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Abstract. Abrupt happenings in financial markets contribute to jumps of different
magnitudes that invariably affect interest rate derivatives. Many of the existing interest
rate models do not capture jumps, leading to inaccurate prediction of option prices and
sensitivity analysis in the markets. To incorporate jumps in interest rate derivatives, we
extend the Vasicek model with a Brownian motion as an underlying process to a model
driven by a normal inverse Gaussian process, which is a subordinated Lévy process, use
the extended model to obtain an expression for the price of an interest rate derivative
called a zero-coupon bond. We employ Malliavin calculus to compute the greeks delta
and vega of the derived price, which are important risk quantifiers in the interest rate
derivative markets driven by a normal inverse Gaussian process.

Keywords: interest rate derivatives, Lévy process, Malliavin calculus, normal inverse
Gaussian process, Vasicek model.

1. Introduction

Investing in an interest rate derivative market requires a good understanding
of how to minimize risks. This may be achieved by formulating a model which
incorporates sudden or rare occurrences that may lead to jumps in a market.
Such occurrences often arise from changes in monetary policy, inflation, natural
disaster, abrupt information, economic recession, presence of a pandemic, etc.

In the literature, many models of interest rate derivatives do not consider
jumps and heavy tails. The present paper bridges this gap by adopting a subor-
dinated Lévy process called a normal inverse Gaussian (NIG) process to derive
an extended Vasicek interest rate model and use the extended model to derive
an expression for the price of an interest rate derivative called a zero-coupon
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bond and compute its sensitivity to some of its parameters using Malliavin cal-
culus. These will assist an investor and risk manager to make the right decision
and minimize risks in an NIG interest rate derivative market.

The NIG process was introduced by Barndorf-Nielsen [2] to generate good
models for log-return process of prices and exchange rates [7]. Using the NIG
process allows jumps and heavy tails to be captured. Examples of NIG mar-
kets include (i) volatile markets such as an electricity market, whose forward
price has a return distribution with excess kurtosis and heavy tails [1]; and
(ii) stock market prices [19]. Núñez [15] introduced the process as a replace-
ment of the Gaussian assumption of underlying asset returns since it takes care
of the heavy tails found in returns data series. Dhull and Kumar [9] empha-
sized the usefulness of the process in modelling various real-life time-series data.
Lahcene [13] discussed an extension of the process in modelling and analyz-
ing statistical data with emphasis on extensive sets of observations and some
applications. Pintoux and Privault [18] discussed an interest rate derivative
zero-coupon bond price using the Dothan model driven by a Wiener process
while Yin et al. [22] emphasized that non-Gaussian Ornstein-Uhlenbeck pro-
cess based on a negative/positive subordinated Lévy process fits and provides a
better economic interpretation of the associated time series. Sabino [20] consid-
ered how to price energy derivatives for spot prices driven by a tempered stable
Ornstein-Uhlenbeck process, while Hainaut [12] discussed an interest rate model
driven by a mean reverting Lévy process with a sub-exponential memory of sam-
ple path achieved by considering an Ornstein–Uhlenbeck process in which the
exponential decaying kernel is replaced by a Mittag–Leffler function. We adopt
the Vasicek model since it has the property of mean-reversion and possibility of
a negative interest rate. Research has shown that a good model should take care
of negative interest rates that now occur in the current market environment as
observed by Orlando et al. [16].

Bavouzet-Morel and Messaoud [3] discussed the Malliavin calculus for jump
processes while Petrou [17] extended the theory of the calculus adding some
tools for the computation of sensitivities. Bayazit and Nolder [4] applied the
calculus to the sensitivities of an option whose underlying is driven by an expo-
nential Lévy process. This work extends Bayazit and Nolder [4] to the sensitivity
analysis of interest rate derivatives in a normal inverse Gaussian Lévy market.

In the next section, we discuss important mathematical tools to be employed
in our results. In Section 3, we derive an extended Vasicek model driven by the
NIG process and derive an equivalent expression for the zero-coupon bond price.
In Section 4, we compute the greeks of the derived price using the Malliavin
calculus, and discuss sensitivity analysis of the interest rate derivatives. In a
previous publication [21], we derived expressions for certain greeks in a model
involving the variance gamma process.
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2. Foundational notion

In this section, we discuss important mathematical tools employed for the suc-
cess of the paper.

2.1 The normal inverse Gaussian process

The inverse Gaussian process is a random process with infinite number of jumps
for each finite period. The NIG process is a subordinated Lévy process.

Remark 2.1. 1. Let X be a random variable with an NIG distribution de-
noted X ∼ NIG(x;α, β, µ, δ), then its probability density function is given
by

fNIG(x) =
αδ exp(δ

√
α2 − β2 + β(x− µ))

π ·
√
δ2 + (x− µ)2

K1(α
√
δ2 + (x− µ)2)

where α > 0, |β| < α, δ > 0, and K1(x) is the modified Bessel function of
the third kind with index λ given by

Kλ(x) =
1

2

∫ ∞

0
tλ−1 exp

(
− 1

2
x
(
t+

1

t

))
dt, x > 0.

