Flow-selfdual curves in a geometric surface

Mircea Crasmareanu
Faculty of Mathematics
University"Al. I. Cuza"
Iaşi, 700506
Romania
mcrasm@uaic.ro

Abstract

For a natural parametrization of a curve γ in an orientable two-dimensional Riemannian manifold, we compare two differential equations associated to γ. The main tool of our study is the geodesic curvature k of γ and when these equations coincide we call γ as being flow-selfdual since the second equation corresponds to the flowcurvature k_{f} of γ in the same manner as the first equation involves k. We obtain that these curves have a constant geodesic curvature and then we discuss four examples. Also, we generalize this type of differential equations to vector fields on Riemannian manifolds of arbitrary dimension.

Keywords: two-dimensional Riemannian manifold, geodesic curvature, flow-selfdual curve.
MSC 2020: 53A04, 53A45, 53A55

1. Flow-selfdual curves and tangential vector fields

The framework of this study is a geometric surface i.e. ([3]) a smooth, orientable two-dimensional Riemannian manifold $\left(M^{2}, g\right)$. Being orientable M supports an almost complex structure J; in fact J is integrable and for an arbitrary point $p \in M$ we consider $J_{p}: T_{p} M \rightarrow T_{p} M$ as being the multiplication with the complex unit $i \in \mathbb{C}$. Let ∇ be the Levi-Civita connection of g.

Fix also a smooth curve $\gamma: I \subseteq \mathbb{R} \rightarrow M$ which we suppose to be regular: $\gamma^{\prime}(t) \in T_{\gamma(t)} M \backslash\{0\}$. Let $\mathfrak{X}(\gamma)$ be the $C^{\infty}(I)$-module of vector fields along γ i.e. smooth maps $X: I \rightarrow T M$ with $X(t) \in T_{\gamma(t)} M$ for all $t \in I$. It follows the unit tangent vector field $T \in \mathfrak{X}(\gamma)$ with:

$$
\begin{equation*}
T(t):=\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|} \tag{1.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the norm induced by g on the tangent spaces. Therefore, the Frenet frame of γ is $\mathcal{F}:=\binom{T}{N:=J(T)} \in \mathfrak{X}(\gamma) \times \mathfrak{X}(\gamma)$.

The Riemannian geometry of γ is described by its geodesic curvature $k: I \rightarrow$ \mathbb{R} provided by the Frenet equations:

$$
\nabla_{T(t)} \mathcal{F}(t)=\left(\begin{array}{cc}
0 & k(t) \tag{1.2}\\
-k(t) & 0
\end{array}\right) \mathcal{F}(t)=k(t)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \mathcal{F}(t)
$$

which means:

$$
\begin{equation*}
k(t):=\frac{g\left(\nabla_{\gamma^{\prime}(t)} T(t), N(t)\right)}{\left\|\gamma^{\prime}(t)\right\|}=\frac{g\left(\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}(t), J\left(\gamma^{\prime}(t)\right)\right)}{\left\|\gamma^{\prime}(t)\right\|^{3}} . \tag{1.3}
\end{equation*}
$$

Recall also the pair (g, J) yields the symplectic form $\Omega(\cdot, \cdot):=g(\cdot, J \cdot)$ and whence:

$$
\begin{equation*}
k(t):=\frac{\Omega\left(\nabla_{\gamma^{\prime}(t)} \gamma^{\prime}(t), \gamma^{\prime}(t)\right)}{\left\|\gamma^{\prime}(t)\right\|^{3}} . \tag{1.4}
\end{equation*}
$$

The starting point of this short note is the remark that under the hypothesis of γ being parametrized by arc-length the second covariant derivative applied to the Frenet equations yields the following differential equation:

$$
\begin{equation*}
\mathcal{E}:\left(\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} \gamma^{\prime}\right)(t)-\frac{k^{\prime}(t)}{k(t)}\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}\right)(t)+k^{2}(t) \gamma^{\prime}(t)=0 \tag{1.5}
\end{equation*}
$$

The pair (g, J) being a Kähler structure (since $\operatorname{dim} M=2$) it follows that ∇ commutes with N and then N satisfies the same differential equation. For curves parametrized by arc-length the vector field $\nabla_{\gamma^{\prime}} \gamma^{\prime}$ is called the curvature vector field of γ.

