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Abstract. This paper investigates the separator of Green’s classes of the full trans-
formation semigroup. The separator of a subset A of a semigroup S is the set of all
elements x ∈ S satisfying the following conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A
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1. Introduction

The separator of a subset A of a semigroup S is the set of all elements x ∈ S
satisfying the following conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A and
(S\A)x ⊆ S\A. Let π be an equivalence relation on a set X. We say that
α : X → X preserves π if, for all x, y ∈ X, (x, y) ∈ π implies (xα, yα) ∈ π.
Let Tn and Sn denote the full transformation semigroup and symmetric group,
respectively, on n = {1, . . . , n}. Denote by Sn(π) the set of all permutations on
n that preserve π. For a nonempty subset Y of n, denote by Sn(Y ) the set of all
permutations on n that permute Y . Moreover, let Sn(π, Y ) = Sn(π) ∩ Sn(Y ).
The Green’s relations on a semigroup were first studied by J.A. Green [7] in
1951. Let a and b be elements of a semigroup S. We define aL b (aRb) if a and
b generate the same principal left (right) ideal of S. The join of L and R is
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denoted by D and their intersection by H (see [3]). In 2011, A. Nagy proved
that the separator of a proper ideal of Tn is the symmetric group Sn. Guided
by the result put forth by C.G. Doss [5], we will describe the separator of the
Green’s classes of Tn. Following the convention used in [3], by a partition π of
a set X we mean the partition X/π determined by an equivalence relation π on
X. First, we show that the separator of a D-class of Tn is the symmetric group
Sn. Then, we prove that Sn(Y ) is the separator of the L -class consisting of all
elements of Tn whose image is Y . Next, we show that Sn(π) is the separator of
the R-class consisting of all elements of Tn with partition π. Finally, we show
that Sn(π, Y ) is the separator of the H -class consisting of all elements of Tn

with partition π and image Y .

2. Preliminaries

The following definitions are found in [3]. A transformation of a set X is a
single-valued mapping of X into itself. The image of an element x of X under a
transformation or mapping α is denoted by xα (rather than αx or α(x)). The
product (or iterate or composition) of two transformations α and β of X is the
transformation αβ defined by x(αβ) = (xα)β, for all x ∈ X (that is, α followed
by β). The set TX of all transformations of X is a semigroup with respect to
iteration. We call TX the full transformation semigroup on X. A one-to-one
mapping of a set X onto itself will be called a permutation of X, even when
X is infinite. The symmetric group SX on X consists of all permutations of X
under the operation of iteration.

Definition 2.1 ([3]). With each element α of TX we associate two things: (1)
the image Xα of α, also denoted by Im(α), which is defined by Xα = {xα |x ∈
X} and (2) the partition πα = α ◦ α−1 of X corresponding to α, i.e., the equiv-

alence relation on X defined by (x, y) ∈ πα if xα = yα, where x, y ∈ X. Let π♮
α

be the natural mapping of X upon the set X/πα of equivalence classes of X mod

πα. Then, xπ♮
α 7→ xα is a one-to-one mapping of X/πα upon Xα. It follows

that |X/πα| = |Xα|, and this cardinal number is called the rank of α.

The following theorem characterizes Green’s classes in terms of rank, parti-
tion, and image.

Theorem 2.1 ([3]). Let TX be the full transformation semigroup on a set X.

i. In the semigroup TX , we have D = J .

ii. There is a one-to-one correspondence between the set of all principal ideals
of TX and the set of all cardinal numbers r ≤ |X| such that the principal
ideal corresponding to r consists of all elements of TX of rank ≤ r.

iii. There is a one-to-one correspondence between the set of all D-classes of
TX and the set of all cardinal numbers r ≤ |X| such that the D-class Dr

corresponding to r consists of all elements of TX of rank r.
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iv. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all L -classes in Dr and the set of all subsets Y of X of
cardinal r such that the L -class corresponding to Y consists of all elements
of TX having image Y .

v. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all R-classes contained in Dr and the set of all partitions
π of X for which |X/π| = r such that the R-class corresponding to π consists
of all elements of TX having partition π.

vi. Let r be a cardinal number ≤ |X|. There is a one-to-one correspondence
between the set of all H -classes in Dr and the set of all pairs (π, Y ) where
π is a partition of X and Y is a subset of X such that |X/π| = |Y | = r,
such that the H -class corresponding to (π, Y ) consists of all elements of
TX having partition π and image Y .

