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Abstract. We develop a new strategy for proving optimal packing densities for N
congruent circles in a circle. Specifically, we introduce tight partitions, which generalize
filled rings of circles, and show that for the densest packing, the union of tight partitions
forms a connected graph containing the center of every circle, except for possibly rattlers
on the container boundary. We then apply this to the case of N = 14 to reduce the
list of potentially optimal solutions to one basic shape, which in turn admits a one-
parameter family of configurations with two local extrema, one of which is the global
optimal.
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1. Introduction

Circle packing problems with various containers and radii arise in applications
to factory layouts [2, 5], communications networks [1, 3, 8], circular cutting [16],
cylinder packing [6], container loading [13], and social distancing [24], but in
general are considered to be NP-hard [4, 7]. For packing N congruent circles
of unit radius in a circle, minimum container radii (or equivalently maximum
densities) have been proved only for N ≤ 14 and N = 19 [9, 10, 11, 12, 19, 21].
For general N , only heuristic methods have been proposed to find approximate
solutions [15, 17, 20]; the best known solutions up to N = 2647 can be found at
[23]. Our goal in the current paper is to provide a new strategy for proving opti-
mal density which we hypothesize can be systematically applied to increasing N .
We demonstrate the utility of this new approach by providing an independent
proof for the case of N = 14.

Specifically, we geometrically reduce the number of basic configurations for
circles using a new tool that we refer to as tight partitions, which generalize
filled rings of circles, and which characterize global ring structure that must ex-
ist for potentially optimal configurations. For the case of N = 14, we use tight
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partitions to geometrically reduce the problem to one basic shape. This basic
shape admits a one-parameter family of geometric configurations that have as
endpoints a symmetric arrangement and an extreme one, where no further de-
formation of the basic shape is possible. We then show that the container radius
is monotone decreasing from the symmetric arrangement to the extreme one,
which therefore yields the optimal solution. With a similar analysis, we believe
it is possible to establish that for any N , and for any given feasible configuration,
the distinct local minima occur either in a symmetric or extreme arrangement. A
proof of such a conjecture, along with the identification of a finite configuration
list using tight partitions, will lead to a tractable combinatorial optimization
problem for increasing N .

The outline of the paper is as follows. In Section 2 we define tight parti-
tions, and prove Theorem 2.1 that the union of tight partitions forms a con-
nected graph containing the center of every circle, except for possibly outermost
rattlers. In Section 3 we apply this to N = 14, determining the basic shape
of the optimal solution in Theorem 3.1. In Section 4 we then state and prove
Theorem 4.1 which establishes the densest packing.

2. Partitions and tight partitions

Consider a packing of circles C1, . . . , CN of unit radius into a circular container
of radius r centered at O. As introduced in [8], there is a set of rings, R1, . . . , Rn,
that are concentric circles with center O and corresponding radii 0 ≤ r1 < . . . <
rn = r − 1, such that each circle Ci has its center on some ring Rj . A filled
ring is one for which consecutive circles along that ring are mutually tangent,
so there are no gaps. Since filled rings cannot be assumed to be present, our
goal in this section is to provide a more general notion of well-defined layers
without gaps. The observations in this section are basic, yet will lead to useful
conceptual organization of subsequent sections.

We will refer to the complex of rings as R; we will assume in this section
that ri > 0, but observe at the outset that all results hold for N > 13 even if
r1 = 0, since in that case there are still at least two rings with ri > 0, which
will suffice for all proofs. Given two circles Ci, Cj ∈ R, there is a central angle
θCiCj formed by line segments joining the centers of Ci, Cj with O.

Definition 2.1 (Partition). A partition P is a piecewise linear simple closed
loop whose segments connect centers of circles in R, such that if there are m
segments, then the corresponding central angles θi have measures 0 < θi < π,
i ∈ {1, . . . ,m}, with

∑m
i=1 θi = 2π.

A partition is thus an edge-path which connects centers of circles, and pro-
ceeds strictly monotonically once around the center O of the ring complex. We
use the word partition because the central angles partition 2π. We will as-
sume our packing is optimal at minimum radius r, so that we may assume the
following three conditions:
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A. rn is the minimum outer radius for ring complexes R with N circles.
B. Given Condition A, every other radius ri for 1 ≤ i < n is maximized.
C. Given Conditions A and B, the total number of rings n is maximized.

That Condition A holds is obvious. Conditions B and C then guarantee that
with Condition A in place, no circle may be moved further outward from O;
in particular rattlers, which have local freedom of movement, are pushed as far
outward from O as possible. We prove three initial lemmas that show partitions
exist through every circle.

Lemma 2.1. Let Ri, Ri+1 be successive rings with respective circles Ci, Ci+1.
Then the centers of Ci, Ci+1 are not on the same radial ray extending from O.

Proof. Suppose, for contradiction, that Ci and Ci+1 have centers on a common
radial ray extending from O. Then Ci and Ci+1 must be tangent, with ri +2 =
ri+1, and in fact any point where circles of Ri and Ri+1 intersect must also be
a point of tangency on some radial line. Thus, all Rj for i + 1 ≤ j ≤ n can be
rotated simultaneously such that all circles of Ri are disjoint from all circles of
Ri+1, and we can increase ri, contradicting Condition B.

Lemma 2.2. There exists a partition P for R.

Proof. Let U be the convex hull of all centers of circles in R, and note that U
is not a line segment due to Lemma 2.1 and the fact that N > 2. We observe
that if O ∈ Int U we are done, for then Bd U is our desired partition P . If O
is not initially contained in Int U we will show that the circles in R admit a
perturbation within their circular container so that either O ∈ Int U , or rn can
be reduced, contradicting Condition A.

