Finite groups of order $p^{3} q r$ in which the number of elements of maximal order is $p^{4} q$

Qingliang Zhang
Jiangsu College of Engineering and Technology
Jiangsu 226006
P. R. China
qingliangzhang@jcet.edu.cn
Zhilin Qin*
Jiangsu College of Engineering and Technology
Jiangsu 226006
P. R. China
and
School of Sciences
Nantong University
Jiangsu 226019
P. R. China
zhilinqin2016@163.com
qin.zhl@ntu.edu.cn

Abstract

Suppose that G is a finite group. As is known to all, the order of G and the number of elements of maximal order in G are closely related to the structure of G. This topic involves Thompson's problem. In this paper we classify the finite groups of order $p^{3} q r$ in which the number of elements of maximal order is $p^{4} q$, where $p<q<r$ are different primes. Keywords: finite groups, group order, the number of elements of maximal order, isomorphic classification.

1. Introduction

All groups considered in our paper are finite. Let n be an integer. We denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Then, $\pi(|G|)$ is denoted by $\pi(G)$. The set of orders of elements of G is denoted by $\pi_{e}(G)$. We denote by $k(G)$ and $m(G)$ the maximal order of elements in G and the number of elements of order $k(G)$ in G, respectively. We write H char G if H is characteristic in $G . \quad G=N \rtimes Q$ stands for the split extension of a normal subgroup N of G by a complement Q. By $M \lesssim G$ we denote M is isomorphic to a subgroup of G. And we denote by Z_{n} a cyclic group of order n. All unexplained notations are standard and can be found in [6].
*. Corresponding author

For a finite group $G,|G|$ and $m(G)$ have an important influence on the structure of G. The authors in [13, 3, 9] proved that finite groups G with $m(G)=l p$ are soluble, where $l=2,4$, or 18. In [8] it was proved that finite groups G with $m(G)=2 p^{2}$ are soluble. The authors in $[2,7]$ gave a classification of the finite groups G with $m(G)=30$ and $m(G)=24$. The authors in [10] showed that if G is a finite group which has $4 p^{2} q$ elements of maximal order, where p, q are primes and $7 \leq p \leq q$, then either G is soluble or G has a section who is isomorphic to one of $L_{2}(7), L_{2}(8)$ or $U_{3}(3)$. These studies are closely related to the following problem.

Thompson's problem. Let H be a finite group. For a positive integer d, define $H(d)=|\{x \in H| | x \mid=d\}|$. Suppose that $H(d)=G(d)$ for $d=1,2, \ldots$, where G is a soluble group. Is it true that H is also necessarily soluble?

The problem we consider is also closely related to Thompson's problem. In this paper we classify the finite groups of order $p^{3} q r$ in which the number of elements of maximal order is $p^{4} q$, where $p<q<r$ are primes (Let us denote this property by $(*)$ for brevity). We find that this isomorphic classification problem is complex. Our results are:

