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Abstract. Let R be a ring and (S,≤) a strictly ordered monoid. This paper aims
to introduce and study generalized power series nil-reversible rings. The researchers
obtains various necessary or sufficient conditions for a generalized power series nil-
reversible rings are 2-primal, nil-semicommutative and nil-symmetric. Examples are
given to show that, a generalized power series nil-reversible which is neither general-
ized power series semicommutative nor generalized power series reversible. Also, we
proved that a multiplicatively closed subset of R consisting of central non-zero divisors
is generalized power series nil-reversible if and only if R is generalized power series
nil-reversible. Moreover, other standard ring-theoretic properties are given.
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1. Introduction

Throughout this paper, any ring is associative and has an identity unless stated.
We write P (R), nil(R), Matn(R), Tn(R, ) Sn(R) and R[x] respectively for the
prime radical, the set of all nilpotent elements of R, the ring of all n×n matrices,
the ring of all n×n upper triangular matrices for a positive integer n with entries
in R, the subring consisting of all upper triangular matrices over a ring R and
the polynomial ring over a ring R.

*. Corresponding author
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In [1], Cohn introduced the notion of a reversible ring. A ring R is said to be
reversible, if whenever a, b ∈ R satisfy ab = 0, then ba = 0. Anderson-Camillo [2]
used the term ZC2 for what is called reversible. While Krempa-Niewieczerzal
[3] took the term C0 for it.

In [4], a ring R is called semicommutative if for all a, b ∈ R, ab = 0 implies
aRb = 0. This is equivalent to the definition that any left (right) annihilator of R
is an ideal ofR. According to [5], semicommutativity of rings is generalized to nil-
semicommutativity of rings. A ring R is called nil-semicommutative if a, b ∈ R
satisfy that ab is nilpotent, then ahb ∈ nil(R), for any h ∈ R. Clearly, every
semicommutative ring is nil-semicommutative. Reduced rings (i.e., rings with no
nonzero nilpotent elements in R) are symmetric by [6, P. 361], symmetric rings
are clearly reversible, and reversible rings are semicommutative by Proposition
1.3 [6], but the converses are not true. Kim and Lee showed that polynomial
rings over reversible rings need not be reversible Example 2.1 [7]. In [8], they
consider these reversible rings over which polynomial rings are reversible and
call them be strongly reversible, i.e., a ring R is called strongly reversible, if
whenever polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then g(x)f(x) =
0. Reversible Armendariz rings are such rings Proposition 2.4 [7], so reduced
rings are strongly reversible, but the converse is not true in general. A ring
R is said to be 2- primal if nil(R) coincides with P (R). A ring R is called
an NI-ring if the upper nilradical Nil∗(R) coincides with the set of nilpotent
elements nil(R). Note that R is an NI-ring if and only if nil(R) forms an ideal
and 2-primal rings are NI.

The notion of Armendariz ring is introduced by Rege and Chhawchharia in
[4]. A ring R to be an Armendariz if f(x)g(x) = 0 implies aibj = 0, for all
polynomials f(x) = a0+a1x+a2x

2+ . . .+amx
m, g(x) = b0+ b1x+ b2x

2+ . . .+
bnx

n ∈ R[x].

This paper introduce and study generalized power series nil-reversible rings.
Under some various necessary or sufficient conditions for a generalized power se-
ries nil-reversible rings to be nil-semicommutative and nil-symmetric. Also, we
proved that, a multiplicatively closed subset of R consisting of central non-zero
divisors is generalized power series nil-reversible if and only if R is generalized
power series nil-reversible. Moreover, some results of generalized power series
nil-reversible are given.

We will write monoids multiplicatively unless otherwise indicated. If R is a
ring and X is a nonempty subset of R, then the left (right) annihilator of X in
R is denoted by ℓR(X)(rR(X)).

We use the following terminology. If A and B are non-empty subsets of a
monoid S, then an element u0 ∈ AB = {ab : a ∈ A, b ∈ B} is said to be a unique
product element (u.p. element) in the product of AB if it is uniquely presented
in form u = ab where a ∈ A and b ∈ B. For a partially ordered set Y, we write
min(Y ) to denote the set of minimal elements of Y.
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Recall that a monoid S is called unique product monoid (u.p.- monoid) if
for any two non-empty finite subsets A,B ∈ S there exist a ∈ A and b ∈ B such
that ab is u.p. element in the product of AB.

We continue by recalling the structure of the generalized power series ring
construction, introduced in [9]. Suppose that (S,≤) is an ordered set, then
(S,≤) is artinian if every strictly decreasing sequence of elements of S is finite,
and (S,≤) is narrow if every subset of pairwise order-incomparable elements of
S is finite. Thus, (S,≤) is artinian and narrow if and only if every nonempty
subset of S has at least one but only a finite number of minimal elements. Let
S be a commutative monoid. Unless stated otherwise, the operation of S will
be denoted additively, and the neutral element by 0. Following definition is due
to Ribenboim and Elliott [14].