To that end, if O /∈ Int U , since U is convex there is a diameter ℓ of the
circular container for R that is disjoint from Int U , so that Int U is entirely
contained on one side of ℓ, as shown in part (a) of Figure 1. We call H the side
disjoint from Int U . We need to consider the cases when O is on Bd U , or when
O is disjoint from U altogether.

If O is on Bd U , it is possible that O is a vertex of Bd U , meaning a center
of a circle is at O. If so, since U is convex we can translate that vertex and
corresponding circle slightly into H so as to obtain O ∈ Int U . The other
possibility is that O lies on an edge of Bd U . Then both endpoints of that edge
are centers of circles that lie on ℓ on opposite sides of O, and we can rotate one
of those circles slightly into H, so as to obtain O ∈ Int U .

Finally, we consider the case where O is disjoint from U , as depicted in part
(a) of Figure 1. Then all circles in R admit a translation within the circular
container perpendicular to ℓ, eliminating all points of tangency between circles
in R and the container as in part (b) of Figure 1. Thus, the container radius,
and hence rn, can be reduced, contradicting Condition A.
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Figure 1: Figure for Lemma 2.2.

Lemma 2.3. If C ∈ R, there is a partition PC that contains the center of C.

Proof. Consider the radial ray extending from O through the center p of C.
Since we know there is at least one partition P , this ray must intersect P . If it
intersects a vertex of P at a center p1 of a circle C1, we can replace p1 with p
to obtain a new partition PC which has an edge-path now through p. If the ray
intersects an edge of P joining two centers p1 and p2 of circles C1 and C2, then
we can obtain a new partition PC which has an edge-path going from p1 to p
then to p2.

We now present our primary definition.

Definition 2.2 (Tight partition). A tight partition P for R is a partition where
all segments have length 2.

A tight partition is an edge-path which connects successive centers of tangent
circles strictly monotonically once around O, and generalizes filled rings. Note
that every packing R comes equipped with a tangency graph, where centers of
circles are vertices, and edges between two vertices indicate tangency between
those two circles. Therefore, a tight partition is a particular kind of loop in
the tangency graph which proceeds monotonically around O. We also note
that every optimal packing must have edges in its tangency graph, since if no
tangencies exist then all circles have freedom of movement, and we may reduce
rn.

Before proceeding to the existence of tight partitions, we need two defini-
tions. Consider two circles C,C ′ with radii rC , rC′ ; if C,C ′ are tangent, then
their central angle is θCC′ = cos−1

(
(r2C + r2C′ − 4)/(2rCrC′)

)
, which may be

acute, right or obtuse.

Definition 2.3 (Angular defect between C and C ′). The angular defect between
C and C ′ is defined as

δCC′ =

{
θCC′ − cos−1

(
(r2C + r2C′ − 4)/(2rCrC′)

)
, if |rC − rC′ | < 2,

θCC′ , otherwise.
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The angle δCC′ ≥ 0, since it is the angle needed to rotate C along its ring
until it is either tangent to C ′ (the first case) or along the same radial ray (the
second case).

Definition 2.4 (Angular defect for R). The angular defect for R is defined as

δ = min{ δCC′ | C,C ′ ∈ R and δCC′ > 0}.

We now can prove the existence of tight partitions.

Proposition 2.1. There exists a tight partition P for R.

Proof. Suppose for contradiction that there does not exist a tight partition. By
Lemma 2.2, let P be the non-empty set of all partitions for R. For each P ∈ P,
there is at least one edge e of length greater than 2, from circle C to C ′, with an
angular defect δe = δCC′ > 0. We know that δe ≥ δ > 0. Throughout the proof
we will be rotating circles along their rings, and we consider the counterclockwise
direction to be the forward direction of rotation around O.

We label the circles of R randomly as C1, . . . , CN . For any circle Ci, by
Lemma 2.1 any points of tangency with other circles will either occur before
Ci’s radial ray, or after. This will be seen in the tangency graph at the vertex
Ci as adjacent edges which extend backward in the counterclockwise direction
(which we term backward edges), or adjacent edges which extend forward (which
we term forward edges). Note that if Ci had a backward edge to Cj , that edge
acts as a forward edge for Cj .

With this in mind, we rotate circles forward along their rings in the following
manner: First, we rotate C1 by δ/2. If C1 has forward edges connecting it
to adjacent circles, its rotation will force those circles to rotate by δ/2, and
this rotation may propagate forward via connections in the tangency graph.
However, no new edges in the tangency graph, and hence no new tight partitions,
will be created in R, since δ/2 < δ. Moreover, any circles originally connected
by backward edges to C1 will stay fixed, since if they moved along with C1, this
would imply a monotonic loop around O in the tangency graph, and hence a
tight partition. Thus, all backward edges connected to C1 will be eliminated
from the tangency graph. The new angular defect is at least δ/2.

For i > 1 we then rotate each Ci forward, one at a time in orderly succes-
sion, by δ/2i, where prior to each rotation the angular defect is at least δ/2i−1.
As above, this may force other circles to rotate forward by connections in the
tangency graph, but no new edges in the tangency graph will be created since
δ/2i < δ/2i−1. Moreover, since no tight partitions exist, each Ci’s backward
edges will be eliminated. After the final rotation of CN , all edges in the tan-
gency graph are eliminated, and thus rn can be reduced, contradicting Condition
A. Therefore, tight partitions must exist.

We now show how tight partitions relate to the specific rings in R.
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Lemma 2.4. For each ring Ri, there exists at least one tight partition P which
contains centers of circles from Ri.