Theorem 1.1. A group G has property $\left({ }^{*}\right)$ if and only if one of the following statements holds:
(1) $G \cong M \ltimes Z_{r}$ and $r-1=16 q$. Moreover, $C_{M}\left(Z_{r}\right) \cong Z_{2}, M / C_{M}\left(Z_{r}\right) \lesssim$ Aut $\left(Z_{r}\right)$ and $\left|M / C_{M}\left(Z_{r}\right)\right|=4 q$;
(2) $G \cong K \ltimes Z_{r}$ and $r-1=8 q$. Moreover, $C_{K}\left(Z_{r}\right) \cong Z_{4}, K / C_{K}\left(Z_{r}\right) \lesssim$ Aut $\left(Z_{r}\right)$ and $\left|K / C_{K}\left(Z_{r}\right)\right|=2 q$;
(3) $G \cong L \ltimes Z_{r}$ and $r-1=8 q$. Moreover, $C_{L}\left(Z_{r}\right) \cong D_{8}, L / C_{L}\left(Z_{r}\right) \lesssim$ $\operatorname{Aut}\left(Z_{r}\right)$ and $\left|L / C_{L}\left(Z_{r}\right)\right|=q$;
(4) $G \cong R \ltimes Z_{r}$ and $r-1=4 q$. Moreover, $C_{R}\left(Z_{r}\right) \cong Z_{4} \times Z_{2}, R / C_{R}\left(Z_{r}\right) \lesssim$ $\operatorname{Aut}\left(Z_{r}\right)$ and $\left|R / C_{R}\left(Z_{r}\right)\right|=q$;
(5) $G \cong Z_{q} \ltimes Z_{8 r}$ and $r-1=4 q$. Moreover, $C_{Z_{q}}\left(Z_{8 r}\right)=1$;
(6) $G \cong M \ltimes Z_{7}$ and $C_{M}\left(Z_{7}\right) \cong A_{4}$, where $M \cong A_{4} \times Z_{2}$ or S_{4};
(7) $G \cong Z_{168}$;
(8) $G \cong Q_{8} \times Z_{15}$;
(9) $G \cong D_{8} \times Z_{\text {qr }}$, where $q=3$ and $r=13$ or $q=5$ and $r=11$;
(10) $G \cong\left(Z_{4} \times Z_{2}\right) \times Z_{21}$;
(11) $G \cong M \ltimes Z_{q r}, q=3$ and $r=13$ or $q=5$ and $r=11$, where M is a group of order 8. Moreover, $C_{M}\left(Z_{q r}\right) \cong Z_{4}$;
(12) $G \cong\left(A_{4} \times Z_{2}\right) \times Z_{7}$;
(13) $G \cong S L_{2}\left(F_{3}\right) \times Z_{7}$;
(14) G is a Frobenius group and $G \cong Z_{8 q} \ltimes Z_{r}$. Moreover, $r-1=16 q$;
(15) $G \cong L_{2}(7)$;
(16) G is a 2-Frobenius group and $G \cong Z_{3} \ltimes\left(Z_{7} \ltimes P\right)$, where P is an elementary abelian 2-group of order $8, P \unlhd G$ and $G / P \cong Z_{3} \ltimes Z_{7}$. Moreover, $\pi_{e}(G)=\{1,2,3,6,7\}$.

Corollary 1.2. All of the groups with property (*) are of even order.
Corollary 1.3. Suppose that G is a non-soluble group with property (*). Then, $G \cong L_{2}(7)$.

Corollary 1.4. The answer to Thompson's problem is yes for finite groups (1)-(14) and (16) of Theorem 1.1.

2. Preliminaries

We need the following lemmas to prove our results.
Lemma 2.1 ([12]). Let G be a finite group. Then, the number of elements whose orders are multiples of n is either zero, or a multiple of the greatest divisor of $|G|$ that is prime to n.

Lemma 2.2 ([3]). Let G be a finite group. We denote by $A_{i}(1 \leq i \leq s)$ a complete representative system of conjugate classes of cyclic subgroups of order $k(G)$, respectively. Then, we have:
(1) $m(G)=\varphi(k(G)) \sum n_{i}$, where $\varphi(k(G))$ is Euler function, $n_{i}=\mid G$: $N_{G}\left(A_{i}\right) \mid$ and $1 \leq i \leq s ;$
(2) $|G|=\left|G: N_{G}\left(A_{i}\right)\right|\left|N_{G}\left(A_{i}\right): C_{G}\left(A_{i}\right)\right|\left|C_{G}\left(A_{i}\right)\right|$, where $1 \leq i \leq s$;
(3) $\mid N_{G}\left(A_{i}\right): C_{G}\left(A_{i}\right) \| \varphi(k(G))$, where $1 \leq i \leq s$;
(4) $\pi\left(C_{G}\left(A_{i}\right)\right)=\pi\left(A_{i}\right)$, where $1 \leq i \leq s$.

Lemma 2.3 ([4]). Let G be a soluble group of order $m n$, where m is prime to n. Then, the number of subgroups of G of order m may be expressed as a product of factors, each of which (i) is congruent to 1 modulo some prime factor of m, (ii) is a power of a prime and divides the order of some chief factor of G.

Lemma 2.4 ([1]). Let H be a finite group and $\pi_{e}(H)=\{1,2,3,4\}$. Then, $H=N \rtimes Q$ and one of the following conclusions holds:
(i) N has exponent 4 and class $\leq 2, Q \cong Z_{3}$.
(ii) $N=Z_{2}{ }^{2 t}$ and $Q \cong S_{3}$, where $Z_{2}{ }^{2 t}$ stands for the direct product of $2 t$ copies of Z_{2}.
(iii) $N=Z_{3}{ }^{2 t}$ and $Q \cong Z_{4}$ or Q_{8} and H is a Frobenius group, where Q_{8} is the generalized quaternion group.

