The separator of Green's classes of the full transformation semigroup

Janeth G. Canama*
Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University-Iligan Institute of Technology
9200 Iligan City
Philippines
janeth.canama@g.msuiit.edu.ph

Gaudencio C. Petalcorin, Jr., Ph.D.
Department of Mathematics and Statistics
College of Science and Mathematics
Mindanao State University-Iligan Institute of Technology
9200 Iligan City
Philippines
gaudencio.petalcorin@g.msuiit.edu.ph

Abstract. This paper investigates the separator of Green's classes of the full transformation semigroup. The separator of a subset A of a semigroup S is the set of all elements $x \in S$ satisfying the following conditions: $x A \subseteq A, A x \subseteq A, x(S \backslash A) \subseteq S \backslash A$ and $(S \backslash A) x \subseteq S \backslash A$. We establish the relationship between the separator of Green's classes and the permutations preserving partition and/or permuting image.
Keywords: semigroup, full transformation semigroup, Green's Relations, symmetric group.
MSC 2020: 20M20

1. Introduction

The separator of a subset A of a semigroup S is the set of all elements $x \in S$ satisfying the following conditions: $x A \subseteq A, A x \subseteq A, x(S \backslash A) \subseteq S \backslash A$ and $(S \backslash A) x \subseteq S \backslash A$. Let π be an equivalence relation on a set X. We say that $\alpha: X \rightarrow X$ preserves π if, for all $x, y \in X,(x, y) \in \pi$ implies $(x \alpha, y \alpha) \in \pi$. Let T_{n} and S_{n} denote the full transformation semigroup and symmetric group, respectively, on $\underline{n}=\{1, \ldots, n\}$. Denote by $S_{n}(\pi)$ the set of all permutations on \underline{n} that preserve π. For a nonempty subset Y of \underline{n}, denote by $S_{n}(Y)$ the set of all permutations on \underline{n} that permute Y. Moreover, let $S_{n}(\pi, Y)=S_{n}(\pi) \cap S_{n}(Y)$. The Green's relations on a semigroup were first studied by J.A. Green [7] in 1951. Let a and b be elements of a semigroup S. We define $a \mathscr{L} b(a \mathscr{R} b)$ if a and b generate the same principal left (right) ideal of S. The join of \mathscr{L} and \mathscr{R} is
*. Corresponding author
denoted by \mathscr{D} and their intersection by \mathscr{H} (see [3]). In 2011, A. Nagy proved that the separator of a proper ideal of T_{n} is the symmetric group S_{n}. Guided by the result put forth by C.G. Doss [5], we will describe the separator of the Green's classes of T_{n}. Following the convention used in [3], by a partition π of a set X we mean the partition X / π determined by an equivalence relation π on X. First, we show that the separator of a \mathscr{D}-class of T_{n} is the symmetric group S_{n}. Then, we prove that $S_{n}(Y)$ is the separator of the \mathscr{L}-class consisting of all elements of T_{n} whose image is Y. Next, we show that $S_{n}(\pi)$ is the separator of the \mathscr{R}-class consisting of all elements of T_{n} with partition π. Finally, we show that $S_{n}(\pi, Y)$ is the separator of the \mathscr{H}-class consisting of all elements of T_{n} with partition π and image Y.

2. Preliminaries

The following definitions are found in [3]. A transformation of a set X is a single-valued mapping of X into itself. The image of an element x of X under a transformation or mapping α is denoted by $x \alpha$ (rather than αx or $\alpha(x)$). The product (or iterate or composition) of two transformations α and β of X is the transformation $\alpha \beta$ defined by $x(\alpha \beta)=(x \alpha) \beta$, for all $x \in X$ (that is, α followed by β). The set T_{X} of all transformations of X is a semigroup with respect to iteration. We call T_{X} the full transformation semigroup on X. A one-to-one mapping of a set X onto itself will be called a permutation of X, even when X is infinite. The symmetric group S_{X} on X consists of all permutations of X under the operation of iteration.

Definition 2.1 ([3]). With each element α of T_{X} we associate two things: (1) the image $X \alpha$ of α, also denoted by $\operatorname{Im}(\alpha)$, which is defined by $X \alpha=\{x \alpha \mid x \in$ $X\}$ and (2) the partition $\pi_{\alpha}=\alpha \circ \alpha^{-1}$ of X corresponding to α, i.e., the equivalence relation on X defined by $(x, y) \in \pi_{\alpha}$ if $x \alpha=y \alpha$, where $x, y \in X$. Let π_{α}^{\natural} be the natural mapping of X upon the set X / π_{α} of equivalence classes of $X \bmod$ π_{α}. Then, $x \pi_{\alpha}^{\natural} \mapsto x \alpha$ is a one-to-one mapping of X / π_{α} upon $X \alpha$. It follows that $\left|X / \pi_{\alpha}\right|=|X \alpha|$, and this cardinal number is called the rank of α.

The following theorem characterizes Green's classes in terms of rank, partition, and image.
Theorem 2.1 ([3]). Let T_{X} be the full transformation semigroup on a set X.
i. In the semigroup T_{X}, we have $\mathscr{D}=\mathscr{J}$.
ii. There is a one-to-one correspondence between the set of all principal ideals of T_{X} and the set of all cardinal numbers $r \leq|X|$ such that the principal ideal corresponding to r consists of all elements of T_{X} of rank $\leq r$.
iii. There is a one-to-one correspondence between the set of all \mathscr{D}-classes of T_{X} and the set of all cardinal numbers $r \leq|X|$ such that the \mathscr{D}-class D_{r} corresponding to r consists of all elements of T_{X} of rank r.
iv. Let r be a cardinal number $\leq|X|$. There is a one-to-one correspondence between the set of all \mathscr{L}-classes in D_{r} and the set of all subsets Y of X of cardinal r such that the \mathscr{L}-class corresponding to Y consists of all elements of T_{X} having image Y.
v. Let r be a cardinal number $\leq|X|$. There is a one-to-one correspondence between the set of all \mathscr{R}-classes contained in D_{r} and the set of all partitions π of X for which $|X / \pi|=r$ such that the \mathscr{R}-class corresponding to π consists of all elements of T_{X} having partition π.
vi. Let r be a cardinal number $\leq|X|$. There is a one-to-one correspondence between the set of all \mathscr{H}-classes in D_{r} and the set of all pairs (π, Y) where π is a partition of X and Y is a subset of X such that $|X / \pi|=|Y|=r$, such that the \mathscr{H}-class corresponding to (π, Y) consists of all elements of T_{X} having partition π and image Y.