Throughout this paper, we will only consider the finite full transformation
semigroup. Let Tn and Sn denote the full transformation semigroup and sym-
metric group, respectively, on n = {1, . . . , n}.

Lemma 2.1 ([6]). Let α ∈ Tn. Then, the following conditions are equivalent:

i) α is surjective.

ii) α is injective.

iii) α is bijective.

Lemma 2.2 ([4]). Let α, β ∈ Tn. Then, rank(αβ) ≤ min{rank(α), rank(β)}.

Lemma 2.3 ([2]). If α ∈ Sn and β ∈ Tn, then rank(αβ) = rank(βα) =
rank(β).

Next, we introduce notations for the Green’s classes of Tn. Let k ≤ n. We
denote by Dk the set of all α ∈ Tn whose rank is k. For a partition π of n and
Y ⊆ n where |n/π| = |Y | = k, let Lk(Y ) be the set of all α ∈ Dk with image
Y . Moreover, let Rk(π) be the set of all α ∈ Dk with πα = π. Finally, we
denote by Hk(π, Y ) the set of all α ∈ Dk with πα = π and Imα = Y . Then,
Hk(π, Y ) = Rk(π) ∩ Lk(Y ). By Theorem 2.1, Dk, Lk(Y ), Rk(π), and Hk(π, Y )
are precisely the D-, L -, R-, and H -classes of Tn.

Definition 2.2 ([8]). Let S be a semigroup and let A ⊆ S. The separator of
A, denoted by Sep(A), is the set of all elements x ∈ S satisfying the following
conditions: xA ⊆ A, Ax ⊆ A, x(S\A) ⊆ S\A and (S\A)x ⊆ S\A.
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2.1 Transformations preserving a partition

Definition 2.3 ([1]). Let P be a partition of a set X. We say that α ∈ TX

preserves P if, for all P ∈ P, ∃Q ∈ P such that Pα ⊆ Q.

Let T (X,P) denote the semigroup of all full transformations of X that pre-
serve the partition P. We now define a transformation preserving an equivalence
relation π. It is straightforward to show that this definition is equivalent to the
definition of a transformation preserving X/π.

Definition 2.4. Let π be an equivalence relation on a set X. We say that
α ∈ TX preserves π if, for all x, y ∈ X, (x, y) ∈ π implies (xα, yα) ∈ π.

Definition 2.5 ([10]). Let E be an equivalence relation on a set X. A selfmap
α : X → X is said to be E∗-preserving if α satisfies the following: (x, y) ∈ E if
and only if (xα, yα) ∈ E.

Remark 2.1. In view of Definition 2.4, an E∗-preserving map preserves E and
satisfies the condition that (xα, yα) ∈ E implies (x, y) ∈ E.

Definition 2.6 ([10]). Let P = {Xi | i ∈ I} be a partition of an arbitrary set
X, and let α ∈ T (X,P). The character of α is a selfmap χ(α) : I → I defined
by iχ(α) = j whenever Xiα ⊆ Xj.

Denote by Σ(X,P) the set of all α ∈ T (X,P) whose image intersects every
block of P. Sarkar and Singh [10] gave a characterization of elements in Σ(X,P).
It is useful in proving our result on the separator of an R-class.

Corollary 2.1 ([10]). Let P = {X1, . . . , Xm} be an m-partition associated with
an equivalence relation E on an arbitary set X, and let α ∈ T (X,P). Then, the
following statements are equivalent:

(i) α ∈ Σ(X,P).