Proof. Suppose for contradiction that no tight partition contains circles from
Ri. We argue exactly as in Proposition 2.1, but now in the presence of existing
tight partitions. Specifically, when we rotate each Cj , if it is in an existing tight
partition, it will stay in that tight partition, since the whole partition will be
forced to move via forward edges in the tangency graph. However, no new tight
partitions will be created, and any backward edges not in a tight partition will
be eliminated. After the N rotations, all edges in the tangency graph that were
not originally in a tight partition will therefore be eliminated. As a result, since
no circle in Ri was in a tight partition, the circles in Ri will have no adjacent
edges in the tangency graph. If i = n, then rn can be reduced, contradicting
Condition A; if i < n then ri can be increased, contradicting Condition B.

Recalling that a tight partition is a particular loop in the tangency graph,
let T be the subgraph of the tangency graph obtained by letting T be the union
of all tight partitions.

Theorem 2.1. T forms a connected graph, and includes every circle in R except
possibly a proper subset of the circles in Rn, which are rattlers.

Proof. Suppose for contradiction that there are at least two distinct compo-
nents of T , which we call T1 and T2. We begin with some topological obser-
vations. First, because T1 and T2 are each connected unions of loops around
O, they are each contained in topological annuli which we call A1 and A2, re-
spectively, which are disjoint from O and which are separated by a topological
circle C in the plane. C also separates the plane into a topological disc and its
complement. Without loss of generality we may assume A1 is contained in the
disc, and A2 in its complement. Since A1 contains at least one tight partition
which is a closed loop around O, the center O must also be contained in the
disc. Therefore, C must be a topological circle containing O with T1 and its
annulus A1, with T2 and its annulus A2 enclosing all of these. A schematic
for this basic topological configuration is shown in Figure 2. Moreover, we can
assume that T2 is the outermost component of T from O, if there are more than
two components. Thus, of all the components of T , only T1 contains circles of
R1, and only T2 contains circles from Rn, for no other components of T can
intersect the annuli in Figure 2.

We now turn our attention to the entire tangency graph. T1 may be con-
nected by an edge in the tangency graph to another circle C /∈ T1, meaning
there is no tight partition in T1 that also contains C. The same holds true for
T2. As in Proposition 2.1 and Lemma 2.4 we use the angular defect to rotate all
circles in R, and observe that because T1 and T2 are connected unions of tight
partitions, they will remain connected after the rotation of all circles. However,
the edges in the tangency graph between each of them and other circles are
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Figure 2: Figure for Theorem 2.1.

eliminated. Therefore, T1 and T2 are now disjoint components of the overall
tangency graph, and any other circles are in components of the tangency graph
disjoint from the Ti. As a result, we can uniformly increase radii of all circles
in T1, including all circles of R1 and thus increasing r1, without moving any
circle in T2, and in particular not increasing rn. This increase in r1 contradicts
Condition B, so that T must be a connected graph.

Finally, to see that T contains every circle in R except perhaps isolated
rattlers in Rn, observe that the angular defect rotation ensures that any circles
not in T are disconnected vertices in the tangency graph. Any such circles that
are not in Rn can have their radii increased, contradicting either Conditions B
or C, depending on whether an entire ring can increase, or just a subset of a
ring. Thus, such disconnected circles must only be rattlers in Rn, and cannot
include all of Rn, for otherwise rn could be decreased.

We conclude with a useful corollary and definition.

Corollary 2.1. For the connected graph T there is an outermost tight partition
which contains every non-rattler circle in Rn, and an innermost tight partition
which contains every circle in R1.

Proof. Since T is the union of tight partitions, which are loops in the tangency
graph that proceed monotonically around O, there will be an innermost such
loop closest to O, which is the innermost tight partition. Observe that this
innermost tight partition bounds a disc containing O and no other vertex of
T . By Theorem 2.1, all circles in R1 are vertices of T , and hence must be in
this innermost tight partition. Likewise there will be an outermost loop farthest
from O, which is the outermost tight partition, and outside it can be no vertices
of T , so that by Theorem 2.1 it must contain every non-rattler circle of Rn. A
priori these two tight partitions may be identical if T consists of only one tight
partition, or they could possibly intersect along vertices or edges.
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Definition 2.5 (Pout, Pin, gap chains). Pout is the outermost tight partition
and Pin is the innermost tight partition. A gap chain C1, . . . , Ck is a maximal
sequence of consecutive circles in Pout from the inner rings R1, . . . , Rn−1.

3. The basic shape of the optimal packing for N = 14

Our new proof for N = 14 leverages the fact that all minimum container radii
for 1 ≤ N ≤ 13 are known. More specifically, the case of N = 13 is known
to have Rn a filled ring of 10 circles, yielding a radius of A = 3.23606798 [11],
and the best known packing for N = 14 has rn of B = 3.32842855, known since
1971 [14]. The inequality A ≤ rn ≤ B will be sufficient for us to hone in on the
basic shape for N = 14 in this section, via the subsections below. We denote
the number of circles in Rn by |Rn|.

3.1 7 ≤ |Rn| ≤ 10 and all circles in R1, . . . , Rn−1 touch Rn

We will assume that for minimum rn, the number |Rn| is maximized.

Lemma 3.1. If a gap occurs between two consecutive circles C1, C2 ∈ Rn, then
the central angle θC1C2 < 4π/10.