In the very recent paper [3] we introduce a modification of the curvature k called flow-curvature and denoted k^{f}. For a general parametrization of γ it holds:

$$
\begin{equation*}
k^{f}(t):=k(t)-\frac{1}{\left\|\gamma^{\prime}(t)\right\|}<k(t) . \tag{1.6}
\end{equation*}
$$

Since k^{f} is obtained exactly in the same manner as k i.e. through the Frenet equation of the flow-frame:

$$
\begin{equation*}
\mathcal{F}^{f}(t):=\binom{E_{1}^{f}}{E_{2}^{f}}(t)=\operatorname{Rotation}(t) \mathcal{F}(t)=\binom{\cos t T(t)-\sin t N(t)}{\sin t T(t)+\cos t N(t)} \tag{1.7}
\end{equation*}
$$

it follows a second differential equation of third order satisfied by non-flow-flat curves:

$$
\begin{equation*}
\mathcal{E}^{f}:\left(\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} E_{1}^{f}\right)(t)-\frac{\left(k^{f}\right)^{\prime}(t)}{k^{f}(t)}\left(\nabla_{\gamma^{\prime}} E_{1}^{f}\right)(t)+\left(k^{f}\right)^{2}(t) E_{1}^{f}(t)=0 . \tag{1.8}
\end{equation*}
$$

It is natural to connect the differential equations \mathcal{E} and \mathcal{E}^{f} and this leads to our new type of curves:

Definition 1.1. The non-flow-flat curve γ, parametrized by arc-length, is called flow-selfdual it it satisfies also the differential equation:

$$
\begin{equation*}
\mathcal{E}_{f}:\left(\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime} \gamma^{\prime}}\right)(t)-\frac{\left(k^{f}\right)^{\prime}(t)}{k^{f}(t)}\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}\right)(t)+\left(k^{f}\right)^{2}(t) \gamma^{\prime}(t)=0 . \tag{1.9}
\end{equation*}
$$

Our main theoretical result is the following:
Proposition 1.2. The non-flow-flat curve γ is a flow-selfdual one if and only if $k=\frac{1}{2}=-k^{f}$ which means that all four unit vector fields $\gamma^{\prime}, N, E_{1}^{f}, E_{2}^{f}$ satisfy the same differential equation of Schrödinger type:

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}^{f}=\mathcal{E}_{f}:\left(\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} U\right)(t)+\frac{1}{4} U(t)=0, \quad U \in \mathfrak{X}(\gamma) . \tag{1.10}
\end{equation*}
$$

Proof. By comparing \mathcal{E} and \mathcal{E}_{f} it follows:

$$
\begin{equation*}
\frac{k^{\prime}(t)}{k(t)(k(t)-1)}\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}\right)(t)+(2 k(t)-1) \gamma^{\prime}(t)=0 . \tag{1.11}
\end{equation*}
$$

Due to the unit speed parametrization of γ the vector fields $\nabla_{\gamma^{\prime}} \gamma^{\prime}$ and γ^{\prime} are orthogonal and then $2 k-1=0$.

Remarks 1.3. 1) Let $\left(\Gamma_{i j}^{k}\right)$ denote the Christoffel symbols of the metric g in a local chart of M in which $\gamma(t)=\left(x^{i}(t)\right), 1 \leq i \leq 2$. Then the differential equation (1.10) becomes a scalar third-order one for a fixed $k \in\{1,2\}$:

$$
\begin{align*}
& \frac{d}{d t}\left[\ddot{x}^{k}(t)+\Gamma_{i j}^{k}(\gamma(t)) \dot{x}^{i}(t) \dot{x}^{j}(t)\right] \\
& +\Gamma_{i j}^{k}(\gamma(t)) \dot{x}^{i}(t)\left[\ddot{x}^{j}(t)+\Gamma_{a b}^{j}(\gamma(t)) \dot{x}^{a}(t) \dot{x}^{b}(t)\right]+\frac{\dot{x}^{k}(t)}{4}=0 . \tag{1.12}
\end{align*}
$$

2) In the same paper [3] the flow-frame is generalized with an arbitrary (smooth) angle function $\Omega=\Omega(t)$ obtaining the Ω-curvature:

$$
\begin{equation*}
k^{\Omega}(t):=k(t)-\frac{\Omega^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|} \tag{1.13}
\end{equation*}
$$