(ii) χ(α) is a bijective map on {1, . . . ,m}.

(iii) α is an E∗-preserving map.

3. Main Results

In view of the definition of the separator of a subset of a semigroup [8], we have
the following remark.

Remark 3.1. Let S be a semigroup. Let A ⊆ S and x ∈ S. Then, x ∈ Sep(A)
if and only if x satisfies the following four conditions:

i) xa ∈ A, for all a ∈ A.

ii) ax ∈ A, for all a ∈ A.



THE SEPARATOR OF GREEN’S CLASSES OF THE FULL TRANSFORMATION ... 57

iii) xb ∈ S\A, for all b ∈ S\A.

iv) bx ∈ S\A, for all b ∈ S\A.

Remark 3.2 ([8]). Let S be a semigroup. Then, Sep(∅) = Sep(S) = S.

Using Theorem 2.2 (ii), Nagy proved the following result.

Theorem 3.1 ([8]). If I is a proper ideal of Tn, then Sep(I) = Sn.

3.1 The separator of D-classes

Lemma 3.1. If k ≥ 2 and β ∈ Tn\Sn, then ∃α ∈ Dk such that rank(αβ) ≤
k − 1.

Proof. Suppose k ≥ 2 and β ∈ Tn\Sn. Then, ∃x ̸= y such that xβ = yβ.
Choose an element α ∈ Dk such that x, y ∈ Imα. Then, |n/πα| = |Imα| = k
so we may choose distinct elements p1, p2, . . . , pk ∈ n such that the equivalence
classes [ps]πα and [pt]πα are disjoint for s ̸= t. Let mi = piα for i = 1, 2, . . . , k.
Then, Imα = {m1,m2, . . . ,mk}. Since x, y ∈ Imα, we have x = mi1 and
y = mi2 , for some 1 ≤ i1, i2 ≤ k with i1 ̸= i2; hence, mi1β = xβ = yβ = mi2β.
Note that, (Imα)β = {miβ | i = i1, i2} ∪ {miβ | i ∈ {1, 2, . . . , k}\{i1, i2}}.
Therefore, |Im(αβ)| = |(Imα)β| ≤ 1 + (k − 2) = k − 1.

Applying Lemma 2.3, we have the following results.

Lemma 3.2. If α ∈ Sn, β ∈ Dk, and γ ∈ Tn\Dk, then αβ, βα ∈ Dk and
αγ, γα ∈ Tn\Dk.

Lemma 3.3. If α ∈ Sn and β ∈
⋃m

i=1Dki, then αβ, βα ∈
⋃m

i=1Dki.

Lemma 3.4. Let α, γ ∈ Tn. If α ∈ Sn and γ /∈
⋃m

i=1Dki, where m < n, then
αγ, γα /∈

⋃m
i=1Dki.

Theorem 3.2. Sep(Dk) = Sn

Proof. If n = 1, then D1 = S1 = T1. By Remark 3.2, Sep(D1) = Sep(T1) =
T1 = S1. Suppose n ≥ 2 and k = 1. Note that, D1 is a proper ideal of Tn. By
Theorem 3.1, Sep(D1) = Sn. Suppose k ≥ 2. By Lemma 3.2, Sn ⊆ Sep(Dk).
Suppose β /∈ Sn. By Lemma 3.1, ∃α ∈ Dk such that rank(αβ) ≤ k − 1. Hence,
αβ /∈ Dk. Therefore, β /∈ Sep(Dk).

Next, we investigate the separator of union of D-classes. The following result
is a generalization of Theorem 3.1.

Theorem 3.3. If 1 ≤ k1 < . . . < km ≤ n where m < n, then Sep(
⋃m

i=1Dki) =
Sn.
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Proof. If m = 1, apply Theorem 3.2. Suppose m ≥ 2. By Lemmas 3.3 and 3.4,
Sn ⊆ Sep(

⋃m
i=1Dki). Suppose α /∈ Sn.

