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Abstract. A generalized inverse for matrices is introduced, which is called the
MPEPN-inverse. Let A be a complex matrix, the MPEPN-inverse can be described
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by using the part A1 in the EP-nilpotent decomposition of A and the Moore-Penrose
inverse of A. Let A = A1 + A2 be the EP-nilpotent decomposition of A, AE,‡ be
the MPEPN-inverse of A and A† be the Moore-Penrose inverse of A, one can show
that AE,‡AAE,‡ = AE,‡ does not hold in general, moreover, necessary and sufficient
conditions to make the MPEPN-inverse to be an outer inverse of A are given, that
is AE,‡AAE,‡ = AE,‡ hold if and only if one of the conditions (A1A

†)2 = A1A
† and

PR(A2)A
�O = 0 holds, where A �O is the Core-EP inverse of A and PR(A2) is the projection

on R(A2). If A1A
† is an idempotent, then the MPEPN-inverse of A coincides with the

(A†A1PR(A∗), PR(A)A1A
†)-inverse of A , i.e. coincides the inverse along A†A1PR(A∗)

and PR(A)A1A
†.

Keywords: MPEPN-inverse, EP-nilpotent decomposition, Moore-Penrose inverse,
index, outer inverse.
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1. Introduction

Let C be the complex field. The set Cm×n denotes the set of all m× n complex
matrices over the complex field C. Let A ∈ Cm×n. The symbol A∗ denotes the
conjugate transpose of A. Notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn} and
N (A) = {x ∈ Cn : Ax = 0, x ∈ Cn} will be used in the sequel. An integer k
is called the index of A ∈ Cn×n if k is the smallest positive integer such that
rank (Ak) = rank(Ak+1) holds and is denoted by ind(A).

Let A ∈ Cm×n. A matrix X = A† ∈ Cn×m is called the Moore-Penrose
inverse of A [8, 12] if AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA
hold. Let A,X ∈ Cn×n with ind (A) = k. Then algebraic definition of the
Drazin inverse as follows: if

AXA = A, XAk+1 = Ak and AX = XA,

then X is called a Drazin inverse of A. If such X exists, then it is unique and
denoted by AD [4]. More generalized inverses can be seen as follows:core inverse
[2] by using Σ−K −L decomposition [7], core-EP inverse [9] and DMP inverse
[11].

Let A,B,C ∈ Cn×n. The (B,C)-inverse of A is unique (see [1, 5, 13]).
Several kinds of generalized inverses are all special cases of the (B,C)-inverse
of the matrix A: Moore-Penrose inverse [8, 12], Drazin inverse [4], core inverse
[2], DMP-inverse [11] and core-EP inverse [9].

For a complex matrix with a given index, there are three important matrix
decompositions: core-nilpotent decomposition [10], Core-EP decomposition [14]
and EP-nilpotent decomposition [15]. The CMP inverse can be introduced by
the core-nilpotent decomposition and the MPCEP-inverse can be introduced by
the Core-EP decomposition. Motivated by the idea of the CMP inverse and
the MPCEP-inverse of a complex matrix, in this paper, the MPEPN-inverse
was introduced. Specifically, the CMP inverse of A ∈ Cn×n was introduced by
Mehdipour and Salemi in [10], this inverse using the core part in core-nilpotent
decomposition of A and the Moore-Penrose inverse of A. The MPCEP-inverse
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can be described by using the core part in Core-EP decomposition of A and the
Moore-Penrose inverse of A [3]. Motivated by the above method, we have a natu-
ral question as follows: Using the core part A1 in EP-nilpotent decomposition of
A and the Moore-Penrose inverse of A to introduce a matrixX = A†A1A

†. Thus,
the MPEPN-inverse can be described by using the core part in EP-nilpotent de-
composition of A and the Moore-Penrose inverse of A [15].

