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1. Introduction

The separator of a subset A of a semigroup S is the set of all elements © € S
satisfying the following conditions: A C A, Az C A, z(S\A) C S\A and
(S\A)x C S\A. Let 7 be an equivalence relation on a set X. We say that
a: X — X preserves 7 if, for all z,y € X, (z,y) € 7 implies (za,ya) € 7.
Let T,, and S,, denote the full transformation semigroup and symmetric group,
respectively, on n = {1,...,n}. Denote by S, (7) the set of all permutations on
n that preserve m. For a nonempty subset Y of n, denote by S,,(Y) the set of all
permutations on n that permute Y. Moreover, let S, (m,Y) = S, (7) N Sp(Y).
The Green’s relations on a semigroup were first studied by J.A. Green [7] in
1951. Let a and b be elements of a semigroup S. We define a.Zb (a%b) if a and
b generate the same principal left (right) ideal of S. The join of . and Z is
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denoted by Z and their intersection by ¢ (see [3]). In 2011, A. Nagy proved
that the separator of a proper ideal of T}, is the symmetric group S,. Guided
by the result put forth by C.G. Doss [5], we will describe the separator of the
Green’s classes of T;,. Following the convention used in [3], by a partition 7 of
a set X we mean the partition X /7 determined by an equivalence relation 7 on
X. First, we show that the separator of a Z-class of T}, is the symmetric group
Sp. Then, we prove that S, (Y) is the separator of the Z-class consisting of all
elements of T,, whose image is Y. Next, we show that S, (7) is the separator of
the Z-class consisting of all elements of T,, with partition 7. Finally, we show
that S, (m,Y) is the separator of the .#-class consisting of all elements of T,
with partition 7 and image Y.

2. Preliminaries

The following definitions are found in [3]. A transformation of a set X is a
single-valued mapping of X into itself. The image of an element = of X under a
transformation or mapping « is denoted by za (rather than ax or a(x)). The
product (or iterate or composition) of two transformations o and 3 of X is the
transformation af defined by z(af) = (za)p, for all € X (that is, « followed
by (). The set Tx of all transformations of X is a semigroup with respect to
iteration. We call Tx the full transformation semigroup on X. A one-to-one
mapping of a set X onto itself will be called a permutation of X, even when
X is infinite. The symmetric group Sx on X consists of all permutations of X
under the operation of iteration.

Definition 2.1 ([3]). With each element o of Tx we associate two things: (1)
the image X of a, also denoted by Im(a), which is defined by Xa = {za |z €
X} and (2) the partition mo = aoa™t of X corresponding to «, i.e., the equiv-
alence relation on X defined by (x,y) € my if za = yo, where x,y € X. Let mhl
be the natural umappmg of X upon the set X/m, of equivalence classes of X mod

To. Then, xms — xa is a one-to-one mapping of X/ma upon Xa. It follows
that | X /7| = | X al, and this cardinal number is called the rank of c.

The following theorem characterizes Green’s classes in terms of rank, parti-
tion, and image.

Theorem 2.1 ([3]). Let Tx be the full transformation semigroup on a set X.
i. In the semigroup Tx, we have 9 = 7.

1. There is a one-to-one correspondence between the set of all principal ideals
of Tx and the set of all cardinal numbers r < |X| such that the principal
ideal corresponding to r consists of all elements of T'x of rank < r.

1i. There is a one-to-one correspondence between the set of all P-classes of
Tx and the set of all cardinal numbers r < |X| such that the 2-class D,
corresponding to v consists of all elements of Tx of rank r.
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iv. Let r be a cardinal number < |X|. There is a one-to-one correspondence
between the set of all £ -classes in D, and the set of all subsets Y of X of
cardinal v such that the £ -class corresponding to'Y consists of all elements
of Tx having image Y .

v. Let r be a cardinal number < |X|. There is a one-to-one correspondence
between the set of all Z-classes contained in D, and the set of all partitions
7 of X for which | X /7| = r such that the %-class corresponding to  consists
of all elements of Tx having partition .

vi. Let r be a cardinal number < |X|. There is a one-to-one correspondence
between the set of all 7 -classes in D, and the set of all pairs (w,Y) where
7 is a partition of X and Y is a subset of X such that | X/7| = |Y| =r,
such that the € -class corresponding to (mw,Y) consists of all elements of
Tx having partition ™ and image Y .

