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Abstract. Suppose that G is a finite group. As is known to all, the order of G and
the number of elements of maximal order in G are closely related to the structure of G.
This topic involves Thompson’s problem. In this paper we classify the finite groups of
order p3qr in which the number of elements of maximal order is p4q, where p < q < r
are different primes.
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1. Introduction

All groups considered in our paper are finite. Let n be an integer. We denote
by π(n) the set of all prime divisors of n. Let G be a finite group. Then,
π(|G|) is denoted by π(G). The set of orders of elements of G is denoted by
πe(G). We denote by k(G) and m(G) the maximal order of elements in G and
the number of elements of order k(G) in G, respectively. We write H char G
if H is characteristic in G. G = N ⋊ Q stands for the split extension of a
normal subgroup N of G by a complement Q. By M ≲ G we denote M is
isomorphic to a subgroup of G. And we denote by Zn a cyclic group of order n.
All unexplained notations are standard and can be found in [6].
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For a finite group G, |G| and m(G) have an important influence on the
structure of G. The authors in [13, 3, 9] proved that finite groups G with
m(G) = lp are soluble, where l = 2, 4, or 18. In [8] it was proved that finite
groups G with m(G) = 2p2 are soluble. The authors in [2, 7] gave a classification
of the finite groups G with m(G) = 30 and m(G) = 24. The authors in [10]
showed that if G is a finite group which has 4p2q elements of maximal order,
where p, q are primes and 7 ≤ p ≤ q, then either G is soluble or G has a section
who is isomorphic to one of L2(7), L2(8) or U3(3). These studies are closely
related to the following problem.

Thompson’s problem. Let H be a finite group. For a positive integer d,
define H(d) = |{x ∈ H||x| = d}|. Suppose that H(d) = G(d) for d = 1, 2, . . .,
where G is a soluble group. Is it true that H is also necessarily soluble?

The problem we consider is also closely related to Thompson’s problem. In
this paper we classify the finite groups of order p3qr in which the number of
elements of maximal order is p4q, where p < q < r are primes (Let us denote
this property by (*) for brevity). We find that this isomorphic classification
problem is complex. Our results are:

Theorem 1.1. A group G has property (*) if and only if one of the following
statements holds:

(1) G ∼= M ⋉ Zr and r − 1 = 16q. Moreover, CM (Zr) ∼= Z2, M/CM (Zr) ≲
Aut(Zr) and |M/CM (Zr)| = 4q;

(2) G ∼= K ⋉ Zr and r − 1 = 8q. Moreover, CK(Zr) ∼= Z4, K/CK(Zr) ≲
Aut(Zr) and |K/CK(Zr)| = 2q;

(3) G ∼= L ⋉ Zr and r − 1 = 8q. Moreover, CL(Zr) ∼= D8, L/CL(Zr) ≲
Aut(Zr) and |L/CL(Zr)| = q;

(4) G ∼= R⋉Zr and r− 1 = 4q. Moreover, CR(Zr) ∼= Z4 ×Z2, R/CR(Zr) ≲
Aut(Zr) and |R/CR(Zr)| = q;

(5) G ∼= Zq ⋉ Z8r and r − 1 = 4q. Moreover, CZq(Z8r) = 1;

(6) G ∼= M ⋉ Z7 and CM (Z7) ∼= A4, where M ∼= A4 × Z2 or S4;

(7) G ∼= Z168;

(8) G ∼= Q8 × Z15;

(9) G ∼= D8 × Zqr, where q = 3 and r = 13 or q = 5 and r = 11;

(10) G ∼= (Z4 × Z2)× Z21;

(11) G ∼= M ⋉ Zqr, q = 3 and r = 13 or q = 5 and r = 11, where M is a
group of order 8. Moreover, CM (Zqr) ∼= Z4;

(12) G ∼= (A4 × Z2)× Z7;

(13) G ∼= SL2(F3)× Z7;

(14) G is a Frobenius group and G ∼= Z8q ⋉ Zr. Moreover, r − 1 = 16q;

(15) G ∼= L2(7);

(16) G is a 2-Frobenius group and G ∼= Z3 ⋉ (Z7 ⋉ P ), where P is an
elementary abelian 2-group of order 8, P ⊴ G and G/P ∼= Z3 ⋉ Z7. Moreover,
πe(G) = {1, 2, 3, 6, 7}.
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Corollary 1.2. All of the groups with property (∗) are of even order.

Corollary 1.3. Suppose that G is a non-soluble group with property (∗). Then,
G ∼= L2(7).