Throughout this paper, we will only consider the finite full transformation semigroup. Let T_{n} and S_{n} denote the full transformation semigroup and symmetric group, respectively, on $\underline{n}=\{1, \ldots, n\}$.

Lemma 2.1 ([6]). Let $\alpha \in T_{n}$. Then, the following conditions are equivalent:
i) α is surjective.
ii) α is injective.
iii) α is bijective.

Lemma 2.2 ([4]). Let $\alpha, \beta \in T_{n}$. Then, $\operatorname{rank}(\alpha \beta) \leq \min \{\operatorname{rank}(\alpha), \operatorname{rank}(\beta)\}$.
Lemma 2.3 ([2]). If $\alpha \in S_{n}$ and $\beta \in T_{n}$, then $\operatorname{rank}(\alpha \beta)=\operatorname{rank}(\beta \alpha)=$ $\operatorname{rank}(\beta)$.

Next, we introduce notations for the Green's classes of T_{n}. Let $k \leq n$. We denote by D_{k} the set of all $\alpha \in T_{n}$ whose rank is k. For a partition π of \underline{n} and $Y \subseteq \underline{n}$ where $|\underline{n} / \pi|=|Y|=k$, let $L_{k}(Y)$ be the set of all $\alpha \in D_{k}$ with image Y. Moreover, let $R_{k}(\pi)$ be the set of all $\alpha \in D_{k}$ with $\pi_{\alpha}=\pi$. Finally, we denote by $H_{k}(\pi, Y)$ the set of all $\alpha \in D_{k}$ with $\pi_{\alpha}=\pi$ and $\operatorname{Im} \alpha=Y$. Then, $H_{k}(\pi, Y)=R_{k}(\pi) \cap L_{k}(Y)$. By Theorem 2.1, $D_{k}, L_{k}(Y), R_{k}(\pi)$, and $H_{k}(\pi, Y)$ are precisely the $\mathscr{D}-, \mathscr{L}$-, \mathscr{R}-, and \mathscr{H}-classes of T_{n}.

Definition 2.2 ([8]). Let S be a semigroup and let $A \subseteq S$. The separator of A, denoted by $\operatorname{Sep}(A)$, is the set of all elements $x \in S$ satisfying the following conditions: $x A \subseteq A, A x \subseteq A, x(S \backslash A) \subseteq S \backslash A$ and $(S \backslash A) x \subseteq S \backslash A$.

2.1 Transformations preserving a partition

Definition 2.3 ([1]). Let \mathcal{P} be a partition of a set X. We say that $\alpha \in T_{X}$ preserves \mathcal{P} if, for all $P \in \mathcal{P}, \exists Q \in \mathcal{P}$ such that $P \alpha \subseteq Q$.

Let $T(X, \mathcal{P})$ denote the semigroup of all full transformations of X that preserve the partition \mathcal{P}. We now define a transformation preserving an equivalence relation π. It is straightforward to show that this definition is equivalent to the definition of a transformation preserving X / π.

Definition 2.4. Let π be an equivalence relation on a set X. We say that $\alpha \in T_{X}$ preserves π if, for all $x, y \in X,(x, y) \in \pi$ implies $(x \alpha, y \alpha) \in \pi$.

Definition 2.5 ([10]). Let E be an equivalence relation on a set X. A selfmap $\alpha: X \rightarrow X$ is said to be E^{*}-preserving if α satisfies the following: $(x, y) \in E$ if and only if $(x \alpha, y \alpha) \in E$.

Remark 2.1. In view of Definition 2.4, an E^{*}-preserving map preserves E and satisfies the condition that $(x \alpha, y \alpha) \in E$ implies $(x, y) \in E$.

Definition $2.6([10])$. Let $\mathcal{P}=\left\{X_{i} \mid i \in I\right\}$ be a partition of an arbitrary set X, and let $\alpha \in T(X, \mathcal{P})$. The character of α is a selfmap $\chi^{(\alpha)}: I \rightarrow I$ defined by $i \chi^{(\alpha)}=j$ whenever $X_{i} \alpha \subseteq X_{j}$.

Denote by $\Sigma(X, \mathcal{P})$ the set of all $\alpha \in T(X, \mathcal{P})$ whose image intersects every block of \mathcal{P}. Sarkar and Singh [10] gave a characterization of elements in $\Sigma(X, \mathcal{P})$. It is useful in proving our result on the separator of an \mathscr{R}-class.

Corollary $2.1([10])$. Let $\mathcal{P}=\left\{X_{1}, \ldots, X_{m}\right\}$ be an m-partition associated with an equivalence relation E on an arbitary set X, and let $\alpha \in T(X, \mathcal{P})$. Then, the following statements are equivalent:
(i) $\alpha \in \Sigma(X, \mathcal{P})$.
(ii) $\chi^{(\alpha)}$ is a bijective map on $\{1, \ldots, m\}$.
(iii) α is an E^{*}-preserving map.

3. Main Results

In view of the definition of the separator of a subset of a semigroup [8], we have the following remark.

Remark 3.1. Let S be a semigroup. Let $A \subseteq S$ and $x \in S$. Then, $x \in S e p(A)$ if and only if x satisfies the following four conditions:
i) $x a \in A$, for all $a \in A$.
ii) $a x \in A$, for all $a \in A$.
iii) $x b \in S \backslash A$, for all $b \in S \backslash A$.
iv) $b x \in S \backslash A$, for all $b \in S \backslash A$.