Throughout this paper, we will only consider the finite full transformation
semigroup. Let T, and S,, denote the full transformation semigroup and sym-
metric group, respectively, on n = {1,...,n}.

Lemma 2.1 ([6]). Let a € T,,. Then, the following conditions are equivalent:
i) « is surjective.

ii) « is injective.

iii) « is bijective.

Lemma 2.2 ([4]). Let o, 5 € T,,. Then, rank(af) < min{rank(a),rank(5)}.

Lemma 2.3 (2]). If a« € S, and 5 € T, then rank(af) = rank(fa) =
rank(3).

Next, we introduce notations for the Green’s classes of T;,. Let £ < n. We
denote by Dy the set of all & € T,, whose rank is k. For a partition 7 of n and
Y C n where |n/7| = |Y| = k, let Li(Y) be the set of all @ € Dy with image
Y. Moreover, let Ri(w) be the set of all « € Dy with 7, = m. Finally, we
denote by Hy(m,Y) the set of all & € Dy with 7, = 7 and Ima =Y. Then,
Hy(m,Y) = Ri(m) N Li(Y). By Theorem 2.1, Dy, Li(Y'), Ri(7), and Hy(m,Y)
are precisely the -, Z-, %-, and -classes of T),.

Definition 2.2 ([8]). Let S be a semigroup and let A C S. The separator of
A, denoted by Sep(A), is the set of all elements x € S satisfying the following
conditions: A C A, Az C A, z(S\A) C S\A and (S\A)x C S\ A.
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2.1 Transformations preserving a partition
Definition 2.3 ([1]). Let P be a partition of a set X. We say that o € Tx
preserves P if, for all P € P,3Q € P such that Pa C Q.

Let T(X,P) denote the semigroup of all full transformations of X that pre-
serve the partition P. We now define a transformation preserving an equivalence
relation m. It is straightforward to show that this definition is equivalent to the
definition of a transformation preserving X/m.

Definition 2.4. Let m be an equivalence relation on a set X. We say that
a € Tx preserves m if, for all z,y € X, (x,y) € m implies (xa, ya) € .

Definition 2.5 ([10]). Let E be an equivalence relation on a set X. A selfmap
a: X — X is said to be E*-preserving if a satisfies the following: (z,y) € E if
and only if (za,ya) € E.

Remark 2.1. In view of Definition 2.4, an E*-preserving map preserves F and
satisfies the condition that (za,ya) € E implies (z,y) € E.

Definition 2.6 ([10]). Let P = {X; | i € I} be a partition of an arbitrary set
X, and let « € T(X,P). The character of « is a selfmap Y@ o T — I defined
by ix(®) = j whenever X;oo C X;.

Denote by ¥(X,P) the set of all @ € T'(X,P) whose image intersects every
block of P. Sarkar and Singh [10] gave a characterization of elements in 3 (X, P).
It is useful in proving our result on the separator of an Z-class.

Corollary 2.1 ([10]). Let P = {X1,...,X;n} be an m-partition associated with
an equivalence relation E on an arbitary set X, and let o € T(X,P). Then, the
following statements are equivalent:

(1) a € (X, P).
(i1) x'\% is a bijective map on {1,...,m}.

(1i1) « is an E*-preserving map.

3. Main Results

In view of the definition of the separator of a subset of a semigroup [8], we have
the following remark.

Remark 3.1. Let S be a semigroup. Let A C S and z € S. Then, xz € Sep(A)
if and only if = satisfies the following four conditions:

i) za € A, for all a € A.

ii) ax € A, for all a € A.
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iii) b € S\A, for all b € S\ A.

iv) bx € S\A, for all b € S\ A.