2. The parameters α, β, δ and µ are for tail heaviness, symmetry, scale and
location, respectively.

3. The characteristic function of the NIG process is given by

ϕt(u) = exp
(
− δt((α2 − (β + iu)2)

1
2 − (α2 − β2)

1
2 )
)
.

4. In what follows, we discuss the Malliavin calculus to be employed in the
computation of greeks.

2.2 The Malliavin calculus for Lévy processes

Let (Ω,F ,P) be a probability space andXi, i = 1, . . . , n be a sequence of random
variables with piecewise differentiable probability density functions. Let Cp(Rn)
where p, n ≥ 1, be the space of p times continuously differentiable functions. The
following basic definitions will be utilized in the sequel.

Definition 2.1. Let L0(Ω,R) be the linear space of all R-valued random vari-
ables on (Ω,B,P). A map F : (L0(Ω,R))n → L0(Ω,R), n ∈ N is defined as
(n, p)-simple functional of the n random variables if there exists an R-valued
function F̂ ∈ Cp(Rn) where

F (X1, . . . , Xn)(ω) = F̂ (X1(ω), . . . , Xn(ω)), ω ∈ Ω, X1, . . . , Xn ∈ L0(Ω,R).

An (n, p)-simple process of length n is a sequence of random variables U =
(Ui)i≤n such that Ui(ω) = ui(X1(ω), . . . , Xn(ω)) where ui ∈ Cp(Rn), X1, . . . , Xn

∈ L0(Ω,R) and ω ∈ Ω.
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We write S(n,p) for the space of all (n, p)-simple functionals and P(n,p) for
the space of all (n, p)-simple processes.

Definition 2.2. Let F ∈ S(n,1), where F (X1, . . . , Xn)(ω)=F̂ (X1(ω), . . . , Xn(ω)),

ω∈Ω, F̂ ∈ C1(Rn), and X1, . . . , Xn ∈ L0(Ω,R). Define the operator D :
S(n,1) → (P(n,0))

n called the Malliavin derivative operator by DF = (DiF )i≤n

where

DiF (X1, . . . , Xn)(ω) =

(
∂F̂

∂xi

)
(X1(ω), . . . , Xn(ω)),

(1) DiF (X)(ω) =

(
∂F̂

∂x

)
(X(ω)), when n = 1.

Definition 2.3. Let F=(F1, . . . , Fd) be a d-dimensional vector of simple func-
tionals where Fi∈S(n,1). The matrix M = (M(F )i,j) defined by

M(F )i,j = ⟨DFi, DFj⟩n =

n∑
m=1

DmFiDmFj

is called the Malliavin covariance matrix of F [4]. This implies that if n = 1,

(2) M(F )i,j = ⟨DFi, DFj⟩ = DFiDFj .

Definition 2.4. Define the operator δ̃ : P(n,1) → S(n,0) called the Skorohod in-
tegral operator for a simple process U = (Ui)i=1,...,n ∈ P(n,1), Ui(ω) = ui(X1(ω),
. . . , Xn(ω)), ω ∈ Ω by

δ̃(U)(X1, . . . , Xn) =
n∑

i=1

δ̃i(U)(X1, . . . , Xn)

= −
n∑

i=1

[Diui(X1, . . . , Xn) + ui(X1, . . . , Xn)φi(x)],

where φi(x) = ∂ ln fX(x)
∂xi

=
f ′
Xi

(x)

fX(x) , fX(x) ̸= 0, 1 ≤ i ≤ n, x = x1, . . . , xn and

fX(x) is the density function of the random variable X.

Definition 2.5. The Ornstein-Uhlenbeck (O-U) operator L : S(n,2) → S(n,0) is
defined as

(LF )(X1, . . . , Xn) = −
n∑

i=1

[(∂2
iiF̂ )(X1, . . . , Xn) + φi(x)(∂iF̂ )(X1, . . . , Xn)],

where F ∈ S(n,2), X1, . . . , Xn ∈ L0(Ω,R) and φi(x) is given by Definition 2.4.
For n = 1,

(3) LF (X) = −[DDF̂ (X) + φ(x)DF̂ (X)]

where

(4) φ(x) =
∂ ln fX(x)

∂x
=

f ′
X(x)

fX(x)
, and fX(x) ̸= 0.



622 A.M. UDOYE and G.O.S. EKHAGUERE

2.2.1 Malliavin integration by parts theorem

To compute the greeks of the interest rate derivative, we need the integration
by parts theorem of the Malliavin calculus stated below.