Remark 3.2 ([8]). Let S be a semigroup. Then, $\operatorname{Sep}(\emptyset)=S e p(S)=S$.
Using Theorem 2.2 (ii), Nagy proved the following result.
Theorem 3.1 ([8]). If I is a proper ideal of T_{n}, then $\operatorname{Sep}(I)=S_{n}$.

3.1 The separator of \mathscr{D}-classes

Lemma 3.1. If $k \geq 2$ and $\beta \in T_{n} \backslash S_{n}$, then $\exists \alpha \in D_{k}$ such that $\operatorname{rank}(\alpha \beta) \leq$ $k-1$.

Proof. Suppose $k \geq 2$ and $\beta \in T_{n} \backslash S_{n}$. Then, $\exists x \neq y$ such that $x \beta=y \beta$. Choose an element $\alpha \in D_{k}$ such that $x, y \in \operatorname{Im} \alpha$. Then, $\left|\underline{n} / \pi_{\alpha}\right|=|\operatorname{Im} \alpha|=k$ so we may choose distinct elements $p_{1}, p_{2}, \ldots, p_{k} \in \underline{n}$ such that the equivalence classes $\left[p_{s}\right]_{\pi_{\alpha}}$ and $\left[p_{t}\right]_{\pi_{\alpha}}$ are disjoint for $s \neq t$. Let $m_{i}=p_{i} \alpha$ for $i=1,2, \ldots, k$. Then, $\operatorname{Im} \alpha=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$. Since $x, y \in \operatorname{Im} \alpha$, we have $x=m_{i_{1}}$ and $y=m_{i_{2}}$, for some $1 \leq i_{1}, i_{2} \leq k$ with $i_{1} \neq i_{2}$; hence, $m_{i_{1}} \beta=x \beta=y \beta=m_{i_{2}} \beta$. Note that, $(\operatorname{Im} \alpha) \beta=\left\{m_{i} \beta \mid i=i_{1}, i_{2}\right\} \cup\left\{m_{i} \beta \mid i \in\{1,2, \ldots, k\} \backslash\left\{i_{1}, i_{2}\right\}\right\}$. Therefore, $|\operatorname{Im}(\alpha \beta)|=|(\operatorname{Im} \alpha) \beta| \leq 1+(k-2)=k-1$.

Applying Lemma 2.3, we have the following results.
Lemma 3.2. If $\alpha \in S_{n}, \beta \in D_{k}$, and $\gamma \in T_{n} \backslash D_{k}$, then $\alpha \beta, \beta \alpha \in D_{k}$ and $\alpha \gamma, \gamma \alpha \in T_{n} \backslash D_{k}$.

Lemma 3.3. If $\alpha \in S_{n}$ and $\beta \in \bigcup_{i=1}^{m} D_{k_{i}}$, then $\alpha \beta, \beta \alpha \in \bigcup_{i=1}^{m} D_{k_{i}}$.
Lemma 3.4. Let $\alpha, \gamma \in T_{n}$. If $\alpha \in S_{n}$ and $\gamma \notin \bigcup_{i=1}^{m} D_{k_{i}}$, where $m<n$, then $\alpha \gamma, \gamma \alpha \notin \bigcup_{i=1}^{m} D_{k_{i}}$.

Theorem 3.2. $\operatorname{Sep}\left(D_{k}\right)=S_{n}$
Proof. If $n=1$, then $D_{1}=S_{1}=T_{1}$. By Remark 3.2, $\operatorname{Sep}\left(D_{1}\right)=\operatorname{Sep}\left(T_{1}\right)=$ $T_{1}=S_{1}$. Suppose $n \geq 2$ and $k=1$. Note that, D_{1} is a proper ideal of T_{n}. By Theorem 3.1, $\operatorname{Sep}\left(D_{1}\right)=S_{n}$. Suppose $k \geq 2$. By Lemma 3.2, $S_{n} \subseteq \operatorname{Sep}\left(D_{k}\right)$. Suppose $\beta \notin S_{n}$. By Lemma 3.1, $\exists \alpha \in D_{k}$ such that $\operatorname{rank}(\alpha \beta) \leq k-1$. Hence, $\alpha \beta \notin D_{k}$. Therefore, $\beta \notin \operatorname{Sep}\left(D_{k}\right)$.

Next, we investigate the separator of union of \mathscr{D}-classes. The following result is a generalization of Theorem 3.1.

Theorem 3.3. If $1 \leq k_{1}<\ldots<k_{m} \leq n$ where $m<n$, then $\operatorname{Sep}\left(\bigcup_{i=1}^{m} D_{k_{i}}\right)=$ S_{n}.

Proof. If $m=1$, apply Theorem 3.2. Suppose $m \geq 2$. By Lemmas 3.3 and 3.4, $S_{n} \subseteq \operatorname{Sep}\left(\bigcup_{i=1}^{m} D_{k_{i}}\right)$. Suppose $\alpha \notin S_{n}$.
Case 1. $k_{1} \geq 2$. By Lemma 3.1, $\exists \beta \in D_{k_{1}}$ such that $\operatorname{rank}(\beta \alpha) \leq k_{1}-1$. Hence, $\beta \alpha \notin \bigcup_{i=1}^{m} D_{k_{i}}$. Therefore, $\alpha \notin \operatorname{Sep}\left(\bigcup_{i=1}^{m} D_{k_{i}}\right)$.
Case 2. $k_{1}=1$. Suppose $k_{1}, k_{2}, \ldots, k_{m}$ are consecutive positive integers. Then, $\bigcup_{i=1}^{m} D_{k_{i}}$ is a proper ideal of T_{n}. Since $\alpha \notin S_{n}$, by Theorem 3.1, $\alpha \notin$ $\operatorname{Sep}\left(\bigcup_{i=1}^{m} D_{k_{i}}\right)$. Suppose $k_{i+1}-k_{i}>1$, for some $1 \leq i \leq m-1$. By the Well-ordering principle, $b=\min \left\{i \mid k_{i+1}-k_{i}>1\right\}$ exists. Then, k_{1}, \ldots, k_{b} are consecutive positive integers and $k_{b}<k_{b}+1<k_{b+1}$. But Lemma 3.1 tells us that $\exists \beta$ with $\operatorname{rank}(\beta)=k_{b}+1$ such that $\operatorname{rank}(\beta \alpha) \leq k_{b}$. Note that, $\beta \notin \bigcup_{i=1}^{m} D_{k_{i}}$ but $\beta \alpha \in \bigcup_{i=1}^{m} D_{k_{i}}$. Therefore, $\alpha \notin \operatorname{Sep}\left(\bigcup_{i=1}^{m} D_{k_{i}}\right)$.