Remark 3.2 ([8]). Let S be a semigroup. Then, Sep()) = Sep(S) = S.
Using Theorem 2.2 (ii), Nagy proved the following result.

Theorem 3.1 ([8]). If I is a proper ideal of T,,, then Sep(I) = S,,.

3.1 The separator of Z-classes

Lemma 3.1. If k > 2 and § € T,\Sy, then 3a € Dy, such that rank(af) <
kE—1.

Proof. Suppose k& > 2 and g € T,\S,. Then, 3z # y such that z8 = yp.
Choose an element o € Dy, such that =,y € Ima. Then, |n/7,| = |[Ima| =k

so we may choose distinct elements p1,ps, ..., pr € n such that the equivalence
classes [ps]r, and [p¢]r, are disjoint for s # t. Let m; = p;a for i = 1,2,... k.
Then, Ima = {mi,ma,...,my}. Since x,y € I'ma, we have x = m;, and

Yy = m;,, for some 1 < iy,i9 < k with i1 # i2; hence, m;, 8 = 28 = yB = m;, 5.
Note that, (Ima)8 = {m;0 | i = i1,i2} U{m;B | i € {1,2,...,k}\{i1,i2}}.
Therefore, [Im(ap)| = |(Ima)f| <14+ (k—2) =k — 1. O

Applying Lemma 2.3, we have the following results.

Lemma 3.2. If « € S,,8 € Dy, and v € T,\Dyg, then af,Ba € Dy and
avy,ya € T,\Dy.

Lemma 3.3. Ifa € S, and § € J;~, Dy,, then o, fa € U~ D,

Lemma 3.4. Let a,y € T,,. If a € S, and v ¢ ;" Dy,, where m < n, then
ay,ye ¢ Uy Dy,

Theorem 3.2. Sep(Dy) = S,

Proof. If n = 1, then D; = S; = T1. By Remark 3.2, Sep(D;) = Sep(T}1) =
Ty = S1. Suppose n > 2 and k = 1. Note that, D is a proper ideal of T;,. By
Theorem 3.1, Sep(D;) = S,,. Suppose k > 2. By Lemma 3.2, S,, C Sep(Dy).

Suppose 8 ¢ S,,. By Lemma 3.1, 3o € Dy, such that rank(af) < k — 1. Hence,
afl ¢ Dy. Therefore, 8 ¢ Sep(Dy,). O

Next, we investigate the separator of union of Z-classes. The following result
is a generalization of Theorem 3.1.

Theorem 3.3. If 1 < ki < ... < ky, <n where m < n, then Sep(U;~, Dx,;) =
Sh-
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Proof. If m = 1, apply Theorem 3.2. Suppose m > 2. By Lemmas 3.3 and 3.4,
Sp € Sep(Ui~, Dy;). Suppose a ¢ Sy,.

Case 1. k1 > 2. By Lemma 3.1, 38 € Dy, such that rank(Sa) < k; —1. Hence,
Ba ¢ Ui, Dy,. Therefore, a ¢ Sep(J;" | Dy,)-

Case 2. k; = 1. Suppose ki,ko,...,k, are consecutive positive integers.
Then, |J;~, Dy, is a proper ideal of T;,. Since a ¢ Sy, by Theorem 3.1, a ¢
Sep(Ui~, Di,;). Suppose ki1 — ki > 1, for some 1 < i < m — 1. By the
Well-ordering principle, b = min{i | k;y1 — k; > 1} exists. Then, ki,...,k;, are
consecutive positive integers and k, < kp+1 < kp1. But Lemma 3.1 tells us that
36 with rank(8) = ky + 1 such that rank(Ba) < k. Note that, 5 ¢ |-, Dx,
but Sa € Ui~ Di,. Therefore, a ¢ Sep(lJ;~, D,)- O

3.2 The separator of Z-classes
Given a subset Y of n with |Y| =k, let S,(Y) = {a € S, | Ya = Y} and
Lp(Y)={ae€ Dy | Ima=Y}.

