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Abstract. In this work, we investigate particular properties on the completion of
symmetric spaces. Symmetric spaces are metric spaces and, naturally, question arises
as to whether their completions are also symmetric. In this work, we provide an affir-
mative response to this question. More precisely, we prove that every metric space is
isometrically a subset of a symmetric space. In addition, we prove that the completion
of a symmetric metric space is likewise symmetric. Some additional functorial prop-
erties are established along with some other results. Additionally, generic examples of
symmetric spaces will be provided in this manuscript.
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1. Introduction

The purpose of this section is to recall some standard terminology and nomen-
clature related to metric spaces [1] and symmetric metric spaces [2]. To start
with, recall that a metric space is a pair of the form (X, dX), where X is
a nonempty set and dX : X × X → R is a function satisfying the following
properties:

*. Corresponding author



ON THE COMPLETION OF SYMMETRIC METRIC SPACES 107

(i) if x, y ∈ X, then dX(x, y) ≥ 0,

(ii) if x, y ∈ X, then dX(x, y) = 0 if and only if x = y,

(iii) dX(x, y) = dX(y, x), for any x, y ∈ X, and

(iv) dX(x, y) ≤ dX(x, z) + dX(z, y), for any x, y, z ∈ X.

If (X, dX) and (Y, dY ) are metric spaces, then a function f : X → Y is
an isometry if dY (f(x), f(y)) = dX(x, y), for all x, y ∈ X. Obviously, any
isometry is an injective and continuous function. If f is a surjective isometry,
then we say that (X, dX) and (Y, dY ) and isometric spaces. In such case, f−1 is
likewise an isometry. Evidently, the relation of being isometric is an equivalence
relation in the class of metric spaces.

Let (X, dX) be a metric space, x0 ∈ X and f : X → X a surjective isometry.
Then (X, dX) is x0-symmetric with respect to f if, for each x ∈ X,

dX(x, x0) = dX(f(x), x0) =
1

2
dX(x, f(x)).

If there is no ambiguity, then (X, dX) is simply called x0-symmetric. As an
example, if X = [−1, 1] with the metric d of R and f : X → X is given by
f(x) = −x, then (X, d) is 0-symmetric with respect to f . Also, if (X, ∥ · ∥) is
a real Banach space with the norm ∥ · ∥ : X → R, dX is the respective induced
norm and a ∈ X, then (X, dX) is a-symmetric with respect to f(x) = 2a− x.

The following are some properties satisfied by symmetric metric spaces.

Proposition 1. Let (X, dX) be a metric space, x0 ∈ X and f : X → X a
surjective isometry. If (X, dX) is x0-symmetric with respect to f , then it is also
x0-symmetric with respect to f−1.

Proof. Beforehand, notice that f−1 is also a surjective isometry. Let y ∈ X,
and take x ∈ X such that y = f(x). It follows that

dX(y, x0) = dX(f(x), x0) = dX(x, x0) = dX(f−1(y), x0)

=
1

2
dX(x, f(x)) =

1

2
dX(f−1(y), y).

We conclude that (X, dX) is x0-symmetric with respect to f−1.

Proposition 2. Let (X, dX) and (Y, dY ) be metric spaces, let x0 ∈ X and
suppose that f : X → X and ϕ : X → Y are surjective isometries. If (X, dX) is
a x0-symmetric metric space with respect to f , then (Y, dY ) is ϕ(x0)-symmetric
with respect to g = ϕ ◦ f ◦ ϕ−1.

Proof. Being the composition of surjective isometries, g itself is a surjective
isometry. On the other hand, if y ∈ Y , then the x0-symmetry of (X, dX) with
respect to f and isometry properties of f , ϕ and ϕ−1 assure that

dY (y, ϕ(x0)) = dX(ϕ−1(y), x0) = dX(f(ϕ−1(y)), x0) = dY (g(y), ϕ(x0))
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and
1

2
dY (y, g(y)) =

1

2
dX(ϕ−1(y), f(ϕ−1(y))) = dX(f(ϕ−1(y)), x0)

= dY (g(y), ϕ(x0)).

These facts establish that (Y, dY ) is ϕ(x0)-symmetric with respect to g.

Let (X, dX) be a metric space, x0 ∈ X and f, g : X → X to surjective
isometries. In general, it is not true that (X, dX) is a x0-symmetric metric
space with respect to g ◦ f when it is x0-symmetric with respect to f and g.
Indeed, let (X, dX) be the real numbers with its usual distance, and let us define
f(x) = g(x) = −x, for each x ∈ X. It is obvious that (X, dX) is 0-symmetric
with respect to f and g, but it is not 0-symmetric with respect to g ◦ f . In fact,
notice that dX(x, (g ◦ f)(x)) = 0, for each x ∈ X.

