic topological quantities of a RRL Cm
N (V, E).

Proof of Proposition 3.4. As each vertex in Cm
N shares the same local per-

spective and any Cm
N is connected (see Prop. 3.2), the eccentricity of each vk ∈ V

is given by ϵ(vk) = ϵ0(C
m
N ), with constant ϵ0(C

m
N ) = ⌈n/m⌉.

Corollary 3.3 (Periphery and center of a RRL). The periphery P(Cm
N ) and

center C(Cm
N ) of a RRL Cm

N (V, E) are yielded by

(11) P(Cm
N ) = C(Cm

N ) = V.

Proof of Corollary 3.3. Relation (11) derives from (10) in Prop. 3.4.

Proposition 3.5 (Circumference and girth of a RRL). The circumference c(Cm
N )

and the girth g(Cm
N ) of a RRL Cm

N (V, E) are yielded by

c(Cm
N ) = N,(12)

g(Cm
N ) = ⌈N/m⌉.(13)

Consequently, any Cm
N is Hamiltonian.

Proof of Proposition 3.5. Relation (12) holds trivially, since Cm
N always en-

compasses the cycle graph CN (see Rmk. 3.2). This implies that any Cm
N is

Hamiltonian. Whereas, (13) is retrieved similarly to what done with eccentric-
ity in Prop. 3.4.

In Tab. 1, all the discussed properties of RRLs are summarized.

3.2 Spectral analysis

The analysis starts by showing the key insight to examine the spectral properties
of RRLs via the theoretical support provided by the properties of the Dirichlet
kernel Dm. A characterization for the eigenvalues of the Laplacian matrix L
associated to the RRLs in terms of Dm is given by the following theorem, ex-
plaining the reason why m is considered the order for this class of graphs. To
avoid heavy notation, d = d(Cm

N ) = 2m is adopted henceforward.
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Theorem 3.1 (Spectral characterization of RRLs). Let L be the graph Laplacian
matrix associated to a RRL Cm

N . Setting θ = π/N , the spectrum Λ(L) can be
expressed in function of the Dirichlet kernel Dm as

λL
j = 1 + 2 (m−Dm(2θj)) , ∀N ≥ 4,∀m ∈ {1, . . . , n− 1},(14)

with λL
N−j = λL

j , ∀j ∈ {1, . . . , n}. Furthermore, the following properties hold
for all N ≥ 4 and m ∈ {1, . . . , n− 1}.

1. Each eigenvalue λL
j belongs to [0, 4m] for all j ∈ {0, . . . , N − 1}.

2. Eigenvalue λL
0 = 0 is simple, i.e. it has algebraic multiplicity 1.

3. If ∃λL
j⋆ = 4m for some j⋆ ∈ {1, . . . , n} then eigenvalue λL

j⋆ is simple.

Proof of Theorem 3.1. Let A be the adjacency matrix of Cm
N generated by

the vector w, according to Def. 3.1. Recalling that given α ∈ R and a matrix
T ∈ RN×N it holds that λIN+αT

j = 1+αλT
j for all j ∈ {0, . . . , N − 1} (see [39]),

the relations between the j-th eigenvalue of matrices in (1) are the following:

(15) λL
j = d− λA

j = d(1− λR
j ) = dλL

j .

Now, the j-th eigenvalue of the adjacency matrix A can be computed resorting
to (2) in Thm. 2.1 and Def. 2.2 as follows:

λA
j =

N−1∑
k=0

wk+1e
−2ijkθ =

m∑
k=1

e−2ijkθ +
N−1∑

k=N−m

e−2ijkθ

=
m∑
k=1

e−2ijkθ +
m∑
k=1

e2ijkθ =

(
m∑

k=−m

eik(2θj)

)
− 1

= 2(Dm(2θj)− 1/2), ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.(16)

Therefore, substituting (16) in (15) and leveraging Prop. 3.1 and Thm. 2.2,
relation (14) can be found. In particular, λL

N−j = λL
j holds ∀j ∈ {1, . . . , n} since

Dm(x) is 2π-periodic and even (see Thm. 2.2).

Lastly, regarding the rest of the statement, authors in [40] have already
shown that matrix R has eigenvalues belonging to the interval [−1, 1], where
λR
0 = 1 and, possibly, λR

j⋆ = −1 for some j⋆ ∈ {1, . . . , n} are both associated
to a single eigenvector. Also, leveraging the connectivity of Cm

N shown in Prop.
3.2, it holds that λL

0 = 0 and 0 < λL
j ≤ 2 for all j ∈ {1, . . . , N − 1} (see [29]).