Remark 3.3. If n = k = 1, then |Y| = 1 so that L;(Y) =T1 = 51 = S1(Y).
Then, Sep(L1(Y)) = Sep(T1) =T1 = S1(Y).

We will show that S,(Y') is the separator of the .Z-class consisting of all
elements of T,, whose image is Y. The next two lemmas follow immediately
from the properties of S, and L(Y).

Lemma 3.5. Ifa € S, (Y) and g € Li(Y), then af, Ba € Li(Y).
Lemma 3.6. Ifa € Sp,(Y) and € T), \ L(Y), then af, o € T,, \ Li(Y').

For m = 1,...,n, let ¢, denote the constant transformation on n defined
by x — m.

Theorem 3.4 ([2]). Letn > 2. If A = {c,,...,ck.}, then Sep(A) = S, (K),
where K = {ky,...,k}.

Lemma 3.7. If k > 2 and o € T), \ Sy, with Ya =Y, then 3y € Li(Y) such
that ary ¢ L(Y).

Proof. Suppose k > 2 and o € T, \ S,, with Yoo =Y. Since o ¢ S,,, it is not
surjective. Let s € n\ Ima, Y = {y1,...,yx}, and Z = n\ (Y U {s}). Then,
s¢Y sinceY =Ya C Ima. Fori=1,2,... k, let

{s}, ifi=1
Pi: {yl7y2}UZa ifi=2

Consider v : n — n where n/ny = {P1,..., P} and Py = {y;},Vi =1,2,... k.
Then, v € Li(Y') since Imy =Y. Note that, Piy = {s}y = {y1}.
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Claim. y; ¢ Imay. Suppose y; € Imay. Then, 3z € Ima such that zy =
y1 = s7v. Hence, (z,s) € 7, which implies that = € [s],, = P1. Then, z = s, a
contradiction, since s ¢ I'ma. Hence, y1 ¢ Imary which implies that Y # I'mary.
Therefore, ay ¢ Li(Y). O

Theorem 3.5. Sep(Li(Y)) = Sp(Y)

Proof. If n = k = 1, by Remark 3.3, Sep(L1(Y)) = S1(Y). Suppose n > 2
and k = 1. Then, |Y|=1. Let Y = {m}. Then, L;(Y) = {¢}. By Theorem
3.4, Sep(L1(Y)) = S,(Y). Now, suppose k > 2. By Lemmas 3.5 and 3.6,
Sp(Y) € Sep(Li(Y)). Suppose a ¢ S, (Y).

Case 1. Ya # Y. Let 8 € Lg(Y). Then, Impfa = (ImB)a = Yo # Y which
implies that Sa ¢ Li(Y). Therefore, a ¢ Sep(Ly(Y)).

Case 2. a ¢ S, with Ya =Y. By Lemma 3.7, o ¢ Sep(Li(Y)). O

3.3 The separator of #Z-classes

The next two lemmas are immediate from the definitions.

Lemma 3.8. Let o, € Tx and xz,y € X. Then, (vo,yo) € mg if and only if
(x,y) S TagB-

Lemma 3.9. If o, 3 € Tx, then o C Tag.
Lemma 3.10. If o € Sx and 8 € Tx, then mg, = 3.

Proof. Let x,y € X. Since « is injective,

z(fa) = y(fa) <= (zB)a = (yfla = zf =yp. O

Let 7 be an equivalence relation on n. Then, n/m is a partition of n. De-
note by T, (m) the semigroup T'(n,n/m). Moreover, let ¥, (7) = X(n,n/m) and
Sp(m) = S(n,n/m). Since Sy (m) = T, (m) NS, and Sy (7) C Xy (7w) C 1o (), we
have Sy, (7) C S, NY,(7) C S, NTy(m) = Sp(w). Thus, we have the following
remark.