Proposition 2.1. Let (Ω,F ,P) be a probability space; X1, . . . , Xn, a sequence
of real-valued random variables on (Ω,F ,P) and P = (P1, . . . , Pd) ∈ (S(n,2))

d,
Q ∈ S(n,1). Let M = (Mij(P ))1≤i≤n,1≤j≤n be an invertible Malliavin covariance

matrix with inverse given by M(P )−1 = (M(P )ij)
−1
1≤i≤n,1≤j≤n. Suppose that

E[detM(P )−1]p < ∞, p ≥ 1, and Φ : Rd → R represents a smooth bounded
function with bounded derivative. Then,

E[∂iΦ(P )Q] = E[Φ(P )Hi(P,Q)] where E[Hi(P,Q)] < ∞, i = 1, 2, . . . , n;

and the Malliavin weight is given by

Hi(P,Q) =

n∑
j=1

QM(P )−1
ij LPj −M(P )−1

ij ⟨DPj , DQ⟩ −Q⟨DPj , DM(P )−1
ij ⟩.

Remark 2.2. For d = n = 1, the Malliavin weight is given by

H(P,Q) = QM(P )−1LP −M(P )−1⟨DP,DQ⟩ −Q⟨DP,DM(P )−1⟩.

We proceed to the next section and derive our results.

3. The Short rate model under the NIG process

In this section, we extend the Vasicek short rate model to a market driven by the
NIG process and derive an expression for the price of an interest rate derivative
called a zero-coupon bond.

The Vasicek (1977) interest rate model satisfies the stochastic differential
equation given by

(5) drt = a(b− rt)dt+ σdXt

where Xt = X(t), b, a and σ denote the Lévy process, long-term mean rate,
speed of mean reversion and volatility of the interest rate, respectively.
Integrating equation (5) by using Itô’s formula, we obtain

(6) rt = r0e
−at + b(1− e−at) + σ

∫ t

0
e−a(t−s)dXs.

We adopt the NIG model given by Xt = wt+βδ2IGt+ δW (IGt) [11] where
w is the cumulant generating function given by

w = −1

t
ln(ϕt(−i)) = δ(

√
α2 − (β + 1)2 −

√
α2 − β2).
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The parameters α, β and δ control the behaviour of the tail, skewness and scale of
the distribution, respectively. IGt = IG(t) denotes the inverse Gaussian process.
We represent the standard Brownian motion W (t) as the process W (t)−W (s) =√
| t− s |Z, t, s ≥ 0, where Z is a N(0, 1) Gaussian random variable. Then,

W (t) =
√
tZ and E(W (t)W (s)) = min(t, s), t, s ≥ 0. Thus,

Xt = wt+ δ
√

IG(t)Z + βδ2IG(t),

=⇒ dXt = wdt+ δ∆
√
IG(t)Z + βδ2∆IG(t).(7)

Substituting equation (7) into (6) and evaluating, we have

rt = r0e
−at + b(1− e−at) +

σw

a
(1− e−at) + σδ

( ∑
0≤s≤t

(∆
√

IG(s)Z

+ βδ∆IG(s))e−a(t−s)
)
.(8)

We adopt the above expression (8) to derive an expression for the zero-coupon
bond price driven by the NIG process.

3.1 Expression for a zero-coupon bond price with a Vasicek short
rate model under the NIG process

The dynamics of the zero-coupon bond price under a risk neutral measure is
given by

(9) dP = rtPdt+ σPdXt.

Applying Itô’s lemma to equation (9), we obtain

d lnP = rtdt+ σwdt+ σ(δ∆
√

IG(t)Z + βδ2∆IG(t))− 1

2
σ2(δ∆

√
IG(t)Z

+ βδ2∆IG(t))2.(10)

Integrating equation (10), we get

lnP (t, T ) = −
(∫ T

t
rudu+ σw

∫ T

t
du

+ σ

( ∑
0≤u≤T

(δ∆
√

IG(u)Z + βδ2∆IG(u))

−
∑

0≤u≤t

(δ∆
√
IG(u)Z+βδ2∆IG(u))

)
−1

2
σ2

( ∑
0≤u≤T

(δ∆
√
IG(u)Z(11)

+ βδ2∆IG(u))2 −
∑

0≤u≤t

(δ∆
√
IG(u)Z + βδ2∆IG(u))2

))
.
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By equation (8), it follows that∫ T

t
rudu =

−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+

σw

a

(
T − t+

1

a
(e−aT − e−at)

)
+ σδ

( ∑
0≤u≤T

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))e−a(u−s)

)
− σδ

( ∑
0≤u≤t

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))e−a(u−s)

)
.