Resorting to (15), one has

λL
j = 1−m−1(Dm(2θj)− 1/2), ∀N ≥ 4,∀m ∈ {1, . . . , n− 1}

and the thesis easily follows.
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The result provided by Theorem 3.1 contributes with equalities (14), yielding
an interesting interconnection between the Dirichlet kernel and the eigenvalues
of the graph Laplacian matrix L corresponding to a RRL. The analysis proceeds
by focusing on the extremal (maximum and minimum) eigenvalues belonging to
the restricted spectrum Λ0(L) = Λ(L) \ {λL

0 } ⊆ (0, 4m]. In the following lines,
some properties related to the Fiedler value ν(L) = minλ∈Λ0(L){λ} and the
spectral radius ρ(L) = maxλ∈Λ(L){λ} of a RRL Laplacian matrix are provided.

Theorem 3.2 (Algebraic connectivity of the RRLs). Let Cm
N be a RRL and L

be the corresponding Laplacian matrix with eigenvalues λL
j given by (14). Then

the algebraic connectivity of a RRL Cm
N is yielded by the Fiedler value ν(L) of

L, whose expression is

(17) ν(L) = λL
1 = λL

N−1, ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.

Moreover, one has ν(L) ∈ (0, 2m] and ν(L) = 2m if and only if 2m = N − 2.

Proof of Theorem 3.2. Exploiting the symmetry of Λ(L) discussed in Thm.
3.1, let us restrict w.l.o.g. this analysis to eigenvalues in Λ0(L) indexed by
j ∈ {1, . . . , n}. It can be noticed that relations (3) and (15) lead to

(18) λR
j = m−1(Dm(2θj)− 1/2), ∀N ≥ 4,∀m ∈ {1, . . . , n− 1},

which can be leveraged to prove that λL
1 < λL

j holds for all j ∈ {2, . . . , n} by
verifying the following chain of inequalities:

(19) λR
1 > λR

j ⇐⇒ Dm(2θ) > Dm(2θj) ⇐⇒
s(2m+1)θ

sθ
>

s(2m+1)θj

sθj
.

Considering that sz = z
∏+∞

k=1(1−
z2

k2π2 ), ∀z ∈ C (see formula 4.3.89 in [41]), the
following inequality can be derived from the rightmost expression in (19):

(20)

+∞∏
k=1

k2N2 − (2m + 1)2

k2N2 − 1
>

+∞∏
k=1

k2N2 − (2m + 1)2j2

k2N2 − j2
.

For relation (20) to be satisfied, it is sufficient to prove that:
(i) the k-th factor on the l.h.s. is strictly positive for all k ∈ N \ {0},
(ii) the k-th factor on the l.h.s. is strictly greater than the k-th factor on the
r.h.s. for all k ∈ N \ {0}.
Property (i) is verified, since this requirement boils down to the identity 2m <
N − 1 ≤ kN − 1 for all k ∈ N \ {0}; while, property (ii) is also satisfied, as this
leads to the identities m > 0 and j > 1 for all k ∈ N \ {0}. Hence, relation (17)
is now proven.

To conclude, it is worth to show that λR
1 is nonnegative for any given Cm

N .
By (3) and (18) one has the relation

(21) λR
1 = m−1(Dm(2θ)− 1/2) ≥ 0 ⇐⇒ s(2m+1)θ ≥ sθ.
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Since θ ∈ (0, π/4] and m ≥ 1, the last inequality in (21) holds true for any
admissible (N,m). Also, strict equality in (21) is satisfied for m = n − 1 and
even N . Therefore, λR

1 belongs to the interval [0, 1) and, by (15), one has
λL
1 ∈ (0, 2m] and λL

1 = 2m if and only if 2m = N − 2.

Theorem 3.3 (Spectral radius properties of RRLs). Let Cm
N be a RRL and

L be the corresponding Laplacian matrix with eigenvalues λL
j given by (14).

Also, let j⋆ be an index for which the spectral radius of L can be expressed as
ρ(L) = λL

j⋆ = λL
N−j⋆. Then the following properties are satisfied for all N ≥ 4.

1. For all m ∈ {1, . . . , n− 1} index j⋆ is yielded by3

(22) j⋆ = argmin
j∈{2,...,n}

{Dm(2θj)} ∈ {2, . . . , n}.

In particular, the below partial characterization for j⋆ can be given.

(a) If m = 1 then j⋆ = n.

(b) Let b2 = arccos(−1/4)/(2θ). If m = 2 then j⋆ ∈ {⌊b2⌋, ⌈b2⌉}.
(c) Let b3 = arccos

(
(
√
7− 1)/6

)
/(2θ).

If m = 3 then j⋆ ∈ {⌊b3⌋, ⌈b3⌉}.
(d) Let b−4 = arccos

(
(6cos((4 arctan(1/

√
5)− π)/3)− 1)/8

)
/(2θ) and b+4 =

arccos
(
(−6cos(4 arctan(1/

√
5)/3)− 1)/8

)
/(2θ), where b−4 < b+4 . If

m = 4 then j⋆ ∈ {⌊b−4 ⌋, ⌈b
−
4 ⌉, ⌊b

+
4 ⌋, ⌈b

+
4 ⌉}.

