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Abstract. In this paper, we obtain some non-existence theorems for real hypersurfaces
in nonflat complex space forms such that the structure tensor fields are of Lie Codazzi,
Lie Killing or Lie recurrent type.

Keywords: real hypersurface, complex space form, structure tensor field, Lie deriva-
tive.

1. Introduction

Let Mn(c) be a complete and simply connected complex space form which is
complex analytically isometric to

� a complex projective space CPn(c) if c > 0;

� a complex Euclidean space Cn if c = 0;

� a complex hyperbolic space CHn(c) if c < 0,

where c is the constant holomorphic sectional curvature. Let M be a real hyper-
surface of real dimension 2n− 1 immersed in Mn(c), n ≥ 2. On M there exists
a natural almost contact metric structure (ϕ, ξ, η, g) induced from the complex
structure on Mn(c) and the normal vector field, respectively, where ξ and ϕ are
called the structure vector field and the structure tensor field, respectively. If
the structure vector field ξ on real hypersurfaces is principal at each point, then
the hypersurface is said to be Hopf. In geometry of real hypersurface, the struc-
ture tensor field ϕ plays important roles in classification and characterization of
Hopf hypersurfaces (see, many references in [2, 17]). Before stating our main
study, we exhibit some well known results in this field.

A Hopf hypersurface in CPn(c) has constant principal curvatures if and only
if it is locally congruent to a type (A1), (A2), (B), (C), (D) or (E) hypersurfaces
(see, [9, 21]). A Hopf hypersurface in CHn(c) has constant principal curvatures
if and only if it is locally congruent to a type (A0), (A1,0), (A1,1), (A2) or (B) hy-
persurfaces (see, [1]). All type (A0), (A1), (A1,0), (A1,1) and (A2) hypersurfaces
are referred to collectively as type (A).
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Maeda and Udagawa in [16] first considered the Lie derivative of the structure
tensor field ϕ and proved that the structure vector field ξ of a real hypersurface in
CPn is an infinitesimal automorphism of the structure tensor field ϕ if and only
if the hypersurface is of type (A). Such a conclusion is still true even when the
restriction was weakened to some other geometric conditions and this was first
considered by Kwon and Suh in [12, Theorem] for a real hypersurface of dimen-
sion ≥ 5. Results in [16] have been generalized by Lim [13] by considering the
coincidence of the Lie derivative and covariant derivative of the structure tensor
field along ξ. Very recently, a new operator generated by the Lie derivative of
the structure tensor field ϕ along the structure vector field ξ was extensively
studied by Okumura in [18, 19] (see, also Cho [3, 4]). Nonexistence of the real
hypersurfaces with a Killing type structure tensor field was proved by Cho in
[5]. Some other results on the Lie derivative of the structure tensor field along
ξ can also be found in [8, 11, 14, 15]. In 2013, Kaimakamis and Panagiotidou
in [6, pp. 2091] proposed that it would be an interesting question for studying
the Lie recurrency of the structure tensor field. In the present paper, we study
the Lie derivative of the structure tensor field for real hypersurfaces in nonflat
complex space forms Mn(c), c ̸= 0, and solved the question posed in [6].

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c) and N
be a unit normal vector field of M . We denote by ∇ the Levi-Civita connection
of the metric g of Mn(c) and J the complex structure. Let g and ∇ be the
induced metric from the ambient space and the Levi-Civita connection of the
metric g, respectively. Then, the Gauss and Weingarten formulas are given
respectively as the following:

(1) ∇XY = ∇XY + g(AX,Y )N, ∇XN = −AX,

for any X,Y ∈ X(M), where A denotes the shape operator of M in Mn(c). For
any vector field X ∈ X(M), we put

(2) JX = ϕX + η(X)N, JN = −ξ.

We can define on M an almost contact metric structure (ϕ, ξ, η, g) satisfying

(3) ϕ2 = −id + η ⊗ ξ, η(ξ) = 1, ϕξ = 0,

(4) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for anyX,Y ∈ X(M). If the structure vector field ξ is principal, that is, Aξ = αξ
at each point, where α = η(Aξ), then M is called a Hopf hypersurface and α is
called Hopf principal curvature.
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Moreover, applying the parallelism of the complex structure (i.e., ∇J = 0)
of Mn(c) and using (1), (2) we have

(5) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,

(6) ∇Xξ = ϕAX,

for any X,Y ∈ X(M).