Let (S,≤) is a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, d ∈ S and s < s′, then s + d < s′ +
d), and R a ring. Let [[RS,≤]] be the set of all maps f : S → R such that
supp(f) = {s ∈ S|f(s) ̸= 0} is artinian and narrow. With pointwise addition,
[[RS,≤]] is an abelian additive group. For every s ∈ S and f, g ∈ [[RS,≤]], let
Xs(f, g) = {(u, v) ∈ S × S|u + v = s, f(u) ̸= 0, g(v) ̸= 0}. It follows from
Ribenboim [10, 4.1] that Xs(f, g) is finite. This fact allows one to define the
operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

Clearly, supp(fg) ⊆ supp(f) + supp(g), thus by Ribenboim [9, 3.4] supp(fg) is
artinian and narrow, hence fg ∈ [[RS,≤]]. With this operation, and pointwise
addition, [[RS,≤]] becomes an associative ring, with identity element e, namely
e(0) = 1, e(s) = 0 for every 0 ̸= s ∈ S. Which is called the ring of generalized
power series with coefficients in R and exponents in S. Many examples and
results of rings of generalized power series are given in ([11]−[13]), Elliott and
Ribenboim [14] and Varadarajan ([15], [16]). For example, if S = N ∪ {0} and
≤ is the usual order, then [[RN∪{0},≤]] ∼= R[[x]], the usual ring of power series.
If S is a commutative monoid and ≤ is the trivial order, then [[RS,≤]] ∼= R[S],
the monoid ring of S over R. Further examples are given in Ribenboim [9]. To
any r ∈ R and s ∈ S, we associate the maps cr, es ∈ [[RS,≤]] defined by

cr(x) =

{
r, x = 0,

0, otherwise,
es(x) =

{
1, x = s,

0, otherwise.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤]], s 7→ es, is a
monoid embedding of S into the multiplicative monoid of the ring [[RS,≤]], and
cres = escr. Recall that a monoid S is torsion-free if the following property
holds: If s, t ∈ S, k is an integer, k ≥ 1 and ks = kt, then s = t.
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2. Generalized power series nil-reversible rings

In this section, we first give the following concept, so called generalized power
series nil-reversible, that is a generalization of power series reversible rings and
generalized power series reversible, we use this concept by studying the relations
between nil generalized power series reversible and some certain classes of rings.

Definition 2.1. Let (S,≤) be a strictly ordered monoid. A ring R is called
generalized power series nil-reversible if whenever f, g ∈ [[RS,≤]] satisfy fg ∈
[[nil(R)S,≤]] implies gf ∈ [[nil(R)S,≤]].

Let S = (N ∪ {0},+), and ≤ is the usual order. Then, [[RS,≤]] ∼= R[[x]]. So,
the ring R is generalized power series nil-reversible if and only if R is power series
nil-reversible. Hence, a generalized power series nil-reversible is a generalization
of power series nil-reversible and power series reversible.

Remark 2.2. By definition, it is clear that generalized power series nil-reversible
rings are closed under subrings.

Now, we can give example of nil-reversible rings of generalized power series
which is neither generalized power series reversible nor generalized power series
semicommutative. As we know, generalized power series reversible rings are
both generalized power series semicommutative and generalized power series
nil-reversible by definition. So, we may conjecture that generalized power series
nil-reversible rings may be generalized power series semicommutative. But the
following examples eliminate the possibility. We need the following Propositions.

Proposition 2.3. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is a reduced ring with nil(R) an ideal of R, then R is generalized
power series nil-reversible ring.

Proof. Assume that f, g ∈ [[RS,≤]], satisfying that fg is nilpotent. So, there
exists a positive integer n such that (fg)n = 0, so (f(u)g(v))n = 0, for any
u, v ∈ S. Then, f(u)g(v) ∈ nil(R). Hence, g(v)f(u) is nilpotent by reducedness.
Thus, gf is nilpotent.

Proposition 2.4. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. A ring R is generalized power series nil-reversible ring if and only
if, for any n, the n-by-n upper triangular matrix ring Tn(R) is generalized power
series nil-reversible.

Proof. Assume that f, g ∈ [[Tn(R)
S,≤]], such that fg ∈ [[nil(Tn(R))

S,≤]]. So,

by [17], nil(Tn(R)) =


nil(R) R R . . . R

0 nil(R) R . . . R
0 0 nil(R) . . . R
...

...
...

. . .
...

0 0 0 . . . nil(R)

 .
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Let R be a reduced ring. Then, nil(R) = 0 and so nil(Tn(R)) is an ideal.
By Proposition 2.3, Tn(R) is generalized power series nil-reversible. The if part
follows Remark 2.2.