Case 1. k1 ≥ 2. By Lemma 3.1, ∃β ∈ Dk1 such that rank(βα) ≤ k1−1. Hence,
βα /∈

⋃m
i=1Dki . Therefore, α /∈ Sep(

⋃m
i=1Dki).

Case 2. k1 = 1. Suppose k1, k2, . . . , km are consecutive positive integers.
Then,

⋃m
i=1Dki is a proper ideal of Tn. Since α /∈ Sn, by Theorem 3.1, α /∈

Sep(
⋃m

i=1Dki). Suppose ki+1 − ki > 1, for some 1 ≤ i ≤ m − 1. By the
Well-ordering principle, b = min{i | ki+1 − ki > 1} exists. Then, k1, . . . , kb are
consecutive positive integers and kb < kb+1 < kb+1. But Lemma 3.1 tells us that
∃β with rank(β) = kb + 1 such that rank(βα) ≤ kb. Note that, β /∈

⋃m
i=1Dki

but βα ∈
⋃m

i=1Dki . Therefore, α /∈ Sep(
⋃m

i=1Dki).

3.2 The separator of L -classes

Given a subset Y of n with |Y | = k, let Sn(Y ) = {α ∈ Sn | Y α = Y } and
Lk(Y ) = {α ∈ Dk | Imα = Y }.

Remark 3.3. If n = k = 1, then |Y | = 1 so that L1(Y ) = T1 = S1 = S1(Y ).
Then, Sep(L1(Y )) = Sep(T1) = T1 = S1(Y ).

We will show that Sn(Y ) is the separator of the L -class consisting of all
elements of Tn whose image is Y . The next two lemmas follow immediately
from the properties of Sn and Lk(Y ).

Lemma 3.5. If α ∈ Sn(Y ) and β ∈ Lk(Y ), then αβ, βα ∈ Lk(Y ).

Lemma 3.6. If α ∈ Sn(Y ) and β ∈ Tn \ Lk(Y ), then αβ, βα ∈ Tn \ Lk(Y ).

For m = 1, . . . , n, let cm denote the constant transformation on n defined
by x 7→ m.

Theorem 3.4 ([2]). Let n ≥ 2. If A = {ck1 , . . . , ckr}, then Sep(A) = Sn(K),
where K = {k1, . . . , kr}.

Lemma 3.7. If k ≥ 2 and α ∈ Tn \ Sn with Y α = Y , then ∃γ ∈ Lk(Y ) such
that αγ /∈ Lk(Y ).

Proof. Suppose k ≥ 2 and α ∈ Tn \ Sn with Y α = Y . Since α /∈ Sn, it is not
surjective. Let s ∈ n \ Imα, Y = {y1, . . . , yk}, and Z = n \ (Y ∪ {s}). Then,
s /∈ Y since Y = Y α ⊆ Imα. For i = 1, 2, . . . , k, let

Pi =


{s}, if i = 1

{y1, y2} ∪ Z, if i = 2

{yi}, if i /∈ {1, 2}.

Consider γ : n → n where n/πγ = {P1, . . . , Pk} and Piγ = {yi}, ∀i = 1, 2, . . . , k.
Then, γ ∈ Lk(Y ) since Imγ = Y . Note that, P1γ = {s}γ = {y1}.
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Claim. y1 /∈ Imαγ. Suppose y1 ∈ Imαγ. Then, ∃x ∈ Imα such that xγ =
y1 = sγ. Hence, (x, s) ∈ πγ which implies that x ∈ [s]πγ = P1. Then, x = s, a
contradiction, since s /∈ Imα. Hence, y1 /∈ Imαγ which implies that Y ̸= Imαγ.
Therefore, αγ /∈ Lk(Y ).

