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Abstract. A Mehrotra-type predictor-corrector algorithm for P∗(κ) linear comple-
mentarity problems is presented. In this algorithm, the corrector step takes a new
direction, and the barrier parameter is the smaller positive root of a logarithmic equa-
tion. The iteration complexity of the new algorithm matches the currently best-known
results. Numerical results show that the algorithm is efficient.
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1. Introduction

Mehrotra’s predictor-corrector algorithm [1, 2] and its variants have become the
backbones of some optimization solvers [3-7]. The superior practical perforance
of Mehrotra-type predictor-corrector algorithms motivated scholars to explore
their theoretical properties. Jarre and Wechs [8] investigated an interior point
method in which the search direction is based on corrector directions of Mehro-
tra’s algorithm. To avoid small steps, Salahi et al. [9] introduced a safeguard
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strategy for a Mehrotra-type algorithm. After that, Salahi and Terlaky [10]
proposed a new variant of Mehrotra-type algorithm without any safeguards and
proved the iteration complexity bound coincides with the result in [9]. Recently,
Salahi [11] introduced a new adaptive updating technique of the barrier param-
eter in Mehrotra-type algorithm for linear optimization (LO), which allowed
them to prove the polynomial iteration complexity without employing any safe-
guards. Infeasible versions of Mehrotra-type algorithm [12, 13] and second order
Mehrotra-type algorithms [14, 15] are also studied by scholars. Since efficiency
in computation, Mehrotra-type predictor-corrector algorithm are extended to
linear complementarity problems (LCPs) [12, 16], semidefinite programming
[17-19], nonlinear complementarity problems [20] and many other problems.

LCPs are closely associated with linear programming and quadratic pro-
gramming. The class of P∗(κ) LCP is an important branch of LCPs. Interior
point algorithms for P∗(κ) LCPs have been widely studied in the last few decades
[21]. Large update technique [22], full-Newton step [23, 24] and interior point
method based on kernel function [25] are also presented for P∗(κ) LCPs.

In this paper, a new Mehrotra-type algorithm for P∗(κ) LCPs is presented,
in which it takes a different corrector search direction and an adaptive updat-
ing technique of the barrier parameter. It extends the algorithm in [11] for
LO to P∗(κ) LCPs. In P∗(κ) LCPs, the search directions ∆x and ∆s are not
orthogonal any more, while they are orthogonal in LO, this leads a different
technique to analyze the iteration complexity. Taking a specific default value
as the predictor step size, we prove that the algorithm stops after at most
O(

√
(1 + 4κ)(1 + 2κ)n log((x0)T s0/ϵ)) iterations. If κ = 0, the iteration bound

coincides with the result of LO in [11].
The rest of this paper is organized as follows. In Section 2, we recall some

basic concepts and state a newMehrotra-type algorithm for P∗(κ) LCPs. Section
3 includes several important technical results, and subsequently the iteration
bound of this algorithm is derived. Two illustrative numerical results of this
algorithm are presented in Section 4. Finally, conclusion and final remarks are
shown in Section 5.

For simplicity, we use the following notations throughout the paper:

e = (1, 1, · · · , 1)T .
I = {1, 2, · · · , n}, I+ = {i ∈ I|∆xai∆sai ≥ 0}, I− = {i ∈ I|∆xai∆sai < 0}.
F =

{
(x, s) ∈ Rn × Rn|s = Mx+ q, (x, s) ≥ 0

}
.

F0 =
{
(x, s) ∈ F|(x, s) > 0

}
.