Example 2.5. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. Let R be generalized power series nil-reversible ring. Then

T =


 a11 a12 a13

0 a22 a23
0 0 a33

 | aij ∈ R

 .

is a generalized power series nil-reversible ring by Proposition 2.4. Note that
fg = 0, where f = cE23 + cE13es and g = cE12 + cE22es, But we have gf ̸= 0.
So, T is not generalized power series reversible. In fact, T is not generalized
power series semiccomutative by the same as argument from the last sentence
of Example 3.17 [18] (with n = 3).

Also let S be a generalized power series nil-reversible ring. Then, the ring

Rn =




a a12 a13 . . . a1n
0 a a23 . . . a2n
0 0 a . . . a3n
...

...
...

. . .
...

0 0 0 . . . a

 | a, aij ∈ S;n ≥ 3


.

is not generalized power series reversible by Example 1.5 [19]. But Rn is gener-
alized power series nil-reversible by Proposition 2.4, since any subring of gen-
eralized power series nil-reversible ring is generalized power series nil-reversible.
It is obvious that R4 is not generalized power series semicommutative and it can
be proved similarly that Rn is not generalized power series semicommutative for
n ≥ 5.

Proposition 2.6. Let S be a torsion-free and cancellative monoid, ≤ a strict or-
der on S, and R a generalized power series nil-reversible ring. If f1, f2, . . . , fn ∈
[[RS,≤]] such that f1f2 . . . fn ∈ [[nil(R)S,≤]], then f1(u1)f2(u2) . . . fn(un) ∈ nil(R),
for all u1, u2, . . . , un ∈ S.

Proof. Suppose f1f2 . . . fn ∈ [[nil(R)S,≤]]. Then, for f1(f2. . .fn)∈[[nil(R)S,≤]]
it follows that f1(u1)(f2. . .fn)(v)∈nil(R), for all u1, v ∈ S. Thus, Cf1(u1)(f2 . . . fn)

(v) ∈ nil(R), for any v ∈ S, and so Cf1(u1)f2 . . . fn ∈ [[nil(R)S,≤]]. Now, from

(Cf1(u1)f2)f3 . . . fn ∈ [[nil(R)S,≤]], it follows that (Cf1(u1)f2)(u2)(f3 . . . fn)(w) ∈
nil(R), since u2, w ∈ S. (Cf1(u1)f2)(u2) = f1(u1)(f2(u2)), for any u1, u2 ∈ S, we
have f1(u1)f2(u2)(f3 . . . fn)(w) ∈ nil(R), for all u1, u2, w ∈ S. Hence,

Cf1(u1)Cf2(u2)(f3 . . . fn) ∈ [[nil(R)S,≤]].

Continuing this manner, we see that f1(u1)f2(u2) . . . fn(un) ∈ nil(R), for any
u1, u2, . . . , un ∈ S. As we are desired f1(u1)f2(u2) . . . fn(un) ∈ nil(R), for any
u1, u2, . . . , un ∈ S.
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Corollary 2.7. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is generalized power series nil-reversible, then nil([[RS,≤]]) ⊆
[[nil(R)S,≤]].

Proposition 2.8. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. If R is generalized power series nil-reversible rings, then:
(1) R is abelian.
(2) R is 2-primal.

Proof. Let R be a generalized power series nil-reversible ring.
(1) Let e be an idempotent element of R. For any f(u) ∈ R, u ∈ S, cef(u) −
cef(u)ce ∈ nil(R).Note that (cef(u)−cef(u)ce)ce = 0. By hypothesis, ce(cef(u)−
cef(u)ce) = 0, so cef(u) = cef(u)ce. Again, f(u)ce − cef(u)ce ∈ nil(R) and
ce(f(u)ce − cef(u)ce) = 0. So by generalized power series nil-reversibility of
R, we have (f(u)ce − cef(u)ce)ce = 0, that is, f(u)ce = cef(u)ce. Hence,
cef(u) = f(u)ce.
(2) Note that P (R) ⊆ nil(R). Suppose g(v) ∈ nil(R). Then, there is a positive
integer m ≥ 2 such that (g(v))m = 0. Thus, R(g(v))m−1g(v) = 0. This implies
that g(v)R(g(v))m−1 = 0 as R is generalized power series nil-reversible. This
yields (Rg(v))m = 0, so g(v) ∈ P (R).

Proposition 2.9. Let S be a torsion-free and cancellative monoid, ≤ a strict
order on S. Every generalized power series nil-reversible rings are generalized
power series nil-Armendariz.