Proof. The radius A is for a filled ring of 10 circles, so that any one circle in
Rn has angular support at most 2π/10, for A ≤ rn ≤ B. If θC1C2 ≥ 4π/10,
there is enough angle in Rn for another circle; it remains to show that we can
move another circle into Rn, contradicting the maximized |Rn|. We first assume
both C1, C2 ∈ Pout; see part (a) of Figure 3, which shows C1, C2 connected by
a gap chain C3, . . . , Ck ∈ Pout, where it is possible k = 3. Let pi be the center
of Ci. The polygon formed by the line segment p1p2 and the portion of Pout

from p1 to p2 must be convex, for otherwise at least one of the circles C3, . . . , Ck

could move freely out to Rn. We thus can assume that p3 is closest to p1p2
compared to p4, . . . , pk, and as in part (a) of Figure 3 we can reflect C3 through
p1p4 without obstruction, and rotate the resulting circle along C1 to move it
out to Rn. We conclude the proof by observing that if C1 is a rattler, the only
change will be that the line segment p1p3 will have length greater than 2, but
this does not affect the ability to reflect and rotate C3 out to Rn.

…
.

(a) (b)

C1 p1 C2p2

C3

p3
C4

p4

O

O

C ′′

C

C ′

D
Z

Y

Figure 3: Figures for Lemmas 3.1, 3.4 and Proposition 3.1.
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This then allows us to begin to narrow down possibilities for |Rn|.

Lemma 3.2. 6 ≤ |Rn| ≤ 10, and the sum of |Rn| plus gaps in Rn is at least 11.

Proof. A filled ring of 11 circles easily fits 4 inside, and so |Rn| ≤ 10. If we
let j be the number of gaps in Rn then j ≤ |Rn|, and by Lemma 3.1 we require
that the angular support around Rn is

2π < j · 4π
10

+ (|Rn| − j) · 2π
10

= (|Rn|+ j) · 2π
10

yielding |Rn|+ j > 10. Since j ≤ |Rn| this forces |Rn| ≥ 6.

Denote by D the maximum value for rn−1, which occurs when a single circle
C3 between C1, C2 could be reflected out to rn = B as in Lemma 3.1. This is
when the angular gap is 2 sin−1(1/B) = cos−1

(
(B2 +D2 − 4)/(2BD)

)
which

yields D = 2.126660.
Let E be the distance from O for a circle that forms an equilateral triangle

with two tangent circles from Rn, when rn = B. Then E =
√
B2 − 1 −

√
3 =

1.442605, and we call any circle C with distance greater than E a gap circle,
since it forces a gap in Rn.

Lemma 3.3. |Rn| ≥ 7.

Proof. If |Rn| = 6, then the other 8 circles fit in a container of radius D+ 1 =
3.126660, but the minimum container radius for N = 8 is 3.304765 [21].

We now work toward showing that all circles in R1, . . . , Rn−1 touch Rn.

Lemma 3.4. There is at most one circle C ∈ R1, . . . , Rn−1 which does not
touch Rn, and the centers of all circles in R1, . . . , Rn−1 that touch Rn form a
convex partition P .

Proof. If C is disjoint from Rn, then C is prevented from moving out to Rn by
two circles C ′, C ′′ ∈ R1, . . . , Rn−1, so that the maximum distance for C from O
is if C ′′, C, C ′ have centers collinear with C ′, C ′′ at distance D from O; see part
(b) of Figure 3 setting Y = D. This yields a maximum distance of

√
D2 − 4 for

C which we call F = 0.722969. Since F < 1, there is at most one such C. It
also follows that the centers of all circles C ∈ R1, . . . , Rn−1 that touch Rn form
a convex partition, since if not, one of them would likewise be forced to include
O by a similar calculation.

We now conclude this subsection, but first observe that the central angle
between the centers of two circles in a ring Ri is at least 2 sin−1(1/ri), but
if they have a circle of at least radius Y between them, the angle is at least
2 cos−1

(
(r2i + Y 2 − 4)/(2riY )

)
. We denote the angular support of Pin as Θin,

and the angular support of Pout as Θout.

Proposition 3.1. All circles in R1, . . . , Rn−1 touch Rn.



124 DINESH B. EKANAYAKE and DOUGLAS J. LAFOUNTAIN

Proof. If a circle C does not touch Rn, we seek a contradiction through two
cases:

|Rn| = 7, 8: If |Rn| = 7, there are 7 circles not in Rn. Since the 6 that touch
Rn form a convex partiton, their total angular contribution is minimized when
their distances from O are maximized. Thus, the farthest C can be from O is
when these other 6 circles in R1, . . . , Rn−1 are at a maximal distance D from
O, and all 7 inner circles form Pin; this opens up the most room for C to
move a distance Z away from O. Then Θin must be 2π = 10 sin−1(1/D) +
2 cos−1

(
(D2 + Z2 − 4)/(2DZ)

)
which yields Z = .168539. Since this is the

maximum value for Z, the closest the remaining 6 circles in R1, . . . , Rn−1 can
be to O is Y = 2 − Z = 1.831461, which is greater than E, so they must be
gap circles. Since the minimum container radius for both N = 6, 7 is 3 [21], we
know two of these gap circles have distance from O of at least 2. Since Θout is
minimized when rn = B, it must be at least

2 sin−1(1/B) + 4 cos−1(B/4) + 8 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 7.312832 > 2π,

contradicting the fact that it must equal 2π. Thus, when |Rn| = 7, C must
touch Rn.

For |Rn| = 8, there are 6 circles not in Rn, so C can be further from O. Θin is
2π = 8 sin−1(1/D) + 2 cos−1

(
(D2 + Z2 − 4)/(2DZ)

)
which yields Z = .453080.

