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Abstract. Multiset groups are multisets with its elements taken from a group and
the characteristic function of the multiset satisfying certain conditions. Apart from
the definition and examples of multiset groups, we try to explain some properties, that
a multiset should satisfy in order to become a multiset group. From this point, we
broaden the concept of multiset group to a new scenario, (A,B)- multiset group, where
A and B are non negative real numbers. The multiplicity of the identity element e
has its own importance in an (A,B)- multiset group. The count value of the elements
depends largely on the values of A and B. We have also delved upon the peculiarities
of an (A,B)- multiset group drawn from a cyclic group and defined and explored an
(A,B)- multiset normal group and cosets of (A,B)- multiset group.
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1. Introduction

The limitations of classical set theory is what led to the other forms of sets, such
as fuzzy set or multiset. Many researchers contributed in the development of
these generalized sets. Looking to the case of multisets (also, known as Bags),
D. E. Knuth pointed out the essentialness of such a set ([1]). Chris Brink in his
studies explained the relations and operations with multisets [2]. Later Wayne
D. Blizard developed some of the fundamental structures in multiset background
([3]). C. S. Calude [4], N.J. Wildberger [5], D. Singh [6] are some of the persons
who were put milestones in this journey. K.P. Girish and S.J. John [7] explores
the relations and functions in multiset context.

The algebraic structures, group, ring, ideal etc. with fuzzy set context are
being applied in subjects like computer science, physics and so on. Some of the
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research work in this area are done by Azriel Rosenfield [8], Sabu Sebastian and
T. V. Ramakrishnan [9], and Yuying Li et all [10]. The structure with multiset
base are yet to be used and implemented widely. Multiset groups (shortly mset
groups) and some of its properties have been studied by the authors like A.M.
Ibrahim and P.A. Ajegwa [11], Binod Chandra Tripathy [12], A.A. Johnson [13],
P.A. Ejegwa [14], S.K. Nazmul [15], Tella [16]. Suma P. and Sunil J. John [17]
extended this to ring and ideal structures.

This paper is an attempt to extend the properties of multiset group to a
generalized form (A,B)- multiset group. Here, A and B are non negative real
numbers with A < B. Section 3 is a discussion of multiset group and some of
the properties of mset normal groups and cosets of mset groups. In section 4,
these properties are analysed in (A,B)- mset group.

2. Preliminaries

In this section, we will be revisiting some of the fundamental properties of
Multiset that have been developed by several researchers, which are necessary
for this paper.

A Multiset (shortly mset) T drawn (or derived) from a set U is represented
by a function CT : U → N , where N is the set of non negative integers. CT (u)
represents the number of occurrences of the element u in the multiset T. The
function CT is known as Characteristic function or Count Function and CT (u)
is the Count value of u in T (see, Girish and John (2009)).

Let T be an mset drawn from U , and let {u1, u2, · · · , un} be a subset of T ,
with u1 appearing k1 times, u2 appearing k2 times and so on. Then T is written
as

T = {k1|u1, k2|u2, · · · , kn|un}.

The subset S = {u1, u2, · · · , un} of U is called the Root Set of T .

Operations of multisets:-

1. Let T1 and T2 be two msets drawn from a set U . T1 is a submultiset of T2,
(T1 ⊆ T2) if CT1(u) ≤ CT2(u) for all u in U .

2. Two msets T1 and T2 are equal if T1 ⊆ T2 and T2 ⊆ T1.

3. The intersection of T1 and T2 is a multiset, T = T1 ∩ T2, with the count
function CT (u) = min{CT1(u), CT2(u)}, for every u ∈ U.

4. The union of T1 and T2 is a multiset, T = T1∪T2, with the count function
CT (u) = max{CT1(u), CT2(u)}, for every u ∈ U.

More details in [7].
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3. Multiset group

Consider the group (G, *) and a multiset T drawn from G. Then, T is said to
be a multiset group or shortly mset group if the characteristic function satisfies
the following properties:

(1) CT (g ∗ h) ≥ min{CT (g), CT (h) : g, h ∈ G};
(2) CT (g) = CT (g

−1) for all g ∈ G where g−1 is the inverse of g in G.
Let T be an mset group. A subset P of T is an mset subgroup, if P itself is

an mset group on G ([15]).

Example 3.1. Let G = {1, −1, i, −i}. Then (G, ∗) is a group, where ∗ is
the usual multiplication of real numbers. Consider the multiset T = {5|1, 3| −
1, 4|i, 4| − i}. Here T is a multiset group.