(12)

Substituting equation (12) into (11) and evaluating, we obtain the zero-coupon
bond price driven by the NIG process as

P (t, T ) = exp

(
−
[
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+

σw

a

(
T − t+

1

a
(e−aT − e−at)

)
+ σδ

( ∑
0≤u≤T

∑
0≤s≤t

(∆
√

IG(s)Z

+ βδ∆IG(s))e−a(u−s)
)
− σδ

( ∑
0≤u≤t

∑
0≤s≤t

(∆
√
IG(s)Z + βδ∆IG(s))

· e−a(u−s)
)
+ σw[T − t] + σδ

( ∑
0≤u≤T

(∆
√
IG(u)Z + βδ∆IG(u))

−
∑

0≤u≤t

(∆
√
IG(u)Z + βδ∆IG(u))

)
− 1

2
σ2δ2

( ∑
0≤u≤T

(∆
√

IG(u)Z

+ βδ∆IG(u))2 −
∑

0≤u≤t

(∆
√
IG(u)Z + βδ∆IG(u))2

)])
.

(13)

Besides being a function of t and T , the expression on the right hand side of
equation (13) also depends on r0, β, δ, σ,w and Z. Thus, in the sequel, we shall
regard P as a function of t, T, r0, β, δ, σ,w and Z.

The price of the zero-coupon bond driven by the NIG Lévy process given by
equation (13) can be written as

P (t, T ) = exp

(
−
(
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+

σw

a

[
T − t+

1

a
(e−aT − e−at)

]
+wσ[T − t]

+ σδ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)Z + βδ∆IG(s)e−a(u−s)
)

+ σδ
∑

t≤u≤T

(
∆
√

IG(u)Z + βδ∆IG(u)
)

− σ2δ2

2

( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)2
)))

.

(14)
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We state the necessary lemmas for the computation of the delta which mea-
sures the sensitivity of a bond option price driven by the NIG process to changes
in the initial interest rate and vega which measures the sensitivity of the bond
option price with respect to changes in the volatility of the short rate model.

Lemma 3.1. Let P be the price of a zero-coupon bond driven by the NIG process.
Then, the Malliavin derivative on P is given by

DP = −
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P.

(15)

Proof. By equation (1) of Definition 2.2 and the zero-coupon price given by
equation (14), we get the Malliavin derivative

DP = −
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2

2

(
2

∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P.

Hence, the result follows.

Lemma 3.2. Let P be the price of the zero-coupon bond driven by the NIG
process. Then, the Ornstein Uhlenbeck operator L on P is given by

LP=−
[
σ2δ2

( ∑
t≤u≤T

(∆
√

IG(u))2
)
+

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+σδ

∑
t≤u≤T

(∆
√
IG(u))−σ2δ2

( ∑
t≤u≤T

(βδ∆IG(u)+∆
√

IG(u)Z)∆
√
IG(u)

))2

− φ(z)

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)
+ σδ

∑
t≤u≤T

(∆
√

IG(u))

(16)

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))]
P, φ(z) = −z.

Proof. By equation (15) of Lemma 3.1, it follows that

DDP = σ2δ2
( ∑
t≤u≤T

(∆
√

IG(u))2
)
P +

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)

+ σδ
∑

t≤u≤T

(∆
√

IG(u))−σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u)+δ∆
√

IG(u)Z)∆
√
IG(u)

)]2
P.
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By equations (3) and (4) of Definition 2.5, we obtain

LP = −[DDP + φ(z)DP ]

where

φ(z) =
∂ ln fN (z)

∂z
=

∂ ln
(

1√
2π
e−

1
2
z2
)

∂z
= −z.

Substituting DDP and equation (15) of Lemma 3.1 into LP yields the desired
result.

Lemma 3.3. Let P be the price of the zero-coupon bond driven by the NIG
process and M(P ), its Malliavin covariance matrix. Then,

M(P )−1 =

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√

IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]−2

P−2.

(17)

Proof. By equation (2) of Definition 2.3, M(P ) = ⟨DP,DP ⟩. Thus, by equa-
tion (15), it follows that

M(P ) =

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]2
P 2.

Hence

M(P )−1 =

([
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√

IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)]
P

)−2

which gives equation (17).

Lemma 3.4. Let P be the price of the zero-coupon bond driven by the NIG pro-
cess. Then, the Malliavin derivative of the inverse Malliavin covariance matrix
of P is given by

DM(P )−1=2

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]−3

P−2

(18)
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[(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)
+ σδ

∑
t≤u≤T

(∆
√

IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))2

+ σ2δ2
( ∑
t≤u≤T

(∆
√

IG(u))2
)]
.

Proof. Applying Malliavin derivative to equation (17) gives

DM(P )−1 = 2

[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]−3

P−2

·
[[

σδ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√

IG(u)

)]2
+ σ2δ2

∑
t≤u≤T

(∆
√
IG(u))2

]
which yields the desired result.