X = diag(x), S = diag(s).

xs = Xs = (x1s1, x2s2, · · · , xnsn)T .
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2. The algorithm

A matrix M ∈ Rn×n is a P∗(κ) matrix if there is a constant κ ≥ 0 such that

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0, ∀ x ∈ Rn,

or equivalently

xTMx ≥ −4κ
∑

i∈I+(x)

xi(Mx)i, ∀x ∈ Rn,

where I+(x) = {i|xi(Mx)i ≥ 0, i ∈ I} and I−(x) = {i|xi(Mx)i < 0, i ∈ I}.
Note that, M is a positive semidefinite matrix if κ = 0. Thus, the class of P∗(κ)
matrices includes positive semi-definite matrices. The goal of a P∗(κ) LCP is to
find solutions (x, s) ∈ Rn × Rn such that

Mx+ q = s, xs = 0, (x, s) ≥ 0,(1)

where M is a P∗(κ) matrix, q ∈ Rn and n ≥ 2.
To find an approximate solution of (1), a parameterized system is established

as follows:

Mx+ q = s, xs = µe, (x, s) ≥ 0,(2)

where µ > 0. We assume that system (1) satisfies the interior point condition
(IPC), i.e., there exists a point (x0, s0) such that

s0 = Mx0 + q, x0 > 0, s0 > 0.

For a given µ > 0, if the IPC holds, then system (2) has a unique solution
(x(µ), s(µ)), which is called the µ-center of (1). The set of all µ-centers is called
the central path of (1). As µ goes to 0, the limit of (x(µ), s(µ)) exists and
approaches the solution of (1).

In the following, a feasible version of Mehrotra-type predictor-corrector al-
gorithm for P∗(κ) LCPs will be presented, which works in a negative infinity
neighborhood defined as

N−
∞(γ) = {(x, s) ∈ F0| xisi ≥ γµg,∀i ∈ I},

where γ ∈ (0, 1) is a constant independent of n. The neighborhood N−
∞(γ) is

also widely used in the implementation of other interior point algorithms.
The predictor direction (∆xa,∆sa) is determined by the following system:

(3)
M∆xa = ∆sa,

s∆xa + x∆sa = −xs,

and the predictor step size αa is defined by

αa = max{α|(x+ α∆xa, s+ α∆sa) ∈ F , 0 < α ≤ 1}.(4)
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However, the our algorithm does not take a predictor step right away. By
using information about the predictor step, the algorithm derives the corrector
direction from the following system:

(5)
M∆x = ∆s,

s∆x+ x∆s = µe− xs− α2
a∆xa∆sa.

The corrector direction in system (5) is different from that in [9] where it is
determined by the equations M∆x = ∆s and s∆x+ x∆s = µe− xs−∆xa∆sa.
Motivation of the modification is based on the following observation. Since 0 <
αa ≤ 1, it can be found that α2

a |∆xa∆sa| ≤ |∆xa∆sa|, thus µe−xs−α2
a∆xa∆sa

is much closer to µe− xs than µe− xs−∆xa∆sa.
In each iteration of a primal-dual interior point algorithm, the barrier param-

eter µ needs to be updated. In this paper, we focus on the updating technique
in [11]. A classical logarithmic barrier proximity function is used to measure
the distance from the current iterate to the central path, and it is defined as

Φ(x, s, µ) :=
xT s

2µ
− n

2
+

n

2
logµ− 1

2

n∑
i=1

log(xisi).(6)

Obviously, for given (x, s), the function Φ(x, s, µ) is minimum if µ = µg = xT s
n .

We denote µh = n
√
x1s1 · · ·xnsn. From the Arithmetic Mean−Geometric Mean

inequality, it is clear that µh ≤ µg. We consider the following equation with
respect to µ,

Φ(x, s, µ) =
(σ − 1)n

2
,(7)

where the constant σ > 4κ+4. From (6) and (7), it can be found that equation
(7) is equivalent to

µg

µ
+ log

µ

µh
− σ = 0.(8)

Follows from Corollary 2.5 of [11], equation (8) has two positive roots. The
smaller one is defined as the target barrier parameter denoted by µt.

The barrier parameter µt is used to compute the corrector search direction
(∆x,∆s) by the following equations

(9)
M∆x = ∆s,

s∆x+ x∆s = µte− xs− α2
a∆xa∆sa.