2. Main results

This section is devoted to providing additional properties and ways to construct
symmetric metric spaces. In the remainder and unless we mention something
different, we will assume that (X, dX) is a metric space, x0 ∈ X and f : X → X
will be a surjective isometry.

To start with, we recall some standard definitions. If (X, dX) is a metric
space, x ∈ X and A ⊆ X is nonempty, then we define

dX(x,A) = inf
y∈A

dX(x, y).

In addition, if B ⊆ X is also nonempty, then we define the number dX(A,B)
alternatively (and equivalently) in the following way:

dX(A,B) = inf
x∈A
y∈B

dX(x, y) = inf
x∈A

dX(x,B) = inf
y∈B

dX(y,A).

Proposition 3. Suppose that (X, dX) is an x0-symmetric metric space with
respect to f , and let A ⊆ X be nonempty. Then

dX(x0, A) = dX(x0, f(A)) ≥ 1

2
dX(A, f(A)).

Proof. Observe that the following inequalities hold:

dX(x0, A) = inf
x∈A

dX(x0, x) = inf
x∈A

dX(x0, f(x)) = inf
y∈f(A)

dX(x0, y)

= dX(x0, f(A)) = inf
x∈A

dX(x0, f(x)) =
1

2
inf
x∈A

dX(x, f(X))

≥ 1

2
inf
x∈A

y∈f(A)

dX(x, y) =
1

2
dX(A, f(A)),

which yields the conclusion of this result.
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The following result is motivated by the reduced cone CX defined in [3].

Theorem 1. Every metric space is isometrically a subset of a symmetric space.

Proof. Let (X, dX) be any metric space, and fix x0 ∈ X arbitrarily. Through-
out, we will let Y = (X×{x0})∪({x0}×X). Obviously, Y is a subset of X×X.
Define the function dY : Y × Y → R as

dY ((x1, x2), (y1, y2)) = dX(x1, y1) + dX(x2, y2),

for each (x1, x2) and (y1, y2) in Y . It is easy to check then that (Y, dY ) is a
metric space. Let ϕ : X → Y be given by ϕ(x) = (x, x0), for each x ∈ X. Notice
firstly that ϕ is an isometry by virtue of the fact that

dY (ϕ(x), ϕ(y)) = dY ((x, x0), (y, x0)) = dX(x, y), ∀x, y ∈ X.

Let us define f : Y → Y by f(x, x0) = (x0, x) and f(x0, x) = (x, x0), for each
x ∈ X. Evidently, f is a surjective function. Moreover, f is also an isometry.
To check this fact, various cases need to be considered. Indeed, observe that

dY (f(x, x0), f(y, x0)) = dX(x, y) = dY ((x, x0), (y, x0)),

dY (f(x0, x), f(x0, y)) = dX(x, y) = dY ((x0, x), (x0, y)),

dY (f(x, x0), f(x0, y)) = dX(y, x0) + dX(x0, x) = dY ((x, x0), (y, x0)),

for each x, y ∈ X. We claim now that Y is x∗-symmetric with respect to f ,
where x∗ = (x0, x0) ∈ Y . To show that, notice firstly that, for each x ∈ X,

dY (f(x, x0), x
∗) = dY ((x, x0), x

∗) = dX(x, x0)

=
1

2
[dX(x, x0) + dX(x, x0)] =

1

2
dY ((x, x0), f(x, x0)).

In similar fashion, we can prove also that

dY (f(x0, x), x
∗) = dY ((x0, x), x

∗) =
1

2
dY ((x0, x), f(x0, x)), ∀x ∈ X.

We conclude that (Y, dY ) is x∗-symmetric with respect to f , and that (X, dX)
is isometric to a subset of (Y, dY ), as desired.

It is well known that every metric space (X, dX) can be extended to be
a complete metric space. Moreover, the metric space (X, dX) is dense in its
completion. Our last result establishes that the completion is symmetric if the
space (X, dX) is symmetric. Before proving the theorem, we recall some of the
details in the construction of the proof for the completion of a metric space. Let
S(X) be the set of all Cauchy sequences in (X, dX), and define a relation of X as
follows: if (xn) and (yn) are members of S(X), we say that they are equivalent if
limn→∞ dX(xn, yn) = 0. This is an equivalence relation on S(X), and the set of
equivalence classes is denoted by C(X, dX) or, simply, by C(X). For the sake of
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briefness, the equivalence class determined by the Cauchy sequence (xn) ∈ S(X)
will be denoted also by (xn).