Lemma 2.5 ([14]). Let G be a finite group satisfying $|G|=2^{3} \cdot 3 \cdot 7$ and $m(G)=$ 48.
(1) If $k(G)=42$, then $G \cong\left(A_{4} \times Z_{2}\right) \times Z_{7}$ or $G \cong S L_{2}\left(F_{3}\right) \times Z_{7}$.
(2) If $k(G)=21$, then $G \cong M \ltimes Z_{7}$ and $C_{M}\left(Z_{7}\right) \cong A_{4}$, where $M \cong A_{4} \times Z_{2}$ or S_{4}.

Lemma 2.6 ([5]). Let G be a finite simple group. If $|\pi(G)|=3$, then we call G a simple K_{3}-group. If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ and $U_{4}(2)$.

Lemma 2.7 ([15]). Let G be a finite group. Then, $|G|=\left|L_{2}(7)\right|$ and $k(G)=$ $k\left(L_{2}(7)\right)$ if and only if $G \cong L_{2}(7)$ or G is a 2-Frobenius group, at this moment, $G \cong Z_{3} \ltimes\left(Z_{7} \ltimes P\right)$, where P is an elementary abelian 2-group of order 8 , $P \unlhd G$ and $G / P \cong Z_{3} \ltimes Z_{7}$. Moreover, $\pi_{e}(G)=\{1,2,3,6,7\}$.

3. Proof of the Results

Proof of Theorem 1.1

It is not hard to see that all the groups from items (1)-(16) of Theorem 1.1 have property (*).

Now, we assume that G has property $\left(^{*}\right)$. Namely, $|G|=p^{3} q r$ and $m(G)=$ $p^{4} q$. From Lemma 2.1 we get that $\pi(G) \subseteq \pi(m(G)) \bigcup \pi(k(G))$. Then, $r \in$ $\pi(k(G))$. Since $\varphi(k(G)) \mid m(G)$ by Lemma 2.2, we obtain that $\varphi(r)=r-1 \mid p^{4} q$. From $2 \mid r-1$ it follows that $p=2$. In the following we discuss four cases.

Case 1. If $\pi(k(G))=\{2, r\}$, then $k(G)=2 r, 4 r$ or $8 r$.
Suppose that $k(G)=2 r$. Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. It is clear that $x^{2} \in Z\left(C_{G}(A)\right)$ and so G has a Sylow r subgroup P_{r} such that $P_{r} \leq Z\left(C_{G}(A)\right)$. Therefore P_{r} char $C_{G}(A)$ and it follows that $P_{r} \unlhd N_{G}(A)$ since $C_{G}(A) \unlhd N_{G}(A)$. Therefore $N_{G}(A) \leq N_{G}\left(P_{r}\right)$ and thus $\left|G: N_{G}\left(P_{r}\right)\right|\left|\left|G: N_{G}(A)\right|\right.$. By Lemma 2.2 we get that $| G: N_{G}(A) \| 4 q$. So $\left|G: N_{G}\left(P_{r}\right)\right| \mid 4 q$.

If $P_{r} \nsubseteq G$, then $\left|G: N_{G}\left(P_{r}\right)\right|=2 q$ or $4 q$ by Sylow's theorem. If $\mid G$: $N_{G}\left(P_{r}\right) \mid=4 q$, then $\left|G: N_{G}(A)\right|=4 q$ and so $4 q \mid n$ by Lemma 2.2 , where n is the number of cyclic subgroups of order $k(G)$ in G. Note that $n=\frac{m(G)}{\varphi(2 r)}=\frac{16 q}{r-1}$, thus $r-1=4$ and so $r=5$. It follows that $q=3$. Hence, $\left|G: N_{G}\left(P_{5}\right)\right|=12$, which is contradict to Sylow's theorem. If $\left|G: N_{G}\left(P_{r}\right)\right|=2 q$, then $\left|N_{G}\left(P_{r}\right)\right|=4 r$ and $\left|C_{G}\left(P_{r}\right)\right|=2^{\alpha} r$, where $1 \leq \alpha \leq 2$. Moreover, $C_{G}\left(P_{r}\right)$ contains exactly $\frac{m(G)}{2 q}=8$ elements of order $2 r$. On the other hand, we get that $C_{G}\left(P_{r}\right)=H \times P_{r}$ by SchurZassenhaus's theorem since $P_{r} \leq Z\left(C_{G}\left(P_{r}\right)\right)$, where H is a group satisfying $|H|=2^{\alpha}$. It follows that $C_{G}\left(P_{r}\right)$ contains exactly $\left(2^{\alpha}-1\right)(r-1)$ elements of order $2 r$. Thus, $\left(2^{\alpha}-1\right)(r-1)=8$, which is impossible obviously since $1 \leq \alpha \leq 2$.