Remark 3.4. S, (7) =S, NE,(7) = S, NT(7).

Let Ry(m) denote the Z-class consisting of all & € Dy with partition 7.
Lemma 3.11. If o € S,, and 8 € Ri(m), then fa € Ry(m).
Proof. By Lemma 3.10, 73, = mg = . Therefore, S € Ry (). O
Lemma 3.12. If o € ¥,,(w) and 5 € Ri(m), then aff € Ry(m).

Proof. Let z,y € n. By Corollary 2.1, a is m*-preserving. Then, by Lemma
3.8, (z,y) € map = (ra,ya) € g =7 <= (x,y) € w. Thus, mep = 7.
Therefore, af € Ry(m). dJ
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Lemma 3.13. If a € Sy(7) and v € T,\Ri(7), then ary,yo € T\ Ry (7).

Proof. By Remark 3.4, S,(7) = S, N 3, (m). Suppose o € Sp(mw) and v €
T, \Ri (). Since S,(n) is a group, a~! € S, (7). Suppose v ¢ Dj. By Lemma
3.2, ary,ya ¢ Dy, which implies that ay,ya ¢ Ry (7). Suppose 7, # 7.

Case 1. m € . Then, 3(u,v) € 7 such that (u,v) € 7. Then, uy # vy. Since
« is injective, uya # vya. Then, (u,v) € Tyq. Thus, ™ # Tyq. Let v/ = ua™?
and v/ = va~!. Then, v/a = v and va = v. Since o' preserves 7, we have
that

1

(u,v) €T = (ua Lva ) enr = (u,0) €.

However, since v'ay = wy # vy = v'avy, we have (v/,v') ¢ mo. Thus, 7 # mas.
Therefore, ay, v ¢ Ry ().

Case 2. m, Z 7. Then, 3(x,y) € 7y such that (x,y) ¢ 7. Then, xy = yy and
Yy =yy = vya=yye = (,Y) € Tya.

Thus, mye # 7. Let 2/ = za™! and ¥ = ya~!. Then, 2’a = x and y'a = y. By
Corollary 2.1, a~! is 7*-preserving. Then

(x,y) gm = (xa_l,yofl) gr = (o,y) ¢m.

However, since 2'ay = 2y = yy = ¥ oy, we have (2,y') € moy. Thus, my # 7.
Therefore, ay, ya ¢ Ry (). O

Note that, |n/m| = 1 if and only if n/m = {n}. Clearly, Ri(7) C D;. Let
« € D;. Then, o has rank 1 which means that it only has one equivalence class.
Then, m, = w. Thus, we have the following remark

Remark 3.5. Ri(7) = D;.
Theorem 3.6. Sep(Ry(m)) = Sp(m).

Proof. Suppose k = 1. By Theorem 3.2, Sep(R1(7)) = Sep(D1) = Sy, = Sp (7).
Suppose k > 2. Since S,(7) = S, N Xy, (7), by Lemmas 3.11, 3.12, and 3.13,
Sn(m) C Sep(Rk(7)). Now, suppose « ¢ Sy, (7). Let 8 € Ry(m).

Case 1. o ¢ T, (). Then, o does not preserve 7; hence, 3(z,y) € 7 such that
(xa,ya) ¢ m = mg. By Lemma 3.8, (z,y) ¢ map. Thus, m # m,g which implies
that a8 ¢ Ry(m). Therefore, v ¢ Sep(Ry(7)).

Case 2. a ¢ S,. Then, Jx,y € n with  # y such that xa = ya. Suppose
(x,y) ¢ m. Since zaf = yaf, we have (z,y) € mag. Thus, m,3 # 7 which
implies that af ¢ Ry(w). Therefore, o ¢ Sep(Ry()).