3. Non-existence results

We denote by L the Lie derivative of a real hypersurface in a nonflat complex
space form Mn(c), c ̸= 0, n ≥ 2.

Definition 3.1. The structure tensor field of a real hypersurface is called Lie
Killing if

(7) (LXϕ)Y + (LY ϕ)X = 0,

for any vector fields X,Y .

Obviously, the above condition (7) is a generalization of the Lie parallelism
of the structure tensor field, i.e., LXϕ = 0, for any X ∈ X(M).

Theorem 3.1. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is of Lie Killing type.

Proof. By applying (5), we have

(8) (LXϕ)Y = η(Y )AX − g(AX,Y )ξ −∇ϕY X + ϕ∇Y X,

for any vector fields X,Y . Now suppose that the structure tensor field of a real
hypersurface M is Lie Killing. From (7) and (8) we get

(9) η(Y )AX−2g(AX,Y )ξ−∇ϕY X+ϕ∇Y X+η(X)AY −∇ϕXY +ϕ∇XY = 0,

for any vector fields X,Y . Taking the inner product of (9) with ξ, we obtain

(10) η(Y )η(AX)− 2g(AX,Y )− η(∇ϕY X) + η(X)η(AY )− η(∇ϕXY ) = 0,

for any vector fields X,Y . In (10), selecting Y = ξ we obtain

Aξ = η(Aξ)ξ.

This means that M is a Hopf hypersurface. In (10), selecting X,Y ∈ ker η, with
the help of (3), (6) and Aξ = η(Aξ)ξ := αξ, we get

(11) AX − ϕAϕX = 0 (⇔ AϕX + ϕAX = 0),



642 WENJIE WANG

for any X ∈ ker η. On the other hand, recall that, for any Hopf hypersurfaces,
we have (see, [17, Lemma 2.2]):

(12) AϕA− α

2
(Aϕ+ ϕA)− c

4
ϕ = 0.

Substituting AϕX+ϕAX = 0 (for any X ∈ ker η) into equality (12), then we
obtain AϕAX = c

4ϕX, for any X ∈ ker η. Now, let X be a unit eigenvector field
of A with eigenfunction λ orthogonal to ξ, then ϕX is also a unit eigenvector field
of A with eigenfunction c/(4λ). Notice that λ is nowhere vanishing. Otherwise
we shall arrive at a contradiction (i.e., c = 0) according to AϕAX = c

4ϕX, for
any X ∈ ker η. Therefore, with the aid of the second equality in (11), the inner
product of AϕAX = c

4ϕX with ϕX gives

c

4
= g(AϕAX,ϕX) = g(ϕAX,AϕX) = −|AϕX|2 = − c2

16λ2
.

In view of the above equality, one sees that this situation occurs only for a real
hypersurface in the complex hyperbolic space, and the two (distinct) principal
curvatures λ and ν of the shape operator on the holomorphic distribution ker η
are

(13) λ =

√
−c

2
and ν = −

√
−c

2
.

Recall that the Hopf principal curvature for any Hopf hypersurface is a constant
(see, [17, Theorem 2.1]). Thus, M is a Hopf hypersurface in CHn(c) with
constant principal curvatures. According to [1], M is locally congruent to a

� type (A2) hypersurface whose two principal curvatures on holomorphic

distribution ker η are
√
−c
2 tanh(

√
−c
2 r) and

√
−c
2 coth(

√
−c
2 r); or a

� type (B) hypersurface whose two principal curvatures on holomorphic dis-

tribution ker η are
√
−c
2 tanh(

√
−c
2 r) and

√
−c
2 coth(

√
−c
2 r).

Notice that the summation of the two principal curvatures of M on holomor-
phic distribution ker η in (13) vanishes, but by the above table this is impossible
for type (A2) or (B) hypersurfaces in CHn(c).

Corollary 3.1. There are no real hypersurfaces in nonflat complex space forms
with Lie parallel structure tensor field.

Definition 3.2. The structure tensor field of a real hypersurface is called Lie
Codazzi if

(14) (LXϕ)Y = (LY ϕ)X,

for any vector fields X,Y .
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Obviously, the above condition (14) is also a generalization of Lie parallelism
of the structure tensor field.