The new iterate is denoted as (x(αc), s(αc)) = (x+ αc∆x, s+ αc∆s) where the
corrector step size αc is defined by

αc = max{α|(x(α), s(α) ∈ N−
∞(γ), 0 < α ≤ 1}.(10)

Based on the previous analysis, a new Mehrotra-type predictor-corrector algo-
rithm for P∗(κ) LCP is stated as Algorithm 1.
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Algorithm 1
Input:

A parameter σ > 4κ+ 4, a starting point (x0, s0) ∈ N−
∞(γ) with γ = 1

σ ,
an accuracy parameter ϵ > 0.
begin
Set x := x0; s = s0;
while xT s ≥ ϵ do

begin Predictor step
Solve (3) and calculate the predictor step size αa from (4);

end
begin Corrector step

Solve (8) to derive the smaller positive root µt;
Solve (9) and calculate the corrector step size αc from (10);
Set (x, s) := (x(αc), s(αc)).

end
end

3. Complexity analysis

In this section, we establish the polynomial complexity for Algorithm 1. In
the following, we give the bounds of µt, ∥∆x∆s∥, ∆xT∆s and step sizes of
Algorithm 1. The bounds are important in the complexity analysis.

Lemma 3.1 ([11])). For all iterates (x, s) of Algorithm 1, we have σ ≤ µg

µt
≤ 2σ.

Lemma 3.2. Let (∆xa,∆sa) be the solution of (3). Then:

(i) ∆xai∆sai ≤ xisi
4

, i ∈ I+; −∆xai∆sai ≤ 1

αa
(
1

αa
− 1)xisi, i ∈ I−;

(ii)
∑
i∈I+

∆xai∆sai ≤ xT s

4
;

∑
i∈I−

|∆xai∆sai | ≤
4κ+ 1

4
xT s;

(iii) − κxT s ≤ (∆xa)T∆sa ≤ xT s

4
.

Proof. (i) The proof is similar to that of Lemma A.1 and Proposition 4.1 in
[9], and it is omitted here.

(ii) The first conclusion is a direct consequence of (i). We will prove the
second conclusion in the following. Since M is a P∗(κ) matrix, following from
the first conclusion, we have

0 >
∑
i∈I−

∆xai∆sai ≥ −(1 + 4κ)
∑
i∈I+

∆xai∆sai ≥ −1 + 4κ

4
xT s,

that is
∑

i∈I− |∆xai∆sai | ≤ 1+4κ
4 xT s.



A MEHROTRA-TYPE ALGORITHM WITH LOGARITHMIC UPDATING TECHNIQUE ... 687

(iii) From statement (ii), it follows that (∆xa)T∆sa ≤
∑

i∈I+ ∆xai∆sai ≤ xT s
4 .

Since ∆sa = M∆xa and M is a P∗(κ) matrix, we get

(∆xa)T∆sa ≥ −4κ
∑
i∈I+

∆xai∆sai ≥ −κxT s.

This completes the proof.

Theorem 3.1 ([16])). If the current iterate (x, s) ∈ N−
∞(γ) and αa is the pre-

dictor step size, then

αa ≥
√

γ

(4κ+ 1)n
.

In what follows, we consider the lower bound as a default value for predictor
step size, that is

αa =

√
γ

(4κ+ 1)n
.(11)

Lemma 3.3. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with µ > 0,

then

||∆x∆s|| ≤
√
(
1

4
+ κ)(

1

2
+ κ)||w||2,

∑
i∈I+

∆xi∆si ≤
1

4
||w||2,

where w = (xs)−
1
2 (µe− xs− α2

a∆xa∆sa).

Proof. The proof is similar to that of Lemma 8 in [26], and we omit it here.

Lemma 3.4. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with µ > 0,

then

||w||2 ≤ nµ2

γµg
−2nµ+

(4κ+ 1)α2
anµ

2γ
+
α4
a + 8α2

a + 4α2
a(1− αa)(4κ+ 1) + 16

16
nµg.