All 5 remaining circles in R1, . . . , Rn−1 have distance at least Y = 2 − Z =
1.546920 which is greater than E, so they are gap circles. Since the minimum
container radius for N = 5 is G = 1.701302 [21], Θout must be at least

6 sin−1(1/B) + 2 cos−1(B/4) + 2 cos−1

(
B2 +G2 − 4

2BG

)
+ 6 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.414042 > 2π,

contradicting the fact that it must equal 2π. This concludes the proof for |Rn| =
7, 8.

|Rn| = 9, 10: We use a different argument. In order for C not to touchRn, it must
be constrained by two circles C ′, C ′′ ∈ R1, . . . , Rn−1; we call Z, Y the distances
of C,C ′′ from O, respectively. For a given Z, Y is minimized when the centers
of C ′′, C, C ′ are collinear with C ′ at maximal distance D in part (b) of Figure 3.

For 0.130750 ≤ Z ≤ F , we have Y =

√
4 + Z2 − 4Z cos

(
π − cos−1(Z

2+4−D2

4Z )
)
,

which is minimized when Y = 1.873902 at the left endpoint of its domain. Thus,
Θout is at least

14 sin−1(1/B) + 4 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.499456 > 2π,
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for |Rn| = 9, contradicting the fact that it must equal 2π. Since the Θout

calculation for |Rn| = 10 adds a 2 sin−1(1/B), it too is greater than 2π and the
lemma is proved.

3.2 |Rn| = 10 and all circles in R1, . . . , Rn−1 form Pin

We now define P to be the convex partition of all circles in R1, . . . , Rn−1, which
follows from Lemma 3.4 and Proposition 3.1.

Lemma 3.5. If two circles C,C ′ ∈ P touch a circle C1 ∈ Rn, then |Rn| < 9.

Proof. Refer to part (a) of Figure 4, where we have C,C ′ ∈ P touching a
single circle C1 from Rn between them; the distances x, y from O are for C,C ′,
respectively. Observe that given x, then y is minimized when the centers of
the circles form an equilateral triangle. When rn = B, y is a function of x via
s = cos−1

(
(B2 + 4− x2)/(4B)

)
and y =

√
4 +B2 − 4B cos(π/3− s). Then for

|Rn| ≥ 9, we know Θout is at least

14 sin−1(1/B) + 2 cos−1

(
B2 + y2 − 4

2By

)
+ 2 cos−1

(
B2 + x2 − 4

2Bx

)
≥ 6.445686 > 2π

where the minimum is when x = D and y ≈ 1.665517 is minimized.

(a) (b)

C1

C ′

C

s

y

B x

O

O

C1

C2

C3

C ′

C ′′

t

Y Z

C

Figure 4: Figures for Lemmas 3.5 and 3.6.

If a sequence of circles C1, C2, . . . , Ck ∈ Rn proceeds from one gap circle to
the next, we will call this sequence in Rn an overpass of length k. Note that we
may assume that none of the Ci in an overpass are rattlers, since in maximizing
the gaps for the two gap circles the C1, . . . , Ck will rotate to form a path in the
tangency graph.

Lemma 3.6. Let C ∈ P be a non-gap circle which touches an overpass of Rn.
Then if |Rn| ≥ 9, the overpass is at least length 4.

Proof. If C touches an overpass of length 3, there are 3 circles C1, C2, C3 ∈ Rn

between two gap circles C ′, C ′′ ∈ P with distances Y,Z as in part (b) of Figure



126 DINESH B. EKANAYAKE and DOUGLAS J. LAFOUNTAIN

4. The angle t can vary between 0 ≤ t ≤ cos−1(1/B)−π/3, and given t then Y, Z
are minimized when there are no gaps between C ′, C, C ′′. Then when rn = B,

Y =
√
B2 + 4− 4B cos(π + t− 2 cos−1(1/B)),

Z =
√
B2 + 4− 4B cos(π − t− 2 cos−1(1/B)),

and we have that Θout is at least

14 sin−1(1/B) + 2 cos−1

(
B2 + Y 2 − 4

2BY

)
+ 2 cos−1

(
B2 + Z2 − 4

2BZ

)
≥ 6.650365 > 2π,

where the minimum value is achieved at t = .04502 when Y = D. We then
observe that for gaps between C ′, C, C ′′, or shorter overpasses, Θout will be even
greater, thus proving the lemma.

We can now prove the main results of this subsection.

Proposition 3.2. |Rn| = 10.

Proof. If |Rn| = 7, the inner convex partition P has 7 circles, whose minimum
container is a filled ring with radius 1 + 1/ sin(π/7) ≈ 3.304765 > D + 1.

If |Rn| = 8, suppose first that there is a non-gap circle C ∈ P . Then
its maximum distance is E. Let C ′ ∈ P with distance Y , where C ′ ̸= C.
Then Y is minimized when the other four circles in P are at maximal distance
D, and the angular support of P is 2π = 2 cos−1

(
(D2 + E2 − 4)/(2DE)

)
+

2 cos−1
(
(D2 + Y 2 − 4)/(2DY )

)
+ 4 sin−1(1/D) yielding Y ≈ 1.917185. Thus,

all circles in P besides C are gap circles, and as in Proposition 3.1 we have
Θout > 2π, since Y > 1.546920, the value used in that proposition. Thus, there
are six gap circles when |Rn| = 8 and by counting gaps, at most one of these gap
circles avoids the situation of Lemma 3.5, where consecutive gap circles touched
a common circle from Rn. Therefore, |Rn| > 8 since Θout is at least

6 sin−1(1/B) + 2 cos−1(B/4) + 2 cos−1

(
B2 +G2 − 4

2BG

)
+ 6 cos−1

(
B2 + y2 − 4

2By

)
≈ 6.852784 > 2π,

where y ≈ 1.665517 is minimized from Lemma 3.5.