4. The greeks of the zero-coupon bond price driven by the NIG
Lévy process

The greeks serve as risk quantifiers. They give insight on various dimensions
of insecurity involved in grabbing a bond option’s position. Investors and risk
managers use the greeks to predict future price and hedge risks. Some of the
greeks are delta, vega, gamma and Theta. We shall concentrate on the delta
and vega.

Remark 4.1. The price of a call option, with P as the underlying is given by

V = e−r0TE[Φ(P )]

where Φ(P ) = max(P −K, 0) is the payoff with strike price K.

A greek is computed using the formula

∂V
∂ς

=
∂
(
e−r0TE[Φ(P )]

)
∂ς

where ς represents a parameter of the bond price whose effect is to be deter-
mined.
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4.1 Computation of delta for NIG-driven interest rate derivatives

The greek delta measures the sensitivity of the zero-coupon bond option price
to changes in its initial interest rate. It helps investors and portfolio managers
by indicating the extent to which the bond option’s price will move when the
initial interest rate increases by a unit currency. This is very important because
movements in the underlying, that is, the initial interest rate can change the
worth of their investment [8].
Let P be the zero-coupon bond price given by equation (14), Φ(P ) be the payoff
function and Q = ∂P

∂r0
. Then, by Proposition 2.1,

△NIG =
∂

∂r0
[e−r0TE(Φ(P ))] = −Te−r0TE(Φ(P )) + e−r0TE[Φ(P )H(P,Q)].

Next, we establish Lemmas 4.1 - 4.4 using Lemmas 3.1-3.4, to obtain the Malli-
avin weight H(P,Q).

Lemma 4.1. Let P be the zero-coupon bond price driven by the NIG process
and Q = ∂P

∂r0
. Then the following hold:

(19) Q =
1

a
(e−aT − e−at)P

and

DQ = −1

a
(e−aT − e−at)

(
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)

+ σδ
∑

t≤u≤T

(∆
√

IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

))
P.

(20)

Proof. Applying partial derivative to equation (14) yields equation (19). More-
over, the Malliavin derivative

DQ =
1

a
(e−aT − e−at)DP.

SubstitutingDP from equation (15) into the above equation yields equation (20).

Lemma 4.2. Let P be the zero-coupon bond price driven by the NIG process
and L, the Ornstein-Uhlenbeck operator. Then,

QM(P )−1LP

= −1

a
(e−aT − e−at)

[
σ2δ2

( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2 + 1− φ(z)K̂−1

]
,(21)
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where φ(z) = −z and K̂ is given by

K̂ = σδ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)
)
+ σδ

∑
t≤u≤T

(∆
√
IG(u))

− σ2δ2
( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)∆

√
IG(u)

)
.

(22)

Proof. The result follows from Lemmas 3.2, 3.3 and 4.1 by substituting Q from
equation (19) of Lemma 4.1, M(P )−1 from equation (17) of Lemma 3.3, and
LP from equation (16) of Lemma 3.2 into QM(P )−1LP .

Lemma 4.3. Let P be the zero-coupon bond price driven by the NIG process.
Then,

(23) M(P )−1⟨DP,DQ⟩ = 1

a
(e−aT − e−at).

Q⟨DP,DM(P )−1⟩

= −2
(1
a
(e−aT − e−at)

)[σ2δ2
(∑

t≤u≤T (∆
√
IG(u))2

)
K̂2

+ 1

]
,(24)

where K̂ is given by equation (22).

Proof. The result in equation (23) follows from Lemmas 3.1, 3.3 and 4.1 by
substituting M(P )−1 from equation (17) of Lemma 3.3, DP from equation (15)
of Lemma 3.1 andDQ from equation (20) of Lemma 4.1 intoM(P )−1⟨DP,DQ⟩;
while the result in equation (24) follows from Lemmas 3.1, 3.4 and 4.1 by substi-
tuting Q from equation (19) of Lemma 4.1, DP from equation (15) of Lemma 3.1
and DM(P )−1 from equation (18) of Lemma 3.4 into Q⟨DP,DM(P )−1⟩.

Lemma 4.4. Let P be the zero-coupon bond price driven by the NIG process
and its payoff function be given by Φ(P ) = max(P (t, T )−K, 0). Then,

E[Φ(P )] =

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)

1√
2π

e−
1
2
z2

·
(
t(y(u))−3/2 exp(t(δ

√
α2 − β2))√

2π

· exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

where K is the strike price and from equation (14), p(t, T ) = p(t, T, y, z) is given
by

p(t, T ) = exp

(
−
[
−r0
a

(e−aT − e−at) + b
(
T − t+

1

a
(e−aT − e−at)

)
+

σw

a

[
T − t+

1

a
(e−aT − e−at)

](25)
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+wσ[T − t] + σδ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)z + βδy(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(√
y(u)z+βδy(u)

)
−σ2δ2

2

∑
t≤u≤T

(βδy(u)+
√
y(u)z)2

])
.