Theorem 3.1. Let T be a multiset group derived from a group (G, *) and let
S be the root set of T . Then S is a subgroup of G.

Proof. Let g, h ∈ S. Then CT (g) > 0 and CT (h) > 0, CT (g ∗ h−1) ≥
min{CT (g), CT (h

−1)} = min{CT (g), CT (h)} > 0 means that g ∗ h−1 ∈ S.

Proposition 3.1. Consider a group (G, *) with identity element e and a mul-
tiset group T drawn from G. Then:

(1) CT (e) ≥ CT (g), ∀g ∈ G;
(2) CT (g

n) ≥ CT (g),∀g ∈ G, and all natural number n. Here, gn means
g ∗ g ∗ · · ·n times.

Proof. (1) Since e = g ∗ g−1,∀g ∈ G, CT (e) ≥ min{CT (g), CT (g
−1)} = CT (g);

(2) Applying mathematical induction on n. For n = 1, CT (g) = CT (g) , and
hence the result is true. Assume the result is true for n − 1 i.e., CT (g

n−1) ≥
CT (g).

Now, CT (g
n) = CT (g

n−1 ∗ g) ≥ min{CT (g
n−1), CT (g)} = CT (g) , by induc-

tion hypothesis.

Theorem 3.2. If T is an mset derived from a group G, then T is an mset group
if and only if CT (g ∗ h−1) ≥ min{CT (g), CT (h)},∀g, h ∈ G.

Proof. First assume that T is an mset group. Then

CT (g ∗ h−1) ≥ min{CT (g), CT (h
−1)} = {min{CT (h), CT (h)}.

Conversely, suppose CT (g ∗ h−1) ≥ min{CT (g), CT (h)}, ∀g, h ∈ G.
Now, CT (e) = CT (g ∗ g−1),∀g ∈ G. ≥ min{CT (g), CM (g)}, by assumption.

So, CT (e) ≥ CT (g), ∀g ∈ G. Now, CT (g
−1) = CT (e∗g−1) ≥ min{CT (e), CT (g)} ≥

CT (g). Similarly, CT (g) = CT (e ∗ g) ≥ min{CT (e), CT (g
−1)} ≥ CT (g

−1).
Hence, we get CT (g) = CT (g

−1),∀g ∈ G, which is the second e condition of
Mset group. Now, to show the first condition, take two arbitrary elements g
and h from G.

CT (g ∗ h) = CT (g ∗ (h−1)−1) ≥ min{CT (g), CT (h
−1)}, by assumption

= min{CT (g), CT (h)}.
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Theorem 3.3. Let (G, ∗) be a group with identity e and T be an mset group
derived from G. If E = {g ∈ G : CT (g) = CT (e)}, then E is a subgroup of G.

Proof. Take g and h from E. Then, CT (g) = CT (h) = CT (e). CT (g ∗ h−1) ≥
min{CT (g), CT (h)}, by Theorem 3.4 = CT (e). Therefore, g ∗ h−1 ∈ E. Hence,
E is a subgroup of G.

Definition 3.1. Let T be an mset drawn from a group G. The subset {g :
CT (g) ≥ r} of G is known as the Level Set of T, denoted by Tr. Here, r is a
non negative real number.

Theorem 3.4. If T is an mset group drawn from a group (G, ∗) having identity
element e, then the level sets Tr are all subgroups of G.

Proof. If Tr = ϕ, then Tr is a subgroup.
If Tr is a singleton set, then Tr = {e}, which is also a subgroup of G.

Otherwise, Let g, h ∈ Tr. Then, CT (g) ≥ r and CT (h) ≥ r. Now, CT (g ∗ h−1) ≥
min{CT (g), CT (h)} ≥ r. So, Tr is a subgroups of G for all positive real number
r.

Theorem 3.5. Let T be an mset group drawn from a group (G, ∗) having
identity element e. If CT (g ∗ h−1) = CT (e), for some g and h in G, then
CT (g) = CT (h).

Proof. CT (g) = CT (g ∗e) = CT (g ∗ (h−1 ∗h)) = CT ((g ∗h−1)∗h) ≥ min{CT (g ∗
h−1), CT (h)}, = CT (h).

Similarly, starting from CT (h) , we can show that CT (h) ≥ CT (g).