For |Rn| = 9, we have at most 3 gap circles, since with 5 gap circles we
could not avoid the situation in Lemma 3.5, and with 4 gap circles we could
not avoid an overpass of length 3, contradicting Lemma 3.6. We then note that
the equation 2π = (18 − 2k) sin−1(1/B) + 2k cos−1

(
(B2 + y2 − 4)/(2By)

)
has

solutions W = 1.721602 for k = 2, and V = 1.595722 for k = 3, meaning there
cannot be 2 gap circles of distance greater than W , nor 3 gap circles of distance
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greater than V , for otherwise Θout > 2π. Then with 3 gap circles at distances
V,W,D, we would have Θin is at least

2 cos−1

(
E2 +D2 − 4

2ED

)
+ cos−1

(
V 2 +W 2 − 4

2VW

)
+cos−1

(
E2 + V 2 − 4

2EV

)
+ cos−1

(
E2 +W 2 − 4

2EW

)
≈ 6.350338 > 2π,

where no distances of circles can be increased in order to decrease Θin. This
proves the proposition.

Proposition 3.3. All circles in R1, . . . , Rn−1 form Pin.

Proof. We first show that P is tight. Suppose for contradiction that P has
a gap, so that there are two circles C ∈ P on either side of that gap. C is
prevented from moving inward by a circle C ′ ∈ P and a circle C1 ∈ Rn. For
a given rn, the closest distance Y for C is when the centers of C1, C, C

′ are
collinear and C ′ is at minimal distance rn − 2. Thus, Y =

√
r2n − 2rn − 2 using

Laws of Cosines, and graphing Y (rn) yields Y >
√

r2n − 1−
√
3 for A ≤ rn ≤ B,

so that the C’s are gap circles. Then Θout is at least

16 sin−1(1/rn) + 4 cos−1

(
r2n + Y 2 − 4

2rnY

)
≥ 6.522939 > 2π,

where the angular support is minimized at rn = B. Thus, P is tight.

Finally, if a subset of P formed a tight partition, then since all circles in P
are at least distance A− 2 from O, at least one circle in P would be at distance
at least

√
(A− 2)2 − 1 +

√
3 = 2.458593 > D, which cannot happen.

3.3 The basic optimal shape for N = 14

We begin with a definition and two lemmas.

Definition 3.1. A minimal polygon is formed by joining centers of circles, so
that all sides are length 2, and no subset of the sides forms a polygon.

Lemma 3.7. The only minimal rhombus is Pin.

Proof. By Proposition 3.1 any minimal rhombus different from Pin must have
two circles C1, C2 ∈ Rn and two circles C,C ′ ∈ Pin; see part (a) of Figure 5. At
rn = B, for varying angle θ where π/2 ≤ θ ≤ 2π/3, the distances x, y of C,C ′

are

x =
√
4 +B2 − 4B cos(π − (θ + cos−1(1/B))),

y =
√

4 +B2 − 4B cos(θ − cos−1(1/B)).
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(a) (b)
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Figure 5: Figures for Lemmas 3.7 and 3.8.

Solving for x = E yields two solutions θ = 1.657510, 2π/3 with y(1.657510) =
Y ≈ 1.665517. Graphing Θout as a function of θ shows it is minimized at Y ,
namely

16 sin−1(1/B) + 2 cos−1

(
B2 + E2 − 4

2BE

)
+ 2 cos−1

(
B2 + Y 2 − 4

2BY

)
≈ 6.445686 > 2π.

This proves the lemma.

Lemma 3.8. Any minimal pentagon has two circles from Pin, at most one of
which is a gap circle.

Proof. Since the distance between the centers of 4 consecutive circles on Rn

is at least 5.236068 > 4, we cannot have just one circle from Pin in a mini-
mal pentagon. Thus, we have two circles C,C ′ ∈ Pin and C1, C2, C3 ∈ Rn,
where the symmetric configuration is shown in part (b) of Figure 5. Now
for general rn, |C1C3| =

√
2r2n − 2r2n cos(4 sin

−1(1/rn)) using ∆OC1C3. Thus,

S =
√

4− (|C1C3|/2)2 and U =
√

4− ((|C1C3| − 2)/2)2, with T = rn− (S+U)

and Y =
√
1 + T 2. Graphing Y for A ≤ rn ≤ B yields Y (rn) <

√
r2n − 1 −

√
3

and thus neither of C,C ′ are gap circles in the symmetric configuration. Now
in order for C to be pushed out to be a gap circle, C ′ would be pushed inward,
so at most one of them is a gap circle.

We have two lemmas whose proofs we defer until after our main theorem for
this section.

Lemma 3.9. If there are no rattlers on Rn, then a minimal polygon has at most
5 sides.

Lemma 3.10. No rattlers exist on Rn.

We can now prove our theorem, which refers ahead to Figure 9.
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Figure 6: Hexagon and pentagon for Lemmas 3.9 and 3.10.

Theorem 3.1. The basic shape of the optimal packing of 14 equal circles in a
circle is in Figure 9, with the following features not mentioned previously:

1. Only the two circles in Pin with centers on ℓ touch two circles in Rn;

2. The packing has reflective symmetry across the vertical line ℓ;

3. The top or bottom triangles may be minimal.

Proof. Since only minimal triangles or pentagons are possible along Rn, two
circles in Pin are forced to touch Rn twice, and these cannot be consecutive on
Pin; the scheme in part (a) of Figure 7, where points are circles and arcs are
tangencies, is useful to verify this. The remainder of the packing must be 4
minimal pentagons. By symmetry of the rhombus and the 5 circles in Rn on
either side of the rhombus, the theorem follows.