Hence, an arc-length parametrized curve with $k^{\Omega} \neq 0$ will be called Ω-flowselfdual if the differential equation (1.9) holds with k^{f} replaced by Ω. The characterization of the proposition 1.2 reads now:

$$
\begin{equation*}
k(t)=\frac{\Omega^{\prime}(t)}{2}=-k^{\Omega}(t) . \tag{1.14}
\end{equation*}
$$

A second suitable generalization of our notion works at the level of vector fields $\xi \in \mathfrak{X}(M)=$ the Lie algebra of vector fields on M. Fix a unit ξ; then we call
ξ as being a tangential vector field if there exists a strictly positive $k \in C^{\infty}(M)$ (which we call the curvature of ξ) such that:

$$
\begin{equation*}
\nabla_{\xi} \nabla_{\xi} \xi-\xi(\ln k) \nabla_{\xi} \xi+k^{2} \xi=0 \tag{1.15}
\end{equation*}
$$

Making the g-product of the left-hand-side term above with ξ gives, as is expected, that:

$$
\begin{equation*}
\left\|\nabla_{\xi} \xi\right\|=k>0 \tag{1.16}
\end{equation*}
$$

We remark that is not necessary to work in the initial dimension two. An example of tangential vector field is provided within the theory of torse-forming vector fields. Recall, after [2], that a fixed $V \in \mathfrak{X}(M)$ is called torse-forming if for all $X \in \mathfrak{X}(M)$ we have:

$$
\begin{equation*}
\nabla_{X} V=f X+\omega(X) V \tag{1.17}
\end{equation*}
$$

for a smooth function $f \in C^{\infty}(M)$ and a 1-form $\omega \in \Omega^{1}(M)$. Now, suppose that $\nabla_{\xi} \xi$ is a torse-forming vector field with the data:

$$
\begin{equation*}
f=-k^{2}, \quad \omega=d(\ln k) \tag{1.18}
\end{equation*}
$$

for a given strictly positive function k. It follows:

$$
\begin{equation*}
\nabla_{X} \nabla_{\xi} \xi-X(\ln k) \nabla_{\xi} \xi+k^{2} X=0 \tag{1.19}
\end{equation*}
$$

and then for $X=\xi$ it results the definition (1.15).
Recall also that an important tool in dynamics on curves is the Fermi-Walker derivative, which is the map $([4]) \nabla_{\gamma}^{F W}: \mathfrak{X}(\gamma) \rightarrow \mathfrak{X}(\gamma)$:

$$
\begin{align*}
\nabla_{\gamma}^{F W}(X) & :=\frac{d}{d t} X+\left\|r^{\prime}(\cdot)\right\| k[\langle X, N\rangle T \\
& -\langle X, T\rangle N] \rightarrow \nabla_{\gamma}^{F W}(T)=\nabla_{\gamma}^{F W}(N)=0 \tag{1.20}
\end{align*}
$$

Hence, we generalize this derivative as follows: the Fermi-Walker derivative generated by a tangential vector field ξ is the map $\nabla^{\xi}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ given by:

$$
\begin{equation*}
\nabla^{\xi}(X):=\nabla_{\xi} X+g\left(X, \nabla_{\xi} \xi\right) \xi-g(X, \xi) \nabla_{\xi} \xi \tag{1.21}
\end{equation*}
$$

From the equation (1.14) it results that ξ and $\nabla_{\xi} \xi$ are eigenvector fields of ∇^{ξ} :

$$
\begin{equation*}
\nabla^{\xi}(\xi)=0, \quad \nabla^{\xi}\left(\nabla_{\xi} \xi\right)=\xi(\ln k) \nabla_{\xi} \xi \tag{1.22}
\end{equation*}
$$

2. Examples of flow-selfdual curves

Example 2.1. As is expected the plane Euclidean geometry $\mathbb{E}^{2}:=\left(\mathbb{R}^{2},\langle\cdot, \cdot\rangle_{\text {can }}\right)$ is the simplest case. The circle $\mathcal{C}(O, R=2)$ is the "generic" Euclidean floworthogonal curve; it has the arc-length parametrization and Frenet data:

$$
\begin{align*}
& \gamma(t)=2\left(\cos \frac{t}{2}, \sin \frac{t}{2}\right), \gamma^{\prime}(t)=\left(-\sin \frac{t}{2}, \cos \frac{t}{2}\right) \\
& N(t)=-\exp \left(i \frac{t}{2}\right)=-\frac{1}{2} \gamma(t) \tag{2.1}
\end{align*}
$$

and then the flow-frame is:

$$
\begin{equation*}
E_{1}^{f}(t)=\left(\sin \frac{t}{2}, \cos \frac{t}{2}\right), \quad E_{2}^{f}(t)=\left(-\cos \frac{t}{2}, \sin \frac{t}{2}\right)=\overline{N(t)}, \tag{2.2}
\end{equation*}
$$

where we use the complex conjugate; the ordinary differential equation (1.10) is: $u^{\prime \prime}+\frac{1}{4} u=0$. An associated interesting problem is if there exists a Riemannian metric on (an open subset of) \mathbb{R}^{2} having as geodesics the Euclidean circles; for the case of Finslerian metric this problem is already solved in [1].

