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Abstract. This paper adopts the concept of algebraic precision to construct the
derivative-based trapezoid rule for a special kind of Riemann-Stieltjes integral, which
uses two derivative values at the endpoints. This kind of quadrature rule obtains an
increase of two orders of precision over the trapezoid rule for the Riemann-Stieltjes
integral and the error term is investigated. Finally, some numerical examples indicate
the numerical superiority of the proposed approach with respect to closed Newton-Cotes
formulas.
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1. Introduction

Roughly speaking, the operation of integration is the reverse of differentiation.
Definite integration is one of the most important and basic concepts in math-
ematics. The Riemann integral of a function f provides a continuous analog
of the process of summation of numerical values f(ξ i), with each such value
weighted by the width ∆x i of the interval [x i−1, x i] from which ξ i is selected.
There are many reasons for generalizing this concept to allow for the weighting
of the numerical values f(ξ i) by numbers different from ∆x i.

In mathematics, the Riemann-Stieltjes integral is a kind of generalization of
the Riemann integral, named after Bernhard Riemann and Thomas Stieltjes. It
is Stieltjes [1] that first gives the definition of this integral in 1894. The Riemann-
Stieltjes integral allows for the replacement of ∆x i by ∆g i = g (x i)− g (x i−1),
where g is a function of bounded variation [2, 3]. There are many reasons
for making such an extension of the concept of the integral. It serves as an

*. Corresponding author



DERIVATIVE-BASED TRAPEZOID RULE FOR A SPECIAL KIND OF ... 673

instructive and useful precursor of the Lebesgue integral, and an invaluable tool
in unifying equivalent forms of statistical theorems that apply to discrete and
continuous probability.

The reason for introducing Riemann-Stieltjes integrals is to get a more uni-
fied approach to the theory of random variables, in particular for the expectation
operator, as opposed to treating discrete and continuous random variables sep-
arately.

In probability theory, the interval [a, b] might be the space of possible out-
comes of a probabilistic experiment. Then ∆g i = g (x i)− g (x i−1) could repre-
sent the probability of the outcome landing in the interval [x i−1, x i] of possibil-
ities, and the function f could be the value in some sense of such an outcome
[3]. In this illustration,

∫ b
a f(t)dg would be a probabilistically expected value to

result from running the experiment [2, 3].

It is known that the Riemann-Stieltjes integral has wide applications in the
field of stochastic process [4] and functional analysis [5], especially the spec-
tral theorem for self-adjoint operators in a Hilbert space [2, 5] and in original
formulation of F. Riesz’s theorem [2, 5]. The Riesz’s representation theorem
establishes that every such bounded linear functional comes from a Riemann-
Stieltjes integral with respect to a suitable function of bounded variation.

In several practical problems, we need to calculate integrals. As is known to
all, as for I =

∫ b
a f(x)dx, once the primitive function F of integrand f is known,

the definite integral of f over the interval [a, b] is given by Newton-Leibniz
formula, i.e.,

(1.1)

∫ b

a
f(x)dx = F (b)− F (a).

The need often arises for evaluating the definite integral of a function that
has no explicit antiderivative F (x) or whose antiderivative F (x) is not easy to
obtain, such as e±x2

, cosx2, sinx
x , etc.

Moreover, the integrand f(x) is only available at certain points xi, i =
1, 2, . . . , n.

The problem of numerical evaluating definite integrals arises both in math-
ematics and beyond, in many areas of science and engineering. One of the
most fruitful advances in the field of experimental mathematics has been the
development of practical methods for very high-precision numerical integration.
Beginning in the 1980s, researchers began to explore ways to extend some of
the many known techniques to the realm of high precision numerical integra-
tion formulas-tens or hundreds of digits beyond the realm of standard machine
precision [6].

The trapezoidal rule is the most well known numerical integration rules of
this type. Trapezoidal rule for classical Riemann integral is

(1.2)

∫ b

a
f(x)dx =

b− a

2
(f(a) + f(b))− (b− a)3

12
f ′′(ξ),
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where ξ ∈ (a, b).