Proof. Let fN (z;0,1) and fIG(y; t, δ
√
α2 − β2) be the probability density func-

tions for a Gaussian random variable and an inverse Gaussian random variable,
respectively. Then,

E[Φ(P )] =

∫
R

∫
R
Φ(p) · fN (z;0,1)fIG(y; t, δ

√
α2 − β2)

)
dzdy

=

∫
R

∫
R
max(p(t, T )−K, 0) · fN (z;0,1)fIG(y; t, δ

√
α2 − β2)

)
dzdy.

where K is a constant, fN (z;0,1) =
1√
2π
e−

1
2
z2 and

fIG(y; t, δ
√

α2 − β2)

=
ty−3/2 exp(t(δ

√
α2 − β2))√

2π
exp

(
− 1

2

( t2
y
+ (δ

√
α2 − β2)2y

))
· 1y>0.

Substituting the expression for fN (z;0,1) and fIG(y; t, δ
√

α2 − β2) into E[Φ(P )]
gives the desired result.

Lemma 4.5. Let P be the zero-coupon bond price driven by the NIG process
and let E[Φ(P )H(P,Q)] = E[Φ(P )H(P, ∂P

∂r0
)]. Then,

E
[
Φ(P )H

(
P,

∂P

∂r0

)]
=

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,

∂p

∂r0

)
1√
2π

e−
1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

and the Malliavin weight for the delta satisfies

(26) H

(
p,

∂p

∂r0

)
=

1

a
(e−aT − e−at)

(
σ2δ2

∑
t≤u≤T

(
√

y(u))2K̂∗−2 − zK̂∗−1

)

where K̂∗ is obtained from K̂ given by equation (22) as

K̂∗ = σδ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(
√
y(u))

− σ2δ2
( ∑
t≤u≤T

(βδy(u) +
√
y(u)z)

√
y(u)

)
.

(27)



SENSITIVITY ANALYSIS OF INTEREST RATE DERIVATIVES IN A NORMAL ... 631

Proof. From Proposition 2.1, the Malliavin weight becomes

H(P,Q)=H

(
P,

∂P

∂r0

)
=QM(P )−1LP−M(P )−1⟨DP,DQ⟩−Q⟨DP,DM(P )−1⟩.

Substituting equation (21) from Lemma 4.2 for QM(P )−1LP , equations (23)
and (24) from Lemma 4.3 for M(P )−1⟨DP,DQ⟩ and Q⟨DP,DM(P )−1⟩, re-
spectively into H(P,Q), we obtain the expression in (26) from

H(P,Q) =
1

a
(e−aT − e−at)

(
σ2δ2

∑
t≤u≤T

(∆
√
IG(u))2K̂−2 + φ(z)K̂−1

)
,

where φ(z) = −z and K̂ is given by equation (22). Hence, the result follows.

Theorem 4.1. Let P be the zero-coupon bond price driven by the NIG process
and Q = ∂P

∂r0
, then

△NIG = e−r0T

(
− T

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)

1√
2π

e−
1
2
z2

·
(
t(y(u))−3/2 exp(t(δ

√
α2 − β2))√

2π

· exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

+

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,

∂p

∂r0

)
1√
2π

e−
1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz

)
where H(p, ∂p

∂r0
) is given by Lemma 4.5.

Proof. The greek delta is given by

△NIG =
∂

∂r0
e−r0TE[Φ(P )] = e−r0T (−TE[Φ(P )] + E[Φ(P )H(P,Q)]).

Substituting E[Φ(P )] given by equation (25) of Lemma 4.4 and E[Φ(P )H(P,Q)]
given by Lemma 4.5 into △NIG, gives the desired result.

4.2 Computation of vega for the NIG-driven interest rate derivative

The greek vega V measures the sensitivity of the zero-coupon bond option price
with respect to changes in its volatility. High vega implies that the bond option’s
value is very sensitive to little shift in volatility [6]. It presents uncertainty in
future prices for the underlying contract [5]. It is given by

V =
∂

∂σ
er0TE[Φ(P )] = e−r0TE

[
Φ′(P )

∂P

∂σ

]
= e−r0TE

[
Φ(P )H

(
P,

∂P

∂σ

)]
.
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Lemma 4.6. Let P be the zero-coupon bond price driven by the NIG process
and Qσ = ∂P

∂σ . Then,

Qσ = −
[
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t] + δ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)Z

+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σδ2

∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

]
P,

(28)

DQσ = −
[
δ

∑
t≤u≤T

∑
0≤s≤t

(∆
√
IG(s)e−a(u−s)) + δ

∑
t≤u≤T

(∆
√
IG(u))

− 2σδ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]
P + Λ̃K̂P,

(29)

where K̂ is given by equation (22) and

Λ̃ =
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√

IG(s)e−a(u−s)Z

+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√

IG(u)Z + βδ∆IG(u)
)

− σδ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

)
.