Proof. Let 0 ̸= f, g ∈ [[RS,≤]] be such that fg ∈ [[nil(R)S,≤]]. By Ribenboim
[9], there exists a compatible strict total order ≤′ on S, which is finer than ≤ .
We will use transfinite induction on the strictly totally ordered set (S,≤) to show
that f(u)g(v) ∈ nil(R), for any u ∈ supp(f) and v ∈ supp(g). Let s and d denote
the minimum elements of supp(f) and supp(g) in the ≤′ order, respectively. If
u ∈ supp(f) and v ∈ supp(g) are such that u+v = s+d, then s ≤′ u and d ≤′ v.
If s <′ u, then s + d <′ u + v = s + d, a contradiction. Thus u = s. Similarly,
v = d. Hence, 0 = (fg)(s+ d) =

∑
(u,v)∈Xs+d(f,g)

f(u)g(v) = f(s)g(d).

Now, suppose that w ∈ S such that for any u ∈ supp(f) and v ∈ supp(g)
with u + v <′ w, f(u)g(v) = 0. We will show that f(u)g(v) ∈ nil(R), for any
u ∈ supp(f) and v ∈ supp(g) with u + v = w. We write Xw(f, g) = {(u, v) |
u+ v = w, u ∈ supp(f), v ∈ supp(g)} as {(ui, vi) | i = 1, 2, . . . , n} such that

u1 <
′ u2 <

′ . . . <′ un.

Since S is cancellative, u1 = u2 and u1 + v1 = u2 + v2 = w imply v1 = v2. Since
≤′ is a strict order, u1 <

′ u2 and u1 + v1 = u2 + v2 = w imply v2 <
′ v1. Thus

we have

vn <
′ . . . <′ v2 <

′ v1.
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Now,

(2.1) 0 = (fg)(w) =
∑

(u,v)∈Xw(f,g)

f(u)g(v) =
n∑

i=1

f(ui)g(vi).

For any i ≥ 2, u1 + vi <
′ ui + vi = w, and thus, by induction hypothesis,

we have f(u1)g(vi) ∈ nil(R). R is 2- primal by Proposition 2.8 this implies
f(u1)g(vi) ∈ nil(R). Hence, multiplying Eq. (2.1) on the right by f(u1)g(v1),
we obtain ( n∑

i=1

f(ui)g(vi)
)
f(u1)g(v1) = f(u1)g(v1)f(u1)g(v1) = 0.

Then, (f(u1)rg(v1))
2 = 0 and so f(u1)g(v1) ∈ nil(R). Now, Eq. (2.1) becomes

(2.2)

n∑
i=2

f(ui)g(vi) = 0.

Multiplying f(u2)g(v2) on Eq. (2.2) from the right-hand side, we obtain
f(u2)g(v2) = 0 by the same way as the above. Continuing this process, we
can prove f(ui)g(vi) = 0 for i = 1, 2, . . . , n. Thus f(u)g(v) ∈ nil(R), for any
u ∈ supp(f) and v ∈ supp(g) with u+v = w. Therefore, by transfinite induction,
f(u)g(v) ∈ nil(R), for any u ∈ supp(f) and v ∈ supp(g).

Lemma 2.10. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. For a ring R, consider the following conditions.
(1) R is generalized power series nil-reversible.
(2) If AB is a nil set, then so is BA, for any subsets A,B of R.
(3) If IJ is nil, then JI is nil for all right (or left) ideals I, J of R.
Then, (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) Assume that R is nil generalized power series reversible. Let
A,B be two nonempty subsets of R with AB is a nil set. For any f ∈ A and
g ∈ B is nilpotent. Then, gf is nilpotent. This implies that BA is nil.
(2) ⇒ (3) Let I and J be any right ideals of R such that IJ is nil. Since
IR ⊆ I, IJ is nil. By (2), JI is nil. Since JI ⊆ JRI, we get JI is nil. Assume
that I and J be any left ideals of R such that IJ is nil. Since RJ ⊂ J and then
IRJ ⊆ IJ, IJ is nil. By (2), JRI is nil. Since JI ⊆ JRI, we get JI is nil.

Lemma 2.11. Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. Then, every generalized power series nil-reversible rings are generalized
power series nil-semicommutative.

Proof. Let f, g ∈ [[RS,≤]] with fg ∈ [[nil(R)S,≤]]. Then, gf ∈ [[nil(R)S,≤]] and
g(v)h(w)f(u) ∈ nil(R), for any u, v, w ∈ S and h(w) ∈ R, so f(v)h(w)g(u) ∈
nil(R). Thus, fhg ∈ [[nil(R)S,≤]] by [7, Lemma 1.1]. Therefore, R is generalized
power series nil-semicommutative.
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Let I be an index set and Ri be a ring for each i ∈ I. Let (S,≤) be a
strictly ordered monoid, if there is an injective homomorphism f : R→

∏
i∈I Ri

such that, for each j ∈ I, πjf : R → Rj is a surjective homomorphism, where
πj :

∏
i∈I Ri → Rj is the jth projection. We have the following.