Definition 3.2. An mset group T drawn from a group G is said to be an Mset
Normal group, if CT (g ∗ h ∗ g−1) ≥ CT (h), ∀g, h in G.

Proposition 3.2. If T is an mset normal group, then CT (g ∗ h) = CM (h ∗ g),
for every g and h in G.

Proof. Suppose T is an mset normal group derived from G. Then CT g ∗ h ∗
g−1) ≥ CT (h),∀g, h in G. Replacing h by h∗g, CT (g ∗ (h∗g)∗g−1) ≥ CT (h∗g).

By associativity CT (g ∗ h) ≥ CT (h ∗ g). Interchanging the role of g and h,
CT (h ∗ g) ≥ CT (g ∗ h).

Proposition 3.3. Let T an mset group drawn from a group G. If T is an mset
normal group, then Tr is a normal subgroup of G, for every r > 0.

Proof. Take an mset normal group T derived from G and r a positive real
number. Then CT (g ∗ h ∗ g−1) ≥ CT (h),∀g, h in G. Choose a h ∈ Tr. Then,
CT (h) ≥ r. For any g ∈ G, CT (g ∗ h ∗ g−1) ≥ CT (h) ≥ r, g ∗ h ∗ g−1 ∈ Tr. Tr is
a normal subgroup of G.

Theorem 3.6. Let T be an mset group drawn from a cyclic group G with gene-
rator a. Then CT (g) ≥ CT (a), ∀x ∈ G.
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Proof. Let g ∈ G. Then g = an for some non negative integer n and CT (g) ≥
CT (a), by Proposition 3.3.

Corollary 3.1. Let T be an mset group drawn from a cyclic group G with
generators a and b.Then CT (a) = CT (b).

Proof. since a is a generator, and b ∈ G, by above theorem CT (a) ≤ CT (b).
By interchanging the roles of a and b, CT (b) ≤ CT (a).

Corollary 3.2. Let T be an mset group drawn from a group G of prime order.
Then CT (g) are all equal for all g ∈ G other than the identity element.

Proof. Being prime order, G is cyclic and every element other than the identity
element of G are generators. The proof is then straight forward from above
theorem and corollary.

Definition 3.3. Let T be an mset group drawn from a group G and g ∈ G
such that CT (g) = 0. The Left Coset gM is defined as CgT (x) = CT (g ∗ x), for
x ∈ G.

Similarly, the Right Coset Tg is CTg(x) = CT (x ∗ g), for x ∈ G.

Proposition 3.4. If T is an mset group drawn from G, and g, h ∈ G, then

(a) eT = Te = T .

(b) g(hT ) = (g ∗ h)T

(c) (Tg)h = T (g ∗ h).

(d) gT = hT ⇔ T = (g−1 ∗ h)T ⇔ T = (h−1 ∗ g)T

(e) Tg = Th ⇔ T = T (h ∗ g−1) ⇔ T = T (g ∗ h−1).

Proposition 3.5. Let T and R are two mset groups drawn from the same group
G, and g, h ∈ G

(a) gT = hR ⇔ T = (g−1 ∗ h)R ⇔ (h−1 ∗ g)T = R.

(b) Tg = Rh ⇔ T = R(h ∗ g−1) ⇔ T (g ∗ h−1) = R.

4. (A,B)-multiset group

Definition 4.1. Let M be an mset drawn from a group G, and A,B are two
real numbers with 0 ≤ A < B. Then M is called an (A,B)- multiset group if
the characteristic function satisfies the following conditions.

1. max{CM (x ∗ y), A} ≥ min{CM (x), CM (y), B};

2. max{CM (x−1), A} ≥ min{CM (x), B},
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for every x and y in G.

Notation 4.1. An (A,B)- mset group is denoted by MAB.

Proposition 4.1. If M is an mset group derived from a group G, then it is an
(A,B)- mset group for every real number A and B with 0 ≤ A < B.

Proof. M is an mset group means CM (x ∗ y) ≥ min{CM (x), CM (y)}, for every
x and y in G. For 0 ≤ A < B,

max{CM (x ∗ y), A} ≥ CM (x ∗ y)
≥ min{CM (x), CM (y)}
≥ min{CM (x), CM (y), B}

M is an (A,B)- mset group.

Proposition 4.2. If an mset M derived from a group G is a (0, N)- mset group,
where N = max{CM (x) : x ∈ G}, then it is an mset group.