Example 2.2. Fix (M, g) a rotationally symmetric surface i.e., conform [6], M is the product $\mathbb{S}^{1} \times I$ with \mathbb{S}^{1} the Euclidean unit circle and $I \subseteq \mathbb{R}$, endowed with the warped product metric:

$$
\begin{equation*}
g=d r^{2}+f(r)^{2} d \varphi^{2}, \quad r \in I, \quad \varphi \in \mathbb{S}^{1} \tag{2.3}
\end{equation*}
$$

This surface is oriented by the 2-form $d r \wedge d \varphi$ and then:

$$
\begin{equation*}
J\left(\frac{\partial}{\partial r}\right)=\frac{1}{f(r)} \frac{\partial}{\partial \varphi}, \quad J\left(\frac{\partial}{\partial \varphi}\right)=-f(r) \frac{\partial}{\partial r} . \tag{2.4}
\end{equation*}
$$

Fix now the curve $\gamma(t):=(r(t), \varphi(t))$ parameterized by the arc-length t. Let $\sigma=\sigma(t)$ be the structural angle of γ i.e. the oriented angle between $\frac{\partial}{\partial r}$ and T. It follows the Frenet frame:

$$
\begin{equation*}
T(t)=\left.\cos \sigma(t) \frac{\partial}{\partial r}\right|_{t}+\left.\frac{\sin \sigma(t)}{f(r(t))} \frac{\partial}{\partial \varphi}\right|_{t}, \quad N(t)=-\left.\sin \sigma(t) \frac{\partial}{\partial r}\right|_{t}+\left.\frac{\cos \sigma(t)}{f(r(t))} \frac{\partial}{\partial \varphi}\right|_{t} . \tag{2.5}
\end{equation*}
$$

The first derivative of T is then:

$$
\begin{equation*}
\left(\nabla_{\gamma^{\prime}} \gamma^{\prime}\right)(t)=\left(\sigma^{\prime}(t)+\frac{f^{\prime}(r)}{f(r)}(t) \sin \sigma(t)\right) N(t) \tag{2.6}
\end{equation*}
$$

which provides the expression of the geodesic curvature for γ :

$$
\begin{equation*}
k(t)=\sigma^{\prime}(t)+\frac{f^{\prime}(r)}{f(r)}(t) \sin \sigma(t) \tag{2.7}
\end{equation*}
$$

The Proposition 1.1 of the cited paper [6] (or [7, p. 89]) offers a conservation law along γ, which for our constant $k=\frac{1}{2}$ reads as follows:

Proposition 2.3. The smooth function:

$$
\begin{equation*}
t \in[0, L(\gamma)) \rightarrow \mathcal{F}(t):=f(r(t)) \sin \sigma(t)-\frac{1}{2} \int_{r(0)}^{r(t)} f(\xi) d \xi \tag{2.8}
\end{equation*}
$$

is constant along a given flow-selfdual curve γ.
The Euclidean plane geometry means $f(r)=r$ and the circle $\mathcal{C}(O, R>0)$ gives $r=$ constant $=R, \varphi(t)=\frac{t}{R}, t \in[0,2 \pi R]$ and $\sigma=$ constant $=\frac{\pi}{2}$.