Proposition 2.12. Let Ri be a ring, (S,≤) a strictly totally ordered monoid,
for each i in a finite index set I. If Ri is generalized power series nil-reversible
ring. for each i, then R =

∏
i∈I Ri is generalized power series nil-reversible

ring.

Proof. Let R =
∏

i∈I Ri be the direct product of rings (Ri)i∈I and Ri is gener-
alized power series nil-reversible, for each i ∈ I. Denote the projection R→ Ri

as Πi. Suppose that f, g ∈ [[RS,≤]] such that fg ∈ [[nil(R)S,≤]]. Set fi =
∏

i f ,

gi =
∏

i g. Then, fi, gi ∈ [[RS,≤
i ]]. For any u, v ∈ S, assume f(u) = (aui )i∈I ,

g(v) = (bvi )i∈I . Now, for any s ∈ S,

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v) =
∑

(u,v)∈Xs(f,g)

(aui )i∈I(b
v
i )i∈I

=
∑

(u,v)∈Xs(f,g)

((aui )(b
v
i ))i∈I =

∑
(u,v)∈Xs(f,g)

(fi(u)gi(v))i∈I

=
( ∑

(u,v)∈Xs(fi,gi)

fi(u)gi(v)
)
i∈I

= ((figi)(s))i∈I .

Since (fg)(s) ∈ nil(R), we have (figi)(s) ∈ nil(Ri). Thus, figi ∈ [[nil(Ri)
S,≤]].

Now, it follows fi(u)gi(v) ∈ nil(Ri), for any u, v ∈ S and any i ∈ I, since Ri is
generalized power series nil-reversible. Hence, for any u, v ∈ S,

f(u)g(v) = (fi(u)gi(v))i∈I ∈ nil(R),

since I is finite. Thus, f(u)g(v) ∈ nil(R). Then, by reversible ring, we have

(gi(v)fi(u))i∈I = g(v)f(u) ∈ nil(R).

This means that gf ∈ [[nil(R)S,≤]]. The proof is done.

Proposition 2.13. Let (S,≤) be a strictly ordered monoid. If R is finite subdi-
rect product of generalized power series nil-reversible rings, then R is generalized
power series nil-reversible ring.

Proof. Let Ik(k = 1, . . . , l) be ideals of R such that R/Ik is generalized power
series nil-reversible and

⋂l
k=1 Ik = 0. Let f and g be in [[RS,≤]] with fg ∈

[[nil(R)S,≤]]. Clearly f̄ ḡ ∈ [[nil(R/Ik)
S,≤]]. Since R/Ik is generalized power se-

ries nil-reversible, we have (f(u)g(v))ru,v,k ∈ Ik, for each u, v ∈ S and k =
1, . . . , l. Assume that ru,v = max{ru,v,k|k = 1, . . . , l}. So, (f(u)g(v))ru,v ∈⋂l

k=1 Ik = 0. Hence, f(u)g(v) ∈ nil(R), for each u, v ∈ S, then g(v)f(u) ∈
nil(R). Thus, gf ∈ [[nil(R)S,≤]], and we are done.
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Proposition 2.14. Let (S,≤) a strictly ordered monoid. Let R be a ring and
e2 = e ∈ R. If R is generalized power series nil-reversible, then so is eRe.

Proof. Let cefce, cegce ∈ [[(eRe)S,≤]] with (cefce)(cegce) ∈ [[nil(eRe)S,≤]].
Let e be an idempotent of R. It is easy to see that ce is an idempotent ele-
ment of [[(eRe)S,≤]] and ceg = gce for every g ∈ [[(R)S,≤]]. Then, (cef)(ceg) ∈
[[nil(eR)S,≤]]. Since R is generalized power series nil-reversible, we have fg ∈
[[nil(R)S,≤]], and so gf ∈ [[nil(R)S,≤]]. Then, there exists m ∈ N such that
((cefce)(cegce))

m = 0. Hence, (cegce)(cefce) ∈ [[nil(eRe)S,≤]].

Corollary 2.15. Let R be a ring, (S,≤) a strictly ordered monoid. For a
central idempotent e of a ring R, eR and (1 − e)R are generalized power series
nil-reversible if and only if R is generalized power series nil-reversible.

Proof. Assume that eR and (1−e)R are generalized power series nil-reversible.
Since the nil generalized power series reversibility property is closed under finite
direct products, R ∼= eR × (1 − e)R is generalized power series nil-reversible.
The converse is trivial by Proposition 2.14.

In [20], A homomorphic image of a nil-reversible ring may not be nil-
reversible, so as generalized power series nil-reversible by the next example.