Suppose (z,y) € 7. Since k > 2, we can choose g € n such that (z,q) ¢ .
Consider an element v € Ry (w) such that xy = = and ¢y = y. Then, zya =
za = ya = gya which implies that (z,q) € myq. Thus, m,q # 7. It follows that
va & Ry (m). Therefore, a ¢ Sep(Ry(m)). O
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3.4 The separator of JZ-classes

For a partition 7 of n and Y C n with |n/n| = |Y|, let Hg(7,Y") denote the 5#-
class consisting of all &« € Dy, with partition 7 and image Y. Clearly, Hi(7,Y) =
Ry(m) N Li(Y'). Moreover, denote by Sy(m,Y) the intersection of S, (m) and
Sp(Y). We will show that S, (7, Y) is the separator of Hy(m,Y).

Lemma 3.14. S, (7,Y) C Sep(Hg(m,Y)).

Proof. Suppose o € Sy, (m,Y). Let 8 € Hg(m,Y). Applying Lemma 3.5, we
have a3, B € Li(Y'). Then, by Lemma 3.12, a8 € Ry (7). Moreover, by Lemma
3.10, mgq = mg = m, which implies that Sa € Ry(m). Therefore, af3, fa €
Hy(m,Y). Let v € T,\Hy(m,Y). Suppose v ¢ Ri(7). By Lemma 3.13, ay, va ¢
Ry(m). Suppose v ¢ Li(Y). By Lemma 3.6, ay,ya ¢ Li(Y). Then, avy,ya €
T, \Hy(m,Y). Therefore, a € Sep(Hy(m,Y)). O

Lemma 3.15. If o € T,,\S,, with Ya =Y such that (n\Ima)aNY # 0, then
38 € T,\Hy(m,Y) such that fa € Hy(m,Y).

Proof. Let n/m ={P;,..., P} and Y = {y1,...,yx}. Suppose a € T,\ S, with
Ya =Y such that (n\Ima)anNY # (. Let t € (n\Ima)aNY. Then, t = sa,
for some s € n\Ima. Since Y = Ya, Jy,, € Y such that t = y,,a. Note that,
s¢Y sinceY =Ya C Ima. Let Y = Y\{yn} U{s} and consider 8 € T,, with
g =m and Imf =Y’, where P, = {s} and P;§ = {y;}, for all i # m. Since
ImB #Y, we have § ¢ Hy(m,Y). By Lemma 3.9, 15 C 73,4

Claim. 7g, C mg. Suppose (z,y) ¢ mg. Then, x5 # yB. Then, at least
one of xf8 or yB must belong to Y; otherwise, x5 = s = yB, a contradiction.
Suppose both are elements of Y, that is, z3,y8 € Y. Since Ya =Y, the map
aly 1Y — Y is surjective hence injective. Then, zfSa # yBa which implies that
(z,y) ¢ maa. Suppose only one of them is an element of Y. Without loss of
generality, assume z8 € Y and yB8 ¢ Y. Then, 25 = y;, for some i # m and
yB = s. Since aly is injective, we have

rha = y;a # yma =t = sa = yPa.

Hence, (x,y) ¢ mgo. This proves our claim. We have shown that ng, = 73 = 7.
Moreover, P, fa = {s}a = {t} = {yma} and P;,fa = {y;}a = {y;a}, for all
i # m. Hence, Impa =Y« =Y. Therefore, fa € Hi(m,Y). O

Lemma 3.16. If o € X,,(7)\S,, with Ya =Y, then a ¢ Sep(Hy(mw,Y)).

Proof. Let n/m = {Py,..., Py} and Y = {y1,...,yx}. Suppose a € ¥,,(m)\S,
with Ya = Y. Since a ¢ S,, « is not surjective; hence, n\Ima # 0. If
(n\Ima)anNY # 0, by Lemma 3.15, a ¢ Sep(Hy(m,Y)). Suppose (n\Ima)a N
Y = 0. Let s € n\Ima. Then, sae ¢ Y. Since n/m is a partition of n, s € Pj,
for some j with 1 < j < k. Then, by Corollary 2.1, (@) is bijective; hence there
exists m with 1 < m < k such that my(® = j, that is, Pypa C Pj. Let z € Pp,.