(30)

Proof. Applying partial derivative to equation (14) yields equation (28). Hence,
the Malliavin derivative

DQσ = −
[
δ

∑
t≤u≤T

∑
0≤s≤t

(∆
√
IG(s)e−a(u−s)) + δ

∑
t≤u≤T

(∆
√
IG(u))

− σδ2
(
2

∑
t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]
P

+

(
−
[
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)Z
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+ βδ∆IG(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(
∆
√
IG(u)Z + βδ∆IG(u)

)
− σδ2

( ∑
t≤u≤T

(βδ∆IG(u) + ∆
√
IG(u)Z)2

)]
·
(
−
[
σδ

∑
t≤u≤T

∑
0≤s≤t

(
∆
√
IG(s)e−a(u−s)

)
+ σδ

∑
t≤u≤T

(∆
√

IG(u))− σ2δ2
( ∑

t≤u≤T

(βδ∆IG(u)

+ ∆
√
IG(u)Z)∆

√
IG(u)

)]))
P

which yields equation (29).

Lemma 4.7. Let P be the zero-coupon bond price driven by the NIG process.
The following holds concerning the sensitivity with respect to σ:

QσM(P )−1LP

= Λ̃

[
σ2δ2

( ∑
t≤u≤T

(∆
√

IG(u))2
)
K̂−2 + 1− φ(z)K̂−1

]
, φ(z) = −z,(31)

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.2, 3.3 and 4.6. Substituting equation
(28) of Lemma 4.6 forQσ, equation (17) of Lemma 3.3 forM(P )−1, and equation
(16) of Lemma 3.2 for LP into QσM(P )−1LP yields the expression in equation
(31).

Lemma 4.8. Let P be the zero-coupon bond price driven by the NIG process.
Then,

M(P )−1⟨DP,DQσ⟩

= K̂−1

[
δ

∑
t≤u≤T

∑
0≤s≤t

(∆
√

IG(s)e−a(u−s)) + δ
∑

t≤u≤T

(∆
√

IG(u))

− 2σδ2
( ∑

t≤u≤T

(βδ∆IG(u) + ∆
√

IG(u)Z)∆
√
IG(u)

)]
− Λ̃,

(32)

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.1, 3.3 and 4.6 by substituting equa-
tion (17) of Lemma 3.3 for M(P )−1, equation (15) of Lemma 3.1 for DP and
equation (29) of Lemma 4.6 for DQσ into M(P )−1⟨DP,DQσ⟩.
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Lemma 4.9. Let P denote the zero-coupon bond price driven by the NIG pro-
cess. Then, the following holds:

(33) Qσ⟨DP,DM(P )−1⟩ = 2Λ̃

[
1 + σ2δ2

( ∑
t≤u≤T

(∆
√

IG(u))2
)
K̂−2

]
,

where Λ̃ and K̂ are given by equations (30) and (22), respectively.

Proof. The result follows from Lemmas 3.1, 3.4 and 4.6 by substituting equa-
tion (28) of Lemma 4.6 for Qσ, equation (15) of Lemma 3.1 for DP and equation
(18) of Lemma 3.4 for DM(P )−1 into Qσ⟨DP,DM(P )−1⟩.

Lemma 4.10. Let P be the zero-coupon bond price driven by the NIG process.
Then, the Malliavin weight for the greek vega is given by

H

(
p,

∂p

∂σ

)
= zΛ̃K̂∗−1 − Λ̃σ2δ2

( ∑
t≤u≤T

(
√

y(u))2
)
K̂−2

− K̂−1

[
δ

∑
t≤u≤T

∑
0≤s≤t

(
√

y(s)e−a(u−s))

+ δ
∑

t≤u≤T

(
√

y(u))− 2σδ2
( ∑

t≤u≤T

(βδy(u) +
√

y(u)z)
√
y(u)

)]
,

(34)

where K̂∗ is given by equation (27) and

Λ̃∗ =
w

a

[
T − t+

1

a
(e−aT − e−at)

]
+w[T − t]

+ δ
∑

t≤u≤T

∑
0≤s≤t

(√
y(s)e−a(u−s)z

+ βδy(s)e−a(u−s)
)
+ δ

∑
t≤u≤T

(√
y(u)z + βδy(u)

)
− σδ2

( ∑
t≤u≤T

(βδy(u) +
√

y(u)z)2
)
.