Theorem 3.5. Sep(Lk(Y )) = Sn(Y )

Proof. If n = k = 1, by Remark 3.3, Sep(L1(Y )) = S1(Y ). Suppose n ≥ 2
and k = 1. Then, |Y | = 1. Let Y = {m}. Then, L1(Y ) = {cm}. By Theorem
3.4, Sep(L1(Y )) = Sn(Y ). Now, suppose k ≥ 2. By Lemmas 3.5 and 3.6,
Sn(Y ) ⊆ Sep(Lk(Y )). Suppose α /∈ Sn(Y ).

Case 1. Y α ̸= Y . Let β ∈ Lk(Y ). Then, Imβα = (Imβ)α = Y α ̸= Y which
implies that βα /∈ Lk(Y ). Therefore, α /∈ Sep(Lk(Y )).

Case 2. α /∈ Sn with Y α = Y . By Lemma 3.7, α /∈ Sep(Lk(Y )).

3.3 The separator of R-classes

The next two lemmas are immediate from the definitions.

Lemma 3.8. Let α, β ∈ TX and x, y ∈ X. Then, (xα, yα) ∈ πβ if and only if
(x, y) ∈ παβ.

Lemma 3.9. If α, β ∈ TX , then πα ⊆ παβ.

Lemma 3.10. If α ∈ SX and β ∈ TX , then πβα = πβ.

Proof. Let x, y ∈ X. Since α is injective,

x(βα) = y(βα) ⇐⇒ (xβ)α = (yβ)α ⇐⇒ xβ = yβ.

Let π be an equivalence relation on n. Then, n/π is a partition of n. De-
note by Tn(π) the semigroup T (n, n/π). Moreover, let Σn(π) = Σ(n, n/π) and
Sn(π) = S(n, n/π). Since Sn(π) = Tn(π) ∩ Sn and Sn(π) ⊆ Σn(π) ⊆ Tn(π), we
have Sn(π) ⊆ Sn ∩ Σn(π) ⊆ Sn ∩ Tn(π) = Sn(π). Thus, we have the following
remark.

Remark 3.4. Sn(π) = Sn ∩ Σn(π) = Sn ∩ Tn(π).

Let Rk(π) denote the R-class consisting of all α ∈ Dk with partition π.

Lemma 3.11. If α ∈ Sn and β ∈ Rk(π), then βα ∈ Rk(π).

Proof. By Lemma 3.10, πβα = πβ = π. Therefore, βα ∈ Rk(π).

Lemma 3.12. If α ∈ Σn(π) and β ∈ Rk(π), then αβ ∈ Rk(π).

Proof. Let x, y ∈ n. By Corollary 2.1, α is π∗-preserving. Then, by Lemma
3.8, (x, y) ∈ παβ ⇐⇒ (xα, yα) ∈ πβ = π ⇐⇒ (x, y) ∈ π. Thus, παβ = π.
Therefore, αβ ∈ Rk(π).
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Lemma 3.13. If α ∈ Sn(π) and γ ∈ Tn\Rk(π), then αγ, γα ∈ Tn\Rk(π).

Proof. By Remark 3.4, Sn(π) = Sn ∩ Σn(π). Suppose α ∈ Sn(π) and γ ∈
Tn\Rk(π). Since Sn(π) is a group, α−1 ∈ Sn(π). Suppose γ /∈ Dk. By Lemma
3.2, αγ, γα /∈ Dk which implies that αγ, γα /∈ Rk(π). Suppose πγ ̸= π.

Case 1. π ̸⊆ πγ . Then, ∃(u, v) ∈ π such that (u, v) ̸∈ πγ . Then, uγ ̸= vγ. Since
α is injective, uγα ̸= vγα. Then, (u, v) /∈ πγα. Thus, π ̸= πγα. Let u′ = uα−1

and v′ = vα−1. Then, u′α = u and v′α = v. Since α−1 preserves π, we have
that

(u, v) ∈ π =⇒ (uα−1, vα−1) ∈ π =⇒ (u′, v′) ∈ π.