Proof. For any x, y ∈ G,max{C0N (x ∗ y), 0} ≥ min{CM0N
(x), CM0N

(y), N}

CM0N
(x ∗ y) ≥ min{CM0N

(x), CM0N
(y)},

since N ≥ CM (x) and N ≥ CM (y).

Similarly, by the second condition of (A,B)- mset group

max{CM0N
(x−1, 0)} ≥ min{CM0N

(x), N},
CM0N

(x−1) ≥ CM0N
(x).

Hence, the two conditions of mset group is satisfied by M0N .

Note 4.1. If an mset drawn from a group G, is not an (A,B) mset group for
all A and B with 0 ≤ A < B, then M need not be an mset group.

Example 4.1. Consider the group G = {1,−1, i,−i} with usual multiplication
and the mset M = {3|1, 4| − 1}. Here, M is a (5,6)- mset group,because both
th conditions of the definition of (A,B)-mset group is satisfied. But M is not
a (1,5)- mset group. Taking x = y = −1, LHS of condition (1) of definition is
max{CM (−1 ∗ −1), A} = max{3, 1} = 3.

RHS becomes min{CM (−1), CM (−1), 5} = min{4, 4, 5} = 4. We get LHS=3
and RHS=4, so that the first condition is not satisfied and hence not a (1, 5)-
mset group. Note that M is not an mset group.

Example 4.2. Consider the group G = {1,−1, i,−i} with usual multiplication
and the mset M = {3|1, 3| − 1, 2|i, 2| − i}. Here, M is an (A,B) mset group for
all A and B. M is an mset group also.
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Definition 4.2. Let MAB be an (A,B) mset group drawn from a group G. The
subset {x ∈ G : CMAB

(x) ≥ r} of G is known as level set of MAB and is denoted
by Mr, where r is any positive number.

The following theorem gives some of the properties of the count value of the
identity element e in an (A, B)- mset group.

Theorem 4.1. If G is a group with identity element e, and MAB- is an (A,B)-
mset group drawn from G, then:

(a) max{CMAB
(e), A} ≥ min{CMAB

(x), B},∀x ∈ G.

(b) If CMAB
(x) ≥ B, for some x ∈ G, then CMAB

(e) ≥ B.

(c) If CMAB
(x) < B, ∀x ∈ G, and CMAB

(x) > A, for atleast one x ∈ G, then
CMAB

(e) = max{CMAB
(x) : x ∈ G}.

(d) If CMAB
(e) ≤ A, then CMAB

(x) ≤ A, ∀x ∈ G.

(e) If A < CMAB
(e) < B, then CMAB

(x) ≤ CMAB
(e), ∀x ∈ G.

Proof. (a) In condition 1 of the definition of (A,B)- mset group, taking y =
x−1, we get

max{CMAB
(x ∗ x−1), A} ≥ min{CMAB

(x), CMAB
(x−1), B} i.e.

max{CMAB
(e), A} ≥ min{CMAB

(x), CMAB
(x−1), B}

≥ min{CMAB
(x), B}.

(b) Suppose there is an x0 ∈ G with CMAB
(x0) ≥ B. By part (a)

max{CMAB
(e), A} ≥ min{CMAB

(x0), B} = B,

since CMAB
(x0) ≥ BCMAB

(e) ≥ B, because A < B.

(c) If CMAB
(x) < B, ∀x ∈ G, min{CMAB

(x), B} = CMAB
(x),∀x ∈ G. So, by

part (a),

(1) max{CMAB
(e), A} ≥ CMAB

(x), ∀x ∈ G.

Suppose, there is an x0 ∈ G with

CMAB
(x0) ≥ A.

For this particular x0, (4.1) becomes max{CMAB
(e), A}≥CMAB

(x0), CMAB
(e)

≥ CMAB
(x0). Since, x0 is arbitrary, CMAB

(e) = max{CMAB
(x) : x ∈ G}.

(d) If CMAB
(e) ≤ A, max{CMAB

(e), A} = A. Then, by part (a),

A ≥ min{CMAB
(x), B},∀x ∈ G

A ≥ CMAB
(x),∀x ∈ G, since A < B.
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(e) If possible, let CMAB
(x0) ≥ B for some x0 ∈ G. Then, by part (b),

CMAB
(e) ≥ B, which is not the case. Therefore, CMAB

(x) ≤ B, ∀x ∈ G.