Corollary 1.4. The answer to Thompson’s problem is yes for finite groups
(1)-(14) and (16) of Theorem 1.1.

2. Preliminaries

We need the following lemmas to prove our results.

Lemma 2.1 ([12]). Let G be a finite group. Then, the number of elements whose
orders are multiples of n is either zero, or a multiple of the greatest divisor of
|G| that is prime to n.

Lemma 2.2 ([3]). Let G be a finite group. We denote by Ai (1 ≤ i ≤ s) a
complete representative system of conjugate classes of cyclic subgroups of order
k(G), respectively. Then, we have:

(1) m(G) = φ(k(G))
∑

ni, where φ(k(G)) is Euler function, ni = |G :
NG(Ai)| and 1 ≤ i ≤ s;

(2) |G| = |G : NG(Ai)||NG(Ai) : CG(Ai)||CG(Ai)|, where 1 ≤ i ≤ s;
(3) |NG(Ai) : CG(Ai)||φ(k(G)), where 1 ≤ i ≤ s;
(4) π(CG(Ai)) = π(Ai), where 1 ≤ i ≤ s.

Lemma 2.3 ([4]). Let G be a soluble group of order mn, where m is prime to n.
Then, the number of subgroups of G of order m may be expressed as a product
of factors, each of which (i) is congruent to 1 modulo some prime factor of m,
(ii) is a power of a prime and divides the order of some chief factor of G.

Lemma 2.4 ([1]). Let H be a finite group and πe(H) = {1, 2, 3, 4}. Then,
H = N ⋊Q and one of the following conclusions holds:

(i) N has exponent 4 and class ≤ 2, Q ∼= Z3.
(ii) N = Z2

2t and Q ∼= S3, where Z2
2t stands for the direct product of 2t

copies of Z2.
(iii) N = Z3

2t and Q ∼= Z4 or Q8 and H is a Frobenius group, where Q8 is
the generalized quaternion group.

Lemma 2.5 ([14]). Let G be a finite group satisfying |G| = 23 ·3 ·7 and m(G) =
48.

(1) If k(G) = 42, then G ∼= (A4 × Z2)× Z7 or G ∼= SL2(F3)× Z7.
(2) If k(G) = 21, then G ∼= M ⋉Z7 and CM (Z7) ∼= A4, where M ∼= A4 ×Z2

or S4.

Lemma 2.6 ([5]). Let G be a finite simple group. If |π(G)| = 3, then we call
G a simple K3-group. If G is a simple K3-group, then G is isomorphic to one
of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) and U4(2).



666 QINGLIANG ZHANG and ZHILIN QIN

Lemma 2.7 ([15]). Let G be a finite group. Then, |G| = |L2(7)| and k(G) =
k(L2(7)) if and only if G ∼= L2(7) or G is a 2-Frobenius group, at this moment,
G ∼= Z3⋉ (Z7⋉P ), where P is an elementary abelian 2-group of order 8, P ⊴G
and G/P ∼= Z3 ⋉ Z7. Moreover, πe(G) = {1, 2, 3, 6, 7}.

3. Proof of the Results

Proof of Theorem 1.1

It is not hard to see that all the groups from items (1)-(16) of Theorem 1.1
have property (*).

Now, we assume that G has property (*). Namely, |G| = p3qr and m(G) =
p4q. From Lemma 2.1 we get that π(G) ⊆ π(m(G))

⋃
π(k(G)). Then, r ∈

π(k(G)). Since φ(k(G)) | m(G) by Lemma 2.2, we obtain that φ(r) = r−1|p4q.
From 2|r − 1 it follows that p = 2. In the following we discuss four cases.

Case 1. If π(k(G)) = {2, r}, then k(G) = 2r, 4r or 8r.

Suppose that k(G) = 2r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that x2 ∈ Z(CG(A)) and so G has a Sylow r-
subgroup Pr such that Pr ≤ Z(CG(A)). Therefore Pr char CG(A) and it follows
that Pr ⊴NG(A) since CG(A)⊴NG(A). Therefore NG(A) ≤ NG(Pr) and thus
|G : NG(Pr)|||G : NG(A)|. By Lemma 2.2 we get that |G : NG(A)||4q. So
|G : NG(Pr)||4q.

