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On improved Heinz inequalities for matrices
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Abstract. In this paper, we improve some Heinz inequalities for matrices by using the
convexity of function. Theoretical analysis shows that new inequalities are refinement
of the result in the related literature.
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1. Introduction

Let M,, be the space of n x n complex matrices. Let ||-|| denote any unitarily
invariant norm on M,. So, |[UAV| = ||A|| for all A € M,, and for all unitary
matrices U,V € M,. The singular values s;(A)(j = 1,...,n) of A are the
eigenvalues of the positive semidefinite matrix |A| = (AA*)%. The Schatten
p-norm |[|-[|,, is defined as

n

1
IA]l, = (D sf(A)r 1< p<oo
j=1

and the Ky Fan k-norm ||-[|,, is defined as

k
||A”(k) = ZS]‘(A),/C =1,...,n.

J=1

*. Corresponding author
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It is well known that the Schatten p-norm ||-||, and the Ky Fan k-norm |||
are unitarily invariant [1].
Bhatia and Davis [2] have proved the following inequality

(1.1) 2 HA%XB%

< ||A"XB'"+ AVXBY|| < |[AX + XB||,0<v <1,

where A, B, X € M,, with A and B are positive semidefinite matrices.
Kittaneh [3] proved that if A, B, X € M, such that A and B are positive
semidefinite, then

1
(12)  [|A"XB'™" + A" XB|| < (1 — 2r0) [ AX + X B|| + 4ro|| A2 X B,

where 0 < v < 1,79 = min{v, 1 —v}. The inequality (1.2) is a refinement of the
second inequality in (1.1).

He et al. [4] proved that if A, B, X € M, such that A and B are positive
semidefinite, then

(1.3) [|A"X B + A7 X BY||” < (1 — 2r0) [|AX + X B|® + 8ro[| A2 X B2 |2,

where 0 < v < 1,79 = min{v,1 —v}.

Improvements of Heinz inequalities have been done by many researchers. We
refer the reader to [5-8]. In this paper, we will improve the inequalities (1.2)
and (1.3) using the convexity of function.

2. Main results

Applying the convexity of function, we obtain the following theorem.

Theorem 1. Let A, B, X € M, such that A and B are positive semidefinite.
Then for every unitarily invariant norm

|A"X B + A"V X B"|| < (1 - 6ro) |AX + X B||

+ 6rg HA%XB% + AL XB| v e, %] U (%, 1],
|A"X B! 4+ A X B < (610 - 1) AT X B + AR X B
+2(1 — 3rg) HA%XB% + AixBE,
ol
and
|A"X B!+ AU X B < 4(3r0 - 1) 4B x B
+3(1 — 2r0) HA%XB§ +ASXB||,ve (%, g],

where ro = min{v, 1 — v}.
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Proof. For v = 0, the Theorem 1 is obvious. For 0 < v < 4

g, since f(v) =
HA“XBI_” + Al_”XB”H is convex on [0, 1], it follows by a slope argument that

f(0) ~ ) _ F(3) = £(0)

v—0 -0 7
and so .
fv) = (1= 6v)f(0) +6vf(5),
that is
|A"X B+ A" XB"|| < (1-60) [AX + XB]||
(2.1)

+6UHA%XB% L Alxpt

For % <v < %, similarly, we have

flv) - {(%) _ 1) . f(%)’
V=% 6
and so
flv) < (6v=1)f(3) + (2 —6v)f(2)
that is

|A"X B+ AU X BY|| < (60 - 1) |43 X BS + AT X B

(2.2)

+2(1 - 3v) HA%XB% +ASXBS

For % <v< %, similarly, we have

|A"X B0+ AU XBY|| < (30 - 1) |43 X B

(2.3)

+3(1— 20) HA%XB% + A3XBI

For ; <v< %, it follows by applying (2.3) to 1 — v that

|A"X B!+ AU X B < 4(2 - 3v) || AR X B3

+3(20—1) HA%XB% + A3XB}

For % <v < %, by applying (2.2) to 1 — v, we have

|A"X B!+ AU X B < (5 - 6v) |ASXBE + ATXBS

+2(3v - 2) HA%XB% + At XBE
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For % < v <1, by applying (2.1) to 1 — v, we have
|A°XB + ATV XB°|| < (6v —5) | AX + X B|
+6(1 - v) HA%XB% + Ai X B3

This completes the proof. O

Remark 1. Theorem 1 is better than inequality (1.2). For v € [0, %] U (%, 1],
we have

(1 6ro) |AX + X B + 670 HA%XB% + AiXB?

2 2
< (1= 6r0) [ AX + X BJ| + 6ro(5 | AX + X B + 3 HA%XB% )

(1= 2r0) |AX + X B|| + 4 HA%XB%

For v € (3, 3] U (3, 2], we have

=

(670 — 1) HA%XB§ + ASX B3

+2(1 — 3rg) HA%XB% +ASXBS

}

1 4
< (6r0 — VI3 [ AX + XB| + 5 HA%XB%

2 2
+2(1 - 370)[3 | AX + XB| + 3 HA%XB% ]

= (1—2rg) ||AX + XBJ + 4ro

’A%XB%

For v € (1, 3], we have

4(3rg — 1) HA%XB%

+3(1 - 2r) HA%XB% + ASX B3

1 4
< 4(3r9 — 1) HA%XB% +3(1—2n0)[5 [|AX + X B + 3 HA%XB% ]

= (1 - 2ro) || AX + XBJ| + 4rg HA%XB%

The following result implies that the inequality in Theorem 2 is a refinement
of the inequality (1.3).

Theorem 2. Let A, B, X € M, such that A and B are positive semidefinite.
Then for 0 < v <1 and for every unitarily invariant norm

HAUXBlfv_i_AlvaBUHQ
+2r(||[AX B + AV X BY|| — 2 HA%XB%

)

)(|AX + XB| -2 HA%XB%
2

)

< (1—2r0) |AX + X B + 8rg HA%XB%

where ro = min{v, 1 — v}.
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Proof. For v = 0,1, the result in Theorem 2 is obvious. For 0 < v < %, since

flv) = HA”XBI_“ + Al_“XB“H is convex on [0, 1], it follows that

f(v) — f(0) <f(%)*f(0)
v—=0 T -0

i

and so
20(f(0) ~ F(3))(F0) + F(0)) < F(0) — F2(v)
that is

(24) P +2000) — FGO) - F(5) < (- 2020) +207(;).

For % < v < 1, similarly, we have

F2(0) + 20— 0)(7(0) ~ F()FO) - £(3))
(25) < (1= 201 = ) f2(0) + 21~ v) ()

From (2.4) and (2.5), we obtain

1

F2(0) + 200 () ~ FN(0) — F(5)) < (1= 2r0)72(0) + 210 (),

that is

A" X B~ + A x BY|?

+2r0(|| AP X B + AV XBY|| - 2 HA%XB% )(|AX + XB| — 2 HA%XB% )
2
< (1—2r0) |AX + X B + 8ro HA%XB%
This completes the proof. O
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