In spite of the many accurate and efficient methods for numerical integra-
tion being available in [7-9], recently Mercer [10] has obtained trapezoid rule for
Riemann-Stielsjes integral which engenders a generalization of Hadamard’s inte-
gral inequality. Trapezoidal rule with error term for Riemann-Stieltjes integral
is

(1.3)

∫ b

a
f(t)dg = [G− g(a)] f(a) + [g(b)−G] f(b)− (b− a)3

12
f ′′(ξ)g′(η),

where G = 1
b−a

∫ b
a g(t)dt, ξ ∈ (a, b).

Then, Mercer develops Midpoint and Trapezoid rules for Riemann-Stielsjes
integral in [11] by using the concept of relative convexity. The composite trape-
zoid rule for the Riemann-Stieltjes integral and its Richardson extrapolation
formula is presented by Zhao, Zhang and Ye [12]. It is applied to the composite
trapezoid rule to obtain high accuracy approximations with little computational
cost. Burg [13] has proposed derivative-based closed Newton-Cotes numerical
quadrature which uses both the function value and the derivative value on uni-
formly spaced intervals. Zhao and Li have proposed midpoint derivative-based
closed Newton-Cotes quadrature [14] and numerical superiority has been shown.
Then, the derivative-based trapezoid rule for the Riemann-Stieltjes integral is
presented by Zhao and Zhang [15], which uses derivative values at the endpoints.
The midpoint derivative-based trapezoid rule for the Riemann-Stieltjes integral
is presented by Zhao, Zhang and Ye [16], which only uses derivative values at
the midpoint. Recently, the Simpson’s rule for the Riemann-Stieltjes integral is
presented by Zhao and Zhang [17], which uses values instead of derivative values
at the midpoint.

The exponential function is one of the most important functions in calculus.
As we all know, the derivative of e t is the exponential function e t itself. This
is one of the properties that makes the exponential function really important.
Motivation for the research presented here lies in construction of derivative-
based trapezoid rule for a kind of Riemann-Stieltjes integral

∫ b
a f(t)d(e t) , which

is a generalization of the results in [10-17].

The remainder is organized into four sections. These new scheme is investi-
gated in Section 2. Section 3 presents the error term. The numerical experiments
results are shown in Section 4. Section 5 is the conclusion part.

2. Derivative-based trapezoid rule for the
∫ b
a f(t)d(e t)

In this section, by using the conclusions in [15], the derivative-based trapezoid

rule for a kind of special Riemann-Stieltjes integral
∫ b
a f(t)d(e t) is presented.

Theorem 2.1. Suppose that f ′ is continuous on [a, b] and g(t) = e t is obviously
continuously differentiable and increasing there. Let T denote the derivative-
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based trapezoid rule for a kind of Riemann-Stieltjes integral
∫ b
a f(t)d(e t). Then∫ b

a
f(t)d(e t) ≈ T

∆
=

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
f(a)

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

))
f(b)

(2.1)

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

))
f ′(a)

+

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
f ′(b).

Proof. First of all, it is not difficult to obtain

(2.2)



∫ b
a e tdt=eb − ea,∫ b
a

∫ t
a e

tdxdt=
(
eb − ea

)
− (b− a) ea,∫ b

a

∫ t
a

∫ y
a e tdxdydt=

(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea,∫ b
a

∫ t
a

∫ z
a

∫ y
a e tdxdydzdt

=
(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea − 1
6 (b− a)3 ea.

Looking for the derivative-based trapezoid rule for
∫ b
a f(t)d(e t), we seek

numbers a0, a1, b0, b1 such that∫ b

a
f(t)d(e t) ≈ a0f(a) + a1f(b) + b0f

′(a) + b1f
′(b)

is equality for f(t) = 1, t, t2, t3. That is

∫ b
a 1 d(e t) = a0 + a1,∫ b
a td(e t) = a0a+ a1b+ b0 + b1,∫ b
a t2d(e t) = a0a

2 + a1b
2 + 2b0a+ 2b1b,∫ b

a t3d(e t) = a0a
3 + a1b

3 + 3b0a
2 + 3b1b

2.