If Pr ⋬ G, then |G : NG(Pr)| = 2q or 4q by Sylow’s theorem. If |G :
NG(Pr)| = 4q, then |G : NG(A)| = 4q and so 4q|n by Lemma 2.2, where n is the

number of cyclic subgroups of order k(G) in G. Note that n = m(G)
φ(2r) =

16q
r−1 , thus

r − 1 = 4 and so r = 5. It follows that q = 3. Hence, |G : NG(P5)| = 12, which
is contradict to Sylow’s theorem. If |G : NG(Pr)| = 2q, then |NG(Pr)| = 4r and

|CG(Pr)| = 2αr, where 1 ≤ α ≤ 2. Moreover, CG(Pr) contains exactly
m(G)
2q = 8

elements of order 2r. On the other hand, we get that CG(Pr) = H×Pr by Schur-
Zassenhaus’s theorem since Pr ≤ Z(CG(Pr)), where H is a group satisfying
|H| = 2α. It follows that CG(Pr) contains exactly (2α − 1)(r − 1) elements
of order 2r. Thus, (2α − 1)(r − 1) = 8, which is impossible obviously since
1 ≤ α ≤ 2.

If Pr ⊴ G, then CG(Pr) contains all the elements of order k(G) in G since
A ≤ CG(A) ≤ CG(Pr). Note that Pr ≤ Z(CG(Pr)), thus |CG(Pr)| = 2lr, where
1 ≤ l ≤ 3. Moreover, CG(Pr) = H1 × Pr by Schur-Zassenhaus’s theorem, where
H1 is a group of order 2l. If l = 2, then H1 is an elementary abelian group of
order 4. Thus, 3(r − 1) = 16q and it follows that q = 3 and r = 17. Since
|G/CG(P17)|||Aut(P17)|, we get that 6|16, which is a contradiction. Similarly,
we can show that l ̸= 3. If l = 1, then r − 1 = 16q. Note that Pr

∼= Zr, then by
Schur-Zassenhaus’s theorem we get that G ∼= M ⋉Zr. Moreover, CM (Zr) ∼= Z2,
M/CM (Zr) ≲ Aut(Zr) and |M/CM (Zr)| = 4q. Hence, (1) holds.

Suppose that k(G) = 4r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. Similar to the above, we can get that G has a Sylow r-
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subgroup Pr such that Pr ≤ Z(CG(A)), |G : NG(Pr)||2q and |G : NG(Pr)| =
|G : NG(A)| = 2q by Sylow’s theorem if Pr ⋬ G. Hence, CG(Pr) contains

exactly m(G)
2q = 8 elements of order 4r. Note that Pr ≤ Z(CG(Pr)), thus r−1|8.

It follows that r = 5 and so q = 3. Therefore |G : NG(P5)| = 6 and so
|NG(P5)| = |CG(P5)| = 20. Hence, G is 5-nilpotent by Burnside’s theorem.
Then, G is soluble. By Lemma 2.3 it follows that 2 ≡ 1(mod 5) and 3 ≡ 1(mod
5), which is impossible.

If Pr ⊴G, then CG(Pr) contains all the elements of order 4r in G. Further-
more, |CG(Pr)| = 2α · qβ · r, where 2 ≤ α ≤ 3 and 0 ≤ β ≤ 1. Note that Pr ≤
Z(CG(Pr)), then by Schur-Zassenhaus’s theorem we have CG(Pr) = H × Pr,
where H is a group of order 2α · qβ.

Suppose that β = 1. Then, q = 3 since k(G) = 4r is the maximal element
order of G. If α = 2, then H is a group of order 12 and πe(H) = {1, 2, 3, 4}. It
follows thatH ∼= Z4⋊Z3 by Lemma 2.4. Hence, 2(r−1) = m(G) = 48. It follows
that r = 25, which is impossible. If α = 3, then CG(Pr) = G and so Pr ≤ Z(G).
Consequently, G = M ×Pr by Schur-Zassenhaus’s theorem, where M is a group
of order 24. Note that πe(M) = {1, 2, 3, 4}, thus M ∼= (Z2×Z2)⋊S3 or N ⋊Z3

by Lemma 2.4. If M ∼= (Z2 × Z2) ⋊ S3, then 6(r − 1) = m(G) = 48 and thus
r = 9, which is a contradiction. If M ∼= N ⋊ Z3, then the conjugate action of
Z3 on N is fixed-point-free. Thus, |Z3|||N | − 1 and it follows that 3|7, which is
impossible.