If $P_{r} \unlhd G$, then $C_{G}\left(P_{r}\right)$ contains all the elements of order $k(G)$ in G since $A \leq C_{G}(A) \leq C_{G}\left(P_{r}\right)$. Note that $P_{r} \leq Z\left(C_{G}\left(P_{r}\right)\right)$, thus $\left|C_{G}\left(P_{r}\right)\right|=2^{l} r$, where $1 \leq l \leq 3$. Moreover, $C_{G}\left(P_{r}\right)=H_{1} \times P_{r}$ by Schur-Zassenhaus's theorem, where H_{1} is a group of order 2^{l}. If $l=2$, then H_{1} is an elementary abelian group of order 4. Thus, $3(r-1)=16 q$ and it follows that $q=3$ and $r=17$. Since $\left|G / C_{G}\left(P_{17}\right)\right|\left|\left|\operatorname{Aut}\left(P_{17}\right)\right|\right.$, we get that 6$| 16$, which is a contradiction. Similarly, we can show that $l \neq 3$. If $l=1$, then $r-1=16 q$. Note that $P_{r} \cong Z_{r}$, then by Schur-Zassenhaus's theorem we get that $G \cong M \ltimes Z_{r}$. Moreover, $C_{M}\left(Z_{r}\right) \cong Z_{2}$, $M / C_{M}\left(Z_{r}\right) \lesssim \operatorname{Aut}\left(Z_{r}\right)$ and $\left|M / C_{M}\left(Z_{r}\right)\right|=4 q$. Hence, (1) holds.

Suppose that $k(G)=4 r$. Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. Similar to the above, we can get that G has a Sylow r -
subgroup P_{r} such that $P_{r} \leq Z\left(C_{G}(A)\right),\left|G: N_{G}\left(P_{r}\right)\right| \mid 2 q$ and $\left|G: N_{G}\left(P_{r}\right)\right|=$ $\left|G: N_{G}(A)\right|=2 q$ by Sylow's theorem if $P_{r} \not \ddagger G$. Hence, $C_{G}\left(P_{r}\right)$ contains exactly $\frac{m(G)}{2 q}=8$ elements of order $4 r$. Note that $P_{r} \leq Z\left(C_{G}\left(P_{r}\right)\right)$, thus $r-1 \mid 8$. It follows that $r=5$ and so $q=3$. Therefore $\left|G: N_{G}\left(P_{5}\right)\right|=6$ and so $\left|N_{G}\left(P_{5}\right)\right|=\left|C_{G}\left(P_{5}\right)\right|=20$. Hence, G is 5 -nilpotent by Burnside's theorem. Then, G is soluble. By Lemma 2.3 it follows that $2 \equiv 1(\bmod 5)$ and $3 \equiv 1(\bmod$ 5), which is impossible.

If $P_{r} \unlhd G$, then $C_{G}\left(P_{r}\right)$ contains all the elements of order $4 r$ in G. Furthermore, $\left|C_{G}\left(P_{r}\right)\right|=2^{\alpha} \cdot q^{\beta} \cdot r$, where $2 \leq \alpha \leq 3$ and $0 \leq \beta \leq 1$. Note that $P_{r} \leq$ $Z\left(C_{G}\left(P_{r}\right)\right)$, then by Schur-Zassenhaus's theorem we have $C_{G}\left(P_{r}\right)=H \times P_{r}$, where H is a group of order $2^{\alpha} \cdot q^{\beta}$.

