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Abstract. In this paper, we study the Schur convexity of a function containing
variable upper and lower limit of integration, we prove that the function is Schur-
convex if its fourth-order derivative is non-negative. Finally, we use the obtained result
to derive an inequality of Hermite-Hadamard type.
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1. Introduction

Schur convexity is an important notion in the theory of convex functions, which
was introduced by Schur in 1923 (see [1]). Over the past half a century, Schur
convexity has aroused the interest of many researchers due to its powerful appli-
cations in the theory of inequalities, we refer the reader to [2–19] and references
cited therein.

In [20], Elezović and Pečarić proved the Schur convexity of the following
function.

Claim 1.1. Suppose f : I → R is a continuous function. Then, the function

F (x, y) =

{
1

y−x

∫ y
x f(t)dt, x ̸= y, x, y ∈ I

f(x), x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I.
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In [21], Chu, Wang and Zhang showed the Schur convexity of the following
two functions.

Claim 1.2. Suppose f : I → R is a continuous function. Then, the function

M(x, y) =

{
1

y−x

∫ y
x f(t)dt− f

(x+y
2

)
, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I, and the
function

T (x, y) =

{
f(x)+f(y)

2 − 1
y−x

∫ y
x f(t)dt, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f is convex (concave) on I.

In [22], Franjić and Pečarić verified the Schur convexity of the function below.

Claim 1.3. Suppose f : I → R is a continuous function. Then, the function

S(x, y) =

{
1
6f(x) +

2
3f

(x+y
2

)
+ 1

6f(y)−
1

y−x

∫ y
x f(t)dt, x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2 if f (4) ≥ 0 (f (4) ≤ 0) on I.

Inspired by the research results described in [20-22] above, in this paper we
study the Schur convexity of a function which contains variable upper and lower
limit of integration, i.e.,

U(x, y)

=

{
1

y−x

∫ y
x f(t)dt− f(x)+f(y)

2 + 1
12 (f

′(y)− f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I.

The remaining parts of this paper are organized as follows. In Section 2,
we present some definitions and lemmas which are essential in the proof of the
main results. In Sections 3 and 4, we give our main result and an application.

2. Preliminaries

Let us recall some definitions and lemmas, which will be used in the proofs of
the main results in subsequent sections.

Definition 2.1 ([2, 23]). Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.
(i) x is said to be majorized by y (in symbols x ≺ y) if

∑k
i=1 x[i] ≤

∑k
i=1 y[i]

for k = 1, 2, . . . , n − 1 and
∑n

i=1 x[i] =
∑n

i=1 y[i], where x[1] ≥ x[2] ≥ · · · ≥ x[n]
and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(ii) Let Ω ⊂ Rn, φ : Ω → R is said to be a Schur-convex function on Ω if
x ≺ y on Ω implies φ(x) ≤ φ(y). And φ is said to be a Schur-concave function
on Ω if and only if −φ is a Schur-convex function on Ω.
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Definition 2.2 ([2, 23]). Let x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn.

(i) A set Ω ⊂ Rn is called a symmetric set, if x ∈ Ω implies xP ∈ Ω for
every n× n permutation matrix P .

(ii) A function φ : Ω → R is called a symmetric function if for every per-
mutation matrix P , φ(xP ) = φ(x) for all x ∈ Ω.

Lemma 2.1 ([2, 23]). Let Ω ⊂ Rn be symmetric and have a nonempty interior
convex set. Ω◦ is the interior of Ω. φ : Ω → R is continuous on Ω and
differentiable in Ω◦. Then, φ is Schur-convex on Ω if and only if φ is symmetric
on Ω and

(1) (xi − xj)

(
∂φ

∂xi
− ∂φ

∂xj

)
≥ 0 (i ̸= j, i, j = 1, 2, . . . , n)

for any x = (x1, x2, . . . , xn) ∈ Ω◦. Furthermore, φ is Schur-concave on Ω if and
only if the reversed inequality above holds.