For the two remaining proofs we set notation that C,C ′, C ′′, C ′′′ ∈ Pin with
respective distances Z,Z ′, Z ′′, Z ′′′ from O.

Proof of Lemma 3.9. Since the distance between 5 consecutive circles on Rn is
at least 6.155367 > 6, we cannot have minimal polygons with more than 6
sides. Thus, we consider a hexagon with C1, C2, C3, C4 ∈ Rn and C,C ′ ∈ Pin;
see part (a) of Figure 6, where we indicate C ′′, C ′′′ ∈ Pin for context. We first
describe dependencies for the next lemma. For a given value of rn, the angle t
is our variable, which may be positive or negative depending on whether it is to
the right or left of the radial line through the center of C4. Everything else is
determined by t as follows in part (a) of Figure 6:

M =
√

2r2n − 2r2n cos(6 sin
−1(1/rn)), Z =

√
r2n + 4− 4rn cos t,

α = cos−1(1/rn) + t− cos−1((M − 2)/4), L =
√
M2 + 4− 4M cosα,

β = cos−1((M2 + L2 − 4)/(2LM)), γ = cos−1(L/4),

s = cos−1(1/rn)− cos−1((M − 2)/4)− β − γ, Z ′ =
√
r2n + 4− 4rn cos s.
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We observe for the next lemma that similar equations hold for the pentagon
in part (b) of Figure 6 provided 6 sin−1(1/rn) is replaced by 4 sin−1(1/rn) in the
formula for M , and where M − 2 is used in α and s, then M is used instead.

Referring back to part (a) of Figure 6, a priori C,C ′ could be gap circles,
forcing gaps to the right of C4 and left of C1, respectively. To see that in fact
neither of C,C ′ are gap circles, first observe that the farthest C ′ can be rolled
along C1 to the right is when Z ′ =

√
r2n − 1 −

√
3 and the hexagon becomes

a pentagon. For A ≤ rn ≤ B we thus fix this Z ′, and graphing Z shows
Z <

√
r2n − 1 −

√
3; thus C,C ′ are not gap circles. But since we are assuming

no rattlers on Rn, we must have at least one gap circle by Lemma 3.2, which
without loss of generality is C ′′′. We consider part (a) of Figure 7, where points
of tangency between circles in our hexagon are indicated by black line segments,
with the curvature of the segments giving the direction of tangency. In order
to avoid rhombuses the three solid gray lines must be positioned exactly where
they are. But then since all three of the pentagons are minimal, the positions
of all circles are determined, meaning the dashed gray line from C ′ to C2 must
be present as well and C ′ must be a gap circle. Thus, in fact this is our optimal
shape shown in Figure 9 and we conclude that no hexagons exist, provided there
are no rattlers.

(a) (b)

C ′

CC ′′

C ′′′

C1 C2

C3

C4

C5

C6C7

C8

C9

C10

C ′

CC ′′

C ′′′

C1 C2

C3

C4

C5

C6C7

C8

C9

C10

Figure 7: Tangencies for Lemmas 3.9 and 3.10.

Proof of Lemma 3.10. We now show there are no rattlers. Any consecutive
rattlers C2, . . . , Ck−1 must occur between two circles C1, Ck ∈ Rn with a gap
chain of exactly two circles C,C ′ ∈ Pin, where the centers of C1, C

′, C, Ck are in
clockwise order. The first sentence in the proof of Lemma 3.9 shows that k =
3, 4, meaning we have a non-minimal pentagon or hexagon. The maximum total
angular gap on Rn is 2π − 20 sin−1(1/B) ≈ .180063 ≡ Φ. If we had a pentagon
with a rattler, the minimum angle between C1, C3 is when the centers of C ′, C1

and C,C3 share radial rays, yielding an angle of 2 sin−1(1/(B − 2)) ≈ 1.704517.
But subtracting 4 sin−1(1/B) from this for C1, C2, C3 yields .483893 > Φ. Thus,
we may assume only hexagons have rattlers.
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If we have one hexagon with rattlers, we have two cases. First, if we have
no minimal hexagons, then as in part (a) of Figure 7, to avoid rhombuses we
may assume that C ′′′ must be a gap circle. The pentagons are minimal, and the
exact same argument holds as in Lemma 3.9, showing that we have the basic
optimal shape with no rattlers. Second, if we have a minimal hexagon then we
also have two minimal pentagons. These are all adjacent in some order and via
parts (a) and (b) of Figure 6 with possible relabeling, all of Z,Z ′, Z ′′, Z ′′′ are
functions of one variable t for the minimal hexagon in part (a). For rn = B
we have −0.21844 ≤ t ≤ 0.05348, where the left endpoint is when Z = E and
the right is when Z ′ = E. If the minimal hexagon has a pentagon on either
side, graphing Θin in part (a) of Figure 8 shows it attains a minimum of 2π at
either endpoint where the hexagon becomes a pentagon. But this is the optimal
shape as in Lemma 3.9. Likewise, if the two pentagons are to the left of the
minimal hexagon, graphing Z ′′, Z ′′′ shows that one of C ′′, C ′′′ is always a gap
circle, and graphing Θout in part (b) of Figure 8 shows it has a minimum of
2π where Z ′ = E, again realizing the optimal shape. If the two pentagons are
to the right, the minimum is 2π when Z = E. This eliminates the case of one
hexagon with rattlers.

t t

t

(a) (b)

(c)

Θin Θout

2π 2π

max(Θin,Θout)
for ϕ = .054

2π

Z ′ + 4.9

1.489124 + 4.9

Figure 8: Graphs for Lemma 3.10 generated in Desmos.