3.2 The separator of \mathscr{L}-classes

Given a subset Y of \underline{n} with $|Y|=k$, let $S_{n}(Y)=\left\{\alpha \in S_{n} \mid Y \alpha=Y\right\}$ and $L_{k}(Y)=\left\{\alpha \in D_{k} \mid \operatorname{Im} \alpha=Y\right\}$.

Remark 3.3. If $n=k=1$, then $|Y|=1$ so that $L_{1}(Y)=T_{1}=S_{1}=S_{1}(Y)$. Then, $\operatorname{Sep}\left(L_{1}(Y)\right)=\operatorname{Sep}\left(T_{1}\right)=T_{1}=S_{1}(Y)$.

We will show that $S_{n}(Y)$ is the separator of the \mathscr{L}-class consisting of all elements of T_{n} whose image is Y. The next two lemmas follow immediately from the properties of S_{n} and $L_{k}(Y)$.

Lemma 3.5. If $\alpha \in S_{n}(Y)$ and $\beta \in L_{k}(Y)$, then $\alpha \beta, \beta \alpha \in L_{k}(Y)$.
Lemma 3.6. If $\alpha \in S_{n}(Y)$ and $\beta \in T_{n} \backslash L_{k}(Y)$, then $\alpha \beta, \beta \alpha \in T_{n} \backslash L_{k}(Y)$.
For $m=1, \ldots, n$, let c_{m} denote the constant transformation on \underline{n} defined by $x \mapsto m$.

Theorem 3.4 ([2]). Let $n \geq 2$. If $A=\left\{c_{k_{1}}, \ldots, c_{k_{r}}\right\}$, then $\operatorname{Sep}(A)=S_{n}(K)$, where $K=\left\{k_{1}, \ldots, k_{r}\right\}$.

Lemma 3.7. If $k \geq 2$ and $\alpha \in T_{n} \backslash S_{n}$ with $Y \alpha=Y$, then $\exists \gamma \in L_{k}(Y)$ such that $\alpha \gamma \notin L_{k}(Y)$.

Proof. Suppose $k \geq 2$ and $\alpha \in T_{n} \backslash S_{n}$ with $Y \alpha=Y$. Since $\alpha \notin S_{n}$, it is not surjective. Let $s \in \underline{n} \backslash \operatorname{Im} \alpha, Y=\left\{y_{1}, \ldots, y_{k}\right\}$, and $Z=\underline{n} \backslash(Y \cup\{s\})$. Then, $s \notin Y$ since $Y=Y \alpha \subseteq I m \alpha$. For $i=1,2, \ldots, k$, let

$$
P_{i}= \begin{cases}\{s\}, & \text { if } i=1 \\ \left\{y_{1}, y_{2}\right\} \cup Z, & \text { if } i=2 \\ \left\{y_{i}\right\}, & \text { if } i \notin\{1,2\} .\end{cases}
$$

Consider $\gamma: \underline{n} \rightarrow \underline{n}$ where $\underline{n} / \pi_{\gamma}=\left\{P_{1}, \ldots, P_{k}\right\}$ and $P_{i} \gamma=\left\{y_{i}\right\}, \forall i=1,2, \ldots, k$. Then, $\gamma \in L_{k}(Y)$ since $\operatorname{Im} \gamma=Y$. Note that, $P_{1} \gamma=\{s\} \gamma=\left\{y_{1}\right\}$.

Claim. $y_{1} \notin \operatorname{Im} \alpha \gamma$. Suppose $y_{1} \in \operatorname{Im} \alpha \gamma$. Then, $\exists x \in \operatorname{Im} \alpha$ such that $x \gamma=$ $y_{1}=s \gamma$. Hence, $(x, s) \in \pi_{\gamma}$ which implies that $x \in[s]_{\pi_{\gamma}}=P_{1}$. Then, $x=s$, a contradiction, since $s \notin \operatorname{Im} \alpha$. Hence, $y_{1} \notin \operatorname{Im} \alpha \gamma$ which implies that $Y \neq \operatorname{Im} \alpha \gamma$. Therefore, $\alpha \gamma \notin L_{k}(Y)$.

Theorem 3.5. $\operatorname{Sep}\left(L_{k}(Y)\right)=S_{n}(Y)$
Proof. If $n=k=1$, by Remark 3.3, $\operatorname{Sep}\left(L_{1}(Y)\right)=S_{1}(Y)$. Suppose $n \geq 2$ and $k=1$. Then, $|Y|=1$. Let $Y=\{m\}$. Then, $L_{1}(Y)=\left\{c_{m}\right\}$. By Theorem 3.4, Sep $\left(L_{1}(Y)\right)=S_{n}(Y)$. Now, suppose $k \geq 2$. By Lemmas 3.5 and 3.6, $S_{n}(Y) \subseteq \operatorname{Sep}\left(L_{k}(Y)\right)$. Suppose $\alpha \notin S_{n}(Y)$.
Case 1. $Y \alpha \neq Y$. Let $\beta \in L_{k}(Y)$. Then, $\operatorname{Im} \beta \alpha=(\operatorname{Im} \beta) \alpha=Y \alpha \neq Y$ which implies that $\beta \alpha \notin L_{k}(Y)$. Therefore, $\alpha \notin \operatorname{Sep}\left(L_{k}(Y)\right)$.
Case 2. $\alpha \notin S_{n}$ with $Y \alpha=Y$. By Lemma 3.7, $\alpha \notin S e p\left(L_{k}(Y)\right)$.