Therefore, by using the conclusions in [15] and a system of equations (2.2),

(2.3)



a0 + a1 = eb − ea,

a0a+ a1b+ b0 + b1 = beb − aea −
(
eb − ea

)
,

a0a
2 + a1b

2 + 2b0a+ 2b1b

= b2eb − a2ea − 2b
(
eb − ea

)
+ 2

[(
eb − ea

)
− (b− a) ea

]
,

a0a
3 + a1b

3 + 3b0a
2 + 3b1b

2

= b3eb − a3ea − 3b2
(
eb − ea

)
+ 6b

[(
eb − ea

)
− (b− a) ea

]
−6
[(
eb − ea

)
− (b− a) ea − 1

2 (b− a)2 ea
]
.
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Solving simultaneous equations (2.3) for a0, a1, b0, b1, we obtain

a0 =
6

(b−a)2

(
eb+ea

)
− 12

(b−a)3

(
eb − ea

)
− ea,

a1 = eb − 6
(b−a)2

(
eb+ea

)
+ 12

(b−a)3

(
eb − ea

)
,

b0 = ea + 2
b−a

(
eb + 2ea

)
− 6

(b−a)2

(
eb − ea

)
,

b1 =
2

b−a

(
2eb + ea

)
− 6

(b−a)2

(
eb − ea

)
− eb.

So, we have the derivative-based trapezoid rule for the special Riemann-
Stieltjes integral

∫ b
a f(t)d(e t) as desired.

We shall now deduce some consequences of Theorem 2.1.

Corollary 2.1. The degree of precision of the derivative-based trapezoid rule
for the special Riemann-Stieltjes integral

∫ b
a f(t)d(e t) is 3. That is to say, the

quadrature rule (4) is exact when f is any polynomial of degree 3 or less, but is
not exact for some polynomial of degree 4.

Proof. By looking at the construction of a0, a1, b0, b1, we know that the deri-
vative-based trapezoidal rule for the Riemann-Stieltjes integral has degree of
precision not less than 3.

In Section 3, Theorem 3.1, we can clearly see that the quadratue is not
equality for f(t) = t4. So the degree of precision of this method is 3.

Remark 2.1. An integral
∫ b
a f(x)ekxdx (k > 0) over an arbitrary [a, b] can be

transformed into an integral over [ak ,
b
k ] by changing the variable via t = kx.

This permits Theorem 2.1 to be applied to any
∫ b
a f(x)ekxdx (k > 0), be-

cause ∫ b

a
f(x)ekxdx =

∫ b
k

a
k

1

k
f(

t

k
)e tdt =

1

k

∫ b
k

a
k

f(
t

k
)d(e t).

3. The error term for the
∫ b
a f(t)d(e t)

In the previous section, the derivative-based trapezoid rule for a kind of Riemann-
Stieltjes integral

∫ b
a f(t)d(e t) is given in formula (2.1).

As is known to all, the most critical “indicator” of numerical integration,
which compares the level of accuracy, is error term. In this section, we are
now ready to establish the error term of the derivative-based trapezoid rule for∫ b
a f(t)d(e t).
Here, the error term for this quadrature rule has been obtained by using

Generalized Rolle’ s Theorem with Derivatives, the Weighted Mean Value The-
orem for Integrals based on the concept of precision.

The error term is the difference between the exact value 1
(p+1)!

∫ b
a xp+1dx

and the quadrature formula for the monomial xp+1

(p+1)! , where p is the precision of
the quadrature formula.
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Theorem 3.1. Suppose that f (4) is continuous on [a, b] and g(t) = e t is ob-
viously continuously differentiable and increasing there. The derivative-based
trapezoid rule for the Riemann-Stieltjes integral

∫ b
a f(t)d(e t) with the error term

is ∫ b

a
f(t)d(e t) =

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
f(a)

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

))
f(b)

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

))
f ′(a)

+

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
f ′(b)(3.1)

+

[
−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

+

(
(b− a)2

12
− b− a

12
+ 1

)
eb

]
f (4)(ξ) eη,

where ξ, η ∈ (a, b). And the error term R[f ] of this method is[(
(b− a)2

12
− b− a

12
+ 1

)
eb

−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

]
f (4)(ξ) eη.(3.2)

Proof. Let f(t) = t4

4! . So

1

4!