However, since u′αγ = uγ ̸= vγ = v′αγ, we have (u′, v′) /∈ παγ . Thus, π ̸= παγ .
Therefore, αγ, γα /∈ Rk(π).

Case 2. πγ ̸⊆ π. Then, ∃(x, y) ∈ πγ such that (x, y) /∈ π. Then, xγ = yγ and

xγ = yγ =⇒ xγα = yγα =⇒ (x, y) ∈ πγα.

Thus, πγα ̸= π. Let x′ = xα−1 and y′ = yα−1. Then, x′α = x and y′α = y. By
Corollary 2.1, α−1 is π∗-preserving. Then

(x, y) ̸∈ π =⇒ (xα−1, yα−1) ̸∈ π =⇒ (x′, y′) /∈ π.

However, since x′αγ = xγ = yγ = y′αγ, we have (x′, y′) ∈ παγ . Thus, παγ ̸= π.
Therefore, αγ, γα /∈ Rk(π).

Note that, |n/π| = 1 if and only if n/π = {n}. Clearly, R1(π) ⊆ D1. Let
α ∈ D1. Then, α has rank 1 which means that it only has one equivalence class.
Then, πα = π. Thus, we have the following remark

Remark 3.5. R1(π) = D1.

Theorem 3.6. Sep(Rk(π)) = Sn(π).

Proof. Suppose k = 1. By Theorem 3.2, Sep(R1(π)) = Sep(D1) = Sn = Sn(π).
Suppose k ≥ 2. Since Sn(π) = Sn ∩ Σn(π), by Lemmas 3.11, 3.12, and 3.13,
Sn(π) ⊆ Sep(Rk(π)). Now, suppose α /∈ Sn(π). Let β ∈ Rk(π).

Case 1. α /∈ Tn(π). Then, α does not preserve π; hence, ∃(x, y) ∈ π such that
(xα, yα) /∈ π = πβ. By Lemma 3.8, (x, y) /∈ παβ. Thus, π ̸= παβ which implies
that αβ /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).

Case 2. α /∈ Sn. Then, ∃x, y ∈ n with x ̸= y such that xα = yα. Suppose
(x, y) /∈ π. Since xαβ = yαβ, we have (x, y) ∈ παβ. Thus, παβ ̸= π which
implies that αβ /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).

Suppose (x, y) ∈ π. Since k ≥ 2, we can choose q ∈ n such that (x, q) /∈ π.
Consider an element γ ∈ Rk(π) such that xγ = x and qγ = y. Then, xγα =
xα = yα = qγα which implies that (x, q) ∈ πγα. Thus, πγα ̸= π. It follows that
γα /∈ Rk(π). Therefore, α /∈ Sep(Rk(π)).
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3.4 The separator of H -classes

For a partition π of n and Y ⊆ n with |n/π| = |Y |, let Hk(π, Y ) denote the H -
class consisting of all α ∈ Dk with partition π and image Y . Clearly, Hk(π, Y ) =
Rk(π) ∩ Lk(Y ). Moreover, denote by Sn(π, Y ) the intersection of Sn(π) and
Sn(Y ). We will show that Sn(π, Y ) is the separator of Hk(π, Y ).

Lemma 3.14. Sn(π, Y ) ⊆ Sep(Hk(π, Y )).

Proof. Suppose α ∈ Sn(π, Y ). Let β ∈ Hk(π, Y ). Applying Lemma 3.5, we
have αβ, βα ∈ Lk(Y ). Then, by Lemma 3.12, αβ ∈ Rk(π). Moreover, by Lemma
3.10, πβα = πβ = π, which implies that βα ∈ Rk(π). Therefore, αβ, βα ∈
Hk(π, Y ). Let γ ∈ Tn\Hk(π, Y ). Suppose γ /∈ Rk(π). By Lemma 3.13, αγ, γα /∈
Rk(π). Suppose γ /∈ Lk(Y ). By Lemma 3.6, αγ, γα /∈ Lk(Y ). Then, αγ, γα ∈
Tn\Hk(π, Y ). Therefore, α ∈ Sep(Hk(π, Y )).