3.3 The separator of \mathscr{R}-classes

The next two lemmas are immediate from the definitions.
Lemma 3.8. Let $\alpha, \beta \in T_{X}$ and $x, y \in X$. Then, $(x \alpha, y \alpha) \in \pi_{\beta}$ if and only if $(x, y) \in \pi_{\alpha \beta}$.

Lemma 3.9. If $\alpha, \beta \in T_{X}$, then $\pi_{\alpha} \subseteq \pi_{\alpha \beta}$.
Lemma 3.10. If $\alpha \in S_{X}$ and $\beta \in T_{X}$, then $\pi_{\beta \alpha}=\pi_{\beta}$.
Proof. Let $x, y \in X$. Since α is injective,

$$
x(\beta \alpha)=y(\beta \alpha) \Longleftrightarrow(x \beta) \alpha=(y \beta) \alpha \Longleftrightarrow x \beta=y \beta .
$$

Let π be an equivalence relation on \underline{n}. Then, \underline{n} / π is a partition of \underline{n}. Denote by $T_{n}(\pi)$ the semigroup $T(\underline{n}, \underline{n} / \pi)$. Moreover, let $\Sigma_{n}(\pi)=\Sigma(\underline{n}, \underline{n} / \pi)$ and $S_{n}(\pi)=S(\underline{n}, \underline{n} / \pi)$. Since $S_{n}(\pi)=T_{n}(\pi) \cap S_{n}$ and $S_{n}(\pi) \subseteq \Sigma_{n}(\pi) \subseteq T_{n}(\pi)$, we have $S_{n}(\pi) \subseteq S_{n} \cap \Sigma_{n}(\pi) \subseteq S_{n} \cap T_{n}(\pi)=S_{n}(\pi)$. Thus, we have the following remark.

Remark 3.4. $S_{n}(\pi)=S_{n} \cap \Sigma_{n}(\pi)=S_{n} \cap T_{n}(\pi)$.
Let $R_{k}(\pi)$ denote the \mathscr{R}-class consisting of all $\alpha \in D_{k}$ with partition π.
Lemma 3.11. If $\alpha \in S_{n}$ and $\beta \in R_{k}(\pi)$, then $\beta \alpha \in R_{k}(\pi)$.
Proof. By Lemma 3.10, $\pi_{\beta \alpha}=\pi_{\beta}=\pi$. Therefore, $\beta \alpha \in R_{k}(\pi)$.
Lemma 3.12. If $\alpha \in \Sigma_{n}(\pi)$ and $\beta \in R_{k}(\pi)$, then $\alpha \beta \in R_{k}(\pi)$.
Proof. Let $x, y \in \underline{n}$. By Corollary 2.1, α is π^{*}-preserving. Then, by Lemma $3.8,(x, y) \in \pi_{\alpha \beta} \Longleftrightarrow(x \alpha, y \alpha) \in \pi_{\beta}=\pi \quad \Longleftrightarrow \quad(x, y) \in \pi$. Thus, $\pi_{\alpha \beta}=\pi$. Therefore, $\alpha \beta \in R_{k}(\pi)$.

Lemma 3.13. If $\alpha \in S_{n}(\pi)$ and $\gamma \in T_{n} \backslash R_{k}(\pi)$, then $\alpha \gamma, \gamma \alpha \in T_{n} \backslash R_{k}(\pi)$.
Proof. By Remark 3.4, $S_{n}(\pi)=S_{n} \cap \Sigma_{n}(\pi)$. Suppose $\alpha \in S_{n}(\pi)$ and $\gamma \in$ $T_{n} \backslash R_{k}(\pi)$. Since $S_{n}(\pi)$ is a group, $\alpha^{-1} \in S_{n}(\pi)$. Suppose $\gamma \notin D_{k}$. By Lemma $3.2, \alpha \gamma, \gamma \alpha \notin D_{k}$ which implies that $\alpha \gamma, \gamma \alpha \notin R_{k}(\pi)$. Suppose $\pi_{\gamma} \neq \pi$.

Case 1. $\pi \nsubseteq \pi_{\gamma}$. Then, $\exists(u, v) \in \pi$ such that $(u, v) \notin \pi_{\gamma}$. Then, $u \gamma \neq v \gamma$. Since α is injective, $u \gamma \alpha \neq v \gamma \alpha$. Then, $(u, v) \notin \pi_{\gamma \alpha}$. Thus, $\pi \neq \pi_{\gamma \alpha}$. Let $u^{\prime}=u \alpha^{-1}$ and $v^{\prime}=v \alpha^{-1}$. Then, $u^{\prime} \alpha=u$ and $v^{\prime} \alpha=v$. Since α^{-1} preserves π, we have that

$$
(u, v) \in \pi \Longrightarrow\left(u \alpha^{-1}, v \alpha^{-1}\right) \in \pi \Longrightarrow\left(u^{\prime}, v^{\prime}\right) \in \pi
$$

However, since $u^{\prime} \alpha \gamma=u \gamma \neq v \gamma=v^{\prime} \alpha \gamma$, we have $\left(u^{\prime}, v^{\prime}\right) \notin \pi_{\alpha \gamma}$. Thus, $\pi \neq \pi_{\alpha \gamma}$. Therefore, $\alpha \gamma, \gamma \alpha \notin R_{k}(\pi)$.
Case 2. $\pi_{\gamma} \nsubseteq \pi$. Then, $\exists(x, y) \in \pi_{\gamma}$ such that $(x, y) \notin \pi$. Then, $x \gamma=y \gamma$ and

$$
x \gamma=y \gamma \Longrightarrow x \gamma \alpha=y \gamma \alpha \Longrightarrow(x, y) \in \pi_{\gamma \alpha} .
$$

Thus, $\pi_{\gamma \alpha} \neq \pi$. Let $x^{\prime}=x \alpha^{-1}$ and $y^{\prime}=y \alpha^{-1}$. Then, $x^{\prime} \alpha=x$ and $y^{\prime} \alpha=y$. By Corollary 2.1, α^{-1} is π^{*}-preserving. Then

$$
(x, y) \notin \pi \Longrightarrow\left(x \alpha^{-1}, y \alpha^{-1}\right) \notin \pi \Longrightarrow\left(x^{\prime}, y^{\prime}\right) \notin \pi .
$$

However, since $x^{\prime} \alpha \gamma=x \gamma=y \gamma=y^{\prime} \alpha \gamma$, we have $\left(x^{\prime}, y^{\prime}\right) \in \pi_{\alpha \gamma}$. Thus, $\pi_{\alpha \gamma} \neq \pi$. Therefore, $\alpha \gamma, \gamma \alpha \notin R_{k}(\pi)$.