Suppose that β = 0. Then, |CG(Pr)| = 4r or 8r. If |CG(Pr)| = 4r, then
CG(Pr) ∼= Z4 × Zr. It follows that 2(r − 1) = m(G) = 16q and so r − 1 =
8q. Moreover, G ∼= K ⋉ Zr by Schur-Zassenhaus’s theorem, CK(Zr) ∼= Z4,
K/CK(Zr) ≲ Aut(Zr) and |K/CK(Zr)| = 2q. Hence, (2) holds. If |CG(Pr)| =
8r, then H is isomorphic to the dihedral group D8, the generalized quaternion
group Q8 or Z4 × Z2 since k(H) = 4. If H ∼= Q8, then 6(r − 1) = m(G) = 16q
and so r = 9, which is a contradiction. If H ∼= D8, then 2(r− 1) = m(G) = 16q
and so r − 1 = 8q. Moreover, G ∼= L ⋉ Zr by Schur-Zassenhaus’s theorem,
CL(Zr) ∼= D8, L/CL(Zr) ≲ Aut(Zr) and |L/CL(Zr)| = q. Hence, (3) holds.
If H ∼= Z4 × Z2, then 4(r − 1) = m(G) = 16q and so r − 1 = 4q. Moreover,
G ∼= R ⋉ Zr, CR(Zr) ∼= Z4 × Z2, R/CR(Zr) ≲ Aut(Zr) and |R/CR(Zr)| = q.
Hence, (4) holds.

Suppose that k(G) = 8r. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that x8 ∈ Z(CG(A)) and so G has a Sylow
r-subgroup Pr such that Pr ≤ Z(CG(A)). Since A ≤ CG(A) ≤ CG(Pr), we
have |CG(Pr)| = 8qγr, where 0 ≤ γ ≤ 1. Note that Pr ≤ Z(CG(Pr)), thus
CG(Pr) = H × Pr by Schur-Zassenhaus’s theorem, where H is a group of order
8qγ and k(H) = 8.

Suppose that γ = 1. Since k(G) = 8r, we have q = 3, 5 or 7. Note that
the Sylow 2-subgroup P2 of H is cyclic, thus H is 2-nilpotent and so the Sylow
q-subgroup Q of H is normal in H. If q = 5 or 7, then the conjugate action of P2

on Q is fixed-point-free since k(H) = 8. Therefore 8|q − 1, which is impossible.
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If q = 3, then H is a group of order 24 satisfying k(H) = 8. Now, we get a
contradiction since such group H does not exist by [11].

Suppose that γ = 0. Then, |CG(Pr)| = 8r. Since the Sylow 2-subgroup of
G is cyclic, we get that G is 2-nilpotent. It follows that the subgroup of order
qr of G is normal in G. Then, Pr ⊴G by Sylow’s theorem and so CG(Pr)⊴G.
Hence, CG(Pr) contains all the elements of order 8r and G ∼= Zq⋉Z8r by Schur-
Zassenhaus’s theorem. Moreover, 4(r − 1) = m(G) = 16q and CZq(Z8r) = 1.
Hence, (5) holds.

Case 2. If π(k(G)) = {q, r}, then k(G) = qr.

Choose an arbitrary element x of order k(G) in G and let ⟨x⟩ = A. Similar to
Case 1, we can get that G has a Sylow r-subgroup Pr such that Pr ≤ Z(CG(A))
and |G : NG(Pr)| = 1 or 8.

If |G : NG(Pr)| = 1, then Pr ⊴ G and CG(Pr) contains all the elements
of order qr in G since A ≤ CG(A) ≤ CG(Pr). Moreover, G is soluble. By
Lemma 2.3 it follows that |G : NG(A)| = 1, 4 or 8. If |G : NG(A)| = 8, then
8(q − 1)(r − 1) = m(G) = 16q. If follows that q = 3 and r = 4, which is a
contradiction. If |G : NG(A)| = 4, then 4 ≡ 1 (mod q) by Lemma 2.3. Therefore
q = 3 and thus 4(3 − 1)(r − 1) = m(G) = 48. Hence, r = 7. Therefore by (2)
of Lemma 2.5 we have G ∼= M ⋉ Z7 and CM (Z7) ∼= A4, where M ∼= A4 × Z2 or
S4. Hence, (6) holds. If |G : NG(A)| = 1, then (q − 1)(r − 1) = 16q, which is
impossible we can find by simple calculation.

If |G : NG(Pr)| = 8, then CG(Pr) contains exactly m(G)
8 = 2q elements of

order qr. On the other hand, we know that A ≤ CG(A) ≤ CG(Pr), thus CG(Pr)
contains at least φ(qr) = (q − 1)(r − 1) elements of order qr. Now, we get a
contradiction since (q − 1)(r − 1) > 2q.