Example 2.16. Let R be a ring, (S,≤) a strictly ordered monoid. Assume
that R = D[[S,≤]], where D is a division ring and I =< xy >, where xy ̸= yx.
As R is a domain, R is generalized power series nil-reversible. Clearly yx ∈
nil(R/I)[[S,≤]] and x(yx) = xyx = 0. But, (yx)x = yx2 ̸= 0. This implies R/I
is not generalized power series nil-reversible.

Theorem 2.17. Let R be a ring and (S,≤) a strictly ordered monoid. If R is
a generalized power series nil-reversible and I an ideal consisting of nilpotent
elements of bounded index ≤ n in R, then R/I is generalized power series nil-
reversible.

Proof. Let f̄ , ḡ ∈ [[(R/I)S,≤]] with f̄ ḡ ∈ [[nil(R/I)S,≤]]. By hypothesis, the
order (S,≤) can be refined to a strict total order ≤ on S. We will use trans-
finite induction on the strictly totally ordered set (S,≤) to show that ḡf̄ ∈
[[nil(R/I)S,≤]]. Firstly, by transfinite induction to show g(t)f(s) ∈ nil(R), for
any s ∈ supp(f) and any t ∈ supp(g). Since supp(f) and supp(g) are nonempty
subsets of S, the set of minimal elements of supp(f) and supp(g), respectively,
are finite and non-empty. Let s0 and t0 denote the minimum elements of supp(f)
and supp(g) in the ≤ order, respectively. By analogy with the proof of Theorem
2.25 [21], we can show that f(s0)g(t0) = 0. Therefore, by transfinite induction,
we can proof that f(s)g(t) = 0. Since f̄ ḡ ∈ [[nil(R/I)S,≤]], then, there is a posi-
tive integer n ∈ N such that (f̄ ḡ)n = 0̄. So, (f(s)g(t))n ∈ I, for any s, t ∈ S. Since
I ⊆ nil(R), (f(s)g(t))n = 0. Hence, f(s)g(t) ∈ nil(R), so g(t)f(s) ∈ nil(R),
by R is generalized power series nil-reversible, gf ∈ [[nil(R)S,≤]]. Thus, ḡf̄ ∈
[[nil(R/I)S,≤]]. Therefore, R/I is generalized power series nil-reversible.
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Now, we give some characterizations of nil generalized power series reversibi-
lity by using the prime radical of a ring.

Corollary 2.18. Let R be a ring and (S,≤) a strictly ordered monoid. If a ring
R is generalized power series nil-reversible, then R/P (R) is generalized power
series nil-reversible.

Proof. Since every element of P (R) is nilpotent, the proof follows from Theo-
rem 2.17.

Proposition 2.19. Let R be a ring and (S,≤) a strictly ordered monoid. Let
J be a reduced ideal of a ring R such that R/J is generalized power series nil-
reversible. Then, R is generalized power series nil-reversible.

Proof. Let f, g ∈ [[RS,≤]] and suppose that fg ∈ [[nil(R)S,≤]]. Then, f̄ ḡ ∈
[[nil(R/J)S,≤]] and so ḡf̄ ∈ [[nil(R/J)S,≤]], since R/J is nil generalized power
series reversible. There exists m ∈ N such that (f̄ ḡ)m = 0̄. This shows that
(f(s)g(t))m ∈ J , for any s, t ∈ S. Since J is reduced, we have f(s)g(t) = 0
yields g(t)f(s) = 0. Thus, gf ∈ [[nil(R)S,≤]]. Therefore, R is generalized power
series nil-reversible.

A ring is called semiperfect if every finitely generated R-right-module has a
projective cover by [22]. For abelian semiperfect, here we have.

Theorem 2.20. Let R be a ring and (S,≤) a strictly ordered monoid. Consider
the following statements.
(1) R is a finite direct sum of local generalized power series nil-reversible rings.
(2) R is a semiperfect generalized power series nil-reversible ring.
Then, (1) ⇒ (2) and the converse is true when R is abelian.

Proof. (1) ⇒ (2) Assume that R is a finite direct sum of local generalized
power series nil-reversible rings. Then, R is semiperfect because local rings
are semiperfect and a finite direct sum of semiperfect rings is semiperfect, and
moreover R is generalized power series nil-reversible by Proposition 2.12.
(2) ⇒ (1) Suppose that R is an abelian semiperfect generalized power se-
ries nil-reversible ring. Since R is semiperfect, R has a finite orthogonal set
{e1, e2, . . . , en} of local idempotents whose sum is 1 by Theorem 27.6 [23], say
1 = e1 + e2 + . . . + en such that each eiRei is a local ring where 1 ≤ i ≤ n.
The ring R being abelian implies eiRei = eiR. Each eiR is a generalized power
series nil-reversible by Proposition 2.14. Hence, R is generalized power series
nil-reversible by Proposition 2.12.