Note that, $|\underline{n} / \pi|=1$ if and only if $\underline{n} / \pi=\{\underline{n}\}$. Clearly, $R_{1}(\pi) \subseteq D_{1}$. Let $\alpha \in D_{1}$. Then, α has rank 1 which means that it only has one equivalence class. Then, $\pi_{\alpha}=\pi$. Thus, we have the following remark

Remark 3.5. $R_{1}(\pi)=D_{1}$.
Theorem 3.6. $\operatorname{Sep}\left(R_{k}(\pi)\right)=S_{n}(\pi)$.
Proof. Suppose $k=1$. By Theorem 3.2, $\operatorname{Sep}\left(R_{1}(\pi)\right)=\operatorname{Sep}\left(D_{1}\right)=S_{n}=S_{n}(\pi)$. Suppose $k \geq 2$. Since $S_{n}(\pi)=S_{n} \cap \Sigma_{n}(\pi)$, by Lemmas 3.11, 3.12, and 3.13, $S_{n}(\pi) \subseteq S e p\left(R_{k}(\pi)\right)$. Now, suppose $\alpha \notin S_{n}(\pi)$. Let $\beta \in R_{k}(\pi)$.
Case 1. $\alpha \notin T_{n}(\pi)$. Then, α does not preserve π; hence, $\exists(x, y) \in \pi$ such that $(x \alpha, y \alpha) \notin \pi=\pi_{\beta}$. By Lemma 3.8, $(x, y) \notin \pi_{\alpha \beta}$. Thus, $\pi \neq \pi_{\alpha \beta}$ which implies that $\alpha \beta \notin R_{k}(\pi)$. Therefore, $\alpha \notin \operatorname{Sep}\left(R_{k}(\pi)\right)$.
Case 2. $\alpha \notin S_{n}$. Then, $\exists x, y \in \underline{n}$ with $x \neq y$ such that $x \alpha=y \alpha$. Suppose $(x, y) \notin \pi$. Since $x \alpha \beta=y \alpha \beta$, we have $(x, y) \in \pi_{\alpha \beta}$. Thus, $\pi_{\alpha \beta} \neq \pi$ which implies that $\alpha \beta \notin R_{k}(\pi)$. Therefore, $\alpha \notin \operatorname{Sep}\left(R_{k}(\pi)\right)$.

Suppose $(x, y) \in \pi$. Since $k \geq 2$, we can choose $q \in \underline{n}$ such that $(x, q) \notin \pi$. Consider an element $\gamma \in R_{k}(\pi)$ such that $x \gamma=x$ and $q \gamma=y$. Then, $x \gamma \alpha=$ $x \alpha=y \alpha=q \gamma \alpha$ which implies that $(x, q) \in \pi_{\gamma \alpha}$. Thus, $\pi_{\gamma \alpha} \neq \pi$. It follows that $\gamma \alpha \notin R_{k}(\pi)$. Therefore, $\alpha \notin \operatorname{Sep}\left(R_{k}(\pi)\right)$.

3.4 The separator of \mathscr{H}-classes

For a partition π of \underline{n} and $Y \subseteq \underline{n}$ with $|\underline{n} / \pi|=|Y|$, let $H_{k}(\pi, Y)$ denote the \mathscr{H} class consisting of all $\alpha \in D_{k}$ with partition π and image Y. Clearly, $H_{k}(\pi, Y)=$ $R_{k}(\pi) \cap L_{k}(Y)$. Moreover, denote by $S_{n}(\pi, Y)$ the intersection of $S_{n}(\pi)$ and $S_{n}(Y)$. We will show that $S_{n}(\pi, Y)$ is the separator of $H_{k}(\pi, Y)$.

Lemma 3.14. $S_{n}(\pi, Y) \subseteq \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.
Proof. Suppose $\alpha \in S_{n}(\pi, Y)$. Let $\beta \in H_{k}(\pi, Y)$. Applying Lemma 3.5, we have $\alpha \beta, \beta \alpha \in L_{k}(Y)$. Then, by Lemma 3.12, $\alpha \beta \in R_{k}(\pi)$. Moreover, by Lemma 3.10, $\pi_{\beta \alpha}=\pi_{\beta}=\pi$, which implies that $\beta \alpha \in R_{k}(\pi)$. Therefore, $\alpha \beta, \beta \alpha \in$ $H_{k}(\pi, Y)$. Let $\gamma \in T_{n} \backslash H_{k}(\pi, Y)$. Suppose $\gamma \notin R_{k}(\pi)$. By Lemma 3.13, $\alpha \gamma, \gamma \alpha \notin$ $R_{k}(\pi)$. Suppose $\gamma \notin L_{k}(Y)$. By Lemma 3.6, $\alpha \gamma, \gamma \alpha \notin L_{k}(Y)$. Then, $\alpha \gamma, \gamma \alpha \in$ $T_{n} \backslash H_{k}(\pi, Y)$. Therefore, $\alpha \in \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.

Lemma 3.15. If $\alpha \in T_{n} \backslash S_{n}$ with $Y \alpha=Y$ such that $(\underline{n} \backslash \operatorname{Im} \alpha) \alpha \cap Y \neq \emptyset$, then $\exists \beta \in T_{n} \backslash H_{k}(\pi, Y)$ such that $\beta \alpha \in H_{k}(\pi, Y)$.