Case 3. If π(k(G)) = {2, q, r}, then k(G) = 8qr, 4qr or 2qr.

If k(G) = 8qr, then φ(8qr) = 4(q−1)(r−1) = 16q. Consequently, q−1
2 · r−1

2 =

q. Since r−1
2 > 1, we have q−1

2 = 1 and so q = 3. It follows that r = 7. Hence,
G ∼= Z168 and thus (7) holds.

Suppose that k(G) = 4qr. Choose an arbitrary element x of order k(G) in
G and let ⟨x⟩ = A. It is clear that Z(CG(A)) contains elements of order qr,
and so G has a subgroup H of order qr such that H ≤ Z(CG(A)). Therefore H
char CG(A) and it follows that H ⊴NG(A) since CG(A)⊴NG(A). So NG(A) ≤
NG(H). Then, |G : NG(H)|||G : NG(A)|. Note that |G : NG(A)| = 1, thus
|G : NG(H)| = 1 and so H ⊴G. Therefore CG(H) contains all the elements of
order k(G) in G and so |CG(H)| = 2αqr, where 2 ≤ α ≤ 3.

If α = 3, then CG(H) = G and so H ≤ Z(G). Thus, G = K ×H by Schur-
Zassenhaus’s theorem. Obviously, K is isomorphic to the dihedral group D8, the
generalized quaternion group Q8 or Z4 ×Z2. If K ∼= Q8, then 6(q− 1)(r− 1) =
m(G) = 16q. Hence, q = 3 and r = 5. Therefore G ∼= Q8 × Z15. Hence, (8)
holds. If K ∼= D8, then similarly we can get that G ∼= D8×Zqr, where q = 3 and
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r = 13 or q = 5 and r = 11. Hence, (9) holds. If K ∼= Z4 × Z2, then similarly
we can get that G ∼= (Z4 × Z2)× Z21. Hence, (10) holds.

If α = 2, then CG(H) ∼= Z4 × Zqr. So 2(q − 1)(r − 1) = 16q. It follows
that q = 3 and r = 13 or q = 5 and r = 11. Furthermore, G ∼= M ⋉ Zqr by
Schur-Zassenhaus’s theorem and CM (Zqr) ∼= Z4, where M is a group of order 8.
Hence, (11) holds.

Suppose that k(G) = 2qr. Choose an arbitrary element x of order k(G) in G
and let ⟨x⟩ = A. From the fact that Z(CG(A)) contains elements of order qr we
get thatG has a cyclic subgroupH of order qr such thatH ≤ Z(CG(A)). Similar
to the above, we get that |G : NG(H)| = 1, 2 or 4. Moreover, |CG(H)| = 2αqr,
where 1 ≤ α ≤ 3.

If |G : NG(H)| = 1, then H⊴G. It follows that CG(H) contains all elements
of order 2qr since A ≤ CG(A) ≤ CG(H). Since H ≤ Z(CG(H)), by Schur-
Zassenhaus’s theorem we have CG(H) = M × H, where M is an elementary
abelian group of order 2α. Hence, (2α − 1)(q − 1)(r − 1) = m(G) = 16q, which
is impossible we can find by simple calculation. If |G : NG(H)| = 2, then G
is non-soluble by Lemma 2.3. Note that NG(H) ⊴ G, thus NG(H) ∼= A5 by
Lemma 2.6, which is a contradiction since 2qr ∈ πe(NG(H)) and 2qr /∈ πe(A5).
If |G : NG(H)| = 4, then |G : NG(A)| = 4. Thus, 4|n by Lemma 2.2, where
n is the number of the cyclic subgroups of order 2qr of G. Note that n =
m(G)
φ(k(G) = 16q

(q−1)(r−1) , thus q = 3 and r = 7. Therefore G ∼= (A4 × Z2) × Z7 or

G ∼= SL2(F3)× Z7 by (1) of Lemma 2.5. Hence, (12) and (13) hold.

Case 4. If π(k(G)) = {r}, then k(G) = r.

We know that the number nr of Sylow r-subgroups of G is equal to 1, 2q,
4q, 8q or 8 by Sylow’s theorem.