Suppose that $\beta=1$. Then, $q=3$ since $k(G)=4 r$ is the maximal element order of G. If $\alpha=2$, then H is a group of order 12 and $\pi_{e}(H)=\{1,2,3,4\}$. It follows that $H \cong Z_{4} \rtimes Z_{3}$ by Lemma 2.4. Hence, $2(r-1)=m(G)=48$. It follows that $r=25$, which is impossible. If $\alpha=3$, then $C_{G}\left(P_{r}\right)=G$ and so $P_{r} \leq Z(G)$. Consequently, $G=M \times P_{r}$ by Schur-Zassenhaus's theorem, where M is a group of order 24. Note that $\pi_{e}(M)=\{1,2,3,4\}$, thus $M \cong\left(Z_{2} \times Z_{2}\right) \rtimes S_{3}$ or $N \rtimes Z_{3}$ by Lemma 2.4. If $M \cong\left(Z_{2} \times Z_{2}\right) \rtimes S_{3}$, then $6(r-1)=m(G)=48$ and thus $r=9$, which is a contradiction. If $M \cong N \rtimes Z_{3}$, then the conjugate action of Z_{3} on N is fixed-point-free. Thus, $\left|Z_{3}\right|||N|-1$ and it follows that 3$| 7$, which is impossible.

Suppose that $\beta=0$. Then, $\left|C_{G}\left(P_{r}\right)\right|=4 r$ or $8 r$. If $\left|C_{G}\left(P_{r}\right)\right|=4 r$, then $C_{G}\left(P_{r}\right) \cong Z_{4} \times Z_{r}$. It follows that $2(r-1)=m(G)=16 q$ and so $r-1=$ $8 q$. Moreover, $G \cong K \ltimes Z_{r}$ by Schur-Zassenhaus's theorem, $C_{K}\left(Z_{r}\right) \cong Z_{4}$, $K / C_{K}\left(Z_{r}\right) \lesssim \operatorname{Aut}\left(Z_{r}\right)$ and $\left|K / C_{K}\left(Z_{r}\right)\right|=2 q$. Hence, (2) holds. If $\left|C_{G}\left(P_{r}\right)\right|=$ $8 r$, then H is isomorphic to the dihedral group D_{8}, the generalized quaternion group Q_{8} or $Z_{4} \times Z_{2}$ since $k(H)=4$. If $H \cong Q_{8}$, then $6(r-1)=m(G)=16 q$ and so $r=9$, which is a contradiction. If $H \cong D_{8}$, then $2(r-1)=m(G)=16 q$ and so $r-1=8 q$. Moreover, $G \cong L \ltimes Z_{r}$ by Schur-Zassenhaus's theorem, $C_{L}\left(Z_{r}\right) \cong D_{8}, L / C_{L}\left(Z_{r}\right) \lesssim \operatorname{Aut}\left(Z_{r}\right)$ and $\left|L / C_{L}\left(Z_{r}\right)\right|=q$. Hence, (3) holds. If $H \cong Z_{4} \times Z_{2}$, then $4(r-1)=m(G)=16 q$ and so $r-1=4 q$. Moreover, $G \cong R \ltimes Z_{r}, C_{R}\left(Z_{r}\right) \cong Z_{4} \times Z_{2}, R / C_{R}\left(Z_{r}\right) \lesssim \operatorname{Aut}\left(Z_{r}\right)$ and $\left|R / C_{R}\left(Z_{r}\right)\right|=q$. Hence, (4) holds.

Suppose that $k(G)=8 r$. Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. It is clear that $x^{8} \in Z\left(C_{G}(A)\right)$ and so G has a Sylow r-subgroup P_{r} such that $P_{r} \leq Z\left(C_{G}(A)\right)$. Since $A \leq C_{G}(A) \leq C_{G}\left(P_{r}\right)$, we have $\left|C_{G}\left(P_{r}\right)\right|=8 q^{\gamma} r$, where $0 \leq \gamma \leq 1$. Note that $P_{r} \leq Z\left(C_{G}\left(P_{r}\right)\right)$, thus $C_{G}\left(P_{r}\right)=H \times P_{r}$ by Schur-Zassenhaus's theorem, where H is a group of order $8 q^{\gamma}$ and $k(H)=8$.

Suppose that $\gamma=1$. Since $k(G)=8 r$, we have $q=3,5$ or 7 . Note that the Sylow 2-subgroup P_{2} of H is cyclic, thus H is 2-nilpotent and so the Sylow q-subgroup Q of H is normal in H. If $q=5$ or 7 , then the conjugate action of P_{2} on Q is fixed-point-free since $k(H)=8$. Therefore $8 \mid q-1$, which is impossible.

If $q=3$, then H is a group of order 24 satisfying $k(H)=8$. Now, we get a contradiction since such group H does not exist by [11].