(e) Let us assign

b5,1 =
√√

11− 5 cos((arctan(
√
55/11) + π)/3),

b5,2 =
√√

11− 5 cos((arctan(
√
55/11)− π)/3),

b5,3 =
√√

11 + 5 cos(arctan(
√
55/11)/3),

b−5 = arccos((
4
√
11(b5,1 + b5,2 + b5,3)− 1)/10)/(2θ) and

b+5 = arccos((
4
√
11(b5,1 − b5,2 − b5,3)− 1)/10)/(2θ), where b−5 < b+5 . If

m = 5 then j⋆ ∈ {⌊b−5 ⌋, ⌈b
−
5 ⌉, ⌊b

+
5 ⌋, ⌈b

+
5 ⌉}.

(f) If m = n− 1 then j⋆ = 2.

2. For all m ∈ {1, . . . , n−1} it holds that ρ(L) ∈ (2m+1, 4m], with ρ(L) = 4m
if and only if N is even and m = 1.

3. For all m ∈ {1, . . . , n− 1} there exists j ∈ {2, . . . , n} such that j ≤ j⋆ ≤ n
is satisfied. Moreover, the expression of j is given by

(23) j = 1 + ⌊N/(2m+ 1)⌋.

3. If there exist multiple distinct values j1, j2, . . . of j minimizing (22) then j⋆ =
min{j1, j2, . . .} is assumed to be the principal minimizer.
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Proof of Theorem 3.3. Let us restrict w.l.o.g. the analysis to j ∈ {1, . . . , n}
by exploiting the symmetry shown in Thm. 3.1. Each property of the statement
is proven in the sequel.

1 Expression (22) holds as it is equivalent to

(24) j⋆ = argmax
j∈{2,...,n}

{λL
j } = argmax

j∈{2,...,n}
{1 + 2 (m−Dm(2θj))},

as it directly descends from (14). Remarkably, in (24), j = 0 and j = 1 are
excluded, as λL

0 = 0 and λL
1 = ν(L) are proven to be the smallest eigenvalues of

L (see Thm. 3.1 and Thm. 3.2).
1a. Setting m = 1, equality λL

j = 4s2θj follows by resorting to the triple angle

identity s3z = 3sz − 4s3z, ∀z ∈ C. Hence, for m = 1, the j-th eigenvalue λL
j is

trivially maximized by selecting j⋆ = ⌊N/2⌋ = n. Also, note that if N is even
then ρ(L) = 4s2θn = 4 holds in accordance to property 2.

1b. Form = 2, the global minimum of the Dirichlet kernelDm(x) is obtained
for x = x1 = arccos(−1/4) by solving the trigonometric first-degree equation
descending from D′

m(x) = 0, where D′
m(x) = −

∑m
k=1 k sin(kx) is the derivative

w.r.t. x of Dm(x) (see (4)), and verifying that 2π/5 = x⋆1 < x1 < x⋆2 = 4π/5.
Imposing 2θj ≈ x1 leads to the thesis.

1c. For m = 3, the global minimum of the Dirichlet kernel Dm(x) is obtained
for x = x1 = arccos

(
(
√
7− 1)/6

)
by solving the trigonometric second-degree

equation descending from D′
m(x) = 0 and verifying that 2π/7 = x⋆1 < x1 <

x⋆2 = 4π/7. Imposing 2θj ≈ x1 leads to the thesis. However, differently from
the previous point, an additional check is here needed. In particular, because of
the presence of a second local minimum4 x2 = π with ordinate Dm(x2) = −1/2,
it is sufficient to show that j⋆3 ∈ {⌊b3⌋, ⌈b3⌉} satisfies Dm(2θj⋆3) ≤ −1/2 in
order. In this direction, one can find all the values of x ∈ (0, π] such that
Dm(x) = −1/2. These solutions are yielded by x̃1 = π/3, x̃2 = π/2 and,
obviously, x̃3 = x2 = π. To conclude the proof, it is sufficient to demonstrate
that x̃2 − x̃1 ≥ 2θ. This inequality is however verified only if N ≥ 12. Checking
all the instances characterized by 4 ≤ N ≤ 11 and m = 3, one has j⋆ ̸= n for
N ̸= 8 and j⋆ = j⋆2 = 2 or j⋆ = 4, for N = 8. Thus, the thesis follows.

1d. This statement is obtained by solving the trigonometric third-degree
equation descending from D′

m(x) = 0, similarly to what shown in point 1b.
1e. This statement is obtained by solving the trigonometric fourth-degree

equation descending from D′
m(x) = 0, similarly to what shown in point 1c.