Lemma 2.2 ([24]). Let x ≤ y, u(t) = ty + (1 − t)x, v(t) = tx + (1 − t)y,
0 ≤ t1 ≤ t2 ≤ 1

2 or 1
2 ≤ t2 ≤ t1 ≤ 1. Then

(2)

(
x+ y

2
,
x+ y

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (x, y).

Lemma 2.3 ([25]). (Simpson formula) Let f : I ⊂ R → R and x, y ∈ I. If f (4)

is continuous on I, then

(3)
1

y − x

∫ y

x
f(t)dt− 1

6

(
f(x) + 4f

(
x+ y

2

)
+ f(y)

)
= −(y − x)4

2880
f (4)(ξ),

where ξ is some number between x and y.

3. Main result

Our main result is stated in the following theorem.

Theorem 3.1. Let f : I ⊂ R → R be a continuous function. If f (4) ≥ 0
(f (4) ≤ 0) on I, then the function

U(x, y)

=

{
1

y−x

∫ y
x f(t)dt− f(x)+f(y)

2 + 1
12 (f

′(y)− f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex (Schur-concave) on I2.

Proof. Note that, U(x, y) is symmetric about x, y on I, without loss of gener-
ality, we may assume that y ≥ x. Below we divide the proof into two cases.
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Case 1. If x = y, it follows from the definition of derivative and L’Hopital’s rule
that, for any t0 ∈ I,

∂U

∂x
|(t0,t0) = lim

∆t→0

U(t0 +∆t, t0)− U(t0, t0)

∆t

= lim
∆t→0

− 1
∆t

∫ t0
t0+∆t f(t)dt−

f(t0+∆t)+f(t0)
2 − ∆t

12 (f ′(t0)− f ′(t0 +∆t))

∆t

= lim
∆t→0

−
∫ t0
t0+∆t f(t)dt−

∆t
2 (f(t0 +∆t) + f(t0))

(∆t)2

=− lim
∆t→0

∆tf ′′(t0 +∆t)

4

=0.

Similarly, we can obtain ∂U
∂y |(t0,t0) = 0. Hence we have, for any x = y ∈ I,

(y − x)

(
∂U

∂y
− ∂U

∂x

)
= 0.

Case 2. If x ̸= y, differentiating U(x, y) with respect to y and x respectively
gives

∂U

∂y
= − 1

(y − x)2

∫ y

x
f(t)dt+

f(y)

y − x
− f ′(y)

2
+

f ′′(y)(y − x) + f ′(y)− f ′(x)

12
,

∂U

∂x
=

1

(y − x)2

∫ y

x
f(t)dt− f(x)

y − x
− f ′(x)

2
− f ′′(x)(y − x) + f ′(y)− f ′(x)

12
.

Thus, we have

(y − x)

(
∂U

∂y
− ∂U

∂x

)
= − 2

y − x

∫ y

x
f(t)dt+ (f(x) + f(y))− (y − x)

3
(f ′(y)− f ′(x))(4)

+
(y − x)2

12
(f ′′(x) + f ′′(y)).

Using the Simpson formula (Lemma 2.3) with f (4) ≥ 0, we obtain

1

y − x

∫ y

x
f(t)dt ≤ 1

6

(
f(x) + 4f

(
x+ y

2

)
+ f(y)

)
.(5)

Combining (4) and (5), we acquire that

(y − x)

(
∂U

∂y
− ∂U

∂x

)
≥ −4

3
f

(
x+ y

2

)
+

2

3
(f(x) + f(y))− (y − x)

3
(f ′(y)− f ′(x))(6)

+
(y − x)2

12
(f ′′(x) + f ′′(y))

=: Q(x, y).
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It is enough to prove Q(x, y) ≥ 0 for any x, y ∈ I. Differentiating Q(x, y)
with respect to y and x respectively, we obtain

∂Q

∂y
=− 2

3
f ′(x+ y

2

)
+
f ′(x) + f ′(y)

3
+
(y − x)(f ′′(x)− f ′′(y))

6
+

(y − x)2f ′′′(y)

12
,

∂Q

∂x
=− 2

3
f ′(x+ y

2

)
+
f ′(x) + f ′(y)

3
+
(y − x)(f ′′(x)− f ′′(y))

6
+

(y − x)2f ′′′(x)

12
,

Then, by f (4) ≥ 0, we have

(y − x)

(
∂Q

∂y
− ∂Q

∂x

)
=

1

12
(y − x)3(f ′′′(y)− f ′′′(x)) ≥ 0.