Proof. From Lemma 3.3, one has

||w||2 =µ2
∑
i∈I

1

xisi
+
∑
i∈I

xisi − 2nµ+ α4
a

∑
i∈I

(∆xai∆sai )
2

xisi

− 2α2
aµ

∑
i∈I

∆xai∆sai
xisi

+ 2α2
a

∑
i∈I

∆xai∆sai .
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Due to (x, s) ∈ N−
∞(γ), we have µ2

∑
i∈I

1
xisi

≤ nµ2

γµg
. Using (i) and (ii) in

Lemma 3.2, we obtain

α4
a

∑
i∈I

(∆xai∆sai )
2

xisi
= α4

a

∑
i∈I+

(∆xai∆sai )
2

xisi
+ α4

a

∑
i∈I−

(∆xai∆sai )
2

xisi

≤ α4
a

∑
i∈I+

(xisi
4 )2

xisi
+ α4

a

∑
i∈I−

−∆xai∆sai
xisi

(−∆xai∆sai )

≤ α4
a

∑
i∈I+

xisi
16

+
α4
a

αa
(
1

αa
− 1)

∑
i∈I−

|∆xai∆sai |

≤ α4
a

16
xT s+ α2

a(1− αa)
4κ+ 1

4
xT s

=
α4
a + 4α2

a(1− αa)(4κ+ 1)

16
nµg,

and

−2α2
aµ

∑
i∈I

∆xai∆sai
xisi

≤2α2
aµ

∑
i∈I−

|∆xai∆sai |
xisi

≤2α2
aµ(4κ+ 1)

4γµg
xT s≤(4κ+ 1)α2

anµ

2γ
,

where the second inequality follows from (x, s) ∈ N−
∞(γ). Moreover,

2α2
a

∑
i∈I

∆xai∆sai ≤ 2α2
a

∑
i∈I+

∆xai∆sai ≤ α2
a

2
nµg.

Combining the above results yields that

||w||2

≤nµ2

γµg
+ nµg − 2nµ+

α4
a + 4α2

a(1− αa)(4κ+ 1)

16
nµg +

(4κ+ 1)α2
anµ

2γ
+

α2
a

2
nµg

=
nµ2

γµg
− 2nµ+

(4κ+ 1)α2
anµ

2γ
+

α4
a + 8α2

a + 4α2
a(1− αa)(4κ+ 1) + 16

16
nµg.

This completes the proof.

Lemma 3.5. Let (x, s) ∈ N−
∞(γ) and (∆x,∆s) be the solution of (5) with

µ = µt, then

||∆x∆s|| ≤ p1nµg,∆xT∆s ≤ p2nµg,

where p1 =
37
128

√
(1 + 4κ)(2 + 4κ), p2 =

37
128 .
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Proof. Lemma 3.1 implies that γ
2 = 1

2σ ≤ µt

µg
≤ 1

σ = γ. Following from
Lemma 3.4, one has

||w||2 ≤nµ2
t

γµg
−2nµt+

(4κ+1)α2
anµt

2γ
+
α4
a+8α2

a+4α2
a(1− αa)(4κ+ 1) + 16

16
nµg

=
[1
γ

(µt

µg

)2−2
µt

µg
+
(4κ+1)α2

a

2γ

µt

µg
+
α4
a+8α2

a+4α2
a(1−αa)(4κ+1)+16

16

]
nµg

≤
(1
γ
γ2 − 2

γ

2
+

γ

4γ
γ +

6γ + 16

16

)
nµg

≤37

32
nµg,

where the second inequality is due to n ≥ 2, κ ≥ 0 and αa =
√

γ
(4κ+1)n ≤ 1 by

Theorem 3.1. The third inequality comes from γ = 1
σ < 1

4κ+4 ≤ 1
4 .

From Lemma 3.3, it follows that

||∆x∆s|| ≤ 37

32

√
(
1

4
+ κ)(

1

2
+ κ)nµg =

37

128

√
(1 + 4κ)(2 + 4κ)nµg = p1nµg,

and ∆xT∆s ≤ 37
128nµg, which completes the proof.

In order to simplify the analysis, we define

t = max
i∈I+

{
∆xai∆sai
xisi

}
,(12)

that is, ∆xai∆sai ≤ txisi if i ∈ I+. Since M is a P∗(κ) matrix, one has I+ ̸= ∅
and t ≤ 1

4 from Lemma 3.2.