1f. It can be easily shown that, for all j ∈ {1, . . . , n}, one has Dn−1(2θj) =
(−1)j+1/2, if N is even Dn−1(2θj) = (−1)j+1cθj , if N is odd. Therefore, j = 2
minimizes Dn−1(2θj).

2. By (22), the maximum value for λL
j is attained when Dm(2θj) is min-

imized in j. So, let us consider Dm(2θy), with y ∈ R. According to Thm.
2.2, the zeros of Dm(2θy) can be expressed as y⋆k = kN/(2m + 1) for all

4. This is actually attained for j = n when N is even, as 2θj = x2 holds for j = N/2.
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k ∈ {1, . . . , 2m}. Remarkably, each consecutive interval (y⋆k, y
⋆
k+1) has uniform

length N/(2m + 1) > 1. Since the Dirichlet kernel is negative over intervals
(y⋆k, y

⋆
k+1) with odd k and y⋆k+1 − y⋆k > 1, there exists an integer j⋆ for which

Dm(2θj⋆) is negative. As a consequence, it holds that (1 + 2m − λL
j⋆)/2 =

Dm(2θj⋆) < 0, implying that λL
j > 2m+ 1. Moreover, ρ(L) = 2d = 4m holds if

and only if Cm
N is bipartite [42], namely when N is even and m = 1, as shown

in Cor. 3.2.
3. Since ρ(L) > 2m+ 1 follows from Dm(2j⋆θ) < 0, a lower bound j for j⋆

can be computed by solving Dm(2θj) < 0 for j ∈ {2, . . . , n}. Via (3), this leads
to the following system of inequalities

(25)

{
j < 2ℓN/(2m+ 1),

j > (2ℓ− 1)N/(2m+ 1),

where ℓ ∈ Z. Clearly, the first inequality in (25) requires that ℓ ≥ 1, as j is a
positive index. Therefore, to find j, it is imposed ℓ = 1. Consequently, since
1 < N/(2m+ 1) < n holds true for any admissible values of (N,m), the second
inequality in (25) evaluated at ℓ = 1 provides the lower bound (23).

Remark 3.3. It is worth to note that index j⋆ can be easily computed in closed-
form solutions through D′

m(x) = −
∑m

k=1 k sin(kx) = 0 for m ∈ {1, 2, 3, 4, 5, n−
1}. However, for m such that 6 ≤ m ≤ n − 2 this kind of expressions cannot
be obtained in such a way, since D′

m(x) = 0 leads to trigonometric equations
having degree five or higher.

3.2.1 Essential spectral radius analysis

According to [43], the essential spectral radius of a row-stochastic5 Randić ma-
trix R can be defined as

(26) σ(R) = max
λ∈Λ0(R)

{|λ|},

where λR
0 = 1 holds and Λ0(R) = Λ(R) \ {λR

0 } is assigned. Remarkably, the
essential spectral radius of a Randić matrix R associated to a RRL Cm

N complies
with definition in (26) for all admissible (N,m), since R = d−1A is a row-
stochastic matrix with eigenvalues |λR

j | ≤ 1, ∀j ∈ {0, . . . , N − 1}, and λR
0 = 1.

A study on σ(R) for each Cm
N is thus reported by starting from the next lemma.

Lemma 3.1. Let R be the Randić matrix of a RRL Cm
N and θ = π/N ∈ (0, π/4].

There exists a real number m⋆ ∈ (0, n) such that if m ≥ m⋆ then λR
1 + λR

2 ≤ 0,
with the equality holding if and only if m = m⋆. Moreover, the value of m⋆ is
yielded by

(27) m⋆ = θ−1 arcsin
(√

x⋆
)
,

5. The matrix T = (th,k) ∈ RN×N is said row-stochastic if all its entries th,k belong to interval
[0, 1] for all h, k = 1, . . . , N and ∥rowh(T)∥1 = 1 for all h = 1, . . . , N .
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where x⋆ is the unique solution belonging to (0, 1) of the cubic equation

(28) pθ(x) = x3 + a2x
2 + a1x+ a0 = 0,

in which a2 = −(c2θ + 5)/2, a1 = (4c22θ + 7c2θ + 13)/8, a0 = −(3c2θ + 1)2/16.

Proof of Lemma 3.1. From (18), the eigenvalues of the Randić matrix R can
be rewritten using the prosthaphaeresis formula for the difference of two sines
as

(29) λR
j =


sin(mθj)cos((m+ 1)θj)

msin(θj)
, if j ∈ {1, . . . , N − 1},

1, if j = 0.