Since CMAB
(e) > A, by part (c), CMAB

(e) = max{CMAB
(x) : x ∈ G}. i.e.

CMAB
(x) ≤ CMAB

(e),∀x ∈ G.

Corollary 4.1. If A < CMAB
(e) < B, then CMAB

(x) = CMAB
(e), ∀x ∈ Mk,

where k = CMAB
(e)

Proof. For x ∈ Mk, CMAB
(x) ≥ k, CMAB

(x) ≥ CMAB
(e). By Theorem 4.9 (e),

CMAB
(x) ≤ CMAB

(e),∀x ∈ G.

Hence, for x ∈ Mk, CMAB
(x) = CMAB

(e).

Theorem 4.2. Let M be an mset drawn from a group G. If M is an (A,B)-
mset group, then the level set Mr is a subgroup of G for A < r ≤ B.

Proof. If Mr = ϕ, then it is a subgroup trivially.
If Mr has exactly one element say x, then, by Theorem 4.9 (a), x = e, the

identity element of G and is a subgroup of G.
Otherwise, take two element x and y fromMr, for a particular r. CMAB

(x) ≥
r and CMAB

(y) ≥ r and A < r ≤ B, will give min{CMAB
(x), CMAB

(y), B} ≥ r.
By definition, CMAB

(x ∗ y−1) ≥ r.
=⇒ x ∗ y−1 ∈ Mr, completes the proof.

Corollary 4.2. If CMAB
(x) ≥ B and CMAB

(y) ≥ B for x ∈ G, y ∈ G, then
CMAB

(x ∗ y) ≥ B.

Proof. x ∈ MB , y ∈ MB and MB is a subgroup will imply x ∗ y ∈ MB.

Example 4.3. In Example 4.7, Mr = G, if r ≤ 2, Mr = {1,−1}, if 2 < r ≤ 3,
and Mr = ϕ, if r > 3.

In all cases, Mr is a subgroup of G.

Theorem 4.3. If A < CMAB
(x) < B, for x ∈ G, then CMAB

(x ∗ y) =
CMAB

(x),∀y ∈ G with CMAB
(y) > CMAB

(x).

Proof. By the definition of MAB mset group

max{CMAB
(x ∗ y), A} ≥ min{CMAB

(x), CMAB
(y), B} = CMAB

(x),

since both B and CMAB
(y) are greater than CMAB

(x).

(2) ∴ CMAB
(x ∗ y) ≥ CMAB

(x).

If CMAB
(x ∗ y) > CMAB

(x), let r0 = min{CMAB
(x ∗ y), CMAB

(y), B}. Then
r0 > CMAB

(x). Also, A < r0 ≤ B and hence Mr0 is a subgroup of G.

x ∗ y ∈ Mr0 , y ∈ Mr0 =⇒ (x ∗ y) ∗ y−1 ∈ Mr0 =⇒ x ∈ Mr0 ,

i.e. CMAB
(x) ≥ r0 > CMAB

(x), a contradiction and this completes the proof.



610 SUMA P and SUNIL JACOB JOHN

Theorem 4.4. If CMAB
(x) ≤ A and CMAB

(y) > A, for x, y in G, then CMAB
(x∗

y) ≤ A.

Proof. If possible, let CMAB
(x∗y) > A. Take r0 = min{CMAB

(x∗y), CMAB
(y), B}.

Then A < r0 ≤ B and hence Mr0 is a subgroup of G

x ∗ y ∈ Mr0 , y ∈ Mr0 =⇒ (x ∗ y) ∗ y−1 ∈ Mr0 =⇒ x ∈ Mr0 ,

i.e. CMAB
(x) ≥ r0 > A, a contradiction.

Theorem 4.5. If A < CMAB
(x) < B, then CMAB

(xn) ≥ CMAB
(x), for a positive

integer n.

Proof. By definition

max{CM (x ∗ x), A} ≥ min{CM (x), CM (x), B},
max{CMAB

(x2), A} ≥ min{CMAB
(x), B},

CMAB
(x2) ≥ CMAB

(x),

since A < CMAB
(x) < B. By the same argument CMAB

(x3) ≥ CMAB
(x2) ≥

CMAB
(x). Proceeding like this, CMAB

(xn) ≥ CMAB
(x).

Proposition 4.3. If G is a group and MAB is an (A,B)- mset group drawn
from G, then

(a) If CMAB
(x) ≤ A, for some x ∈ G, then CMAB

(x−1) ≤ A, for those x.