2. Existence criteria and expressions of the MPEPN-inverse

The EP-nilpotent decomposition of A was introduced by Wang and Liu in [15].
That is A can be written as A = A1 + A2, where k is the index of A, A1 is an
EP matrix (i.e. A1A

†
1 = A†

1A1), A
k+1
2 = 0 and A2A1 = 0. The following lemma

holds by [15, Theorem 2.2].

Lemma 2.1 ([15, Theorem 2.1]). Let A ∈ Cn×n and A = A1 + A2 be the EP-
nilpotent decomposition of A. Then there exists a unitary matrix U ∈ Cn×n

such that

(1) A1 = U

[
T 0
0 0

]
U∗ and A2 = U

[
0 S
0 N

]
U∗,

where ind (A) = k, T is nonsingular, S and N are matrices with some suitable
sizes.

The Core-EP decomposition in the following lemma is useful in the study
of the Core-EP inverse. Ferreyra et al.[6] given the explicit expressions of the
Moore-Penrose inverse by using the Core-EP decomposition, which can be seen
in Lemma 2.3.

Lemma 2.2 ([14, Theorem 2.1]). Let A ∈ Cn×n and A = A′
1 +A′

2 be the Core-
EP decomposition of A. Then there exists a unitary matrix U ∈ Cn×n such
that

(2) A′
1 = U

[
T S
0 0

]
U∗ and A′

2 = U

[
0 0
0 N

]
U∗,

where ind (A) = k, T is nonsingular, S and N are matrices with some suitable
sizes.

Lemma 2.3 ([6, Theorem 3.9]). Let A ∈ Cn×n with ind(A) = k. If A has the
Core-EP decomposition of A as (2.2) in Lemma 2.2, then

A† = U

[
T ∗∆ −T ∗∆SN †

(En−t −N †N)S†∆ N † − (En−t −N †N)S∗∆SN †

]
U∗,

where t = rank(Ak), ∆ = [TT ∗+S(En−t−N †N)S∗]−1 and En−t is the identity
of size n− t.
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Lemma 2.4 ([8]). Let A ∈ Cn×n.Then

(1) A∗B = A∗C if and only if A†B = A†C for any B,C ∈ Cn×n;

(2) BA∗ = CA∗ if and only if BA† = CA† for any B,C ∈ Cn×n.

The core part of the EP-nilpotent decomposition can be expressed by the
Moore-Penrose inverse of Ak, where ind(A) = k. The core part of the EP-
nilpotent decomposition is useful in our paper.

Lemma 2.5 ([15, Theorem 2.2]). Let A ∈ Cn×n with the index of A is k and
A = A1 + A2 be the EP-nilpotent decomposition of A as (2.1). Then A1 =
AAk(Ak)†.

Lemma 2.6 ([5, Theorem 2.1 and Proposition 6.1]). Let A ∈ Cn×n. Then
Y ∈ Cn×n is a (B,C)-inverse of A if and only if Y AY = Y , R(Y ) = R(B) and
N (X) = N (C).

Motivated by the definition of the CMP inverse in [10], in the following
definition we will introduced the MPEPN-inverse of a complex matrix by using
the Moore-Penrose inverse of such matrix and the core part of the EP-nilpotent
decomposition of this matrix, then one can prove that this inverse is unique.

Definition 2.1. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then X = A†A1A

† is called the
MPEPN-inverse of A.

Example 2.1. The MPEPN-inverse A†A1A
† is different to A†ADA†. Since by

Lemma 2.5, we have A1 = AAk(Ak)† and by [5], we have AD = Ak(A2k+1)†Ak,
thus A†A1A

† = A†Ak+1(Ak)†A† and A†ADA† = A†Ak(A2k+1)†AkA†. Let

A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4, one check that A†A1A
† =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0



and A†ADA† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 0 0

.
Let A ∈ Cn×n with the index of A is k. The equality AAk(Ak)† = Ak(Ak)†A

does not hold in general, a counterexample will be given in the following exam-
ple.
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Example 2.2. Let A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4. Then it is easy to check

that the index of A is k = 2, but AAk(Ak)† = AA2(A2)† =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

,

Ak(Ak)†A = A2(A2)†A =


1 0 1 −1
0 1 1 −1
0 0 0 0
0 0 0 0

, that is, AAk(Ak)† ̸= Ak(Ak)†A.