If there are two hexagons with rattlers, then the tangencies are in part (b)
of Figure 7, since a minimal pentagon must prevent C1, C4, C6, C9 from moving
outward. Thus, each circle C,C ′, C ′′, C ′′′ is in a minimal pentagon, and the
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direction of the tangencies require that s ≤ 0 and t ≥ 0 in part (b) of Figure 6.
In particular the maximum value for Z (and so also Z ′, Z ′′, Z ′′′) must be when
s = 0, which yields 1.489124. Since the total angular gap Φ is shared by the
two non-minimal hexagons, the hexagon with gap chain C,C ′ has total angular
gap ϕ of at most Φ/2 ≈ .0900315. As ϕ increases, M in part (a) of Figure 6 can
increase for this hexagon, but the dependent quantities change accordingly, so
that we can still calculate max(Θin,Θout) as a function of t ≤ 0 for the hexagon,
but now with graphs parametrized by 0 ≤ ϕ ≤ Φ/2. Graphing these show that
they attain a minimum near 2π at t = −.05375 when ϕ = .054; this is shown
in part (c) of Figure 8 where the red curve is tangential to the blue line at 2π.
But at t = −.05375, we clearly have Z ′ > 1.489124, as indicated by the orange
curve (Z ′ + 4.9) being above the green line (1.489124 + 4.9); this is true for a
neighborhood of (t, ϕ) values and violates the constraint Z ′ ≤ 1.489124. This
proves the lemma.

4. The optimal solution

We can now determine the optimal packing. We refer the reader to Figure 9
which shows the basic shape of the optimal packing, with the center O placed
at the origin, and having reflective symmetry across the y-axis.

We may assume that β2 ≤ β1, with Figure 9 showing the case β2 = β1 which
has reflective symmetry over the x-axis. For convenience of notation we have
used r to denote the radius of Rn. The tight partition Pout applied to the left
side of the packing yields the equation

(1) γ1 + γ2 + 8 sin−1(1/r) = π

The quantities L1 and L2 denote the distance from O to the centers of C ′

and C ′′, respectively.

With this notation, we can now prove our main theorem.

Theorem 4.1. The optimal packing for 14 circles occurs when β2 = π/6 in
Figure 9, meaning there is no gap between C5 and C6 in Pout.

Proof. We show that if β2 > π/6, then r can be reduced and is not optimal.
The conclusion is then that the optimal solution occurs when β2 = π/6 and
there is no gap between C5 and C6 in Pout.

We therefore consider a value of β2 satisfying π/6 < β2 ≤ β1 < π/2, and for
the moment fix the outer radius r associated with that packing. We will also for
the moment assume that the rhombus formed by Pin is rigid, meaning that the
quantity L1+L2 is fixed. We will, however, be examining vertical translations of
this rigid Pin, with the result that if L2 is decreased, then L1 must be increased
by the same amount.

Since β2 > π/6, we can rotate C1 through C5 counterclockwise along the
container boundary by some positive angle ϵ > 0, and likewise C10 through C6
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Figure 9: Quantities needed for the proof of Theorem 4.1.

clockwise by the same positive angle ϵ > 0, to decrease β2. This will force the
rhombus Pin upward. Since β2 ≤ β1, the points of tangency between C and
C3, and C ′′′ and C8, have nonnegative y-coordinate, so that these present no
obstruction to the upward translation of the rhombus Pin.

It therefore only remains to show that the decreasing of the gap between
C5 and C6 results in an increasing of the gap between C1 and C10 that is large
enough to accommodate the upward translation of C ′. This can be formalized
by considering γ2 and γ1, and first observing that by differentiating Equation 1,
the rotation of circles in Pout results in

(2)
dγ1
dγ2

= −1.

Now we need to compare this with the effect the upward translation of Pin

has on γ1. The Law of Cosines for the triangle having vertices O and the centers
of C1 and C ′ is

L2
1 + r2 − 2rL1 cos γ1 = 4,
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and implicitly differentiating this yields the positive derivative

dγ1
dL1

=
2r cos γ1 − 2L1

2rL1 sin γ1
.

Applying a similar Law of Cosines calculation for the triangle having vertices O
and the centers of C5 and C ′′, we obtain the positive derivative

dL2

dγ2
=

2rL2 sin γ2
2r cos γ2 − 2L2

.

Since L1 + L2 is constant we know dL1
dL2

= −1 so that by the chain rule

dγ1
dγ2

=
dγ1
dL1

· dL1

dL2
· dL2

dγ2

=
2r cos γ1 − 2L1

2rL1 sin γ1
· −1 · 2rL2 sin γ2

2r cos γ2 − 2L2

=
2r cos γ1 − 2L1

2r cos γ2 − 2L2
· −1 · 2rL2 sin γ2

2rL1 sin γ1
.

Since β2 ≤ β1 we also have γ2 ≤ γ1, and since L2 ≤ L1 as well, we know
that the first and third factors in the last expression are both positive values at
most one. The result is that the upward translation of the rhombus Pin yields

(3)
dγ1
dγ2

≤ −1.

Comparing Equation 2 with Inequality 3 shows that the rotation of circles
in Pout will open up γ1 enough to translate Pin upward. The result is that both
C and C ′′′ will no longer touch the outer ring, and thus have just two points of
tangency with the circles in Pin. Both C and C ′′′ can therefore be perturbed to
be rattlers, and r can then be decreased. This establishes the theorem.

We conclude the paper by observing that the optimal configuration estab-
lished in Theorem 4.1 is indeed that conjectured by Pirl [21]. This is shown in
Figure 10, where the global optimal, rotated clockwise by π/2, is obtained with
container radius 4.328 (accurate up to four decimal places) using the trust-region
Dogleg algorithm with the Matlab fsolve function.
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