Theorem 3.2. Let (x, s) ∈ N−
∞(γ), where γ = 1

σ and σ > 4 + 4κ. If (∆x,∆s)
is the solution of (5) with µ = µt and αc is the corrector step size, then

αc ≥
14γ

37n
√

(1 + 4κ)(2 + 4κ)
.(13)

Proof. The goal is to determine a maximum step size α ∈ (0, 1] in the corrector
step such that

xi(α)si(α) ≥ γµg(α), ∀i ∈ I,(14)

where µg(α) =
x(α)T s(α)

n and

xi(α)si(α) = xisi + α(xi∆si + si∆xi) + α2∆xi∆si

= xisi + α(µt − xisi − α2
a∆xai∆sai ) + α2∆xi∆si

= (1− α)xisi + αµt − αα2
a∆xai∆sai + α2∆xi∆si.
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Since we consider the lower bound of ∆xai∆sai , we should give more focus on the
case of ∆xai∆sai > 0 than ∆xai∆sai ≤ 0. Thus, we have to prove xi(α)si(α) ≥
γµg(α) for all i ∈ I+. From Lemma 3.5 and equation (12), it follows that, for
any i ∈ I+,

xi(α)si(α) = (1− α)xisi + αµt − αα2
a∆xai∆sai + α2∆xi∆si

≥ [1− (1 + α2
at)α]xisi + αµt − α2p1nµg

≥ [1− (1 +
α2
a

4
)α]xisi +

α

2
γµg − α2p1nµg,

where the last inequality follows from t ≤ 1
4 and

µg

µt
≤ 2σ.

Since (x, s) ∈ N−
∞(γ), it is clear that [1− (1+ α2

a
4 )α]xisi ≥ [1− (1+ α2

a
4 )α]γµg

if α ≤ 4
4+α2

a
. Thus,

xi(α)si(α) ≥ [1− (1 +
α2
a

4
)α]γµg +

α

2
γµg − α2p1nµg(15)

if α ≤ 4
4+α2

a
.

On the other hand, we have

µg(α) =
x(α)T s(α)

n
=

xT s+ α[nµt − xT s− α2
a(∆xa)T∆sa] + α2∆xT∆s

n
.

From Lemma 3.1, 3.2 and 3.5, we get

µg(α) ≤
xT s+ α(

nµg

σ − xT s+ α2
aκx

T s) + α2np2µg

n
= (1− α)µg + αγµg + αα2

aκµg + α2p2µg.(16)

Combining (15) and (16) yields that the new iterate is certainly in the neigh-
borhood N−

∞(γ) if[
1−(1+

α2
a

4
)α

]
γµg+

α

2
γµg−α2p1nµg ≥ (1−α)γµg+αγ2µg+αα2

aκγµg+α2γp2µg.

This is equivalent to (12 − γ − α2
a
4 − α2

aκ)γ ≥ (γp2 + np1)α, that is,

α ≤
(12 − γ − α2

a
4 − α2

aκ)γ

γp2 + np1
.

Furthermore,

1
2 − γ − α2

a
4 − α2

aκ

γp2 + np1
=

1
2 − γ − γ

4n
37
128γ + 37

128n
√
(1 + 4κ)(2 + 4κ)

≥
7
32

37
64n

√
(1 + 4κ)(2 + 4κ)

=
14

37n
√
(1 + 4κ)(2 + 4κ)

,
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where the inequality follows from γ < 1
4κ+4 ≤ 1

4 < n
√
(1 + 4κ)(2 + 4κ) and

n ≥ 2. Therefore inequality (14) holds if α ≤ 14γ

37n
√

(1+4κ)(2+4κ)
. Thus, the

maximal step size satisfies

α ≥ min
{ 4

4 + α2
a

,
14γ

37n
√
(1 + 4κ)(2 + 4κ)

}
.

Since αa ≤ 1, γ < 1
4 , n ≥ 2 and κ ≥ 0, we have 4

4+α2
a

≥ 4
5 > 14γ

37n >
14γ

37n
√

(1+4κ)(2+4κ)
. Consequently, the corrector step size αc satisfies

αc ≥
14γ

37n
√
(1 + 4κ)(2 + 4κ)

.

This completes the proof.

The following theorem gives the upper bound of iteration number in which
Algorithm 1 stops with an ϵ-approximate solution.