Theorem 3.2. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is of Lie Codazzi type.

Proof. If the structure tensor field ϕ of a real hypersurface M in nonflat com-
plex space forms is Lie Codazzi, from (8) and (14) we get

(15) η(Y )AX −∇ϕY X + ϕ∇Y X = η(X)AY −∇ϕXY + ϕ∇XY,

for any vector fields X,Y . Taking the inner product of (15) with ξ gives

η(Y )η(AX)− η(∇ϕY X) = η(X)η(AY )− η(∇ϕXY ),

for any vector fields X,Y . In the above equality, replacing Y by ξ gives

Aξ = η(Aξ)ξ.

This means that M is a Hopf hypersurface. We may write Aξ = η(Aξ)ξ := αξ,
and replacing Y by ξ in (15), we obtain

(16) 2AX + ϕ∇ξX = 2αη(X)ξ − ϕAϕX,

for any vector field X. With the aid of Aξ = αξ, the operation of ϕ on (16)
gives

2ϕAX −∇ξX + η(∇ξX)ξ = AϕX,

for any vector field X. On the other hand, with the aid of Aξ = αξ, replacing
X by ϕX in the above equality we have

2ϕAϕX −∇ξϕX = −AX + αη(X)ξ,

for any vector field X. Thus, adding the above equality to (16), with the aid of
(5), we get

AX + ϕAϕX = αη(X)ξ,

for any vector field X, where we have applied ∇ξϕ = 0 which is obtained from
(5) and Aξ = αξ. With the aid of Aξ = αξ, the operation of ϕ on the above
equality gives

(17) Aϕ = ϕA.

In general, the above relation implies that M is a type (A) hypersurface. How-
ever, in our case, there are no real hypersurfaces satisfying the above relation.
In fact, with the aid of (5), using (17) in (16) we get

(18) AX = −ϕ∇ξX + αη(X)ξ,
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for any vector field X. The operation of ϕ on (18) gives

ϕAX = ∇ξX − η(∇ξX)ξ.

With the aid of (17) and Aξ = αξ, the operation of A on (18) gives

A2X = −∇ξX + η(∇ξX)ξ + α2η(X)ξ,

for any vector field X. Eliminating ∇ξX, according to the above relation and
the previous one we get

A2X + ϕAX = α2η(X)ξ,

for any vector field X. From the above equality, we conclude that all principal
curvatures of the shape operator on ker η are zero. For any Hopf hypersurfaces,
if AU = λU and AϕU = νϕU for certain U ∈ ker η, from [17, Corollary 2.3] we
have

(19) λν =
α

2
(λ+ ν) +

c

4
.

As all principal curvatures are zero on ker η, applying this in (19) implies c = 0,
a contradiction.

Definition 3.3. The structure tensor field of a real hypersurface is called Lie
recurrent if

(20) (LXϕ)Y = ω(X)ϕY,

for any vector fields X,Y , and certain one-form ω.

Obviously, the above condition (20) is also a generalization of Lie parallelism
of the structure tensor field.

Theorem 3.3. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is Lie recurrent.

Proof. If the structure tensor field ϕ of a real hypersurface M in nonflat com-
plex space forms is Lie recurrent, from (8) and (20) we get

(21) η(Y )AX − g(AX,Y )ξ −∇ϕY X + ϕ∇Y X = ω(X)ϕY,

for any vector fields X,Y . Taking the inner product of (21) with ξ gives

(22) η(Y )η(AX)− g(AX,Y )− η(∇ϕY X) = 0,

for any vector fields X,Y . In (22), replacing X by ξ we see Aξ = η(Aξ)ξ, and
hence M is Hopf. In (21), with the aid of Aξ = αξ, replacing X by ξ we obtain

(23) −ϕAϕY −AY + αη(Y )ξ = ω(ξ)ϕY,
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for any vector field Y . With the aid of Aξ = αξ, the operation of ϕ on (23)
gives

AϕY − ϕAY = ω(ξ)ϕ2Y.

In (23), with the aid of Aξ = αξ, replacing Y by ϕY gives

ϕAY −AϕY = ω(ξ)ϕ2Y.