Define next the function dC(X) : C(X)× C(X) → R by

dC(X)((xn), (yn)) = lim
n→∞

dX(xn, yn),

for any two equivalence classes (xn) and (yn) in C(X). This function is well
defined on C(X) and, moreover, it is a metric. The space (C(X), dC(X)) is a
complete metric space. In addition, if ιX : X → C(X) is the function that
assigns to each x ∈ X the constant sequence whose nth term is x, then ιX is an
isometry and ιX(X) is dense in C(X). The space (C(X), dC(X)) constructed in
this way is called the completion of the metric space (X, dX).

Interestingly, if (X, dX) is a metric space, (C(X), dC(X)) is its completion,
(Y, dY ) and complete metric space and f : X → Y an isometry, then there
exists a unique isometry f : C(X) → Y making the following diagram commute:

X C(X)

Y

ιX

f
f

The uniqueness of completions up to isometries is a consequence of this property.
Moreover, if (X, dX) and (Y, dY ) are metric spaces and f : X → Y is an isometry,
then there exists a unique isometry C(f) : C(X) → C(Y ) which makes the
following diagram commute:

X C(X)

Y C(Y )

ιX

f C(f)

ιY

In addition, recall that C preserves compositions of isometries and identity
mappings. This implies that C is a functor from the category of metric spaces
with isometries, into the category of complete metric spaces. With these conven-
tions, the following proposition shows that if (X, dX) is an x0-symmetric metric
space with respect to the isometry f : X → X, then (C(X), dC(X)) is ιX(x0)-
symmetric with respect to C(f). The statement is summarized as follows.

Theorem 2. The completion of a symmetric metric space is likewise symmetric.

Proof. We will use the notation preceding the theorem. Since f : X → X is a
surjective isometry, then C(f) : C(X) → C(X) is likewise a surjective isometry.
For the sake of convenience, let f̂ = C(f) and x∗0 = ιX(x0). To show that
(C(X), dC(X)) is x∗0-symmetric with respect to f̂ , it remains to check that, for
each x∗ ∈ C(X), the following identities are satisfied:

(1) dC(X)(x
∗, x∗0) = dC(X)(f̂(x

∗), x∗0) =
1

2
dC(X)(x

∗, f̂(x∗)).
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Let us assume firstly that x∗ ∈ ιX(X). So, there exists x ∈ X with the property
that x∗ = ιX(x). As a consequence of this, the fact that ιX is an isometry, the
functorial properties of the completion and the x0-symmetry of (X, dX) with
respect to f , we obtain

dC(X)(x
∗, x∗0) = dC(X)(ιX(x), ιX(x0)) = dX(x, x0) = dX(f(x), x0)

= dC(X)(ιX(f(x)), ιX(x0)) = dC(X)(f̂(ιX(x)), ιX(x0))

= dC(X)(f̂(x
∗), x∗0).

Similarly, notice that

dC(X)(x
∗, x∗0) = dX(x, x0) =

1

2
dX(x, f(x)) =

1

2
dC(X)(ιX(x), ιX(f(x)))

=
1

2
dC(X)(x

∗, f̂(ιX(x))) =
1

2
dC(X)(x

∗, f̂(x∗)).

As a consequence, we have proved that (1) holds for each x∗ ∈ ιX(X). To show
that the conclusion is also valid for all x∗ ∈ C(X), recall that the closure of
ιX(X) is equal to C(X), and let (x∗n) be any sequence in ιX(X) which converges
to x∗. Thus, if n ∈ N, then

dC(X)(x
∗
n, x

∗
0) = dC(X)(f̂(x

∗
n), x

∗
0) =

1

2
dC(X)(x

∗
n, f̂(x

∗
n))

Taking now the limit when n → ∞, using that the metric dC(X) and f̂ are
both continuous functions, we prove that (1) is satisfied for all x∗ ∈ C(X). We
conclude that (C(X), dC(X)) is x

∗
0-symmetric with respect to f̂ .

3. Examples

In this section, we provide some constructions of symmetric spaces. Various
examples will be provided at this stage of our work. In the first of them, we will
show that some products of symmetric spaces are likewise symmetric.