Lemma 3.15. If α ∈ Tn\Sn with Y α = Y such that (n\Imα)α ∩ Y ̸= ∅, then
∃β ∈ Tn\Hk(π, Y ) such that βα ∈ Hk(π, Y ).

Proof. Let n/π = {P1, . . . , Pk} and Y = {y1, . . . , yk}. Suppose α ∈ Tn\Sn with
Y α = Y such that (n\Imα)α ∩ Y ̸= ∅. Let t ∈ (n\Imα)α ∩ Y . Then, t = sa,
for some s ∈ n\Imα. Since Y = Y α, ∃ym ∈ Y such that t = ymα. Note that,
s /∈ Y since Y = Y α ⊆ Imα. Let Y ′ = Y \{ym} ∪ {s} and consider β ∈ Tn with
πβ = π and Imβ = Y ′, where Pmβ = {s} and Piβ = {yi}, for all i ̸= m. Since
Imβ ̸= Y , we have β /∈ Hk(π, Y ). By Lemma 3.9, πβ ⊆ πβα.

Claim. πβα ⊆ πβ. Suppose (x, y) /∈ πβ. Then, xβ ̸= yβ. Then, at least
one of xβ or yβ must belong to Y ; otherwise, xβ = s = yβ, a contradiction.
Suppose both are elements of Y , that is, xβ, yβ ∈ Y . Since Y α = Y , the map
α|Y : Y → Y is surjective hence injective. Then, xβα ̸= yβα which implies that
(x, y) /∈ πβα. Suppose only one of them is an element of Y . Without loss of
generality, assume xβ ∈ Y and yβ /∈ Y . Then, xβ = yi, for some i ̸= m and
yβ = s. Since α|Y is injective, we have

xβα = yiα ̸= ymα = t = sα = yβα.

Hence, (x, y) /∈ πβα. This proves our claim. We have shown that πβα = πβ = π.
Moreover, Pmβα = {s}α = {t} = {ymα} and Piβα = {yi}α = {yiα}, for all
i ̸= m. Hence, Imβα = Y α = Y . Therefore, βα ∈ Hk(π, Y ).

Lemma 3.16. If α ∈ Σn(π)\Sn with Y α = Y , then α /∈ Sep(Hk(π, Y )).

Proof. Let n/π = {P1, . . . , Pk} and Y = {y1, . . . , yk}. Suppose α ∈ Σn(π)\Sn

with Y α = Y . Since α /∈ Sn, α is not surjective; hence, n\Imα ̸= ∅. If
(n\Imα)α ∩ Y ̸= ∅, by Lemma 3.15, α /∈ Sep(Hk(π, Y )). Suppose (n\Imα)α ∩
Y = ∅. Let s ∈ n\Imα. Then, sα /∈ Y . Since n/π is a partition of n, s ∈ Pj ,
for some j with 1 ≤ j ≤ k. Then, by Corollary 2.1, χ(α) is bijective; hence there
exists m with 1 ≤ m ≤ k such that mχ(α) = j, that is, Pmα ⊆ Pj . Let z ∈ Pm.
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Then, zα ∈ Pj and zα ̸= s, since s /∈ Imα. Thus, Pj\{s} ̸= ∅. Consider an
element β ∈ Dk+1 with n/πβ = {Q1, . . . , Qk+1}, where

Qi =


Pi, if i /∈ {j, k + 1}
Pj\{s}, if i = j

{s}, if i = k + 1,

with Qiβ = {yi}, for all i = 1, . . . , k and Qk+1β = {sα}.