(b) If A < CMAB
(x) < B, for some x ∈ G, then CMAB

(x) = CMAB
(x−1).

(c) If CMAB
(x) ≥ B, for some x ∈ G, then CMAB

(x−1) ≥ B.

Proof. (a) Suppose CMAB
(x0) ≤ A, for x0 ∈ G. If possible, let CMAB

(x−1
0 ) >

A. Let r0 = min{CMAB
(x−1

0 ), B}. Then r0 > A, x−1
0 ∈ (MAB)r0 and being

(MAB)r0 is a subgroup of G, x0 ∈ (MAB)r0 . Therefore, CMAB
(x0) ≥ r0 > A,

a contraduction.

(b) choose x0 from G such that

(3) A < CMAB
(x0) < B.

By condition 2 of the definition of (A,B)-mset group,

max{CMAB
(x−1

0 ), A} ≥ min{CMAB
(x0), B},

max{CMAB
x−1
0 , A} ≥ CMAB

(x0), by (4.1)

since, A < CMAB
(x0),

(4) CMAB
(x−1

0 ) ≥ CMAB
(x0).
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Again by applying condition 2 of the definition of (A,B)-mset group to the
point (x−1

0 )

max{CMAB
(x0), A} ≥ min{CMAB

(x−1
0 ), B}.

In view of equation (4.4), this can be reduced to

(5) CMAB
(x0) ≥ CMAB

(x−1
0 )

the required result is obtained from the equations (4.4) and (4.5).

(c) Choose an x0 from G such that CMAB
(x0) ≥ B.

Consider MB. x0 ∈ MB. Since MB is a subgroup of G, x−1
0 ∈ MB, which

gives CMAB
(x−1

0 ) ≥ B.

4.1 MAB drawn from a cyclic group G

Theorem 4.6. Let G be a cyclic group with generator a, and MAB be an (A,B)-
mset group drawn from G.

If A < CMAB
(a) < B, then CMAB

(x) ≥ CMAB
(a),∀x ∈ G.

Proof. By an above theorem, CMAB
(x) ≤ CMAB

(e), ∀x ∈ G. So, CMAB
(a) ≤

CMAB
(e).

Now, for x ̸= e, x = an, for some positive integer n. Again, by a previous
theorem, CMAB

(an) ≥ CMAB
(a) i.e. CMAB

(x) ≥ CMAB
(a).

Theorem 4.7. Let G be a cyclic group with generator a, and MAB be an (A,B)-
mset group drawn from G. If CMAB

(a) ≥ B, then G = MB.

Proof. MB is a subgroup of G. Now to show G ⊆ MB.
Let x ∈ G. Then x = an for a positive integer n. Given, CMAB

(a) ≥ B =⇒
a ∈ MB =⇒ an ∈ MB =⇒ x ∈ MB. Hence, G = MB.

Theorem 4.8. Let G be a cyclic group with two generators a and b and MAB

be an (A,B)- mset group drawn from G. If A < CMAB
(a) < B, then CMAB

(a) =
CMAB

(b).

Proof. By Theorem 4.18,

(6) CMAB
(b) ≥ CMAB

(a).

If possible, let CMAB
(b) ≥ B. Then, by Theorem 4.14, G = MB and so a ∈ MB

=⇒ CMAB
(a) ≥ B,

a contradiction. Therefore,

(7) CMAB
(b) < B.

From (4.6) and (4.7), A < CMAB
(b) < B. By Theorem 4.13

(8) CMAB
(a) ≥ CMAB

(b)

(4.6) and (4.8) together provides the requirement.



612 SUMA P and SUNIL JACOB JOHN

Corollary 4.3. If G is a cyclic group of prime order with generator a and
identity element e, then CMAB

(x) = CMAB
(a),∀x ̸= e of G.

Proof. For a cyclic group of prime order, every element other than e, is a
generator, and hence the result is obtained by above theorem.

4.2 (A,B)- Mset normal group

Definition 4.3. An (A,B)- mset group drawn from a group G is said to be an
(A,B)- mset Normal group if max{CMAB

(x ∗ y ∗ x−1), A} ≥ min{CMAB
(y), B},

for every x and y in G.

Proposition 4.4. If an (A,B)- mset group is an (A,B) mset normal group,
then max{CMAB

(x ∗ y), A} ≥ min{CMAB
(y ∗ x), B}, for every x and y in G.