It follows from Lemma 2.1 that Q(x, y) is Schur-convex on I2. In addition,
by Lemma 2.2, we have

(x+y
2 , x+y

2

)
≺ (x, y). Hence, we deduce from Definition

2.1 that

Q(x, y) ≥ Q

(
x+ y

2
,
x+ y

2

)
= 0.(7)

Combining (6) and (7), we conclude that, for any x, y ∈ I, x ̸= y,

(y − x)

(
∂U

∂y
− ∂U

∂x

)
≥ Q(x, y) ≥ 0.

Hence, we derive from Lemma 2.1 that U(x, y) is Schur-convex on I2.
By the same way as the proof of Theorem 3.1 for f (4) ≥ 0 above, we can

prove that the U(x, y) is Schur-concave for f (4) ≤ 0. This completes the proof
of Theorem 4.

4. An application

Theorem 4.1. Let f : I ⊂ R → R be a continuous function with f (4) ≥ 0 on
I. Then, for x ̸= y, x, y ∈ I, 0 ≤ t1 ≤ t2 < 1

2 or 1
2 < t2 ≤ t1 ≤ 1, we have the

following inequalities

1

y − x

∫ y

x
f(t)dt− f(x) + f(y)

2
+

1

12

(
f ′(y)− f ′(x)

)
(y − x)

≥ 1

(1− 2t1)(y − x)

∫ t1x+(1−t1)y

t1y+(1−t1)x
f(t)dt

− f (t1y + (1− t1)x) + f (t1x+ (1− t1)y)

2

+
1

12

(
f ′ (t1x+ (1− t1)y)− f ′((t1y + (1− t1)x)

)
(1− 2t1)(y − x)

≥ 1

(1− 2t2)(y − x)

∫ t2x+(1−t2)y

t2y+(1−t2)x
f(t)dt(8)

− f (t2y + (1− t2)x) + f (t2x+ (1− t2)y)

2
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+
1

12

(
f ′ (t2x+ (1− t2)y)− f ′((t2y + (1− t2)x)

)
(1− 2t2)(y − x) ≥ 0.

Each of the inequalities in (8) is reverse for f (4) ≤ 0 on I.

Proof. Since each of the inequalities in (8) is symmetric about x, y, without
loss of generality, we can assume that y > x.

Using Lemma 2.2, we have(
x+ y

2
,
x+ y

2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (x, y),(9)

where u(t) = ty + (1− t)x, v(t) = tx+ (1− t)y.
In addition, from Theorem 3.1, we find that

U(x, y) =

{
1

y−x

∫ y
x f(t)dt−f(x)+f(y)

2 + 1
12 (f

′(y)−f ′(x)) (y − x), x ̸= y, x, y ∈ I

0, x = y, x, y ∈ I

is Schur-convex on I2 under the assumption that f (4) ≥ 0.
Thus, we derive from the Definition (2.1) that

U

(
x+ y

2
,
x+ y

2

)
≤ U(u(t2), v(t2)) ≤ U(u(t1), v(t1)) ≤ U(x, y),(10)

which implies the required inequalities in (8). Similarly, we can deduce the
reversed inequalities of (8) under the assumption that f (4) ≤ 0. The proof of
Theorem 4.1 is complete.

As a direct consequence of Theorem 4.1, we obtain

Corollary 4.1. Let f : I ⊂ R → R be a continuous function with f (4) ≥ 0 on
I. Then, for x ̸= y, x, y ∈ I, the following inequality holds.

1

y − x

∫ y

x
f(t)dt ≥ f(x) + f(y)

2
− 1

12

(
f ′(y)− f ′(x)

)
(y − x).(11)

Inequality (11) is reverse for f (4) ≤ 0 on I.
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