Proof. Let $\underline{n} / \pi=\left\{P_{1}, \ldots, P_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$. Suppose $\alpha \in T_{n} \backslash S_{n}$ with $Y \alpha=Y$ such that $(\underline{n} \backslash \operatorname{Im} \alpha) \alpha \cap Y \neq \emptyset$. Let $t \in(\underline{n} \backslash \operatorname{Im} \alpha) \alpha \cap Y$. Then, $t=s a$, for some $s \in \underline{n} \backslash \operatorname{Im} \alpha$. Since $Y=Y \alpha, \exists y_{m} \in Y$ such that $t=y_{m} \alpha$. Note that, $s \notin Y$ since $Y=Y \alpha \subseteq$ Im α. Let $Y^{\prime}=Y \backslash\left\{y_{m}\right\} \cup\{s\}$ and consider $\beta \in T_{n}$ with $\pi_{\beta}=\pi$ and $\operatorname{Im} \beta=Y^{\prime}$, where $P_{m} \beta=\{s\}$ and $P_{i} \beta=\left\{y_{i}\right\}$, for all $i \neq m$. Since $\operatorname{Im} \beta \neq Y$, we have $\beta \notin H_{k}(\pi, Y)$. By Lemma 3.9, $\pi_{\beta} \subseteq \pi_{\beta \alpha}$.
Claim. $\pi_{\beta \alpha} \subseteq \pi_{\beta}$. Suppose $(x, y) \notin \pi_{\beta}$. Then, $x \beta \neq y \beta$. Then, at least one of $x \beta$ or $y \beta$ must belong to Y; otherwise, $x \beta=s=y \beta$, a contradiction. Suppose both are elements of Y, that is, $x \beta, y \beta \in Y$. Since $Y \alpha=Y$, the map $\left.\alpha\right|_{Y}: Y \rightarrow Y$ is surjective hence injective. Then, $x \beta \alpha \neq y \beta \alpha$ which implies that $(x, y) \notin \pi_{\beta \alpha}$. Suppose only one of them is an element of Y. Without loss of generality, assume $x \beta \in Y$ and $y \beta \notin Y$. Then, $x \beta=y_{i}$, for some $i \neq m$ and $y \beta=s$. Since $\left.\alpha\right|_{Y}$ is injective, we have

$$
x \beta \alpha=y_{i} \alpha \neq y_{m} \alpha=t=s \alpha=y \beta \alpha .
$$

Hence, $(x, y) \notin \pi_{\beta \alpha}$. This proves our claim. We have shown that $\pi_{\beta \alpha}=\pi_{\beta}=\pi$. Moreover, $P_{m} \beta \alpha=\{s\} \alpha=\{t\}=\left\{y_{m} \alpha\right\}$ and $P_{i} \beta \alpha=\left\{y_{i}\right\} \alpha=\left\{y_{i} \alpha\right\}$, for all $i \neq m$. Hence, $\operatorname{Im} \beta \alpha=Y \alpha=Y$. Therefore, $\beta \alpha \in H_{k}(\pi, Y)$.

Lemma 3.16. If $\alpha \in \Sigma_{n}(\pi) \backslash S_{n}$ with $Y \alpha=Y$, then $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.
Proof. Let $\underline{n} / \pi=\left\{P_{1}, \ldots, P_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$. Suppose $\alpha \in \Sigma_{n}(\pi) \backslash S_{n}$ with $Y \alpha=Y$. Since $\alpha \notin S_{n}, \alpha$ is not surjective; hence, $\underline{n} \backslash \operatorname{Im} \alpha \neq \emptyset$. If $(\underline{n} \backslash \operatorname{Im} \alpha) \alpha \cap Y \neq \emptyset$, by Lemma 3.15, $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$. Suppose $(\underline{n} \backslash \operatorname{Im} \alpha) \alpha \cap$ $Y=\emptyset$. Let $s \in \underline{n} \backslash \operatorname{Im} \alpha$. Then, $s \alpha \notin Y$. Since \underline{n} / π is a partition of $\underline{n}, s \in P_{j}$, for some j with $1 \leq j \leq k$. Then, by Corollary 2.1, $\chi^{(\alpha)}$ is bijective; hence there exists m with $1 \leq m \leq k$ such that $m \chi^{(\alpha)}=j$, that is, $P_{m} \alpha \subseteq P_{j}$. Let $z \in P_{m}$.

Then, $z \alpha \in P_{j}$ and $z \alpha \neq s$, since $s \notin \operatorname{Im} \alpha$. Thus, $P_{j} \backslash\{s\} \neq \emptyset$. Consider an element $\beta \in D_{k+1}$ with $\underline{n} / \pi_{\beta}=\left\{Q_{1}, \ldots, Q_{k+1}\right\}$, where

$$
Q_{i}= \begin{cases}P_{i}, & \text { if } i \notin\{j, k+1\} \\ P_{j} \backslash\{s\}, & \text { if } i=j \\ \{s\}, & \text { if } i=k+1,\end{cases}
$$

with $Q_{i} \beta=\left\{y_{i}\right\}$, for all $i=1, \ldots, k$ and $Q_{k+1} \beta=\{s \alpha\}$.
Claim 1. $\pi_{\beta} \subseteq \pi$. Suppose $(x, y) \in \pi_{\beta}$. Then, $x, y \in Q_{i}$, for some $1 \leq i \leq k+1$. If $i \notin\{j, k+1\}$, then $x, y \in P_{i}$. If $i=j$, then $Q_{i}=P_{j} \backslash\{s\}$ so $x, y \in P_{j}$. If $i=k+1$, then $x=y=s$. Thus, $(x, y) \in \pi$. This proves Claim 1 .
Claim 2. $(x \alpha, y \alpha) \in \pi$ implies $(x \alpha, y \alpha) \in \pi_{\beta}$. Suppose $(x \alpha, y \alpha) \in \pi$. Then $x \alpha, y \alpha \in P_{i}$, for some $1 \leq i \leq k$. If $i \neq j$, then $x \alpha, y \alpha \in Q_{i}$. We now consider the case where $i=j$. Then, $x \alpha, y \alpha \in P_{j}$. Note that, $x \alpha$ and $y \alpha$ are both not equal to s, since $s \notin \operatorname{Im} \alpha$. Then

$$
x \alpha, y \alpha \in P_{j} \Longrightarrow x \alpha, y \alpha \in P_{j} \backslash\{s\} \Longrightarrow x \alpha, y \alpha \in Q_{j} .
$$