Subtracting the last equality from the previous one gives Aϕ = ϕA. Making use
of this, with the aid of Aξ = αξ, selecting X ∈ ker η in (22), we obtain

AX = 0,

for any X ∈ ker η. As seen in proof of Theorem 3.2, this is impossible because
of (19).

Remark 3.1. Corollary 3.1 is also a direct corollary of Theorems 3.2 and 3.3.

Remark 3.2. It has been proved in [6, Main Theorem] that there exist no real
hypersurfaces in Mn(c), c ̸= 0, n ≥ 2, whose structure Jacobi operator l is of Lie
recurrent type, i.e., LX l = ω(X)l, for any vector field X and certain one-form
ω. This conclusion is still valid when the structure Jacobi operator l is replaced
by the shape operator (see, [2, Theorem 8.116]) or the structure tensor field ϕ
(see, Theorem 3.3).

We remark that it was proposed in [6] that how about if we weaken condition
(20) to Lie D-recurrent? Before closing this paper, we also answer this question
and obtain again a nonexistence theorem. Next we denote by D the holomorphic
distribution ker η.

Definition 3.4. The structure tensor field of a real hypersurface is called Lie
D-recurrent if

(24) (LXϕ)Y = ω(X)ϕY,

for any vector field Y and X ∈ D, and certain one-form ω.

Obviously, condition (24) is much weaker than Lie parallelism (i.e., LXϕ =
0). Next, we extend Theorem 3.3 to the following form.

Theorem 3.4. There exist no real hypersurfaces in nonflat complex space forms
such that the structure tensor field is Lie D-recurrent.

Proof. By Definition 3.4, equalities (21) and (22) are still valid, for any vector
field Y and X ∈ D. Considering X ∈ D and Y = ξ in (21), we get

(25) AX − η(AX)ξ + ϕ∇ξX = 0.
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Replacing X by ϕX in (25) gives

AϕX − η(AϕX)ξ + ϕ∇ξϕX = 0,

which is operated by ϕ yielding

ϕAϕX −∇ξϕX + η(∇ξϕX)ξ = 0.

Notice that from (6) and (4) we have η(∇ξϕX) + η(AX) = 0, for any X ∈ D,
which is substituted into the above equality giving

ϕAϕX −∇ξϕX − η(AX)ξ = 0,

for any X ∈ D. Adding this to (25) gives

(26) (∇ξϕ)X = ϕAϕX +AX − 2η(AX)ξ,

for any X ∈ D. Comparing (26) with (5) we obtain

(27) ϕAϕX +AX − η(AX)ξ = 0,

for any X ∈ D. On the other hand, considering X ∈ D in (22), with the aid of
(6), we get

ϕAϕX −AX + η(AX)ξ = 0.

Consequently, eliminating ϕAϕX, from the above equality and (27) we obtain
AX = η(AX)ξ, for any X ∈ D. This implies that g(AX,Y ) = 0, for any vector
fields X,Y ∈ D, and now the hypersurface is a ruled one (see, [2, 10, 17]). On
a ruled hypersurface, there exists a unit vector field U ∈ D such that

(28) Aξ = αξ + βU, AU = βξ, AX = 0,

for any X ∈ {ξ, U}⊥, where β is a non-vanishing function. Moreover, according
to [7, pp. 404] (see, also, [10, 20]) we have

(29) ∇XU =

{
1
β (β

2 − c
4)ϕX, X = U,

0, X = ϕU,

and

(30) dβ(X) =

{
0, X = U,

β2 + c
4 , X = ϕU.

In (21), considering X = Y = U , with the aid of (28), we obtain from (29) that

β2 − c

4
= 0 and ω(U) = 0.

The first equality implies that β is a constant, and hence according to (30) we
obtain β2 + c

4 = 0, which is compared with the above equality implying c = 0,
a contradiction.
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Remark 3.3. By Theorem 3.4, the structure tensor field of a real hypersurface
in nonflat complex space forms cannot be Lie D-parallel, but it can be Lie Reeb-
parallel (i.e., Lξϕ = 0). In fact, it has been proved in [13, Theorem A] that the
structure tensor field of a real hypersurface is Lie Reeb-parallel if and only if
the hypersurface is of type (A) (see, also, [12, 16]).
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