Suppose that $\gamma=0$. Then, $\left|C_{G}\left(P_{r}\right)\right|=8 r$. Since the Sylow 2-subgroup of G is cyclic, we get that G is 2-nilpotent. It follows that the subgroup of order $q r$ of G is normal in G. Then, $P_{r} \unlhd G$ by Sylow's theorem and so $C_{G}\left(P_{r}\right) \unlhd G$. Hence, $C_{G}\left(P_{r}\right)$ contains all the elements of order $8 r$ and $G \cong Z_{q} \ltimes Z_{8 r}$ by SchurZassenhaus's theorem. Moreover, $4(r-1)=m(G)=16 q$ and $C_{Z_{q}}\left(Z_{8 r}\right)=1$. Hence, (5) holds.

Case 2. If $\pi(k(G))=\{q, r\}$, then $k(G)=q r$.
Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. Similar to Case 1, we can get that G has a Sylow r-subgroup P_{r} such that $P_{r} \leq Z\left(C_{G}(A)\right)$ and $\left|G: N_{G}\left(P_{r}\right)\right|=1$ or 8 .

If $\left|G: N_{G}\left(P_{r}\right)\right|=1$, then $P_{r} \unlhd G$ and $C_{G}\left(P_{r}\right)$ contains all the elements of order $q r$ in G since $A \leq C_{G}(A) \leq C_{G}\left(P_{r}\right)$. Moreover, G is soluble. By Lemma 2.3 it follows that $\left|G: N_{G}(A)\right|=1,4$ or 8 . If $\left|G: N_{G}(A)\right|=8$, then $8(q-1)(r-1)=m(G)=16 q$. If follows that $q=3$ and $r=4$, which is a contradiction. If $\left|G: N_{G}(A)\right|=4$, then $4 \equiv 1(\bmod q)$ by Lemma 2.3. Therefore $q=3$ and thus $4(3-1)(r-1)=m(G)=48$. Hence, $r=7$. Therefore by (2) of Lemma 2.5 we have $G \cong M \ltimes Z_{7}$ and $C_{M}\left(Z_{7}\right) \cong A_{4}$, where $M \cong A_{4} \times Z_{2}$ or S_{4}. Hence, (6) holds. If $\left|G: N_{G}(A)\right|=1$, then $(q-1)(r-1)=16 q$, which is impossible we can find by simple calculation.

If $\left|G: N_{G}\left(P_{r}\right)\right|=8$, then $C_{G}\left(P_{r}\right)$ contains exactly $\frac{m(G)}{8}=2 q$ elements of order $q r$. On the other hand, we know that $A \leq C_{G}(A) \leq C_{G}\left(P_{r}\right)$, thus $C_{G}\left(P_{r}\right)$ contains at least $\varphi(q r)=(q-1)(r-1)$ elements of order $q r$. Now, we get a contradiction since $(q-1)(r-1)>2 q$.

Case 3. If $\pi(k(G))=\{2, q, r\}$, then $k(G)=8 q r, 4 q r$ or $2 q r$.
If $k(G)=8 q r$, then $\varphi(8 q r)=4(q-1)(r-1)=16 q$. Consequently, $\frac{q-1}{2} \cdot \frac{r-1}{2}=$ q. Since $\frac{r-1}{2}>1$, we have $\frac{q-1}{2}=1$ and so $q=3$. It follows that $r=7$. Hence, $G \cong Z_{168}$ and thus (7) holds.

Suppose that $k(G)=4 q r$. Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. It is clear that $Z\left(C_{G}(A)\right)$ contains elements of order $q r$, and so G has a subgroup H of order $q r$ such that $H \leq Z\left(C_{G}(A)\right)$. Therefore H char $C_{G}(A)$ and it follows that $H \unlhd N_{G}(A)$ since $C_{G}(A) \unlhd N_{G}(A)$. So $N_{G}(A) \leq$ $N_{G}(H)$. Then, $\left|G: N_{G}(H)\right|\left|\left|G: N_{G}(A)\right|\right.$. Note that $| G: N_{G}(A) \mid=1$, thus $\left|G: N_{G}(H)\right|=1$ and so $H \unlhd G$. Therefore $C_{G}(H)$ contains all the elements of order $k(G)$ in G and so $\left|C_{G}(H)\right|=2^{\alpha} q r$, where $2 \leq \alpha \leq 3$.