Thus, $(x \alpha, y \alpha) \in \pi_{\beta}$. This proves Claim 2. Note that, the converse of Claim 2 is true by Claim 1. By Corollary 2.1, α is π^{*}-preserving. By Lemma 3.8,

$$
(x, y) \in \pi_{\alpha \beta} \Longleftrightarrow(x \alpha, y \alpha) \in \pi_{\beta} \Longleftrightarrow(x \alpha, y \alpha) \in \pi \Longleftrightarrow(x, y) \in \pi
$$

Thus, $\pi_{\alpha \beta}=\pi$. Let $P_{i} \in \underline{n} / \pi$. Then, by Corollary 2.1, $\chi^{(\alpha)}$ is bijective; hence there exists i^{*} with $1 \leq i^{*} \leq k$ such that $i^{*} \chi^{(\alpha)}=i$, that is, $P_{i^{*} \alpha} \subseteq P_{i}$. For $i \neq j$, we have $P_{i}=Q_{i}$. Then $P_{i^{*}} \alpha \beta \subseteq P_{i} \beta=Q_{i} \beta=\left\{y_{i}\right\}$. Suppose $i=j$. Then, $Q_{j}=P_{j} \backslash\{s\}$. Since $s \notin \operatorname{Im} \alpha$, we have $s \notin P_{j^{*}} \alpha$ which implies that $P_{j^{*}} \alpha \subseteq P_{j} \backslash\{s\}$. Then $P_{j^{*}} \alpha \beta \subseteq\left(P_{j} \backslash\{s\}\right) \beta=Q_{j} \beta=\left\{y_{j}\right\}$. Hence, $\operatorname{Im} \alpha \beta=Y$. Note that, $\beta \notin H_{k}(\pi, Y)$ but $\alpha \beta \in H_{k}(\pi, Y)$. Therefore, $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.

Theorem 3.7. $\operatorname{Sep}\left(H_{k}(\pi, Y)\right)=S_{n}(\pi, Y)$.
Proof. By Lemma 3.14, $S_{n}(\pi, Y) \subseteq \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$. Suppose $\alpha \notin S_{n}(\pi, Y)$. Let $T_{n}(Y)=\left\{\alpha \in T_{n} \mid Y \alpha=Y\right\}$. Note that,
$S_{n}(\pi, Y)=S_{n}(\pi) \cap S_{n}(Y)=S_{n} \cap \Sigma_{n}(\pi) \cap S_{n} \cap T_{n}(Y)=\Sigma_{n}(\pi) \cap S_{n} \cap T_{n}(Y)$.
Let $\beta \in H_{k}(\pi, Y)$. Then, $\pi_{\beta}=\pi$ and $\operatorname{Im} \beta=Y$.
Case 1. $\alpha \notin T_{n}(Y)$. Then, $Y \alpha \neq Y$ which implies that $\operatorname{Im} \beta \alpha=(\operatorname{Im} \beta) \alpha=$ $Y \alpha \neq Y$. Thus, $\beta \alpha \notin H_{k}(\pi, Y)$. Therefore, $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.
Case 2. $\alpha \notin \Sigma_{n}(\pi)$. Suppose $\alpha \in T_{n} \backslash T_{n}(\pi)$. Then, α does not preserve π so $\exists(x, y) \in \pi$ such that $(x \alpha, y \alpha) \notin \pi=\pi_{\beta}$. By Lemma 3.8, $(x, y) \notin \pi_{\alpha \beta}$. Thus, $\pi \neq \pi_{\alpha \beta}$ which implies that $\alpha \beta \notin H_{k}(\pi, Y)$.

Suppose $\alpha \in T_{n}(\pi) \backslash \Sigma_{n}(\pi)$. Then, α preserves π but is not π^{*}-preserving. By Remark 2.1, $\exists(u \alpha, v \alpha) \in \pi$ such that $(u, v) \notin \pi$. Since $\pi=\pi_{\beta}$, by Lemma
3.8, $(u, v) \in \pi_{\alpha \beta}$. Thus, $\pi_{\alpha \beta} \neq \pi$ which implies that $\alpha \beta \notin H_{k}(\pi, Y)$. Therefore, $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.
Case 3. $\alpha \notin S_{n}$ but $\alpha \in \Sigma_{n}(\pi)$ with $Y \alpha=Y$. Then, by Lemma 3.16, $\alpha \notin \operatorname{Sep}\left(H_{k}(\pi, Y)\right)$.

References

[1] J. Araújo, W. Bentz, J. D. Mitchell, C. Schneider, The rank of the semigroup of transformations stabilising a partition of a finite set, Math. Proc. Camb. Phil. Soc, 159 (2015), 339-353.
[2] J. G. Canama, G. C. Petalcorin, Some properties of the separator of subsets of regular semigroups, Journal of Algebra and Applied Mathematics, 13 (2015), 50-77.
[3] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Volume I, AMS, Providence, 1961.
[4] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, Volume II, AMS, Providence, 1967.
[5] C. G. Doss, Certain equivalence relations in transformation semigroups, Master's Thesis, University of Tennessee, 1955.
[6] O. Ganyushkin, V. Mazorchuk, Classical finite transformation semigroups, Springer-Verlag, London Limited, 2009.
[7] J. A. Green, On the structure of semigroups, Annals of Mathematics, (1951), 163-172.
[8] A. Nagy, On the separator of subsets of semigroups, Semigroup Forum, 83 (2011), 289-303.
[9] A. Nagy, The separator of a subset of a semigroup, Publ. Math. (Debr.), 27 (1980), 25-30.
[10] M. Sarkar, S. N. Singh, On certain semigroups of transformations that preserve a partition, Communications in Algebra, 49 (2021), 331-342.

Accepted: March 23, 2023