Moreover, we have AD =


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

, A† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 1 0

 and AE,‡ =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0

.
Let A ∈ Cn×n with the index of A is k. The following Example 2.3 shows

that the equality AAk(Ak)† = Ak(Ak)†A can hold for some matrices.

Example 2.3. Let A =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

 ∈ C4×4. Then it is easy to check that

ind(A) = k = 1 and AAk(Ak)† = AAA† =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

, Ak(Ak)†A = AA†A =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

, that is, AAk(Ak)† = Ak(Ak)†A. Moreover, we have AE,‡ =

AD = A† =


1 0 0 0
0 1 0 0
0 0 1

5
2
5

0 0 2
5

4
5

.
Example 2.2 and Example 2.3 show that the equality AAk(Ak)† = Ak(Ak)†A

does not hold in general. One sufficient condition such that the equality holds
can be seen in the following proposition.
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Theorem 2.1. Let A ∈ Cn×n with ind (A) = k. If PA∗Ak = 0, then AAk(Ak)† =
Ak(Ak)†A, where P = En −Ak(Ak)† and En is the identity of size n.

Proof. Since P = En − Ak(Ak)†, then PA∗A† = 0 is equivalent to [En −
Ak(Ak)†]A∗Ak = 0, which is equivalent to

A∗Ak = Ak(Ak)†A∗Ak.(3)

Taking ∗ on (3) gives (A∗Ak)∗ = [Ak(Ak)†A∗Ak]∗, then

(Ak)∗A = (Ak)∗A[Ak(Ak)†]∗ = (Ak)∗AAk(Ak)†.(4)

By (4) and Lemma 2.4, we have

(Ak)†A = (Ak)†AAk(Ak)†.(5)

Pre-multiplying by Ak on (5) gives

Ak(Ak)†A = Ak(Ak)†AAk(Ak)† = Ak(Ak)†AkA(Ak)† = AkA(Ak)† = AAk(Ak)†,

that is, AAk(Ak)† = Ak(Ak)†A.

By using the Moore-Penrose inverse of A and the core part in the EP-
nilpotent decomposition of A, the formula of the MPEPN-inverse of A was
given. Moreover, we can get the formula A†Ak+1(Ak)†A† is the MPEPN-inverse
of A.

Theorem 2.2. Let A ∈ Cn×n with the index of A is k and A1 be the core part
in the EP-nilpotent decomposition of A, then A†Ak+1(Ak)†A† is the MPEPN-
inverse of A.

Proof. Let X be the MPEPN-inverse of A, we have A1 = AAk(Ak)† by
Lemma 2.5. By Definition 2.1, we have X = A†A1A

†. Thus, the conditions
A1 = AAk(Ak)† and X = A†A1A

† give

X = A†A1A
† = A†AAk(Ak)†A† = A†Ak+1(Ak)†A†.

3. When the MPEPN-inverse of complex matrix is an outer inverse
of this matrix

Let A ∈ Cn×n with the index of A is k and X ∈ Cn×n be the MPEPN-inverse
of A. In general, the MPEPN-inverse is an outer inverse of A? The answer is
no, X = XAX does not hold, a counterexample will be given in the following
example.
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Example 3.1. Let A =


1 0 1 −1
0 1 1 −1
0 0 0 1
0 0 0 0

 ∈ C4×4. Then ind(A) = 2, but

AE,‡ =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

1
9

1
9

2
9 0

0 0 0 0

, AE,‡AAE,‡ =


14
27 −13

27
1
27 0

−13
27

14
27

1
27 0

1
27

1
27

2
27 0

0 0 0 0

, that is, AE,‡ ̸=

AE,‡AAE,‡. Moreover, A1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, A† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

1
3

1
3

2
3 0

0 0 1 0

, then

A1A
† =


2
3 −1

3
1
3 0

−1
3

2
3

1
3 0

0 0 0 0
0 0 0 0

 , (A1A
†)2 =


5
9 −4

9
1
9 0

−4
9

5
9

1
9 0

0 0 0 0
0 0 0 0

 .