Thus, inequality λR
1 + λR

2 ≤ 0 can be written as follows by means of the triple
angle identities c3z = 4c3z − 3cz, s3z = 3sz − 4s3z, ∀z ∈ C, the Werner’s formula
for the product of two cosines and the basic trigonometric rules:

(30) (1− c22θ)(5− 4s2mθ)
2s2mθ ≥ (1− s2mθ)(4c2θ(1− s2mθ) + 1− c2θ)

2.

Now, assigning x = s2mθ ∈ (0, 1), inequality (30) can be solved in m by
resorting to equation (28) and determining the solutions of pθ(x) ≥ 0. The
application of the Routh-Hurwitz criterion to pθ(x), as illustrated in Table 2,
ensures that there exists a solution x⋆ of pθ(x) having a strictly positive real
part for any value of θ, since each pair of subsequent terms in the second column
exhibits an alternating sign.

x3 1 (4c22θ + 7c2θ + 13)/8
x2 −(c2θ + 5)/2 −(3c2θ + 1)2/16

x1 (2c32θ + 9c22θ + 21c2θ + 32)/(4(c2θ + 5)) 0

x0 −(3c2θ + 1)2/16 0

Table 2: Routh array for polynomial pθ(x).

Analogously, in order to show that x⋆ has real part smaller than 1 for all
θ, the Routh-Hurwitz criterion can be also applied to −pθ(y), setting y = 1 −
x. This leads to the analysis reported in Table 3: the fact that each pair
of subsequent terms in the second column exhibits an alternating sign finally
ensures that x⋆ ∈ (0, 1), provided that x⋆ ∈ R.

y3 1 (4c22θ − c2θ − 3)/8
y2 −(1− c2θ)/2 −(1− c22θ)/16

y1 (2c22θ − c2θ − 2)/4 0

y0 −(1− c22θ)/16 0

Table 3: Routh array for polynomial −pθ(y).
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According to method 3.8.2 in [41], equation (28) can be solved by setting

(31) qθ = a1/3− a22/9, rθ = (a1a2 − 3a0)/6− a32/27,

through the computation and observation of the discriminant

(32) ∆θ = q3θ + r2θ =
7 (1− c2θ)

(
1− c22θ

)
(c2θ + 13/14)

1728

(
c2θ −

1

2

)2

≥ 0.

Expression in (32) is strictly positive if and only if factor (c2θ − 1/2)2 is grater
than zero: this occurs for values of c2θ ̸= 1/2, i.e. for N ̸= 6. In this case, the
presence of only one real solution is guaranteed and it is yielded via (31), (32)
by

(33) x⋆ = −a2
3

+
3

√
rθ +

√
∆θ +

3

√
rθ −

√
∆θ.

Otherwise, for N = 6, the discriminant ∆θ vanishes and the solutions for (28)
are given by {1/4, 5/4, 5/4}. In fact, for N = 6, expression (33) boils down to
x⋆ = 1/4 ∈ (0, 1).

Finally, the thesis in (27) is proven by inverting relation x⋆ = s2m⋆θ.

In conclusion, some theoretical results on the essential spectral radius of R
for RRLs are stated in the next theorem.

Theorem 3.4 (Essential spectral radius properties of RRLs). Let Cm
N be a RRL

and R the corresponding Randić matrix with eigenvalues λR
j given by (18). Also,

according to Thm. 3.3, let j⋆ ∈ {2, . . . , n} be computed as in (22). Then, for
the essential spectral radius σ(R), the following properties are satisfied for all
N ≥ 4.

1. For all m ∈ {1, . . . , n − 1}, it holds that σ(R) = max{λR
1 ,−λR

j⋆} or,

equivalently, σ(R) = max{λR
N−1,−λR

N−j⋆}, with σ(R) ∈ ((2m)−1, 1] ⊆
(1/2, 1]. In particular, it holds σ(R) = |λR

γ | = |λR
N−γ |, with γ such that

(34) γ = argmin
j∈{1,...,n}

{∣∣∣∣Dm(2θj)− 1

2

∣∣∣∣} ∈ {1, j⋆}.

2. If m = 1 then σ(R) = −λR
n = −λR

N−n.

3. It holds that σ(R) = 1 if and only if N is even and m = 1.

4. If m ≥ m⋆, with m⋆ defined as in Lem. 3.1, then it holds that σ(R) =
−λR

j⋆ = −λR
N−j⋆ ≤ −λR

2 = −λR
N−2.

5. If m = n− 1 then σ(R) = −λR
2 = −λR

N−2.
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Proof of Theorem 3.4. By the symmetry of the Dirichlet kernel, eigenvalues
of R in (18) also exhibit the property λR

j = λR
N−j , for all j ∈ {1, . . . , n}. At

the light of this observation, the following analysis is restricted to indexes j ∈
{1, . . . , n}.