3. Weak annihilator of generalized power series reversible and some
rings property

In [24], Ouyang introduced the notion of weak annihilators and investigated their
properties. For a subset X of a ring R put NrR(X) = {a ∈ R|Xa ∈ nil(R)}
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and NlR(X) = {b ∈ R|bX ∈ nil(R)}. By a simple computation, we can see
that NrR(X) = NlR(X). The set NrR(X) is called the weak annihilator of X.
It is also easy to see that, NrR(X) is an ideal of R in case R is a NI-ring.
Furthermore when R is reduced, then rR(X) = NrR(X) = lR(X) = NlR(X).
For more details and results on weak annihilators see [25].

Now, we investigate the relations between weak annihilators in a ring R and
weak annihilators in a generalized power series ring R[[S,≤]]. Given a ring R
and let γ = C(f) be the content of f, i.e., C(f) = {f(u)|u ∈ supp(f)} ⊆ R.
Since, R ≃ cR we can identify, the content of f with

cC(f) = {cf(ui)|ui ∈ supp(f)} ⊆ [[RS,≤]].

Then, we have two maps ϕ : NrAnnR(id(R)) → NrAnn[[RS,≤]](id([[R
S,≤]])) and

ψ : NlAnnR(id(R)) → NlAnn[[RS,≤]](id([[R
S,≤]])) defined by ϕ(I) = I[[RS,≤]]

and ψ(J) = [[RS,≤]]J for every I ∈ NrAnnR(id(R)) = {NrR(U)|U is an ideal
of R} and J ∈ NlAnnR(id(R)) = {NlR(U)|U is an ideal of R}, respectively.
Obviously, ϕ is injective. In the following theorem, we show that ϕ and ψ are
bijective maps if and only if R is generalized power series nil-reversible.

Theorem 3.1. Let R be a ring and (S,≤) a strictly ordered monoid. If R is
reduced and nil(R) is a nilpotent ideal of R, then the following are equivalent:
(1) R is generalized power series nil-reversible ring.
(2) The function ϕ : NrAnnR(id(R)) → NrAnn[[RS,≤]](id([[R

S,≤]])) is bijective,

where ϕ(I) = I[[RS,≤]] for every I ∈ NrAnnR(id(R)).
(3) The function ψ : NlAnnR(id(R)) → NlAnn[[RS,≤]](id([[R

S,≤]])) is bijective,

where ψ(J) = [[RS,≤]]J for every J ∈ NlAnnR(id(R)).

Proof. (1)⇒(2) Let Y ⊆ [[RS,≤]] and γ =
⋃

f∈Y C(f). From Proposition 2.6 it

is sufficient to show that Nr[[RS,≤]](f) = NrRC(f)[[R
S,≤]], for all f ∈ Y. In fact,

let g ∈ Nr[[RS,≤]](f). Then, fg ∈ [[nil(R)S,≤]] and by assumption f(ui)g(vj) ∈
nil(R) for each ui ∈ supp(f) and each vj ∈ supp(g). Then, for a fixed ui ∈
supp(f) and each vj ∈ supp(g), 0 = f(ui)g(vj) = (cf(ui)g)(vj), it follows that

g ∈ NrR
⋃

ui∈supp(f)

cf(ui)[[R
S,≤]] = NrRC(f)[[R

S,≤]].

So,

Nr[[RS,≤]](f) ⊆ NrRC(f)[[R
S,≤]].

Conversely, let g ∈ NrRC(f)[[R
S,≤]], then cf(ui)g ∈ [[nil(R)S,≤]] for each

ui ∈ supp(f). Hence, (cf(ui)g)(vj) = f(ui)g(vj) ∈ nil(R) and vj ∈ supp(g).
Thus,

(fg)(s) =
∑

(ui,vj)∈Xs(f,g)

f(ui)g(vj) = 0
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and it follows that g ∈ Nr[[RS,≤]](f). Hence, NrRC(f)[[R
S,≤]] ⊆ Nr[[RS,≤]](f)

and it follows that NrRC(f)[[R
S,≤]] = Nr[[RS,≤]](f). So,

Nr[[RS,≤]](Y ) =
⋂
f∈Y

Nr[[RS,≤]](f) =
⋂
f∈Y

C(f)[[RS,≤]] = NrR(γ)[[R
S,≤]].