Example 2.4. For the hyperbolic plane geometry we use the Poincaré model of [5, p. 103]: $\mathbb{H}^{2}:=\left(\mathbb{R}_{y>0}^{2} ; g=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)\right)$. Fix a curve $\gamma: t \in[0,+\infty) \rightarrow$ $(x(t), y(t)) \in \mathbb{H}^{2}$ parametrized by arc-length. With the computation of the geodesic curvature from the cited book it follows that γ is a flow-selfdual curve if and only if the following differential system is satisfied:

$$
\begin{equation*}
\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}=[y(t)]^{2}, \quad x^{\prime}(t)\left(\frac{1}{y(t)}+\frac{y^{\prime \prime}(t)}{y(t)^{2}}\right)-x^{\prime \prime}(t) \frac{y^{\prime}(t)}{y(t)^{2}}=\frac{1}{2} . \tag{2.9}
\end{equation*}
$$

A straightforward computation gives a single second order differential equation, which is written in a more simple form as:

$$
\begin{equation*}
\ddot{y}-\frac{2}{y} \dot{y}+y=\frac{\sqrt{y^{2}-\dot{y}^{2}}}{2} \tag{2.10}
\end{equation*}
$$

Unfortunately, being a nonlinear differential equation we cannot solve explicitly. In fact, we know that the types of hyperbolic curves with constant geodesic curvature k are as follows: a) circles, for $k>1$; b) horocycles, with $k=1$; c) equidistant curves (i.e. curves of finite distance from a hyperbolic geodesic), for $k \in(0,1)$. Hence, the hyperbolic flow-selfdual curves are a family of equidistant curves.

Example 2.5. Let γ be a arc-length parametrized curve in the unit sphere $\mathbb{S}^{2}:=\left(S^{2} \subset \mathbb{R}^{3}, g=\left.\left(\langle\cdot, \cdot\rangle_{\text {can }}\right)\right|_{S^{2}}\right)$. Its usual Frenet curvature and torsion as space curve are $k^{F}>0$ and τ^{F}. In fact, from the relationship:

$$
\begin{equation*}
k^{F}=\sqrt{k^{2}+1} \geq 1 \tag{2.11}
\end{equation*}
$$

it follows that a flow-selfdual curve on \mathbb{S}^{2} have a constant Frenet curvature $k^{F}=\frac{\sqrt{5}}{2}$. As concrete example we have the horizontal circle:

$$
\begin{equation*}
\gamma(t)=\frac{2}{\sqrt{5}}\left(\cos \left(\frac{\sqrt{5}}{2} t\right), \sin \left(\frac{\sqrt{5}}{2} t\right), \frac{1}{2}\right), t \in \mathbb{R}, \quad \tau^{F} \equiv 0 \tag{2.12}
\end{equation*}
$$

More generally, recall that for the given arc-length parametrized curve γ on the regular surface $S \subset \mathbb{R}^{3}$ its geodesic curvature satisfies:

$$
\begin{equation*}
k=k^{F} \sin \theta \tag{2.13}
\end{equation*}
$$

with θ the oriented angle between the normal N_{γ} of the curve and the normal N_{S} of S. For a flow-selfdual curve on $S=S^{2}$ it results the angle θ provided by:

$$
\begin{equation*}
\sin \theta=\frac{1}{\sqrt{5}}, \quad \cos \theta= \pm \frac{2}{\sqrt{5}} . \tag{2.14}
\end{equation*}
$$

3. Conclusions

This note concerns with a particular class of curves in an orientable geometric surface $\left(M^{2}, g\right)$. The curves in this class have a constant geodesic curvature, and hence they are remarkable objects for the differential geometry of the given pair $\left(M^{2}, g\right)$. Four examples illustrate the significance of these curves in some important geometries. From a dynamical point of view we generalise the FermiWalker derivative and we hope this operator to become more suitable in some future works.

References

[1] M. Crampin, T. Mestdag, A class of Finsler surfaces whose geodesics are circles, Publ. Math. Debr., 84 (2014), 3-16.
[2] M. Crasmareanu, Scalar curvature for middle planes in odd-dimensional torse-forming almost Ricci solitons, Kragujevac J. Math., 43 (2019), 275279.
[3] M. Crasmareanu, The flow-curvature of curves in a geometric surface, Commun. Korean Math. Soc., 38 (2023), 1261-1269.
[4] M. Crasmareanu, C. Frigioiu, Unitary vector fields are Fermi-Walker transported along Rytov-Legendre curves, Int. J. Geom. Methods Mod. Phys., 12 (2015), Article ID 1550111.
[5] G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in classical geometries. A treatment by moving frames, Universitext, Springer, 2016.
[6] M. Ritoré, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Commun. Anal. Geom., 9 (2001), 10931138.
[7] M. Ritoré, Isoperimetric inequalities in Riemannian manifolds, Progress in Mathematics, 348, Cham: Birkhäuser, 2023.

Accepted: 30.12.2023