1. Exploiting relation (15) and the fact that λL
1 ≤ 2m (see Thm. 3.2) and

λL
j⋆ > 2m+1 (see Thm. 3.3), it follows that λR

1 ≥ 0 and λR
j⋆ < −(2m)−1 ≤ −1/2

are the largest eigenvalues of R in absolute value. In particular, (34) is directly
derived from (18) applied to (26).

2. Applying (29) withm = 1, it holds that λR
j = c2θj . IfN is even then j = n

is trivially selected to provide the essential spectral radius σ(R) = −λR
n = 1.

Otherwise, for odd N , j = 1 or j = n can be both selected, since σ(R) = λR
1 =

c2θ or, equivalently, σ(R) = −λR
n = −c2θn = c2θ.

3. In the previous point it is already shown that σ(R) = 1 if m = 1 and N is
even. To prove that σ(R) = 1 also implies that m = 1 and N is even, property
2 of Thm. 3.3 is invoked. Indeed, recall that ρ(L) = 4m holds if and only if
Cm
N is bipartite, namely it has even N and m = 1. Relation (15) is then used

to conclude.
4. Lem. 3.1 shows that if m ≥ m⋆ then λR

1 + λR
2 ≤ 0. Since, in general, it

holds that λR
1 ≥ 0, then, if m ≥ m⋆, one has λR

2 ≤ −λR
1 ≤ 0. In particular, if

m > m⋆ then |λR
2 | > λR

1 holds. Therefore, j = 1 cannot be a valid index for
an eigenvalue λR

j selected to compute σ(R) in this case. As a consequence, if

m ≥ m⋆ then σ(R) = −λR
j⋆ ≤ −λR

2 .

5. Again, for all j ∈ {1, . . . , n}, one has Dn−1(2θj) = (−1)j+1/2, if N is
even; Dn−1(2θj) = (−1)j+1cθj , if N is odd. Thus, to prove this statement, it is
just required to check that −λR

2 > λR
1 holds true for all odd N ≥ 5. The latter

inequality leads to an identity. Hence, λR
2 is the eigenvalue that satisfies (26) if

m = n− 1.

4. Further discussions and numerical examples

This section reports a discussion on a couple of conjectures about the spec-
tral radius ρ(L) of the Laplacian matrix L and on the essential spectral radius
σ(R) of the Randić matrix R associated to a RRL Cm

N . Meaningful numerical
examples are also brought as evidence for these ideas.

4.1 Conjecture on a potential upper bound for j⋆

Let us consider the statement of Thm. 3.3. Finding analytically an upper
bound j for j⋆, similarly to what done in (23), may not be trivial. Nonetheless,
an interesting conjecture on this particular bound is here given.

Conjecture 1 (An upper bound for j⋆). Under the same assumptions of Thm.
3.3, there exists j ∈ {2, . . . , n} such that j⋆ ≤ j and its expression is yielded by

(35) j = ⌈3N/(4m+ 2)− 1/2⌉, ∀N ≥ 4, ∀m ∈ {1, . . . , n− 1}.
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Remark 4.1. Considering j and j computed respectively as in (23) and (35),
the following properties holding for N ≥ 4 can be easily proven to support the
fact that j may represent a good candidate upper bound for j⋆.

1. If m ≥ m̃, where

(36) m̃ = 3N/10− 1/2,

then one has j = 2.

2. One has j = n if and only if m = 1. This also implies that for m = 1
expression in (35) is, in fact, a valid upper bound for j⋆. Moreover, if
m ≥ 2 then j < 2N/(2m+ 1) = x⋆2/(2θ) < n (see Thm. 2.2)

3. If m = 2 (and N ≥ 6) then j is, in fact, a valid upper bound for j⋆, since
j = ⌈(3N − 5)/2⌉ ≤ 2N/5 = x⋆m/(2θ) (see Thm. 2.2).

4. One has 2 ≤ j ≤ j ≤ n, in which j = j holds if and only if at least one of
the following three cases is verified: (i) 3N/14 − 1/2 ≤ m ≤ N/4 − 1/2;
(ii) m ≥ m̃; (iii) N mod (2m+ 1) = 0 and m ≥ N/6− 1/2.