62 JANETH G. CANAMA anD GAUDENCIO C. PETALCORIN, JR.

Then, za € Pj and za # s, since s ¢ Ima. Thus, P;\{s} # (. Consider an
element § € Dyyq with n/mg = {Q1,...,Qk+1}, where

P, ifig{ik+1}
Qi = Pi\{s}, ifi=j
{s}, ifi="Fk+1,

with Q;8 = {y;}, foralli =1,... k and Qp415 = {sa}.

Claim 1. 73 C 7. Suppose (z,y) € mg. Then, z,y € Q;, forsome 1 <i < k+1.
If i ¢ {j,k+ 1}, then z,y € P. If i = j, then Q; = P;\{s} so z,y € P;. If
i=k+ 1, then z =y = s. Thus, (z,y) € 7. This proves Claim 1.

Claim 2. (za,ya) € 7 implies (za,ya) € mg. Suppose (ra,ya) € w. Then
ra,ya € P;, for some 1 < i < k. If i # j, then xa, ya € Q;. We now consider
the case where ¢ = j. Then, za,ya € P;. Note that, za and ya are both not
equal to s, since s ¢ I'ma. Then

za,yo € P; = za,ya € Pj\{s} = za,ya € Q;.

Thus, (za,ya) € mg. This proves Claim 2. Note that, the converse of Claim 2
is true by Claim 1. By Corollary 2.1, « is m*-preserving. By Lemma 3.8,

(z,y) € Tap <= (zo,ya) € T <= (za,ya) € T <= (z,y) € .

Thus, a3 = 7. Let P; € n/m. Then, by Corollary 2.1, x(@ is bijective; hence
there exists 7* with 1 < ¢* < k such that i*x(a) = 14, that is, Pxa C P;. For
i # j, we have P; = Q;. Then Pxaf C P;f = Q;5 = {y;}. Suppose i = j.
Then, Q; = P;\{s}. Since s ¢ Ima, we have s ¢ Pj~a which implies that
Pj=oc € Pj\{s}. Then Pj-af C (P;\{s})8 = Q;8 = {y;}. Hence, Imaf =Y.
Note that, 5 ¢ Hy(m,Y) but af € Hi(m,Y). Therefore, a ¢ Sep(Hy(7,Y)). O

Theorem 3.7. Sep(Hy(m,Y)) = Sy (m,Y).

Proof. By Lemma 3.14, S, (7, Y) C Sep(Hy(m,Y)). Suppose a ¢ Sp(m,Y).
Let T,,(Y) ={a €T, | Ya =Y}. Note that,

Su(m,Y) = Sp (1) N Sn(Y) = Sp N X (1) N S N Tp(Y) = () N S N T (Y).

Let p € Hi(m,Y). Then, ng =7 and Imf3 =Y.

Case 1. a ¢ T,,(Y). Then, Ya # Y which implies that ImfBa = (Imf)a =
Ya #Y. Thus, fa ¢ Hi(m,Y). Therefore, a ¢ Sep(Hy(m,Y)).

Case 2. a ¢ X, (7). Suppose a € T,\T, (7). Then, o does not preserve 7 so
3(z,y) € 7 such that (za,ya) ¢ m = m3. By Lemma 3.8, (z,y) ¢ map. Thus,
T # Tap Which implies that af ¢ Hy(7,Y).

Suppose a € Ty, (7m)\X, (7). Then, a preserves m but is not m*-preserving.
By Remark 2.1, 3(ua,va) € 7 such that (u,v) ¢ 7. Since m = mg, by Lemma
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3.8, (u,v) € map. Thus, map # 7 which implies that a8 ¢ Hy(m,Y). Therefore,
a ¢ Sep(Hp(m,Y)).

Case 3. a ¢ S, but a € X, (r) with Yo = Y. Then, by Lemma 3.16,
a ¢ Sep(Hp(m,Y)). O
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