Proof. Replacing y by y ∗ x in the definition of (A,B)- mset normal group, we
get this proposition.

Corollary 4.4. For an abelian group G, MAB is normal iff A < CMAB
(x) < B

for all x in G.

Proposition 4.5. IfMAB is an mset normal group drawn from a group G, then
Mr is a normal subgroup of G, for A < r ≤ B.

Proof. Choose r such that A < r ≤ B. If Mr = ϕ, is a normal subgroup of G.
If Mr is a singleton set, then mr = {e}, again a subgroup of G.

On the other hand, if Mr contains more than one element. Take two ar-
bitrary elenemts x and y from Mr. Then, CMAB

(x) ≥ r and CMAB
(y) ≥ r.

Therefore, min{CMAB
(y), B} = r. From the definition of (A,B)- mset normal

group max{CMAB
(x ∗ y ∗ x−1, A} ≥ r.

CMAB
(x ∗ y ∗ x−1 ≥ r, since A < r ≤ B.

=⇒ x ∗ y ∗ x−1 ∈ Mr, proving that Mr is a normal subgroup of G.

Proposition 4.6. MAB is an (A,B)- mset normal group drawn from a group
G, and x, y elements of G.

(a) If CMAB
(x) ≥ B, then CMAB

(y ∗ x ∗ y−1) ≥ B.

(b) If A < CMAB
(x) < B, then CMAB

(y ∗ x ∗ y−1) = CMAB
(x).

(c) If CMAB
(x ∗ y) ≤ A, then CMAB

(y ∗ x) ≤ A.

(d) if A < CMAB
(x ∗ y) < B, then CMAB

(x ∗ y) = CMAB
(y ∗ x).

(e) If CMAB
(x ∗ y) ≥ B, then CMAB

(y ∗ x) ≥ B.

Proof. The poof is straight forward from the definition of (A,B)- mset normal
group.
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4.3 Cosets of (A,B)- mset group

Definition 4.4. Let MAB be an (A,B)- mset group drawn from a group G and
let g ∈ G. The left coset gMAB is defined as CgMAB

(x) = min{max(CMAB
(g−1∗

x), A), B},∀x ∈ G. The right coset MABg is CMABg(x) = min{max(CMAB
(x ∗

g−1), A), B},∀x ∈ G.

Proposition 4.7. If MAB is an (A,B)- mset group drawn from a group G with
identity element e, then eMAB = MABe.

Proof. By Definition,

CeMAB
(x) = min{max(CMAB

(e−1 ∗ x), A), B},∀x ∈ G

= min{max(CMAB
(e ∗ x), A), B}, ∀x ∈ G

= min{max(CMAB
(x), A), B},∀x ∈ G

= min{max(CMAB
(x ∗ e), A), B}, ∀x ∈ G

= min{max(CMAB
(x ∗ e−1), A), B},∀x ∈ G

= CMABe(x).

Proposition 4.8. (a) CeMAB
(x) = A if CMAB

(x) ≤ A.

(b) If A < CMAB
(x) < B, then CeMAB

(x) = CMAB
(x).

(c) CeMAB
(x) = B if CMAB

(x) ≥ B.

Proof. The proof is obtained directly from the definition of left coset.

Corollary 4.5. eMAB = MAB if A ≤ CMAB
(x) ≤ B, ∀x ∈ G.

Note 4.2. Similar results hold for right cosets also.

Proposition 4.9. (a) If MAB- is an (A,B) mset group, then both eMAB and
MABe are (A,B)- mset groups.

(b) If MAB is an (A,B)- mset normal group, then both eMAB and MABe are
(A,B)- mset normal groups.

Theorem 4.9. If MAB is an (A,B)- mset group drawn from a group G with
identity element e. Suppose CMAB

(e) ≥ B. An element a ̸= e ∈ MB, if and
only if aMAB = eMAB.

Similar result hold for right cosets also.

Proof. Let a ̸= e ∈ MB. Then a−1 ∈ MB.
Case 1. For x ∈ G with CMAB

(x) ≥ B,

x ∈ MB =⇒ a−1 ∗ x ∈ MB

=⇒ CMAB
(a−1 ∗ x) ≥ B

=⇒ CaMAB
(x) = B,
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by definition of left coset. For the same x, CeMAB
(x) = min{max(CMAB

(x), A), B}
= B. So, CaMAB

(x) = CeMAB
(x).