The upper bound in (35) is figured out after the attempt to minimize
Dm(2θj) w.r.t. j. Observing that sθj is strictly increasing for j ∈ {1, . . . , n},
relation (35) is derived by choosing the smallest j ∈ {2, . . . , n} such that |(2m+
1)θj − (3π/2 + 2ℓπ)|, ℓ ∈ Z, be minimum and, to make treatable the latter
expression, ℓ = 0 is forced. The aim of this careful selection is twofold: on one
hand, we want to obtain a small positive value for the denominator of Dm(2θj)
and, on the other hand, a large (in modulus) negative value for the numerator
of Dm(2θj), see (3). However, in general, there may exist values of j > j that
render the numerator of Dm(2θj) even more negative! This consideration is
crucial. Indeed, the reasoning shown for the derivation of formula (36) in [21]
can be trivially disproved taking for instance (N,m) = (67, 2), for which it holds
that j⋆ = 19 (there, j⋆ = 20 is wrongly claimed).
Nevertheless, one has j ≥ ⌈υN/(π(2m + 1))⌉ ≈ ⌈x1/(2θ)⌉, as 3/2 > υ/π (see
Thm. 2.2). Also, expression (35) has been tested in simulation for all N such
that 4 ≤ N ≤ 10000 and any relative admissible value of m. Remarkably, no
counterexample has been found in any of the tested instances. Hence, this fact
suggests that j in (35) might represent a suitable upper bound for j⋆.

The following remark illustrates the potential implications of Conj. 1.

Remark 4.2. Let m⋆ and m̃ be defined as in (27) and (36), respectively. If
Conj. (1) verifies then one would have these further implications.

1. ρ(L) = λL
n = λL

N−n holds for all N ≥ 4 if and only if m = 1. Thus,
property 1a in Thm. 3.3 would be reinforced.

2. With reference to the essential spectral radius σ(R), one has, ∀N ≥ 4,
σ(R) = −λR

n = −λR
N−n if and only if m = 1. Thus, property 2 in Thm.

3.4 would be reinforced.
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3. If m ≥ m̃ then ρ(L) = λL
2 = λL

N−2 holds for all N ≥ 4.

4. Considering again σ(R), if m ≥ max{m⋆, m̃} then it holds that σ(R) =
−λR

2 = −λR
N−2 for all N ≥ 4. Thus, property 4 in Thm. 3.4 would be

reinforced.

5. The search space of minimization in 1c and 1d of Thm. 3.3 would be
reduced into j ∈ {⌊b−4 ⌋, ⌈b

−
4 ⌉} and j ∈ {⌊b−5 ⌋, ⌈b

−
5 ⌉}, respectively.

6. The spectral radius ρ(L) could be computed efficiently through binary
search algorithm, as it can be shown that Dm(2θy) restricted to y ∈
[j, j] has one global minimum given by y = x1/(2θ) ≈ υN/(π(2m + 1))
(see Thm. 2.2). Consequently, the computation of σ(R) = max{1 −
ν(L)/(2m),−1 + ρ(L)/(2m)} would also result more efficient.

7. A direct estimate ĵ⋆ ∈ [j, j] for j⋆ could be provided by averaging j and

j through convex combinations. For instance, given α ∈ [0, 1], one can
choose6

(37) ĵ⋆ =



n, if m = 1,

⌈b−2 − 1/2⌉, if m = 2,

⌈b−3 − 1/2⌉, if m = 3,

⌈b−4 − 1/2⌉, if m = 4,

⌈b−5 − 1/2⌉, if m = 5,

2, if m = n− 1,

⌊αj + (1− α)j + 1/2⌋, otherwise.

4.2 Numerical examples for 4 ≤ N ≤ 11

A few observations made on the pattern of values taken by σ(R) are here pro-
vided. In this direction, examples in Fig. 2 grant to cover some of the most
important aspects of this research, depicting a graphical representation of the
spectrum Λ(R). Specifically, each diagram in Fig. 2 shows how the eigenvalues
λR
j spread over the interval [−1, 1], as the order m changes for a fixed size N ,

with 4 ≤ N ≤ 11. Plots 2(a)-2(h) also illustrate in blue all indexes j = 0, . . . , n
for relation (18), thresholds m⋆ and m̃ (see point 4 in Rmk. 4.2) with a yellow
and a green line respectively, and the eigenvalue λR

γ with a red dot (where γ is
defined as in (34)).

With regard to Fig. 2, it is possible to observe the following facts descending
from all the previous statements presented in Sec. 3.

6. For all N and m such that 4 ≤ N ≤ 2000 and 1 ≤ m < n, coefficient α = 0.1313 seems a
good value to reduce the estimation error |j⋆ − ĵ⋆|, with ĵ⋆ computed as in (37).
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(a) N = 4 (b) N = 5

(c) N = 6 (d) N = 7

(e) N = 8 (f) N = 9

(g) N = 10 (h) N = 11

Figure 2: General eigenvalue distribution of the Randić matrix spectrum Λ(R)
for the RRLs Cm

N withN = 4, . . . , 11 andm = 1, . . . , n−1 = ⌊N/2⌋−1.
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� λR
j ∈ [−1, 1] holds ∀j ∈ {0, . . . , n}, with −1 and 1 simple eigenvalues.

� λR
1 = λR

N−1 > λR
j holds for all j ∈ {2, . . . , n}.