Example 1. Let (Xi, dXi) be metric spaces, x∗i ∈ Xi and fi : Xi → Xi surjective
isometries, and assume that (Xi, dXi) is x∗i -symmetric with respect to fi, for
each i = 1, 2. Let X = X1 ×X2, fix x∗ = (x∗1, x

∗
2), and agree that x = (x1, x2)

and y = (y1, y2), for each x, y ∈ X. Let us define dX : X ×X → R by means of
the equation

dX(x, y) = dX1(x1, y1) + dX2(x2, y2),

for each x, y ∈ X. It is obvious that (X, dX) is a metric space. Let f : X → X
be defined as f(x) = (f1(x1), f2(x2)), for each x ∈ X. Then f is surjective and,
moreover, it is an isometry by virtue that

dX(f(x), f(y)) = dX((f1(x1), f2(x2)), (f1(y1), f2(y2)))

= dX1(f1(x1), f1(y1)) + dX2(f2(x2), f2(y2))

= dX1(x1, y1) + dX2(x2, y2) = dX(x, y).
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Additionally,

dX(x, x∗) = dX1(x1, x
∗
1) + dX2(x2, x

∗
2) = dX1(f1(x1), x

∗
1) + dX2(f2(x2), x

∗
2)

= dX(f(x), x∗) =
1

2
[dX1(x1, f1(x1)) + dX2(x2, f1(x2))]

=
1

2
dX(x, f(x)).

We conclude that (X, dX) is x∗-symmetric with respect to f .

It is worth pointing out that the last example can be generalized to the
product of a finite number of symmetric metric spaces. Moreover, the example
can be extended to account for different metrics, including the infinity metric
and the Euclidean metric induced in dX1 and dX2 .

To state our next result, recall that if (X, dX) is a metric space and E ⊆
X is nonempty, we say that E is bounded if there exists K ∈ R such that
dX(x, y) ≤ K, for each x, y ∈ E. If that is the case, then we let

diamE = sup{dX(x, y) : x, y ∈ E}.

Theorem 3. Let (X, dX) be x0-symmetric with respect to f , and let E ̸= ∅. Let
B = {g : E → X : diam g(E) < ∞}, and dB : B ×B → R be given by

dB(g, h) = sup
e∈E

dX(g(e), h(e)), ∀g, h ∈ B.

Let Φ : B → B be given by Φ(g) = f ◦ g, for each g ∈ B. Then B is gx0-
symmetric with respect to Φ, where gx0 : E → X is the constant gx0 ≡ x0.

Proof. To start with, observe that (B, dB) is indeed a metric space. To show
that Φ is surjective, let h : E → X be such that diamh(E) < ∞, and let g =
f−1◦h. The fact that f is an isometry assures that diam g(E) = diamh(E) < ∞,
which means that g ∈ B and, moreover, Φ(g) = h. The fact that Φ is an isometry
is a consequence of the fact that f is an isometry, so

dB(Φ(g),Φ(h)) = sup
e∈E

dX(f(g(e)), f(h(e))) = sup
e∈E

dX(g(e), h(e)) = dB(g, h),

for each g, h ∈ B. Finally, observe that

dB(g, gx0) = sup
e∈E

dX(g(e), x0) = sup
e∈E

dX(f(g(e)), x0)

= sup
e∈E

dX((Φ(g))(e), x0) = dB(Φ(g), gx0)

=
1

2
sup
e∈E

dX(f(g(e)), g(e)) =
1

2
dB(Φ(g), g),

for each g ∈ B. We conclude that B is gx0-symmetric with respect to Φ.
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Theorem 4. Let (X, dX) be a compact metric space, assume that (Y, dY ) is
y0-symmetric with respect to f , and let C = {g : X → Y : g is continuous}. Let
dC : C × C → R be defined by

dC(g, h) = sup
x∈X

dY (g(x), h(x)), ∀g, h ∈ C.

Then (C, dC) is gy0-symmetric with respect to Φ(g) = f ◦ g. Here, gy0 : X → Y
is the constant function gy0 ≡ y0.

Proof. The proof is similar to that of the previous theorem. We just need to
point out here that the function dC is well defined in this case, in view of the
compactness of the metric space (X, dX).

It is worth pointing out that the compactness assumption on the metric
space (X, dX) can be omitted in the last theorem. To that end, we require to
redefine the set C as

C = {g : X → Y : g is continuous and diam g(E) < ∞} .

Using all the remaining assumptions in Theorem 4, we can readily reach the
same conclusion.
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