Claim 1. πβ ⊆ π. Suppose (x, y) ∈ πβ. Then, x, y ∈ Qi, for some 1 ≤ i ≤ k+1.
If i /∈ {j, k + 1}, then x, y ∈ Pi. If i = j, then Qi = Pj\{s} so x, y ∈ Pj . If
i = k + 1, then x = y = s. Thus, (x, y) ∈ π. This proves Claim 1.

Claim 2. (xα, yα) ∈ π implies (xα, yα) ∈ πβ. Suppose (xα, yα) ∈ π. Then
xα, yα ∈ Pi, for some 1 ≤ i ≤ k. If i ̸= j, then xα, yα ∈ Qi. We now consider
the case where i = j. Then, xα, yα ∈ Pj . Note that, xα and yα are both not
equal to s, since s /∈ Imα. Then

xα, yα ∈ Pj =⇒ xα, yα ∈ Pj\{s} =⇒ xα, yα ∈ Qj .

Thus, (xα, yα) ∈ πβ. This proves Claim 2. Note that, the converse of Claim 2
is true by Claim 1. By Corollary 2.1, α is π∗-preserving. By Lemma 3.8,

(x, y) ∈ παβ ⇐⇒ (xα, yα) ∈ πβ ⇐⇒ (xα, yα) ∈ π ⇐⇒ (x, y) ∈ π.

Thus, παβ = π. Let Pi ∈ n/π. Then, by Corollary 2.1, χ(α) is bijective; hence
there exists i∗ with 1 ≤ i∗ ≤ k such that i∗χ(α) = i, that is, Pi∗α ⊆ Pi. For
i ̸= j, we have Pi = Qi. Then Pi∗αβ ⊆ Piβ = Qiβ = {yi}. Suppose i = j.
Then, Qj = Pj\{s}. Since s /∈ Imα, we have s /∈ Pj∗α which implies that
Pj∗α ⊆ Pj\{s}. Then Pj∗αβ ⊆ (Pj\{s})β = Qjβ = {yj}. Hence, Imαβ = Y .
Note that, β /∈ Hk(π, Y ) but αβ ∈ Hk(π, Y ). Therefore, α /∈ Sep(Hk(π, Y )).

Theorem 3.7. Sep(Hk(π, Y )) = Sn(π, Y ).

Proof. By Lemma 3.14, Sn(π, Y ) ⊆ Sep(Hk(π, Y )). Suppose α /∈ Sn(π, Y ).
Let Tn(Y ) = {α ∈ Tn | Y α = Y }. Note that,

Sn(π, Y ) = Sn(π) ∩ Sn(Y ) = Sn ∩ Σn(π) ∩ Sn ∩ Tn(Y ) = Σn(π) ∩ Sn ∩ Tn(Y ).

Let β ∈ Hk(π, Y ). Then, πβ = π and Imβ = Y .

Case 1. α /∈ Tn(Y ). Then, Y α ̸= Y which implies that Imβα = (Imβ)α =
Y α ̸= Y . Thus, βα /∈ Hk(π, Y ). Therefore, α /∈ Sep(Hk(π, Y )).

Case 2. α /∈ Σn(π). Suppose α ∈ Tn\Tn(π). Then, α does not preserve π so
∃(x, y) ∈ π such that (xα, yα) /∈ π = πβ. By Lemma 3.8, (x, y) /∈ παβ. Thus,
π ̸= παβ which implies that αβ /∈ Hk(π, Y ).

Suppose α ∈ Tn(π)\Σn(π). Then, α preserves π but is not π∗-preserving.
By Remark 2.1, ∃(uα, vα) ∈ π such that (u, v) /∈ π. Since π = πβ, by Lemma
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3.8, (u, v) ∈ παβ. Thus, παβ ̸= π which implies that αβ /∈ Hk(π, Y ). Therefore,
α /∈ Sep(Hk(π, Y )).

Case 3. α /∈ Sn but α ∈ Σn(π) with Y α = Y . Then, by Lemma 3.16,
α /∈ Sep(Hk(π, Y )).
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