If nr = 1, then the Sylow r-subgroup Pr of G is normal in G and r − 1 =
m(G) = 16q. Moreover, G has an r-complement H of order 8q by Schur-
Zassenhaus’s theorem. Note that the conjugate action of H on Pr is fixed-
point-free, thus G is a Frobenius group with Frobenius kernel Pr and Frobenius
complement H. Note that Pr

∼= Zr and H is a cyclic group since H ≲ Aut(Pr),
thus G ∼= Z8q ⋉ Zr. Hence, (14) holds.

If nr = 2q, then 2q(r − 1) = m(G) = 16q. It follows that r = 9, which is
impossible.

If nr = 4q, then 4q(r − 1) = m(G) = 16q. It follows that r = 5 and q = 3,
which is contradict to Sylow’s theorem.

If nr = 8q, then 8q(r − 1) = m(G) = 16q. It follows that r = 3, which is
impossible.

If nr = 8, then r = 7 by Sylow’s theorem and so q = 3 or 5. If q = 5, then
|NG(P7)| = 35. Since NG(P7)/CG(P7) ≲ Aut(P7), we have |NG(P7)/CG(P7)|
divides |Aut(P7)|. Note that |CG(P7)| = 7, thus 5|6, which is a contradiction.
If q = 3, then by Lemma 2.7 G ∼= L2(7) or G is a 2-Frobenius group, at this
moment, G ∼= Z3⋉ (Z7⋉P ), where P is an elementary abelian 2-group of order
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8, P ⊴ G and G/P ∼= Z3 ⋉ Z7. Moreover, πe(G) = {1, 2, 3, 6, 7}. Hence, (15)
and (16) hold.

Proof of Corollaries 1.2 and 1.3. It is evident by Theorem 1.1.

Proof of Corollary 1.4. Assume that G is a group, which is isomorphic to
one of the finite groups (1-14) and (16) of Theorem 1.1. Suppose that H is a
group satisfying H(d) = G(d). Then, |H| = |G| and m(H) = m(G). Thus, H is
soluble by Theorems 1.1. Hence, Corollary 1.4 holds.

Now, the proofs of our results are complete.

Acknowledgement

The authors would like to thank the referees with deep gratitude for pointing out
some questions in the previous version of the paper. Their valuable suggestions
help us improve the quality of our paper.

References

[1] R. Brandl, W.J. Shi, Finite groups whose element orders are consecutive
integers, J. Algebra, 143 (1991), 388-400.

[2] G.Y. Chen, W.J. Shi, Finite groups with 30 elements of maximal order,
Appl. Categor. Struct., 16 (2008), 239-247.

[3] X.L. Du, Y.Y. Jiang, On finite groups with exact 4p elements of maxi-
mal order are soluble, Chinese Ann. Math. Ser. A, 25 (2004), 607-612 (in
chinese).

[4] M. Hall, The theory of groups, Macmillan Company, New York, 1959.

[5] M. Herzog, On finite simple groups of order divisible by three primes only,
J. Algebra, 120 (1968), 383-388.

[6] B. Huppert, Endliche Gruppen I., Die Grundlehren der mathematischen
Wissenschafter in Einzeldarstellungen 134, Springer, Berlin, 1967 (in ger-
man).

[7] Q.H. Jiang, C.G. Shao, Finite groups with 24 elements of maximal order,
Front. Math. China, 5 (2010), 665-678.

[8] Y.Y. Jiang, Finite groups with 2p2 elements of maximal order are soluble,
Chinese Ann. Math. Ser. A, 21 (2000), 61-64 (in chinese).

[9] Y.Y. Jiang, A theorem of finite groups with 18p elements having maximal
order, Algebra Collog., 15 (2008), 317-329.



FINITE GROUPS OF ORDER p3qr IN WHICH THE NUMBER ... 671

[10] S.B Tan, G.Y. Chen, Y.X. Yan, Finite groups with 4p2q elements of maxi-
mal order, Open Math., 19 (2021), 963-970.

[11] A.D. Thomas, G.V. Wood, Group tables, Shiva Publishing Limited, 1980.

[12] L. Weisner, On the number of elements of a group which have a power in
a given conjugate set, Bull. Amer. Math. Soc., 31 (1925), 492-496.

[13] C. Yang, Finite groups based on the numbers of elements of maximal order,
Chinese Ann. Math. Ser. A., 14 (1993), 561-567 (in chinese).

[14] Q.L. Zhang, Finite groups with the same order and the same number of
elements of maximal order as the projective special linear group L2(q), to
appear.

[15] Q.L. Zhang, W.J. Shi, A new characterization of simple K3-groups and
some L2(p), Algebra Collog., 20 (2013), 361-368.

Accepted: October 11, 2022