(35)

Proof. The Malliavin weightH(P,Qσ) for the sensitivity with respect to volatil-
ity, is obtained by substituting equation (31) of Lemma 4.6 for QσM(P )−1LP ,
equation (32) of Lemma 4.7 forM(P )−1⟨DP,DQσ⟩ and equation (33) of Lemma
4.8 for Qσ⟨DP,DM(P )−1⟩ into H(P,Qσ). Thus,

H(P,Qσ) = H

(
P,

∂P

∂σ

)
= QσM(P )−1LP −M(P )−1⟨DP,DQσ⟩ −Qσ⟨DP,DM(P )−1⟩
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= −Λ̃φ(z)K̂−1 − Λ̃σ2δ2
( ∑
t≤u≤T

(∆
√
IG(u))2

)
K̂−2

− K̂−1

[
δ

∑
t≤u≤T

∑
0≤s≤t

∆
√

IG(s)e−a(u−s)

+ δ
∑

t≤u≤T

(∆
√

IG(u))− 2σδ2
( ∑

t≤u≤T

(βδ∆IG(u)

+ ∆
√
IG(u)Z)∆

√
IG(u)

)]
,

where φ(z) = −z; Λ̃ and K̂ are given by equations (30) and (22), respectively.
Hence, the result follows.

Theorem 4.2. Let P be the zero-coupon bond price driven by the NIG process.
Then, the greek vega is given by

V =

∫ ∞

K

∫ ∞

K
(p(t, T, y, z)−K)H

(
p,

∂p

∂σ

)
1√
2π

e−
1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz,

where the Malliavin weight H(p, ∂p
∂σ ) is given by equation (34) of Lemma 4.10.

Proof. Recall that V = e−r0TE
[
Φ(P )H

(
P, ∂P∂σ

)]
. Thus,

V =

∫
R

∫
R
max(p(t, T, y, z)−K, 0)H

(
p,

∂p

∂σ

)
1√
2π

e−
1
2
z2 · t(y(u))−3/2

·
(
exp(t(δ

√
α2 − β2))√
2π

exp
(
− 1

2

( t2

y(u)
+ (δ

√
α2 − β2)2y(u)

))
· 1y>0

)
dydz.

Hence, the result follows.

5. Discussion and conclusion

In this paper, we have extended the work of Bavouzet-Morel & Messaoud [3]
and Bayazit & Nolder [4] to the sensitivity analysis of an interest rate derivative
market driven by a subordinated Lévy process. The Vasicek interest rate model
was extended by considering the normal inverse Gaussian subordinated Lévy
process. This was used to derive an expression for the price of a zero-coupon
bond. The new model is important for transactions in a Lévy market situation
where the prices of financial derivatives may experience jumps of different sizes.
The greeks, namely: delta △NIG and vega V were computed using the Malliavin
integration by parts formula. The greeks assist an investor or decision maker to
evaluate certain risks and predict the possibility of making money in a particular
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investment. Vega is important since an increase in volatility will increase the
bond option price while a decrease in volatility will lead to a decrease in the bond
option value. It helps investors to quantify the risk in the interest rate derivative
Lévy market as the volatility changes. An investor or portfolio manager requires
an adequate understanding of these greeks in order to predict future worth of a
bond option so as to minimize risks. The work provided a better modelling of
the interest rate derivative and understanding of sensitivities in a market driven
by a normal inverse Gaussian process.

Appendix

Itô formula for semi-martingale [7]

Let Y = (Yt)0≤t≤T be a semi-martingale and f : [0, T ]×R → R, a C1,2 function,
then

f(t, Yt) = f(0, Y0) +

∫ t

0

∂f

∂s
(s, Ys)ds+

∫ t

0

∂f

∂y
(s, Ys−)dYs

+
1

2

∫ t

0

∂2f

∂y2
(s, Ys)d[Y, Y ]cs +

∑
0≤s≤t,∆Ys ̸=0

[f(s, Ys)− f(s, Ys−)

−∆Ys
∂f

∂y
(s, Ys−)],

where [Y, Y ]cs is the continuous part of the quadratic variation of Y and ∆Ys =
Ys − Ys− .
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sensitivities, Quantitative Finance, 13 (2013), 1257-1287.

[5] A. Carol, Pricing, hedging and trading instrument. Market risk analysis,
vol. III, John Wiley & Sons Ltd., 2008.

[6] D. Chorafas, Introduction to derivative financial instrument: Bonds,
Swaps, Options and Hedging, McGraw-Hill Education, 2008.



SENSITIVITY ANALYSIS OF INTEREST RATE DERIVATIVES IN A NORMAL ... 637

[7] R. Cont, P. Tankov, Financial modelling with jump processes, Chapman &
Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, BocaRa-
ton, FL, 2004.

[8] H. Corb, Interest rate swaps and other derivatives, Columbia University
Press, 2012.

[9] M. S. Dhull, A. Kumar, Normal inverse Gaussian autoregressive model
using EM algorithm, arXiv:2105.14502v3[stat.ME], 16 pages (2021).

[10] G. O. S. Ekhaguere, Lecture notes on financial mathematics (unpublished),
University of Ibadan, Nigeria, 2010.

[11] N. Gabrielli, What is an affine process,
https://nicolettagabrielli.weebly.com, 2011.
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