Case 2. For x ∈ G with A < CMAB
(x) < B,

CMAB
(a−1 ∗ x) = CMAB

(x), by Theorem 4.7

= CMAB
(e−1 ∗ x)

∴ CaMAB
(x) = CeMAB

(x)

Case 3 : For x ∈ G with CMAB
(x) ≤ A,

CMAB
(a−1 ∗ x) ≤ A, by Theorem 4.8

∴ CaMAB
(x) = A

= CeMAB
(x).

Hence, in all the three cases, CaMAB
(x) = CeMAB

(x) and this completes one
part of the proof.

Conversely, assume that aMAB = eMAB for some a ∈ G. CaMAB
(x) =

CeMAB
(x), ∀x ∈ G i.e., min{max(CMAB

(a−1∗x), A), B} = min{max(CMAB
(e−1∗

x), A), B},∀x ∈ G. Taking x = a,

min{max(CMAB
(a−1 ∗ a), A), B} = min{max(CMAB

(e−1 ∗ a), A), B}
i.e.min{max(CMAB

(e), A), B} = min{max(CMAB
(a), A), B}

=⇒ B

= min{max(CMAB
(e−1 ∗ a), A), B}

=⇒ CMAB
(a) ≥ B

=⇒ a ∈ MB.

Corollary 4.6. Let MAB is an (A,B)- mset group drawn from a group G with
identity element e. If a ∈ MB, then aMAB = MABa = eMAB = MABe.

Proof. if a ∈ MB, then by above theorem aMAB = eMAB and aMAB = eMAB.
But by Proposition 4.24, eMAB = MABe.

Corollary 4.7. Let MAB is an (A,B)- mset group drawn from a group G and
let a, b ∈ G. aMB = bMB if and only if aMAB = bMAB.
Similarly for right cosets.

Proof.

aMB = bMB

⇔ a−1b ∈ MB

⇔ (a−1b)MAB = eMAB

⇔ bMAB = aMAB.
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Theorem 4.10. Let MAB is an (A,B)- mset group drawn from a group G with
identity element e and suppose A < CMAB

(e) < B. Then, for an element a ∈ G,
CMAB

(a) = CMAB
(e) if and only if aMAB = eMAB

Proof. Assume first that CMAB
(a) = CMAB

(e). Choose an x ∈ G.

Case 1. CMAB
(x) ≤ A. Then CMAB

(a−1 ∗ x) ≤ A, by Theorem 4.8 and
Proposition 4.10 (b). Hence, by definition of left coset and Proposition 4.25
CaMAB

(x) = A = CeMAB
(x).

Case 2. A < CMAB
(x) < CMAB

(e) then, CMAB
(a−1 ∗ x) = CMAB

(x) =
CMAB

(e−1 ∗ x), by Theorem 4.7 and Proposition 4.10 (b) i.e. CaMAB
(x) =

CeMAB
(x).

Case 3. CMAB
(x) ≥ CMAB

(e). Let CMAB
(e) = m. CMAB

(x) = m, by Theo-
rem 4.11 (e).

Here, a ∈ Mm, by assumption and Mm being a subgroup, a−1 ∈ Mm. Also,
x ∈ Mm =⇒ (a−1 ∗ x) ∈ Mm =⇒ CMAB

(a−1 ∗ x) = m.

∴ CaMAB
(x) = min{max(CMAB

(a−1 ∗ x), A), B}
= min{max(m,A), B}
= min{max(CMAB

(e−1 ∗ x), A), B}
= CeMAB

(x).

From the above three cases, aMAB = eMAB. Conversely, assume that
aMAB = eMAB

CaMAB
(x) = CeMAB

(x), ∀x ∈ G

CaMAB
(a) = CeMAB

(a)

min{max(CMAB
(a−1 ∗ a), A), B} = min{max(CMAB

(e−1 ∗ a), A), B}
min{max(CMAB

(e), A), B} = min{max(CMAB
(a), A), B}

CMAB
(a) = CMAB

(e).

5. Conclusion and future work

We have broadened the group structure in multiset context to a new scenario ,
(A,B) multiset group. Here both A and B are non negative real numbers and
the (A,B) multiset group depends on A,B and the count value of the elements.
Hence, in practical situations, it will be more adequate to apply (A,B) multiset
groups, rather than multiset groups, and in this way, we are providing a novel
path for research.
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