If $\alpha=3$, then $C_{G}(H)=G$ and so $H \leq Z(G)$. Thus, $G=K \times H$ by SchurZassenhaus's theorem. Obviously, K is isomorphic to the dihedral group D_{8}, the generalized quaternion group Q_{8} or $Z_{4} \times Z_{2}$. If $K \cong Q_{8}$, then $6(q-1)(r-1)=$ $m(G)=16 q$. Hence, $q=3$ and $r=5$. Therefore $G \cong Q_{8} \times Z_{15}$. Hence, (8) holds. If $K \cong D_{8}$, then similarly we can get that $G \cong D_{8} \times Z_{q r}$, where $q=3$ and
$r=13$ or $q=5$ and $r=11$. Hence, (9) holds. If $K \cong Z_{4} \times Z_{2}$, then similarly we can get that $G \cong\left(Z_{4} \times Z_{2}\right) \times Z_{21}$. Hence, (10) holds.

If $\alpha=2$, then $C_{G}(H) \cong Z_{4} \times Z_{q r}$. So $2(q-1)(r-1)=16 q$. It follows that $q=3$ and $r=13$ or $q=5$ and $r=11$. Furthermore, $G \cong M \ltimes Z_{q r}$ by Schur-Zassenhaus's theorem and $C_{M}\left(Z_{q r}\right) \cong Z_{4}$, where M is a group of order 8 . Hence, (11) holds.

Suppose that $k(G)=2 q r$. Choose an arbitrary element x of order $k(G)$ in G and let $\langle x\rangle=A$. From the fact that $Z\left(C_{G}(A)\right)$ contains elements of order $q r$ we get that G has a cyclic subgroup H of order $q r$ such that $H \leq Z\left(C_{G}(A)\right)$. Similar to the above, we get that $\left|G: N_{G}(H)\right|=1,2$ or 4 . Moreover, $\left|C_{G}(H)\right|=2^{\alpha} q r$, where $1 \leq \alpha \leq 3$.

If $\left|G: N_{G}(H)\right|=1$, then $H \unlhd G$. It follows that $C_{G}(H)$ contains all elements of order $2 q r$ since $A \leq C_{G}(A) \leq C_{G}(H)$. Since $H \leq Z\left(C_{G}(H)\right)$, by SchurZassenhaus's theorem we have $C_{G}(H)=M \times H$, where M is an elementary abelian group of order 2^{α}. Hence, $\left(2^{\alpha}-1\right)(q-1)(r-1)=m(G)=16 q$, which is impossible we can find by simple calculation. If $\left|G: N_{G}(H)\right|=2$, then G is non-soluble by Lemma 2.3. Note that $N_{G}(H) \unlhd G$, thus $N_{G}(H) \cong A_{5}$ by Lemma 2.6, which is a contradiction since $2 q r \in \pi_{e}\left(N_{G}(H)\right)$ and $2 q r \notin \pi_{e}\left(A_{5}\right)$. If $\left|G: N_{G}(H)\right|=4$, then $\left|G: N_{G}(A)\right|=4$. Thus, $4 \mid n$ by Lemma 2.2 , where n is the number of the cyclic subgroups of order $2 q r$ of G. Note that $n=$ $\frac{m(G)}{\varphi(k(G)}=\frac{16 q}{(q-1)(r-1)}$, thus $q=3$ and $r=7$. Therefore $G \cong\left(A_{4} \times Z_{2}\right) \times Z_{7}$ or $G \cong S L_{2}\left(F_{3}\right) \times Z_{7}$ by (1) of Lemma 2.5. Hence, (12) and (13) hold.

Case 4. If $\pi(k(G))=\{r\}$, then $k(G)=r$.
We know that the number n_{r} of Sylow r-subgroups of G is equal to $1,2 q$, $4 q, 8 q$ or 8 by Sylow's theorem.

If $n_{r}=1$, then the Sylow r-subgroup P_{r} of G is normal in G and $r-1=$ $m(G)=16 q$. Moreover, G has an r-complement H of order $8 q$ by SchurZassenhaus's theorem. Note that the conjugate action of H on P_{r} is fixed-point-free, thus G is a Frobenius group with Frobenius kernel P_{r} and Frobenius complement H. Note that $P_{r} \cong Z_{r}$ and H is a cyclic group since $H \lesssim \operatorname{Aut}\left(P_{r}\right)$, thus $G \cong Z_{8 q} \ltimes Z_{r}$. Hence, (14) holds.

If $n_{r}=2 q$, then $2 q(r-1)=m(G)=16 q$. It follows that $r=9$, which is impossible.