Obviously, A1A
† is not an idempotent.

The above counterexample shows that X ̸= XAX, where X is the MPEPN-
inverse of A. A natural question is: when AE,‡ is an outer inverse of A. One
can show that if the condition (A1A

†)2 = A1A
† holds, then the MPEPN-inverse

of A is an outer inverse of A.

Theorem 3.1. Let A ∈ Cn×n with the index of A is k and A1 be the core
part in the EP-nilpotent decomposition of A. Then XAX = X if and only if
(A1A

†)2 = A1A
†, where X is the MPEPN-inverse of A.

Proof. Let X be the MPEPN-inverse of A, then by Definition 2.1 we have
X = A†A1A

†. We have the following conditions of equation XAX = X.

XAX = X ⇐⇒ A†A1A
† = A†A1A

†AA†A1A
† = A†A1A

†A1A
†,

that is,

XAX = X ⇐⇒ A†A1A
† = A†A1A

†A1A
†.(6)

By Lemma 2.5, we know A1 = AAk(Ak)†, thus (6) gives

XAX = X ⇐⇒ A†AAk(Ak)†A† = A†AAk(Ak)†A†AAk(Ak)†A†.(7)

Pre-multiplying by A on the right of (7) implies

AA†AAk(Ak)†A† = AA†AAk(Ak)†A†AAk(Ak)†A†.

Then,

AAk(Ak)†A† = AAk(Ak)†A†AAk(Ak)†A†.(8)

Thus, we have the equality in (8) is equivalent to A1A
† = A1A

†A1A
† by A1 =

AAk(Ak)†, that is, (A1A
†)2 = A1A

†.
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In the following, we show that the MPEPN-inverse of A is an outer inverse
under the condition S(En−t − N †N)S∗ = 0, where En−t is the identity of size
n− t and reciprocally.

Theorem 3.2. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then XAX = X if and only if
S(En−t − N †N)S∗ = 0, where t = rank(Ak) and X is the MPEPN-inverse of
A.

Proof. By Lemma 1, we have A = A1 + A2, where A1 = U

[
T 0
0 0

]
U∗ and

A2 = U

[
0 S
0 N

]
U∗, where t is the rank of Ak, the size of T and N are t and

n− t, respectively. Then by Lemma 1 and Lemma 2.3, we have

A1A
† = U

[
T 0
0 0

] [
T ∗∆ −T ∗∆SN †

(En−t −N †N)S†∆ N † − (En−t −N †N)S∗∆SN †

]
U∗

= U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗.

By (A1A
†)2 = A1A

†, we have(
U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗

)2

= U

[
TT ∗∆ −TT ∗∆SN †

0 0

]
U∗,

which is equivalent to[
(TT ∗∆)2 −TT ∗ △ TT ∗∆SN †

0 0

]
=

[
TT ∗△ −TT ∗ △ SN †

0 0

]
(9)

since U is nonsingular because U is unitary. The equality in (9) gives

(10)

{
(TT ∗∆)2 = TT ∗∆

TT ∗∆TT ∗∆SN † = TT ∗∆SN †

By Lemma 2.4, we know that (10) is equivalent to

(11)

{
(TT ∗∆)2 = TT ∗∆

TT ∗∆TT ∗∆SN∗ = TT ∗∆SN∗

Since T is nonsingular, then TT ∗ is nonsingular, then (11) is equivalent to

(12)

{
TT ∗∆ = Et

TT ∗∆SN∗ = SN∗

which is equivalent to

TT ∗∆ = Et.(13)
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Since ∆ is invertible, (13) is equivalent to

TT ∗ = ∆−1.(14)

By Lemma 2.3,

∆−1 = TT ∗ + S(En−t −N †N)S∗.(15)

By (14) and (15), we have TT ∗ = TT ∗ + S(En−t −N †N)S∗, that is, S(En−t −
N †N)S∗ = 0.