� For m = 1, one has λR
γ with γ = n and if N is even then λR

γ = −1.

� If m ≥ m⋆ then λR
j⋆ = λR

2 = λR
N−2 and if m ≥ max{m⋆, m̃} then λR

γ =

λR
2 = λR

N−2, thus supporting property 4 in Rmk. 4.2.

To provide further evidences to the speculations made in Rmk. 4.2, some
peculiarities and patterns can be also found for the following values of N .

� For N = 5 one has m̃ = 1 and, consequently, property 3 in Rmk. 4.2 holds
tightly.

� For N = 6 one has m⋆ = 1. Hence, if m = 2 > m⋆, the information about
m̃ becomes necessary in order to satisfy property 4 in Rmk. 4.2.

� For N = 10 and m = 2 one has σ(R) =
√
5/4 = λR

1 = λR
9 = −λR

3 = −λR
7 ,

i.e. γ takes both the values in {1, n}. Moreover, in this case, it holds that
m⋆ ≈ 2.5330 > 2.5 = m̃, conversely to the previous cases with N = 5 and
N = 6.

To sum up, each debated example in Fig. 2 gravitates, to some extent,
around the key relation in (18), describing the spectrum Λ(R) of the Randić
matrix. It is important to recall that this investigation completely leverages the
fundamental idea of studying the spectral properties of RRLs via the Dirichlet
kernel redefined as in (3). Further clues are also given to support claims in Ssec.
4.1.

4.3 Conjecture on the values taken by σ(R)

All the previous discussions suggest few clues about the possibility of computing
exactly σ(R) by understanding the behavior of index γ defined in (34). The
exact knowledge of the essential spectral radius of R is also motivated by various
research areas, such as the convergence analysis of Page Rank and random walk
processes [44].

Remarkably, from the numerical examples given in Ssec. 4.2, it is possible
to observe the following facts. Graph C2

9 in Fig. 2(f) is the unique example
leading to γ = 3 only (if m ≥ 2), as σ(R) = −λR

3 = −1/2 > λR
1 ≈ 0.4698.

Graph C2
10 in Fig. 2(g) is the unique example leading to both γ = 1 and γ = 3,

as σ(R) = λR
1 = −λR

3 =
√
5/4. In each diagram of Fig. 2 it holds that γ = n, if

and only if m = 1, or γ = 2, if and only if m ≥ max{m⋆, m̃}. In the remaining
cases, it holds that γ = 1. Therefore, the following conjecture is drawn after
having run some numerical tests7.

7. These are performed for all N and m such that 4 ≤ N ≤ 10000 and 1 ≤ m < n.
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Conjecture 2 (Characterization of the essential spectral radius index γ). Let
m⋆ and m̃ be defined as in (27) and (36), respectively. For all N ≥ 4, the
essential spectral radius σ(R) = |λR

γ | = |λR
N−γ | associated to the Randić matrix

R of a RRL Cm
N can be computed through index

(38) γ =


n, if N ≥ 8 and m = 1,

3, if N = 6, 7 and m = 1 or if N = 9, 10 and m = 2,

2, if N ≥ 4 and m ≥ min{n− 1,max{m⋆, m̃}},
1, otherwise.

Furthermore, a complete characterization of γ is given by taking into account
(38) along with the fact that γ = 1 also holds in the following four cases: (i) for
all odd N ≥ 5 and m = 1; (ii) for all N ≥ 4 and m = max{m⋆, m̃}; (iii) for
N = 10 and m = 2; (iv) for all even N ≥ 4 and m = n− 1.

5. Conclusions and future directions

In this work, a peculiar class of circulant graphs, referred to as regular ring
lattices, is described highlighting the relationship between the spectrum of their
characteristic matrices and the well-known Dirichlet kernel. Several properties
related to the eigenvalues are described extensively, with a particular focus on
the Fiedler value, the spectral radius of the Laplacian and the essential spectral
radius of the Randić matrix associated to these graphs. Part of the proven
results is also discussed in details with auxiliary diagrams depicting the related
spectral distributions. Finally, the debated conjectures on the computation of
the aforementioned spectral quantities represent an open problem to be solved in
order to improve the latest analysis techniques for networked dynamic systems.
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[28] L. Briñón Arranz, L. Schenato, Consensus-based source-seeking with a cir-
cular formation of agents, in: 2013 European Control Conference (ECC),
2013, 2831–2836.

[29] F. R. Chung, F. C. Graham, Spectral graph theory, in: Conference Board
of the Mathematical Sciences Regional Conference Series in Mathematics,
no. 92, American Mathematical Society, Providence, RI, US, 1997.

[30] X.-D. Zhang, The Laplacian eigenvalues of graphs: a survey, arXiv e-prints
(2011) arXiv:1111.2897arXiv:1111.2897.
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