If $n_{r}=4 q$, then $4 q(r-1)=m(G)=16 q$. It follows that $r=5$ and $q=3$, which is contradict to Sylow's theorem.

If $n_{r}=8 q$, then $8 q(r-1)=m(G)=16 q$. It follows that $r=3$, which is impossible.

If $n_{r}=8$, then $r=7$ by Sylow's theorem and so $q=3$ or 5 . If $q=5$, then $\left|N_{G}\left(P_{7}\right)\right|=35$. Since $N_{G}\left(P_{7}\right) / C_{G}\left(P_{7}\right) \lesssim \operatorname{Aut}\left(P_{7}\right)$, we have $\left|N_{G}\left(P_{7}\right) / C_{G}\left(P_{7}\right)\right|$ divides $\left|\operatorname{Aut}\left(P_{7}\right)\right|$. Note that $\left|C_{G}\left(P_{7}\right)\right|=7$, thus $5 \mid 6$, which is a contradiction. If $q=3$, then by Lemma $2.7 G \cong L_{2}(7)$ or G is a 2 -Frobenius group, at this moment, $G \cong Z_{3} \ltimes\left(Z_{7} \ltimes P\right)$, where P is an elementary abelian 2-group of order
$8, P \unlhd G$ and $G / P \cong Z_{3} \ltimes Z_{7}$. Moreover, $\pi_{e}(G)=\{1,2,3,6,7\}$. Hence, (15) and (16) hold.

Proof of Corollaries 1.2 and 1.3. It is evident by Theorem 1.1.
Proof of Corollary 1.4. Assume that G is a group, which is isomorphic to one of the finite groups (1-14) and (16) of Theorem 1.1. Suppose that H is a group satisfying $H(d)=G(d)$. Then, $|H|=|G|$ and $m(H)=m(G)$. Thus, H is soluble by Theorems 1.1. Hence, Corollary 1.4 holds.

Now, the proofs of our results are complete.

Acknowledgement

The authors would like to thank the referees with deep gratitude for pointing out some questions in the previous version of the paper. Their valuable suggestions help us improve the quality of our paper.

References

[1] R. Brandl, W.J. Shi, Finite groups whose element orders are consecutive integers, J. Algebra, 143 (1991), 388-400.
[2] G.Y. Chen, W.J. Shi, Finite groups with 30 elements of maximal order, Appl. Categor. Struct., 16 (2008), 239-247.
[3] X.L. Du, Y.Y. Jiang, On finite groups with exact $4 p$ elements of maximal order are soluble, Chinese Ann. Math. Ser. A, 25 (2004), 607-612 (in chinese).
[4] M. Hall, The theory of groups, Macmillan Company, New York, 1959.
[5] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 120 (1968), 383-388.
[6] B. Huppert, Endliche Gruppen I., Die Grundlehren der mathematischen Wissenschafter in Einzeldarstellungen 134, Springer, Berlin, 1967 (in german).
[7] Q.H. Jiang, C.G. Shao, Finite groups with 24 elements of maximal order, Front. Math. China, 5 (2010), 665-678.
[8] Y.Y. Jiang, Finite groups with $2 p^{2}$ elements of maximal order are soluble, Chinese Ann. Math. Ser. A, 21 (2000), 61-64 (in chinese).
[9] Y.Y. Jiang, A theorem of finite groups with $18 p$ elements having maximal order, Algebra Collog., 15 (2008), 317-329.
[10] S.B Tan, G.Y. Chen, Y.X. Yan, Finite groups with $4 p^{2} q$ elements of maximal order, Open Math., 19 (2021), 963-970.
[11] A.D. Thomas, G.V. Wood, Group tables, Shiva Publishing Limited, 1980.
[12] L. Weisner, On the number of elements of a group which have a power in a given conjugate set, Bull. Amer. Math. Soc., 31 (1925), 492-496.
[13] C. Yang, Finite groups based on the numbers of elements of maximal order, Chinese Ann. Math. Ser. A., 14 (1993), 561-567 (in chinese).
[14] Q.L. Zhang, Finite groups with the same order and the same number of elements of maximal order as the projective special linear group $L_{2}(q)$, to appear.
[15] Q.L. Zhang, W.J. Shi, A new characterization of simple K_{3}-groups and some $L_{2}(p)$, Algebra Collog., 20 (2013), 361-368.

Accepted: October 11, 2022