Remark 3.1. By the proof of Theorem 3.2, we have X = XAX if and only if
TT ∗ = ∆−1, where X is the MPEPN-inverse of A and ∆ = [TT ∗ + S(En−t −
N †N)S∗]−1.

In the following, we show that the MPEPN-inverse of A is an outer inverse
of A if and only if A2A

†
2A

�O = 0.

Theorem 3.3. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1) and A = A′

1 + A′
2 be the Core-EP

decomposition of A as (2.2). Then XAX = X if and only if A �OA1A2A
∗
2A1A

�O =
A′

1(A
′
2)

†A′
2(A

′
1)

∗, where X is the MPEPN-inverse of A.

Proof. Let X be the MPEPN-inverse of A. By Theorem 3.2, we have XAX =
X if and only if S(En−t −N †N)S∗ = 0, that is,

SS∗ = SN †NS∗.(16)

We have

A2A
∗
2 = U

[
0 S
0 N

]
U∗U

[
0 0
S∗ N∗

]
U∗ = U

[
SS∗ SN∗

NS∗ NN∗

]
U∗(17)

by A2 = U

[
0 S
0 N

]
U∗ and A∗

2 = U∗
[
0 0
S∗ N∗

]
U . Moreover, by Lemma 1 we

have

A1 = U

[
T 0
0 0

]
U∗.(18)

By (17) and (18), we have

A2A
∗
2A1 = U

[
SS∗T 0
NS∗T 0

]
U∗.(19)

By (19), we have

A1A2A
∗
2A1 = U

[
T 0
0 0

]
U∗U

[
SS∗T 0
NS∗T 0

]
U∗ = U

[
TSS∗T 0

0 0

]
U∗.(20)
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By [14, Theorem 3.2], we have

A �O = U

[
T−1 0
0 0

]
U∗.(21)

By (20) and (21), we have

A �OA1A2A
∗
2A1A

�O = U

[
SS∗ 0
0 0

]
U∗.(22)

By Lemma 2.2, we have (A′
2)

† = U

[
0 0
0 N †

]
U∗, then

(A′
2)

†A′
2 = U

[
0 0
0 N †N

]
U∗.(23)

Since (A′
1)

∗ = U

[
T ∗ 0
S∗ 0

]
U∗. Thus by (23), we have

A′
1(A

′
2)

†A′
2(A

′
1)

∗ = U

[
T S
0 0

] [
0 0
0 N †N

] [
T ∗ 0
S∗ 0

]
U∗

= U

[
0 SN †N
0 0

] [
T ∗ 0
S∗ 0

]
U∗

= U

[
SN †NS∗ 0

0 0

]
U∗.

(24)

By (22) and (24), the equality in (16) can be written as

A �OA1A2A
∗
2A1A

�O = A′
1(A

′
2)

†A′
2(A

′
1)

∗.

Theorem 3.4. Let A ∈ Cn×n with the index of A is k and A = A1 + A2 be
the EP-nilpotent decomposition of A as (1). Then XAX = X if and only if

A2A
†
2A

�O = 0, where X is the MPEPN-inverse of A.

Proof. By Lemma 2.3, we have

(25) A†
2 = U

[
0 0

(En−t −N †N)S∗∆ N † − (En−t −N †N)S∗∆SN †

]
U∗,

where ∆ = [TT ∗ + S(En−t −N †N)S∗]−1. Then

A†
2A

�O = U

[
0 0

(En−t −N †N)S∗∆ N † − (En−t −N †N)S∗∆SN †

] [
T−1 0
0 0

]
U∗

= U

[
0 0

(En−t −N †N)S∗∆T−1 0

]
U∗.(26)
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By (26), we have

A2A
†
2A

�O = U

[
0 S
0 N

]
U∗U

[
0 0

(En−t −N †N)S∗∆T−1 0

]
U∗

= U

[
S(En−t −N †N)S∗∆T−1 0

N(En−t −N †N) 0

]
U∗.