(2)⇒(1) Suppose that f, g ∈ [[RS,≤]] be such that fg ∈ [[nil(R)S,≤]]. Then,
g ∈ Nr[[RS,≤]](f) and by assumption Nr[[RS,≤]](f) = γ[[RS,≤]] for some right
ideal γ of R. Consequently, 0 = fcg(vj) and for any ui ∈ supp(f), (fcg(vj))(ui) =
f(ui)g(vj) ∈ nil(R) for each ui ∈ supp(f) and vj ∈ supp(g). Thus by reduced
ring, g(vj)f(ui) ∈ nil(R), then gf ∈ [[nil(R)S,≤]]. Hence, R is generalized power
series nil-reversible. The proof of (1)⇔(3) is similar to the proof of (1)⇔(2).

According to Liu [26], the ring R is called S-Armendariz if whenever f, g ∈
[[RS,≤]] satisfy fg = 0, then f(u)g(v) = 0 for each u, v ∈ S. Now, we given a
strong condition under which [[RS,≤]] is nil-reversible.

Theorem 3.2. Let R be a ring and (S,≤) a strictly ordered monoid. Assume
that R is an S-Armendariz ring, then R is generalized power series nil-reversible
if and only if [[RS,≤]] is nil-reversible.

Proof. Suppose R is generalized power series nil-reversible. Let f, g ∈ [[RS,≤]]
be such that fg ∈ [[nil(R)S,≤]]. By [27, Proposition 2.17], [[nil(R)S,≤]] =
nil([[RS,≤]]). So, f(ui)g(vj) ∈ nil(R), for any u, v ∈ S and any i, j. Since R is S-
Armendariz, f(ui)g(vj) = 0, for all i, j. By nil-reversibility, g(vj)f(ui) ∈ nil(R),
for all i, j. So, gf = 0. Therefore, [[RS,≤]] is nil-reversible. The proof of the
converse is trivial.

Theorem 3.3. Let R be a ring and (S,≤) a strictly ordered monoid. Let ∆
denotes a multiplicatively closed subset of R consisting of central non-zero divi-
sors. Then, R is generalized power series nil-reversible if and only if ∆−1R is
generalized power series nil-reversible.

Proof. Suppose R is generalized power series nil-reversible and pi, dj , u, v ∈ R.
Let u−1Cpi , v

−1Cdj ∈ ∆−1R[[S,≤]], for all i, j satisfying that u−1Cpiv
−1Cdj ∈

nil(∆−1R[[S,≤]]). Then, (u−1Cpiv
−1Cdj )

n = 0 for some positive integer n. This
implies (CpiCdj )

n = 0, so pidj ∈ nil(R). For any u−1Cpi , v
−1Cdj ∈ ∆−1R[[S,≤

]] having the property that (u−1Cpi)(v
−1Cdj ) = 0, we have (uv)−1CpiCdj =

0, CpiCdj = 0, for all i, j. Since R is generalized power series nil-reversible,
djpi ∈ nil(R), so (v−1u−1)CdjCpi = 0 which further yields (v−1Cdj )(u

−1Cpi) ∈
nil(∆−1R[[S,≤]]). Hence, ∆−1R is generalized power series nil-reversible. The
converse part is trivial.

Following Lambek [28], a ring R is called symmetric if abc = 0 implies
acb = 0, for all a, b, c ∈ R. It is obvious that commutative rings are symmetric
and symmetric rings are reversible ring.
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Theorem 3.4. Let R be a reversible ring and (S,≤) a strictly ordered monoid
with nil(R) is a nilpotent ideal of R. Then, R is generalized power series nil-
symmetric if and only if R[[S,≤]] is nil-symmetric.

Proof. Assume that R is generalized power series nil-symmetric and f, g, h ∈
R[[S,≤]] are such that fgh ∈ nil(R[[S,≤]]). Hence, by Proposition 2.6,
f(u)g(v)h(t) ∈ nil(R), for all u, v, t ∈ S. Since R is nil-symmetric, we have
f(u)h(t)g(v) ∈ nil(R). Now, for all s ∈ S, we have

(fhg)(s) =
∑

(u,t,v)∈Xs(f,h,g)

f(u)h(t)g(v).

So, the reversibility of R imply that fhg ∈ nil(R[[S,≤]]), hence R[[S,≤]] is nil-
symmetric. Conversely, if R[[S,≤]] is nil-symmetric, then R is generalized power
series nil-symmetric, as subrings of generalized power series nil-symmetric rings
are also generalized power series nil-symmetric.

4. Conclusion

In this paper, we have introduced the notion of generalized power series nil-
reversible rings. The researchers obtains various necessary or sufficient condi-
tions for a generalized power series nil-reversible rings to be some rings related.
We use this concept by studying the relations between generalized power series
reversible and some certain classes of rings. One can extend this work to study
different rings on this structure. Further one can identify some real life appli-
cations in a monoid homomorphism and ideal rings. In our future work we will
introduce the concept of skew generalized power series nil-reversible, that is a
generalization of power series nil-reversible, when R is S-compatible, (S,≤) a
strictly ordered monoid and connected by annihilator rings.
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