Theorem 3.3. After at most

O
(√

(1 + 4κ)(2 + 4κ)n log
(x0)T s0

ϵ

)
iterations, Algorithm 1 stops with a solution for which xT s ≤ ϵ.

Proof. After each iteration, the dual gap is µg(αc). From (16), it follows that

µg(αc) ≤
[
1− (1− γ − α2

aκ)αc + p2α
2
c

]
µg

≤
[
1−

(
1− 1

4
− 1

32

)
αc +

37

128
αc

]
µg

=
(
1− 55

128
αc

)
µg

≤
[
1− 385γ

2368n
√
(1 + 4κ)(2 + 4κ)

]
µg,

where the second inequality is due to αa =
√

γ
(4κ+1)n and γ < 1

4 . This completes

the proof by Theorem 3.2 of [27].

4. Numerical results

It is difficult to know the value of parameter κ of a P∗(κ) matrix [26], however,
it is well known that a positive semi-definite matrix is a P∗(0) matrix. In the
following, Algorithm 1 is applied to P∗(0) LCPs.

Example 4.1. Let M = (mij)n×n, q = (qi)n×1, where qi = n+ 1− i and

mij =


2, if i = j;

−1, if |i− j| = 1;

0, else.
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Table 1: Iteration numbers of Example 4.1

n=5 n=10 n=50 n=100 n=200 n=400 n=800 n=1000

σ = 4.5 11 11 14 15 16 17 18 18
σ = 5 10 11 13 14 15 16 17 17
σ = 5.5 10 11 13 14 15 15 16 17
σ = 6 10 10 12 13 14 15 16 16
σ = 6.5 9 10 12 13 14 15 16 16
σ = 7 9 10 12 13 14 14 15 16
σ = 7.5 9 10 12 13 13 14 15 16
σ = 8 9 10 12 12 13 14 15 15

Table 2: Average iteration numbers of Example 4.2

n=5 n=10 n=50 n=100 n=200 n=400 n=800 n=1000

σ = 4.5 10.98 12.00 15.00 16.91 18.00 19.00 21.00 21.01
σ = 5 10.40 11.85 15.00 16.00 17.09 19.00 20.00 21.00
σ = 5.5 10.04 11.05 14.05 16.00 17.00 18.00 20.00 20.02
σ = 6 9.98 11.00 14.00 15.10 17.00 18.00 19.01 20.00
σ = 6.5 9.79 11.00 14.00 15.00 16.82 18.00 19.00 20.00
σ = 7 9.39 10.80 14.00 15.00 16.00 18.00 19.00 19.00
σ = 7.5 9.15 10.30 13.35 15.00 16.00 17.08 19.00 19.00
σ = 8 9.07 10.15 13.01 15.00 16.00 17.00 19.00 19.00

Example 4.2. Let M = RRT , where R = (rij)n×n is randomly generated and
rij ∈ [0, 1]. The vector q = (qi)n×1 is also randomly generated, where qi ∈ [0, 5].

In both examples, the accuracy parameter is set as ϵ = 10−6. Table 1 shows
the iteration numbers to obtain an ϵ-solution for Example 4.1. In Example 4.2,
for each n and every σ, one hundred random P∗(0) LCPs are considered. Itera-
tion numbers in Table 2 are the average iteration numbers of the one hundred
LCPs. From Table 1 and Table 2, we can find that, for a given n, the iteration
number decreases if σ increases. This is because that if σ is larger, then the
neighborhood N−

∞(γ) is bigger, and Algorithm 1 has a larger corrector step size
and fewer steps. The numerical results show that Algorithm 1 is efficient.

5. Concluding remarks

In this paper, we present a modified Mehrotra-type predictor-corrector algo-
rithm for P∗(κ) LCPs and discuss the polynomial complexity of this algorithm.
It should be pointed out that the corrector direction in our algorithm is different

from other algorithms. The iteration bound isO(
√
(1 + 4κ)(2 + 4κ)n log (x0)T s0

ϵ ).
If κ = 0, this bound coincides with the iteration bound for LO.
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