∫ b

a
t4d(e t) =

1

24

(
b4 − 4b3 + 12b2 − 24b− 24

)
eb

− 1

24

(
a4 − 4a3 + 12a2 − 24a− 24

)
ea.(3.3)

By the Theorem 2.1, we have

T =

(
6

(b− a)2

(
eb+ea

)
− 12

(b− a)3

(
eb − ea

)
− ea

)
a4

24

+

(
eb − 6

(b− a)2

(
eb+ea

)
+

12

(b− a)3

(
eb − ea

)) b4

24

+

(
ea +

2

b− a

(
eb + 2ea

)
− 6

(b− a)2

(
eb − ea

)) a3

6
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(3.4) +

(
2

b− a

(
2eb + ea

)
− 6

(b− a)2

(
eb − ea

)
− eb

)
b3

6
.

With the help of (3.3)-(3.4), we obtain

1

4!

∫ b

a
t4d(e t)− T

=

[(
(b− a)2

12
−b−a

12
+ 1

)(
eb−ea

)
−

(
5 (b− a)3

24
+
5 (b− a)2

12
+ (b− a)

)
ea

]

=

[(
(b− a)2

12
− b− a

12
+ 1

)
eb −

(
5 (b− a)3

24
+
(b− a)2

2
+

11 (b− a)

12
+1

)
ea

]
.

This implies that

R[f ] =

[(
(b− a)2

12
− b− a

12
+ 1

)
eb

−

(
5 (b− a)3

24
+

(b− a)2

2
+

11 (b− a)

12
+ 1

)
ea

]
f (4)(ξ) eη.

Remark 3.1. The method used in Theorem 3.1 does not only apply to special
cases, but that one may select the precision p to calculate the difference between
the exact value 1

(p+1)!

∫ b
a xp+1dx and the quadrature formula for the monomial

xp+1

(p+1)! and the similar conclusion will still hold.

Remark 3.2. The error term for the derivative-based trapezoid rule could also
be obtained using Taylor series expansions, by making certain unverifiable as-
sumptions about the higher order terms.

4. Numerical results

So far, we have proposed derivative-based trapezoid rule for a kind of Riemann-
Stieltjes integral in Section 2 and demonstrate the error term in Section 3.

In this section, compared with the traditional Newton-Cotes quadrature,
some numerical experiments are carried out to verify whether the novel methods
are of high precision.

In order to compare the precision of Newton-Cotes quadrature and the pro-
posed approach, we calculate the following integrals

∫ 1
0 x4exdx. The comparison

results are shown in the following tables.

Let us define Absolute Error=|Exact value-Approximate value |.
In the following tables, the item Int. stands for the number of composite

interval.

Exact value of
∫ 1
0 x4exdx = 9e− 24 ≈ 0.4645.
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Int.
Trapezoidal rule

Int.
Derivative-based trapezoid rule

Approximate
value

Absolute
Error

Approximate
value

Absolute
Error

1 1.3591 0.8946 1 0.4086 0.0559
2 0.7311 0.2666 2 0.4610 0.0035
4 0.5342 0.0697
8 0.4822 0.0177

Table 1: Numerical comparison of the new method with the classical method

Int.
Simpson’s rule

Int.
Derivative-based trapezoid rule

Approximate
value

Absolute
Error

Approximate
value

Absolute
Error

1 0.5217 0.0572 1 0.4086 0.0559
2 0.4686 0.0041 2 0.4610 0.0035

Table 2: Numerical comparison of the new method with the classical method

It can be seen from Table 1, Derivative-based trapezoid rule with Int.=1,
2 has a much higher accuracy than classical Trapezoidal rule with Int.=4, 8
respectively.

It can be seen from Table 2, Derivative-based trapezoid rule has a much
higher accuracy than classical Simpson’s rule with the same number of subin-
tervals.

The efficiency of the proposed approach has been demonstrated.

5. Conclusions

The main contributions of this paper are highlighted as follows.

1) By using the concept of algebraic precision, the derivative-based trapezoid

rule for a kind of Riemann-Stieltjes integral
∫ b
a f(t)d(e t) is presented.

2) This kind of quadrature rule has 3 orders of algebraic precision.

3) The error term for Riemann-Stieltjes Simpson’s rule is investigated. Some
numerical examples are given to show the efficiency of the proposed approach.
In future work, we will seriously consider the Simpson’s rule for the kind of
Riemann-Stieltjes integral

∫ b
a f(t)d(e t).

It is hoped that the results in this paper will stimulate further research in
this direction.
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