Thus,

S(En−t−N †N)S∗ = 0 ⇐⇒ S(En−t−N †N)S∗∆T−1 = 0 ⇐⇒ A2A
†
2A

�O = 0.

Note that, the condition A2A
†
2A

�O = 0 in Theorem 3.4 can be written as
PR(A2)A

�O = 0, where PR(A2) is the orthogonal projectors onto R(A2).

4. The “distance” between the MPEPN-inverse and the inverse
along two matrices

In 2012, Drazin [5] introduced a new kind of generalized inverse based on two
elements. In 2017, Beńıtez et al. [1] investigated the (B,C)-inverse of a rectan-
gle complex matrix. The “distance” between the MPEPN-inverse and the in-
verse along two matrices can be stated by AE,‡ is the (A†A1PR(A∗), PR(A)A1A

†)-

inverse of A under the condition (A1A
†)2 = A1A

†.

Theorem 4.1. Let A ∈ Cn×n with the index of A is k and A1 be the core part
in the EP-nilpotent decomposition of A. If A1A

† is an idempotent, then X is the
(A†A1PR(A∗), PR(A)A1A

†)-inverse of A, where X is the MPEPN-inverse of A.

Proof. By Theorem 3.1, when A1A
† is an idempotent, we have XAX = X,

where X = A†A1A
† = A†Ak+1(Ak)†A†. Let B = A†A1PR(A∗) and C =

PR(A)A1A
†, then X = XAX = A†A1A

†AX = A†A1PR(A∗)X = BX, which
gives

R(X) ⊆ R(B).(27)

Moreover, the condition B = A†A1PR(A∗) = A†A1A
†A = XA implies

R(B) ⊆ R(X).(28)

By (27) and (28), we can get R(B) = R(X). For any u ∈ N (PR(A)A1A
†), that

is, PR(A)A1A
†u = 0, then Xu = XAXu = XAA†A1A

†u = XPR(A)A1A
†u = 0,

which gives

N (PR(A)A1A
†) ⊆ N (X).(29)

For any v ∈ N (X), that is, Xv = 0, then the condition PR(A)A1A
†v =

AA†A1A
†v = AXv = 0 implies

N (X) ⊆ N (PR(A)A1A
†).(30)

By (29) and (30), we have N (C) = N (X). Thus, by Lemma 2.6, we have X is
the (A†A1PR(A∗), PR(A)A1A

†)-inverse of A.
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The MPEPN-inverse of A is different from the Moore-Penrose inverse, the
DMP inverse AD,† of A ([11]), the Core-EP inverse A �O of A ([9]) and the
MPCEP-inverse A†, �O of A ([3]). The example can been seen in the following
example.

Example 4.1. Let A =


1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

 ∈ C4×4. Then it is easy to check that

AE,‡ =


1 0 1 −1
0 0 0 0
0 0 0 0
0 0 0 0

 , A† =


1 0 1 −1
0 0 1 0
0 0 0 1
0 0 0 0

 , AD,† =


1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

A �O =


1
2 0 1

2 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A†, �O =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Thus, the MPEPN-inverse is different from the above generalized inverses.

5. Conclusions

Let A be a given complex matrix with a given index, then one can get that
the computation of the MPEPN inverse of A by using the EP-nilpotent de-
composition of this matrix. There is a interesting fact about the EP-nilpotent
decomposition of A, that is one can using the Core-EP decomposition of A to get
the the EP-nilpotent decomposition of A. The future perspectives for research
are proposed:

Part 1. The MPEPN inverse is one of the useful tools to investigate the
matrix partial orders.

Part 2. The rank properties of a given matrix, such as rank (AAE,‡ −AE,‡A).

Part 3. The weighted generalized inverse of matrices related given range
space and null space.
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